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BREU RESUM EN CATALÀ

La Cromodinàmica Quàntica (QCD) és la teoria de les interaccions fortes [6, 7,
8]. La QCD tracta de interaccions entre quarks i gluons, i és part del Model
Estàndard. La QCD és una teoria gauge no Abeliana and el grup de color SU(3)
com a grup gauge. La naturalesa no Abeliana de la teoria es manifesta de forma
dramàtica. Mentres que la interacció entre objectes amb carrega de color és dèbil
a curtes distàncies, o a alts moments de transferència (llibertat asimptòtica [6, 9,
10]); és forta a distancies llargues (≲ 1fm) o a baixes energies, el que condueix al
confinament del quarks en objectes sense color, el hadrons [11]. En conseqüència
la QCD permet un anàlisis perturbatiu a altes energies, mentres que a baixes
energies és altament no pertorbativa.

Una idea important que és implícita en totes les descripcions de fenòmens
físics és la de teoria efectiva [12]. La premisa bàsica de les teories efectives és
que la dinàmica a baixes energies (o distancies llarges) no depen dels detalls
de la dinàmica d’altes energies (o distàncies curtes). Com a resultat, la física de
baixes energies pot ser descrita per un Lagrangià efectiu que contingui només els
graus de llibertat rellevants a baixes energies, sense tenir en compte de manera
explicita possibles graus de llibertat addicionals presents a altes energies. És
important adonar-se que els graus de llibertat de baixes energies no tenen per
què ser els graus de llibertat fonamentals de la teoria original. Per exemple a
QCD, els graus de llibertat fonamentals són els quarks i gluons, però els graus de
llibertat més adequats per descriure la física de baixes energies són els hadrons.

Una teoria efectiva descriu la física de baixes energies en termes d’uns pocs
paràmetres. Aquest paràmetres de baixa energia poden ser, en principi, calculats
en termes de la teoria fonamental d’altes energies. Aquest càlcul es pot portar
a terme quan la teoria d’altes energies és pertorbativa, com per exemple Elec-
trodinàmica Quàntica, però quan la teoria està fortament acoblada, com és el
cas de QCD, s’han de fer servir tècniques no pertorbatives com per exemple càl-
culs numèrics en el reticle. En tots els casos els paràmetres de baixes energies es
poden ajustar a les dades experimentals. Els efectes de la dinàmica d’altes ener-
gies en la teoria de baixes energies estan codificats en els acoblaments de baixes
energies i en forma de lligams de simetria sobre la teoria de baixes energies.
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Teoria de Pertorbacions Quiral (χPT), és una teoria efectiva de QCD [13, 14].
Els graus de llibertat de χPT són els estats de menor massa de QCD, l’octet de
mesons pseudoescalars (π ,K, η). χPT está basada en el mecansime de ruptura
espontánia de simetria Quiral, explotant d’aquesta manera la naturalesa dels
mesons com a bosons de Goldstone. La ruptura explícita de simetria, deguda
a les masses finites dels quarks, es tradueix en el mecanisme de alineament del
buit i és responsable de la generació de les masses dels mesons [15]. S’ha de de-
senvolupar un comptatge de potencies per tal determinar quins termes del La-
grangià i quins diagrames de Feynamn són necessaris per calcular les amplituds
fins a una determinada precisió. Els resulats es poden organitzar en potencies
p/Λχ, on p és el moment extern, que pren valors de l’ordre de la massa del pió
p ∼mπ. Λχ és el cut–off de la teoria, i normalment es pren de l’ordre de la massa
del primer estat de QCD que no és un bosó de Goldstone, el mesó ρ.

χPT pot ser aplicada a les interaccions dels bosons de Goldstone amb al-
tres partícules [16, 17, 18], a les que ens referirem com a camps de matèria. La
clau per introduir els camps de matèria al Lagrangià Quiral, és que tots els
estats de QCD transformen com representacions irreductibles del subgrup no
trencat de la simetria Quiral. La introducció de camps pesats introdueix un
problema addicional al introduir una nova escala gran, la massa del camp pe-
sat, que trenca el comptatge de potències. Una forma possible de solucionar
el problema és utilitzar la Heavy Baryon expansion [19, 20], o tècniques alter-
natives que mantenen la simetria Lorentz explícita, com per exemple Infrared
Renormalization [21]. Una aplicació particularment interessant d’aquest for-
malisme és la teoria efectiva per descriure les interaccions nuclears, acoblant
el doblet dels nucleons al Lagrangià Quiral [22, 23]. Inclús usant el formalisme
de la Heavy Baryon expansion pel Lagrangià per pions i nucleons el comptatge
de potencies Quiral presenta problemes degut a l’aparició de singularitats que
punxen el camí d’integració. En el sector de dos nucleons. Es pot argumentar
que els propagadors dels nucleons s’han de contar com ∼ mN /m2

π (on mN és
la massa dels nucleons) en determinades situacions en comptes de la estimació
naïf ∼ 1/mπ . En el primer cas la energia cinètica s’ha de resumar als propagadors
dels nucleons.

Com hem mencionat abans, en la construcció de un teoria efectiva de camps
és crucial la determinació del graus de llibertat rellevants. Una situació inter-
essant es presenta quan els graus de llibertat de baixes energies poden formar
estats lligats, estats virtuals o ressonàncies pròximes al llindar. Com que aquest
estats estan a prop del llindar afecten a les amplituds de dispersió, però tan-
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mateix no poden ser descrites utilitzant teoria de pertorbacions, ja que les se-
ries polinòmiques finites en el moment no poden generar un pol en l’amplitud.
Aquest pols es poden obtenir resumant certes classes de diagrames, per exemple
usant tècniques d’unitarització, que no són consistents amb el comptatge de la
teoria efectiva, o alternativament assumint un augment de l’importància de certs
acoblaments, com per exemple a Ref.[76]. En aquest últim cas s’han de calcular
les equacions del grup de renormalització per a tots els acoblaments per tal de
determinar-ne el tamany correcte, el que dificulta mantenir la sèrie pertorbativa
sota control. És una vella observació de Weinberg [24, 25, 26] que la inclusió ex-
plícita d’estats lligats i ressonàncies com a graus de llibertat de la teoria efectiva
millora la convergència de la teoria de pertorbacions. Es pot entendre fàcilment
aquesta millora de la convergencia ja que les amplituds de dispersió tindran la
estructura analítica correcta. Un dels temes principals d’aquesta tesi ha sigut
explorar aquest fet dins d’un marc modern de teories efectives.

La teoria de camps al reticle és un marc matemàtic ben definit per a la for-
mulació no pertorbativa de QCD [27]. La idea és remplaçar l’espai–temps de
Minkowsky quadri–dimensional per un reticle discret en un espai quadri– di-
mensional Euclidià. La teoria de camps al reticle introdueix un cut–off ultravi-
olat d’entrada i dona una definició no pertorbativa de l’integral funcional. Els
camps fermiònics viuen als nusos del reticle i el camps de gauge als enllaços.
Com que l’acció dels quarks és quadràtica, la integral es pot dur a terme exacta-
ment, després els gluons es poden integrar numèricament utilitzant mètodes de
Monte Carlo. A part dels efectes sistemàtics deguts al espaiat no nul del reticle i
al seu volum finit, les simulacions de QCD al reticle produeixen resultats exactes
en el reticle donat, exepte errors estadístics.

És natural combinar χPT i QCD al reticle. QCD al reticle, tot i que té una
alt grau de precisió, encara s’esta calculant fent servir valors de la massa dels
quarks més grans que els valors físics. χPT es pot fer servir per descriure la
dependència en la massa dels quarks dels observables de QCD de baixa energia
que es calculen amb QCD al reticle. Per tant χPT proporciona les fórmules per
les extrapolacions Quirals dels resultats de QCD al reticle des de valors alts no
físics de les masses dels quarks fins al valors físics. Així doncs, combinant QCD
al reticle amb χPT, podem obtenir prediccions de QCD per la física de baixes
energies de les interaccions fortes. D’altra banda, les masses dels quarks poden
ser variades de forma contínua en els cálculs al reticle, això permet un mètode
alternatiu per determinar les constants de baixa energia de χPT. Al costat del
mètode tradicional d’extraure el valor de les constants de baixa energia ajustant



xviii Breu resum Català

les expressions de χPT a les dades experimentals, les constants de baixa energia
es poden obtenir ajustant a dades de simulacions al reticle per a diferents valors
de les masses dels quarks.

El treball original d’aquesta tesi està als capítols 4 i 5. Al capítol 4 hem
construït una teoria efectiva Quiral pel sistema nucleó–nucleó que conté camps
dibariònics com a graus de llibertat fonamentals. Les longituds de dispersió
grans en els canals 1S0 i 3S1 forcen les masses residuals dels dibarions a ser molt
més petites que la massa del pió. Hem organitzat els cálculs en una sèrie de
teories efectives, que s’obtenen de forma seqüencial integrant les escales d’alta
energia i moments alts. Primer integrem les escales d’energia de la massa del pió.
Això porta a una teoria efectiva amb només nucleons i dibarions, pNNEFT. Per
tri–moments molt més petits que la massa del pió, és convenient també integrar
els moments de l’ordre de la massa del pió, el que duu a /πNNEFT.

Hem calculat les amplituds de dispersió nucleó–nucleó per energies inferiors
a la massa del pió pels canals 1S0 i 3S1–3D1 fins a tercer ordre. Per tri–moments
de l’ordre de la massa del pió, les amplituds de dispersió han estat calculades
en pNNEFT, per moments molt més petits que la massa del pió en /πNNEFT.
Els resultats numèrics dels desfasaments i de l’angle de mescla són similars a
aquells obtinguts amb el mètode de Kaplan, Savage i Wise [76]. S’observa una
bona descripció pel canal 1S0, però pel canal 3S1–3D1 les nostres expressions
també fallen a descriure les dades. El motiu s’ha de buscar en l’iteració del
potencial d’intercanvi d’un pió. Això pot ser interpretat com una indicació que
els pions potencials han de ser iterats fins a tots els ordres, tal com va proposar
originalment Weinberg [22]. La proposta de Weinberg però, no pot acomodar
de forma natural els tamanys de les longituds de dispersió i presenta problemes
de renormalització.

Hem calculat les masses residuals dels dibarions i els acoblaments nucleó–
dibarió fins a segon order (NLO). Hen demostrat que certes classes de diagrames
que contribueixen a la massa residual, involucrant n pions potencials i pions de
radiació, han de ser resumats. En el canal 3S1 això és possible ja que la resumació
dels diagrames amb qualsevol nombre de n pions potencials és possible. En el
canal 1S0 aquesta resumació no és possible, però és molt probable que les con-
tribucions dels loops siguin igualment grans. Fent servir els resultats obtinguts
per les masses residuals dels dibarions i els acoblaments nucleó–dibarió per
/πNNEFT hem donat formules d’extrapolació Quiral per les inverses de les longi-
tuds de dispersió dels canals 1S0 i 3S1 fins a correccions d’ordre O(m3

π/Λ2
χ) que

depenen de tres paràmetres independents lliures. Hem ajustat aquestes expres-
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sions a dades de simulacions al reticle i hem comparat els resultats amb estudis
previs de la dependència en la massa dels quarks de les longituds de dispersió.

La teoria efectiva per al sistema nucleó–nucleó amb camps dibariònics que
es presenta en aquesta tesi té un comptatge de potències simple i és renormalitz-
able. Com que cap contraterme ha sigut augmentat, com en [76], l’analisi dimen-
sional naïf és suficient per estimar el tamany del les constants de baixa energia,
mantenint l’expansió pertorbativa sota control. Les masses residuals petites per-
meten acomodar de forma natural els valors grans de les longituds de dispersió.
La mala convergencia del canal 3S1 és deguda a que l’interacció del pions de
potencial és important en aquest canal, el que indica que s’haurien de resumar.
Fins que no es sàpiga fer aquesta resumació, la descripció de les interaccions
nuclears a a partir de QCD a través de QCD serà incompleta. Creiem que, un
cop formulat un mètode per resumar els pions potencials, NNEFT amb camps
dibariònics és un formalisme natural per a la descripció de les forces nuclears.

Al capítol 5 hem considerat la possiblitat que l’espectre de QCD en el limit
Quiral contingui un isosinglet escalar amb massa molt mes petita que l’escala
hadroníca típica Λχ, i hem construït una teoria efectiva que l’inclou conjunta-
ment amb els pseudo–bosons de Goldstone, χPTS . En el sector purament escalar
de la teoria hem argumentat que les autointeraccions de la l’escalar poden ser
ignorades. Imposant que l’escalar no es mescla amb el buit conjuntament amb
la simetria Quiral, resulta en que dues de les constants de baixa energia s’han de
agafar com a zero.

El model sigma lineal té els mateixos graus de llibertat que χPTS . Tanmateix
hem apuntat dos diferències claus. El mecanisme de la ruptura espontània de la
simetria Quiral està contingut en el model sigma lineal, el que produeix lligams
entre els acoblaments de baixa energia. D’altra banda a χPTS la ruptura espontà-
nia de simetria succeïx a una escala d’alta energia desconeguda, el que dona com
a resultat que els acoblaments de baixa energia són independents entre ells. Com
a conseqüència χPTS té més llibertat per descriure les dades de simulacions al
reticle. La segona diferència important és que χPTS és una teoria efectiva i com
a tal hi ha un forma consistent de millorar la precisió dels càlculs.

Hem presentat el càlcul de la constant de decaïment i de la massa del pió a
NLO. El camp escalar dinàmic introdueix noves no analicitats en les dependèn-
cies de les masses dels quarks d’aquest observables, i requereix la renormal-
ització deB0 i F0, que és absent a χPT. Hem fet servir dades de simulacions en el
reticle de Ref.[125] per ajustar les constants de baixa energia. Els χ2

d.o.f obtinguts
pels ajustos de χPTS són similars als de χPT, el que indica que les dades de sim-
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ulacions en el reticle no afavoreixen una teoria sobre l’altra. Tanmateix, quan
extraiem el valor de el promig de les masses dels quarks lleugers del ajust, χPTS
produeix valors que són més pròxims als obtinguts de simulacions en el reticle
que els extrets usant χPT.

Les expressions de χPTS per les longituds de dispersió pió–pió de ona S

són diferents de les de χPT a primer ordre. A més a més χPTS permet el
càlcul de l’amplitud de decaïment de la sigma. Fent servir els valors de la
massa i l’amplitud de decaïment de la sigma de Ref.[121] en la formula que hem
obtingut de l’amplitud de decaïment podem obtenir el valor de l’únic paràmetre
lliure de les expressions de les longituds de dispersió. Utilitzant aquest valor a
podem obtenir els valors de les longituds de dispersió. Els valors obtinguts tant
per a la longitud de dispersió del canal d’espin i isospin zero (a00) com per la
del canal d’espin zero i isospin dos (a20) no són pròxims als valors experimentals.
Tanmateix el valor de a00 és lleugerament més pròxim al obtingut a nivell arbre
utilitzant χPT, mentres que el valor de a20 és molt més llunyà. Hem argumentat,
usant el limit de desacoblament, que això és degut importants correccions de
NLO degudes a valors grans de ℓ1. També hem mostrat que es pot extreure els
valors la massa i l’amplitud de decaïment de la sigma a partir de les dades de les
simulacions al reticle, fent servir els valors dels paràmetres obtinguts de l’ajust
de les expressions de les longituds de dispersió, deixant tots els paràmetres lli-
ures.



INTRODUCTION

Quantum Chromodynamics (QCD) is the theory of strong interactions [6, 7, 8].
It deals with quarks, gluons and their interactions and is part of the Standard
Model of Particle Physics. QCD is a non–Abelian gauge field theory with color
SU(3) the underlying gauge group. The non–Abelian nature of the theory has
dramatic consequences. While the interaction between colored objects is weak
at short distances or high momentum transfer (asymptotic freedom [6, 9, 10]); it
is strong at long distances, (≲ 1fm) or low energies, leading to the confinement
of quarks into colorless objects, the hadrons [11]. Consequently, QCD allows for
a perturbative analysis at large energies, whereas it is highly non–perturbative
in the low–energy regime.

An important idea that is implicit in all descriptions of physical phenomena
is that of an effective theory [12]. The basic premise of effective theories is that
dynamics at low–energies (or large distances) does not depend on the details
of the dynamics at high energies (or short distances). As a result, low–energy
physics can be described using an effective Lagrangian that contains only the rel-
evant degrees of freedom at low energy, without explicitly taking into account
additional degrees of freedom present at higher energies. It is important to note
that the low–energy degrees of freedom do not necessarily have to be the fun-
damental degrees of freedom of the theory, as it is the case in QCD, where the
fundamental degrees of freedom, quarks and gluons, are not the best suited to
describe low–energy physics.

An effective field theory describes low–energy physics in terms of a few pa-
rameters. These low energy parameters can be computed in terms of parame-
ters in a more fundamental high energy theory. This computation can be done
explicitly in perturbation theory when the high energy theory is weakly cou-
pled. In QED, for example, one can predict low energy parameters such as the
magnetic moment of the electron which can be used in the Schrödinger equa-
tion. If the high energy theory is strong coupled, as in QCD, one needs to use
non-pertubative calculation techniques, for example numerical lattice simula-
tions. However, the low–energy parameters can allways be treated as free pa-
rameters that are fit to experiment. The effects of high energy dynamics on the
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low–energy effective field theory are encoded in the coupling constants of the
low–energy theory, or are present in the form of symmetry constraints on the
low–energy theory.

Chiral Perturbation Theory is an effective field theory of QCD [13, 14]. The
degrees of freedom of Chiral Perturbation Theory are the lowest mass states
of QCD, the octet of pseudoscalar mesons (π ,K, η). Chiral Perturbation The-
ory is based on the mechanism of spontaneous Chiral symmetry breaking, ex-
ploiting in this way the Golstone boson nature of the mesons. The explicit sym-
metry breaking provided by the finite quark masses translate into the mecha-
nism of vacuum alignment and generates masses for the pseudoscalar mesons
mentioned above [15]. A power counting can be devised allowing to determine
which terms in the Lagrangian, and which Feynman diagrams are required to
compute amplitudes in Chiral Perturbation Theory up to a certain precision. The
results can be organized in powers of p/Λχ, where p is the external momentum,
taken to be of the order of the pion mass p ∼ mπ. Λχ is the cut–off of the theory,
and is usually taken to be of the order of the mass of the first non–Goldstone
boson state of QCD, the ρ meson.

Chiral perturbation theory can also be applied to the interactions of the Gold-
stone bosons with all other particles [16, 17, 18], which we will refer to as matter
fields. The key to introduce matter fields to the Chiral Lagrangian, is that all
states of QCD transform as irreducible representations of the unbroken Chiral
symmetry subgroup. The introduction of heavy fields poses an additional chal-
lenge by introducing a new heavy scale, the heavy field mass, that breaks the
power counting. A possible method to solve this problem is the use of the Heavy
Baryon expansion [19, 20], or alternative approaches that keep the Lorentz sym-
metry of the Lagrangian explicit as, for example, Infrared Renormalization [21].
A particularly remarkable application of this framework is the effective field
theory description of nuclear interactions by coupling nucleon doublets to the
Chiral Lagrangian [22, 23].

As stated above, in the construction of an effective field theory it is crucial the
determination of all of the relevant degrees of freedom. An interesting problem
arises when the low–energy degrees of freedom can form bound states, a virtual
state or a resonance close to threshold. Since these states are close to threshold,
they affect the scattering amplitudes, yet they can not be described by means of
perturbation theory because finite polynomical series of the momentum can not
generate a pole in the amplitude. These poles can be obtained by resummating
certain classes of diagrams, for example using unitarization methods, which are
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not consistent with the effective field theory power counting, or assuming an en-
hancement in certain couplings, like in Ref.[76]. In the later case renormalization
group equations for all low–energy constants involved have to be calculated to
determine the correct scaling.

It is an old observation by Weinberg [24, 25, 26] that the explicit inclusion of
bound states or resonances as degrees of freedom in a Hamiltonian improves
the convergence of perturbation theory. This improved convergence it is easy to
understand since the scattering amplitudes will have the right analytical struc-
ture. One of the main objectives of this thesis has been to explore this issue in
the modern framework of effective field theories.

Lattice field theory provides a mathematically well–defined framework for
a formulation of non–perturbative QCD [27]. The idea is to replace the four–
dimensional Minkowski space–time continuum with a discrete lattice in a four–
dimensional Euclidean space. Lattice field theory introduces an ultraviolet cut-
off at the outset and gives a non–perturbative definition of the functional inte-
gral. The fermion fields live on lattice sites and the gauge fields live on links.
Since the quark action is a quadratic form, the integral can be carried out exactly,
then the gluons can be numerically integrated with a Monte Carlo method (see
Appendix A for more details). Apart from systematic effects due to non–zero
lattice spacing and finite volume, lattice QCD simulations produce results that
are exact on the given lattice, up to statistical errors.

It is natural to combine both Chiral Perturbation Theory and lattice QCD. Lat-
tice QCD calculations, although of a remarkable degree of accuracy, are still be-
ing carried out at unphysically large quark masses. Chiral Perturbation Theory
can be used to describe the dependence on the quark masses of the low–energy
QCD observables computed in lattice QCD. Thus Chiral Perturbation Theory
provides formulas for the Chiral extrapolations of lattice QCD results from un-
physically high quark masses to the physical value. Thus, combining lattice
QCD with Chiral Perturbation Theory, we can obtain predictions for low–energy
strong interaction physics from QCD. On the other side, the quark masses can
be varied continuously in a lattice computation, this allows for an alternative
method to determine the low–energy constants of Chiral Perturbation Theory.
Alongside the traditional method of extracting the low–energy constants from
a fit of the Chiral Perturbation Theory expressions to experimental data, low–
energy constants can be obtained from fits of lattice data for different values of
the quark masses.

The thesis is organized as follows. The first three chapter are devoted to the
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theoretical background of this thesis. In chapter 1 the general features of the Chi-
ral symmetry of the QCD Lagrangian and its consequences are introduced. In
chapter 2 we briefly review Chiral Perturbation Theory. In chapter 3 we outline
how to introduce matter fields to the Chiral Lagrangian, with special focus in
the nucleon doublet. A large portion of chapter 3 is also devoted to discuss the
power counting of the Chiral Lagrangian including nucleons. Chapters 4 and 5
comprise the novel work of this thesis. Chapter 4 deals with the inclusions of
dibaryon fields into nucleon–nucleon effective field theories, based in the works
presented in Refs. [31, 32, 33, 34]. In Chapter 5 we present and extension of
Chiral Perturbation Theory including a light isosinglet scalar field, presented in
Refs.[35, 36]. The thesis is completed with a conclusions and outlook chapter.



CHAPTER

1

CHIRAL SYMMETRY IN THE QCD LAGRANGIAN

1.1 The QCD Lagrangian

Quantum Chromodynamics (QCD) is the theory that describes strong interac-
tions [6, 7, 8]. It is a Yang–Mills theory [37] invariant under gauge transforma-
tions of the color group SU(3)C . The matter fields interacting through strong
interactions are the quarks. The quarks belong to the fundamental representa-
tion of the color group and are spin-1/2 fermions with six different flavors (see
Table 1.1). The gauge fields, the so–called gluons, are in the adjoint representa-
tion and are spin-1 particles. Quarks and gluons are the fundamental degrees of
freedom of QCD. The QCD Lagrangian reads

LQCD = ∑
f

q̄f (i /D −mf) qf − 1

4
Gµν,aGµνa + θ̄ g2

64π2
ǫµνρσGµν,aGρσ,a , (1.1)

were f stands for the different quark flavors, up (u), down (d), strange (s), charm
(c), botom (b) and top (t). The color indices have been omitted for the quark
fields, but it should be kept in mind that each quark flavor field consists of a
color triplet. The covariant derivative

Dµqf = ∂µqf − ig
8

∑
a=1

λCa
2
Aµ,aqf , (1.2)

contains eigth gauge fields, Aµ,a, because SU(3)C is an eigth–parameter group.
The strength of the interaction between quarks and gluons is regulated by the
coupling constant g, which is the same for all quark flavors. λCa are the Gell–
Mann matrices (see Appendix B). The QCD Lagrangian (1.1) also contains gen-
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flavor u d s
charge[e] 2/3 −1/3 −1/3

mass[MeV] 1.7 − 3.1 4.1 − 5.7 100+30
−20

flavor c b t
charge[e] 2/3 −1/3 2/3

mass[GeV] 1.29+0.05
−0.11 4.19+0.18

−0.06 172.9 ± 0.6 ± 0.9

Table 1.1: Quark flavors and their charges. Values from PDG(2010)[38]

eralized field strength tensor for non-Abelian gauge groups

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c , (1.3)

the structure constants, fabc, for SU(3) can be found in Appendix B.

The last term in (1.1) is the so–called θ term. It explicitly violates the P and
CP discrete symmetries, and hence does not have to be taken into account if
these symmetries are enforced in the construction of the Lagrangian. However
nature is known to violate P and CP . The θ term should give a large contri-
bution to an electric dipole moment for the neutron, nevertheless this is known
accurately to be very small. The current upper bound to the θ̄ parameter given
by the neutron electric dipole moment is ∥θ̄∥ ≲ 10−10 [38], therefore we will not
consider it further.

The β function determining how the renormalized coupling g changes with
the running scale µ is defined as

β ≡ 4πµdαs
dµ

. (1.4)

For small g(µ) we can compute β(g) in perturbation theory. The leading term
in the perturbative expansion is of order g3

β(g) = −β0 g3

(4π)2 , β0 = 1

3
(11Nc − 2Nf) , (1.5)

where Nc is the number of colors and Nf is the number of flavors below the
energy scale under consideration. Eq.(1.5) shows that in the ultraviolet limit, for
small positive value of the coupling g, Nc = 3 colors and Nf = 6 flavors, the β
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function is negative [6]. Using Eq.(1.5) in Eq.(1.4) and integrating one obtains

αs(µ) ≡ g
2

4π
= 4π

β0 log (µ2/Λ2
QCD
) , (1.6)

where ΛQCD is an integration constant. The calculation at three–loop together
with the Particle Data Group average for αs at the mass of he Z boson, gives
ΛQCD = 217+25−23MeV for 5 active quark flavors, in theMS [39] substraction scheme
and using dimensional regularization [40]. It is justified in (1.5) to neglect higher–
order contributions to the β–function only if the running coupling constant is
small; accordingly, the above representation of the scale dependence of the cou-
pling constant only holds µ ≫ ΛQCD. Moreover, for small values of the scale,
the perturbative approach is no longer valid. The negative sign in the QCD β–
function at high energies means that the coupling constant becomes smaller the
higher the energy is, as a result the quarks behave like asymptotic free states in
the ultraviolet limit. This property is known as asymptotic freedom[9, 6, 10]. As
a consequence perturbation theory in powers of αs can be applied in the calcu-
lations of the Green functions. When the energies involved are small the color
interaction between quarks and gluons becomes non-pertubative, to study QCD
in this regime we have to use effective field theories or do numerical calculations
using formulations of QCD on the lattice.

The last crucial property of QCD is the so–called color confinement [11]. In
a theory like Quantum Electrodinamics two charged particles forming a bound
state can be separated an infinite distance with a finite amount of energy. On the
other hand the porperty of color confinement of QCD means that to infinitely
split a bound state of two strong charged particles an infinite amount of energy
is needed. Since QCD is a non–Abelian SU(3)C gauge theory all asymptotic
states must be color singlets (mesons and barions). There is no analytical prove
of color confinement.

1.2 Chiral Symmetry

In order to visualize the global symmetries of the QCD Lagrangian let us intro-
duce the right– and left–handed components of the quark fields

qf,R = PRqf , qf,L = PLqf , (1.7)
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the right–hand and left–hand projectors are defined as

PR,L = 1

2
(1 ± γ5) . (1.8)

The projector operators have the following properties: completeness: PL + PR =
1, idempotent: P 2

R,L = PRL, orthogonality: PRPL = PLPR = 0.

