
P24,
TC. ${ }^{\circ} \mathrm{Cl}_{2}, ~ \mathrm{Cl}_{2}$
Chy

25010
C. ${ }^{2}$

${ }^{4} \mathrm{CH}$

Chy
$\mathrm{S}_{2} \mathrm{CO}_{2}$
${ }^{2}$
雪

Mi, ${ }^{2} \mathrm{C}^{2}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{CO}_{2}$
${ }^{2}$
a_{3}
2
$2.21,2$
${ }^{\text {Cun }}$
${ }^{\circ}{ }^{\circ} \mathrm{C}_{4}$
${ }^{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$
$\mathrm{CH}_{2} \mathrm{Cl}^{2} \mathrm{Cl}^{2}$
${ }^{\circ}{ }^{\circ}$
12.

15: A
$\mathrm{Ha}_{2} \mathrm{CHO}_{2} \mathrm{CO}_{2}$

Cyny
The transposon Galileo in the Drosophila genus

Mar Marzo LLorca
Doctoral Thesis 2011

" Cr
多
$\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}$

The transposon Galileo in the Drosophila genus

Doctoral Thesis
Mar Marzo Llorca

Universitat Autònoma de Barcelona
Facultat de Biociències
Departament de Genètica i de Microbiologia
Bellaterra 2011

Memòria presentada per la Llicenciada en Biologia Mar Marzo Llorca per optar al grau de Doctora en Ciències Biològiques

Mar Marzo Llorca

Bellaterra, a 26 de Setembre de 2011

El Doctor Alfredo Ruiz Panadero, Catedràtic del Departament de Genètica i de Microbiologia de la Facultat de Biociències de la Universitat Autònoma de Barcelona,

CERTIFICA: que la Mar Marzo Llorca ha dut a terme sota la seva direcció el treball de recerca realitzat al Departament de Genètica i de Microbiologia de la Facultat de Biociències de la Universitat Autònoma de Barcelona que ha portat a l'elaboració d'aquesta Tesi Doctoral, titulada "The transposon Galileo in the Drosophila genus".

I per què consti als efectes oportuns, signa el present certificat a Bellaterra, a 26 de Setembre de 2011.

Dr. Alfredo Ruiz Panadero

To VSC
Table of Contents
I.-INTRODUCTION 21
1.-Transposable Elements 23
1.1.-The evolutionary life-cycle of transposable elements. 24
1.2.-Classification of transposable elements 28
2.-The Drosophila P-element. 32
2.1.-P-element structure 33
2.2.-P-element transposase. 34
2.3.-P-element transposition reaction. 40
2.4.-Insertional preference of the P-element 40
2.5.-D. melanogaster P-element origin 41
2.6.-P-element in other species 42
2.7.-P-element-related elements: 1360 43
3.-The Foldback element 45
4.-The Galileo element 47
5.-Drosophila as a model organism 50
5.1.-The Drosophila genus. 52
5.2.-Drosophila 12 genomes consortium. 55
II.-OBJECTIVES 59
III.-MATERIALS AND METHODS 63
1.-Drosophila strains 65
2.-Molecular techniques 66
2.1.-Nucleic acids isolation (Genomic and plasmid) 66
2.2.-PCR 66
2.3.-Plasmid generation 66
2.4.-Protein assays 66
3.-Sequence analysis 68
IV.-RESULTS 71
1.-The Foldback-like element Galileo belongs to the P-element superfamily of DNA transposons and is widespread within the Drosophila genus. 73
1.1.-Supplementary material. 81
2.-DNA-binding properties of THAP-containing Galileo transposase 125
2.1.-Abstract 127
2.2.-Introduction 128
2.3.-Results 132
2.4.-Discussion. 139
2.5.-Conclusions. 142
2.6.-Materials and methods. 143
2.7.-Supplementary material. 147
3.-Striking structural dynamism and nucleotide sequence variation of the Galileo transposon in the genome of Drosophila mojavensis. 151
3.1.-Abstract. 153
3.2.-Introduction. 154
3.3.-Methods. 157
3.4.-Results 161
3.5.-Discussion 171
3.6.-Supplementary material. 177
V.-DISCUSSION 209
1.-Galileo and the P-element superfamily of transposons 211
2.-Long TIR and transposon evolution. 214
VI.-CONCLUSIONS 219
VII.-APPENDIXES 223
VIII.-REFERENCES 241

ABBREVIATIONS			
Aa	amino acid	nt	nucleotide
bp	base pairs	ORF	open reading frame
BS	binding site	P	probability (p-value)
CDS	coding sequence	PCR	polymerase chain reaction
Chr	chromosome	PLE	Penelope-like element
Dana	D. ananassae	PK	protein kinase
Dbuz	D. buzzatii	Pol III	RNA polymerase II I
Dere	D. erecta	RNA	ribonucleic acid
Dgri	D. grimshawi	RT	retrotransciptase
Dmel	D. melanogaster	SDR	split direct repeats
Dmoj	D. mojavensis	SINE	short interspersed element
DNA	deoxyribonucleic acid	TE	transposable element terminal inverted repeat
Dper	D. persimilis	TSD	target site duplication
Dpse	D. pseudoobscura		
Dsec	D. sechellia		
Dsim	D. simulans		
Dvir	D. virilis		
Dwil	D. willistoni		
Dyak	D. yakuba		
EMSA	electrophoretic mobility shift assay		
Enh	enhancer		
F1	transposon region between the TIR1 and the transposase coding region		
F2	transposon region between the transposase coding region and the TIR2		
FB	Foldback		
GTP	guanosine triphosphate		
HD	hybrid dysgenesis		
kb	kilobase		
MBP	maltose binding protein		
LINE	long interspersed element		
LTR	long terminal repeat		
MITE	miniature terminal inverted repeat element		
NAHR	non-allelic homologous recom- bination		
NHEJ	non-homologous endjoining		

Index of Tables
SI Table 1.1 Number of significant hits produced in BLAST searches of the 12 Drosophila species genomes using different parts of Galileo and 1360 elements as queries 103
SI Table 1.2 Best hits recovered using TBLASTN and the amino acid sequence of the 104Dbuz Galileo TPase as query
SI Table 1.3 Best hits recovered using TBLASTN and the amino acid sequence of the Dmell1360 TPase as query 105
SI Table 1.4 Complete and nearly-complete Galileo copies found in the 12 sequenced Drosophila genomes. 106
SI Table 1.5 Short non-autonomous copies of Galileo found in the 12 sequenced Drosophila genomes 111
SI Table 1.6 General characteristics of non-autonomous Galileo copies found in the genomes of six Drosophila species 117
SI Table 1.7 Complete and nearly-complete 1360 transposable elements found in different Drosophila species 118
SI Table 1.8 Comparison among the TPase proteins from different species. 119
SI Table 1.9 Sequences used to construct the consensus transposases of Galileo and 1360 in the different species 120
SI Table 2.1 Sequences used for inferring the THAP domain sequences. CAF1 assemblies 147
SI Table 2.2 Primers used in this work 148
Table 3.1 Summary of the Galileo copies studied in this work. The different subfamilies and structures are indicated 161
SI Table 3.1 Summary of the copies found (groups, structures and TIR length) 178
SI Table 3.2 Detailed data of the Galileo copies included in this study. 183
SI Table 3.3 Interchromosome distribution of Galileo elements. 192
SI Table 3.4 Intrachromosome distribution of Galileo elements. 197
SI Table 3.5 Nearest genes to Galileo copies 205
SI Table 3.6 Intronic Galileo copies 207
Table 1.1 Comparison of different features of P-element, 1360 and Galileo. 212
Index of Figures
Figure 1. Schematic view of TE dynamics 2 -
Figure 2. Simple representation of the forces that shape TEs dynamics $2 \square$
Figure 3. TE general classification I
Figure 4. General procedure of Drosophila transformation with P-element based vectors 3 -
Figure 5. P-element canonical nucleotide sequence structure 3 D
Figure 6. P-element transposase domain structure 30
Figure 7. Different THAP domains alignment 3 D
Figure 8. P-element THAP domain 3D structure $3 \square$
Figure 9. Alignment of different catalytic domains of the P-element superfamily transposases 밈
Figure 10. The $F B$ element. 4
Figure 11. Generation of the $2 j$ inversion in D. buzzatii 4
Figure 12. Schematic view of Galileo, Kepler and Newton D. buzzatii TEs. [1
Figure 13. Drosophila melanogaster as model a model organism. 51
Figure 14. Different proposed phylogenetic relationships in the Drosophila genus. 53
Figure 15. The 12 sequenced Drosophila genomes 56
SI Figure 5. Phylogenetic tree of Galileo subfamilies in D. virilis 83
SI Figure 6. Multiple alignment of P-element, 1360 and Galileo transposases. 8
SI Figure 7. Schematic view of the Galileo nearly-complete copy isolated in D. buzzatii. 0.
Figure 2.1. Structure of representative Galileo copies found in D. buzzatii, D. ananassae and D. mojavensis 131
Figure 2.2. Galileo THAP domain protein sequences 133
Figure 2.3. Protein assays with Galileo THAP domains 134
Figure 2.4. Cross-binding EMSA experiments 135
Figure 2.5. Galileo footprint assay for isolation of the DNA binding site. 136
Figure 2.6. THAP domain binding sequence comparison 137
Figure 3.1. Structure variants of Galileo copies in the D. mojavensis genome. 162
Figure 3.2. D. mojavensis Galileo phylogenetic analysis 163
Figure 3.3. Galileo TIR and transposase region phylogenies in D. mojavensis 165

Abstract

Transposable elements (TE) are repetitive sequences whose ability to change their location in the genome defines them. They made up a important proportion of the eukaryotic genomes, and although they are often considered as genetic parasites, it has been also argued that they might have some still unknown cellular function. Nevertheless, it is clear that they play a role as drivers of their host evolution, due to the fact that TEs generate genetic variability.

The TE Galileo is involved in the generation of adaptive chromosomal rearrangements in natural populations of Drosophila buzzatii, indicating that it would be a driver of adaptation in its host. Moreover, all Galileo elements found in previous works were incomplete - mainly composed by Foldback-like structures - and homology relationships could not be established with any known sequence. With this background, this thesis was proposed to characterise the mobile genetic element Galileo in different Drosophila species and analyse its evolutionary dynamics. Thus, in a first phase we searched for complete copies of Galileo in different species of the Drosophila genus: D. buzzatii, D. mojavensis, D. virilis, D. willitoni, D. ananassae, D. pseudoobscura and D. persimilis, using both bioinformatic and experimental methods (depending on whether the analysed genome was available or not). The copies found present long TIR (up to 1.2 Kb), high sequence identity with previously found Galileo sequences and, moreover, they harbour coding sequences that have allowed the classification of Galileo as a member of the P-element superfamily. Subsequently, by means of phylogenetic analyses, we have found that there are Galileo subfamilies in three different species (D. buzzatii, D. mojavensis, D. virilis) and evidence of recent transpositional activity (in D. willitoni, D. ananassae, D. pseudoobscura, D. persimilis and D. mojavensis). In a second phase of the thesis, we have conducted experiments with part of the Galileo protein and detected specific binding to the Galileo TIR, confirming that this sequence is responsible for the transposition reaction. Finally, we have thoroughly studied the Galileo variability in the D. mojavensis genome and found a striking structural variation, suggesting that the exchange of sequences among different Galileo copies might be quite common and important for TEs evolution.

RESUM. Els elements transposables (TEs) són seqüències repetitives amb el tret definitori de canviar la seva posició al genoma. Ocupen fraccions importants dels genomes eucariotes, y , tot i que solen considerar-se paràsits genètics, també s'especula amb la possibilitat de que tinguessin alguna funció cel•lular que encara ens és desconeguda. Tot i així, sembla evident que tenen un paper important com facilitadors de l'evolució, ja que generen variabilitat al genoma de l'hoste.

El TE Galileo està implicat en la generació de reordenacions cromosòmiques adaptatives naturals a l'espècie Drosophila buzzatii, en la que hauria generat variabilitat amb valor adaptatiu per a l'hoste. A més, tots els elements Galileo trobats en treballs anteriors eren defectius - composats bàsicament d'estructures similars a la dels elements Foldback - i no es van poder establir relacions d'homologia amb ninguna seqüència coneguda. Amb aquest rerefons, en aquesta tesi es va plantejar caracteritzar l'element genètic mòbil Galileo en diferents espècies de Drosophila i analitzar la seva dinàmica evolutiva. D'aquesta forma, en una primera fase es van buscar elements Galileo complets en diferents espècies del gènere Drosophila: D. buzzatii, D. mojavensis, D. virilis, D. willitoni, D. ananassae, D. pseudoobscura i D. persimilis, fent servir tant mètodes bioinformàtics com experimentals (depenent de si el genoma analitzat estava seqüenciat o no). Les còpies trobades presenten llargues Repeticions Invertides Terminals (TIR) de fins a $1,2 \mathrm{~Kb}$, una elevada identitat amb seqüències de Galileo descrites anteriorment i , a més, contenen una zona codificant que ha permès classificar Galileo com a membre de la superfamília de l'element P. Posteriorment, mitjançant anàlisis filogenètiques, hem trobat l'existència de subfamílies de Galileo en tres espècies (D. buzzatii, D. mojavensis, D. virilis) i evidència d'activitat transposicional recent (D. willitoni, D. ananassae, D. pseudoobscura, D. persimilis i D. mojavensis). En una segona fase de la tesi, hem dut a terme experiments amb part de la proteïna que es codifica a Galileo i hem comprovat que interacciona amb les TIR de Galileo, confirmant que aquesta seqüència és la responsable de la reacció de transposició. Finalment, hem analitzat en detall la diversitat de Galileo al genoma de D. mojavensis i hem detectat una diversitat estructural molt important, on l'intercanvi de seqüències entre elements pareix força freqüent per l'evolució dels TEs.

RESUMEN. Los elementos transponibles (TEs) son secuencias repetitivas cuya característica definitoria es la capacidad de cambiar de posición en el genoma. Ocupan fracciones muy importantes de los genomas de eucariotas, y aunque se suelen considerar parásitos genéticos, también se especula con la posibilidad de que pudieran tener alguna función celular que aún nos es desconocida. No obstante, parece evidente que tienen un papel importante como facilitadores de la evolución, al generar variabilidad en el genoma del huésped.

El TE Galileo está implicado en la generación de reordenaciones cromosómicas adaptativas naturales en la especie Drosophila buzzatii, con lo que habría generado variabilidad adaptativa para el huésped. Además, todos los elementos Galileo encontrados en trabajos anteriores eran defectivos - compuestos básicamente de estructuras similares a las de los elementos Foldback - y no se pudieron establecer relaciones de homología con ninguna secuencia conocida. Con este trasfondo, en esta tesis se planteó caracterizar el elemento genético móvil Galileo en diferentes especies de Drosophila y analizar su dinámica evolutiva. De esta manera, en una primera fase se buscaron elementos Galileo completos en en diferentes especies del género Drosophila: D. buzzatii, D. mojavensis, D. virilis, D. willitoni, D. ananassae, D. pseudoobscura y D. persimilis, utilizando métodos tanto bioinformáticos como experimentales (dependiendo de si el genoma analizado estaba secuenciado o no). Las copias encontradas presentan largas Repeticiones Invertidas Terminals (TIR) de hasta $1,2 \mathrm{~Kb}$, una elevada identidad con secuencias de Galileo descritas con anterioridad y, además, contienen una zona codificante que ha permitido clasificar Galileo como miembro de la superfamilia del elemento P. Posteriormente, mediante análisis filogenéticos, hemos encontrado la existencia de subfamilias de Galileo en tres especies (D. buzzatii, D. mojavensis, D. virilis) y evidencias de actividad transposicional reciente (D. willitoni, D. ananassae, D. pseudoobscura, D. persimilis y D. mojavensis). En una segunda fase de la tesis, hemos llevado a cabo experimentos con parte de la proteína que codifica Galileo y hemos comprobado que interacciona con las TIR de Galileo, confirmando que esta secuencia es la responsable de la reacción de transposición. Finalmente, hemos analizado en detalle la diversidad de Galileo en el genoma de D. mojavensis y hemos detectado una diversidad estructural muy importante, lo que sugiere que el intercambio de secuencias entre elementos podría ser bastante frecuente para la evolución de los TEs.

I.- INTRODUCTION

1.- Transposable Elements

Transposable elements (TEs) are genetic entities with the capability of changing their location within the genome. They were discovered by Barbara McClintock in the 50 s of the last century when she was exploring the origin and behaviour of mutable loci in maize (McClintock 1950, 1951). McClintock's discovery challenged the concept of the genome as a static set of instructions passed between generations, as genetic maps had shown. Thus, her theories about how changes in gene expression could appear in two successive generations were received with huge scepticism. Finally, since her observations and theories were corroborated in other organisms, she was awarded in 1983 with the Nobel Price of Physiology and Medicine for her discovery of transposition.

Usually, movement of TEs results in their multiplication, that can give rise to high copy numbers. TEs have been included in the fraction of middle repetitive DNA of the genome, as interspersed repeats (Britten \& Kohne 1968). So far, TEs have been found in almost all studied species, prokaryotes and eukaryotes, except in the protozoan Plasmodium falciparum (Gardner et al. 2002). In all species, TEs make up a significant but variable proportion of the genome, e.g.: 12% in Caenorhabditis elegans (The C. elegans Sequencing Consortium 1998), 14 \% in Arabidpsis thaliana (Hua-Van et al. 2005), 16 \% in Drosophila melanogaster (Kidwell 2002; Drosophila 12 Genomes Consortium et al. 2007), 45 \% in humans (Lander et al. 2001) and 80% in some crops (Wicker et al. 2007).

TE activity in the genomes causes a broad range of mutations. Since their movement is often random, a priori, they can insert anywhere in the genome. By chance, they can insert in regions where they will not affect any function (heterochromatin, intergenic regions, etc), but likewise, they can interfere in the cell working machinery. For example, a gene can be inactivated because a TE insertion breaks the ORF or affects the splicing, or the TE impairs the expression of the gene. In addition, TE activity generates deletions, duplications and rearrangements in the genome. In summary, TEs generate a huge range of mutations with a broad impact on host fitness (Kidwell \& Lisch 2002; Feschotte \& Pritham 2007).

The expansive nature of TEs, occupying important fractions of genomes, along with their mutational activity due to its random movement, made them to be considered as selfish and/or junk DNA because no positive role for the cell was apparent (Doolittle \& Sapienza 1980; Orgel \& Crick 1980). Likewise, the broad distribution among species suggests they have a very successful parasitic strategy, although this broad distribution could be also be pointing out a putative role for the cell, as it has been seen in some cases; e.g. the telomere-length manteinance in Drosophila genus, which is carried out by the retrotransposons HeT-A, TART and TAHRE (Casacuberta \& Pardue 2005; Pardue et al. 2005; Pardue \& DeBaryshe 2011). Nevertheless, although most of the time the TE activity has deleterious effects, it also generates variability and even advantageous mutations, which indicates that they are facilitators of evolution (Kazazian 2004; Cordaux et al. 2006; Oliver \& Greene 2009, 2011).

1.1.- The evolutionary life-cycle of transposable elements

TEs are dynamic entities which multiply, move, evolve and interact with the host. Their ability to invade genomes along with the fact that they do not play any cellular function in the host makes them to be considered parasitic sequences (Doolittle \& Sapienza 1980; Orgel \& Crick 1980). Thus, the evolutionary life-cycle of TEs has been suggested to be analogous to that of parasitic organisms, with a first phase characterised by the invasion and establishment of the host genome followed by a decrease of TE activity and a phase of coexistence of different mutant sequences until the disappearance of the mobile element (Figure 1) (Silva et al. 2004; Le Rouzic et al. 2007). During all this cycle, there are evidences of TE parasitism, such as their use of the cell machinery for spreading themselves and the host fitness decrease due to TE insertion mutations and chromosomal instability (Doolittle \& Sapienza 1980; Orgel \& Crick 1980).

The complex evolutionary dynamics of TEs has required the development of a theoretical framework based on population genetics models which provide a series of predictions that can be tested later on empirical grounds. In the 80s of the last century, several models were proposed to account for parasitic nature of TEs, such as the models of Brookfield (1982) and Hickey (1982). Afterwards, Charlesworth and Charlesworth (1983) modelled the dynamics of copy number taking into account the transposition rate

Time, on an evolutionary scale
Figure 1. Schematic view of TE dynamics after entering the genome. HT means horizontal transfer of the TE to another host. The different steps are: (i) An element is transferred into a germline cell of host A. (ii) Transposition activity starts after a successful integration of the TE. There is a rapid increase in copy number. (iii) Repression of transposition arises the rate in copy number slows. (iv) Mutations accumulate in the different copies and the number of functional elements in the genome slowly decreases. This process that can take many millions of years (abbreviated period represented by a dashed line). (v) Finally, no functional elements are left in the genome of host A, and this TE lineage becomes extinct. Sometime between (ii) and (v), a functional element may be transferred horizontally (HT) to a new host and the process begins anew. Taken from Silva et al. (2004).
and the selective pressure against the TEs insertions. The exploration of the simulations stated that copy number should reach an equilibrium between these two forces, transposition and selection. This way, although element frequencies could change as a result of different phenomena (such as, replicative transposition, loss of elements from occupied sites, selection on copy number per individual, and genetic drift) the final balance would depend on a strong transposition control or a high selective pressure, or both (Charlesworth \& Charlesworth 1983).

Purifying selection is a force opposing the spread of TEs, and it would act against (i) TE insertions which disrupt functional genetic units and (ii) TEs which generate deleterious products. Regarding these statements, it would be expected that the X chromosome, where selection is stronger than in autosomes due to the hemizygous state in males, would present a reduced number of TEs than the autosomes. This hypothesis was tested with three TE families of D. melanogaster and there was no evidence for any reduction in copy number for the X chromosome, leading to the suggestion that meiotic recombination between transposable elements at non-homologous sites would be responsible for the containment of TEs number in natural populations (Montgomery et al. 1987). Thus, a new model was proposed taking into account the distribution of TEs across genomic regions with different rates of unequal exchange or ectopic
recombination (Langley et al. 1988; Charlesworth \& Langley 1991). This would mean that a TE insertion would disappear more quickly if it is located in a high recombination rate region because it would be more prone to recombine with a non-allelic homologous TE. This recombination event leads to the production of deleterious chromosomal rearrangements, thus lowering the fitness of individuals as a function of the number of elements carried. This model has been confirmed by some empirical data and seems to fit quite well with the actual distribution of TEs in natural populations (Charlesworth et al. 1992; Bartolomé et al. 2002; Petrov et al. 2003, 2010).

These models provide predictions for populations in which TEs have reached an asymptotic equilibrium state, but before this equilibrium is reached there are other steps in a TE cycle which are sensitive for the success or survival of mobile elements, such as the colonization of a new genome. Furthermore, the equilibrium could be affected by demographic events of the host or reactivation of a TE (such as stress responses or secondary contacts between geographically distant populations). Hence, not all genomes might be at equilibrium, rather they could be in an unstable TE-host state. Recently, new mathematical models have been proposed for predicting/modelling the whole cycle of TE. Le Rouzic and Capy have run simulations to predict the behaviour of TEs in different steps of the cycle: the invasion, the competition among subfamilies and the long-term evolution (Le Rouzic \& Capy 2005, 2006, 2009; Le Rouzic et al. 2007). Their simulations predict that for a successful genome invasion, after a horizontal transfer event or a TE reactivation, a high transposition activity is needed followed by a tight control of it, which means a transposition burst. This way, the TE that arrived itself to a new genome would overcome the genetic drift and its extinction. After the establishment, TE activity starts to generate mutant copies, either transposition machinery-coding mutants or transposition efficiency

Figure 2. Simple representation of the different genomic forces which interact and affect TEs dynamics. The size of the arrows depicts an schematic contribution of each phenomenon to the TE copy number. Modified from Le Rouzic and Capy (2009)
mutants. Competition among these copies seems to prevent the system for achieving a stable transposition-selection equilibrium, rendering non-autonomous copies to multiply and spread at the expense of the autonomous elements (Leonardo \& Nuzhdin 2002). This results in a mainly cyclic dynamics which highlight the similarities between genomic selfish DNA and host-parasite systems (Le Rouzic \& Capy 2006). Furthermore, long-term evolution was explored introducing variability in both the effects of the insertion on host fitness and the production of functional transposition proteins, along with mutations in transposition efficiency of the copies (Le Rouzic et al. 2007). The most common dynamics was found to be the occurrence of one or more invasion-regression cycles (transposition bursts) followed by the definitive TE loss. This questions the likelihood of the sustainable long-term stable transposition-selection equilibrium of older models. Furthermore, TE domestication events could appear, allowing the survival and fixation of those TE copies that enhance the fitness of the host.

When genomes are explored, the proportion of active copies is highly heterogeneous among species. For example, active copies account for: less than 20% in D. melanogaster (Bartolomé et al. 2002), less than 5% in Schizosaccaromyces pombe (Bowen et al. 2003), and only 1\% of LINEs in the human genome (Ostertag \& Kazazian 2001). Le Rouzic et al. (2007) propose two hypotheses for this heterogeneity. On the one hand, different TE families and subfamilies are in different phases of their cycle, for example, some of them are actively colonising the genome whereas others are in the final step where there is no more mobilisation and the copies are accumulating mutations. On the other hand, long-term evolution of a TE family is affected by characteristics of the TE, the host and specific TE-host interactions, because slight changes in the parameters of the model (transposition rate, deletion rate, impact in host fitness, transposition activity and TE mutation) lead to distinct dynamics. Moreover, the two hypothesis are not mutually exclusive and its combination is likely to shape the TE ditribution observed in genomes (Le Rouzic et al. 2007).

In summary, although different models have been proposed, the TE dynamics are complex to infer, but it seems clear that the genetic drift and the purifying selection play a major role in TE control (Figure 2).

1.2.- Classification of transposable elements

The increasing amount of TEs being discovered makes necessary to develop a method of classifying and arranging all their information. Furthermore, the classification along with all the knowledge of TEs is a fundamental tool for the proper sequencing, assembly and annotation of the numerous genome projects that are being carried out (Edgar \& Myers 2005; Han \& Wessler 2010). One of the first methodical attempts to classify eukaryotic TEs was carried out by Finnegan (1989), who defined two main classes of TEs: Class I are TEs with a retrotranscription step, where a RNA state of the element is found and is retrotranscribed to DNA, while Class II are devoid of this step and are always found as DNA molecules (Finnegan 1989). More recently, Wicker et al. (2007) elaborated on this basic scheme and proposed different levels of classification, such as; subclass, order, superfamily and family. Subclass is used, within Class II, to distinguish elements that copy themselves for insertion, from those that leave the donor site to reintegrate elsewhere. It concomitantly reflects the number of DNA strands that are cut at the TE donor site. At the next level, order takes into account the element structure, for example, the existence of TIRs or LTR in the different classes. These structural traits reflects major differences in the insertion mechanism and, consequently, the overall organization and enzymology. The final levels are superfamily, family and subfamily, where phylogenetic relationship along with nucleotide identity are taken into account in each level of classification (Figure 3).

Class I

Class I of TEs, also known as retroelements, are characterised by a transposition reaction where an intermediate molecule of RNA is transcribed from the donor site and, afterwards, this RNA molecule will be retrotranscribed to DNA and inserted elsewhere in the genome. Thus, the main trait of this group is the retrotranscription step. It is noteworthy that this step is replicative (hence the "copy-and-paste" term often used to refer to this group). Consequently, retrotransposons may reach high copy numbers and are often the major contributors to the repetitive fraction in large genomes. Following the more detailed classification of Wicker et al. (2007) this class is subdivided in five orders on the basis of their mechanistic features, organization and reverse transcriptase phylogeny: LTR retrotransposons (Long Terminal Repeats), DIRS-like elements
(Dictyostelium intermediate repeat sequence; Cappello 1985), Penelope-like elements (PLEs), LINEs and SINEs. Prior to this classification, Class I elements were usually subdivided in LTR versus non-LTR elements (Kumar \& Bennetzen 1999; Jurka et al. 2007).

LTR elements range in size from a few hundred base pairs up to, exceptionally, 25 kb (Wicker et al. 2007). The length of LTR range from a few hundred base pairs to

Classification		Structure	TSD	Code	Occurrence
Order	Superfamily				
Class I(retrotransposons)					
UR	Copla		4-6	RaC	P.M.E.O
	Gypy	\rightarrow CAT AP ता TH RT \longrightarrow	4-6	RIC	P.M.E.O
	Bel-fıo		4-6	RLB	M
	Retrovinus		4-6	RLR	M
	ERV		4-6	RLE	M
DIRS	DIRS		0	RYD	P, M, F, O
	Ngaro	\rightarrow वह5 N IT BH YR \longrightarrow	0	RYN	M.
	VFER		0	RTV	0
PIE	Penelope	\longrightarrow It is \longrightarrow	Variable	RPP	P.M, E.O
UNE	$R 2$	तो is	Veriable	Ris	M
	RTE	An M	Variable	RIT	M
	Jockey	- वn\# - AFE	Veriable	間	M
	4	CFता - AE	Variable	R12	P, M, F.O
	1		Variable	Rel	P.M, F
SINE	INA	-un	Voriable	RST	PM, F
	75L	$\underline{\square}$	Variable	RSL	P, M, F
	55	$\underline{\square}$	Veriable	RSS	MO
Class 11 (DNA transposons) - Subclass 1					
TiR	Ict-Mariner	\bigcirc That	TA	DIT	R.M.E.O
	HAT	\geqslant Tav	8	DTA	P.M.E.O
	Mutator	\geqslant Twe	9-11	DTM	P.M, F, O
	Merlin	$\geqslant 1$	8-9	DIE	MO
	Transb	\bigcirc The	5	DIR	M.F
	P	\geqslant -	8	DIP	P.M
	Plggy Boc	$\geqslant-1$	TMA	DIE	MO
	Pr--Harbinger	$\geqslant-\mathrm{Tac}$ - 017	3	DTH	P.M.E.O
	CACTA	$24+$ Tax -0.52	2-3	DrC	P, M, F
Crypton	Crypton		0	DYC	F
Class Ill (DNA transposons) - Subclass 2					
Helitron	Helitron		0	DHH	P. M, F
Maverick	Maverick		6	DMM	M.FO

Figure 3. Classification of transposable elements proposed by Wicker et al (2007).
more than 5 kb , and start with 5^{\prime}-TG-3' and end with 5^{\prime}-CA- 3^{\prime}. Upon integration, LTR retrotransposons generate a target site duplication (TSD) of 4-6 bp. They typically contain ORFs for GAG, a structural protein for virus-like particles and for POL. Pol generally encodes an aspartic proteinase (AP), reverse transcriptase, RNaseH and DDE integrase (INT). Occasionally, there is an additional ORF of unknown function (Wicker et al. 2007).

DIRS-like elements contain a tyrosine recombinase gene instead of an integrase and, therefore, they do not generate TSD upon insertion. Their termini are unusual, resembling either split direct repeats (SDR) or inverted repeats. These features indicate a mechanism of integration that is different from that of LTR elements and LINEs. Nevertheless, their RT places them in Class I. Members of this order have been detected in diverse species, ranging from green algae to animals and fungi. Penelope-like elements (PLEs) encode a RT that is more closely related to telomerase than to the RT of LTR retrotransposons or LINEs. Furthermore, they code for an endonuclease that is related both to intron-encoded endonucleases and to the bacterial DNA repair protein UvrC. These elements also have LTR-like sequences that can be in direct or an inverse orientation (Wicker et al. 2007).

LINEs lack LTR, can reach several kilobases in length and encode at least a RT and a nuclease in their pol ORF for transposition. Sometimes there is also a gag-like ORF, and other containing RNaseH. LINEs generate TSDs of 7-20 bp length upon insertion, and usually they present truncated 5^{\prime} ends as result from premature termination of their primed reverse transcription (Ostertag \& Kazazian 2001). At their 3^{\prime} end, they can display either a poly(A) tail, a tandem repeat or merely an A-rich region (Wicker et al. 2007). SINEs are non-autonomous elements but they are not deletion derivatives of autonomous ones; instead, they originate form accidental retrotransposition of various polymerase III (pol III) transcripts. Unlike retroprocessed pseudogenes, they possess internal Pol III promoters which allow them to be expressed. They rely on LINEs for trans-acting transposition functions such as RT. Some SINEs present a unique and obligatory partner whereas others are generalists. SINEs are small ($80-500 \mathrm{bp}$) and generate TSDs ($5-15 \mathrm{bp}$). The Pol III promoter region defines SINE superfamilies and reveals their origin: tRNA, 7SL RNA and 5S RNA. SINE internal regions ($50-200 \mathrm{bp}$) are family-specific and of variable origin, sometimes deriving from SINE dimerization
or trimerization (Kramerov \& Vassetzky 2005). The best known SINE is the Alu element, which presents at least $>10^{6}$ copies in the human genome (Lander et al. 2001).

Class II

Class II elements are devoid of the retrotranscription step. In this class there are different strategies of transposition and some of them imply a direct replicative step. Two different subclasses have been proposed, one with the cut-and-paste elements and another one that entails replication without a double-stranded cleavage (Wicker et al. 2007). The first subclass is comprised by two orders: TIR containing elements and noTIR elements (Crypton). TIR elements are subdivided in superfamilies but different proposed classifications do not agree in the number of them. For example, Feschotte and Pritham (2007) proposed 10 superfamilies of eukaryotic TIR transposons. However, Jurka et al. (2007) and Wicker et al. (2007) recognized 13 and 9 superfamilies, respectively. Recently, Yuan \& Wessler (2011) have proposed to revise the number of cut-and-paste transposons because their phylogenetic analysis of the catalytic domain uncovered new relationships among the different groups. They propose 17 superfamilies clustered in three supergroups. Although the definition and number of superfamilies has not reached a consensus, these clusterings are very useful for uncovering the TEs in the different genome projects, because generally, they are searched by means of similarity tools for locating and annotating different TEs. The second subclass is split in two orders, Helitrons and Mavericks/Polintons. Helitrons replicate using a rolling-circle strategy, whereas transposition reaction for Mavericks is still unknown (Feschotte \& Pritham 2007; Wicker et al. 2007).

The TEs studied in this thesis belong to the cut-and-paste class II transposons. In the sections below these elements are explained in detail.

2.- The Drosophila P-element

The Drosophila P-element is one of the best-studied eukaryotic mobile DNA elements. It was discovered in the late 1960s because it causes in Drosophila melanogaster a syndrome of genetic traits termed hybrid dysgenesis (HD) (Kidwell et al. 1977). HD is a term used to describe a collection of symptoms including high rates of sterility, mutation induction, male recombination and chromosomal abnormalities and rearrangements (Kidwell 1977; Kidwell \& Novy 1979; Kidwell et al. 1977; Engels 1979). The unstable nature and reversibility of the mutations caused by hybrid dysgenic crosses first suggested that they might be caused by mobile element insertions (Kidwell et al. 1973). A detailed molecular analysis of hybrid dysgenesis-induced mutations at the white locus allowed the isolation and molecular cloning of the P transposable element (Bingham et al. 1982; Rubin et al. 1982). The characterization of P-elements rapidly let to the development of its use as a vector for efficient germ line transfer in Drosophila (Rubin \& Spradling 1982; Spradling \& Rubin 1982). Since then, P-element vectors have been widely used for transforming D. melanogaster (Figure 4).

Figure 4. General procedure for Drosophila transformation using P-element-based vectors. General traits of vectors are shown on top. The procedure for Drosophila transformation is sketched as well. Adapted from Rio (2002).

Furthermore, these elements have found additional and critically important uses as the molecular genetics of Drosophila has evolved, such as, mutagenesis and gene-tagging, enhancer trapping, homologous gene targeting and gene replacement (Engels 1996; Rong \& Golic 2000; Rubin et al. 2000). Nowadays, new vectors for transforming Drosophila are being developed and they are P-element based vectors, so germinal transformation is still the best choice for Drosophila transformation (Kondo et al. 2006; Bachmann \& Knust 2008).

2.1.- P-element structure

The P-element is a cut-and-paste transposon from Class II of mobile elements (subclass I, TIR order, Wicker et al. 2007). The autonomous and complete copy is ~ 2.9 kb long and its structure consists of two 31-bp terminal inverted repeats (TIRs) surrounding an ORF encoding the transposase (Figure 5). This ORF comprises four exons and three introns and encodes the enzyme responsible for the transposition of the element. This protein is able to bind close to the ends of the transposon, join and cut them and insert the element in a new location (see below). Moreover, the alternative splicing of the transposase ORF generates a transposition inhibitor (KP protein), that directly binds to the transposase DNA binding sites and blocks the P-element DNA cleavage (Misra et al. 1993; Lee et al. 1998). Other important regions in the P-element are the binding sites, where the transposase binds (BS). The binding sites are not located inside the TIRs and are not equidistant from the transposon ends, one is 21 bp from the 5^{\prime} TIR and the other is 9 bp from the 3^{\prime} TIR (Rio 2002). These sequences are $10-\mathrm{bp}$ long and correspond to GTTAAGTGGAT (3^{\prime} end) and TTTAAGTGTAT (5 ' end) (Sabogal et al. 2010). Finally, there are two internal inverted repeats of 11 bp (ATTAACCCTTA)

Figure 5. D. melanogaster P-element canonical sequence structure. Total length 2.9 kb . The binding sites (BS) of the transposase and the internal inverted repeats that act as transpositional enhancers (Enh) are shown. The transposase CDS is depicted with its structure of 4 exons and 3 introns. Adapted from Rio (2002).
located 126 bp from the 5 ' end and 201 bp from the 3^{\prime} end. Although not absolutely required for the transposition reaction, they act as transpositional enhancers (Rio 2002).