Let the Chiral limit be the limit where the nf light quarks are massless. The
Lagrangian for the light quarks in the Chiral limit then contains no terms that
connect the right– and left–handed components of the quark fields

L0
QCD = ∑

f

(iq̄f,R /Dqf,R + iq̄f,L /Dqf,L) − 1

4
Gµν,aGµνa . (1.9)

Due to the flavor independence of the covariant derivative L0
QCD is invariant

under independent global rotations of the right– and left–handed quark fields

qR → VRqR , qL → VLqL , VR, VL ∈ U(Nf) (1.10)

where qR = (qR,1, . . . , qR,Nf
)T and the same for left-handed quarks. L0

QCD has a
classical global U(Nf)L ×U(Nf)R [8].

The Noether theorem establishes the connection between continuous sym-
metries of a dynamical system and conserved currents. A conserved current
fulfills the following condition:

∂µJµ = 0 . (1.11)

The Noether currents associated with the symmetry transformations of (1.10)
are given by:

J
µ
R,a = q̄Rγµ

λa

2
qR , J

µ
L,a = q̄Lγµ

λa

2
qL , a = 1, . . . ,N2

f − 1 , (1.12)

J
µ
R = q̄RγµqR , J

µ
L = q̄LγµqL , (1.13)

where the matrices λa form a complete set of traceless, Hermitian Nf ×Nf ma-
trices that generate SU(Nf). Instead of the Chiral transformations in Eq.(1.10)
often one uses the linear combinations VV = VR + VL and VA = VR − VL, which
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correspond to the currents

J
µ
V,a = q̄γµ

λa

2
q , J

µ
A,a = q̄γµγ5

λa

2
q , a = 1, . . . ,N2

f − 1 , (1.14)

J
µ
V,0 = q̄γµq , J

µ,0
A = q̄γµγ5q , (1.15)

transforming as a vector and an axial–vector respectively. The Chiral symmetry
of QCD can thus be written as the direct product

U (Nf)R ×U (Nf)L =SU (Nf)R × SU (Nf)L ×U (1)R ×U (1)L
=SU (Nf)R × SU (Nf)L ×U (1)V ×U (1)A .

(1.16)

The singlet axial current fails to be conserved at the quantum level [41, 42, 43]
(axial UA (1) anomaly). The factor U (1)V is generated by the charge associated
to the singlet vector current JµV,0, the baryon number. It is therefore the symme-
try group associated to baryon number conservation.

Each Noether current has associated a charge, defined as

Q(x0) = ∫ d3x⃗J0(x) . (1.17)

If the current is conserved, then the charge is time independent, dQ/dx0 = 0. The
conserved charges of Chiral symmetry form the following algebras

[QαL,R,QβL,R] = ifαβγQγL,R ,
[QαR,QβL] = 0 ,
[QαV ,QβV ] = ifαβγQγV ,
[QαA,QβA] = ifαβγQγV ,
[QαV ,QβA] = ifαβγQγA .

(1.18)

Note that QαA does not form a closed algebra.
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1.3 Chiral Symmetry as a Nambu–Goldstone Sym-

metry

A global symmetry G of a classical Lagrangian can be realized in two different
ways in the corresponding quantized theory. The type of realization depends
on the behavior of the ground state (or vacuum state) under symmetry trans-
formations. The generators of the symmetry transformations for the quantum
states corresponding to symmetry group G of the Lagrangian are the Noether
charges Q associated to the conserved currents. If the charges annihilate the vac-
uum, Q∣0⟩ = 0, then the symmetry is Wigner–Weyl realized. If, on the contrary,
the charges do not annihilate the vacuum, Q∣0⟩ ≠ 0, the symmetry is Nambu–

Goldstone realized. Note that vacuum symmetries are always symmetries of
the Lagrangian, but not viceversa. It is also common to refer Nambu–Goldstone
realized symmetries as spontaneously broken symmetries.

To visualize the effects of a symmetry of the theory in the Lagrangian lets
consider the following example; let ∣p⟩ be a particle eigenstate of the Hamilto-
nian H with momentum p⃗ and mass m

H ∣p⟩ =√p⃗2 +m2∣p⟩ , (1.19)

and Qα the set of conserved charges associated to G and. Using the Heisenberg
equation of motion for the conserved charge operator

0 = d

dt
Qα = −i [Qα,H] , (1.20)

we find that conserved charges commute with the Hamiltonian. It follows that

HQα∣p⟩ =√p⃗2 +m2Qα∣p⟩ . (1.21)

In words, this means that the state Qα∣p⟩ has the same energy as ∣p⟩. In order

to see the consequences of this on the particle spectrum, let (aαp )† be a set of
creation operators that form a representation of G. Then write

Qα∣p⟩ = Qα (aβp)† ∣0⟩ = [Qα, (aβp)†] ∣0⟩ + (aβp)†Q∣0⟩ , (1.22)

since the creation operators form a representation of G the commutator with the
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charge can be written as a linear combination of creation operators

Qα∣p⟩ = tαβ (aβp)† ∣0⟩ + (aβp)†Q∣0⟩ , (1.23)

If the conserved charge annihilates the vacuum, i.e the symmetry is Wigner-

Weyl realized, then tαβ (aβp)† ∣0⟩ represents a one particle state. This implies a
multiplet of equal mass particles, generated by continual application of all the
charge generators. There particles are physical states in the Fock space, they are
constructed upon the vacuum and are all classified according to the irreducible
(linear) representations of G. This kind of symmetry realization is called mani-
fest because it has a direct translation in the particle spectrum, forcing it to split
into degenerate sets of particles according to multiplets of G. If the vacuum is
not annihilated by the charge, i.e the symmetry is Nambu-Goldstone realized,
then the argument above by which the degenerate particle multiplets are gener-
ated does no longer apply due to the presence of a second tern in (1.23).

Now, let G be the Chiral symmetry group, and the Hamiltonian eigenstate∣p⟩ to be also a parity eigenstate with eigenvalue np (with n2p = 1)

P ∣p,np⟩ = np∣p,np⟩ , (1.24)

then consider the state resulting of applyingQαA to this state,QαA∣p,np⟩, the party
eigenvalue of this state is

PQαA∣p,np⟩ = PQαAP −1P ∣p,np⟩ = −npQαA∣p,np⟩ . (1.25)

Combining this result with (1.23) implies that if QαA annihilates the vacuum the
spectrum of QCD has to consist of pairs of degenerate multiplets with opposite
parity. However this degenerate multiplets of opposite parity are not present
in nature, which leads to the conclusion that the QCD vacuum at low energies
is not annihilated by the conserved charge associated to the axial Chiral trans-
formations. As a consequence Chiral symmetry SU(nf)L × SU(nf)R is sponta-
neously broken to the subgroup SU(nf)V .

1.4 Goldstone Theorem

The Goldstone theorem states that for any broken generator of the continuous
symmetry, the theory must contain a massless particle [44, 45, 46, 47]. Consider a
local field theory with a global symmetry given by a Lie groupG. Let the ground



8 1 Chiral Symmetry in the QCD Lagrangian

state of the quantum theory, ∣0⟩, be invariant only under a subgroup H ⊂ G. The
conserved charges Qα do not annihilate the vacuum. The index α links each of
the conserved charges with the elements of the left cosets (G/H)L = {gH; g ∈ G}.
Assume the existence of an operator O (x) that satisfies

⟨0∣[Qα,O(0)]∣0⟩ = v , v ≠ 0 . (1.26)

The left–hand side of (1.26) is called an order parameter of the spontaneously
broken symmetry G. Note that for the order parameter to be different of zero
the conserved charge cannot annihilate the vacuum. Inserting a complete set
of states 1 = ⨋n ∣n, p⃗⟩⟨n, p⃗∣ in (1.26) and using the definition for the conserved
charges we obtain

⨋
n
∫ d3x⃗ (⟨0∣J0,α (x) ∣n, p⃗⟩⟨n, p⃗∣O (0) ∣0⟩ − ⟨0∣O (0) ∣n, p⃗⟩⟨n, p⃗∣J0,α (x) ∣0⟩) = v ,

(1.27)
Making use of translational invariance, Jα(x) = eiP ⋅xJα(0)e−iP ⋅x,

⨋
n
(2π)3δ3(p⃗) (e−iEnx

0⟨0∣ J0,α (0) ∣n, p⃗⟩⟨n, p⃗∣O (0) ∣0⟩
−eiEnx

0⟨0∣O (0) ∣n, p⃗⟩⟨n, p⃗∣J0,α (0) ∣0⟩) = v , (1.28)

now, the Dirac delta only selects states with zero momentum from the complete
set

∑
n

(2π)3 (e−iEnx
0⟨0∣ J0,α (0) ∣n,0⟩⟨n,0∣O (0) ∣0⟩
−eiEnx

0⟨0∣O (0) ∣n,0⟩⟨n,0∣J0,α (0) ∣0⟩) = v , (1.29)

the states with En > 0 carry a dependence on the time, but (1.26) is time inde-
pendent, thus the sum of the states with En > 0 has to vanish. States with zero
energy and momentum have to be necessarily massless. Then we conclude that
the existence on a non–zero order parameter implies the existence of massless
states in the theory spectrum with the defining property,

⟨0∣J0,α (0) ∣π⟩⟨π∣O (0) ∣0⟩ ≠ 0 , (1.30)

where ∣π⟩ denote the massless states, to which we will refer to as Goldstone
states from now on. The properties of these Goldstone states can be obtained
from the fact that both terms in (1.30) cannot vanish. Consider the first matrix
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element, ⟨0∣J0,α (0) ∣π⟩ ≠ 0 , (1.31)

The conserved current matrix element, J0,α, links the Goldstone states with the
vacuum, then the internal quantum numbers and parity of the Goldstone states
correspond to those of the conserved charge Qα. The second matrix element in
(1.30), ⟨π∣O (0) ∣0⟩ ≠ 0 , (1.32)

forces the Golstone states to have the same spin as the state O (0) ∣0⟩. The con-
served charges are linearly independent by construction and so are the currents,
thus the states J0,α (0) ∣0⟩ are also linearly independent, as a consequence there
must be a Golstone state for each broken symmetry generator, or in other words
the physical spectrum contains dim (G/H)L = dimG − dimH Goldstone states.

Now, from (1.31) we can see that a Goldstone boson state can be created
from the vacuum trough a symmetry current, which is nothing more than a lo-
cal space–time dependent symmetry transformation in the space generated by
the broken generators. In the zero–momentum limit, the Qα∣0⟩ states have the
same energy as the vacuum state since the conserved charges commute with the
Hamiltonian. This means that in the zero–momentum limit the Qα∣0⟩ states are
indistinguishable from the vacuum. Since the space generated by the broken
generators is (G/H)L there is a set of equivalent vacuum states in a one–to–one
correspondence with the elements of (G/H)L. For this reason (G/H)L is often
called the vacuum manifold. Since there is no preferred vacuum state every
space–time point can have a different vacuum state. This can be parametrized
by a field of symmetry transformations of (G/H)L that transforms an arbitrar-
ily chosen standard vacuum state to the vacuum state of each space–time point.
Such fields are the Goldstone fields. Since, only the variation of the Goldstone
fields is relevant, it follows that the Goldstone fields can only interact through
derivatives. Since derivatives are small at small energies the interactions of
Goldstone fields should be weak at low energies.

In the particular case at hand, QCD, G is Chiral symmetry and H is the
vector subgroup. If we choose the number of light quarks to be nf = 3, there
are eight broken axial symmetry generators that correspond to eight Goldstone
states with negative parity. This Goldstone states can be identified to the eigth
lightest hadronic states (π+, π−, π0, η,K+,K−,K0, K̄0). If we choose nf = 2, only
three pseudoscalar Golstone boson states have to be identified (π+, π−, π0). In
nature this particles have small non–zero masses, this is due to a small explicit
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symmetry breaking. We will explore this further in the next section. The cor-
responding O has to be a pseudoscalar operator, meaning that the Goldstone
state will be spin zero bosons. The simplest possibilities are Oa = q̄γ5λaq, which
satisfy in the nf = 3 case

⟨0∣[QaA, q̄γ5λbq]∣0⟩ = −12 ⟨0∣q̄{λa, λb}q∣0⟩ = −23δab⟨0∣q̄q∣0⟩ . (1.33)

The natural order parameter for the spontaneous Chiral symmetry breaking is
then the quark condensate. The quark condensate in the Chiral limit fulfills

⟨0∣ūu∣0⟩ = ⟨0∣d̄d∣0⟩ = ⟨0∣s̄s∣0⟩ ≠ 0 . (1.34)

The matrix element of the axial-vector current between the vacuum and the
Goldstone boson states can be parametrized thanks to Lorenz covariance as

⟨0∣Jα,µV (x)∣πβ(p)⟩ = ipµF0δ
αβeip⋅x , (1.35)

where F0 ∼ 93MeV is the so–called pion decay constant in the Chiral limit.

1.5 Explicit Chiral Symmetry breaking

Up until now we have been disregarding the fact that in the QCD Lagrangian
the light quark fields do have non–zero mass terms. When taking into account
those terms the divergences of the conserved currents will no longer be zero,
meaning the currents will not be conserved anymore. Lets consider the quark
mass matrix for nf = 3 and the nf = 2 cases

nf = 3 , M=
⎛⎜⎜⎝
mu 0 0

0 md 0

0 0 ms

⎞⎟⎟⎠ ; nf = 2 , M= ( mu 0

0 md

) . (1.36)

We can rewrite the mass terms in (1.1) in terms ofM

LM = −q̄Mq , (1.37)

note that M is a SU(nf) matrix. Using the right– and left– hand projectors,
introduced in (1.8), to split the quark fields into left and right components we
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obtain
LM = − (q̄RMqL + q̄LMqR) . (1.38)

Thus the quark mass terms mix the left and right components of the quark fields
and are not symmetric under Chiral symmetry. The quark mass terms induce
the following divergences to the Noether currents

∂µJ
µ,a
V = iq̄ [M,

λa

2
] q ,

∂µJ
µ,a
A = iq̄ {λa

2
,M}γ5q ,

∂µJ
µ
V = 0 ,

∂µJ
µ
A = i2q̄Mγ5q +

3g2

32π2
ǫµνρσGµνa Gρσa .

(1.39)

The last term in ∂µJ
µ
A is the UA(1) anomaly. The existence of explicit symme-

try breaking terms in the Lagrangian means that the set of states of the vacuum
manifold are no longer of the same energy. As a result there will be a minimum
energy state that naturally will be the preferred vacuum state. This phenomenon
is known as vacuum alignment. Let Qα be the set of conserved charges corre-
sponding to the broken symmetry generators. We can now write any vacuum
state as ∣0, π⟩ = e−iπαQα ∣0,0⟩ , (1.40)

where ∣0,0⟩ is an arbitrary reference vacuum state. If we assume that the light
quark mass terms (1.37) in the QCD Lagrangian are a small perturbation we can
use time independent perturbation theory to obtain the vacuum states energy
variation. First let us define κ as the small variational parameter as

kH = −LM , (1.41)

then the energy variation is

∆E(π) = κ⟨0, π∣H(0)∣0, π⟩ +O(κ2) . (1.42)

The perturbative expansion in κ has to be performed about the minimal energy
vacuum to avoid paradoxical results [48]. Since we must have a minimum at



12 1 Chiral Symmetry in the QCD Lagrangian

π = 0 the following two conditions have to be met

∂∆E(π)
∂πα

RRRRRRRRRRRπα=0

= iκ⟨0,0∣ [λBα ,H] ∣0,0⟩ = 0 ,
∂2∆E(π)
∂πα∂πβ

RRRRRRRRRRRπβ ,πα=0

= −κ⟨0,0∣ [λBβ , [λBα ,H]] ∣0,0⟩ > 0 .
(1.43)

As a result now to move among the states of the vacuum manifold costs energy.
Identifying the π parameter with the Goldstone boson field we can read the
second derivative of the energy variation as the Golstone boson field mass times
an unknown positive constant

m2
αβ = − κ

ωG
⟨0,0∣ [λBβ , [λBα ,H]] ∣0,0⟩ . (1.44)

Therefore the explicit symmetry breaking due to the finite light quark masses
generates masses for the Goldstone bosons [49].



CHAPTER

2

CHIRAL PERTURBATION THEORY

2.1 Effective Field Theories

Chiral perturbation theory is an effective field theory. The basic premise of an
effective field theory is that dynamics at low energies (or large distances) does
not depend on the details of the dynamics at high–energies (or short distances).
Therefore the physics below a specific cut–off can be described by an effective
Lagrangian containing only the relevant degrees of freedom present at low en-
ergies, ignoring additional degrees of freedom present at high–energies. The rel-
evant degrees of freedom at low energy might not be the fundamental degrees
of freedom of the underlying theory. For example the fundamental degrees of
freedom of QCD are the quarks and gluons, but for Chiral perturbation theory
they are pions, kaons, the eta meson.

It is crucial that between the typical energy scale of the physics we want
to study and the high–energy cut-off there is a large energy gap with no addi-
tional degrees of freedom because this will determinate how fast the theory will
converge. Effective field theories have only a limited momentum range of ap-
plicability, as its convergence will slow down as the momentum approaches the
cut–off, but, as long as the momentum stays well below it, the effective field
theory is designed to give an appropriate description up to a finite accuracy.

The theoretical basis of effective field theories can be formulated as a theo-
rem [12]: For a given set of asymptotic states, perturbation theory with the most general

Lagrangian containing all terms allowed by the assumed symmetries will yield the most

general S–matrix elements consistent with analicity, perturbative unitarity, cluster de-

composition and the assumed symmetries.
The following important ingredient, together with the effective Lagrangian,



14 2 Chiral Perturbation Theory

is a method that allows to decide which terms contribute in a calculation up to
a certain accuracy. We will see that we can organize the calculations in a per-
tubative series incorporating new operators from the Lagrangian at each order.
This is crucial for the renormalizability of the calculations. Since an effective
field theory contains all terms compatible with the symmetries, it will contain
non–renormalizable operators too, making it non-renormalizable in a traditional
sense. However the new operators appearing at each order allow for all the di-
vergences to be absorbed. The price to be paid for such order by order renor-
malizability is that each new operator introduces an unknown low–energy con-
stants, as a result as we increase the accuracy, more low–energy constants have
to be considered and more experimental input is needed to determine them.
Thus as the precision augments the theory loses predictability.

2.2 Non-linear realization of Goldstone Bosons

In the previous chapter, in section 1.4, we have argued that in a theory with a
spontaneously broken symmetry the vacuum state is not unique, but instead
there exist a set of equivalent vacuum states generated by the broken symme-
try generators. The set of vacuum states is called the vacuum manifold, and is
given by the coset space G/H where G is the global symmetry and H is the sub-
group to which it is spontaneously broken. In our case G is Chiral symmetry,
SU(nf)L × SU(nf)R, and H = SU(nf)V . Each point in space–time can be in
any particular state of the vacuum manifold, to take this into account we intro-
duced the Goldstone fields which give the symmetry transformation of G that
rotates an arbitrarily chosen standard vacuum to the local vacuum orientation.
We would like to choose a set of coordinates which describe the local orientation
of the vacuum for small fluctuations about the standard vacuum configuration.
The general formalism for effective Lagrangians for spontaneously broken sym-
metries was worked out by Callan, Coleman, Wess and Zumino [16, 17, 18]. Let
Ξ(x) ∈ G be the rotation matrix that transforms the standard vacuum configura-
tion to the local field configuration. The matrix u is not unique, uh where h ∈ H ,
gives the same field configuration, since the standard vacuum is invariant un-
der transformations of H . The prescription of [16, 17] is to pick a set of broken
generators X and choose

Ξ = eiX ⋅π(x) . (2.1)
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Under a global symmetry transformation g ∈ G, the matrix Ξ(x) is transformed
to the new matrix gΞ. The new matrix is no longer in the prescribed form 2.1,
but can be written as

gΞ = Ξ′ h , (2.2)

since the two matrices gΞ and Ξ′, which describe the same field configuration,
are related by a unique element of H . Although the g matrix is independent of
x, since it is a global transformation, the matrix h is not, because it depends on
g and Ξ(x). The matrix h is also non-trivial because the vacuum manifold G/H
is curved. The transformation is usually written as

Ξ→ gΞh−1 (g, u(x)) . (2.3)

Equations (2.1) and (2.3) give the choice for the Goldstone boson field, and its
transformation properties, of Refs.[16, 17]. Any other choice is also possible and
gives the same results for all observables, such as the S–matrix, but does not give
the same off–mass–shell green functions.

Let Tα be the generators of SU(nf), then the generators of G are TαL and TαR
which act on the left and right handed quarks respectively, and the generators of
H are the flavor generators TαV = TαL + TαR . There are two commonly used bases
for Chiral Perturbation Theory, the u–basis and the U–basis.

The u–basis

Pick the broken generators as Xα = TαL − TαR . Let the SU(nf)L × SU(nf)R trans-
formation be represented in block diagonal form

g = ( L 0

0 R
) , (2.4)

where L and R are SU(nf)L and SU(nf)R transformations respectively. The
unbroken transformations have the form (2.4) with (L = R = V )

h = ( V 0

0 V
) . (2.5)

The u field is then defined using the prescription (2.1)

Ξ(x) = eiX ⋅π(x) = exp i( T ⋅ π 0

0 −T ⋅ π
) = ( u(x) 0

0 u(x)† ) , (2.6)



16 2 Chiral Perturbation Theory

where
u(x) = ei T ⋅π(x) (2.7)

denotes the upper block of Ξ(x). Using the transformation law for Ξ (2.3)

( u(x) 0

0 u(x)† )→ ( R 0

0 L
)( u(x) 0

0 u(x)† )( K
−1 0

0 K−1
) , (2.8)

we can derive the transformation law for u(x)
u(x)→ Ru(x)K−1(x) =K(x)u(x)L† , (2.9)

which defines V in terms of L, R and u.

The U–basis

The U–basis can be obtained from (2.1) usingXα = TαL for the broken generators.
In this case we have

Ξ(x) = eiX ⋅π′(x) = exp i( T ⋅ π′(x) 0

0 0
) = ( U(x) 0

0 1
) , (2.10)

where
U(x) = ei T ⋅π′(x) , (2.11)

denotes the upper block of Ξ(x). The transformation law (2.3) is

( U(x) 0

0 1
)→ ( R 0

0 L
)( U(x) 0

0 1
)( V −1 0

0 V −1
) (2.12)

which gives V = R and thus the transformation law for U(x) is

U(x)→ RU(x)L† . (2.13)

Comparing the transformation laws in both basis, one can see that u and U are
related by

U(x) = u2(x) (2.14)
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2.3 The lowest–order Chiral Lagrangian

The Goldstone boson fields parametrize the Chiral transformations that pick the
vacuum state, they are the analog to angles in rotations. Goldstone boson fields
are thus dimensionless, however in order to write down an effective Lagrangian
it is convenient to make Goldstone boson fields to have mass dimension one,
as for any other spin–zero boson field. The standard choice is to redefine the
Goldstone boson fields as π → π/F0, were F0 is a mass dimension one constant.
As result we have

u = ei T ⋅π/F0 , U = e2i T ⋅π/F0 , (2.15)

later we will show that F0 can be identified as the pion decay constant in the
Chiral limit. The πα are the Goldstone boson fields in the isospin basis, never-
theless often we will want to work in the charge basis. Taking the up, down and
strange quarks as light, that is nf = 3, we have

π ≡ παλα = 2παTα =
⎛⎜⎜⎝
π0
+

1√
3
η

√
2π+

√
2K+√

2π− −π0
+

1√
3
η
√
2K0√

2K−
√
2K̄0

−
2√
3
η

⎞⎟⎟⎠ , (2.16)

where λα are the Gell–Mann matrices (see Appendix B). In the case of nf = 2,
were only the up and down quarks are considered light, we have

π ≡ πατα = 2παTα = ( π0
√
2π+√

2π− −π0 ) , (2.17)

where τα are the Pauli matrices.

The Goldstone bosons are the lowest energy states in the QCD spectrum and
it exist an energy gap between them and the next non-Goldstone boson state,
the ρ meson. Therefore the Goldstone bosons are going to be the degrees of
freedom of the effective theory. The low energy effective Lagrangian for QCD
is the most general possible Lagrangian consistent with spontaneously broken
SU(nf)L × SU(nf)R symmetry. It is easy to construct the most general La-
grangian under the transformation U → LUR†. The most general invariant term
with no derivatives must be the product of terms of the form TrUU † . . . UU †,
however UU † = 1, so all such terms are constant and independent of the Gold-
stone boson fields. This means that, as we expected, the Goldstone boson fields
have to couple derivatively. Derivatives have to go in pairs due to Lorentz in-
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variance and the only invariant with two derivatives is

L(2) = F
2
0

4
Tr∂µU∂µU † . (2.18)

In order to have the kinetic terms for the π fields, that appear when the exponen-
tial in U is expanded, properly normalized the low–energy constant multiplying

this operator has to be fixed at F
2

0

4
.

The Noether theorem can be used to obtain the conserved currents associated
to Chiral symmetry of the Lagrangian on (2.18). The left current is

J
µ,α
L = i

2
F 2
0 TrTαU∂µU † , (2.19)

the right current can be obtained by a parity transformation π(x) → −π(−x), or
by an infinitesimal SU(nf)R transformation

J
µ,α
R = i

2
F 2
0 TrTαU †∂µU . (2.20)

The axial current is obtained by subtracting the left current from the right cur-
rent, expanding it in powers of the π fields

J
µ,α
A = Jµ,αR − J

µ,α
L = −F0∂

µπα + . . . (2.21)

Taking the matrix element of the axial current between the standard vacuum
and a Goldstone boson state

⟨0∣JµαA ∣πβ⟩ = iF0p
µ . (2.22)

If we compare (2.22) with (1.35) we see that introducing F0 in (2.15) was justified.

2.4 Power counting

The Chiral Lagrangian can be organized according to the number of derivatives
of the operators

Lχ =
∞
∑
n=1

L(2n) , (2.23)

the number of derivatives is always an even number due to Lorentz invariance
requirements. Consider an arbitrary loop graph, for example the one in Fig.2.1,
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Figure 2.1: Arbitrary loop diagram

with m2 interaction vertices that come from L(2), m4 interaction vertices that
come from L(4), and so on. The general form of this diagram is

A ∼ ∫ (d4p)L 1

(p2)I ∏n (p2n)
m2n

, (2.24)

where L is the number of loops, I is the number of internal lines, and p stands
for the momentum running in the loop. There is a d4p for each loop, and each
boson propagator contributes a factor 1/p2. Each vertex from L(2n) gives a factor
of p2n. In the mass subtraction scheme the only dimensional parameters are the
momenta p. Thus the amplitude has to have the form A ∼ pD, where D is given
by

D = 4L − 2I +∑
n

2nm2n , (2.25)

For any Feymann diagram one can show that the number of vertices, loops and
internal lines are not independent quantities

V − I +L = 1 , (2.26)

where V is the number of vertices. The relation in (2.26) can be used to write
(2.25) in terms of the number of vertices instead in number of the internal lines,
then using V = ∑nm2n one gets

D = 2 + 2L +∑
n

2 (n − 1)m2n . (2.27)

The Chiral Lagrangian starts at order p2, so n ≥ 1, and all terms in (2.27) are
positive. As a result, only a finite number of terms in the effective Lagrangian
are needed to work to a fixed order in p. For example to compute scattering
amplitudes at order p4, we set D = 4 in (2.27) and find out which combinations
of L, n and m2n fulfill the constrain. The solutions are L = 0 ,m4 = 1 ,m2n>4 = 0,
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and L = 1 ,m2n>2 = 0. This mean that to compute amplitudes to order p4 one
only needs to consider tree level diagrams with insertions of vertices from L(4)
and one loop diagrams with vertices from the L(2) [12].

2.5 Naive Dimensional Analysis

The question of how large is the convergence radius of the low–energy expan-
sion was explored by Georgi and Manohar in [50]. Since higher order terms are
required as counterterms for loops involving lower order interactions, it is in-
consistent to assume that the size of these terms is smaller than the typical loop
corrections. Any running low–energy constant L(µ) in a counterterm should be
at least as big as its anomalous dimension µdL(µ)/dµ.