2.2.- P-element transposase

The P-element transposase is a trans-acting protein of $87 \mathrm{kDa}, 751$ amino-acids, that catalyses the P-element mobilization through a cut-and-paste reaction. This protein has a modular structure with different domains that are responsible for different steps of the transposition reaction (Figure 6).

Figure 6. Structure of D. melanogaster P-element transposase. The different domains and their coordinates are depicted. Adapted from Rio (2002).

THAP domain

The DNA binding domain (DBD) of the transposase is located in the N-terminus and has been described as a special kind of zinc finger, the THAP domain (Roussigne et al. 2003; Clouaire et al. 2005). This domain is shared with other cellular proteins found in different animals, from Drosophila to humans, that are implicated in different pathways, such as, cellular cycle, apoptosis and chromatin-associated proteins among others (Figure 7) (Roussigne et al. 2003). This domain begins with a C2CH (cystein-cystein-cystein-histidine) zinc coordinating region and ends with an AVP (alanine-proline-valine) motif. Compared with the most common zinc fingers (e.g. C2H2 or C4type, Lee et al. 1989; Pavletich \& Pabo 1991) the THAP domain can be considered as a long domain.

Among the conserved features of the THAP domain are its location at the N terminus of the proteins, its size about 90 residues and, most importantly, the presence of conserved sequence motifs. The defined THAP domain includes: a C2CH signature (consensus cystein- Xaa_{2-4}-cystein- Xaa_{35-50}-cystein- Xaa_{2}-histidine); three additional key residues that are strictly conserved in all THAP domains (proline (P), tryptophan (W), phenylalanine (F), see Figure 8); a C-terminal AVPTIF box (consensus: alanine(A)valine (V)-proline (P)-threonine (T)-isoleucine(I)-phenylalanine (F)); and several other conserved amino acid positions with distinct physico-chemical properties (e.g. hydrophobic and polar) (Roussigne et al. 2003).

Figure 7. Alignment of different THAP domains from different proteins. dmTRP is P-element transposase THAP. The conserved key residues are underlined. Taken from Roussigne et al. (2003)

Recently, the three dimensional structures of two different THAP domains bound to DNA have been characterised: the human protein THAP1 and the P-element transposase (Figure 8) (Bessière et al. 2008; Sabogal et al. 2010). Despite the conservation of the key residues of the domain, the overall sequence conservation is very low. Nevertheless, the spatial conformation seems to be highly conserved and a new DNA interaction manner has been proposed: a β-sheet interacts with the target DNA through the major groove and a downstream loop in the domain interacts with the minor groove of the double helix. Since the DNA interaction is conserved, it has been proposed that the THAP DNA consensus binding sequence is TXXGGGX(A/T) or TXXXGGCA (the X are spacing sequence of variable length; (Clouaire et al. 2005; Campagne et al. 2010; Sabogal et al. 2010). It can be noticed that this two proposed

Figure 8. THAP domain 3D structure interacting with DNA. a) Protein-DNA interface b) Structure-based multiple sequence alignment of DmTHAP, human THAP1, THAP2, THAP7, THAP9 and THAP11 and C. elegans CtBP where conserved residues are highlighted; zinc-coordinating C 2 CH motif is highlighted in green; base-specific DNA-binding residues of DmTHAP are indicated by magenta. The secondary structure diagram is shown above the alignment. c) Schematic representation of all base-specific contacts in the major and minor grooves . d) Surface representation of DmTHAP. Sequence-specific DNA-binding residues are highlighted in magenta. DNA backbone is shown as lines with subsite positions labelled. Modified from Sabogal et al. (2010).
consensus binding sequences share similarities in sequence, such as the core of 3 GC base pairs (GGG or GGCA) which is the major groove interacting sequence, and a conserved AT base pair, which is the minor groove interacting sequence (Sabogal et al. 2010). Furthermore, the size of the two proposed consensus binding sequences are similar ($\sim 10 \mathrm{bp}$), although they correspond to a Drosophila and a human THAP1 protein, respectively.

Oligomerization region

After the DNA binding domain, there is an oligomerization region. It consists of a leucine zipper (Landschulz et al. 1988) responsible for the multimerization of the transposase. After this leucine zipper, there is a second oligomerization region
consisting of an unstructured region, possibly a coiled-coil region (Rio 2002; Sabogal et al. 2010). The multimerization is not necessary for the high-affinity site-specific DNA interaction, but it is essential for the transposition reaction (Rio 2002).

Putative regulatory domain

In the amino-terminal region, there is a regulatory domain that contains potential sites for phosphorylation by different kinases, such as the DNA repair-checkpoint phosphatidyl inositol-3-phosphate $\left(\mathrm{PI}_{3}\right)$-related protein kinases $\mathrm{DNA}-\mathrm{PK}$ and ATM (Ataxia telangiectasia mutated, Ku p 70 and Ku p 80 in Drosophila). Alterations of these potential phosphorylations sites by mutagenesis to alanine result in both increased and decreased transposase activity in vivo and in vitro. In this sense, when the transposase is produced in bacteria, the enzyme is not active, due to the lack of phosphorylation. Similarly, transposases treated with phosphatases presented reduced activity (Rio 2002).

GTP-binding domain

The P-element transposase has a unique requirement for guanosine triphosphate (GTP) binding that distinguishes it from smaller transposases (e.g. those of Tn 5 and $\mathrm{Mu})$. However, GTP is known to take part as a cofactor in many diverse biochemical processes, such as Ras cellular signal transduction pathways, the assembly of dynamin in vesicle transport, and the self-splicing of group I introns, among other cellular functions (Bourne et al. 1991; Doudna \& Cech 2002; Praefcke \& McMahon 2004; Tang et al. 2005). Thus, it has been of interest to understand the role of GTP in a transposase, which has a very different function compared to the cellular proteins which need this nucleotide. The GTP molecule is considered to be an allosteric effector required for proper folding and domain positioning of the P-element transposase, because different experiments have shown that the GTP is not hydrolysed during the transposition reaction (Kaufman \& Rio 1992). Without GTP, the transposase is not able to form the synaptic complex which is vital for the transposition reaction. The synaptic complex is the conformation when the transposase is bound to the two ends of the transposon (Rio 2002; Tang et al. 2005).

The GTP domain of the P-element transposase is a non-canonical version compared to the motifs found in the GPTase superfamily (Bourne et al. 1991; Rio 2002). Consequently, the boundaries of the domain could not been determined through
sequence comparison. However, the GTP binding domain of the P-element transposase has been recently characterised thanks to a green fluorescent protein (GFP) solubility screening in E. coli (Sabogal \& Rio 2010). This assay has allowed to locate the whole region responsible for the GTP binding in coordinates from 275 to 409 of the transposase. The GTP domain is able to bind GTP itself, without need of the other protein domains or multimerization, thus it is a single and functional domain. Furthermore, no GTPase activity has been detected, which is in agreement with the observation that the GTP has a role of allosteric co-factor (Sabogal \& Rio 2010).

Catalytic domain

The C-terminus of the P-element transposase protein contains many acidic residues which would make up the catalytic domain of the transposase. Mechanistically, this domain is thought to belong to the RNaseH-like superfamily of polynucleotidil transferases. This superfamily includes different transposases and integrases such as: the bacterial Tn5 transposase, the Mos1 transposase, the HIV integrase, the phage Mu transposase, the Holliday junction nuclease Ruv C and the RAG1 V(D)J recombinase, among other proteins (Capy et al. 1996; Nowotny 2009; Hickman et al. 2010). Although mechanistically the P-element transposase is related to this superfamily of proteins, sequence and structure-based alignments reveal little or no sequence similarity. Thus, it seems that the P-element transposase would have evolved from a different type of polynucleotidil transferase, that could be related to the nucleic acid polymerases or restriction-endonucleases (Rio 2002).

However, a recent sequence analysis of different transposases where no DDE motif was found, has uncovered the putative DDE motif in the P-element superfamily (Yuan \& Wessler 2011). The proposed residues for the catalytic domain of the P-element would be located in D230, D303 and E531 (Figure 9). These residues appear conserved in the different transposases of the P-element superfamily along with surrounding residues. However, the residues proposed by Yuan and Wessler (2011) are in disagreement with those proposed previously by Rio (2002) (D444, D528, E531and D545/628) which were seemingly detected through random mutagenesis of the catalytic domain (Rio 2002). Experiments that could corroborate the residues proposed by Yuan
and Wessler (2011) would be very interesting for finally including all the eukaryotic transposases in the RNaseH superfamily of polynucleotidil transferases.

Regardless whether this catalytic domain harbours the DDE signature or not, this kind of enzymes, where the P-element transposase can be mechanistically included, use metal ion-mediated catalysis to hydrolyse the phosphodiester bond. The metal ion is bivalent, usually Mg^{++}, and it is coordinated with the protein through acidic protein residues. This essential co-factor is needed for both DNA strand cleavage and strand transfer, which means the double-strand breaks and the insertion of the transposon steps (Hickman et al. 2010).

A

B

Figure 9. a) Alignment of the catalytic region of different transposases of the P-element superfamily. The conserved DDE residues are indicated. A part from the DDE residues, there is a region $\mathrm{D}(2) \mathrm{H}$ which is conserved among all the transposases. b) Putative secondary structure of the P-element catalytic domain. The DDE residues are indicated with asterisks. Notice D. buzzatii Galileo element has been included. From Yuan and Wessler (2011).

2.3.- P-element transposition reaction

After transcription and translation of the P-element transposase ORF, the protein assembles itself as a tetramer (Tang et al. 2007). This pre-formed tetramer binds to one of the P-element ends and through a "looping" or intersegmental transfer (action helped by the GTP interaction) the tetramer binds the second binding site (synapsis) (Tang et al. 2007). After the binding, the transposase catalytic domains cut the transposon ends through a strand-transfer reaction. This is a staggered cut that leaves 17 -bp overhangs at each 3' end. After that, the transpososome (transposon along with the transposition machinery) goes to a new location where there is a target insertion sequence. A staggered cut (8 bp length lag) is performed and the transposon inserts there. An eight base pair target site duplication (TSD) surrounds the element in its new location after the polymerase closes de remaining gaps (Rio 2002).

The gap left by the transposon jump, can generally have two different fates depending on the repairing pathway. On the one hand, the pathway may be nonhomologous end joining repair (NHEJ), where the two 17 bp overhangs will be joined and a transposon footprint will appear surrounded by the 8-bp TSDs (Beall \& Rio 1997; Dynan \& Yoo 1998; Rio 2002). On the other hand, the repair may be done by the synthesis-dependent strand annealing pathway (SDSA), a gap repair process that uses the sister chromatid or the homologous chromosome as a template (Engels et al. 1990; Rio 2002). In that case, the whole P-element would be copied again in the location where it jumped from. This last step would be the responsible of the replicative transposition of the element and the rapid spread of P-elements in wild populations. If this repair synthesis is interrupted, this could give rise to the internally deleted P elements observed naturally (Rio 2002).

2.4.- Insertional preference of the \boldsymbol{P}-element

The initial DNA sequence analysis of several cloned P-element insertions revealed that 8 -bp duplications of the target site (TSD) were found flanking all the P-elements analysed. Comparisons of these target site sequences revealed a general high GC base composition in the 8 -bp sites, with the consensus sequence being 5^{\prime}-GTCCGGAC-3' (O’Hare \& Rubin 1983). Another study analysed 2266 P-element insertion sites from the Berkeley Drosophila Genome Project and showed that the 8-bp GC-rich TSD was
centred in a longer 14-bp palindromic target sequence (Liao et al. 2000). Recently, a more exhaustive bioinformatic analysis of the P-element insertion sites (over $10000 \quad P$ element insertions) has uncovered the putative consensus sequence for this $14-\mathrm{bp}$ target palindrome (Linheiro \& Bergman 2008). This sequence is 5 '-ATRGTCCGGACWAT3 ' where the 8 -bp palindromic target site duplication is shown in bold characters. All the positions of the motif presented strong statistical support deviating significantly from the overall D. melanogaster base composition. Strikingly, in this work from Linheiro and Bergman (2008), they found that the sequence of the P-element TIR restores the 14 bp palindrome after insertion. This suggests a mechanistic link between staggered-cut palindromic target sites and the structure of the transposon TIRs, specially involving the terminal nucleotides of the TIR. Moreover, this special role for terminal nucleotides in the P-element TIRs could explain the strong conservation of only the first 3 bp of the TIRs among the P-element family members in insects and vertebrates (see below). A P element insertion becomes a new site for another P-element insertion. The fact that the sequence recognized by the transposase is a palindrome is consistent with the transposase acting as an homomultimeric complex with the target DNA (Linheiro \& Bergman 2008).

2.5.- D. melanogaster P-element origin

To study the evolutionary origin and history of mobile elements a survey of phylogenetic distribution is very useful. These studies revealed P-element homologous sequences were distributed throughout the species groups that comprise the subgenus Sophophora, but were absent from the species most closely related to D. melanogaster (Brookfield et al. 1984; Anxolabehere et al. 1985; Lansman et al. 1985; Daniels \& Strausbaugh 1986). This fact together with the P-element absence in old laboratory strains of D. melanogaster, suggested P-element might had entered in D. melanogaster through horizontal transfer from a distantly related member of the genus (Bingham et al. 1982; Anxolabéhère et al. 1988).

An exhaustive screening using Southern blot of 136 species of Drosophila genus uncovered a broad distribution of P-element in the Sophophora subgenus and a lack in the Drosophila subgenus. Furthermore, the strongest signals were found in the willistoni and saltans species group (Daniels et al. 1990). The candidate source species
for the putative horizontal transfer of the P-element were narrowed taking into account the species in sympatry with D. melanogaster. Finally, a whole P-element from D. willistoni was isolated and presented only one base-pair missmatch with D. melanogaster P-element canonical sequence (Daniels et al. 1990). Given the time lapse between the first collection of the stock flies and the new captures, the horizontal transfer event of the P-element into the D. melanogaster genome and its immediate spreading into different populations would have happened in the very short span of 40 years.

2.6.- P-element in other species

The P-element was first isolated in D. melanogaster (Bingham et al. 1982), but further investigations led to the discovery of P homologs in many Drosophila species (Clark \& Kidwell 1997; Pinsker et al. 2001) and even in closely related genera like Scaptomyza (Simonelig \& Anxolabéhère 1991). Sequences homologous to the P element have also been detected in other Diptera, like Musca domestica (Lee et al. 1999), Lucilia cuprina (Perkins \& Howells 1992), or Anopheles (Sarkar 2003; Oliveira de Carvalho et al. 2004) and have been detected in humans as well (Hagemann \& Pinsker 2001). The study of P-element distribution reveals several discontinuities suggesting the occurrence of horizontal gene transfer or differential loss of the element (Pinsker et al. 2001).

Moreover, recent studies have uncovered the presence of sequences similar to P element homologous sequences in different vertebrates besides humans, such as Danio rerio, Gallus gallus, mouse and rat (Quesneville et al. 2005). These sequences, except for that of Danio rerio, seem to be located in an orthologous position and that could be the result of an ancient P-element domestication (Hammer et al. 2005). Finally, Kimbacher et al. (2009) looked for P-element homology in the Ciona sp. genome. This organism is a direct descendant of the chordate ancestor, urochordata, located phylogenetically at the base of the chordate lineage. The finding of P-element sequences with the typical transposon traits (TIRs and TSDs) revealed that this TE could have existed already in the base of vertebrate evolution. Likewise, the stable integration of this P-element into the genome in higher vertebrates could be result of a molecular domestication event during evolution of these animals (Kimbacher et al. 2009).

Besides the sequence diversity and subfamilies of P-element found in different species (for example, the P-element clades in Clark \& Kidwell (1997)), a structural dynamism in the copies has been observed as well. Incomplete copies are found that have lost part of the middle region, were the transposase is located. This seems to have an explanation. When a P-element has jumped from the donor site, this site has a DSB which needs to be repaired. As mentioned above, this repairing can be done by NHEJ or homologous recombination (gap repair). In this last case, if the synthesis of the new copy of the transposon is accidentally stopped, as the DNA synthesis is triggered from the transposon ends, the central part of the transposon is more prone to disappear from the new copy of the transposon (synthesis-dependent strand annealing SDSA) (Rio 2002). Furthermore, it seems that the shorter a transposon is the higher is its transpositional efficiency, so this accidental shortening might favour the spreading of the short and non-autonomous copies (Atkinson \& Chalmers 2010).

In this sense, in some genomes were the P-element has been studied with more depth, these short copies, which are called MITEs, have been detected. Usually these shortest copies outnumber the longest and complete ones. For example, in Anopheles gambiae, the length of these P-element MITEs covers from 205 bp to 2450 bp (Quesneville et al. 2006). MITEs have been found in other transposon superfamilies, and since sometimes their relationship with the whole copies is not very clear, it could be possible that its origin would be by chance through recombination (Gonzalez \& Petrov 2009).

2.7.- P-element-related elements: 1360

Element 1360 (also referred to as Hoppel by Reiss et al. 2003 and as Proto-P by Kapitonov \& Jurkal 2003) was discovered in the 80s in a region of the long arm of the Y chromosome of D. melanogaster (Kholodilov et al. 1988). This sequence was found to harbour terminal inverted repeats and it was repetitive and variable among different strains. In the 90 s, more 1360 -like elements were found in the D. melanogaster genome. Although none of the copies harboured a coding region, the TIR and TSD structure along with the repetitiveness in the genome, indicated that this was a class II transposable element (Kurenova et al. 1990). The lack of a coding region prevented the element to be assigned to a known superfamily of transposons.

The sequencing of the D. melanogaster (Adams et al. 2000), provided the opportunity to look for P-element related sequences. The reason for this searches was that, after the discovery of the P-element in D. melanogaster, this transposon was found to have a wide distribution in the Sophophora subgenus, with the exception of the D. melanogaster sugroup. This wide distribution suggested the existence of a P-element in the ancestor of this subgenus and when the D. melanogaster genome sequence was available, different research groups searched for P-element sequences descendants of this putative subgenus ancestor. These searches were fruitful and confirmed the hypothesis, mainly thanks to the use of the P transposase sequence as query in similarity searches (Kapitonov \& Jurka 2003; Reiss et al. 2003).

The P related element found turned out to be 1360 elements longer than those characterised in the 90s, encoding a truncated transposase sequence which made possible to place 1360 or Hoppel in the P-element superfamily of DNA transposons. All the longest 1360 copies harboured truncated transposase sequences and seemed incomplete, but a consensus sequence generated with the different copies pointed out that the putative complete copy would be 4480 bp long, with $31-\mathrm{bp}$ TIR and $\sim 2.6 \mathrm{~kb}$ of putative coding region (Kapitonov \& Jurka 2003). Although the putative 1360 transposon encodes the same protein domains present in the P-element transposase with similarity values of about $40 \%, 1360$ do not harbour any intron (Reiss et al. 2003). Another difference between these two elements is the length of the TSD: 8 bp in the P element and 7 bp in the 1360 element, but this kind of differences among members of the same superfamily is not uncommon (Kapitonov \& Jurka 2003).

Furthermore, 1360 element is the most abundant DNA cut-and-paste transposon of the D. melanogaster euchromatic genome fraction, reaching a total of 105 copies in the sequenced strain (Kaminker et al. 2002). These copies harbour different deletions and most of them could be considered as non-autonomous elements. Moreover, the 1360 element has been correlated with variegation through iRNA dependent mechanism in D. melanogaster, providing insights into a role for TEs in sequence-specific heterochromatic silencing (Haynes et al. 2006). This fact, along with the high copy number of this transposon suggests an important role in genomic regulation and host evolution of TEs.

3.- The Foldback element

Foldback elements are a special group of TEs with a common structural trait, namely, very long and internally repetitive TIRs. Although the existence of terminal inverted repeats and TSD suggest they could be classified as class II elements, the fact that they did not present sequence homology to known transposons and most of them did not harbour any coding sequence, made them to be included in a putative class III of TEs (Capy 1998). After the first foldback element was discovered in D. melanogaster, structurally similar elements were found in different species, in both animals and plants, such as, sea urchin, Chironomus thummi, rice, tomato, Arabidopsis, and rye (HoffmanLieberman et al. 1989; Hankeln \& Schmidt 1990; Rebatchouk \& Narita 1997; Cheng et al. 2000; Alves et al. 2005; Daskalova et al. 2005; Marquez \& Pritham 2010). All these elements only share structural features, never share similarities in their proteins or DNA sequences. This observation suggests that this group is a kind of hotchpotch where elements from different origins have been put together.

The first foldback element (FB) was discovered in D. melanogaster in the last 80s. Since at this time sequencing techniques were expensive and laborious, indirect techniques to uncover the nature of the DNA sequences were used, such as the search of inverted repeat structures through electron microscopy (Potter et al. 1980). After the denaturalization and re-naturalization of the DNA, stem-and-loop structures appeared because of the presence of inverted repeats. The detailed study of the sequences that had "folded back" (this is the

Figure 10. Restriction enzyme maps of a $F B$ element containing clone. The repetitive structure of the $F B$ TIR is depicted. Different repetitive motifs are found along the TIR sequence. From Harden and Ashburner (1990). origin of the name of this class of elements), uncovered the unusual highly repetitive structure of the $F B$ TIRs: where a 10 bp sequence is repeated generating a longer repetitive unit in the TIR (Figure 10)
(Truett et al. 1981). The sequences of the TIRs are
similar, but not identical; some sequences are longer than others because the numbers of repetitive units in the TIRs are variable. Likewise, the central region of the $F B$ element could be TIR sequence that is missing in the other TIR, because there is an important length difference between the two TIR. However, in some copies of $F B$ an extra sequence with putative coding capabilities was found. It was named NOF and presented no similarity to other known transposases or proteins, rendering the transposition reaction of these elements as a mystery.

It has been proposed that $N O F$ would be an independent transposon with insertion preference for $F B$, because $N O F$ is present in few copies of the $F B$ element and possesses its own TIR of 308 bp along with a putative coding region with 1 to 3 ORF depending on the FB-NOF copy observed (Templeton \& Potter 1989; Harden \& Ashburner 1990; Badal et al. 2006b). However, the ratio of autonomous to nonautonomous elements (if NOF were the $F B$ transposase), is similar to other TEs. Furthermore, a $N O F$ element without $F B$ TIRs has never been found. Thus, it seems reasonable to consider that NOF is the transposase-coding ORF of $F B$. Recently, since the TEs catalogue has greatly increased it has been possible to locate the $F B-N O F$ protein within a the $M u D R$ superfamily of DNA transposons (class II, subclass I, TIR elements order (Feschotte \& Pritham 2007; Wicker et al. 2007).

The contribution of $F B$ and $F B-N O F$ elements to genome plasticity is well known since they are able to promote all sort of genomic rearrangements: inversions, duplications and translocations involving pairs of $F B$ elements have been described (Collins \& Rubin 1984; Moschetti et al. 2004; Badal et al. 2006a). Likewise, FB elements have been reported in the molecular descriptions of different D. melanogaster unstable eye mutants. In this sense, $F B$ elements have been found responsible for the white crimson phenotype in the white locus. In these cases the instability has been found to be due to the precise excision of $F B$ which originates phenotype revertants (Collins \& Rubin 1983; Paro et al. 1983). Nevertheless, there are other cases where interaction with zeste 1 mutants is the responsible for the eye colour instability (Bingham \& Zachar 1985; Rasmuson-Lestander \& Ekström 1996; Badal et al. 2006a). Thus, the FB transposon generates instability due to both processes, transposition activity and ectopic recombination.

4.- The Galileo element

The Galileo element was discovered when the breakpoints of the $2 j$ polymorphic chromosomal inversion of Drosophila buzzatii were isolated and annotated (Cáceres et al. 1999, 2001). A Galileo copy was found in each of the inversion breakpoints. These two Galileo copies presented exchanged TSD, which would be a sign of ectopic recombination responsible for the chromosomal inversion (Figure 11). This was the first

Figure 11. Schematic model for the generation of $2 j$ chromosomal inversion in D. buzzatii through ectopic recombination between two Galileo copies. The model explains why the TSD of the Galileo elements have been exchanged. From Cáceres et al (1999). time a transposon was directly involved in the generation of a chromosomal inversion in natural population. Previously, other inversions were known to have been generated by transposable elements but in laboratory experimental populations (Engels \& Preston 1984; Schneuwly et al. 1987; Lim \& Simmons 1994). Furthermore, the $2 j$ inversion presents an adaptive effect in D. buzzatii, because different pieces of evidence have been found, such as, (I) the clinal variation of the inversion frequencies along latitunial and altitudinal geographic gradients or (ii) its effect on the adult fly size and the development time (Ruiz et al. 1991; Hasson et al. 1995; Betrán et al. 1998).

In the last decade, our research group has analysed the breakpoints of another two D. buzzatii polymorphic inversions, $2 q^{7}$ and $2 z^{3}$ (Casals et al. 2003; Delprat et al. 2009). These two inversions were generated by the same transposable element and the same mechanism, i.e. Galileo was the substrate for the ectopic recombination event that generated the inversion. The fact that the same element is involved in three different inversions is noteworthy and suggests Galileo unusual structure and/or its transpositional activity contribute to its ability of generate chromosomal inversions (Delprat et al. 2009).

The Galileo copies found in the inversion breakpoints were seemingly incomplete because they did not contain any significant coding regions. In a subsequent study in our group (Casals et al. 2005), new Galileo copies were isolated from D. buzzatii (total
length ranging from 392 to 2304 bp) which corroborated the long TIR of Galileo (lengths up to 1115 bp) and its internally repetitive structure with tandem repeats of 136 bp (three and a half repetitions). Furthermore, Galileo elements presented target sites duplications of 7 bp , with the palindromic consensus sequence GTAGTAC (Cáceres et al. 2001; Casals et al. 2005). Since Galileo copies did not present any similarity to known transposons, it was tentatively classified as a Foldback element, using structural criteria because of its main trait: long and internally repetitive TIR (Cáceres et al. 2001; Casals et al. 2005). Furthermore, the study of the breakpoints variability of the $2 j$ inversion in different D. buzzatii strains, uncovered the existence of two closely related elements, which were named Kepler and Newton (Figure 12). These elements also harboured long TIRs, along with an average 73% sequence identity to Galileo TIR, identical 40 bp of the terminal TIR region and TSD of 7 bp long (Cáceres et al. 2001). These traits suggested these elements belonged to the same family, because they shared both structure and sequence identity (Casals et al. 2005).

In neither Galileo, Kepler and Newton copies a putative ORF that could encode the element transposase was found, although in some Galileo copies there was a short region encoding a putative protein product with low similarity to the transposase of 1360 (Hoppel) element (Casals et al. 2005). Therefore, the Galileo copies isolated seemed to be non-autonomous elements in which the coding region could have been deleted and longer Galileo copies could exist in the genome with whole coding capability.

The abundance of Galileo elements in D. buzzatii was assessed by Southern blot and in situ hybridization. Southern blot yielded from 21 to 29 Galileo copies/genome, with an average of 26.7 copies/genome and no significant different means among the different D. buzzatii strains (Casals et al. 2005). In situ hybridization yielded a somewhat higher copy number with no differences among strains but a significant accumulation in the pericentromeric regions and dot chromosome (Casals et al. 2005). Furthermore, when the presence of Galileo was explored in other species of the repleta group, it was detected only in species closely related to D. buzzatii of the buzzatii, martensis and stalkeri clusters. No Galileo signal was detected in other more distant species from the repleta group, such as D. mulleri or D. repleta. This could be due to a narrow species distribution of Galileo elements or it could be due to the fact that the
sequence divergence of the elements makes them undetectable with the techniques used (Casals et al. 2005).

Figure 12. Galileo, Kepler and Newton schematic structure. The TIR region are the different segments considered inverted repeat (IR). The tandem repeats are the dashed rectangles, where the number depicts the number of repetitions. The short region that presented homology with 1360 transposase is depicted. Taken from Casals et al. (2005).

5.- Drosophila as a model organism

One of the most studied eukaryotes is the fruit fly Drosophila melanogaster which has been used as model organism since the beginning of the last century (Figure 13). Thomas H. Morgan was the first scientist to use this fly systematically for Genetics studies, because of its short generation time (10 days), along with the numerous offspring individuals and the phenotypic mutations easy to detect. All these traits made Drosophila of exceptional utility for detecting and studying the inheritance of mutations. Furthermore, since D. melanogaster is an organism easy to handle and cheap to maintain, its use has been extended to other Biology fields, such as, development, behaviour, physiology, immunology, neuroscience, along with evolution and population genetics. It is worth to mention that 75% of the genes that are involved in human illnesses possess an ortholog gene in D. melanogaster genome, a fact that emphasises the importance of the generated knowledge in these flies and encourages further studies (Rubin et al. 2000).

Furthermore, because of its historical importance, large research community, and powerful research tools, as well as its modest genome size ($\sim 180 \mathrm{Mb}$), Drosophila was chosen as a test system to explore the applicability of whole-genome shotgun (WGS) sequencing for large and complex eukaryotic genomes (Venter et al. 1998; Adams et al. 2000). This way, the genome of D. melanogaster was the second animal genome to be sequenced and annotated. This fact made D. melanogaster a model organism for genomics as well, providing the foundation for a new era of sophisticated functional studies and the set up of tools for whole-genome analysis for more complex genomes.

Figure 13. a) Drosophila melanogaster 10 days life cycle. b) Media flask where Drosophila are kept. This media is cheap and easy to handle. Pictures taken from http://www.hoxfulmonsters.com and http://en.wikipedia.org.

5.1.- The Drosophila genus

The genus Drosophila is a very large group of well over 2000 described species that belong to the family Drosophilidae (Markow \& O’Grady 2007). Its members are usually called fruit flies (or vinegar fly) because some of its species linger around overripe or rotting fruit. Currently, Drosophila is divided into ten subgenera, the largest of which is undoubtedly the subgenus Drosophila. The subgenus Sophophora, with over 300 described species, is the second largest. Together, the subgenera Drosophila and Sophophora account for roughly 90 per cent of the diversity in the genus Drosophila. Generally, Drosophila phylogenetic studies have focused on different groups or species complexes of this genus, which imply that few studies have worked with the whole genus and many aspects of drosophilid phylogeny are controversial or poorly studied (Ashburner et al. 2005; Markow \& O'Grady 2006). However, recent molecular systematic studies have shown that this genus is comprised of at least three independent lineages and that several other genera are actually embedded within Drosophila (O’Grady \& Markow 2009; van der Linde et al. 2010). Since the phylogenetic basis of the genus are not in total agreement with the developed Drosophila taxonomy, some Drosophila researchers are advocating dividing this genus into three or more separate genera, but others favour maintaining Drosophila as a single large genus (Figure 14) (Markow \& O’Grady 2006; O’Grady \& Markow 2009; van der Linde et al. 2010). The large number of species, along with the huge variability in the ecological habitats and geographical regions where these flies are found, are probably a reflection of the age of the genus, estimated in 40 to 60 myr (Russo et al. 1995; Tamura et al. 2004).

Although D. melanogaster is the most studied species of this genus, the other groups of species have been of interest as well, because they are good models for studying speciation patterns, adaptation and relationship with latitudinal gradients, chromosomal evolution and morphology evolution. For example, one of the most eye-catching groups is the Hawaiian Drosophila flies, which show a huge variability in size, colour and shapes, along with behaviour (for an example of wing diversity see Edwards et al. 2007). This group comprise a radiation of approximately 1000 species and it seems to be the result of a single colonist lineage that arrived in the islands 25 myr ago (Russo et al. 1995; Markow \& O'Grady 2006). This species diversity is a putative result of

Figure 14. Genus Drosophila phylogenetic trees showing: a) monophyletic, b) paraphyletic, c) polyphiletic groups in pink d) simplified version of phylogenetic relationships to illustrate the polyphyly of the genus Drosophila. Taken from O'Grady and Markow (2009).
different factors, such as, sexual selection, geographic isolation, host plant specialization and morphological innovation (Craddock 2000; Boake 2005). Other species groups which have been studied by ecologist and evolutionary biologist are, for example, the obscura group, where we find D. pseudoobscura, a well known species studied by Dobzhansky and colleagues. Another example is the virilis group whose speciation and chromosome evolution has been studied broadly (Popadić \& Anderson 1994; Caletka \& McAllister 2004).

Another important Drosophila species group is the repleta group. This group is one of the largest and most extensively studied groups in the subgenus Drosophila, with more than 90 species classified in six species subgroups - mulleri, hydei, mercatorum, repleta, fasciola, and inca. (Markow \& O’Grady 2006; Bächli 2007). Many species of the repleta group are adapted to arid or semiarid places and are cactophilic, feeding and breeding on the rotting cactus tissues (Ruiz et al. 1990; Wasserman 1992). The repleta
group has served as a model system for evolutionary and ecological studies. Some species have been studied regarding their plant-insect interactions or insect-plantmicrobe interactions, along with adaptation to extreme environments (Barker \& Starmer 1982; Ruiz \& Heed 1988; Barker et al. 1990; Etges et al. 1999; Matzkin \& Markow 2009). Furthermore, detailed polytene chromosome maps were conducted for almost all the species of the group and more than 296 inversions were mapped. Several of the chromosomal inversions were variable among closely related species which provided a valuable tool for understanding the phylogeny of this group (Wasserman 1982, 1992). The availability of molecular data offered the opportunity to test and complete the phylogeny provided by the cytological studies. Although some molecular works did not support the monophyletic nature of the repleta group, more recent data seem to point in the opposite direction (Durando et al. 2000; Oliveira et al. 2011).

Drosophila buzzatii is a cactophilic species that breeds and feeds in the necroses of Cactaceae, mainly Opuntia and secondarily Trichocereus (Hasson et al. 1992). It has an American origin and has recently spread reaching a sub-cosmopolitan distribution which covers South America, South Europe, North Africa and Australia (Fontdevila et al. 1981, 1982; Barker \& Starmer 1982). Different aspects of D. buzzatii evolutionary biology have been studied such as: geographical patterns of inversion frequencies in both the original species range and the colonizing population of the Old World (Fontdevila et al. 1982; Hasson et al. 1995); latitudinal and altitudinal clines in inversion frequencies (Hasson et al. 1995); the relationship between second chromosome inversions and different phenotypic traits, such as, body size, developmental time, viability and longevity (Ruiz et al. 1991; Betrán et al. 1995; Rodriguez et al. 1999; Fernandez Iriarte et al. 2003); and natural selection in the wild because the knowledge of its breeding sites allows the assessment of changes of inversion frequencies during life cycle (Ruiz et al. 1986; Hasson et al. 1991). This species names its own species complex, the buzzatii complex, which belongs to the mulleri subgroup in the repleta group in the Drosophila subgenus (Wasserman 1992; Ruiz \& Wasserman 1993).

5.2.- Drosophila 12 genomes consortium

The extraordinary diversity of Drosophila has led to widespread use of species in this genus as model systems for many aspects of genetics, ecology, evolutionary biology, and comparative biology. The existence of the extraordinarily well-annotated genome of D. melanogaster (Adams et al. 2000) embedded in the context of a species group with a long history of biological research, immediately motivated the development of comparative genomics in this genus. The D. pseudoobscura genome was sequenced in 2005, triggering comparative genomics studies in the Drosophila genus (Richards et al. 2005). Afterwards, 10 more Drosophila species were chosen to generate a set of 12 Drosophila sequenced genomes: D. melanogaster, D. simulans, D. sechellia, D. erecta, D. yakuba, D. pseudoobscura, D. persimilis, D. willistoni, D. virilis, D. mojavensis and D. grimshawi (Figure 15). These genome sequences provide an unprecedented dataset to contrast genome structure, genome content, and evolutionary dynamics across the well-defined phylogeny of the sequenced species (Clark et al. 2003; Singh et al. 2009).

The group of 12 sequenced species, capture a range of evolutionary distances, from closely related sibling species pairs such as D. simulans and D. sechellia, to more distantly related species defined by the subgenera of Sophophora and Drosophila. Furthermore, there are species with broad distribution, such as the cosmopolitan species D. melanogaster and D. simulans, as well as species with highly restricted geographic ranges such as D. sechellia, whose distribution is limited to the Seychelles Islands (Indian Ocean). Moreover, generalist and specialist species are multiply represented, a large range of body sizes is encompassed, and a remarkable array of courtship and other behaviours are sampled, as are divergent life histories (Powell 1997; Markow \& O'Grady 2007). Besides the common traits, these differences among the 12 Drosophila species would be studied in depth thanks to the availability of the sequenced genomes and it allows Drosophila researchers to place their questions in a phylogenetic context.

Figure 15. Phylogeny of the 12 sequenced species of Drosophila showing host preference for oviposition, developmental time from egg to adult in days, and the approximate geographic ranges of the species. Divergence times between species are in millions of years (Tamura et al. 2004). Geographic ranges of different species (the ones with a "range jey") are depicted. Modified from Signh et al (2009).