Take, for example, the π–π scattering amplitude at order p4. The power
counting argument tells us that there is a tree level graph with an insertion of
L(4) and a loop graph with vertexes from L(2). The loop diagram is of order

I ∼ ∫ d4k(2π)4 k
2

F 2
0

k2

F 2
0

1

k4
, (2.28)

where 1
k4

is from the two internal propagators, and each four pion vertex con-
tributes by k2/F 2

0 . Estimating the integral gives

I ∼ p4

16π2F 4
0

log (p/µ) , (2.29)

where µ is the MS renormalization scale, and p represents a generic external
momentum. A four derivative operator in the Lagrangian of the form

lTr∂µU∂µU †∂νU∂
νU † , (2.30)

produces a four pion interaction of order lp4/F 4
0 when U is expanded in powers

of π/F0. The total four pion amplitude, which is the sum of the tree and loop
diagrams, is µ–independent. A shift in the renormalization scale µ is compen-
sated for by a corresponding shift in l. A change in µ of order one produces a
shift in l of δl ∼ 1/16π2. Generically, l must be at least as δl,

∣l∣ ≳ ∣δl∣ ∼ 1

16π2
, (2.31)
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because a shift in the renormalization point of order one produces a shift in L of
this size.

Now, the quantum field theory action must be dimensionless, which means
all the terms in the Lagrangian have to be of mass dimension four. Therefore the
low–energy constants associated with a given operator must have the size

Lχ = F
2
0

4
[Tr∂µU∂µU †

+
1

Λ2
χ

L(4) + 1

Λ4
χ

L(6) +⋯] . (2.32)

This naturally gives an expansion for the amplitudes in powers of p/Λχ. The
expansion is going to converge as long as p/Λχ ≪ 1, which is true for momentum
of the order of the pion and the kaon mass. Combining the estimate from (2.31)
with the Lagrangian in the form of (2.32) one finds

Λχ ≤ 4πF0 ∼ 1GeV (2.33)

Numerous calculations suggest that in QCD, this inequality can be replaced by
Λχ ∼ 4πF0, and be used as the expansion parameter for the effective theory.

2.6 Coupling to external fields

The effective theory technique becomes much more powerful if one introduces
couplings to externals fields. Following Gasser and Leutwyler [13, 14], we in-
troduce in the QCD Lagrangian in the Chiral limit (1.9) the couplings of the
conserved of the vector and axial–vector currents as well as the scalar and pseu-
doscalar quark densities to the external c–numbers fields vµ(x) , aµ(x) , s(x) and
p(x)

LQCD = L0
QCD +Lext , (2.34)

with
Lext = q̄γµ (vµ + γ5aµ) q − q̄ (s − iγ5p) q . (2.35)

The external fields are color-neutral, Hermitian nf×f matrices in the flavor space
and commute with the Dirac matrices. Since we are not concerned with the ef-
fects of the axial U(1) anomaly, we omit the coupling to the singlet axial current
and set Traµ = 0. The ordinary nf–flavor QCD Lagrangian is recovered by set-
ting vµ = aµ = p = 0 and s = M, whereM is the quark mass matrix defined in
(1.36). The external fields can be used to incorporate the electromagnetic and
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semileptonic weak interactions

rµ ≡ vµ + aµ = eQAµ
lµ ≡ vµ − aµ = eQAµ + e√

2sinθW
(W †

µT+ + h.c.) + . . . (2.36)

Here Q denotes the quark–charge matrix and T+ is a matrix containing the rele-
vant Cabibbo-Kobayashi-Maskawa factors, for example for nf = 2,Q = diag (2/3,−1/3)
and

T+ = ( 0 Vud

0 0
) . (2.37)

Let us define the generating functional Z [v, a, s, p] by

exp (iZ [v, a, s, p]) =⟨0 out∣0 in⟩v,a,s,p
=∫ DqDq̄DGαµ exp [i∫ d4xLQCD (q, q̄,Gαµ , rµ, lµ, s, p)] ,

(2.38)

where the external fields play the role of classical auxiliary variables. The expan-
sion of the generating functional in powers of the external fields determines the
Green functions of the theory. The quantity exp (iZ [v, a, s, p]) is the vacuum–to–
vacuum transition amplitude in presence of external fields and describes the re-
sponse of the system to the perturbations generated by them. The external field
method has an important advantage: in the absence of anomalies, the Ward
identities obeyed by the Green functions of the currents (the so–called Chiral
Ward identities) are equivalent to the statement that the generating functionals
is invariant under local transformations of the external fields [12, 51]. The La-
grangian in (2.34) is invariant under local Chiral group transformations if the
external fields transform according to

rµ → VRrµV
†
R + iVR∂µV

†
R

lµ → VLlµV
†
L + iVL∂µV

†
L

s + ip→ VR(s + ip)V †
L

s − ip→ VR(s − ip)V †
L .

(2.39)

The derivatives in (2.39) serve the same purpose as in the construction of gauge
theories, they cancel terms originated from the kinetic parts of the Lagrangian.
The defining property of Chiral perturbation theory as an effective field theory



2.6 Coupling to external fields 23

of QCD is that the low–energy Green functions coincide with those of QCD, that
is that the generating functionals are equivalent

exp (iZ [v, a, s, p]) = ∫ DU exp [i∫ d4xLχ (U, rµ, lµ, s, p)] . (2.40)

The most remarkable property of this method is that no information of the un-
derlying theory is lost, the effective field theory is just a convenient way to work
out the low–energy expansion, within its radius of convergence, at any desired
order. Since both the underlying theory and the effective fields theory have to
fulfill the same Ward identities, the effective theory has to be invariant under the
local transformations of the external fields given in (2.39). The transformations
(2.39) determine how the external fields couple to the Goldstone boson fields.
We can use this local symmetry to build a generalized Lagrangian for the Gold-
stone boson in the presence of external fields. To respect local invariance of the
Gauge fields rµ and lµ we have to define the covariant derivatives

DµU = ∂µU − irµU + iUlµ , DµU
† = ∂µU †

− iU †rµ + ilµU
† , (2.41)

and the field strength tensors

F
µν
L = ∂µlν − ∂ν lµ − i [lµ, lν] F

µν
R = ∂µrν − ∂νrµ − i [rµ, rν] . (2.42)

Note that DµU transform a like U under Chiral transformations, and that the
field strength tensors are traceless in the flavor space. At the lowest order in
momentum, the more general effective Lagrangian consistent with Lorentz in-
variance and local Chiral symmetry coupled to external fields is of the form

L(2) = F
2
0

4
Tr [DµU

†DµU +U †χ + χ†U] , (2.43)

where
χ = 2B0(s + ip) , (2.44)

and B0 is a low–energy constant, like F0, not fixed by symmetry requirements.
In order to build (2.43) we need to generalize the power counting defined in
section 2.4 to include the external fields. The prescription we will use is to count
the gauge fields as lµ ∼ rρ ∼ p and χ ∼ p2, where p is here a generic external
momentum.

The physical meaning of B0 can be understood as follows. Take derivatives
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of the generating functional with respect to the external scalar and pseudoscalar
sources

q̄αLq
β
R = −

δLχ
δ(s − ip)αβ = −F

2
0

2
Uαβ(π) ,

q̄αRq
β
L = −

δLχ
δ(s + ip)αβ = −F

2
0

2
Uαβ(π) , (2.45)

adding them up and summing for nf flavors, and at first order in π = 0

⟨0∣q̄q∣0⟩ = −nfF 2
0B0 . (2.46)

In section 1.4 we showed that ⟨0∣q̄q∣0⟩ is related to the order parameter associ-
ated to the spontaneous breaking of Chiral symmetry, B0 is thus related to the
value of this order parameter. The Goldstone bosons, parametrized by the ma-
trix Uαβ(π), correspond to excitations over this vacuum condensate. Taking
s =M, and p = 0, the explicit Chiral symmetry breaking in the original QCD La-
grangian is introduced to the effective Lagrangian. As anticipated in section 1.5
the Goldstone bosons acquire masses, and thus we will refer to them as pseudo–
Goldstone bosons. The χ term in (2.43) gives rise to the pseudogoldstone bosons
mass terms plus additional interaction proportional to the quark masses. The re-
lation between the peudoscalar meson masses and the quark masses is,

m2
π± = 2B0m̂ , m2

π0 = 2B0m̂ − ǫ +O (ǫ2) ,
m2
K± = B0 (mu +ms) , m2

K± = B0 (md +ms) ,
m2
η = 2

3
B0(m̂ + 2ms) + ǫ +O (ǫ2) ,

(2.47)

where

m̂ = 1

2
(mu +md) , ǫ = B0 (mu −md)2

4 (ms − m̂) . (2.48)

The ǫ parameter indicates how much isospin symmetry is broken. The physical
value of ǫ is small and frequently is be taken as zero, corrections proportional to ǫ
can be taken as suppressed by an additional Chiral order. The order ǫ corrections
to m2

π0 and m2
η originate from a small mixing term between the π0 and η fields

−
B0√
3
(mu −md)π0η . (2.49)
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The diagonalization of the quadratic π0, η mass matrix, gives the eigenvalues
shown in (2.47).

2.7 The Chiral Lagrangian up to next–to–leading or-

der

The construction of the Chiral Lagrangian proceeds by writing down all Lorentz
invariants (products of) traces of Chiral symmetry, in addition one has to imple-
ment the discrete symmetries P and C and hermiticity on the Lagrangian. This
is straightforward with the help of the transformation properties given in (2.13)
and (2.39). The real difficulty is to find the minimal set of terms for those La-
grangians. The corresponding low–energy constants then parametrize the most
general solutions of the Chiral Ward Identities. To obtain the minimal set of in-
dependent dimension four monomials [13, 14], we should use the following rela-
tions or procedures: partial integration, equations of motion of the lowest order
Lagrangian and the Cayley–Hamilton relations. In the case of nf = 2 there are
further simplifications because in SU(2) the antisymmetric structure constants
vanish, while this does not happen in SU(3), thus the Lagrangians for nf = 2

and nf = 3 are different. For the purpose of this work we will only need nf = 2.
The Cayley–Hamilton theorem states that any n–dimensional matrix obeys its
own characteristic equation. For two arbitrary two–dimensional matrices, A1

and A2, Cayley–Hamilton theorem implies the following relation

A1A2 +A2A1 −A1Tr [A2] −A2Tr [A1] + Tr [A1]Tr [A2] I2×2 − Tr [A1A2] I2×2 = 0 .
(2.50)

The next–to–leading Chiral Lagrangian for nf = 2 [13, 52] is

L(4) = l1
4

Tr [DµU
†DµU]2 + l2

4
Tr [DµU

†DνU]Tr [DµU
†DνU]

+
l3

16
Tr [χ†U +U †χ]2 + l4

4
Tr [DµU

†Dνχ +DµUD
νχ†]

+ l5Tr [FµνR UF
µν
L U †] + il6

2
Tr [FµνR DµUDνU †

+ F
µν
L DµU †DνU]

−
l7

16
Tr [χ†U −U †χ]2 + 1

4
(h1 + h3)Tr [χ†χ]

+
1

2
(h1 − h3)Re(detχ) − h2Tr [FµνR FRµν + F

µν
L FLµν] .

(2.51)
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The numerical values of the low–energy constants li , i = 1,7 and hi , i = 1,3 is
not determined by Chiral symmetry and needs to be fixed using experimental
input or lattice QCD data. Meson–resonance saturation is a theoretical way of
estimating these low-energy constants.

When calculating loop diagrams, using vertices from L(2), ultraviolet di-
vergences appear, in the framework of dimensional regularization these diver-
gences appear as poles at space–time dimension d = 4. The loop diagrams are
renormalized by absorbing the infinite parts into redefinitions of the fields and
the parameters of the Lagrangian. Since L(2) is not renormalizable in a tradi-
tional sense, the infinities are absorbed by the low–energy constants of L(4). The
fact that all the terms allowed by symmetries are included assures the necessary
counterterms to absorb all possible divergences. The low–energy constants in
(2.51) renormalize as follows

li ∶= lri + γiλ (i = 1, . . . ,7) , hj ∶= hrj + δjλ (j = 1,2,3) , (2.52)

with
λ = 1

16π2
( 1

d − 4
−
1

2
[ln 4π + Γ′(1) + 1]) . (2.53)

If the theory only includes the pseudo–Goldstone bosons the γ are

γ1 = 1

3
γ2 = 2

3
γ3 = −1

2
γ4 = 2 γ5 = −1

6

γ6 = −1
3

γ7 = 0 δ1 = 2 δ2 = 1

12
δ3 = 0 .

(2.54)



CHAPTER

3

PION–NUCLEON CHIRAL EFFECTIVE THEORIES

3.1 Transformation properties of matter fields

Chiral perturbation theory can also be used to describe the interactions of pseudo–
Goldstone bosons with matter fields: baryons, heavy mesons, etc. As we have
seen in Chapter 1 Chiral symmetry is spontaneously broken to SUV (nf). There-
fore the particle spectrum of QCD can be organized in multiplets of the remain-
ing unbroken symmetry group of the theory, SUV (nf), transforming according
to its irreducible linear realizations. Additionally we have argued in Chapter
2 that Goldstone boson degrees of freedom transform according to non-linear
realization of the Chiral symmetry group. Matter fields do not have a preferred
realization of the Chiral symmetry group, any transformation law that reduces
to the adjoint transformation law for SUV (nf) is acceptable [18, 16, 17]. To be
specific, lets consider the following examples; for nf = 3 the octet of the 1

2

+

baryons B, see Fig.3.1, and for nf = 2 the proton–neutron doublet ψ

B =
⎛⎜⎜⎝

1√
2
Σ

0
+

1√
6
Λ Σ

+ p

Σ
−

−
1√
2
Σ

0
+

1√
6
Λ n

Ξ− Ξ0
−

2√
6
Λ

⎞⎟⎟⎠ , ψ = ( p

n
) , (3.1)

in Chapter 5 we will consider the case of a SUV (2) singlet 0+. Using the notation
of section 2.2, the transformations under the unbroken subgroup H are

B → V BV † , ψ → V ψ . (3.2)
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Figure 3.1: The Baryon octet in a (I3, S). In parenthesis the masses in MeV
and the quark content

Any Chiral symmetry transformations that reduces to these is valid, for example
one can chose the following transformations for B and ψ

B → RBR† ,B →KBR† , ψ →Kψ ,ψ → Rψ , etc . (3.3)

The different choices are all equivalent, and correspond to redefining the baryon
fields. For example, assuming the second transformation law in (3.3) for B, then
B̃ = uB transforms like the first transformation law in (3.3). The prescription of
[16, 17] for matter fields is that under a Chiral symmetry group transformation,
the transformation law is

B →KBK† , ψ →Kψ , (3.4)

which turns out to be the most convenient when constructing a Chiral Lagrangian
for matter fields.
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3.2 Lowest order Lagrangian and the power count-

ing breakdown

The Chiral Lagrangian for matter fields is the most general invariant Lagrangian
written in terms of the matter fields of (3.1) and the Goldstone bosons fields con-
sistent with Chiral symmetry, Lorentz invariance and the discrete symmetries
C, P and T . As in the mesonic sector the Chiral Ward identities for the bary-
onic sector will be satisfied if the Chiral symmetry in the effective Lagrangian is
promoted to a local symmetry [53]. The local character of the transformations
implies that we need to introduce a covariant derivative ∇µψ (∇µB) that trans-
forms with the same transformation law as ψ (B)

∇µB = ∂µB + [Γµ,B] , ∇µψ = ∂µψ + Γµψ , (3.5)

where Γµ is

Γµ = 1

2
(u† (∂µ − irµ)u + u (∂µ − ilµ)u†) , (3.6)

and transforms like a connection in the coset space. It is also useful to introduce
another Hermitian building block, the so–called veilbein

uµ = i (u† (∂µ − irµ)u − u (∂µ − ilµ)u†) , (3.7)

which transforms like an axial vector and under Chiral symmetry

uµ →KuµK
† (3.8)

Now we are in position to write the most general Lagrangian with the smallest
number of derivatives. For nf = 3 [53]

L(1)B = Tr [B̄ (i /∇−mB)B] +DTr [B̄γµγ5 {uµ,B}] + FTr [B̄γµγ5 [uµ,B]] . (3.9)

The low–energy constantsD and F are not constrained by Chiral symmetry, and
can determined by fitting the semileptonic decays B → B′ + e− + ν̄e. For nf = 2
[54]

L(1)ψ = ψ̄ (i /∇−mN +
gA

2
γµγ5uµ)ψ . (3.10)

The only low–energy constant is the axial–vector coupling g̊A, which is related
to D and F by g̊A =D + F , and obviously mB ∼mN .
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As in the mesonic Lagrangian the higher dimension terms are suppressed
by inverse powers of Λχ however there is no longer a consistent derivative ex-
pansion for processes involving baryons. Consider the kinetic term in (3.9) or
(3.10), even for low–momentum processes this produces a factor of mB/Λχ, be-
cause of the time derivative in ∂µ. Now consider the next operator in number of
derivatives, it will produces a factor m2

B/Λ2
χ which is not small compared with

the kinetic term because mB ∼ Λχ. Thus a computation, for example, of low–
momentum baryon–pion scattering amplitudes requires that one first sum all
the time derivatives in the effective Lagrangian; it is not consistent to use only
the lowest term. A similar problem occurs in the loop expansion. The power
counting argument fails because mB is a dimensionful parameter of order Λχ

that does not vanish in the Chiral limit. Higher order loops diagrams involving
baryon propagators can produce amplitudes which are only suppressed by fac-
tors of mB/Λχ ∼ 1 and therefore as important as lower order amplitudes. The
renormalization of divergences also may requier the tuning of low–energy con-
stants appearing at lower order. In this framework it is complicated to establish
a systematic method of assessing the relative importance of diagrams generated
by the Chiral Lagrangian with matter fields. In the next section a formalism
relying in a non–relativistic formulation of the heavy fields is developed to cir-
cumvent these problems. There are alternative approaches that keep the heavy
fields relativistic, the so–called Infrared Regularization [21] and the Extended
On–mass–shell renormalization [55, 56].

3.3 Heavy Baryon Chiral Perturbation Theory

The heavy baryon perturbation theory describes the interactions of a heavy baryon
with low momentum pseudo–Goldstone bosons. Jenkins and Manohar formu-
lated heavy baryon perturbation theory [19, 20] expanding the explicitly covari-
ant Lagrangian about nearly on–shell baryons, so that one has a Lagrangian that
can be expanded in inverse powers of the heavy baryon mass. This approach fol-
lows closely the techniques originally developed by Georgi [57] for the study of
heavy quark systems. The approach is also analogous to the Foldy–Wouthuysen
non-relativistic reduction [58] which provides a systematic procedure to block–
diagonalize a relativistic Dirac Hamiltonian in powers of the inverse mass M
of the Dirac field. In the rest of this section we will work out the heavy baryon
expansion for the nucleon Lagrangian (3.10) because it is the one we will need in
chapter 4, but the procedure is analogous for any heavy matter field coupled to
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the Chiral Lagrangian. For a explicit Lorentz covariant description of the pion–
nucleon system see [59].

The velocity of the nucleons is nearly unchanged when it exchanges some
small momentum with the pions, as a result a nearly on–shell nucleon with ve-
locity vµ has a momentum

pµ =mNv
µ
+ kµ , (3.11)

where kµ is a small momentum compared to mN . The velocity four–vector has
the properties v2 = 1 , v0 ≥ 1. Consider the projectors

P ±v = 1

2
(1 ± /v) , (3.12)

which fulfill the properties: completeness P +v + P
−
v = 1, idempotent (P ±v )2 = P ±v

and orthogonal P ±v P
∓
v = 0. The nucleon field ψ can be decomposed using this

projector operators
ψ = e−imNv⋅x [Hv + hv] , (3.13)

with
Hv = exp [imNv ⋅ x]P +v ψ , hv = exp [imNv ⋅ x]P −v ψ . (3.14)

In the nucleon rest frame, v = (1,0,0,0), Hv(hv) corresponds to the particle
(antiparticle) part of the spinor and subtracting the nucleon mass from all ener-
gies. If we are interested in processes with only nucleons and no antinucleons
as asymptotic states, the hv field parts of the Lagrangian can be eliminated by
using the equations of motion or by Gaussian integration of the hv fields in the
generating functional. Writing the Lagrangian (3.10) in terms of Hv and hv and
then integrating out the later with either of the proposed methods we obtain

L(1)ψ =H̄v (iv ⋅ ∇ + gA
2
/u�γ5)Hv + H̄v (i /∇� + gA2 v ⋅ uγ5)

× (2mN + iv ⋅ ∇ −
gA

2
/u�γ5)−1 (i /∇� − gA2 v ⋅ uγ5)Hv ,

(3.15)

where the perpendicular component of a quantity Aµ is defined as Aµ� = Aµ − v ⋅
Avµ. In the second term the 2mN factor dominates the denominator and thus
can be expanded in series of the inverse powers of mN

L(1)Hv
= H̄v (iv ⋅ ∇ + gA

2
/u�γ5)Hv +O ( 1

mN

) . (3.16)
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The derivatives on the Hv fields produce factors k, rather than p, so that higher
derivative terms in the Lagrangian are suppressed by powers of k/Λχ, which is
small. Thus, the effective Lagrangian has a consistent derivative expansion as
long as the pion momentum and the off–shellness of the baryon is small com-
pared with Λχ. The heavy baryon formulation of the Chiral nucleon Lagrangian
does not contain the nucleon mass term thus it does not appear in the nucleon
propagator which avoids the power counting breaking mN/Λχ factors coming
from loop integrals. The heavy nucleon Lagrangian also has an expansion in
1/mN . The 1/mN effects in the original Dirac theory can be reproduced in the
effective theory by including higher dimension operators suppressed by inverse
powers of mN . The resultant Chiral expansion is valid regardless of the relative
size of mN and Λχ, although in practice it is true that mN ∼ Λχ. However it has
been argued by the authors of [61] that the convergence of the Heavy Baryon
expansion is slow in certain observables.

3.4 The non–relativistic pion–nucleon Lagrangian up

to next-to-leading order

In section 2.7 we constructed the next–to–leading order Lagrangian for pseudo–
Goldstone bosons, in that case we saw that all next–to–leading order operators
are dimension six, and in general operators always have even dimension. In
the nucleon sector due to the fermionic spin–1/2 nature of nucleons the effective
Lagrangian operators can be of odd as well as even dimension. Hence the next–
to-leading nucleon–pion Lagrangian is composed of operators of dimension five.
We should construct the effective Lagrangian directly in a non–relativistic form,
constructing it from the relativistic formulation is not consistent because the
Lagrangian with relativistic nucleons does not have a well defined counting.
In the non-relativistic Lagrangian Lorentz symmetry is realized in the form of
reparametrization invariance [62]. Reparametrization invariance fixes some of
the low–energy constants of the theory. The next–to–leading Lagrangian in the
heavy baryon limit [60] can, thus be broken up into two pieces, the first with the
low–energy constants fixed by reparametrization invariance

L(2)Hv ,fixed
= 1

2mN

H̄v ((v ⋅ ∇)2 −∇2
− igA {S⃗ ⋅ ∇⃗, v ⋅ u})Hv , (3.17)
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where Sµ = i
2
γ5σµνv

ν is the covariant spin–operator. The second piece has free
low–energy constants

L(2)Hv ,ct
= H̄v (c1Tr [χ+] + c2

2
Tr [(v ⋅ u)2] + c3

2
Tr [uµuµ] + i c4

2
[Sµ, Sν] [uµ, uν]

+c5χ̃+ − i
c6

4mN

[Sµ, Sν]F +µν − i c7

4mN

[Sµ, Sν]Tr [F +µν])Hv ,

(3.18)

where

χ+ = u†χu†
+ uχ†u , Ã = A − Tr [A] ,

F +µν = u†F
µν
R u + uF

µν
L u† .

(3.19)

The ci , i = 1, . . . ,5 carry the dimension of an inverse mass and should be of the
order 1/Λχ. In the particular cases of c6 and c7 we followed the notation of [60]
and where these low energy constants are dimensionless and of order one by
introducing an inverse power of mN .

Finally, working in the nucleon reference frame v = (1,0,0,0), only the upper
pair component on the Dirac spinor of the Hv is non–zero, which leads to large
simplification in the Lagrangian and the calculations. Let us define N as the
upper two component spinor of the Hv field, the Lagrangians (3.16), (3.17) and
(3.18) reduce to

L(1)πN = N † (i∇0 −
gA

2
σ⃗ ⋅ u⃗)N , (3.20)

and

L(2)πN = N † ( ∇⃗2

2mN

+
igA

4mN

{σ⃗ ⋅ ∇⃗, u0} + c1Tr [χ+] + c2u20 − c3u⃗ ⋅ u⃗
+i
c4

2
ǫijkσkuiuj + c5χ̃+ −

c6

8mN

ǫijkF +ijσk −
c7

8mN

ǫijkTr [F +ij]σk)N .

(3.21)

Up until now we have only considered the one nucleon sector. Since the barionic
number is conserved the Lagrangian can be splited into pieces with a definite
barionic number. Next we are going to consider the two nucleon sector.
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Nucleon contact Lagrangian

Two–nucleon contact interactions consist of four nucleon fields. Such terms are
need to renormalize loop integrals, and when considering nucleon-nucleon scat-
tering or the nucleon–nucleon potential. Nucleon contact interactions can be
interpreted as encoding unresolved short–distance dynamics, for example the
exchange of heavy mesons. Because of parity nucleon contact interactions come
only in even powers of derivatives, thus

LNN =
∞
∑
n=1

L(2n)NN . (3.22)

The lowest order NN Lagrangian has no derivatives and reads [22, 23]

L(0)NN = −
1

2
CSN

†NN †N −
1

2
CT (N †σ⃗N) ⋅ (N †σ⃗N) . (3.23)

A discussion on the next–to–leading Lagrangian can be found in Ref. [63].

3.5 Power Counting

The power counting scheme for an effective field theory for pions and nucleons
is not as straightforward as in the theory with only pseudo–Goldstone bosons.
Although a power counting rule like (2.27) can be written it is not valid for all
sectors of the theory, hence the method we will follow is to estimate the size of a
diagram in terms of the relevant scales, and by inspecting all possible diagrams
this way determine which one contributes up to a given precision. Obviously
higher order terms in the effective Lagrangian will automatically suppress a di-
agram beyond a given order and should not be considered. In a pion–nucleon
effective field theory the expansion of the Lagrangian is in powers of 1/Λχ and
of 1/mN , however these two quantities are quite similar and we can safely count
them as being of the same size Λχ ∼mN for power counting purposes. In section
(2.5) we argued that 4πF0 ∼ Λχ, as a result we can relate all heavy scales of the
theory to Λχ. As in the mesonic sector the light scales will be typical momen-
tum p and the mass mπ of the pions, as well as a new light scale in the form
of the residual nucleon momentum k. All of these scales are of the same size
p ∼mπ ∼ k. Thus the effective field theory counting can be organized in powers
of p/Λχ. Now the first step to determine the size of the contribution to the am-
plitude from a given diagram is to know the sizes of the vertices in it. From the
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Figure 3.2: The solid lines represent nucleon lines and the dashed ones
pion lines. The first four diagrams are irreducible, while the fifth one can
be reduced by cutting the two internal nucleon lines.

discussion on sections 2.4 and 2.5 we have that the size of a pion–pion coupling
is given by

Λ2
χF

2
0 ( πF0

)nπ ((∂,mπ)
Λχ

)m , (3.24)

where nπ is the number of pion legs of the vertex and m the number of deriva-
tives plus the number of pion mass powers. In the pion sector nπ and m are
always even. An equivalent analysis for the one nucleon and two nucleon sec-
tors couplings leads to

Λ4
χ ( πF0

)nπ ((∂,mπ)
Λχ

)m ⎛⎝ N

Λ
3/2
χ

⎞⎠
nN

, (3.25)

where nN is the number of nucleon legs. In the pion–nucleon sector nπ and m

can be both even and odd.
The next step is to assign factors to the pion and nucleon propagators as

well as the loop integrals differentials. Following section 2.4 we add a factor
of 1/p2 for each pion propagator, a p4 factor for each loop and for the nucleon
propagators a 1/p factor. Loop integrals also carry a (4π)2 factor, that should be
taken into account to make the identifications 4πF0 ∼ Λχ. Taking all the factors
together we can obtain the size of a the contribution from a particular diagram
and determine whether it is relevant to our calculation.