The 12 Drosophila genomes provide a tool to study the evolution of other types of DNA sequences besides the protein-coding genes, such as the TEs. These genomes provide a landscape where the relationship among the different genomes and TEs could be studied, not only in one species, but rather from a phylogenetic perspective. Genomic TE content is a variable trait that differ among the species. Some TEs appeared to be in
the genus from the beginning, such as the telomeric retrotransposons (Villasante et al. 2007). Other present a patchy distribution among the species, which could be a result of genomic losses or horizontal transfer events (Loreto et al. 2008). Furthermore, different classes of transposable elements can vary in abundance owing to a variety of host factors, motivating an analysis of the intragenomic ecology of transposable elements in the 12 genomes. Although comprehensive analysis of the structural and evolutionary relationships among families of transposable elements in the 12 genomes remains a major challenge for Drosophila genomics, some initial insights can be gleaned from analysis of particularly well-characterised transposable element families. The use of these 12 genomes also facilitated the discovery of transposable element lineages not yet documented in Drosophila, and a deeper study of the already known (Drosophila 12 Genomes Consortium et al. 2007; Singh et al. 2009).
II.- OBJECTIVES

The Galileo element has been directly involved in the generation of three different natural chromosomal inversions in D. buzzatii. All copies found in the inversion breakpoints as well as other copies isolated in our research group were incomplete copies with no significant similarity to any known TE neither any known protein. Hence, the Galileo element was worth to study in more depth due to its implication in the D. buzzatii chromosomal evolution and its unknown nature as TE. Furthermore, the availability of the 12 sequenced Drosophila genomes provided a very useful tool, not only to look for Galileo-like elements, but also for studying the TE from a genomic perspective.

The main objective of this thesis is to fully characterise the transposon Galileo along with its classification based on functional means, such as the putative Galileo mobilization proteins. Moreover, the classification allows the comparison of Galileo with related transposons. Furthermore, other objectives of this thesis are to analyse the Galileo copies found in different genomes and compare them inter-species and intraspecies, to test biochemically that the detected transposase interacts with Galileo TIR sequences and, finally, characterise and study the dynamics of the Galileo long TIR.

This thesis is divided in three chapters. Each of them has different specific objectives that are in part a consequence of previous results.

In the first chapter, the objectives are:

- To find a complete or nearly-complete copy of Galileo (which means a copy with a protein-coding ORF) in the genome where Galileo was discovered, D. buzzatii.
- To look for similar elements in the publicly available sequenced genomes of 12 Drosophila species.
- To unequivocally classify Galileo.
- To compare Galileo with other related TEs.
- To analyse the different Galileo elements found in each genome

In the second chapter, the objectives are:

- To reconstruct nucleotide coding for a functional Galileo transposase in D. buzzatii and nucleotide coding sequences for the transposase DNA binding domain in three different species (D. buzzatii, D. mojavensis and D. ananassae).
- To express and purify the transposase DNA binding domains and in vitro test its binding properties
- To isolate and determine the nucleotide sequence of the binding site of the transposase binding domain in D. buzzatii
- To test Galileo whole transposition reaction in D. melanogaster through plasmid transformation of embryos and fly crosses.

In the third chapter of this thesis the objectives are:

- To isolate all Galileo copies in the D. mojavensis sequenced genome.
- To carefully annotate all the regions in each Galileo copy.
- To study the phylogenetic relationship among the elements taking into account the TIR and the transposase sequence and compare the results.
- To study the Galileo chormosomal distribution and its relation with D. mojavensis genes
- To study the composition and the cause of variation in Galileo TIR length and propose mechanism responsible for it.

III.- MATERIALS AND METHODS

1.- Drosophila strains

In this work the following Drosophila strains have been used for molecular work:

- D. buzzatii st-1, Maz-4, j-9, jq7-4, jz3-2, jq7-1, Sar-9 and j-4.
- D. mojavensis 15081-1352.22, Tucson Stock Center. This is the stock used for genome sequencing (Drosophila 12 genomes consortium 2007).
- D. melanogaster white strain (w1118)

The 12 sequenced Drosophila genomes have been used for in silico analyses. For the genomes of D. melanogaster (strain reference: 10421-0231.36, Tucson Stock Center) and D. simulans (strain reference: 10421-0251.195, Tucson Stock Center) the assembly which has been analysed corresponds to CAF1 chromosomes. For the rest of species D. sechellia (strain reference: 10421-0248.25, Tucson Stock Center), D. yakuba (strain reference: 10421-0231.36, Tucson Stock Center), D. erecta (strain reference: 10421-0224.01, Tucson Stock Center), D. ananassae (strain reference: 10421-0371.13, Tucson Stock Center), D. pseudoobscura (strain reference: 10421-0121.94, Tucson Stock Center), D. persimilis (strain reference: 10421-0111.49, Tucson Stock Center), D. willistoni (strain reference: 10421-0811.24, Tucson Stock Center), D. virilis (strain reference: 10421-1051.87, Tucson Stock Center) and D. grimshawi (strain reference: 10421-2541.00, Tucson Stock Center) the CAF1 contigs assembly was analysed. In the case of D. mojavensis (strain reference: 10421-1352.22, Tucson Stock Center), both CAF1 contigs and scaffolds assemblies have been explored.

2.- Molecular techniques

2.1.- Nucleic acids isolation (Genomic and plasmid)

Total genomic DNA was extracted from 0.2 g of adult flies following the protocol described by Piñol et al. (1988). Plasmid DNA was extracted using standard methods (Sambrook et al. 1989). The quality of the purified DNA was checked with an agarose gel.

2.2.- PCR

PCRs were performed in a total volume of 25μ, including $1 \mu \mathrm{l}$ of cDNA or 100200 ng of genomic DNA, 10 pmol of each primer, $200 \mu \mathrm{M} \mathrm{dNTPs}, 1.5 \mathrm{mM} \mathrm{MgCl} 2$, and 1.5 units of Taq DNA polymerase (Roche or Bioron) or Phusion enzyme (Finnzymes). Typical cycling conditions were 30 rounds of 30 sec at $94^{\circ} \mathrm{C}, 30 \mathrm{sec}$ at $55-60^{\circ} \mathrm{C}$ (depending on the primer pair used), and 60 sec at $72^{\circ} \mathrm{C}$. The PCR products were loaded in an agarose gel and purified with QiaQuick kit (Qiagen).

2.3.- Plasmid generation

For testing the transposition reaction of Galileo in vivo, a two plasmid system was generated consiting in a helper plasmid, where Galileo transposase was cloned, and a donor plasmid, where the miniwhite gene was contained in between two Galileo TIRs with TSD. The co-injection of these two plasmids in Drosophila white embryos and the posterior screening of the F1 generation should show when the transposition reaction has happened because individuals with coloured eyes shall appear. In this experiment the P-element transformation vectors were used as positive control, whereas the donor plasmid alone was used as negative control. The details of the generation of the plasmids are found in the second chapter of results.

2.4.- Protein assays

Protein expression and purification

Different ORF of the putative DNA binding domain proteins inferred (see below) were cloned in expression vectors (N-ter MBP-tag vector from The Oxford Protein Production Facility, UK) and transformed in Escherichia. coli BL21 (DE3) expression cell strain. The protein expression was induced in DO680 $=0.5 \mathrm{LB}$ cultures with 100
$\mathrm{ug} / \mathrm{ml}$ ampicillin cultures, 1 mM of IPTG and 100 uM of ZnCl_{2} at $16^{\circ} \mathrm{C}$ over night. The cells were harvested by centrifugation and resuspended in HSG buffer (50 mM HEPES $\mathrm{pH} 7.5,200 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ dithiothreitol (DTT), 5 mM EDTA and 10% glycerol). The cells were lysed in a French press and centrifuged at 25000 g for 30 min . The supernatant was loaded onto an amylose resin column (New England Biolabs). The column was washed several times with HSG buffer and the protein eluted with HGS buffer plus 10 mM maltose. The fractions containing MBP transposase were pooled and aliquots were stored at $-80^{\circ} \mathrm{C}$.

Electrophoretic mobility shift assay

This assay was performed to test the binding activity of the expressed Galileo protein domains. The purified recombinant THAP domains were incubated for 2 hours at room temperature with the labelled TIR in 20 ul reaction of binding buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{~g} / \mathrm{ml}$ bovine serum albumin, 2.5 mM DTT, 5% glycerol). Different conditions were tested: different protein concentration (1, 1:100, 1:10000 from the stock protein solution ($5 \mathrm{ug} / \mu \mathrm{L}$ or $94 \mu \mathrm{M}$), addition of $\mathrm{ZnCl} 2(100 \mu \mathrm{M}$ final concentration) and addition of unspecific competitor DNA (pBlueScript, $\sim 500 \mathrm{ng} /$ reaction). The reactions were loaded in a 4% TAE-polyacrilamide gel and run for 2 hours at 300 V at $4^{\circ} \mathrm{C}$.

Footprint assay

A sample of the EMSA reaction was digested by 0.05 U of DNase I for 1 minute at room temperature. The enzyme was diluted to $1 \mathrm{U} / \mu \mathrm{L}$ with dilution buffer (5 mM $\mathrm{MgCl} 2,0.5 \mathrm{mM} \mathrm{CaCl} 2$). The reaction was stopped using $1 \mu \mathrm{~L}$ of 500 mM EDTA. DNA was purified by phenol-chloroform extraction and ethanol precipitation. The cleavage pattern was analysed by electrophoresis on a 5% polyacrylamide sequencing gel. DMS/piperidin reactions were performed following standard procedures to reveal G positions and were used to localize the DNase I protected regions.

3.- Sequence analysis

The sequences obtained in the different PCRs were assembled with Geneious and aligned with Muscle 3.6 software (Edgar 2004; Drummond et al. 2010). The sequences were compared to previous ones using Blast searches and alingments (Altschul et al. 1997; Katoh et al. 2002; Edgar 2004).

The 12 genomes searches were performed with Blast algorithms, using tBlastn for looking for putative ORF and Blastn for non-coding sequences. Different thresholds of scores have been used in the different searches during this thesis: an e-value of 10^{-20} (which corresponds to a fragment of at least ~ 200 amino-acids with a $\sim 30 \%$ of identity for tBlastn searches); an e-value of 10^{-3} for Blastn searches (which corresponds to 21-22 identical consecutive nucleotides); and an 80-80 criteria, where at least an 80% of the length of the query was found along with a minimum of 80% identity. Different sequences have been used as query, such as Galileo TIR, Galileo transposase, Galileo whole element of each species. In each of the results chapters, these details are specified. The parameters of the different Blast searches have been used as they are set by default.

The sequences detected with the different Blast searches have been thoroughly annotated using a group of different tools, most of them implemented in the Geneious software, such as dotplot graphics for detecting repetitions and its span, different alignment algorithms and custom Blast searches with specific Galileo and Drosophila TEs databases (Drummond et al. 2010). All the Galileo copies found have been classified regarding identity and phylogenetic inference in different subfamilies, and the internal structure of each copy has been explored, annotating TIR regions, transposase regions, F1 and F2 spacing regions, tandem repeat regions and insertions.

The putative ORF found in this work have been conceptually translated. In all copies Galileo ORF presented frame-shift and premature stop codons mutations. In these cases a consensus was reconstructed using all the sequences available and a majority rule. The obtained sequences have been analysed using Blastp and domains have been detected with Domain Conserve Search, InterProScan and Coils servers (Lupas et al. 1991; Zdobnov \& Apweiler 2001; Marchler-Bauer et al. 2005).

The MEGA software have been used for calculation of the pairwise number of differences among different sets of sequences (p-distance) (Tamura et al. 2004). These nucleotide differences have been transformed to absolute time using the Drosophila evolutionary rates of 0.016 changes/position/myr and 0.011 changes/position/myr (Li 1997; Tamura et al. 2004).

The different set of sequences have been aligned and filtered with Gblocks using relaxed parameters (Talavera \& Castresana 2007). jModelTest was run to find the best evolutionary model for the different sets of sequences and phylogenetic trees were inferred. For these inferences, different computer programs have been used, such as MEGA 4 for Neighbor-joining trees, PhyML and RAxML for maximum-likelihood inferences and BEAST for Bayesian inferences (Guindon \& Gascuel 2003; Stamatakis 2006; Drummond \& Rambaut 2007; Tamura et al. 2007).

Ad hoc perl scripts have been used to analyse the inter-chromosomal and intrachromosome distribution of Galileo and to compare their position to the predicted genes in the genome. The software package JMP 8.0.2 (SAS Institute Inc. 2009) has been used for performing statistical tests.
IV.- RESULTS

1.- The Foldback-like element Galileo belongs to the P-element superfamily of DNA transposons and is widespread within the Drosophila genus.

Mar Marzo, Marta Puig and Alfredo Ruiz
Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

E-mails: mar.marzo@uab.cat, marta.puig@uab.cat, alfredo.ruiz@uab.cat
Corresponding author: alfredo.ruiz@uab.cat
Keywords: Transposable Element, P-element, Galileo, Foldback, THAP domain, TIR, DNA binding, transposase, reconstruction

The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus

Mar Marzo, Marta Puig, and Alfredo Ruiz*
Departament de Genética I de Microbiologla, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
Communicated by Margaret G, Kidwell, University of Arizona, Tucson, AZ, December 28, 2007 (received for review August 8, 2007)

Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. burzatii genome. It is $5,406 \mathrm{bp}$ long. possesses $1,229-\mathrm{bp}$ TIRs, and encodes a 912 -aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppef) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to DbuziGalileo by using bioinformatic tools, Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.
class il elements | transposase | terminal inverted repeats | 1360 | inversions

Transposable elements (TEs) are intracellular parasites that populate most eukaryotic genomes and have a huge impact on their evolution (1). Their abundance and diversity are astonishing and a considerable effort is needed to put order in the increasing constellation of families being discovered. So far, two main classes are widely recognized, retrotransposons that transpose by an intermediate RNA molecule and transposons that move by using a single- or double-stranded DNA intermediate (2). Three subclasses of transposons have been defined based on the transposition mechanism: cut-and-paste, rolling-circle, and Mavericks (3). Cut-and-paste transposons possess TiRs, usually short, and encode a protein called transposase (TPase) that catalyzes their excision from the original location in the genome and promotes their reinsertion into a new site generating target site duplications (TSDs) in the process (4). The Drosophilia elements P (5) and mariner (6) are among the best known families of cut-and-paste transposons but there are many more families classified in ten transposon superfamilies on the basis of similarity among the TPases: Tcl/mariner, hAT, P, MuDR, CACTA, PigzyBac, PIF/Harbinger, Merlin, Transib, and Banshece (3). Other elements are still unclassified, seemingly because only defective copies have been found. Defective (nonautonomous) copies coexist and often outnumber the canonical (autonomous) copies, and can move if there is a functional TPase provided by canonical copies present somewhere else in the same genome and if they conserve the signals required for TPase recognition (usually the TIR ends).

Foldback-like elements constitute a group of poorly known TEs with uncertain classification (2,3). They take their name from the Foldback (FB) element of Drosophila melanogaster (7, $8)$ and are present in a diverse array of organisms (9-13). The unusual characteristics of Foldback-like elements include very long TIRs that make up almost the entire element and are separated by a middle domain with variable length and composition. No coding capacity has been found in many Foldback-like elements, and thus, their mechanism of transposition is uncertain. However, a small proportion ($\sim 10 \%$) of FB copies in D. melanogaster is associated with a 4 -kb-long sequence called NOF encoding a $120-\mathrm{kDa}$ protein of unknown function (14, 15). FB has been recently included in the MuDR superfamily (3) because of the similarity of the proteins encoded by both MuDR and NOF to that of Phantom, a transposon from Entamocba (16). Besides, some copies of FARE, another Foldback-like transposon from Arabidopsis, harbor a large ORF with weak similarity to the MuDR TPase (13). The origin of many other Foldback-like elements is still uncertain.

Gallieo was discovered in Drosophila buzzatii and is the only TE in the genus Drosophila that has been shown to have generated chromosomal inversions in nature (17-19). Other TEs, such as P, Hobo, or FB are known to induce chromosomal rearrangements in experimental populations of D. melanogaster (20), but there is no direct evidence of their implication in Drosophila chromosomal evolution. Galikeo, together with two closely related elements, Kepler and Newton, were classified as Foldback-like elements because of their long, internally repetitive TIRs (18, 21). All copies of Galileo, Kepler, and Nowton isolated so far from the genome of D. buczatiil lack any significant protein-coding capacity except for two Galileo copies bearing a short segment with weak similarity to the TPase of element 1360 (Hoppel) (21). An experimental search for Galileo sequences in other Drosophila species suggested that this TE has a rather restricted distribution, being only present in the closest relatives of D. buzzatii but not in more distantly related species within the repleta group (21). Here, we take advantage of the recently sequenced genomes of D. melanogaster (22), Drosophila pseudoobscuira (23), and ten additional Drosophila species (24) to search for sequences similar to Galileo in these genomes by using bioinformatic took. We found that Galileo has a much wider species distribution within the Drosophila genus than previously suspected. Furthermore, our results allow us to fully characterize

[^0]

Fig. 1. Most complete copies of Gallieo and 1360 found in this work. (A) Putative complete Galleo copy from the D. buzratir genome. (b) Mont complete copies of Galleo found in the 12 sequenced genomes. (C Most complete copies of 1360 . Tits are represented as arrows and TPases are represented as gray rectangles. The direct repeats of the TiRs in DbuzGaliieo are indicated by striped patterns. Dmohgalico internal inverted repeats are represented as little triangles. In D. mojawensis two Galileo copies representative of two subfamilies found in this species are depicted. See $5 \mathbb{T}$ Table 4 for detaik.
the element Galileo and to classify it as a member of the P superfamily of cut-and-paste DNA transposons.

Results

Structure of Galileo in D. huzzatii. By using as a query Galileo-3, a defective copy of Dbuz\}Gahileo (21), we carried out preliminary bioinformatic searches in the genome sequence of Drosophila mojavensis, another member of the repleta species group. Some of the hits, on close examination, bounded a protein-coding segment that might be the Gafileo TPase. Several PCRs were then attempted to isolate longer Gallieo copies from the D. buzzatii genome (see Methods). In each of them, one primer was anchored in the known DbuziGalileo TIRs and the other in the possible DmoflGalileo TPase. A putatively complete copy of Dbuz/Galileo could be assembled in this way (Fig. 1A). This copy is $5,406 \mathrm{bp}$ long, possesses $1,229-\mathrm{bp}$ TIRs and an intronless 2.738-bp ORF (nt 1348-4057) encoding a 912-aa protein (after fixing two STOP codons, and a 1-bp deletion that causes a frameshift mutation).

A search using BLASTX revealed significant similarity of the Dbuz\Galileo TPase to those of the related D. melanogaster 1360 and P elements $(25,26)$ [AAN39288, E-value $=1 \mathrm{c}-95$; Q7M3K2, E-value $=3 \mathrm{e}-25]$. The DbuziGalileo TPase includes a THAP domain near the N terminus (amino acids 27-104) similar to the DNA binding domain of P element TPase (27-30). A copy of 1360 located in chromosome 4 of D. melanogaster (31) encodes a TPase (854 aa) longer than that in the National Center for Biotechnology Information database (25), including a THAP domain near the N terminus (after curation of a 1-bp frameshift mutation). A global alignment of the DbuzlGalileo TPase with
those of DmeN 1360 and DmeNP yielded 34.5% and 27.6% identity, respectively. No significant similarity was found between the DbuzlGalileo TPase and the proteins encoded by DmelFB $(14,15)$.