This power counting, is the so-called Weinberg’s power counting, and only
works for irreducible diagrams [22, 23]. A n–nucleon irreducible diagram is a
diagram that cannot be splited in two by cutting n–nucleon lines (see Fig.3.2). In
particular, in the one nucleon sector all diagrams are irreducible and Weinberg’s
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power counting applies. Now, to explore the reason why Weinberg’s power
counting fails, lets consider the reducible diagram in Fig.3.2 from the two nu-
cleon sector. At this point, let us outline how to perform loop integrals with
non–relativistic nucleon propagators. From the Lagrangian in (3.20) we obtain

that the propagator for non–relativistic nucleons is i (l0 + iǫ)−1, where l is the nu-
cleon momentum. The usual techniques will not be useful when non–relativistic
nucleon propagators are present. To perform this kind of integrals, first the loop
energy is integrated using contour integration, afterwards we are left with a
usual integral over a 3 dimensional euclidean space that can be performed with
the usual techniques, in particular it can be regularized using dimensional reg-
ularization. Let us take the external momentum as zero for simplicity, then the
loop integral reads

∫ d4l(2π)4 P (l⃗)
(l0 + iǫ) (−l0 + iǫ) (l2 −m2

π + iǫ)2 , (3.26)

where l is here the loop momentum, and P (l⃗) is polynomial in l. The integral
over l0 possesses the so–called pinch singularity due to the poles at l0 = ±iǫ.
Notice that such pinch singularities only show up in the case of at least two
nucleons since for a single nucleon the contour of integration can be contorted
to avoid the singularity. This singularities are not “real” but an artifact of the
heavy baryon approximation for the nucleon propagators (static nucleons) that
is not valid for such diagrams. There are several ways to make sense of pinch
singularities [64, 65, 66], we will choose to resummate the kinetic term into the
propagator or equivalently treat ∇⃗2/2mN as a leading order operator. Doing so
the poles in the loop integral are l0 = ∓ l⃗2

2mN
± iǫ, as a result the integration path

is no longer pinched by the poles when ǫ → 0, and the contour integral can be
performed. We can choose an integration contour going through the upper or
lower complex half–plain, regardless there is going to be always a nucleon and
a pion pole enclosed in the integration path. Lets us consider first the nucleon
pole contribution, choosing a integration path through the upper half–plain we
obtain

i∫ d3l(2π)3 −mNP (l⃗)
l⃗2 (( l⃗2

2mN
)2 − l⃗2 −m2

π + iǫ)2
∼ i∫ d3l(2π)3 mNP (l⃗)

l⃗2 (l⃗2 +m2
π − iǫ)2 . (3.27)

Since l⃗2 >> (l⃗2/2mN)2 for any value of the momentum, (l⃗2/2mN)2 can be ig-



3.5 Power Counting 37

Figure 3.3: Pion exchanged between on-shell nucleons are always poten-
tial pions.

nored in a first order approximation in the pion propagators. We will call pion
lines in where l0 ∼ l⃗2/mN potential pion lines. Potential pions do not only occur
in loop diagrams, consider for example a pion exchange between two nucleon
lines in Fig. 3.3. In the center of mass frame with the external nucleon lines
on–shell the pion energy is given by q0 = 0, and thus the energy term can also
be ignored. The second pole that contributes to the l0 integration in (3.26) is the
pion pole, l0 = ±(√p⃗2 +m2

π − iǫ), that lies inside of the integration contour. In

this case, the pion line fulfills l0 ∼ l⃗ ∼mπ and we will call it a radiation pion line.
When a pion pole is taken the energy term of the nucleon propagator dominates
over the kinetic energy and the latter can be neglected.

− i
3

8
∫ d3l(2π)3 P (l⃗)

(√p⃗2 +m2
π − iǫ)5 . (3.28)

It is important to note that the nucleon pole contribution (potential pions) is
enhanced by a factor mN /mπ over the pion pole contribution (radiation pion).
Essentially introducing the nucleon kinetic term in the nucleon propagator we
have introduced a second mass scale. This implies that the loop integrals are
no longer homogeneous, that is, the integral contributes to more than a single
power in the expansion parameter. In the next section we will discuss a general
method for expanding the loop integrals in homogeneous pieces.

In terms of the power counting we will differentiate already at a diagramat-
ical level between potential and radiation pions, then the nucleon propagator
(and loop energy) will be counted accordingly. In the first case the time deriva-
tive operator is of the same size as the kinetic energy operator and the nucleon
propagator is counted as mN /m2

π , in the second the time derivative operator is
bigger than the kinetic energy and the nucleon propagator must be counted as
1/mπ .
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The original proposal by Weinberg [22, 23] was to compute the nucleon-
nucleon potential up to a given order including only the irreducible contribu-
tions, where all nucleons are off-shell and are counted as 1/mπ . Then solve
the Schrödinger equation with such potential using time ordered perturbation
theory or the Lippmann–Schwinger equation. This is essentially equivalent to
iterate the potential between two nearly on-shell nucleon states up to certain or-
der in the first case and to all orders in the second. It was shown in Ref. [67]
that solving the Schrödinger equation with time ordered perturbation theory
leads to the same results as perturbation theory for non–relativistic field theory
as long as the kinetic energy term is included in the propagators. The first step
has been carried successfully up to next–to–leading order [68, 69] and next-to-
next-to–leading order [70, 71, 72, 73]. However when the potential is more that
1/r2 singular at the origin then the Schrödinger equation solution is divergent
and need to be regularized. This corresponds to divergent diagrams in the field
theory. To regularize the Schrödinger equation we need to resort to introduc-
ing a cut–off, which cannot be eliminated from the final expressions and breaks
Chiral symmetry. On the other hand in field theory in perturbation theory it is
well known how to deal with divergences, one merely regularizes the integrals
and then renormalizes the couplings on the theory, absorbing terms that diverge
into the definitions of the renormalized couplings. Using dimensional regular-
ization andMS subtraction scheme the symmetries, including Chiral symmetry,
are preserved.

3.6 Threshold Expansions

Many processes in physics, like the ones with pion–nucleon interactions, involve
more than one mass scale. Such processes are notoriously difficult to calculate
in perturbation theory beyond one–loop level. To proceed one has to resort to
approximations, either numerical or analytical. Among the latter finds its place
the strategy of the regions [74]. The idea is to perform an asymptotic expansion
of the integrals in certain ratios of the mass scales, so that the resulting integrals
appearing in the calculation of every term in the expansion are simpler. In par-
ticular, this means that the expansion should be manifestly homogeneous The
method can be summarized as follows:

1. Determine the large and small scales.

2. Introduce factorization scales µi and divide the loop integration domain
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into regions in which the loop momentum is of order of one of the scales
in the problem.

3. Perform a Taylor expansion in every region in the small parameters of said
region and stay at leading order. At this point keep only the relevant re-
gions and discard the rest. The relevant regions are those that maintain
the pole structure of the original integral. If we integrate over multiple
momenta and the integrand has several propagators, so that we have one
or more poles associated with each momentum, after performing the Tay-
lor expansion we should still have at least one pole for each momentum.
If we end up loosing all the pole that were associated with one of the vari-
ables of integration the region we are considering is irrelevant and must
not be taken into account.

4. After the expansion, ignore all factorization scales and integrate over the
entire loop integration domain in every relevant region.

The non-trivial point to justify is the last one, which guarantees the homo-
geneity of the expansion formula. In order for that point to hold is essential to
use dimensional regularization to regularize the integral, even if it is finite in
four dimensions. Loosely speaking, item 4 follows in dimensional regulariza-
tion from the property that all integrals without scales vanish, but the truth is
that at present day there are no mathematical proofs of the method of the regions.
The best we can say is that it has not failed yet, giving asymptotic expansions
for any diagram in any limit and having been checked in numerous examples
when comparing results of expansions with existing explicit analytical results.

As an example lets apply this method to the two pion box diagram diagram
we studied in section 3.5 (the last diagram in Fig. 3.2). The small scale is the pion
mass mπ and the large scale is the nucleon mass mN . The factorization scales
correspond to mπ and m2

π/mN , the loop energy variable can be of order of one
of this two scales, the loop three–momentum can only be of order mπ. There are
then only two possible regions. Performing the Taylor expansion of (3.26) we
obtain

• l0 ∼m2
π/mN , l⃗ ∼mπ

∫ − d4l(2π)4 P (l⃗)
(l0 − l⃗2

2mN
+ iǫ)(−l0 − l⃗2

2mN
+ iǫ) (l⃗2 +m2

π + iǫ)2 , (3.29)



40 3 Pion–nucleon Chiral Effective Theories

This contributions correspond to two interations of the one pion potential
exchange.

• l0 ∼ l⃗ ∼mπ

∫ d4l(2π)4 P (l⃗)
(l0 + iǫ) (−l0 + iǫ) (l2 −m2

π + iǫ)2 . (3.30)

In the second region we are left with four poles. Unfortunately we recover the
pinch singularity due to the nucleon poles. However these contributions of the
nucleon poles are already included in the first region. Thus, to regularize the
pinch singularity in this case, one should subtract (3.29) in the static limit of
(3.6).

The two regions correspond to what we have identified as the potential pion
and radiation pions contributions in section 3.5. There we already saw, in (3.27)
and (3.28), that this two contributions are homogeneous in the power counting,
with the potential pion contribution being the leading one.



CHAPTER

4

NUCLEON–NUCLEON EFECTIVE FIELD THEORY
WITH DIBARYON FIELDS

4.1 Introduction

In non–relativistic nucleon–nucleon scattering the S–matrix is related to the am-
plitude scattering amplitude A by

S = 1 + ipmN

2π
A , (4.1)

where p is the magnitude of the nucleon momentum in the center–of–mass frame,
related to the total energy in that frame by E = p2/mN + . . . . For S–wave scatter-
ing, A is related to the phase shift, δ, through the relation

A = 4π

mN

1

p cot δ − ip
. (4.2)

From quantum mechanics is well known that it is the quantity p cot δ rather than
A, which has a well defined expansion for small momenta p≪ Λ, where Λ is the
theory cut–off, which is the scale of the last degree of freedom integrated out. It
is the so–called, effective range expansion

p cot δ = −1
a
+
1

2

∞
∑
n=0

rnp
2(n+1) , (4.3)

where a is the scattering length, and r0 the effective range. The radius of conver-
gence of momentum expansion ofA depends on the size of the scattering length.
In the context of an effective field theory there is only one dimensionfull scale Λ.



42 4 Nucleon–Nucleon Efective Field Theory with Dibaryon Fields

Since by dimensional analysis the scattering length has inverse mass dimension,
we have to conclude that the size of the scattering length is a ∼ 1/Λ. This means
that (4.2) can be expanded in powers of the momentum

A = −4πa
mN

(1 − iap +O (p2/Λ2)) . (4.4)

At zero external momentum only the first term survives − 4πa
mN

.

Now using the effective field theory for pion–nucleon interactions described
in section 3.4 and the power counting developed in section 3.5 we can calculate
the nucleon–nucleon scattering amplitude. The leading order (LO) amplitude
result for the 1S0 plane wave is as follows

A = CS − 3CT − g2A
4F 2

0

(−1 − m2
π

4p2
ln(1 + 4p2

m2
π

)) . (4.5)

Matching both expressions for the amplitude, (4.4) and (4.5), at zero external
momentum we can determine the LO contribution of the effective theory to the
scattering length

a
1S0 = −mN

4π
(CS − 3CT ) ∼ 1

Λχ
. (4.6)

Hence we conclude that the effective theory elaborated in sections 3.4 and 3.5 is
consistent with scattering lengths of the size a ∼ 1/Λχ.

However, it turns out that in nature the size of the S–wave scattering lengths
is of the order 1/a ∼m2

π/Λχ rather than 1/a ∼ Λχ. The actual experimental values
are a

1S0 = −23.714(13)fm and a
3S1 = 5.423(5)fm. This is due to the presence of

a shallow virtual state in the 1S0 channel and a bound state, the deuteron, in
the 3S1 channel. The large scattering lengths of this channels indicate that the
resonance/bound state are very close to threshold [75]. As a consequence the
amplitude (4.2) can not be expanded in positive powers of the momentum.

An alternative approach was proposed by Kaplan, Savage, and Wise [76, 77].
The key ingredient was the use of the power divergence subtraction scheme
instead of MS scheme to subtract the ultraviolet divergences. Working in the di-
mensional regularization framework, theMS subtraction scheme only the poles
appearing at space–time dimension four are subtracted. In power divergence
subtraction scheme both the poles appearing at dimension three and four are
subtracted. This leads to modified renormalization group equations for the nu-
cleon contact terms of (3.23). Solving this equations for C

1S0 ≡ CS − 3CT , with
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the boundary condition C
1S0(µ = 0) = 4πa

1S0

mN
leads to

C
1S0 = − 4π

mN

⎛⎝ 1

µ − 1

a
1S0

⎞⎠ ∼ − 4π

mNµ
, (4.7)

where µ is the renormalization scale, and in the last step utilizes that the scat-
tering length is large. Choosing µ ∼ mπ ∼ p results in an enhancement of the
contact term from C

1S0 ∼ 1/Λ2
χ to ∼ 1/mπΛχ. As a result the contact terms be-

come the sole contributors to the LO. Furthermore all Feynman diagrams with
C

1S0 in each vertex contribute at the same order, and thus have to be resum

ALO = −C
1S0

1 + C
1S0mN

4π
(µ + ip) , (4.8)

which has the nice property of reproducing the pole structure of the 1S0 channel.
Matching (4.8) to the effective range expansion we obtain the LO expression in
the KSW approach of the scattering length

1

a
1S0

= µ + 4π

mNC
1S0

. (4.9)

The new term introduced by using partial divergence subtraction scheme allows
for the fine tuning of the scattering length to its experimental value. The scat-
tering amplitudes in this approach were computed up to next–to–leading order
(NLO) in Ref.[76]. However when this calculations were carried out to next–to–
next–to–leading order (N2LO) Ref.[85] a bad convergence of the perturbative
series was observed, particularly in the 3S1 channel.

The proposal presented in this chapter elaborates on the idea that the difficul-
ties encountered so far in constructing a consistent and useful nucleon–nucleon
effective field theory may be a consequence of a misidentification of the low
energy degrees of freedom. We will assume the nucleon–nucleon effective field
theory (NNEFT) for energy and momentum scales much lower than Λχ contains
two dibaryon fields, i.e with baryonic number NB = 2, as explicit degrees of
freedom each one with the quantum numbers associated to one of the S–wave
channels. We will work in the framework of dimensional regularization and
MS subtraction scheme. The dibaryon residual masses, the difference between
the dibaryon mass and the 2mN subtraction due to the non–relativistic approx-
imation, are of the order or smaller than the pion mass. The introduction of a
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small free scale in the residual masses allows to naturally accommodate the large
scattering lengths presents in these channels. If the dibaryon fields are naively
integrated out, one gets the enhanced contact interactions of the KSW approach.
We will argue that they must be kept as explicit degrees of freedom.

The relation between dibaryon fields and the KSW approach was noted early
[78]. Dibaryon fields have also been used in effective field theory formulations of
the three body problem (see [79, 80, 81] and references there in). However, they
have mostly been regarded as a convenient trick to carry out calculations (see,
for instance, [82]). What it is new in our approach is the assumption that they
must be included as explicit degrees in the NNEFT. They cannot be integrated
out if one wants to keep a natural counting. For a fundamental field theory their
introduction should be irrelevant, since one can build the appropriate quantum
numbers of the dibaryon out of the nucleon fields, and their inclusion does not
affect the symmetries of the theory. For an effective theory, however, where cal-
culations are necessarily organized in ratios of scales, it is extremely important
to keep the appropriate degrees of freedom in the Lagrangian, even if they may
appear redundant at first sight.

This chapter is based in the work presented in Refs. [31, 32, 33, 34]

4.2 The nucleon–nucleon Chiral effective theory with

dibaryon fields

Our starting point is the effective theory for the NB = 2 sector of QCD for non–
relativistic energies much smaller than Λχ. The distinct feature of this effective
field theory is that in addition to the usual degrees of freedom for a NNEFT,
namely nucleons and pions, two dibaryon fields, an isovector (Da

s ) with quan-
tum numbers 1S0 and an isoscalar (D⃗v) with quantum numbers 3S1 are also
included. Chiral symmetry, and its breaking due to the quark masses in QCD,
constrain the possible interactions of the nucleons and dibaryon fields with the
pions.

The NB = 0 sector is given by the Chiral Lagrangian which will only be
needed at LO (2.43). We will work in the isospin limit, namely mu = md, which
makes ǫ, defined in (2.48), vanish. For the pion–nucleon interactions we will
need the Lagrangian up to NLO, that is (3.20) and (3.21). We will take the value
of the axial–vector coupling as gA = 1.25. The NB = 2 sector consist of terms
with (local) two nucleon interactions, dibaryons and dibaryon–nucleon interac-
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tions. The terms with two nucleon interactions (3.22) can be removed by local
field redefinitions [79, 80, 82] of the dibaryon fields and will not be further con-
sidered. The terms with dibaryon fields and no nucleons in the rest frame of the
dibaryons read

LD = L(1)D +L(2)D + . . . , (4.10)

where L(1)D is the O(p)
L(1)D = 1

2
Tr [D†

s(−id0 + δ′ms
)Ds] + D⃗†

v (−i∂0 + δ′mv
) D⃗v + icsv (D⃗†

vTr [u⃗Ds] − h.c.) ,
(4.11)

where Ds = Da
s τa and δ′mi

, i = s, v are the dibaryon residual masses, which must
be much smaller than Λχ, otherwise the dibaryon should have been integrated
out as the remaining resonances have. The negative signs of the time derivatives
are chosen this way in order to eventually reproduce the signs of the effective
range parameters.

The covariant derivative for the scalar (isovector) dibaryon field is defined
as d0Ds = ∂0Ds +

1
2
[[u, ∂0u],Ds]. L(2)D is the O(p2) Lagrangian

L(2)D =s1Tr[Ds(uM†u + u†Mu†)D†
s] + s2Tr[D†

s(uM†u + u†Mu†)Ds]+
+ v1D⃗

†
v ⋅ D⃗vTr[u†Mu†

+ uM†u] + . . . (4.12)

si, i = 1,2, and v1, are low–energy constants. We have only displayed here the
terms which will eventually contribute in our calculations. The complete list of
operators is given in the Appendix D.

The dibaryon–nucleon interactions will also be needed at NLO,

LDN = L(1)DN +L(2)DN +⋯ (4.13)

At LO they read

L(1)DN =
As√
2
(N †σ2τaτ2N∗)Ds,a +

As√
2
(N⊺σ2τ2τaN)D†

s,a+

+
Av√
2
(N †τ2σ⃗σ2N∗) ⋅ D⃗v +

Av√
2
(N⊺τ2σ2σ⃗N) ⋅ D⃗†

v ,

(4.14)
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Figure 4.1: The dibaryon propagator gets an important contribution from
resuming the bubble self–energy diagrams

where Ai ∼ Λ−1/2χ , i = s, v, and at NLO

L(2)DN =
Bs√
2
(N †σ2τaτ2∇⃗2N∗)Ds,a +

Bs√
2
(N⊺σ2τ2τa∇⃗2N)D†

s,a+

+
Bv√
2
(N †τ2σ⃗σ2

∇⃗
2N∗) ⋅ D⃗v +

Bv√
2
(N⊺τ2σ2σ⃗∇⃗2N) ⋅ D⃗†

v

+
B′v√
2
(∇iN †τ2σiσ2

∇jN
∗)Dj

v +
B′v√
2
(∇iN⊺τ2σ2σi∇jN)Dj†

v .

(4.15)

Again, we have only displayed here the terms which will eventually contribute
in our calculations. The complete list of operators is given in the Appendix D.
The dibaryon field propagator gets an important contribution to the self–energy
due to the interaction with the nucleons (Fig.4.1), which is always parametrically
larger than the energy E. As a consequence the LO expression for the dibaryon
field propagator becomes, in dimensional regularization and MS subtraction
scheme

i

δ′mj
+ i

A2

j
mNp

π

j = s, v , (4.16)

(p = √mNE) rather than the tree level expression i/(−E + δ′mj
− iη). The un-

conventional signs for the time derivatives in (4.11) are chosen in this way in
order to correctly reproduce the sign of the effective ranges later on. They do
not imply any violation of unitarity because the correct LO expression for the
propagator is (4.16) and not the tree level one. The size of the residual mass
can be extracted computing the LO amplitude using the propagator (4.16) and
matching the result to the effective range expansion

δ′mi
∼ 1

πai
≲
m2
π

Λχ
i = s, v, (4.17)

where ai are the scattering lengths. Therefore for p≫ m2

π

Λχ
the full propagator can
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Figure 4.2: The LO dibaryon propagator for p ≫ δmi is the first term in
the expansion of the full dibaryon propagator around (−E + δmi) = 0. The
second term is an effective vertex.

be expanded. The first term of this expansion will be the LO propagator (Fig.4.2)

π

A2
imNp

i = s, v, (4.18)

the second term will be an effective vertex taking into account the effects due to
i(−E + δmi

). Higher order terms in this expansion will be equivalent to multiple
insertions of this vertex. From (4.18) it follows that the leading contribution to
the nucleon–nucleon scattering amplitude for energies ∼ mπ is parametrically
∼ 1/mπΛχ which is more important than the tree level contribution from the one
pion exchange (∼ 1/Λ2

χ).
Furthermore for p ≫ δ′mi

the LO Lagrangian becomes both scale and SU(4)
(spin-flavor Wigner symmetric) invariant, if the interactions with pions are ne-
glected [87]. Indeed, concerning SU(4), the single nucleon sector is obviously in-
variant. Moreover, since all terms in (4.11) become subleading, one can redefine
the dibaryon fields in such a way that all couplings in (4.14) are equal. In that
case the dibaryon–nucleon interactions become SU(4) invariant if the two diba-
ryon fields are chosen to form a 6∗ representation of SU(4). Scale invariance also
holds because the dibaryon fields only appear in (4.14) and their scaling trans-
formations can be chosen such that those terms are invariant. Moreover equa-
tion (4.16) implies that the dibaryon field should not be integrated out unless
p≪ δ′mi

, instead of E ≪ δ′mi
as the tree level expression suggests. If δ′mi

≪mπ, it
should also be kept as an explicit degree of freedom in the /πNNEFT, like in Refs.
[88, 89, 90]. Nevertheless, if the dibaryon fields are integrated out, one can still
organize the calculation in terms of nucleon fields by taking into acount suitable
correlated enhancements in the local four–nucleon interactions [86]. This is due
to the fact that the path integral over dibaryon fields is Gaussian and can be
carried out exactly.

Except for the above mentioned contributions to the self–energy of the diba-
ryon fields, which become LO, the calculation can be organized perturbatively
in powers of 1/Λχ. Hence one expects that any ultraviolet divergence arising in
higher order calculations will be absorbed in a low–energy constant of a higher
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dimensional operator built out of nucleon, dibaryon and pion fields.

We shall restrict ourselves in the following to energies E ≲ m2
π/Λχ ≪ mπ ,

which implies nucleon three momenta ∼ mπ . We shall follow the strategy of
[91], which was inspired in the formalism of [92], and shall build a lower energy
effective field theory, pNNEFT, with no explicit pion fields: the effects due to
the pions will be encoded in two nucleon non–local interactions (potentials) and
redefinitions of the low–energy constants.

4.3 The potential nucleon–nucleon effective theory

with dibaryon fields

For energies E ∼ m2
π/Λχ ≪ mπ, the pion fields can be integrated out. This in-

tegration produces nucleon–nucleon potentials and redefinitions of low energy
constants. Since δ′mi

∼ m2
π/Λχ the dibaryon fields must be kept as explicit de-

grees of freedom in pNNEFT. The Lagrangian in the NB = 1 sector reads

LN = N † (i∂0 − δmN +
∂⃗2

2mN

)N . (4.19)

In the NB = 2 sector further two nucleon interactions (potentials) are induced.
They read

LNN =1
2
∫ d3r⃗N †σiταN(x1)Vij;αβ(x1 − x2)N †σjτβN(x2) , (4.20)

x01 = x02 = x0, r⃗ = x⃗1 − x⃗2 and x = (x1 + x2)/2 where Vij;αβ(x1 − x2) is a generic
potential (i, j, α, β = 1,2,3), which may be calculated in an expansion in 1/Λχ
(in fact, beyond one loop it becomes an expansion in

√
1/Λχ [93]). The terms

with dibaryon fields and no nucleons read

L(1)D =D†
s,a(−i∂0 + δms

)Da
s + D⃗

†
v(−i∂0 + δmv

)D⃗v , (4.21)

δmi
, i = s, v are the (redefined) dibaryon residual masses. Note that δmN in (4.19)

can be reshuffled into δmi
by local field redefinitions. Note also that because of

δ′mi
≪ mπ the quark mass dependence of δmi

is a LO effect. The dibaryon–
nucleon interactions remain the same as in (4.13), except for the values of the Ai
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Figure 4.3: Example diagram of enhancement of a potential pion (dashed
line) inside a radiation pion loop (wavy line).

which get modified

L(1)DN =
As√
2
(N †σ2τaτ2N∗)Ds,a +

As√
2
(N⊺σ2τ2τaN)D†

s,a+

+
Av√
2
(N †τ2σ⃗σ2N∗) ⋅ D⃗v +

Av√
2
(N⊺τ2σ2σ⃗N) ⋅ D⃗†

v ,

(4.22)

L(2)DN =
Bs√
2
(N †σ2τaτ2∂2N∗)Ds,a +

Bs√
2
(N⊺σ2τ2τa∂2N)D†

s,a+

+
Bv√
2
(N †τ2σ⃗σ2∂2N∗) ⋅ D⃗v +

Bv√
2
(N⊺τ2σ2σ⃗∂2N) ⋅ D⃗†

v

+
B′v√
2
(∂iN †τ2σiσ2∂jN

∗)Dj
v +

B′v√
2
(∂iN⊺τ2σ2σi∂jN)Dj†

v .

(4.23)

The calculations in pNNEFT can be organized in ratios E/p and p/Λχ (recall
mπ ∼ p). The ultraviolet divergences arising at higher orders will be absorbed
by local terms build out of nucleon and dibaryon fields.

4.4 Potential pions in loops with radiation pions

In this section we discuss a particular class of contributions to the matching cal-
culation between pNNEFT and NNEFT. The former is obtained from the latter
by integrating out nucleons of energy E ≳mπ and pions. Among the latter there
are the so–called radiation pions, namely pions with q0 ∼ q⃗ ∼ mπ that interact
with nucleons of E ∼mπ and p ∼√mπmN .

The lowest order diagrams involving radiation pions are depicted in Fig.4.8.
When a so–called potential pion, namely a pion with q0 ∼ q⃗2/mN , is added
to one of those diagrams, for instance like in Fig.4.3, the potential pion three–
momentum is q⃗ ∼ √mπmN and thus their energy is q0 ∼ mπ . A parametric
suppression of only

√
mπ/Λχ occurs [87, 32], which numerically turns out to be

O(1) [93]. It is then necessary to sum up these kind of contributions.
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Figure 4.4: Potential pion exchanges in the 1S0 channel can be approxi-
mated by contact interactions and resummed into an effective vertex when
the external momentum is bigger than the pion mass.

4.4.1 Loop resummation

Let us consider the exchange of n potential pions between two nucleon lines. If
we project it to the 1S0 channel, the three-momenta coming from the vertices of
each potential pion exchange contract between themselves. Note that this is not
the case if we project to the 3S1 channel, where a three-momentum from one of
the vertices of a given potential pion exchange may get contracted with a three-
momentum of a neighboring potential pion exchange vertex. If these n-pion
exchanges are in a loop with a radiation pion, then the three-momentum in the
denominator of the potential pion propagators dominates over the pion mass
and the pion energy. As a consequence, the potential pion exchanges collapse
into a local vertices (contact interactions) with a coupling constant g2A/(4F 2

0 ),
where gA is the axial pion–nucleon coupling constant and F0 is the pion decay
constant. Again, this is not so in the 3S1 channel, where even at very large
momentum transfer the potential remains non–local (i.e. it does not reduce to a
contact interaction). In the left hand side of Fig.4.4 we depicted the first terms in
a series of diagrams with an arbitrary large number of potential pion exchanges.
Using the previous reasoning we can collapse the potential pion exchanges into
local vertices obtaining the diagrams on the right hand side. In dimensional
regularization the result for the first few terms is

i
g2A
4F 2

0

+ i
g2A
4F 2

0

⎛⎝−
√
q0 − iǫ

α

⎞⎠ + i g
2
A

4F 2
0

⎛⎝−
√
q0 − iǫ

α

⎞⎠
2

+ . . . (4.24)

where we have taken the external energy to be −q0 and α is defined as

α = 16πF 2
0

g2Am
3/2
N

. (4.25)

Naively we would expect each bubble to suppress the diagram by a factor of√
mπ/Λχ. However a more careful analysis shows that the actual size of each

bubble is in fact
√
mπ/α ∼ 1.19 which is of order O (1), and hence the series
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Figure 4.5: Resummation of potential pions in the dibaryon–nucleon ver-
tex.

Figure 4.6: Inside radiation pion loops the 1S0 receives an additional self–
energy contribution.

should be resummed. The result of the resummation can be casted as an effective
energy–dependent four–nucleon vertex with coupling constant

Ceff = i g
2
A

4F 2
0

α

α +
√
q0 − iǫ

. (4.26)

An analogous resummation has to be done for potential pion exchanges in
the nucleon–dibaryon vertex of Fig.4.5. Following the same procedure as before
we obtain an energy–dependent effective nucleon–dibaryon vertex

As,eff = As α

α +
√
q0 − iǫ

. (4.27)

Furthermore using the effective vertex of (4.26) we can construct the self–energy
depicted in Fig.4.6, which inside radiation pion loops turns out to be of order
O (1) and thus has to be included in the LO propagator (4.18). The following
expression for the 1S0 propagator inside radiation pion loops is obtained

−
1

4A2
s

g2A
4F 2

0

⎛⎝1 + α√
q0 − iǫ

⎞⎠ . (4.28)

Note that in order to have a 1S0 nucleon–nucleon state in a loop with a single
radiation pion, the initial nucleon–nucleon state must be in the 3S1 channel. This
procedure can then be applied to the calculation of δmv

, but not to the calculation
of δms

. This is due to the fact that in the last channel the contact interaction is
replaced by a non–local potential that turns out to be singular, and therefore
cannot be straigtshforwardly used in a Lippmann–Schwinger equation, see [91,
99, 96, 97, 98, 100, 101, 102] for discussions and possible solutions.
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Figure 4.7: Order O(m2
π/Λχ) contributions to the dibaryon residual mass.

Radiation pions are represented by Wavy lines.

Figure 4.8: Order O(m2
π/Λχ) contributions to the dibaryon residual mass

with one radiation pion (wavy lines), that cancel due to Wigner symmetry.

4.4.2 Cancellation of the contributions to δmv

Making use of the new effective vertices obtained by resumming potential pion
exchanges, two new diagrams contributing at LO to δmv

, shown in Fig.4.7, are
found

Aa = 8A2
v ( 1αB(1/4,1) − α2B(1,1) + αB(3/4,1) −B(1/2,1)) , (4.29)

Ab = 8A2
v (B(1/2,1) − αB(3/4,1) + α2B(0,2) − α3B(1/4,2) − α6B(1,2)
+α7B(5/4,2)) . (4.30)

The definition of B(β1, β2) is the Appendix C. The (4.29) and (4.30) contribu-
tions are of the same order as the diagrams in Fig.4.8. Those diagrams can be
naively counted asO (m5/2

π /Λ3/2
χ ), however they are proportional to

√
mπ/α ∼ 1.

Then analogously as we did previously we should count diagrams in Fig.4.8 as
O (m2

π/Λχ). The sum of these diagrams is known to cancel due to Wigner sym-
metry, however since the third one is already included in Fig.4.7b we should
add the first two to (4.30) in order to get the complete result at O (m2

π/Λχ)
As = −8A2

v

1

α
B(5/4,0) . (4.31)
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The sum of these three contributions (Aa, Ab, As) adds up to zero, which can be
checked by making use of the relation

B (β1 − 1, β2) = B (β1, β2 − 1) + α4B (β1, β2) . (4.32)

This is at first sight a surprising result. The interaction of nucleons with poten-
tial pions spoils the arguments that led to the proof that the sum of the diagrams
in Fig.4.8 vanishes as a consequence of Wigner symmetry [87]. Yet, since the con-
tact four–nucleon interaction we obtain is only used in the 1S0 channel, it could
well be replaced by a Wigner symmetric one with no effect in our calculation,
and hence the arguments of [87] would still go through. Nevertheless, as it will
become clear soon, the actual reason of the cancellation is that the contact four–
nucleon interaction can be removed by the following local field redefinition of
the dibaryon field

Da
s →Da

s −
g2A

4F 2
0As

NTP
1S0

a N , (4.33)

where P
1S0

a = (iσ2)(iτ2τa)
2
√
2

, is the projector to the 1S0 partial wave. Indeed, we
have checked that the resummation of potential pion exchanges in the diagrams
of Fig.4.9, in which Wigner symmetry is violated by the cross and bullet vertices,
also vanishes.

As we have mentioned in the previous section the resummation cannot be
carried out for the analogous diagrams for δms

. However, it is likely that the per-
turbative expansion also breaks down in this channel due to numerical factors
coming from loop integrals. Hence, any prediction for the quark mass depen-
dence of δms

in terms of a perturbative expansion has to be taken with caution
because it could be missing large corrections.

Part of the reasoning we have used in the 3S1 channel can be adapted to dis-
cuss the result for the diagrams with a single potential pion exchange in a loop
with a radiation pion in the 1S0 channel. In this set of diagrams the radiation
pion three–momentum in the denominators of the loop integral can be neglected
in front of any of the nucleon or potential pion three–momentum, then the po-
tential pion three momenta in the pion–nucleon vertices must end up contracted
between themselves, and hence we are left with a situation analogous to the one
in the 3S1 channel. At this point we can approximate the potential exchange
by a four–nucleon contact term, following the same reasoning as for the contri-
butions to δmv

. The contact term can then be eliminated by a field redefinition
analogous to (4.33) for the D⃗v dibaryon field. We then conclude that the sum of
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the diagrams in Fig.4.8 with a single potential pion insertion must also vanish
in the 1S0 channel. This result is in contradiction with those of [84, 32], where
this class of diagrams with one potential pion inside a radiation pion loop were
found to be non–zero. We believe that this is a consequence of double counting
certain diagrams. In particular the last diagram in Fig.17 of [84] is already in-
cluded in the first one. According to our calculations this error would lead to
the result presented in [84, 32].

4.5 Matching NNEFT to pNNEFT

In the one nucleon sector pion loops produce energy independent terms which
are O(m2

π/Λ2
χ) [94] and hence relevant for the N2LO calculation, which together

with the contribution O(mπ/Λχ) from terms proportional to the quark masses
make up the nucleon residual mass δmN in (4.19). We can reshuffle δmN into
the dibaryon residual mass by local field redefinitions. The expression for δmN

can be found [106], and up to O (m3
π/Λ2

χ) contributions it reads

δmN = −4c1m2
π −

3g2A
64πF 2

0

m3
π . (4.34)

In the NLO pion-dibaryon Lagrangian (4.12) the residual mass gets O (m2
π/Λχ)

contributions proportional to the quark mass. Additional O (m3
π/Λ2

χ) contribu-
tions come from the diagrams in Fig.4.9. Adding up all the contributions we
obtain the formula for the residual mass

δmv
= δ′mv

+ 2
v1

B0

m2
π + 2δmN + ( g2A

4F 2
0

) m3
π

8π

A2
v

A2
s

+ csv ( gA
2F 2

0

) m3
π

8π

Av

As
,

δms
= δ′ms

+ 2
s1 + s2

B0

m2
π + 2δmN + ( g2A

4F 2
0

) m3
π

8π

A2
s

A2
v

+ csv ( gA
2F 2

0

) m3
π

8π

As

Av
.

(4.35)

The dibaryon–nucleon vertices may in principle get O(m2
π/Λ2

χ) contributions
from a pion loop, but they turn out to vanish, except for those which reduce
to iterations of the one pion exchange potential (see (4.37)) which will already
be included in the calculations in pNNEFT and must not be considered in the
matching. Note that for this to be so the matching calculation must be done
according to the prescriptions of Ref. [65] This prescription gives results which
differ from the on-shell prescription of Ref. [84] and are usually simpler. Agree-
ment is eventually recovered at the level of physical amplitudes, in which a



4.6 Calculation in pNNEFT 55

Figure 4.9: Order O(m3
π/Λ2

χ) contributions to the dibaryon residual mass.

Figure 4.10: Matching of the effective vertex of the pNNEFT theory with
the NNEFT vertex diagram.

number of cancellations occur for the on-shell prescription. There is, however, a
two loop contribution of this order involving radiation pions from the diagram
in Fig.4.10

Ai → Ai(1 − 2 g2Am
2
π(4πF0)2 ) . (4.36)

Finally, in the two nucleon interactions (4.20), the one pion exchange is the
only relevant contribution at this order, which produces the well known one
pion exchange potential

Vij;αβ(x1 − x2) = − g2A
4F 2

0
∫ d3q(2π)3 qiqj

q⃗2 +m2
π

δαβe−iq⃗⋅(x⃗1−x⃗2) . (4.37)

for i , j , α , β = 1,2,3.

4.6 Calculation in pNNEFT

When p ∼ mπ, we have already integrated out all higher energy and momen-
tum scales in pNNEFT, and hence we already have the optimal EFT to carry
out calculations. Moreover, for this momentum both the time derivative and
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Figure 4.11: LO diagram.

(a) (b)
Figure 4.12: (a) NLO diagrams with one potential pion exchange. (b) NLO
diagram with one i(−E + δmi) insertion.

the residual mass in the dibaryon Lagrangian are small and can be treated as
O(mπ/Λχ) perturbations.

S–Waves

Let us then focus on the calculation of nucleon–nucleon amplitudes up to N2LO.
At LO we get from Fig.4.11 the following S wave scale covariant Wigner sym-
metric amplitudes

AjLO = i
4π

mNp
j = s, v. (4.38)

At NLO we get from the diagrams in Fig.4.12a

Ai,INLO = −
g2A

16F 2
0

(mNmπ

4π
)2 ln(1 + 4p2

m2
π

)(AiLO)2 i = s, v, (4.39)

The individual integrals can be found in Appendix C. From the diagram in
Fig.4.12b

Ai,IINLO = (−E + δmi

4A2
i

)(AiLO)2 i = s, v. (4.40)

At N2LO we obtain the following contributions. From the diagrams in Fig.4.13
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Figure 4.13: N2LO diagrams with two potential pion exchange.

Figure 4.14: Diagrams with one vertex from (4.15).

(a) (b)
Figure 4.15: N2LO diagrams with, (a) one i(−E + δmi) insertion and one
potential pion, and (b) two i(−E + δmi) insertions.
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As,I
N2LO

=( g2A
4F 2

0

)2 (mNmπ
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)3 (mπ

p
)[ i

16
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(4.41)
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(4.42)

The individual integrals can be found in Appendix C.

The sum of the diagrams in Fig.4.14 turns out to be zero for the 1S0 and
3S1 channels (they only contribute to the 3S1–3D1 mixing, see below). This can
be understood as follows: these diagrams involve corrections to the nucleon–
dibaryon vertices of order (mπ

Λχ
)2. We can redefine the dibaryon fields in order

to remove these corrections from nucleon–dibaryon vertices, as a consequence
these corrections would appear in the NB = 2 sector (4.19), however, since this
sector is subleading, the new operators induced by the field redefinition in this
sector are of higher order.

From the diagrams in Fig.4.15

Aj,II
N2LO

= − (−E + δmj

4A2
j

)( g2A
4F 2

0

)(mNmπ

4π
) mπ

p
(arctan( 2p

mπ

) + i
2
ln(1 + 4p2

m2
π

))(AjLO)2
+ (−E + δmj

4A2
j

)2 (AjLO)3 j = s, v.
(4.43)
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Figure 4.16: The cross in one of the nucleon propagators stands for the
use of the relativistic correction. In order to compute this diagram the
relativistic correction has been expanded up to first order

Relativistic Corrections

There are two contributions coming from relativistic corrections. The first one
comes from using i/(p0 − p2

2mN
+

p4

8m3

N

+ iǫ) instead of i/(p0 − p2

2mN
+ iǫ) as the

nucleon propagator. We obtain the contribution in Fig.4.16

Aj,a
N2LO

= i( 5p3

32πmN

)(AjLO)2 j = s, v. (4.44)

Another contribution arise when using the first relativistic correction to the dis-
persion relation of the nucleons

p0 = p2

2mN

−
p4

8m3
N

, (4.45)

in the bubble self–energy diagram of Fig.4.1. This results in the following contri-
bution to the amplitude

Aj,b
N2LO

= −i( p3

32πmN

)(AjLO)2 j = s, v. (4.46)

However a new normalization of the amplitude that takes into account the new
dispersion relation has to be considered

S = 1 + i

2π

p2

dE/dpA = 1 + imNp

2π
(1 + p2

2m2
N

)A , (4.47)

this new normalization induces a new contribution to the S matrix, i p3

4πmN
AjLO,

that exactly cancels the contributions coming from the aforementioned relativis-
tic contributions to the amplitude.
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3S1–3D1 mixing

The 3S1–3D1 mixing amplitude has no contribution at LO. At NLO the first two
diagrams of Fig.4.12a are the only contribution

AmixNLO =
√
2( g2A

4F 2
0

) mNmπ

4π
[−3

4
(mπ

p
)2 + (mπ

2p
+
3

8
(mπ

p
)3)arctan( 2p

mπ

)]AvLO .
(4.48)

At N2LO diagrams of Fig.4.13 with one (or two) potential pion exchange in the
nucleon external legs give the following contribution

Amix,I
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=√2( g2A
4F 2

0

)2 (mNmπ

4π
)2 [Z ( p
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)]AvLO .
(4.49)

The X , Y , Z functions where defined in [85] and we write them here for com-
pleteness

X (α) = − 3

4α2
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2
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+
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The derivative vertex of (4.15) proportional to B′v contributes to the mixing am-
plitude through the first diagram of Fig.4.14

Amix,II
N2LO

= i√2p2B′v
Av
AvLO. (4.53)

The last contribution to the 3S1–3D1 mixing amplitude comes from the first dia-
gram of Fig4.15a
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(4.54)

The 3D1 amplitude starts at NLO with the contribution coming from the one
pion exchange diagram
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NLO = ( g2A4F 2
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)2 + ( 3
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)] .
(4.55)

At N2LO there are two contributions from Fig.4.13 from the two diagrams in
which all external nucleon legs have a potential pion exchange. The correspond-
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ing amplitudes are
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A3D1,II
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(4.57)

4.7 The pionless nucleon–nucleon effective field the-

ory

For p ≲ m2

π

Λχ
the calculation must be organized in a different way. This is very

much facilitated if we integrate out nucleon three momenta of the order of mπ

first, which leads to the so called pionless nucleon–nucleon effective field the-
ory (/πNNEFT) [67, 86, 82]. This effective field theory has been successfully used
in numerous processes at very low energy (see [83] for a recent review). The
Lagrangian of the NB = 1 sector of this theory remains the same as in pNNEFT
(4.19) (the relativistic correction (4.44) becomes negligible). For theNB = 2 sector
the only formal difference from pNNEFT is that the non–local potentials (4.20)
become local and can be organized in powers of p2/m2

π . The pion exchange po-
tential in (4.37) becomes O(p2/m2

πΛ
2
χ) and hence beyond N3LO in this region.
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Figure 4.17: Contributions to the matching between pNNEFT and
/πNNEFT. a) Leading and NLO contributions to the residual mass. b) NLO
correction to the dibaryon–nucleon vertex low energy constant. Dashed
lines represent the one pion exchange potential.

The derivative dibaryon–nucleon vertices in (4.23) also become beyond this or-
der. The remaining terms in the Lagrangian are the same as those in pNNEFT,
namely (4.21) and (4.22), with the parameters redefined as follows. Self energies
in Fig.4.17a can be expanded giving contributions to the dibaryon residual mass
as well as time derivative terms. The latter can be reabsorbed by field redefi-
nitions of the dibaryon fields. The dibaryon–nucleon vertex gets contributions
from the diagrams in Fig.4.17b, redefining the Ai. Recall that the one pion ex-
change potentials in Fig.4.17 corresponds to potential pions with q⃗ ∼mπ and not
to potential pions with q⃗ ∼√mπmN like the ones considered in section 4.4.

The contributions to the residual mass from the first diagram in Fig.4.17a is of
orderO (m2

π/Λχ). This diagram contains a divergence proportional to the quark
mass which is renormalized by the counterterm of the same order proportional
to the quark mass from (4.12).
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The second diagram in Fig.4.17a is NLO, O (m3
π/Λχ)

δNLOmv
= − 3g2A

32πF 2
0

m3
π + ( g2A4F 2

0

) m3
π

8π

A2
v

A2
s

+csv ( gA
2F 2

0

) m3
π

8π

Av
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+A2
v ( g2A2F 2

0

)2 (mπmN

4π
)3 5

2
(6 + 13 ln (2)) ,

δNLOms
= − 3g2A

32πF 2
0

m3
π + ( g2A4F 2

0

) m3
π

8π

A2
s

A2
v

+csv ( gA
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) m3
π

8π
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Av

+A2
s ( g2A2F 2
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)2 (mπmN

4π
)3 2 ln (2) .

(4.59)

The dibaryon–nucleon vertex up to NLO get only one new contribution from
the first diagram in Fig.4.17b. Defining A2

i,NLO = A2
i∆NLO , i = s, v,

∆NLO = g2A
4F 2

0

mπmN

4π
. (4.60)

Note that the parametric suppression of an extra pion exchange in the diagrams
of Fig.4.17 is mπmN/Λ2

χ whereas the one in the diagrams in Fig.4.4 and 4.5 is

m
1/2
π m

3/2
N /Λ2

χ. Hence the resummation of diagrams in Fig.4.17 is less important

There are also higher order self–energy diagrams for the dibaryon fields not
shown in paper which contribute to the residual dibaryon masses at N2LO, like
the ones involving three potential pion exchanges. In the study of the scattering
lengths of section 4.9 we will work up to NLO precision, and these contributions
will not be needed. This is, in principle, not the case for the nucleon–nucleon
scattering amplitudes up to N2LO. In this case, however, the sum of all the con-
tributions to the residual mass act as only one free parameter regardless. A sim-
ilar argumentation can be made for the dibaryon–nucleon vertices. When we
compare the nucleon–nucleon scattering amplitudes with experimental data in
section 4.8 we will chose to reshufle all matching contributions to the dibaryon–
nucleon vertices to the residual mass through field redefinitions of the dibaryon
fields. This way the couplings constants Ai will remain the same as in pNNEFT
while all the new dependences are carried by the residual masses.

Since the dibaryon residual masses are no longer small, but of the same order,
when compared to p, residual masses have to be kept in the dibaryon propaga-
tors. Hence we will use (4.16) rather than (4.18) as the dibaryon propagator. The
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LO amplitude for the pionless effective field theory is obtained from the diagram
in Fig.4.11 using the new dibaryon propagator

Aj,/πLO =
−4A2

j

δmj
+ i

A2

j
mNp

π

j = s, v. (4.61)

Note that the LO amplitude is of order O(1/m2
π) instead of O(1/mπΛχ) as in

pNNEFT, however since contributions to the S matrix are proportional to the
momentum the final size of the LO contributions to the observables (as well as
the NLO and N2LO ones) remains the same as in the high energy region. Note
also that both scale invariance and Wigner symmetry are lost in the low energy
region.

The form of the amplitude remains the same at NLO (only Ai and δmi
get

redefined). At N2LO (i.e. O(1/Λ2
χ)) a contribution corresponding to Fig.4.12b

arises

Ai,/π
N2LO

= −( E

4A2
i

)(Ai,/πLO)2 i = s, v. (4.62)

The form of the N2LO expression turns out to be valid also up to N3LO (i.e.
O(mπ/Λ3

χ), again onlyAi and δmi
get redefined) The sum of diagrams in Fig.4.14.

is no longer zero but the momentum dependence of the vertex involved makes
them beyond N3LO.

No contributions toAmix,/π or toA3D1,/π appear up to N2LO (the first diagram
of Fig.4.15.a contributes to Amix,/π at N3LO; this amplitude matches a straight-
forward expansion for p≪mπ of the pNNEFT mixing amplitude).

4.8 Comparison of the phase shifts with experimen-

tal data

4.8.1 The 1S0 channel

In this section we compare our results for the 1S0 channel with its corresponding
phase shift data. In order to compute the phase shift the amplitude has been
introduced in exp(2iδ) = 1 + ipmNA/2π. After expanding both sides in powers
of (mπ/Λχ)n the expressions for δLO, δNLO and, δN

2LO are obtained.
We will not display the results for δLO. At this order our approach does

not uniquely determine the phase shift in the high energy region. This can be
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A
NLO
s A

N2LO
s δ

NLO
ms

δ
N2LO
ms

δ
NLO,/π
ms

δ
N2LO,/π
ms

NLO 0.0291 −1.40 −3.90

N2LO 0.0361 0.0277 −13.7 −17.4 2.10 −1.89

Table 4.1: Fit values of the parameters for the 1S0 channel. The units of
dibaryon nucleon–vertices Ai are MeV−1/2, the residual masses δmi , MeV.

easily seen if the expression for the phase shift is written in terms of the real and
imaginary parts of the amplitude

δ = arctan( ImA
ReA) . (4.63)

Since our LO amplitude (4.38) has no real part, then δ = ±π/2. Continuity with
the low energy expression selects the plus sign.

As and δms
receive corrections in the matching from NNEFT to pNNEFT,

both at NLO and N2LO. If the whole expressions forAs and δms
were to be used

in the N2LO amplitude, higher order terms would be introduced. Therefore we
will differentiate betweenANLOs andAN

2LO
s as well as between δNLOms

and δN
2LO

ms
,

which we will consider as independent parameters. Recall that the expression
for the phase shift in the low energy region shares the same As as in the high
energy one, but has an independent δms

, which we will label δ /πms
. Because of this

shared parameter (As) we have made a common fit of the low and high energy
region phase shift at each order. The low energy region phase shift (calculated
in /πNNEFT) has been fitted to data in the 0-3MeV range and the high energy
region phase shift (calculated in pNNEFT) to data in the 3-50MeV. Results for
the 1S0 channel parameters are summarized in Table 4.1.

The phase shifts are plotted in Fig.4.18 (NLO) and Fig.4.19 (N2LO) versus
center–of–mass energy. The low energy region and the high energy region phase
shifts have been plotted in the 0-4MeV and 1-50MeV range respectively.

4.8.2 The 3S1–3D1 channel

In this section we analyze 3S1–3D1 channel. We compare the 3S1 and 3D1 phase
shifts to data as well as the mixing angle. The usual expression for the S-matrix
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Figure 4.18: Plot of the NLO expression for the 1S0 phase shift versus
center–of–mass energy. The blue line shows the Nijmegen data for the 1S0

phase shift, while the red and green line correspond to the high energy and
low energy expressions respectively. The fitting procedure is explained in
the text. Error bands correspond to ±( mπ

mN
)2 for p ≤mπ and to ±( p

mN
)2 for

p >mπ .
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Figure 4.19: Plot of the N2LO expression for the 1S0 phase shift versus
center–of–mass energy. As in the previous figure the blue line shows the
Nijmegen data for the 1S0 phase shift. The red line corresponds to the high
energy expression and the green one to the low energy one (which totally
overlaps the data). Error bands correspond to ±( mπ

mN
)3 for p ≤ mπ and to

±( p

mN
)3 for p >mπ .
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ANLO
v AN2LO

v δNLO
mv

δN
2LO

mv
δNLO, /π
mv

δN
2LO, /π

mv
B′v/Av

NLO 0.0305 12.14 8.30

N2LO 0.0431 0.0429 −9.29 −13.3 −23.0 19.9 −1.78 ⋅ 10−5

Table 4.2: Fit values of the parameters for the 3S1−3D1 channel, excluding
the N2LO 3S1 phase shift in the high energy region. The units of dibaryon
nucleon–vertices Ai are MeV−1/2, the residual masses δmi , MeV, and of
B′v/Av , MeV−2.

in this channel

S = 1+ipmN

2π
( Av Amix
Amix A3D1

) = ⎛⎝ e2iδ
(3S1)

cos(2ǫ) ieiδ
(3S1)+iδ(3D1)

sin(2ǫ)
ieiδ

(3S1)+iδ(3D1)

sin(2ǫ) e2iδ
(3D1)

cos(2ǫ)
⎞⎠ .

(4.64)
To obtain the phase shift expression at each order we expand both sides in pow-
ers (mπ/Λχ)n, as we did in the previous section, and solve the resulting system
to obtain δv,LO, δv,NLO and, δv,N

2LO; δ
3D1,NLO and, δ

3D1,N
2LO; ǫNLO and ǫN

2LO.
There is no ǫLO or δ

3D1,LO due to the fact that Amix and A3D1 start at NLO.

The fitting procedure for the NLO result is analogous to the one used for the
1S0 channel. For the N2LO one, several changes had to be introduced. A com-
mon fit to the low energy phase shift and to the mixing angle has been made,
whereas the high energy phase shift has been left out and fitted independently.
This is because all attempts to fit the high energy phase shift together with the
other two expressions failed. The N2LO pNNEFT phase shift fit delivers a value
for AN

2LO
v (Table 4.3) which is far away from the expected natural size. We

think this is the reason why we were unable to perform a successful common
fit: whereas the mixing angle and the low energy phase shift favor natural size
parameters, the high energy phase shift does not. This is a clear sign that our ap-
proach fails to converge in the 3S1–3D1 channel, we will comment on it further
in the next section. Note that the parameterB′v/Av only appears in the N2LO the
mixing angle. ǫNLO, δ

3D1,NLO and, δ
3D1,N

2LO do not contain free parameters.

The 3S1 phase shifts are plotted in Fig.4.20(NLO) and Fig.4.21(N2LO), the
mixing angle in Fig.4.22 and the 3D1 phase shift in Fig.4.23. All 3S1–3D1 chan-
nel plots are versus center–of–mass energy. The low energy region and high
energy region phase shifts have been plotted in the 0-4MeV and 1-50MeV range
respectively, the mixing angle and the 3D1 phase shift have been plotted in the
0-50MeV range. Results for the 3S1–3D1 channel parameters are summarized in
Table 4.2 and Table 4.3.
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Figure 4.20: Plot of the NLO expression for the 3S1 phase shift versus
center–of–mass energy. The blue line shows the Nijmegen data for the
3S1 phase shift, the red line corresponds to the high energy region expres-
sion and the green to the low energy region one. The fitting procedure is
explained in the text. Error bands correspond to ±( mπ

mN
)2 for p ≤ mπ and

to ±( p

mN
)2 for p >mπ .
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Figure 4.21: Plot of the N2LO expression for the 3S1 phase shift versus
center–of–mass energy. The blue curve is the Nijmegen data for the 3S1

phase shift, while red line corresponds to the high energy region expres-
sion. The curve for the low energy expression totally overlaps with data.
The fitting procedure is explained in the text. Error bands correspond to
±( mπ

mN
)3 for p ≤mπ and to ±( p

mN
)3 for p >mπ .
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Figure 4.22: Plot of the mixing angle versus center–of–mass energy. The
blue line shows the Nijmegen data, the green and red lines the NLO and
N2LO expression respectively. The NLO expression has no free parame-
ters. The free parameters of the N2LO expression have been fitted as ex-
plained in the text. The light green (light red) error bands correspond to
±( mπ

mN
)2(3) for p ≤mπ and to ±( p

mN
)2(3) for p >mπ .
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Figure 4.23: Plot of the 3D1 phase shift versus center–of–mass energy. The
blue line shows the Nijmegen data, the green and red lines the NLO and
N2LO expression respectively. Neither the NLO or the N2LO expression
have free parameters. The light green (light red) error bands correspond
to ±( mπ

mN
)2(3) for p ≤mπ and to ±( p

mN
)2(3) for p >mπ .
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A
NLO
v A

N2LO
v δ

NLO
mv

δ
N2LO
mv

0.0206 0.00996 35.3 3.04

Table 4.3: Fit values of the parameters delivered by the N2LO 3S1 phase
shift in the high energy region. The units of dibaryon nucleon–vertices Ai

are MeV−1/2, the residual masses δmi , MeV, and of B′v/Av , MeV−2.