Distribution of Galileo and 1360 in the 12 Sequenced Drosophila Genomes. Systematic bioinformatic searches using as queries the TPases and TIRs of Dbuz/Gallieo and DmeN 1360 were carried out (see Meshods). The results [supporting information (SI] Tables 1-3] suggested that elements similar to Galileo are present in D. anamassae, D. pseudoobscura, D. persimilis, D. willistoni, D. virilis, and D. mojavensis, whereas elements similas to 1360 are present in the five melanogaster subgroup species (melanogaster, simulans, sechellia, yakuba, and erecta) plus D. psendooloscura, D. persimilis, and D. virilis. Therefore, none of the two TEs is seemingly present in D. grimshawi but both are found in D. psecudoobscura, D. persimilis, and D. virilis.

Characterization of Galileo Copies. We characterized 46 relatively long copies of Galileo containing segments encoding a partial on full TPase from the six genomes where this TE is present (SI Table 4). All of them possess one or two long TIRs with similarity to those of Dbuz\}Galileo (see below) and nine are flanked by, perfect $7 \cdot \mathrm{bp}$ TSDs. The structure of the longest, presumably most complete, copy in each species is depieted in Fig. 1B. These Galileo copics are $4,386 \mathrm{bp}$ (D. willistomi) to $5,989 \mathrm{bp}$ long (D. mojavensis) and exhibit TIRs of 684 bp (D. ananassae) to 813 bF (D. mojavensis). However, none of them contains a single ORF encoding a fully functional TPase (all bear STOP codons. frameshift mutations, and/or deletions). In D. mojavensis 16 lone copies were characterized. Many of them include nearly complete TPase-coding segments and all but three contain one on more insertions of other TEs (SI Table 4). These 16 copies belong to two groups with distinctive structures (see Fig. $1 B$ fon representative copies) and encoding somewhat different TPases (see below).
We also searched each of the six Drosophilla genomes for short nonautonomous Galileo copies by using BLASTN and the most complete copy already found in the same genome (Fig. 1B) as query (see Methods). Galileo was rather abundant in the siv genomes, the number of significant hits being >100 in all cases with a maximum of 495 in D. willistoni (SI Table 1). We identified and isolated 109 Galileo copies from the contigs producing significant hits in the six species. All of them possess two long TIRs separated by a relatively short middle segment and 97 show perfect 7 -bp TSDs (SI Table 5). Thus, these copies are structurally similar to the copics of Galileo, Kepler, and Newton previously found in D. buzzatii (21). A summary of the characteristics of these relatively short nonautonomous copies is given in SI Table 6 .

TSDs. In D. buzzatii, Galileo generates on insertion 7-bp TSDs with the consensus GTAGTAC (21). Likewise, in the six Drosophila genomes analyzed here, 106 Galileo copies were flanked by identical 7-bp sequences (SI Tables 4 and 5). We calculated the frequency of the four nucleotides in each of the seven sites for each species separately. The frequency pattern observed in the six species was similar to that of Dotuz)Gabileo and the 10 E sequences were combined. All positions but the fourth show a significant departure from randomness, and the consensus is the palindrome GTANTAC.

Divergence Between Gafileo Copies. To estimate the time since the most recent transpositional activity of Galileo, we measured the average pairwise divergence between the short nonautonomous copies within each species (see Methods and SI Table 6). In D. ananassae, the average pairwise divergence among 20 copies was 2.8%, which implies a divergence time of ~ 1.8 myr. However.

Fig. 2. Neighbor-joining phylogenetic tree inferred from the analysis of 29 Gahleo coples found in the 0 . mojavensis genome. The two This of each copy were included in the tree as separate sequences to allow their comparison within and between copies. TIRa is the TIR located at 5^{\prime} from the TPate or the fint Tir that appears in the contig if the copy could not be oriented. The complete deletion option was uned leaving 269 informative sites. Bootstrap values at main nodes are shown. The average pairwise divergence between groups D and E is -25%, indicating a divergence time of -8 myr, and the average pairwtse divergence between these two groups and groups C and F is -32%, implying a divergencp time of -10 myr. The putative chimeric eitments with highly divergent Thks are marked with an arrow. Details of these Galifeo copies are given in SI Tables 4 and 5 .
evidence for more recent transpositional events was found because a subgroup of 13 copies shows an average divergence of 0.36% equivalent to a divergence time of only 0.225 myr. Similar observations were made in D. pseudoobscuma, D. persimilis, and D. willistoni (SI Table 6). In each case, subgroups with $\sim 1 \%$ average divergence (implying divergence times 00.6 myr) were found. In D. viritis, analysis of 13 short nonautonomous copies uncovered two highly divergent groups that we named A and B (S1 Fig. 5). Copies within each group were aligned and analyzed separately (SI Table 6). The average pairwise divergence within groups A and B was 4.6 and 5.7%, implying divergenee times of 2.9 and 3.6 myr , respectively. Inclusion in the analysis of the longest copy found in the species (contig 16409) indicated unequivocally that it is a member of group A (SI Fig. 5). In D. mojavensis, analysis of 20 short nonautonomous copies revealed the presence of four well defined groups, here named C-F. We included in the analysis nine of the long copies containing the two TIRs and generated a phylogenetic tree with the 29 copies (Fig. 2). Groups C and D correspond to the two groups
previously detected when the long, nearly complete, copies were analyzed. Copies within each group were separately aligned and analyzed. Average pairwise divergences within groups C through F were $2.2 \mathrm{\%}, 2.3 \%, 2.4 \%$, and 8.9%, respectively, indicating divergence times ranging from 1.4 to 5.5 myr (SI Table 6). The two and four Galileo groups or subfamilies found in D. virilis and D. mojavensis, respectively, seemingly represent relatively old tramposition bursts in these genomes. We suggest that the Newton and Kepler elements previously found in the D. buzzati genome (18,21) should likewise be considered only as different groups or subfamilies of Galileo in this species.

One copy in D. pseudoobscura (contig 4355), one copy in D. wilistoni (contig 10422), and three copies in D. mojaventer (contigs 11233, 10770.1, and 9832) are likely chimeric because they are flanked by dissimilar 7-bp sequences and show increased levels of divergence between the two TIRs (see for instance Fig. 2).

Characterization of 1360 Copies. The longest and complete or nearly complete copies of element 1360 found in the eight genomes are shown in Fig. 1C (see also SI Table 7). The cight copies possess TPase-coding segments $2,428 \mathrm{bp}(D$, erecta) to $2,565 \mathrm{bp}$ long (D. molanogaster), although only D. yakuba includes three different copies with 2.562 -bp ORFs encoding a fully functional TPase. All of them bear 31 - or 32 -bp-long TIRs and total size for seemingly complete copies varies between $2,985 \mathrm{bp}$ (D. persimitis) and 4,702 bp (D. viritis). The longest copies found in each species (Fig. 1C) were used as queries to interrogate the eight genomes by using BLASTN. The results showed that $I 360$ is very abundant in all genomes with a maximum number of 650 significant hits in D. sechellia (SI Table 1).

Comparison of Galileo, 1360, and PElement TIRs. With the exception of D. pseudoobscura and D. persimilis, the long Galileo TIRs show little similarity between the different species either in length or sequence composition. Conservation seems to be restricted to the terminus as revealed by the alignment of the first 40 bp of Galileo in D. buzzatii (including Kepler and Newton) and the six species analyzed bere (including D. virilis groups A and B and D. mojavensis groups C-F). A total of 17 of the 40 terminal bp are conserved in the 13 sequences (Fig. 34). Likewise, alignment of the 31 bp of 1360 TIRs in the longest copies described earlier (Fig. 1C) revealed 14 conserved bp (Fig. 3B). We generated the consensus sequences of the element terminus in Galileo and $I, 360$ in the different species. Fifteen of 31 bp are identical, which provides further evidence of the evolutionary relationship between both TEs. In addition, the consensus Galileo terminus shares 17 bp with the 31-bp TIRs of DmelP (Fig. 3C).

Comparison of Galileo, 1360, and P Element TPases. We generated consensus amino acid sequences for the Galileo and 1360 TPases within each species (see Methods). For Dmoj)Galileo, the consensus sequences of the TPases encoded by copies in groups C and D are 937 and 936 aa long, respectively, and when aligned alone show a 87.2% identity and a 96.4% similarity.

A multiple alignment of the eight consensus Galileo TPases, the eight consensus 1360 TPases, and five TPases of representative P elements was carried out (SI Fig. 6). Besides, the human P-like THAP9 protein (32) was included in the analysis as outgroup. The Galileo TPases are $30-35 \%$ identical to those of 1360 and $20-25 \%$ identical to those of P elements (SI Table 8). Within the Galileo TPases, identity varies between 97.2% in the closely related pair D. pseudoobscura-D. persimilis, and 39.3% between D. persimilis and D. virilis. In addition, we examined the multiple alignment for conservation of several functional domains and motifs that have been identified in the DmedP TPase (5). The THAP domain is a zine-dependent DNA binding domain evolutionarily conserved in an array of different proteins including the P TPase, cell-cycle regulators, proapoptotic fac-

Fig. 3. Comparison of TIR ends. (A) Alignment of 40 bp of the Tit end of Gabileo. A consensus sequence was constructed for Galleo Tiks in each TE subfamily and species. (B) Alignment of the 31 -bp TiR of 1360 . A representative ThR from a single copy of the TE is included. (C) Comparison of the Galleo Tit end with the TIRs of elements 1360 and P. Identical positions in all sequences are shown in black. Sites identical between Gallileo and 1360 or P are shown in gray.
tors, transcriptional repressors, and chromatin-associated proteins $(28-30)$. It includes a metal-coordinating C2CH signature plus four other residues ($\mathrm{P}, \mathrm{W}, \mathrm{F}$, and P) that are also required for DNA binding. These eight residues are fully conserved (with one exception) in positions C29, C34, P53, W63, C89, H92, F93, and P119 of the multiple alignment (SI Fig. 6). A leucine zipper coiled-coil motif involved in protein dimerization is located after the DNA binding domain (5). We predicted in silico a similar 22-aa-long coiled-coil motif after the THAP domain in the Gallieo and /360 TPases (SI Fig. 6). Finally, although the DmerP TPase does not contain the characteristic catalytic motif DD(35)E shared by many other TPases and integrases (4), the C-terminal portion of this protein contains numerous aspartic (D) or glutamic (E) residues and four of them seem to be critic for TPase function: $\mathrm{D}(83) \mathrm{D}(2) \mathrm{E}(13) \mathrm{D}$ (sec ref. 5). The first 3 aa are fully conserved in positions D677, D774, and E777 of the multiple alignment with one exception (SI Fig. 6), thus supporting this model (5). The conservation of the fourth amino acid is unclear.
A phylogenetic tree was generated with the 21 Galileo, 1360, and P TPases and the human THAP9 protein (see Methods). The tree (Fig. 4) shows three clades corresponding to the Galileo, 1360 , and P elements. Therefore, the three TEs seem monophyletic, although only the Gallieo and P clades have very high statistical support. Galileo and 1360 are more closely related to each other than to the P element, which is connected to the other two by a deeper branch.

Discussion

We characterized a seemingly complete copy of Galileo from the genome of D. buzzatio that contains a $2,738-b p$ ORF encoding a TPase. Three observations indicate that this is the true Galileo TPase instead of that of another TE accidentally associated with

Fig. 4. Neighbor-foining phylogenetic tree constructed with the pight consensus Galleo TPaser, eight consensus 1360 TPases, and five TPases from representative Pelements. The human P.like THAP9 protein is included as an outgroup. The complete alignment without Gblocks filtering is shown in $\$ 1$ Fig. 6. The tree topology was identical when using maximum likelihood and parsimony methods.
the long Galileo TIRs. (i) Two previously isolated Galileo copies bear a 141-bp portion of the same ORF in the right position and orientation (21), suggesting that all previously isolated Galileo copies are defective versions of the complete structure reported here. (iii) Our bioinformatic searches uncovered TEs structurally similar to Gakileo in the genomes of six phylogenetically distant Drosophila species. These searches were carried out by using as queries the Dhuz'Galileo and DmeN1360 TPases, and a careful scrutiny of the contigs producing significant hits led to the finding of the TIRs associated with the TPase segment and the characterization of the elements as either Galifeo or 1360 . No other TIRs besides those of these two TEs were found flanking the hits (but note that in Dmof Galiteo 160-bp internal inverted repeats bound the TPase; Fig. 1B). The persistent association (over tens of myr) of this TPase with the same type of TIRs renders the possibility of an accidental association extremely unlikely. (iii) The presence of multiple Galileo copies comprising both TIRs and TPase-coding segments in seven Drosophtila genomes suggests that these are integral components of the same elements, and these elements are (or have been) able to replicate and transpose within these genomes.
Further evidence leads us to infer that Galileo, previously considered a Foldback-like element, is in fact a transposon related to the D. melanogaster $/ 360$ and P elements, and thus, it is probably a TE moving by a cut-and-paste reaction $(3,4)$. (iv) The Galileo TPase is $30-35 \%$ and $20-25 \%$ identical to those of 1360 and P elements, respectively, and the three proteins harbor similar functional domains such as a DNA binding THAP domain, a coiled-coil motif for protein dimerization, and a catalytic domain (5, 27-30). (v) Despite their dramatically different size (several hundred base pairs vs. 31 bp), the Galiteo terminus includes sequences clearly related to the 1360 and P TIRs. Specifically, the consensus Gallleo terminus shares 15 bp with the 1360 consensus TIR and 17 bp with the DmedP TIR. The three elements share identical 5^{\prime}-CA. . .TG-3' termini. (vi) Both Galileo and $/ 360$ generate on insertion 7-bp TSDs that, in
the case of Galikeo, match the consensus sequence GTANTAC, a palindrome. The TSDs of DmetP are 8 bp long and the consensus also corresponds to a palindrome, GTCCGGAC, a fact related to the dimerization of the P TPase (5). This suggests that the functional Galileo TPase is also a dimer. We conclude that Galileo belongs to the P superfamily of cut-and-paste transposons.
A parsimonious interpretation of the phylogenetic tree relating Gallieo with the 1360 and P elements (Fig, 4) suggests that Galileo arose from an ancestor with much shorter TIRs, Galileo long TIRs are variable in size both between and within species, suggesting a remarkable structural dynamism. For instance, in D. willistoni, the longest and putatively complete copy (contig 10048) has 765-bp TRRs, but another copy (contig 9452) has $959-b p-l o n g$ TIRs. Similarly, TIRs of Gatileo copies in D, mojavensis are 458 bp (contig 10940) to $1,260 \mathrm{bp}$ (contig 10757.2) long. TIRs may accidentally shorten (e.g., by deletion) but very likely they may also be clongated by internal duplication, unequal recombination, and or other mechanisms, such as longtract gene conversion (33) or single-strand break and synthesisrepair (see figure $5 B$ in ref. 34). We suggest that different Foldback-like elements might have originated from independent transposon lineages in a similar manner as the Drosophila element Galileo. In other words, TIR length and structure is not a reliable criterion for TE classification, and Foldback-like elements do not constitute a monophyletic group.
The phylogeny of the Galileo elements in the seven Drosophila species (Fig. 4) is clearly inconsistent with that of the species (cf. figure 1 in ref. 24). The elements of D. willistoni and D. sirilis, pertaining to different subgenera (Sophophora and Drosophila, respectively) are each other's closest relative. Similarly, the Galileo elements of D. mojanensis and D. buzzatiï (Drosophila subgenus) are more closely related to those of D. ananassae, D. pseudoobscura, and D. persimilis (Sophophora subgenus) than to those of D. virilis, a species from the same subgenus. Equally inconsistent with the species relationships is the phylogeny of the 1360 element (Fig. 4). There are two possible explanations for these topological disparities: lineage sorting and horizontal transfer (35). Lineage sorting refers to the vertical diversification of TE lineages and their differential loss along the branches of the species tree. Horizontal transfer is the process of invasion of a new genome by a TE, which is common for transposons and is considered as an integral phase of the transposon life cycle that allows long-term survival $(6,36)$. The strongest evidence for borizontal transfer is probably the detection of elements with a high degree of similarity in very divergent taxa, such as in the P element colonization of the D. melanogaster genome within the last century from the distantly related species D. willistoni (37). Many more events of horizontal transfer have occurred during the evolution of P elements in the genus Drosophila based on the available evidence (38). However, despite their close evolutionary relationship to \boldsymbol{P}, the available evidence for horizontal transfer in Galleco and $I 360$ (Fig, 4) is not compelling and lineage sorting should be considered, at this time, as an equally likely explanation.
The origin of the numerous chromosomal inversions in Drosophila and other Dipterans is still an open question and very few species have been imvestigated in this regard. Strong evidence implicating TE-mediated ectopic exchange has been found in four polymorphic inversions only, including the two D. buzzatii inversions generated by Galileo (39). In D. melanogaster and its close relatives, no TEs have been involved in the origin of three polymorphic inversions and only 2 of 29 fixed inversions contain repetitive sequences inverted with respect to each other at both breakpoints, pointing to a completely different mechanism for inversion generation (39). The fact that Galifeo generated two independent inversions in D. buzzatii suggests that Galileo is not a passive substrate where ectopic recombination operates but
may be actively generating inversions as a byproduct of its transposition mechanism. If this is correct, to create inversions, Galileo has to be active in a genome and a recent transpositional activity would be a necessary condition for Galifeo to have any role in the generation of current inversions. We have not found any functional TPase in any of these species but only one genome was sequenced in each case, so they could still exist in unsequeneed genomic regions, other genomes, and/or other natural populations. However, we have provided evidence of recent (<1 myr) transpositional activity of Gaflifeo in D. ananassac, D. persimilis, D. psetudoobsctura, and D. willistoni. These four are among the most polymorphic species of the genus with $24,28,13$, and 50 inversions, respectively (40). In D. mojavensis, with fewer inversions (41), the most recent transpositional activity of Galileo seems somewhat older (~ 1.5 myr). Finally, D, virilis with the oldest Galifeo activity (~ 3 myr) is chromosomally monomorphic (40). Therefore, there is a qualitative correlation between the number of inversions and the time of the most recent activity of Galifeo in this small group of species. This correlation is suggestive but might be only coincidental. However, the detection of chimerical copies that may be the result of chromosomal rearrangements (19) indicates that, indeed, Gallieo might have been involved in the origin of inversions, at least in some other species besides D. buzzatii.