ζ1 ζ2 ζ3

1S0

πδ′ms

mNA2
s

2π((s1+s2)/B0−8c1)

mNA2
s

g2A
32mNF2

0

( 1

A2
v
+ 2csv

gAAsAv
− 3

A2
s
) − g2A

8F2

0

(s1+s2)/B0−8c1
A2

s
+ ( g2AmN

2F2

0

)2 log(2)

128π2

3S1

πδ′mv

mNA2
v

2π(v1/B0−8c1)

mNA2
s

g2A
32mNF2

0

( 1

A2
s
+ 2csv

gAAsAv
− 3

A2
v
) − g2A

8F2

0

(v1/B0−8c1)

A2
v

+ 5( g2AmN

2F2

0

)2 6+13 log(2)

256π2

Table 4.4: Independent free parameters in terms of the effective theory low
energy constants.

4.9 Comparison of the scattering lengths with lattice

data

In section 4.7 we have computed the matching for the dibaryon residual mass
and dibaryon–nucleon vertices up to NLO. With these ingredients we can write
the expression for the scattering lengths up to order O (m3

π/Λχ)
a−1i =

πδLOmi

mNA
2
i

(1 −∆NLO) + πδNLOmi

mNA
2
i

, i = s(1S0) , v(3S1) . (4.65)

The expressions for the scattering lengths can be rewritten to collect all the pa-
rameters into three independent ones

a−1i =ζi1 (1 − g2AmN

16πF 2
0

mπ) + [ζi2 − g2AmN

32πF 2
0

ln(m2
π

µ2
)]m2

π + ζi3m
3
π

+
1

2
( g2AmN

16πF 2
0

)2m3
π ln(m2

π

µ2
) , i = s(1S0) , v(3S1) ,

(4.66)

the expression obtained is quite simple and emphasizes the mπ dependence.
The relation of the ζ parameters to the low energy constants of the EFT can be
found in Table 4.4. The expected sizes of these parameter are, ζi1 ∼ O (m2

π/Λχ),
ζi2 ∼ O (1/Λχ) and ζi3 ∼ O (1/Λ2

χ).
The first lattice QCD calculation of the nucleon–nucleon scattering lengths

was performed by Fukugita et al [107, 108] in the quenched approximation with



72 4 Nucleon–Nucleon Efective Field Theory with Dibaryon Fields

mπ(MeV ) a
1S0(fm) a

3S1(fm)
353.7 0.63 ± 0.50 0.63 ± 0.74

492.5 0.65 ± 0.18 0.41 ± 0.28

593 0.0 ± 0.5 −0.2 ± 1.3

390 0.118+0.109−0.126 0.052+0.18−0.24
Table 4.5: Lattice data point used to fit the scattering lengths. The first
three data points are from [110] and the fourth one from [111].

Wilson quark action. More recent studies using the quenched approximation
have been carried out by Aoki et al [109]. The NPLQCD collaboration has per-
formed unquenched calculations in mixed–action (domain wall–staggered) [110]
and anisotropic clover-quark action [111]. We fitted the lattice data of the NPLQCD
collaboration (see Table.4.5). Unfortunately all data points are above or close to
350MeV , a scale beyond which it is not clear that Chiral extrapolations for the
nucleon–nucleon system are still valid. Thus the obtained results have to be
taken with caution. We forced the expressions for the scattering lengths to re-
produce the experimental values at the physical pion mass, a

1S0 = −23.7 fm,
a

3S1 = 5.38 fm. This allows to solve one parameter as a function of the remain-
ing ones, we chose to solve ζi1. The remaining parameters have been obtained
by minimizing an augmented chi–square distribution [112] for each scattering
length. The augmented chi–square distribution is defined as the sum of the chi-
square function with a set of priors for every one of the free parameters to be
fitted,

χ2
aug = χ2

ai + χ
2
prior ,

χ2
ai =

1

n

n

∑
j=1

(ai(mπ,j) − aij)2
δ2
ai
j

, χ2
prior = 1

N

N

∑
k=1

(log ∥xk∥ − log ∥x̄k∥)2
log2Rk

, i =1 S0,
3 S1 ,

(4.67)

where aij and δai
j

stand for the value of scattering length and its uncertainity
at the pion mass mπ,j respectively. n is the total number of lattice data points.
Furthermore, xk refers to the free parameters, N being their total number. The
free parameters are, ζi2 at LO, and ζi2 and ζi3 at NLO. The prior is a Gaussian
weight distribution centered at ∥x̄k∥with and standard deviaton Rk. The values
of ∥x̄k∥ and Rk are obtained from naive dimensional analysis. For instance, if
the parameter xk is of order O(1), we would expect it to be in the range 0.1 <
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Figure 4.24: Plot of a
1S0(a3S1) in the left(right) hand side. The solid and

dashed lines correspond to the LO and NLO respectively. The triangu-

lar dot in the a
3S1 figure corresponds the physical value of the scattering

length, in the a
1S0 figure the physical point is out of scale.

∥xk∥ < 10, which translates to setting log(∥x̄k∥) = 0 and log(Rk) = 1 for the kth
parameter. We have taken logarithms in the prior functions to achieve equal
weights for the subranges 0.1 < ∥xk∥ < 1 and 1 < ∥xk∥ < 10. For ζi2 priors
are set to ζ̄i2 = 1

Λχ
and log (Rζi2) = 1, and for ζi3 to ζ̄i3 = 1

Λ2
χ

and log (Rζi3) =
1. The plots corresponding to the fits of the LO and NLO expressions of the
scattering lengths as a function of the quark mass are displayed in Fig.4.24. The
chi-squared per degree of freedom is defined as

χ2
ai,d.o.f =

1

n − 1 −N

n

∑
j=1

(ai(mπ,j) − aij)2
δ2
ai
j

, i =1 S0,
3 S1 . (4.68)

The values obtained for the parameters and the chi-squared per degree of free-
dom are collected in Table 4.6 and Table 4.7. The values obtained for ζs1 and ζi3,
i = s, v at NLO are on the limit of what we would consider natural size. This
could indicate that significant cancellations occur at the physical pion mass in
order to produce the observed values of the scattering lengths. Note that the
fine tunning increases with the precision of the expression used.

The mq–dependence of the scattering lengths has been studied previously
in [104, 113] using numerical solutions to the Lippmann–Schwinger equation
with potentials obtained from Weinberg’s power counting, and in [105, 99] in
the framework of BBSvK counting. All these papers were written before the
first unquenched lattice results appeared and hence do not use lattice data to fit
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LO χ2
d.o.f ζ1(MeV ) ζ2(MeV −1)

1S0 3.74 −126 0.67 ⋅ 10−3
3S1 0.91 −98 1.59 ⋅ 10−3

Table 4.6: LO scattering lengths fit parameters.

NLO χ2
d.o.f ζ1(MeV ) ζ2(MeV −1) ζ3(MeV −2)

1S0 2.4 −246 4.56 ⋅ 10−3 9.21 ⋅ 10−6
3S1 0.4 −155 3.83 ⋅ 10−3 10.1 ⋅ 10−6

Table 4.7: NLO scattering lengths fit parameters.

their unknown free parameters. In both approaches the behavior of the scatter-
ing length was studied for a suitable range of the unknown parameters. Special
attention was devoted to the extrapolations to the Chiral limit. A more recent
study can be found in [114] using the power counting of [100] and lattice data of
the NPLQCD collaboration. In the 1S0 channel our results in the Chiral limit in-
dicate that the scattering length remains negative, thus the system is unbounded,
coinciding with the predictions of mentioned previous works, albeit our value
seems slightly smaller. In the 3S1 channel our extrapolation of the scattering
length to the Chiral limit shows that it evolves from positive values at the physi-
cal pion mass to negative values, hence going from a bounded nucleon–nucleon
system to an unbounded one. This is opposite to the results in [104, 113], and
to those in [105, 99], for most of the parameter space, in which the scattering
length remains positive in the whole range from the Chiral limit to the physical
pion mass. Nevertheless, in [105, 99] a behavior similar to the one we have ob-
tained is observed in certain regions of the parameter space. In [114], the only
one of the pevious works on the mq–dependence of the scattering lengths that
has used lattice data, the 3S1 channel goes to negative values in the Chiral limit,
and overall presents a very similar results to ours.

4.10 Conclusions

We have constructed a Chiral effective field theory for the nucleon–nucleon sys-
tem which contains dibaryon fields as fundamental degrees of freedom. The
large scattering lengths in the 1S0 and the 3S1 channels force the dibaryon resid-
ual masses to be much smaller than the pion mass. We organize the calculation
in a series of effective theories, which are obtained by sequentially integrating
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out higher energy and momentum scales. We first integrate out energy scales of
the order of the pion mass. This leads to an effective theory with dibaryon and
nucleon fields, pNNEFT. The latter interact through non–local potentials.

We have showed that in the matching calculation of the residual mass certain
classes of diagrams involving potential pion exchanges in loops with radiation
pions can be summed up in the 3S1 channel. This is important because each of
these exchanges introduces a parametric suppression of only O(√mπ/mN) that
numerically turns out to be O(1). The resummation is possible because after ra-
diating a pion a nucleon–nucleon system in the 3S1 channel changes into the 1S0

channel, and in this channel the one pion exchange potential at high momentum
transfer becomes a contact interaction. We showed that by performing dibaryon
local field redefinitions we can get rid of the contact interaction, and hence the
contribution of all diagrams involving these potential pion exchanges must be
zero. We checked this cancellation by explicitly computing the diagrams and
adding them up. Unfortunately, in the 1S0 channel it has not been possible for
us to compute the contribution of an arbitrary number of potential pions in a
loop with a radiation pion. This is because after radiating a pion a nucleon–
nucleon system in the 1S0 channel changes into the 3S1 channel, and in this
channel the one pion exchange potential at high momentum transfer does not
reduce to a contact interaction anymore. However, similar arguments still apply
to the diagrams with only one potential pion, which should then add up to zero.
This is in contradiction with the results of [32, 84], and we have pointed out a
possible source of the discrepancy in section 4.4.2. It is very likely that in the 1S0

channel the perturbative series breaks down as in the 3S1 channel, which means
that it is possible that our expressions for a

1S0 are missing large contributions,
and hence, are unreliable.

For three momenta much smaller than the pion mass, it is convenient to fur-
ther integrate out three momenta of the order of pion mass, which leads to the

/πNNEFT. In this theory non–local potentials can be expanded in powers of p2

m2
π

and become local. Self energies can be expanded giving contributions to the
dibaryon residual mass as well as time derivative terms. The latter can be re-
absorbed by field redefinitions of the dibaryon fields. We have computed the
matching between /πNNEFT and pNNEFT of the dibaryon residual masses, and
the dibaryon–nucleon coupling Ai up to NLO.

We have calculated the nucleon–nucleon scattering amplitudes for energies
smaller than the pion mass in the 1S0 and the 3S1 −

3 D1 channels at N2LO. For
three momenta of the order of the pion mass, the scattering amplitudes are calcu-



76 4 Nucleon–Nucleon Efective Field Theory with Dibaryon Fields

lated in pNNEFT, for momenta of the orderO (m2
π/mn) in /πNNEFT. By splitting

the calculation in this way we can take advantage of the modern techniques of
the threshold expansions and dimensional regularization so that all integrals
only depend on a single scale [74, 95, 65]. There is no need to introduce a PDS
scheme [76]. The technical complexity of the N2LO calculation is similar to the
one in the KSW scheme [84], but our final expressions are simpler.

The numerical results for the phase shifts and mixing angle are also similar
to the ones obtained in the KSW approach. Hence a good description of the 1S0

channel is obtained, but for the 3S1−
3D1 channel our results also fail to describe

data. The 3S1 phase shift shows a good agreement with data up to center of
mass energies of 50MeV at NLO, but at N2LO the range of the agreement is
reduced, up to 20MeV. only, even when the high energy region of this channel
is fitted independently, as in the plot of Fig.4.21. The mixing angle poorly agrees
with data, but shows a marginal improvement from NLO to N2LO. The N2LO
mixing angle plot is significantly different from the one shown in [84], this is a
consequence of making a common fit of the 3S1 phase shift in the low energy
region and the mixing angle. For a different fitting approach with plot closer
to [84] see [33]. Comparison with data for the 3D1 phase shift it is never good.
Particularly worrying is the fact that for the 3S1 and the 3D1 phase shift the
N2LO calculation compares worse to data than the NLO one. The reasons of this
failure can be traced back to the iteration of the OPE potential , the first diagram
in Fig.4.13, which gives a very large contribution [84]. This may be interpreted
as an indication that pion exchanges must be iterated at all orders, as originally
proposed by Weinberg [22]. However, the removal of the cut-off in this approach
appears to require an infinite number of counterterms, one for each partial wave
[96, 97, 98] (see also [99]). A very recent proposal, which keeps the essentials of
KSW counting, consist in introducing a Pauli-Villars regularization for the pion
exchanges and staying at the regularized level [100]. This seems to produce
slightly better results, but it is unclear at the moment that, staying at regularized
level, this approach is superior to Weinberg’s one [83] (see [101, 102] for very
recent efforts on the renormalization of Weinberg’s approach).

We have given Chiral extrapolation formulas for 1/a1S0 and 1/a3S1 up to cor-
rections of order O (m3

π/Λ2
χ) depending on three independent free parameters.

In section 4.9 we carried out a fit of these expressions to lattice data from the
NPLQCD collaboration [110, 111]. The results in Fig.4.24, Table 4.6 and Table
4.7 show that our expressions for a

3S1 are much more compatible with lattice
data than those for a

1S0 , which could indicate that the missing, potentially large,
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contributions to a
1S0 previously mentioned do exist. Using this results to extrap-

olate the scattering lengths in the Chiral limit we obtain that a
1S0 keeps is nega-

tive sign, while a
3S1 changes from positive to negative. However, at this stage,

lattice data sets available are rather small, with relatively large pion masses, and
often computed using different approaches, making it difficult hold any strong
statement at this respect.





CHAPTER

5

CHIRAL PERTURBATION THEORY WITH A LIGHT
SCALAR FIELD

5.1 Introduction

Chiral Perturbation Theory (χPT), see Chapter 2, has become a standard tool for
the phenomenological description of QCD processes involving pseudo–Gold-
stone bosons at low–energy. Scattering amplitudes can be systematically calcu-
lated within this framework to a given order in p2 ∼ m2

π over Λ2
χ . However,

when pion scattering amplitudes are calculated in the isoscalar channel, a bad
convergence is observed, even at reasonably low–momenta. This has led some
authors to resum certain classes of diagrams, using a number of unitarization
techniques (see, for instance, [116, 117, 118, 119, 120]). Most of these approaches
improve considerably the description of data with respect to standard χPT, and
indicate that a scalar isospin zero resonance at relatively low–mass, the sigma,
exist. In fact the mass and width of the sigma resonance are nowadays claimed
to be known very accurately mσ = 441+16−8 MeV ,Γ/2 = 272+9−12.5MeV [121, 122]
(see also [123]).

Under the SU(3) perspective one may find surprising that the effective the-
ory contains kaons but not other states with similar masses, but different quan-
tum numbers, that can be equally excited in a collision at intermediate stages.
The relatively low–mass of the sigma resonance, with respect to the Chiral cut-
off, Λχ, and its proximity to the value of the kaon mass suggests that it may be
convenient to introduce it as an explicit degree of freedom in an extension of
χPT. It is in fact an old observation by Weinberg [124], that the explicit inclusion
of resonances in a Lagrangian generically improves perturbation theory.

We implement this observation in this chapter, in a Chiral effective theory
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framework that involves a dynamical singlet field together with the lowest pseu-
do–Goldstone bosons. We write down the most general SU(2)Chiral Lagrangian
including an isospin zero scalar field at order p4 and calculate a number of ob-
servables at this order. We show that for a large scalar mass, the effect of the
scalar reduces to just redefinitions of the low–energy constants, hence explicitly
demonstrating that our approach is compatible with standard χPT. However if
we count the mass of the scalar as order p2, namely of the same size as the pion
mass, the non-analytic pieces of our amplitudes differ from those of χPT. Fur-
thermore, the quark mass dependence of the observables is also different. We
compare this effective theory, which we call χPTS , versus standard χPT against
lattice data on mπ and Fπ [125] and show that at the current precision the lattice
data is unable to tell apart χPT from χPTS .

The present chapter is based in the work presented in Refs.[35, 36]

5.2 Lagrangian and power counting

Our aim is to construct an effective field theory containing pions and a singlet
scalar field as a degrees of freedom, that holds for processes involving only low–
energy pions as the asymptotic states

p ∼mπ(∼ 140MeV) ≲mS(∼ 440MeV)≪ Λχ. (5.1)

The structure of the effective Lagrangian will be independent of the underlying
mechanism of spontaneous Chiral symmetry breaking. It consists of an infinite
tower of Chiral invariant monomials combining pions and a singlet scalar field
with the generic appearance

Leff = ∑
(k,l,r)

L(k,l,r) , (5.2)

where L(k,l,r) contains k powers of derivatives, l powers of the scalar or pseu-
doscalar sources and finally r powers of the singlet field.

L(k,l,r) ∼ Λ4
χ ( pΛχ )

k+r (mq

Λχ
)l , (5.3)

being p a typical meson momentum. One possible manner to relate these scales
is to assume that p2 ∼ m2

π ∼ mqΛχ, like in standard χPT. Hence, in the Chiral
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counting L(k,l,r) is of order pk+r+2l. Notice that terms with k+r+l < 4 correspond
to relevant operators and, hence, their dimensionful constant may be tuned to a
scale smaller than the natural one Λχ, as it happens in standard χPT (Fπ ≪ Λχ).

The Lagrangian involving pions and scalar fields transforming as a singlet
under SU(2)R × SU(2)L, respecting Chiral symmetry, P and C invariance, has
been presented in the linear approximation in [126, 127] and up to quadratic
terms in [128]. For the time being, we will collect only the relevant terms neces-
sary for our purposes. The leading order (LO) consist in the standard Goldstone
boson Chiral Lagrangian, that we do not discuss further, a scalar Goldstone bo-
son interaction term, and the singlet field self-interaction.

5.2.1 Leading Lagrangian

Consider first the part of Leff containing only the singlet scalar field. In the ab-
sence of any symmetry hint we are forced to write the most general polynomial
functional

LS = 1

2
∂µS∂

µS −
1

2
m̊2
SSS − λ1S −

λ3

3!
S3
−
λ4

4!
S4
+⋯ (5.4)

where the dots indicate terms suppressed by powers of 1/Λχ. Suppose that
we deal with the Chiral limit. At LO λ1 must be set to zero in order to avoid
mixing of S with the vacuum, and at higher orders it must be adjusted for the
same purpose. The mass and the coupling constants above are functions of the
small scale m̊S and the large scale Λχ, (m̊2

S ≪ Λχ). Their natural values would
be λ3 ∼ O(Λχ) and λ4 ∼ O(1). In that case, the scalar sector above becomes
strongly coupled. However, strongly coupled scalar theories in four dimensions
are believed to be trivial [132, 133]. Their exact correlation functions factorize ac-
cording to Wick’s theorem and consequently they behave as if the theory were
non-interacting. A practical way of taking this fact into account is just setting
λ3 = λ4 = 0, which we will do in the following. When the interactions of the
scalar with the pseudo-Goldstone bosons are taken into account, small (m̊2

S/Λ2
χ

suppressed) but non-vanishing values of λ3 and λ4 are required to ensure per-
turbative renormalization of the whole Leff .

The purely pseudo–Goldstone sector is given by the usual χPT LO lagrangian
of Eq.(2.43). The pion–scalar Lagrangian is contructed with the building blocks
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of Chapter 2 for the pions and powers of the scalar field

L(2) = (F 2
0

4
+ F0c1dS + c2dS

2
+⋯)Tr [DµUD

µU †]
+(F 2

0

4
+ F0c1mS + c2mS

2
+⋯)Tr [χ†U + χU †] (5.5)

where the ellipsis stand for higher order terms involving more powers of the
singlet field (or derivatives on them), which are suppressed by powers of 1/Λχ.

At this point a small digression is in order; notice the peculiarity of (5.5) with
respect to the usual Chiral expansion. At this order, both expansions can be cast
in the form,

L ∼∑
k

bk(Λχ, S)O(k) (5.6)

O
(k) being an operator of order k including only the pseudo-Goldstone bosons

and bk(Λχ, S) its corresponding “Wilson coefficient”, that can depend on the
singlet field if one considers the theory with the scalar field inclusion. While
in the standard theory the power counting is given entirely by the operator, i.e.
bk(Λχ) ∼ O(Λ4−k

χ ), in the extended version one also has to take into account
that the Wilson coefficients themselves have a power expansion in S/Λχ. At
higher orders operators containing the derivatives of the scalar field must also
be included.

Before closing this section we would like to remark that even if we have kept
for F0 and B0 the same names as in χPT, they are now parameters of a different
theory and, hence, their values are expected to differ from those in χPT.

5.2.2 Comparison with the linear-σ model

Hitherto we have included in a dynamical fashion a scalar particle interacting
with pseudo-Goldstone bosons. One may wonder if there is any relation be-
tween the effective theory just introduced and the old linear sigma model [134]
(see [135] for a review), which we discuss next. The starting point for the con-
struction of the linear-σ model is an O(4) invariant action. The global O(4) sym-
metry is spontaneously broken down to O(3) because the scalar field develops
a non-zero vacuum expectation value v.

The Lagrangian reads

Lσ = 1

2
(∂µσ∂µσ + ∂µϕ⃗∂µϕ⃗) − λ

4
(σ2
+ ϕ⃗2

− v2)2 , (5.7)
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where ϕ⃗ is an isotriplet pseudoscalar field, usually identified with the pion, and
σ is an isosinglet scalar field that, after the shift σ → σ + v is usually identified
with the sigma resonance. We do not display the part of the model containing
nucleons because it has no relevance for our discussion. Since O(4) ≅ SU(2) ×
SU(2) for group elements close to the identity, the model transforms correctly
under the SU(2)R ×SU(2)L Chiral symmetry of two-flavor QCD with massless
quarks. To see this explicitly we make the change Σ = σ1 − iτ⃗ ⋅ ϕ⃗, being τ⃗ the
Pauli matrices. Then (5.7) can be written as

Lσ = 1

4
Tr [∂µΣ∂µΣ†] − λ

16
(Tr [Σ†Σ] − 2v2)2 , (5.8)

that explicitly exhibits the desired symmetry (2.13), if we transform Σ
G→ gRΣ g−1L

[115]. The traditional identification of the ϕ⃗ fields with the pions and the σ field
(after the shift) with the sigma resonance, which is fine concerning the transfor-
mations under the unbroken subgroup O(3) ≅ SU(2), becomes problematic if
one wishes to implement the non-linear SU(2)R × SU(2)L symmetry that the
model retains after the shift σ → σ + v is performed. In order to make the non-
linear SU(2)R × SU(2)L symmetry manifest in the Lagrangian above and keep
the transformations of the Goldstone bosons in the standard way [17, 16], as we
have done in the previous section, it is convenient to perform a polar decompo-
sition of Σ, Σ = (v + S)U , with U being a unitary matrix collecting the phases,
to be identified with the U appearing in (2.17), and S a real scalar field, to be
identified with our singlet field above. We remark that S must not be mistaken
by the σ field in the original variables of the linear sigma model. The symmetry
transformations of the fields S and U are the same as in (2.13). This change of
variables leads to

Lσ = (v2
4
+
v

2
S +

1

4
S2)Tr [DµUD

µU †]+ 1
2
∂µS∂

µS −λv2 (S2
+
S3

v
+
S4

4v2
) . (5.9)

The terms with covariant derivatives above have the very same functional form
as the terms with derivatives of (5.5), with the identifications v = F0, c1d = 1/2
and c2d = 1/4. However, the terms with no derivatives, the potential, are set to
zero (or, at higher orders, to small values uncorrelated to the rest of the parame-
ters) in χPTS , except for the mass term, for which m̊2

S = 2λv2. This is because the
underlying mechanism of Chiral symmetry breaking is assumed to take place at
the scale Λχ, and hence it must not be described in the effective theory.

Since pions are not massless in nature, a small explicit breaking of the O(4)
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symmetry had to be introduced. This was traditionally done by adding a term
δLσ =Hσ. In terms of the new variables this term reads:

δLσ =Hσ = H
4

Tr [Σ +Σ†] = H
4
(v + S)Tr [U +U †] . (5.10)

Hence, it has exactly the same functional form as the terms with no derivatives
in (5.5), once χ is set to 2B0m̂1, with the identifications H = 2F0B0m̂, c1m = 1/4
and c2m = 0.

In summary, the Lagrangian of χPTS at LO differs from the one of the linear
sigma model only in two respects: (i) the self-interactions of the scalar field S

are set to zero (or, at higher orders, to small values uncorrelated to the rest of
the parameters), and (ii) it has four additional free parameters controlling the
interaction of the scalar field S with the pions: c1d, c2d, c1m, c2m.

5.2.3 Chiral symmetry constraints

To envisage the effects of explicit Chiral symmetry breaking on the dynamics
of the singlet field we set U to the vacuum configuration (U = 1). The terms
proportional to the quark masses in (5.5) induce new terms in the Lagrangian of
S, that can be reshuffled into the coefficients of (5.4). For the first two terms one
finds explicitly

λ1 → λ1 − 8F0c1mB0m̂ , m̊2
S →m2

S = m̊2
S − 16c2mB0m̂ . (5.11)

As a consequence the singlet field is brought out of its minimum in the Chiral
limit by terms proportional to m̂. Hence, the direct consequence of the inclu-
sion of non-vanishing quark masses results in a new contribution to the singlet-
vacuum mixing. The new scalar field describing the first excitation with respect
to the vacuum may be obtained by carrying out the following shift:

S → S + F0S0 with S0 = 8c1mB0m̂

m2
S

−
λ1

m2
SF0

. (5.12)



5.2 Lagrangian and power counting 85

After this shift, and upon separating the vacuum contribution, the original La-
grangian (5.5) keeps essentially the same form,

L(2) = (F 2
0

4
r0d + F0r1dS + r2dS

2
+⋯)Tr [DµUD

µU †]+
(F 2

0

4
r0m + F0r1mS + r2mS

2
+⋯)(Tr [χ†U + χU †] − Tr [χ†

+ χ]) , (5.13)

provided we redefine the low–energy constants as,

r0d = 1 + 4c1dS0 + 4c2dS
2
0 + . . . , r0m = 1 + 4c1mS0 + 4c2mS

2
0 + . . . ,

r1d = c1d + 2c2dS0 + . . . , r1m = c1m + 2c2mS0 + . . . ,

r2d = c2d + . . . , r2m = c2m + . . . .
(5.14)

In the previous expression all the terms explicitly depicted are O(1) quantities
and ellipsis stand for subleading contributions, cnxS

(n−1)
0 ∼ (F0/Λχ)n−2, for n > 2

(x = d,m).

There is a subtle point that must be addressed before going on: for generic
values of the low-energy constants the shift (5.12) breaks Chiral symmetry. This
is most apparent if we lift the scalar and pseudoscalar sources from its vacuum
values to arbitrary ones. Namely, if the original scalar field in (5.4) is a singlet
under Chiral symmetry, the scalar field after the shift (5.12) is not. This is so for
any value of the parameters, except for those that fulfill

λ1 = c1mm̊
2
SF0

2c2m
. (5.15)

If we choose λ1 as above, the shift becomes independent of the quark masses
(S0 = −c1m/2c2m), and hence the scalar field after the shift is still a scalar under
Chiral symmetry, as it should. Moreover, for this choice, r1m = 0, and r0m and
r0d can be set to 1 by a redefinition of B0 and F0 respectively. The net result is
equivalent to choosing λ1 = c1m = 0 in (5.4) and (5.5). This has in fact a simple
interpretation. If we impose to our original scalar field to be a singlet under
Chiral symmetry for any value of the external sources and not to mix with the
vacuum, then the only solution at tree level is λ1 = c1m = 0. We shall adopt this
option from now on. At higher orders these two parameters must be tuned so
that no mixing with the vacuum occurs at any given order. Note finally that the
value c1m = 0 is incompatible with the linear sigma model one c1m = 1/4.
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5.2.4 Next-to-leading Lagrangian

In computing loop graphs, we will encounter ultraviolet divergences. These will
be regularized within the same dimensional regularization scheme as used in
[13], and the elimination of the divergences proceeds through suitable counter-
terms. Like in [13] we will deal with contributions up to including terms of order
p4. Since the singlet fields will only enter in internal propagators, the counter-
term Lagrangian we need only involves pions, and hence it has the same func-
tional form as the one in χPT. The coefficients, however, receive extra contribu-
tions due to the appearance of the cix (i = 1,2, x = d,m) bare parameters. In
addition, unlike standard χPT, now F0 and B0 need to be renormalized. In or-
der to take this into account we chose to include explicitly the corresponding
counter-terms below. Using the SUL(2) × SUR(2) formalism [52], rather than
the O(4) one, [13], we have

L(4) =1
4
ℓ1Tr [DµUD

µU †]2 + 1

4
ℓ2Tr [DνUD

µU †]Tr [DνUDµU
†]

+
1

16
ℓ3Tr [χ†U + χU †]2 + 1

4
ℓ4Tr [DµU †Dµχ +D

µχ†DµU]
+Z1m̊

2
STr [χ†U + χU †] +Z2m̊

2
STr [DµUD

µU †]
+ f2p ◻ S ◻ S + d2m∂µS∂

µSTr [χ†U + χU †] + b2mS2Tr [χ†U + χU †]2
+ a2mS

2Tr [χ†χ] + e2mS2
R[det(χ)] . . . .

(5.16)

In order to avoid confusion with the values that the low–energy constants take
in χPT and χPTS , we shall denote the former li, i = 1, . . . ,4 and the latter ℓi,
i = 1, . . . ,4. The relations between li, lri and l̄i, i = 1, . . . ,4 that appear in the paper
are the standard ones in χPT [13]. In this work ℓ1 and ℓ2 will not be necessary for
renormalization. For the observables that we will consider, the pole at d = 4 is
removed by the following two kinds of renormalization constants which occur
in the Lagrangian L(4)

ℓi ∶= ℓri + γiλ , (i = 3,4) Zj ∶= Zrj + Γjλ ,
f2p ∶= fr2p + Γfλ , djm ∶= drjm +∆jλ , (j = 1 ,2) , (5.17)

with λ = 1

16π2
( 1

d − 4
−
1

2
[ln 4π + Γ′(1) + 1]) ,

where combination d1m ≡ 32b2m + 2a2m + e2m is indistinguishable in the observ-
ables that we will consider, and is renormalized as a whole. The first kind of
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(a) (b) (c) (d)
Figure 5.1: Self energy diagrams. Solid lines denote the scalar and the
dotted ones pions. Diagram (a) corresponds to NLO counterterms.

renormalization constants, γi, are a simple redefinition of the divergent part in
the standard monomials of χPT

γ3 = −1
2
+32c2m (c2m − c2d)−8c21d (1 − 4c2m) , γ4 = 2+4c21d (1 − 8c2m)+32c2dc2m .

(5.18)
While the second, absent in χPT, are entirely due to the interaction of pions with
the singlet field. The first two sources are proportional to B0 and other to F0

respectively

Γ1 = −2 (c21d − c2d + c2m) , Γ2 = c21d − c2d ,
Γf = 12c21d

F 2
0

, ∆1 = 24

F 2
0

(c2m − c2d + 6c21d) , ∆2 = −9c
2
1d

F 2
0

.
(5.19)

Recall that, like F0 and B0, ℓr3 and ℓr4 are now parameters of a theory different
form χPT and, hence, their values are expected to differ from the ones in the lat-
ter. Note also that our approach differs of that in [126] in the respect that pions
and the singlet field are both dynamical in the same energy range and thus both
will be allowed to run inside loops. In that respect, any estimate of the low–
energy constants by matching the observables derived from χPTS with those
obtained from a Lagrangian of resonance exchange as in [126] should keep the
singlet field S in the latter as a dynamical low–energy degree of freedom. Loop
effects of scalar resonances coupled to pseudo-Goldstone bosons have been stud-
ied in [128, 129, 130, 131]

5.3 The axial-vector two-point function

We are now in the position to perform a complete NLO analysis of the pion mass
and decay constant including the radiative correction due to the singlet field
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(a) (b) (c) (d)
Figure 5.2: Diagrams contributing to the decay constant. Solid lines denote
the scalar and the dotted ones pions. Diagram (a) corresponds to NLO
counterterms.

and obtain the first modification to the standard analysis. In order to calculate
them we focus in the sequel in the axial-vector two-point Green function. The
first quantity will be defined through the position of the pole in the two-point
function while the second one can be obtained directly from its residue.

At the Born level the expressions for the pion mass and decay constant do
not differ from those of the standard χPT theory while at NLO corrections are
slightly more cumbersome. The diagrams contributing atO(p4) tom2

PS and FPS

are represented in Fig.5.1 and in Fig.5.2 respectively. In both figures the diagram
(a) is the usual couterterm contribution, and the diagram (b) the usual tadpole
contribution, already encounter in the standard theory. Diagrams (c) and (d) are
new and appear because of the singlet field.

We cast the expressions for the mass and decay constant as

m2
PS =2B0m̂ +Um + Pm +O(p6) ,
FPS =F0 (1 +UF + PF +O(p6)) . (5.20)

They contain contributions related to the unitarity cut (Um, UF ) in the s-channel,
Fig.5.1d, and a polynomial term in s (=m2

π)which includes logarithms (Pm, PF ).
We have, for the mass

Um = −4c
2
1d

F 2
0

J̄(m2
π,m

2
S ;m

2
π) (m2

S − 2m
2
π)2 ,

Pm = 4m4
π

F 2
0

(µS − µπ
∆πS

)(c21dm2
S − 4c2mΓ1∆πS) + m4

π

16π2F 2
0

ℓ̄3γ3 +
m2
πm̊

2
S

8π2F 2
0

Z̄1Γ1 .

(5.21)
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and for the decay constant

UF = 2c21d
F 2
0m

2
π

J̄(m2
π,m

2
S ;m

2
π)(2m2

π −m
2
S

4m2
π −m

2
S

)(14m4
π − 15m

2
πm

2
S + 3m

4
S) ,

PF = c21d
8π2F 2

0

(m2
S − 2m

2
π)2

4m2
π −m

2
S

+
4m2

π

F 2
0

(µπ − µS
∆πS

)⎛⎝
c21d (m2

S − 2m
2
π)2(4m2

π −m
2
S
) + 4c2mΓ2∆πS

⎞⎠
+

m2
π

32π2F 2
0

γ4ℓ̄4 +
m̊2
S

8π2F 2
0

Z̄2Γ2 .

(5.22)

The functions J̄ and µa (a = π ,S) are displayed in the Appendix E. In addition
we have used the scale independent quantities ℓ̄i and Z̄j , that are defined as
follows:

ℓri = γi

32π2
[ℓ̄i + ln(m2

π

Λ2
)] (i = 3,4) , Zrj = Γj

32π2
[Z̄j + ln(m2

S

Λ2
)] (j = 1,2) ,(5.23)

where ℓ̄i constants are in χPTS the equivalent of the l̄i in χPT, and Λ is the renor-
malization scale.

Both quantities in (5.20) have the following virtues that constitute non-trivial
tests on their correctness:

1. Despite their appearance, they are finite in the Chiral limit, m̂ → 0. More
explicitly, in this limit the pion mass vanishes, as it should, while the decay
constant reads,

FPS = F0 (1 + m̊2
S

8F 2
0 π

2
[Z̄2Γ2 +

1

2
c21d]) . (5.24)

2. Setting cix → 0 (x =m,d) in (5.20) they reduce to their standard χPT values

m2
PS χPT = 2B0m̂(1 − 1

16π2F 2
0

B0m̂l̄3) , FPS χPT = F0 (1 + 1

8π2F 2
0

B0m̂l̄4) .
(5.25)

To conclude this section we integrate out the singlet field. In the infrared
limit, m2

π ∼ p2 ≪ m̊2
S , χPTS has to reduce to χPT, where the only dynamical

degrees of freedom are the pions [13]. In oder to do so we keep m̊2
S fixed and

expand the above observables around mπ ∼ 0. At NLO order in this expansion
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(a) (b) (c)
Figure 5.3: Diagrams contributing to the scalar field self–energy. Solid
lines denote the scalar and the dotted ones pions.

we indeed recover (5.25) after the identification

l̄3 = − 2ℓ̄3γ3 − 32Γ1 log(m2
π

m̊2
S

) c2m − 4

3
c21d (1 + 12c2m)

l̄4 =1
2
ℓ̄4γ4 − 16Γ2 log(m2

π

m̊2
S

) c2m + c21d [1 − 8c2m + 2 log(m2
π

m̊2
S

)] (5.26)

5.4 Sigma mass and decay width

We can compute the scalar self–energy to one loop, and identify its pole as the
mass of the sigma resonance at NLO. The diagrams contributing to the scalar
self energy are shown in Fig.5.3. The sigma mass at NLO reads

m2
S,NLO =m2

S −
3c21dm

4
S f̄2p

8π2F 2
0

−
3m4

πd̄1m

4π2F 2
0

(c2m − c2d + 6c21d) + 9c21dm
2
Sm

2
πd̄2m

4π2F 2
0

−
6c21d
F 2
0

J̄(m2
π,m

2
π;m

2
S) (m2

S − 2m
2
π)2 ,

(5.27)

where we have defined the scale independent quantities

fr2p = Γf

32π2
[f̄2p + ln(m2

π

Λ2
)] , drim = ∆i

32π2
[d̄im + ln(m2

π

Λ2
)] , (i = 1,2) , (5.28)

where Λ is the renormalization scale.
In χPTS it is possible to compute the sigma decay width, a calculation that is

not possible within standard χPT, unless it is supplemented by some unitariza-
tion technique. The LO expression for the sigma decay width reads:

Γ

2
= 3c21d
8πF 2

0mS

¿ÁÁÀ1 −
4m2

π

m2
S

(m2
S − 2m

2
π)2 . (5.29)
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The behavior of the sigma pole as a function of the quark mass has been studied
in [136, 137]. Our main difference with these articles is that we only have one
polein s, in the positive complex half–plane, whereas in [136, 137] there is a pole
in each of complex half–planes. This is due to the use of the power counting and
perturbation theory in order to find the pole in our approach. In [136] the pole
is shown to reach the real axis below π–π threshold, while from Eq.(5.29) our
theory predicts that the pole reaches the real axis just on threshold. In Fig.2 from
[136] value of the square of the sigma mass was shown to branch, such behavior
is a consequence of the two poles in the sigma mass, and is not reproduced in
our expressions because we always have a single pole.

5.5 Pion-pion scattering lengths

(a) (b)
Figure 5.4: Diagrams contributing to the scattering lengths. Solid lines
denote the scalar and the dotted ones pions.

Let us next consider the π − π scattering lengths. The expressions for these
quantities will be different from those computed using χPT already at LO due
to the presence of new diagrams with a scalar particle in the intermediate states.
The diagrams contributing to the scattering amplitudes are depicted in Fig.5.4,
and the explicit expressions for the scattering lengths at LO are given by

a00 = m2
π

πF 2
0

( 7

32
−
3

2

m2
π

4m2
π −m

2
S

c21d +
m2
π

m2
S

c21d) ,
a20 = −

m2
π

πF 2
0

( 1

16
−
m2
π

m2
S

c21d) . (5.30)

By using the physical quantities for FPS ,mPS and taking specific values for
the mass and width of the sigma resonance from [121]

Fπ = 92.419MeV , mπ,ph = 139.57MeV , mS, CCL = 441.2MeV , ΓCCL/2 = 272 ,
(5.31)
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we obtain from (5.29)
c21d = 0.457 . (5.32)

Now, inputing all this information into (5.30) we can compute the values of the
scattering lengths. The results, displayed in Table 5.1, show that, for a00, χPTS
overshoots the experimental value by roughly the same amount than LO χPT
undershoots it, whereas for a20 χPTS is roughly a factor of three off the exper-
imental value, namely much worse than LO χPT, which provides a number
pretty close to it already at LO. The mismatch in a20 may be understood as fol-
lows. In the decoupling limit (m̊2

S ≫m2
π, p2) this contribution gives

Fig.5.4 b = −1
2
c21dF

2
0 ⟨DµUD

µU †⟩ 1

− ◻ −m2
S

⟨DµUD
µU †⟩→ c21d

F 2
0

2m̊2
S

⟨DµUD
µU †⟩2 ,

(5.33)
i.e. it reduces to a contact–term which is proportional to l1 in χPT. By direct
identification one finds the value of the χPT constant in terms of the χPTS pa-
rameters

l̄LO1 = 192π2F
2
0 c

2
1d

m̊2
S

. (5.34)

Note that the usual 4π suppression factors coming from loop integrals are absent
in the tree level calculation above. It is easy to check that the last operator in
(5.33) reproduces the scattering lengths (5.30) in the decoupling limit

a00 = m2
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πF 2
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32
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2
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π

m̊2
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c21d) , a20 = − m
2
π

πF 2
0

( 1

16
−
m2
π

m̊2
S

c21d) . (5.35)

Using (5.31) leads to l̄LO1 ∼ 38, roughly 100 times bigger and with opposite sign
than the standard NLO value for this quantity in χPT, l̄1 ∼ −1.8, [138]. This indi-
cates that a large negative value is expected for ℓ1, and, consequently, that NLO
contributions are going to be large, at least the ones related to the ℓ1 operator.

5.6 Matching with lattice data: the pion mass and de-

cay constant

The expressions for the pion mass and decay constant (5.20) depend on several
low–energy constants not constrained by Chiral symmetry, ℓr3 , ℓ

r
4 , c1d , c2y (y =

d,m) in addition to the quark masses and the bare parameters F0, B0, m̊2
S . At

this point, and for fitting purposes, the finite part of the counterterms Zr1,2 can
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a00 a20

Exp.(stat)(syst) 0.2210(47)(40) −0.0429(44)(28)
Beyond NLO χPT 0.220 ± 0.005 −0.0444 ± 0.0010

χPT, LO 0.159 −0.0454

χPT, NLO 0.228 −0.0405

χPTS , LO 0.275 −0.0121

χPTS , LO+ℓ1 0.210 −0.0296

Linear sigma model 0.696 −0.0404

Table 5.1: Values obtained for the scattering lengths from χPT, χPTS and
the linear sigma model (bottom panel). LO expressions are fixed by the
pion mass and decay constant for χPT, plus the sigma resonance mass for
the linear sigma model, plus the sigma resonance width for χPTS . NLO
χPT values are obtained by fitting l̄1 + 2l̄2 and l̄3 to the lattice data of ref.
[139]. LO+ℓ1 χPTS is obtained by fitting ℓ1 and c2m to the same lattice data.
In the central panel we show theoretical results that go beyond NLO χ PT
from Ref.[138]. In the upper panel we show the values of the scattering
lengths extracted from experimental data [140].

be absorbed into F0, B0. Then, we have eight independent parameters at our
disposal at NLO.

Lattice QCD offers a new arena for determining the low–energy constants.
Unlike physical experiments, lattice calculations use different unphysical quark
masses, providing for each point what can be considered as an uncorrelated
experimental datum with Gaussian errors. We will use the lattice data based on
maximally nf = 2 twisted fermions to fit the low–energy constants [125]. More
precisely the data ensembles labeled as A1– A4, B1– B6, C1– C4, D1 and D2 in
the Appendix C of that reference. Both finite volume effects and discretization
errors are small in the data sets we use, and will be ignored in the following. We
will also use in our analysis a single lattice scale r0 = 0.446 fm for all data sets as
a simplification, which is justified because its value varies very little from one
data set to another.

Given the limited quantity and quality of the available data, the number of
free parameters is too large to expect a brute force best fit to provide sensible
values for all of them. We have rather used a general three–fold strategy:

1. We identified FPS (5.20) with its physical value at the physical pion mass
(5.31). This allows to write F0 as a function of the remaining parameters.
This determination is done perturbatively.
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We have used the same procedure to fix the bare scalar mass through (5.11):
one imposes to the tree level scalar mass to take its physical value (5.20).

2. The c1d parameter appears in our expressions always squared, hence we
will use c21d as the free parameter. As we have seen its value can be ex-
tracted through the sigma decay width, (5.32).

3. For each point in the c2x (x = d,m) parameter-space we fitted the lattice
data minimizing an augmented chi-square distribution that includes both
observables in (5.20) [112]. The augmented chi-square distribution is de-
fined as the sum of the chi-square functions for each observable together
with a set of priors for every one of the free parameters to be fitted

χ2
aug = χ2

m2

PS
+ χ2

FPS
+ χ2

prior ,

χ2
g = 1

n

n

∑
i

(g(m̂i) − gi)2
δ2gi

, χ2
prior = 1

N

N

∑
i

(logxi − log ∥x̄i∥)2
log2Ri

,
(5.36)

where g stands either for mPS or FPS and gi for the corresponding lattice
data at the quark mass m̂i. Furthermore, xi refer to the fitted parametersN
being their total number. At NLO N = 3 and xi = {B0/(2600MeV) , ℓr3 , ℓr4}.
The prior is a Gaussian weight distribution centered at ∥x̄i∥with and stan-
dard deviaton Ri. The prior information on the low–energy constants is
obtained from naive dimensional analysis. For instance, if the parameter
xk is of order O(1), we expect it to be in the range 0.1 < ∥xk∥ < 10, which
translates to setting log(∥x̄k∥) = 0 and log(Rk) = 1 for the kth parameter.
We have taken logarithms in the prior functions to achieve equal weights
for the subranges 0.1 < ∥xk∥ < 1 and 1 < ∥xk∥ < 10.

Within the previous outlined procedure we have fitted the expressions for
the observables m2

PS and FPS, (5.20), to the full range of available quark masses
mq , the MS running mass at the scale µ = 2GeV. Throughout this section we
have used Λ = 770MeV as the renormalization scale value. The chi-square per
degree of freedom, χ2

d.o.f is

χ2
d.o.f =

nχ2
m2

PS

+ nχ2
FPS

2n − 1 −N ′
, (5.37)

where N ′ is the number of free parameters, including the fitted and scanned
ones. Thus for the NLO fit N ′ = 5.
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5.6.1 χPT results

Before we move ahead with the χPTS case, and for comparison purposes, we
present the outputs we obtain for χPT. From the previous steps in the fitting
procedure we only make use of the first to fix the physical point of FPS and the
third to introduce the priors to the corresponding parameters.

Born approximation

In this case the bare parameter F0 is fixed by the physical decay constant F0 =
92.419MeV and only B0 is a free parameter, obtaining

B0 = 2250.4MeV , (5.38)

with χ2
d.o.f = 1560

30
.

Next-to-leading results

For χPT the NLO expressions in (5.20) have three free parameters, B0, lr3, and lr4
while F0 has been fixed perturbatively at the physical point. The fitting proce-
dure leads to

B0 = 2499(10)MeV , lr3 = 0.91(6) × 10−3 , lr4 = 7.13(5) × 10−3 . (5.39)

Using these values on the constraints imposed in the fist step of the fitting pro-
cedure we obtain F0

F0 = 86.36(1)MeV , (5.40)

with the final value χ2
d.o.f = 16.9

28
.

The results, together with the lattice data, are plotted in dashed lines in
Fig.5.6. The adjustment for the pion mass to the lattice points is quite remark-
able, with only a small deviation for large values of the quark masses. The pion
decay constant fit also reaches a good agreement with the lattice data.

The results for the low–energy constants, (5.39), are compatible with stan-
dard values in the literature

[13] l̄3 = 2.9 ± 2.4 , [138] l̄4 = 4.4 ± 0.2 .
eq (5.39) l̄3 = 3.99 ± 0.04 , l̄4 = 4.54 ± 0.01 .

(5.41)

These estimates are in reasonable agreement with those obtained by resonance
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saturation [126]
l̄3 = 2.9 ± 2.4 , l̄4 = 4.3 ± 0.9 . (5.42)

The determination of the uncertainties in this section has been performed as
follows. We assume each data point corresponds to Gaussian distribution with
expected value and variance defined by the data point value and uncertainty
respectively, then we generate random data sets according to these distributions
and perform a fit for each one. The final parameters are obtained from the av-
erage of the results of these fits, while the uncertainty is obtained from the vari-
ance. Comparing our results with those from Table 5.1 in [125] we observe that
F0, l̄4 and B0 values are within one sigma while l̄3 is within two sigmas. Note
that our uncertainty analysis does not include systematic uncertainties because
we have used only one set of data ensembles and we do not include finite size
corrections. Statistical uncertainties in our fit are significantly smaller than those
of [125]. This is because we have taken r0 as a fix value rather than as an addi-
tional free parameter. If we estimate the uncertainty of r0 as the one given in
[125] and we extrapolate the effect to our results we obtain uncertainties in the
same range as in [125]. Furthermore, since m2

PS depends quadratically on r0

while FPS only linearly, our F0 and l̄4 should be in better agreement with those
of [125] than our B0 and l̄3, as it is the case.

The estimation of uncertainties above is not directly applicable to the follow-
ing section because for the fit to χ PTS expressions some of the parameters will
be obtained by scanning a suitable range. In any case, we are not interested
at this point in an accurate determination of the χPTS parameters but rather in
finding out if parameter sets of this theory exists which are both compatible with
lattice data and with physical observables.

5.6.2 χPTS results

The LO χPTS expressions are identical to those of standard χPT, therefore the
same analysis as in the previous section applies. At NLO appear four extra free
parameters to fit c2d , c2m , ℓr3 and ℓr4 and the non-analytical dependence on the
light quark masses is greatly augmented (5.20).

The relative large number of free parameters appearing NLO means there is
no unique solution for the best fit. Indeed, if we look at the contour level plot
of the χ2

d.o.f corresponding to the (c2d, c2m) region scanned, shown in Fig.5.5,
we can see regions of parameter sets with χ2

d.o.f smaller than one. Thus any
parameter set on those regions has to be considered a valid solution. Keeping
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Figure 5.5: χ2
d.o.f swept over a (c2d, c2m) grid corresponding to fits to NLO

order expressions. The fits are forced to reproduce the pion decay constant,
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this in mind, the following are the results for the best fit obtained, which have
been used for Fig.5.6,

B0 = 1680.5MeV , c2d = 1.21 , c2m = −0.083 , (5.43)

ℓr3 = −1.12 × 10−3 , ℓr4 = 6.94 × 10−3 .

Using these in (5.11) and (5.20) we obtain the values of the remaining parameters

F0 = 101.2MeV , m̊S = 426MeV . (5.44)

with
χ2
d.o.f = 16.7

26
. (5.45)

Scalar resonance contribution to χPT low–energy constants

It is instructive to show how the low–energy constants ℓr3 and ℓr4 of χPTS above
compare with the standard low–energy constants of χPT. This is done through
the matching formula (5.26). We obtain that the corresponding values of l̄3 and
l̄4 read:

l̄3 = 3.40 , l̄4 = 5.16 , (5.46)

thus, l̄3 and l̄4 are somewhat higher than the values in (5.41). From (5.26) we can
easily find out the fraction of l̄3 and l̄4 that is exclusively due to the light scalar
field by setting ℓr3 and ℓr4 to zero. It amounts to a 43% for l̄3 (with opposite sign)
and to a 20% for l̄4. This suggest that the impact of the singlet field in both l̄3

and l̄4 is quite substantial. Note that the contributions of the scalar field to these
low–energy constants comes entirely through loops, and hence have nothing to
do with the tree-level contributions obtained in [126].

Quark mass determination

The last application we have explored is the determination of the light quark
masses, and the comparison with the results obtained from χPT and lattice QCD.
Given a set of parameters the expressions for m2

PS (5.20) and (5.25), become a
function of m̂. Setting m2

PS to the value of the physical mass of the pion we can
solve the equation to obtain the value of m̂ at the physical point. The results
obtained for m̂ for the best χPTS and χPT fits are displayed in Table 5.2. The
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m̂ (MeV)
Latt.(stat)(syst) 3.469(47)(48)

Beyond NLO χPT 3.54(19)(17)
χPT, LO fit 4.32

χPT, NLO fit 4.39

χPTS , NLO fit 3.26

Table 5.2: The values obtained light quark masses from our fits (bottom
panel), at LO χPT and χPTS are identical. In the central panel we show
theoretical results that go beyond NLO χPT from ref. [125]. In the upper
panel we show the values from lattice QCD at the physical point [103].

expressions used for light quark masses match the order at which the fit has
been performed, at NLO the equation has been solved perturbatively.

5.7 Matching with lattice data: S-wave scattering lengths

The available lattice results for the S-wave scattering lengths use relatively large
pion masses, which makes Chiral extrapolations less reliable. In fact, until re-
cently only calculations of a20 were available [141, 142, 143, 144, 145, 146, 147],
and the only existing calculation of both a20 and a00 neglects the disconnected
contributions to the latter [139]. Nevertheless we shall use lattice data of the last
reference in order to get a feeling on how χPTS performs with respect to the
S-wave scattering lengths.

As we discussed in section 5.5, the S-wave scattering lengths of χPTS at LO
are fixed once we input the mass and the width of the sigma resonance in addi-
tion to the pion mass and decay constant. Their evolution with the light quark
masses is given by that of the pion mass and the low–energy constants c2m.
By making a combined fit to a20 and a00 we obtain the red lines in Fig.5.7. We
observed that for a00 χPTS provides a better description of data than LO χPT
(black lines), but for a20 a much worse one. As argued in section 5.5, large NLO
corrections due to ℓ1 are expected. We may estimated them by just adding its
contribution to LO expression. If we fit ℓ1, we obtain the dashed lines in Fig.5.7,
and the following numbers.

a00 = 0.210 , a20 = −0.0296 , ℓ̄1 ≡ 96π2ℓ1 = −16.9 . (5.47)

Note that we get a large negative number for ℓ̄1, consistent with the expectations.
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We see that the description of both scattering lengths improves considerably, the
quality of a00 being comparable to that of NLO χPT (black dashed lines). The
plots of NLO χPT in Fig.5.7 are obtained by fitting lr1 + l

r
2 and lr3. The values

delivered by the fit are

l̄1 + 2l̄2 = 1.4 , l̄3 = −9.3 , (5.48)

which differ quite a lot from the standard values in χPT at one loop, for instance,
l̄1 + 2l̄2 ∼ 9.0 is given in [138] and l̄3 ∼ 2.9 in [13]. In fact if l̄3 is fixed to the last
value rather than fitted a very bad description of a00 is obtained, whereas the one
of a20 remains quite good.

The results above encourage us to attempt an extraction of the sigma reso-
nance parameters from the lattice data. We obtain from the fit (to both a20 and
a00)

c2m = −0.228 , ℓ̄1 = −10.9 , c21d = 0.304 , m̊S = 483MeV , (5.49)

which produce the following numbers for the sigma decay width and the S-
wave scattering lengths

mS = 486MeV ,
Γ

2
= 236MeV , a00 = 0.177 , a20 = −0.0361 . (5.50)

The numbers above are quite reasonable for a LO approximation augmented by
ℓ1, even more if one takes into account that the lattice data is at relatively large
pion masses. It shows that our approach may eventually allow for a precise ex-
traction of the sigma resonance parameters from lattice QCD. Note in particular
that the value of c2m is compatible with the region of low χ2

d.o.f. of Fig.5.5 and
that ℓ̄1 remains with a large negative value.