Methods

PCR Amplification and DNA Sequencing. Genomic DNA from D, buzzatiV (strain st-1) and D. mojavensis (strain 15081-1352.22. Tucson Drosophila 5tock Cen(ter) (as control) was used as template for PCR amplification of Gallleo copies. Primers located in the TIRs were designed based on D. buzzatil known incomplete copies of Galileo (21), whereas primers inside the TPase were designed on the D. mojavensis putative complete TPanes found in a preliminary bioinformatic search (\$IFig. 7). Primers in the Tiks were always used in combination with primers anchored in the TPase to avoid multiple bands generated by the highly repetitive primer alone or the amplification of defective copies without TPase. PCRs were carried out in a total volume of 25 μ including $100-200 \mathrm{ng}$ of genomic DNA, 20 penol of each primer, $200 \mu \mathrm{M}$ dNTPs, 1.5 mM MgCl 2 , and $1-1.5$ units of Taq DNA polymerase. PCR products were gel-purified by using QiAquick Gel Extraction kit (Oiagen) and sequenced directly with the amplification primers and sequencing primers designed over the end sequences to close gaps (S1Fig. 7). Sequences were aligned and assembled by uning multialign software MUSCLE 3.6 (42).

Bioinformatic Searches. BLAST searches were performed on the chromorome assemblies of D. melanogaster and D. simulans and the contig CAF 1 assemblies of the other ten publicly available Drosophila genomes (httpitranalbl.gove drosophila). We used BLAST algorithm version 2.2 .2 (43) implemented in the Drosophila Polymorphism Database werver (http:Abioinformatica.uab.es dpdb) with default parameters. TBLASTN searches in the different species were performed by using as queries the TPases of Dbuz/Gallieo and Dme/(1360 ($\$ 1$ Table 1). Hits with an Evalue $\leq 10^{-20}$ (which in the conditions of our searches amounts roughly to $=30 \%$ identify over a stretch of 200 aa) were considered significant. BLASTN searches were also carried out with the 40 terminal bp of DbuztGalleo and the 31 bp of the Dme久t 360 Tik (99 Table 1). The cutoff in this case was an E-value $\leq 10^{-1}$ (that requires $\sim 21-22$ consecutive identical base pairi).

Contigs producing significant hits with the DburkGalileo and Dmeh1360 TPases in each species were scrutinized to characterize the different copies of both TEs. TIRs and TSDs were searched around the putative TPases by uning Dotiet 1.5 (44) to define the boundaries of each copy. innertions of other TEs inside Galileo were identified by aligning the different Galileo copies found in the same species and further analyzing the sequences present in only one of them. Significant contigs $<1 \mathrm{~kb}$ long and those that were found to contain complex clusters of several TE insertions (Jikely of heterochromatic origin) were not further investigated.

Nonautonomous Coples. BLASTN searches were carried out with the longest copies of Gallieo and 1360 (Fig. 18 and C to estimate the abundance of the two TEs within each species (51 Table 1). Significant hits were those with E-value $\leq 10^{-20}$ (equivalent to $=80 \%$ identity over a stretch of 200 bp). The number of significant contigs in these searches provides usually a minimum estimate for the number of TE copies because the searched databases were the

CAF1 contig assemblies in most cases and each contig contains at least one copy but may actually contain two or more. For similarity analyses, only the Tiks were used as they produced the most reliable alignments. The two TiRs of each TE copy were analyzed sepatately to estimate the divergence between the two TIRs within each copy as well as the painwise divergence between copies.

Consensus Sequences. The consensus sequences for Galileo and 1360 TPases and Gallieo Tifs were generated by using BioEdit 7.0.5 (45) after aligning the respective nucieotide sequences (5i Table 9) with MUSCLE 3.6 software (42). In the case of TPases, this consensus sequence was then tramslated into protein to allow the comparison among different tpecies (51 Fig. 6). Conserved protein domains were detected by using InterProscan ($\mathbf{* 6}$) and Conserved Domain Search (47). Coiled-coil regions were predicted by using the Colls server (48).

Phylegenetic Analyses. TPase sequences were aligned with MUSCLE 3.6 (42) and the alignment was filtered with Gblocks version 0.91 b (49) to remove the poorly aligned and highly divergent segments. Gblocks was used with the default parameters except for the maximum number of contiguous nonconserved positions = 15, the minimum length of a block = 6, and allowed gap position $=$ half. These parameters were fixed so that the conserved THAP domain was included in the filtered alignment. All phylogenetic trees were constructed with MEGA 3.1 (50) by using the neighbor-joining method with

1. Kidwell MO, Lisch OR (2002) in Mfobile DNA H, eds Craig NC, Craigie R, Gellent M Lambowitr AM (American Jociety for Microbiology. Wanhington DCC. pp 5s-80.
2. Capy P. Dazin C. Figuet D. Langin T (1Vha) Dymamicr and fvolution of Transporable (iements (Springer, Heidelberg)
3. Feschotte C. Pritham if (2007) DNA transposons and the evolution of evilaryotic genomec. Ansu Aev Genet 41:331-368.
4. HarenL, Ten-Hoang E, Chandier M (1999) Intiegrating ONA: Hampobuer and retroviral ienegraiel. Ansu Arv Microbiol 53245-281.
 (Americas Society for Mikrobiology. Waisington, DC, pp 4p4-518.
5 HartI DL, the AR Loxovkays tR (1997) Modern thoughts on an ancient marinere: Function, evolution, regilation. Annv fev Genet 311337-358.
5. Potter S. Truett M, Phillips M, Maher A(1s80) Eucaryotic Eansosable geneticelements with inverted terminal reptati. Cell 20.639-647.
 elements in Drovophils. Ceil 24.75)-763.
6. Liebermann D. ef al (1983) An unuwal transposon with long terminal inverted repeats in the sea urchin 5 trongytocentrotus purpuratus. Nature 305:342-347.
t0. Rebatchouk D, Narita IO (1997) Foldback tramposable elements in plants Piant Moi Biol 34.831-835
7. Ade 1, Betrile FS (1vm) Hairpin eiements, the fint farnily of foldoack transotons (ITv) in Acabidopuis thalians. Mant / 19591-597.
8. Simmen MVE, Bird A 6000 Sequence analyw of tramposable elements in the sea squirt, Ciona intestinals. Mol Biol Evol 17:1585-1694
9. Windsoe AL, Waddell CS (2000) FAPE, a new family of foldback traniposons in Arabidopis. Generics 156: 1983-1995.
10. Templeton NS, Potter \$\$ (1389) Complete Foldback transpotable elements encode a novel prosein found in Drosephla melanogater. fMAO $/$: 8 : 1837-1824.
 of Drosophila melanogaster. Genetics 126 .1a7-400.
11. Pihham EL, Feschotre C, Wessler SQ (2005) Unexpected divensty and sifferential woces of Dha unsposons in four species of emamoeba prosoroam. Mol Siol fvel 22:1751of ONe
12.
13. Caceres M. Ranz M. Iarbasila A. Long M. Ruis A (192) Generation of a widespread Drosophila inverion by a tramporable elemert. Science $285.415-411$.
14. Ciceres M. Pig M, Buiz A (2001) Molecular characterisation of two natural hotupots in the Drosophils buzzati genome indiced by trarsposon insertions. Genome fes 11:1353-1364.
15. Casab F, Caceres M, Buiz A (2003) The foldback like tunsposon Galieo is irvelved in the geseration of two different natural chromosomal invenions of Drobophila buszatii. Mol Alof Fvol 20.674 -6ss.
16. Lim JK $S \mathrm{immons} \mathrm{Mu}(139 \mathrm{~F})$ Grois chromosome rearrangements mediated by tranuposable elements in Drosophila melanogaster. BioEisays 16:269-273.
17. Casab5, Caceres M, Mantrin MAt, Gonablez 2, Ruir A (2005) Molecilar characterization and edromoromal distribution of Galilea. Kepler and Newtor, three foldbadk trans ponable elementi of the Dronophila butratil ipecies complex. Genetica 160 204 $7-2059$
18. Adams MD, et at (20000) The genome sequente of Drotophila melanogater. Science 2472195-2195
19. Richands 5, et at (2005) Comparative genome sequenoing of Drovophila pseudoobsura: Cheonotomal, gene, and ch-element evolution. Genome Res $15.7 \mathrm{~F} / \mathrm{B}$.
20. Dronophila 12 Gesomes Comortium (2007) Evolution of genes and genomes on the Drosophila phylogery. Nature 480.203-218.
21. Neis D. Quetneville H, Nouaud D. Andrieu O, Arwolabebere D (2003 Hoppel, a Plike element welhout introns a P-element anceitral structure or a retrotrankcription detivative? Mol Biol fvol 20.859-879.
complete deletion and 500 replicates to generate bootstrap values. Poisor correction and Kimura 2 parameters were used as substitution models fos amino acid and nucleotide sequences, respectively. We dated the most recent transposition events within each species by dividing the average palrwise divergence between the elements in the same group or subgroup by the Drosophila synonymous substitution rate, 0.016 substitutions per nucleotide. myr (21). To date the divergence between different groups or subfamilies we calibrated the tree with the same substitution rate by uring the appropriate option in MEGA (50). Time estimates for TEs should be taken with cautionc it the synorymous substitution rate were an underestimate of the true mutatior rate for TEs, our time estimates would provide an upper bound for the true values.

ACKNOWLEDGMENTS. We thank Margaret Kidwell, Cedric Fexchotte, Dmitr Petrov, Mario Caceres, Jovefa Gonzalez, and two anonymous referees fou mary constructive comments and Diana Garzon for help with the initia bioinformatic searches in D. mojavensis. This work was completed while A.R. was on sabbatical leave at Stanford University; he thanks Dmitri Petrov, Josefa Gonzalez, James Cai, Yael Salaman, Ruth Hershberg, and Mike Macphersor for their warm hospitality and personal help. This work was supported by a formacion de Personal investigador doctoral fellowship (to M.M. M) and SecreFormacion de Personal Investigador doctoral fellowship (to M.M.) and Secre-
taria de Estado de Universidades e Investigacion (Ministerio de Educacion y tarla de Estado de Universidades e Investigacion (Ministerio de Educacion y
Ciencia. Spain) Grant BFU2005-022379 and mobility grant Pp2005-0329 (tC Giencia. Spain) Grant gFu2005-022379 and mobility grant PrQ005-0329 (tc A.R.).
26. Lanki FA, $\operatorname{NiO} O$ OC, Rubin $\mathrm{CM}(1886)$ Thue ipecificity of Drotophila P element trampovition is regulated at the level of mbNA spliong. Cell 44:7-5).
27. Lee CC, Feall EL, Rio DC (199s) DNA sinding by the KP repressor protein inhibie: P-element tramporase activity in vitro. CMSO ; 17 4 165 - 4174.
28. Clouaire T , et al (2005) The THAP domain of THAP1 is a large CZCH modvle witr zinc-dependent sequence-speoific DNUA-binding activity. Proc AutI Acad Sci usa 102.6907-6912.
29. Aounigne M, ef ad ©003) The ThaP domain: A novel protein motif with similarity te the ONA tinding domain of P element trampesast. Trends Biochen Sol 28.66-69.
10. Quevinevile K , Nowaud D, Arsolabehere D (a605) kecurrent recruitment of the Thas DHA-binding domain and molecdar domestication of the P-tramposable element: Mol inol frol 22:741-745.
31. Kapitonor W, hika I (2003) Moleoular paleontology of tvansposable elements in the Drotophila melanogater genome. Proc Nael Acad Sei USA 100.6565 - 6574.
32. Hagemann S. Pisker W Goon Drovophila P tanuposors in the homan genome? Mor Aiol fvol 10.1779-5983.
13. Richardron C. Moynahan ML, lavin M (1998) Double-strand break repaic by interchromesomal recombination suspretsion of chromosemal sunslocations. Genes Des 12.7831-1442.
34. Kapitonow VV, Jurka I (2005) Sell-ynthestbing DNA trampotons in eviaryotes. Arow Nat Acad Scl USA 103:4540-4545.
35. Page RD, Orarleston MA (199ss Trees within veex Pyplogery and historikal amociations. trends fool frol 13:356-359.
35. Sha K, Leveto EL, Clark 18 (2004) Factors that affect the heripontal transfer on tranipolable slements. Cur hasues Mol Biol 657-71.
37. Clark 月, Kidwell MG (1997) A phylogenetic perspective on P tramiporable elemenf evolution in Drosophila. Proc Nael Acad Sci VSA 34.11478-11431.
38. Silva IC, Kidwell MG (2000) Horizontal transfer and selection in the evolution of IF elementa. Mol Biol fvol 17: 1542-1557,
39. Rana. IM. et at (2007) Frinoiples of genome evolution in the Drotophila melanogastes specier group. flos Aiol 5 els 152 .
40. Sperlici D. Ptriem P (1906) in The Genetics and Aology of Drowophila, edi. Ashbumem M , Carson ML. Thompion Ni ((Acablemic, Londorl. pp 257-309.
41. Ruir A. Heed Wi, Waserman M (1990) Evolution of the mojsvenuis dunter of cactophilic Drosophils with deccriptions of two new specien. I theved \$1 30-42.
42. Idgar BC (2000) MusCut: Multiple sequence alignment with high acturacy and higr throughpue. Nucleit Acid Ner 32 1792-1797.
4). Altuchals, ef at (199n) Gapped BLASt and P5t-4LAST: A new generation of proteir database search programn. Mutleic Acies Res 253399-3402.
44. Junier T, Pagei M $\mathbf{M} 000$ Dotiet: Diagonal plots in a web browter. Bloinformatie 15:178-179.
45. Hall TA (tym) tiotdit A use-friendy biologicat sequencp alignment editor inc analjis program for Windows 95/98NT. Audeic Acids Symp Ser 41:95-98.
46. ZSobonov FM. Apweler if (2001) Interfrofcan-an integration platform for the igna ture-recognition methods in InterPro. Sioinformatics 17847-84.
47. Marthler-Eauer A, ot at (200S) CDO: A Conterved Domain Omabme for peoteir deswification. Nucleic Aoids Res 31-D192-0196.
48. Lupas A, Van Dyke M, Stock 1 (1991) Predicting ceiled seils from protein sequentes: Science 252:1162-1164.
42. Cantresans I (2000) Selection of conserved Bloks from multiple alignmeets for their use in plylopenetic analyis. Mol aliof fvot 17-540-552
So. Kumar S. Tamura K. Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analyis and requence algnment. Arief Sipinform $5: 150-161$.

1.1.- Supplementary material

Supporting figures list:
SI Figure 5
SI Figure 6
SI Figure 7
Supporting tables list:
SI Table 1.1
SI Table 1.2
SI Table 1.3
SI Table 1.4
SI Table 1.5
SI Table 1.6
SI Table 1.7
SI Table 1.8
SI Table 1.9

SI Figure 5. Neighbor-joining phylogenetic tree built with 14 Galileo copies found in the D. virilis genome by using MEGA (16409 is the most-complete copy, see Fig. 1B). The two TIRs of each copy were included in the tree as separate sequences to allow their comparison within and between copies. TIRa is the TIR located at 5^{\prime} from the TPase or the first TIR that appears in the contig if the copy could not be oriented. The complete deletion option was used leaving 76 informative sites (an almost identical tree results when omitting some of the shortest sequences, increasing the number of informative sites to 258). Bootstrap values of main nodes are shown. Groups A and B show a $\sim 68 \%$ divergence indicating $\sim 20 \mathrm{myr}$ of separation. Details of these Galileo copies are given in SI Tables 4 and 5.

SI Figure 6. Multiple alignment of 22 proteins: eight Galileo TPases, eigth 1360 TPases, five representative P-element TPases and THAP9 protein from Homo sapiens. The alignment of the THAP domain region was corrected by hand to align the functional and conserved amino acids of the domain. Conserved blocks selected with Gblocks are marked with a blue box. Identical positions are black-shaded and the positions with similar amino acids are gray-shaded. THAP domain conserved residues are marked with a red star and the three final residues (AVP) are included in a red box. A red line marks the entire THAP domain region. The coiled-coil region is marked with an orange-filled box. The Leucine amino acids of the Leucine zipper coiled-coil motif of the DmellP TPase are marked with a yellow triangle. GTP binding sites of the DmellP TPase are marked with a yellow-filled box. The catalytic amino acids are labeled with a green star. The fourth acidic catalytic amino acid of the P-element transposase that is not conserved in the TPases of Galileo and 1360 is indicated with a gray star. Accession numbers for P-element TPases and THAP9 are: DmellP: Q7M3K2, Dbif $\backslash P:$ AAB31526, DhellP: AAK08181, DwillP: AAT96022, SpallP: M63341, THAP9: NP_078948.
Dmel\P-element
Dbif\P-element
Dhel\P-element
Dwil\P-element
Spal\P-element
Hsap\THAP9
Dana\Galileo
Dpse\Galileo
Dper\Galileo
Dwil\Galileo
Dvir\Galileo
Dmoj\GalileoC
Dmoj\GalileoD
Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dme1 \P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360
Dpse\1360
Dvir\1360

Dmel $\backslash P$-element Dbif\P-element Dhel $\backslash \mathrm{P}$-element Dwil\P-element Spal\p-element Hsap \THAP9
Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\Galileoc Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360 Dpse\1360 Dvir\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\p-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvix\Galileo Dmoj\Galileoc Dmoj GalileoD Dbuz\Galileo Dme1\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360 Dpse\1360 Dvir\1360

Dmel\P-element Dbif $\backslash P$-element Dhel\p-element Dwil\P-element Spal\p-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj \Galileoc Dmoj\GalileoD Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvix\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \backslash THAP9
Dana\Galileo
Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj \GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

[^1]Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

 TAGPRA YHLYKK-GFPIPSRTTIYRWLSDVDIKRGCLDVVIDLMDS--D TAGPRIYNHLYKK-GFPLPCRATLYKWLSNVEIQTGCLDVVIDLMDN--M TAGPRIYNHLYKK-GFPLPSRTTLYRWLSDVEIKTGCLDVAIDLMEN--D TAGPRIYNHLYKK-GFPLPSRTTLYRWLSDVDIKRGCLDVVIDLMDS--D TAGPRAYTHLYKK-GEPLPSRTTLYRWLSDVEIKPGCLDVAIDLMEN--D LCSSKVYDYVRKI--LKLPHSSILRTWLSKCQPSPGFNSNIFSFLQRRVE EYSSRTYEYMRDVLKLKLPAKSTLSRWALEKNLTPGFHPDFLENLQKIVG EYSSRTYEYLRDVLNLKLPSKRTLARWAVLKNMRPVENPDLLSNLKTIFD EYSSRTYEYLRDVLNLKLPSKRTLARWAVLKNMRPGFNPDLLSNLKTIFD FYSSKAYNEMRDDLELNLPCNKSLORWAPVRNMVPGLNENLLKHLKGIEI FYFAKAYDFMRNDLHLNLPSKSSLARWAPVKYLVSGLNECLSNTLLKIFS FYSAR YDYLRDVLNLRLPCKKOLNRWMILKNLVPGFNPELLENLKDIV FYSARTYDYLRDVLNLRLPCKKSLNRWAILKNLVPGFNPDLLENLQGIVE FYSARAYEYLRDVLHLKLPSKKSLNRWAIFKNLTPGSNPELLENLQGIVE YRSTSTYTFLRDSLKLNFPSPSSLOKWNSIKKLQPGDNECLYSALKESIK YRSTSTYTELRDSLKLNEPSPSSLOKWNSIKKLQPGDNECLYSALKESIK YRSTSTYTELRDSLKLNFPSPSSL®KWNSIKKLQPGDNECLYSALKESIK YRSTSTYTELRDSLKLNEPSPSSLOKWNSIKKLQPGDNECLYSALKETIK YRSTSTYTELRDSLKLNEPSPSSL®KWNSIKKLQPGDNECLYSALRETIK YVSPSTYAbMRNRLNLSLPHVSTLYRWDPIKSLQPGFENTAIDA YVSPSTYAFMRNRLNLSLPHVSTLYRWPRIKSLQPGEENTAIDA------YRSTSTYKFLRDSLQLNLPSPSSZOKWNSIKKLQPGDNECLYSALKDAIK