5.8 Discussion and Conclusions

We have considered the possibility that the spectrum of QCD in the Chiral limit
contains an isosinglet scalar with a mass much lower than the typical hadronic
scale Λχ, and have constructed the corresponding effective theory that includes
it together with the standard pseudo-Goldstone bosons, χPTS . This effective
theory has the same degrees of freedom as the linear sigma model, but differs
from it in two important points. First of all, it is conceptually different because
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Figure 5.7: The best fits of the LO χPT (black solid line), NLO χPT (black
dashed line), LO χPTS (red solid line) and LO χPTS augmented by the
operator proportional to ℓ1 (red dashed line). Red dots are lattice data
from [139].

the mechanism of spontaneous symmetry breaking is assumed to occur at the
scale Λχ, and hence it is not described within the effective theory. Second, there
is a power counting and hence the LO Lagrangian can be augmented at the de-
sired order by adding power suppressed operators. The LO Lagrangian has
initially four free parameters more than the linear sigma model, and hence en-
joys a larger flexibility to describe data. As explained in the section 5.2.3, one
of these parameters (c1m) must be set to zero for consistency, whereas in the lin-
ear sigma model it takes a non–zero value. If we force the LO fits of the pion
mass and decay constant to go through the linear sigma model values we ob-
tain a χ2

d.o.f ∼ 135, namely worse than in LO χPTS (which coincides with LO
χPT). Inputing the sigma mass, the linear sigma model delivers a relatively low
value for the decay width (Γ/2 = 188), a very large value for the isospin zero
scattering length (a00 = 0.696) but a pretty reasonable one for the isospin two one
(a20 = −0.0404), see Table 5.1. We have also computed the scalar mass at NLO.

At tree level χPTS gives definite predictions for S-wave scattering lengths if
the mass and decay width of the sigma resonance are used as an input, which are
shown in Table 5.1. Neither the value of the isospin zero one (a00) nor the one of
the isospin two (a20) are close to the experimental numbers. Although the value
of a00 is slightly closer to it than the one obtained in tree-level χPT, the value of
a20 is much further away. As argued in section 5.5, this is due to the fact that
sizable NLO corrections due to a large value of ℓ1 are expected. If we simulate
them by letting ℓ1 be a free parameter, the combined fits to the lattice data of
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ref. [139] to a00 and a20 become rather good, see Fig.5.7. Note that, although NLO
χPT produces a better description of a00 and a20 if lr1 + 2l

r
2 and lr3 are fitted to data,

the values delivered by the fits of those LECS are incompatible with the ones
currently used in χPT. We have also shown how the combined fits to the S-wave
scattering lengths may be used to extract the resonance parameters of the sigma
from Chiral extrapolations of lattice QCD data.

Loop corrections in χPTS have been explored in the calculation of Fπ and
mπ at NLO. The dynamical scalar field introduces new non-analyticities in the
quark mass dependence of these observables, and requires a renormalization of
B0 and F0, which are absent in χPT. The fits to the lattice data of Ref.[125] for
these observables at NLO in χPTS are of similar quality as those at NLO in χPT.
However, when the value of the average light quark masses is extracted from the
fit, χPTS produces numbers that are closer to those of direct lattice extractions
than χPT does, see Table 5.2.

We have restricted ourselves to the flavor SU(2) case, the extension to fla-
vor SU(3) is straightforward. In fact because flavor is conserved at any ver-
tex, the contribution to observables with pions involving scalar fields in internal
lines are identical and independent of the group, at the order we have calcu-
lated. Furthermore, because we will have more parameters at our disposal and
mS ≈mK ≈mη we expect that the tension between the different contributions to
higher Chiral orders [148] is alleviated.

Let us also mention that Lagrangians identical to the first line of (5.5) are cur-
rently being used in the context of composite Higgs models [149]. In that context,
χPTS would correspond to an effective theory at the electroweak scale under the
assumption that the spontaneous symmetry breaking mechanism takes place at
a much higher scale. Small explicit breaking of custodial symmetry at that scale
may be taken into account by terms similar to those in the second line of (5.5).

In summary, we have shown how to consistently introduce a light isosinglet
scalar particle in a Chiral effective field theory framework, χPTS . This has conse-
quences concerning the dependence of physical observables on the light quark
masses, which have been shown to be compatible with current lattice data. We
have also shown that our formalism has the potential to extract the mass and
width of the sigma resonance from lattice QCD data. Finally, it would be in-
teresting to explore the consequences of χPTS in the Chiral approach to nuclear
forces [22] (see [83] for a recent reviews), since the exchange of a scalar particle is
known to be an important ingredient of the nuclear force in one-boson exchange
models [150].



CHAPTER

6

CONCLUSIONS AND OUTLOOK

The first three chapters of this thesis have been devoted to the theoretical back-
ground. We presented the novel work of this thesis in chapters 4 and 5. In chap-
ter 4 we have constructed a Chiral effective field theory for the nucleon–nucleon
system which contains dibaryon fields as fundamental degrees of freedom. The
large scattering lengths in the 1S0 and the 3S1 channels force the dibaryon resid-
ual masses to be much smaller than the pion mass. We organized the calculation
in a series of effective theories, which are obtained by sequentially integrating
out higher energy and momentum scales. We first integrate out energy scales of
the order of the pion mass. This leads to an effective theory with dibaryon and
nucleon fields, pNNEFT. For three momenta much smaller than the pion mass,
it is convenient to further integrate out three momenta of the order of pion mass,
which leads to the /πNNEFT.

We have calculated the nucleon–nucleon scattering amplitudes for energies
smaller than the pion mass in the 1S0 and the 3S1–3D1 channels at N2LO. For
three momenta of the order of the pion mass, the scattering amplitudes are cal-
culated in pNNEFT, for momenta of the order O (m2

π/mn) in /πNNEFT. The nu-
merical results for the phase shifts and mixing angle are also similar to the ones
obtained in the KSW approach. A good description of the 1S0 channel is ob-
tained, but for the 3S1–3D1 channel our results also fail to describe data. The
reasons of this failure can be traced back to the iteration of the one potential
pion exchange potential. This may be interpreted as an indication that pion ex-
changes must be iterated at all orders, as originally proposed by Weinberg [22].
Weinberg’s proposal however could not naturally accommodate the size of the
scattering lengths and had renormalization problems.

We have calculated the matching of the dibaryon residual masses and dibaryon–
nucleon couplings up to NLO. We have showed that, certain class of diagrams
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that contribute to the residual mass, involving n potential pion exchanges in
loops with radiation a pion, have to be summed in the 3S1 channel. In the 3S1

channel the diagrams can be calculated for any n and the resummation can be
carried out. However in the 1S0 channel the resummation is not possible, but
it is very likely that loop contributions are still large. Using the results for the
matching for residual masses and dibaryon–nucleon coupling for /πNNEFT we
have given Chiral extrapolation formulas for 1/a1S0 and 1/a3S1 up to corrections
of order O (m3

π/Λ2
χ) depending on three independent free parameters. We have

fitted these expressions to lattice data and compared the results to previous stud-
ies of the quark mass dependence of the scattering lengths.

The nucleon–nucleon effective field theory with dibaryon fields presented in
this thesis has simple counting rules and is renormalizable. Since no countert-
erm has to be enhanced like in the KSW approach [76], naive dimensional anal-
ysis is sufficient to assess the size of the effective field theory low–energy con-
stants, keeping the perturbative expansion under control. The small dibaryon
residual masses allow to naturally accommodate the extra scale introduced by
the large scattering lengths in the S–wave channels. The bad convergence in the
3S1 channel is due to the large contribution of the two potential pion exchanges
diagram, which indicates that these contributions should be better resummed.
Until it is known how to do such a resummation in a consistent way, the full de-
scription of the nuclear interactions from QCD through effective field theories
is still open. We believe that once a strategy for such resummation is devised
NNEFT with dibaryon fields provides natural formalism for the description of
nuclear interactions.

In chapter 5 we have considered the possibility that the spectrum of QCD in
the Chiral limit contains an isosinglet scalar with a mass much lower than the
typical hadronic scale Λχ, and have constructed the corresponding effective the-
ory that includes it together with the standard pseudo-Goldstone bosons, χPTS .
In the purely scalar sector of the theory we argued that the scalar self interac-
tions can be ignored. Demanding that the scalar does not mix with the vacuum
together with Chiral symmetry imposes that two of the low–energy constants
should be taken as zero.

The linear sigma model has the same degrees of freedom as χPTS . Never-
theless, we pointed out that there are two crucial differences. The spontaneous
symmetry breaking mechanism in the linear sigma model is contained in it, this
results in constraints on the couplings. On the other hand, in χPTS the sponta-
neous symmetry breaking is supposed to happen at an unknown high energy
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scale, which leaves the low–energy couplings free. As a consequence χPTS has
more freedom to describe lattice data. The second important difference is that
χPTS is an effective field theory, and as such, there is consistent way to improve
the precision of the calculations.

We have presented the calculation of Fπ and mπ at NLO. The dynamical
scalar field introduces new non-analyticities in the quark mass dependence of
these observables, and requires a renormalization ofB0 and F0, which are absent
in χPT. We have used lattice data from Ref.[125] to fit the low–energy constants.
The χ2

d.o.f delivered by the χPTS fits are similar to χPT ones indicating that
lattice data does not favor any of the theories over the other. However, when the
value of the average light quark masses is extracted from the fit, χPTS produces
numbers that are closer to those of direct lattice extractions than χPT does, see
Table 5.2.

The χPTS expressions for the S-wave pion–pion scattering lengths differ
from those of χPT already at leading order. Furthermore χPTS allows for the
calculation of the sigma decay width. Using the input of the sigma mass and
decay width values from Ref.[121] we obtain the value of the only free parame-
ter that appears on the pion–pion scattering lengths expressions, and with it we
calculate the numerical values of the scattering lengths. Neither the value of the
a00 nor the one of a20 are close to the experimental numbers. Although the value
of a00 is slightly closer to it than the one obtained in tree-level χPT, the value of
a20 is much further away. We argue, using the decoupling limit, that this is due
to the sizable NLO corrections because of the large value of ℓ1. We also show
a different approach in which we fit the scattering length expressions with all
parameters free to lattice data and use the results to provide predictions for the
sigma mass and decay width.

Future work in χPTS should be aimed to the calculation of the pion–pion
scattering lengths at NLO to determine whether χPTS improves on χPT on the
description of a00 while not spoiling a20. It would be interesting to include χPTS
in the study of the nuclear forces in the context of Chiral effective field theories,
since the exchange of a scalar particle is known to be an important ingredient
of the nuclear force in one-boson exchange models [150]. Finally, the χPTS La-
grangian is identical to the ones used in composite Higgs models [149] which
opens a new field of applications of the formalism developed in this thesis.





APPENDIX

A

BRIEF INTRODUCTION TO LATTICE QCD

Lattice field theory provides a mathematically well–defined framework for a
formulation of non–perturbative QCD [27]. The idea is to replace the four–
dimensional Minkowski space–time continuum with a discrete lattice in a four–
dimensional Euclidean space. In quantum field theory, information is obtained
from correlation functions, which have a functional integral representation. Lat-
tice field theory introduces an ultraviolet cutoff at the outset and gives a non–
perturbative definition of the functional integral [28, 29, 30]. For any lattice spac-
ing a, the maximum momentum which can arise on the lattice is pmax ∼ π/a,
which goes to infinity as a→∞. The fermion fields ψ(x) and ψ̄(x) live on lattice
sites x. Gauge fields live on links through the variables

Uµ(x) = P exp∫
a

0
dsAµ (x + seµ) , (A.1)

where P denotes the path ordering, Aµ = Aaµλa/2, with Aaµ the gluon fields and
λa/2 the generators of the SU(3) color gauge group, eµ is the unit vector in the
µ direction. In lattice QCD the correlation functions are expressed as

⟨O1, . . .On⟩ = 1

Z
∫ ∏

x ,µ

dUµ(x)∏
x

dψ(x)dψ̄(x)O1, . . .One−SQCD , (A.2)

where
Z = ∫ ∏

x ,µ

dUµ(x)∏
x

dψ(x)dψ̄(x)e−SQCD , (A.3)

and SQCD is the lattice QCD action. With quarks on sites and gluons on links, it
is possible to devise lattice actions that respect gauge symmetry. When the limit
in which the lattice spacng is taken to zero
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The fermionic nature of the quark fields means that they anticommute. This
is accounted for by describing the quark fields using Grassmann variables. We
call the continum limit when the lattice spacing is taken to zero. In the continum
limit we have to specify how the bare couplings behave. The correct continum
limit is obtained when the physical quantities are kept fixed.

Sq =∑
αβ

ψ̄αMαβψβ (A.4)

where α and β collectively label discrete space–time, spin and internal quantum
numbers. The matrix Mαβ is a discretized version of the Dirac operator /D +m,
where m is the quark mass matrix. Mαβ depends on the gauge field U(x). Since
the quark action is a quadratic form, the integral can be carried out exactly

∫ ∏
αβ

dψ̄αψβe
−ψ̄Mψ = detM (A.5)

With the quarks integrated analytically, the gluons can be numerically integrated
with a Monte Carlo method. The weighting factor in the path integrals in Eu-
clidean space-time is now e−Sg(U)detM , where Sg is the pure lattice gauge ac-
tion. On a computer with finite memory, one must introduce a finite space–time
volume, providing an infrared cutoff. The Monte Carlo method of integration
consists to generate an ensemble of random variables according to Boltzmann
weighting and the integrals involved in Eq.A.2 are approximated by averages
on the simulated ensemble. Apart from systematic effects due to non–zero lat-
tice spacing and finite volume, lattice QCD simulations produce results that are
exact on the given lattice, up to statistical errors.
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B

PAULI AND GELL–MANN MATRICES

B.1 Pauli Matrices

The generators of the SU(2) group are ti = σi/2, (i = 1,2,3), where σi are the
Pauli matrices. We will use σ to denote Pauli matrices with spin indices and τ

to denote isospin indices. The σ are

σ1 = ( 0 1

1 0
) , σ2 = ( 0 −i

i 0
) , σ3 = ( 1 0

0 1
) . (B.1)

The main properties of σi are as follows

σ†
i = σi , Trσi = 0 , detσi = −1
σiσk = δik + iǫijkσj

(B.2)

Using the last property of (B.2) one can derive the following useful relations

σ2
i = 1 , [σi, σk] = 2iǫikjσj , {σi, σk} = 2δik ,
σiσkσl = iǫikl1 + δikσl − δilσk + δklσi ,
Trσiσk = 2δik , Trσiσkσl = 2iǫikl ,
Trσiσkσlσm = 2 (δikδlm + δimδkl − δilδkm)

(B.3)
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B.2 Gell–Mann Matrices

The generators of the SU(3) group are Ti = λi/2, (i = 1, . . . ,8), where λi are the
Gell–Mann matrices. The λi are defined as

λ1 =
⎛⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , λ2 =
⎛⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠ , λ3 =
⎛⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎠ ,

λ4 =
⎛⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ , λ5 =
⎛⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞⎟⎟⎠ , λ6 =
⎛⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ ,

λ7 =
⎛⎜⎜⎝

0 0 0

0 0 −i

0 i 0

⎞⎟⎟⎠ , λ7 =
1√
3

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠ .

(B.4)

The main properties are more conveniently given by in terms of the generators

T aT b = 1

6
δab +

1

2
(dabk + ifabk)T k ,

T †
i = Ti , detTi = 0 , (i = 1, . . . ,7), detT8 = − 1

12
√
3
,

[T a, T b] = ifabcT c , {T a, T b} = 1

3
δab + dabcT c ,

(B.5)

where dabc (fabc) is the totally symmetric (anti–symmetric) group structure con-
stants. The non zero elements of fabc and dabc are

f123 = 1, f147 = −f156 = f246 = f257 = f345 = −f367 = 1

2
, f458 = f678 =

√
3

2
,

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1

2
,

d118 = d228 = d338 = −d888 = 1√
3
, d448 = d588 = d668 = d778 = − 1

2
√
3
.

(B.6)

The traces of any string of T a matrices can be evaluated recursively using the
first relation in (B.5)

TrT a = 0 , TrT aT b = 1

2
δab , TrT aT bT c = 1

4
(dabc + ifabc) . (B.7)
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The structure constants fulfill the following Jacobi identities

fabkfkcl + fbckfkal + fcakfkbl = 0 ,
dabkfkcl + dbckfkal + dcakfkbl = 0 .

(B.8)
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C

LOOP INTEGRALS FOR NNEFT

In this appendix we present the specific results for the loop integrals used in
chapter 4. We used dimensional regularization and MS subtraction scheme.

NNEFT to pNNEFT matching integrals

The results of the contributions for the matching between NNEFT and pNNEFT
in section 4.4 are presented in terms of B(β1, β2), which is defined as

B(β1, β2) = (µ2)d−4 ∫ dd−1q(4π)d−1 q⃗2(q⃗2 +m2
π)β1

1(q⃗2 +m2
π − α

4)β2

. (C.1)

Using relation (4.32) one can always decompose the integral into terms with
β1 > 0 and β2 > 0. The result for B(β1, β2)with both arguments positive is

B(β1, β2) = (µ2)d−4 d − 1

2(4π)(d−1)/2 Γ
(β1 + β2 + d+1

2
)

Γ (β1)Γ (β2) K . (C.2)

where µ is the renormalization scale, and K is the Feynman parameter integral

∫
1

0
dx (1 − x)β1−1 xβ2−1 (m2

π − xα
4) d+1

2
−β1−β2

. (C.3)

In the case mπ > α2, K is

K = (m2
π) d+1

2
−β1−β2

π csc (πβ2) Γ (β1)
Γ (β1 + β2)Γ (1 − β2)

× 2F̃1 [β2,−d + 1
2
+ β1 + β2, β1 + β2;

α4

m2
π

] , (C.4)
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Figure C.1: Integrals with one potential pion. The black dots indicate the
insertion of a vertex, but non of the vertex factors are included in the results
of the integrals.

and for mπ < α2

K =eiπ( d+12 −β1−β2)α4( d+1
2
−β1−β2)Γ (d+12 − β1)Γ (β1)

Γ (d+1
2
) 2F1 [d + 1

2
, β1 + β2 −

d + 1

2
, β1 −

d − 1

2
;
m2
π

α4
]

+ πmd+1−2β1

π α−4(2β1+β2) [eiπ( d+12 −β1−β2) sec(π (d
2
− β1)) − e2iπ( d+12 −β1−β2) csc (πβ2)]

×
Γ (d+3

2
− β1 − β2)

Γ (d+3
2
− β1)Γ (1 − β2) 2F1 [1 − β1, β2, d + 3

2
− β1;

m2
π

α4
] ,

(C.5)

Integrals with one potential pion

In Fig.C.1 are the integrals involving only one potential pion exchange. The
following expressions are valid for 1S0 and 3S1 channels.

I1πa = − i g
2
A

4F 2
0

mNp

4π
[1 − m2

π

2p2
ln(1 − 2ip

mπ

)] ,
I1πb =i g

2
A

4F 2
0

(mNp

4π
)2 [−1 − m2

π

2p2
ln( µ2

m2
π

) + ln(1 − 2ip

mπ

)] , (C.6)

where p is the magnitude of the external three–momenta, and µ is the renor-
malization scale. For the 3S1–3D1 mixing only Fig.C.1.b has a non vanishing
projection, the integral can be extracted from (4.48).

Integrals with two potetial pions

In Fig.C.2 are the integrals involving only two potential pion exchange. In this
case the projections to the channels 1S0, 3S1 are different. For the 1S0 channel
the results are as follows
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Figure C.2: Integrals with two potential pion. The black dots indicate the
insertion of a vertex, but non of the vertex factors are included in the results
of the integrals.

I2πa ,s = − ( g2A4F 2
0

)2 (mNp

4π
)3 [1 + m2

π

p2
(ln( µ2

m2
π

) − 3 + 2 ln 2 − 2 ln(1 − 2ip

mπ

))
−
m4
π

p4
(Li2 ( mπ

−mπ + 2ip
) + π2

12
)]

I2πb ,s = − ( g2A4F 2
0

)2 (mNp

4π
)2 [ p2

m2
π

+
m2
π

2p2
(ln( µ2

m2
π

) − 3 + 2 ln 2) − 3m2
π

2p2
ln(1 − 2ip

mπ

)
m4
π

4p4
(3
2
ln2 (1 − 2ip

mπ

) + 2Li2 (−mπ + 2ip

mπ

) + Li2 ( mπ + 2ip

−mπ + 2ip
) + π2

4
)]

I2πc ,s = − ( g2A4F 2
0

)2 mNp

4π
[−1 + m2

π

p2
ln(1 − 2ip

mπ

) + m4
π

p4
(−1

4
ln(1 + 4p2

m2
π

)
iIm [Li2 (2p2 − ipmπ

m2
π + 4p

2
) + Li2 (−2p2 + ipmπ

m2
π

)])]
(C.7)

In the 3S1 channel
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I2πa ,v =3( g2A4F 2
0

)2 (mNp

4π
)3 [−7im3

π

3p3
+
5m2

π

3p2
−
4imπ

p
+
1

2
−
9m4

π

8p4
+
im5

π

p5

+
3m6

π

8p6
+ (3im7

π

4p7
−
3m6

π

4p6
+
im5

π

p5
−
m4
π

2p4
) ln 2 − 2(1 + m2

π

p2
) ln( µ2

m2
π

)
−(3im7

π

4p7
−
3m6

π

4p6
+
im5

π

p5
−
m4
π

2p4
) ln(1 − 2ip

mπ

) + (m4
π

p4
+
m6
π

p6
+
3m8

π

8p8
)

× [Li2 ( mπ

−mπ + 2ip
) + π2

12
] + (3im7

π

4p7
−
3m6

π

4p6
+
im5

π

p5
−
m4
π

2p4
+ 4

m2
π

p2
+ 4) ln(1 − ip

mπ

)] ,
I2πb ,v =32 ( g

2
A

4F 2
0

)2 (mNp

4π
)2 [13m2

π

6p2
−
4imπ

p
−
3m4

π

2p4
−
3im3

π

2p3
+
3im5

π

4p5
− (3m6

π

4p6
+
m4
π

2p4
) ln 2

+(3im7
π

4p7
−
3m6

π

4p6
+
im5

π

p5
−
m4
π

2p4
+
4m2

π

p2
+ 4) ln(1 − ip

mπ

) − 2(1 + m2
π

p2
) ln( µ2

m2
π

)
−(3m8

π

16p8
+
m6
π

2p6
+
m4
π

2p4
)[3

2
ln2 (1 − 2ip

mπ

) + 2Li2 (−1 + 2ip

mπ

) + Li2 ( mπ + 2ip

−mπ + 2ip
) + π2

4
]

+(−3im7
π

8p7
+
9m6

π

8p6
−
im5

π

2p5
+
3m4

π

4p2
) ln(1 − 2ip

mπ

)] ,
I2πc ,v =( g2A4F 2

0

)2 (mNp

4π
)[−2mπ

p
−
m3
π

2p3
+
3im4

π

8p4
−
im2

π

2p2
+
i

2
− i(3m6

π

16p6
+
m4
π

8p4
) ln(1 + 4p2

m2
π

)
+(3m6

π

8p6
+
m4
π

4p4
−
2m2

π

p2
− 2)arctan( p

mπ

) − (3m6
π

8p6
+
m4
π

4p4
)arctan( 2p

mπ

)
+ (3m7

π

16p7
+
m5
π

4p5
) ln(1 + p2

m2
π

) + i( 3m8
π

128p8
+
m6
π

16p6
m4
π

16p4
) ln2 (1 + 4p2

m2
π

)
−(3m8

π

32p8
+
m6
π

4p6
+
m4
π

4p4
) Im [Li2 (2p2 + ipmπ

m2
π

) + Li2 (−2p2 − ipmπ

m2
π

)]] .
(C.8)

For the 3S1–3D1 mixing only Fig.C.2.c has a non vanishing projection, the
integral can be extracted from (4.49).
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D

THE COMPLETE NLO LAGRANGIAN IN THE
NB = 2 SECTOR

We list here all the operators of the NLO Lagrangian in the NB = 2, many of
which do not contribute to our calculations. We use for organization purposes
the standard chiral counting, namely ∂0 ∼ ∂i = O(p) and the quark mass matrixM = O(p2)
The dibaryon Lagrangian

The full list of operators in L(2)D of (4.12) follows

Tr[Ds(uM†u + u†Mu†)D†
s] , T r[D†

s(uM†u + u†Mu†)Ds] ,

T r[D†
sDsu0u0] , T r[D†

sDsuiui] , T r[DsD
†
suiui] , T r[D†

su0Dsu0] , T r[D†
suiDsui]

D⃗†
v ⋅ D⃗vTr[u†Mu†

+ uM†u] , D⃗†
v ⋅ D⃗vTr[u0u0] , D⃗†

v ⋅ D⃗vTr[uiui](Di†
v D

j
v +D

i
vD

j†
v )Tr[uiuj] , T r[D†

su⃗ × u⃗]D⃗v + h.c. (D.1)

∂⃗D⃗†
vTr[u0Ds] + h.c. , D⃗†

vTr[u0d⃗Ds] + h.c.
T r[d⃗D†

sd⃗Ds] , (∂⃗D⃗†
v) (∂⃗D⃗v) , D⃗†

v∂⃗
2D⃗v

In Ref. [31] terms mixing the scalar and vector dibaryon as well as terms with
space derivatives on the dibaryon field were not displayed1.

1The two additional terms that were displayed in [31] turn out to be redundant.
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The dibaryon-nucleon vertex

The full list of operators in L(2)DN of (4.15) follows (hermitian conjugates are
omited)

(N †σ2τaτ2D⃗2N∗)Ds,a , (N †τ2σ⃗σ2D⃗2N∗) ⋅ D⃗v , (DiN
†τ2σiσ2DjN

∗)Dj
v(N †σ2Dsτ

2N∗) (Tr(u0u0) , T r(uiui) , T r(uM†u + u†Mu†)) (D.2)

N † (u0Dsu0 , uiDsui , DsuM†u , Dsu
†Mu† , u†Mu†Ds , uM†uDs) τ2σ2N∗

N †σi (δijuM†u , δiju†Mu† , ǫijkuk , uiuj , ǫ
ijkDku0 , ǫ

ijku0Dk) τ2σ2N∗Dj
v

N †τ2σiσ2N∗ (δijTr(u0u0) , δijTr(ukuk) , δijTr(uM†u + u†Mu†) , T r(uiuj))Dj
v

N †σi (uiDs , Dsu
i , ǫijkujukDs , ǫijkujDsuk , ǫijkDsujuk) τ2σ2N∗

N † (ui , ǫijkujuk , u0D
i , Diu0) τ2σ2N∗Di

v
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E

LOOP INTEGRALS FOR χPTS

Through the calculations in chapter 5 we have used the following set of integrals

A[m2
a] = Λ4−d

i
∫ ddk(2π)d 1

k2 −m2
a

=m2
a (−2λ + µa) . (E.1)

B[m2
a,m

2
b ;p

2] = Λ4−d

i
∫ ddk(2π)d 1

k2 −m2
a

1(k − p)2 −m2
b

= −2λ + m
2
aµa −m

2
bµb

∆ab

+ J̄[m2
a,m

2
b ;p

2] .
(E.2)

Which finite parts are given in terms of

µa = − 1

16π2
log(m2

a

Λ2
) , (E.3)

J̄(m2
a,m

2
b ;p

2) = 1

32π2

⎡⎢⎢⎢⎢⎣2 + (−
∆

p2
+
Σ

∆
) log(m2

a

m2
b

) − ν

p2
log
⎛⎝
(p2 + ν)2 −∆2

(p2 − ν)2 −∆2

⎞⎠
⎤⎥⎥⎥⎥⎦ ,
(E.4)

with ∆ =∆ab =m2
a−m

2
b , Σ =m2

a+m
2
b , and ν2 = (p2 − (ma −mb)2)(p2 − (ma +mb)2).

As a last comment, we have used MS subtraction scheme

λ = 1

16π2
( 1

d − 4
−
1

2
[−γE + ln(4π) + 1]) . (E.5)
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