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360
Dper $\backslash 1360$
Dpse\1360
Dvir\1360

Dmel\P-element Dbif $£ \mathrm{P}$-element Dhel\} \backslash -element Dwil\P-element Spal\P-element Hsap \backslash THAP9
Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir \Galileo Dmoj\Galileoc Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

--VQLAIVR LKKSWKOPV-FEDFNTRMDPDTLNNILRKLHRK---GYL
--VQLAMVRGLKKSWKQPV-FEDYDTRMDVPTLYELIKKLHRR----GYE
--VQLAIVRGLKKSWKQPI-FEDFSTRMDADTLNNIIRKLHTK----GYP
--IQLAIVRGLKKSWKQPV-FEDFNTRMDPDTLNNILRKLHRK----GYL
$--V Q L A I V R G L K K S W K Q P I-F E D E S T R M D A D T L N N I I R K L H T K----G Y P$
SETVLLMAVGIFGHWRTPLGYE-FVNRASGYLQAQLLRLTIGKLSDIGIT
QQVCVEMARGLEENWKYVISYTVSANGIKHDALMKKVEANIEVSQTLGLN
QQVCVEMIRGLEENWKYVLSYTVTANGIKHEALLTKVTANIEQAQVIGLN
QQVCVFMIRGLEENWKYILSYTVTLNGIKHEALLAKVTANIERAQVLGLN
KQICVEMVRGLYANWKEVLSYVATSTGLSSHKLTQLIDSNIRAARTLGLF
KQISVFMVRGLYENWIFVLSYFATSTGLLTLKLKRQIESFLRTGYSLGLN
QQVCVFLVRGLFDNWKYVLSYTVSARGINHTDLKKKFEENIGLSQALGLN
QQVCVFLVRGLFENWKYVLSYTVSARGINHTDLKKKFEENIGLSQALGLN
QQVCVFLIRGLFENWKYVLSYTVSANGIRHSDLKSKVEANIGLSQAIGLN
SHICVFVLRGILKKWKEILNYFVAETNIKGDCLKSLIYKNIIIAETIGEK
SHICVFVVRGILKKWKEIINYFVAETNIKGDCLKSLIYKNIIIAEKIGEK
SHICVEVVRGILKKWKEIINYFVAETNIKGDCLKSLIYKNIIIAEKIGEK
SHICVFVIRGILKKWKEILNYFVPETNIKGDCLKKEIYKNINIVENIGEK SHICVEVIRGILKKWKEILNYFVPETNIKGDCLKKLIYKNINIAENIGEK
KPVCVEMEKSIESKTSSLLNYEASENGLTSDHLCEIVKRNISILHSLGVS KPVCVEMEKSIESKTSSLLNYFASENGLTSDHLCEIVKRNISILHSLGVS SHICVEVLRVIFKKWKFILNYFVPKTNIKGECLKALILRNINIAENIGET

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo
Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360 Dpse\1360 Dvir\1360

 GHPEDEDLKIFVFSDAPHLIKLVR*HYLA-TGLHINGQTLTKSTVEQTIT SHPTDEHLKISVEPDTPHLIKLVRNHYVD-SGLTLYGKKLTKTTVQQTLN SHPADDHLKIFVFSDTPHLIKLVRNGYVD-SGLTINGKKLTKKTIQEALH SHPTDENSKIFVFSDTPHLIKLVRNHYVD-SGETLNGKKLTKTTVQQTLN QHPSSSSQQIAYFEDSCHLLRLIRNAFQNFQSIQFINGIAHWQHLVELVA NV---NDKEIFVIEDAPHLIKSLRNLLLK-NNLNTPDGEVSWDIIKKLYQ KV---QDKEIFAIYNVPHLIKSLRNIVRN-INLYTPDGVVSWKIVEELYE KV---QDKEIEAIYDVRHLIKSLRNIVRN-RNLYTPDGVVSWKIVEELYE SL---DDQKIYGIYDVPHLTKSIRNILMR-DSIETPDGTVSWHVVVRLLE TI---DDKKIYGIYDDPRLFKSLRNILMR-NSLETPDVRVSWQILVKLFQ EV---NGEKIFAIEDAPHLVKSLR*ILLK-NNILAPEGTVSWGIIRRLYE EV---NGEKIFAIFDAPHLVKSLRNILLK-KNISTPEGTVSWGIIRKLYE HV---NDKEIFAVFDAPHLVKSLRNILLR-HNISTTQGTVSXNIIRKLYE TL---NNKK-YMFYDIPRLEKSVRNNFLR-ANFETPDGLVDFDVIREVYE TL---NNKKYYMFYDIPHLEKSIRNNFLK-ANFETPDGLVDFDVIRDITK TL---NNKKYYMFYDIPHLEKSIRNNFLK-ANFETPDGLVDEDVIREVYE TE---NNKKYYMFYDIPHLEKSIRNNFLK-ANFETPDGLVDEDVIREVYE TL---NSKKYYMFYDIPHLEKSIRNNFLK-ANFETPDGRVDFDVIREVYE EY---ENQKVFCMYDFPHLTKSLKNGLLT-CDLSSPDSIVSFKVVOELWE XY---ENQKVFCMYDEPHLIKSLKNGLLT-CDLSSPDSIVSEKVVQELWE YN---NNKRYYLFYDIPHIFKSIRNNLLK-AKFETPDGLVDFDVIREVYE

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif\P-element Dhel\} \backslash -element Dwil\P-element Spal\P-element Hsap \backslash THAP9
Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\Galileoc Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

... $660 \quad 670 \quad 680 \quad 690$

LG----YDIENATETADFFKLMNDWFDIFNSKLSTSNCIECSQPYGKQLD LG----YQVENAVETSDLFKLLNDWFDVENSKLSTSNCIETTQPYGKQLE LG----YDVENACETSDLFKLLNDWFDLFNSKLSTANCIQSTQPYGKQLP LG----YDIENATETADFFKLMNDWFDIFNSKLSTSNCIECSQPYGKQLD LG----YDVENACETSDLFKLLNDWFDVFNSKLSTANCIQSTQPYGKQLE LDL---PPEQNCIGTIHELRLINNLEDIFNSRN------CYGKGLKGPLLP SGGFV-DCRNSAEATANEIENVNKLEDCLNSHV------LYEKNPDRCALQ SGGEL-KCKENAEATATEIEKMNRLEDCLNSHV-----LYDKNPERSALQ SGGEL-KCKENAEATATEIEKINRLFDCLNNHV-----LYDKNPERSALQ HGKFI-DCEDVAIATSKFIEKVNRLFDCLNSSN-----IYDRNPNKSAIQ NGNFA-DCRDIALSTAKFIERVNKLLDCLKSNV-----LKDKNLFESALQ TGGFA-DCKDSAVATAIFIDKINNLFDCLNSHV-----LFDSNPYRCALR TGGFA-DCKDSAVATAIFIDKINNLFDCLNSHV-----LFDSNPYRCALR SGGFS-DCKDSAVATAIFIEKINRLFDCLNSHV-----LFDSNPYRCALT NKQLHRNSSEVAASTAAFVQKDNDYEDCLNSRV-----LTDKNPMKCALQ NKQLHRNSSEVAASTAAFVQKVNDYFDCLNSRV-----LTEKNPMKCALQ NKQLHRNSSEVAASTAAFVQKVNDYFDCLNSRV------LTDKNPMKCALQ NKQFHRNSPEVAASTAAFVQKVNDYFDCLNSRV------LTDKNPMKCALQ NKQENRNSPEVAASTAAFVQKVNDYEDCLNSRV-----LTDKNPMKCALQ TVGEKNSTYQVALSTAEEINKIDQIFDCMNSGS-----LYADNVYRSAIQ TVGEKNSTYQVSLSTAEEINKVDQIEDCMNSGS-----LYADNVYRSAIQ NKOLQRSSSEVADATATEVEKVNDYFDCLNSRV———--INDNNPMKCALQ

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper \Galileo Dwil\Galileo Dvix\Galileo Dmoj\Galileoc Dmoj\GalileoD Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel $\backslash P$-element Dbif $\backslash P$-element Dhel\P-element Dwil\p-element Spal\p-element Hsap\THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\Galileoc Dmoj $\operatorname{GalileoD}$
Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif P -element Dhel\P-element Dwil\} \backslash -element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj G GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360 Dpse\1360 Dvir\1360
810
RLRKYII-

NKNVIPD-NSESWLNLDESSKENENKSKDDEP--VDDEPVDEMLSNIDET NGNVDED-NCDSWLNLNITPNGNKE--------NEPDEGKWKGWSKEFEE TGNVEED-NFDSWLNLDFSSK-------------SLRNKPEDDEPEDDEQG SGNIEED-NSESWLNLDFSSKENENKSKDDEP--VDDEPVDEMLSNIDFT TGNVAED-NCDSWLNLDFNSKSLEKKENKPED----VEPEDVEPEDEADE IFDISIARRKDLALWTVQRQYGVSVTKTVFHEEGICQDWSHCSLSE----SGNFGPD--DDTMLINVIQDCSTNKICNNLKT-DEEESTDFDMFSDEETE SGNCSPD--EDTMLINIIKDNVSSESASESKT----EDDDILISTNEDAE SGNCSPD--EDTMLISIIKDNVSSESASESKT----EDDDILISTNENAE TGNCEPD--ED-MLINVIEETKHELAIENVNDQDQVYYEDFNIILDENMK SGNCQPN--GEEMLVNVIELANEKCKAFVLRT----KNICPITSSALNIS SGNCIPD--EDLMLANIIKDSGSQLSVFHEQC-NSCHTPTEIEPLDDDLE SGNCIPD--EDLMLANIIEDSGSQLSVEHDQC-NSRHTATDIEP-DADLE SGNCILD--EDSMLANIIKDSGSTLSVEHSQC--EIHSSVYEEPSDPDFE KSNCESD--DDVMLPIEEDSIIYQPEVEKKEI---QQQEYSVSESKIVQD KSNCESD--DDVMLPIEFDSIIYQPFIEKKKK-EIQQQEYSVSFSKMVQD KSNCESD--DDVMLPIEFASIIYQPFIEKKEI---QQQEYSVSFSKILQD KSNCESN--DDVMLPIEEDSIIYQPCVEKKEI----QQEYSVSFSEIVQG NSNCESD--DDVMLPIEFDSIIYQPCIEKKEI---QQQEYSVSFSEIVEG FGNCEADEEEGAAVQACIEGVENESNNLKVEH-PNDHDELLSKLDFDGSG FGNCEADEEEGIAVQACIEGVENESNNLKDEH-PNHHDELLSKLDEDGSG KSNCESD--DDVMLPVEFDSIIYEPYENNESK-VVPDNEFSVSLSQIVKG

Dmel $\backslash P$-element Dbif $\backslash P-e l e m e n t$ Dhel\P-element Dwil\P-element Spal\p-element Hsap \THAP9
Dana\Galileo
Dpse\Galileo
Dper\Galileo
Dwil\Galileo
Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak\1360
Dper\1360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360
Dpse\1360
Dvir\1360

FEIEMDNNIAAEYIMDELTED--AMEYLAGYVVRK------------------1 IANNIPAVI----EIDELTED--GMD-VAGYVIKR------------------ R

DDDCIANNIPADIEMDELTED--AIEYVAGYVIKR-----------------
-------------ALLDLSDHRRNLICYAGYVANKLSALLTCEDCITALY IEQIFDIA-----TGNEFGSN--ALRYFAGYILFKELQKNDCGACAD-LL LELSIEATDLS--IQAAFNEN--ALRYYAGYLLHKLLKKYDCNKCSE-LL LELSIEATDLS--IQAAFNEN--ALRYYAGYLLHKLLNKYDCNKCSE-LL DEVSEADKEQPT-EISIATEN--SLKYFVGEVMHKAQQKENCDTCKE-LL TNVVCDNDDLPSVAISASSDN--ALRYEAGEVLDKSQQEFNCDTCKS-EL IELSLDTTIAN--IQNDENEN--ALRYEAGYLLHKLLQNTDCEVCTN-LL IELSLDATIAN--IQNAFNEN--ALRYFAGYLLHKLLQRTDCEVCTN-LL IELSLDSTIVN--IQNAENEN--ALRYFAGYLLHKLLQRTDCEVCTN-LL NERYFDQNIDNF-LCNDVPIELTSSRYFVGYIAKG----SSCDKCRSVIL NERYFDQNIDNF-LCNDVPIELTFSRYFVGYIAKG----SSCDKCRSVIL NERYFDQNIDNE-LCNDVPIELTSSRYFVGYIAKG----SSCDKCRSVIL NERYFDQNMDDF-LCNDVPIELTSSRYFVGYI』KG----SSCDKCRSLIL NERYFDQNIDNE-LCNDIPIELTSSRYFVGYIAKG----SSCDKCRSVIL FENYFEKDSEK--TSKEINIEVASMRYEVGYVAEKTIPRLNFETCSKCMR EENYFEKDSEK--TSKEINIEVASMRYFXXXXAEKTIPRLNFETCSKCMR NETYEDEHMDNM-LTNDLPIELTSSRYEVGYIAKG----SNCEKCQTYLI
 RISDKVKENLTE-----TYVDEVSHGGZIKPSEKFQEKLKELECIFLHYT RLSNESTQS-GF-----TYVDEVSHGGLIKPSDQFTATLKHLESIFINNI RMSDCCKQSPTF-----TYVDEVSHGGLIKPSDQFKNKLKELKIIFSHYT RISDKVKENLTE-----TYVDEVSHGGLIKPSEKFQEKLKELECIFLHYT RLSDCLKQSSTE------SYVDEVSTGGLLNRSDEFKNKLKELEIIFSHFA ASDLKASKIGSLLEVKKK--------NGLHEPSESLCRVINICERVVRTHS KKNIDAQSCTETFIINKNYDCADKTLKLKAPSDSFESLIEIHFNVEKKIF KSSDEVRCSSEYLILNKNEGYVSSSLKLKAPSEDECTLVKIYEDIFNRHE KSSDEVRCSSEYLILNKNEGYVSSSLKLKAPSEDFCTLVKIYFDIFNRHF KEEIANYEESEFFIINKNEKTINNNLKGKAPQNHLFNLMKQHYKFEKNEKEENAKCEDSEYFLCNKNFKSINNRLKLKDPQDDFFCLIKHCYSIFQTIE KSSDEMQCSSEYLILNKNFHYINRYLKLKAPSDHFYNLIKLHFESFRKIF KSSDEMQCSSEYLILNKNYHYINKYLKLKAPSDLFYNMIKLHEETEKTIF KGSDEMQCSSEYLILNKNYNYIHQYLKLKAPSDNFYNIIKIHFDIFQKIE KETEHLTAPSELFIHEKNYSIESDFGKLKAPSDLFFNIYKIHIKAFENIF KETEHLTAPSELFIHEKNYSIDSDFGKLKAPSDLFENICKIHIKVFENIF KETEHLTAPSELFIHEKNYSIDSDFGKLKAPSDLFENICKIHIKVFENIF KESEHLTAPSELFIHEKNYWIESDFGKLKAPSDLFENICKIHIKVFENIF KETEHLTAPSELEIHEKNYSTESDEGKLKAPSDLFENICKIHIKVEENIE KEDEVITVPSELFIEYKNYQKETDFGSLIAPSDCLMEISKKHILIFCKFE KEDKVITVPSELFIEYKNYQKETDFGSLIAPSDCLMEISKKHILIFCKEF KNSEFLTAPSEQFISEKNYSKDTDFGNLKAPSDLFENNSKIHIKVEDNIF

Dmel\P-element Dbif\P-element Dhel\P-element Dwil\P-element Spal\P-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\GalileoC Dmoj\GalileoD Dbuz\Galileo Dmel\1360
Dsim\1360
Dsec 11360
Dere\1360
Dyak\1360
Dper 11360
Dpse\1360
Dvir\1360

Dmel\P-element Dbif $\backslash P$-element Dhel\P-element Dwil\p-element Spal\P-element Hsap \backslash THAP9 Dana\Galileo Dpse\Galileo Dper \Galileo Dwil\Galileo Dvir \Galileo Dmoj\Galileoc Dmoj\Galileod Dbuz\Galileo Dmel\1360
Dsim\1360
Dsec\1360
Dere\1360
Dyak 11360
Dper\} 1 3 6 0
Dpse\1360
Dvir\1360

-IYLRVKYLNKKMYIKNQKR-

-IYERVKYLNKKICIKNQKQ-
AINHEVKLLKDIIICELNIRAKNVAQNPLKHHSERTDMKTLSRKHWSSVQ CYEHRMKMLNGFILILLRKNSK---------------------------WLTEK CFVHRNHLLNQEVLILIRKNEK----------------------------WLTDR CFVHRNHLLNQEVLILIRKNCK---------------------------WLTDR CSEHRKEILNYELLVLLKKNSK----------------------------WLMES CSHHRKYILNYVLQVLFRDNSI---------------------------WLIEK CFEHRKSILNQFVLILIRKNCK---------------------------WQTEK
 CFDHRKFMLNQFVLILIRKNCK----------------------------WLTDS
 CYABRTDLLNKLIKVLLFKHCK----------------------------WTVMI CYAHRTDLLNKLIKVLLEKHCK--------------------------WTVMI CYVHKIDILNKLIKVLLFKHCK----------------------------WTVTA CYEHKIDLLKKLIKVLLFKHCK----------------------------WTVIA CREHKLALLDFVILVLLRKHSL---------------------------WARR CREHKLALLDFVILVLLRKHSL----------------------------WARR

[^2]SI Figure 7. Isolation of Galileo in D. buzzatii. (A) Molecular structure of the putative full Galileo element from D. buzzatii. The big blue arrows are the TIRs and the white rectangle is the ORF coding for the TPase with the THAP domain shown in red. Primer location is indicated by small arrows underneath. (B) PCR amplification of the full Dbuz $\operatorname{Galileo}$ copy. Four PCR reactions yielded relatively long products that were subsequently sequenced and assembled. The fact that each PCR product produced a single nucleotide sequence and that the overlapping portions between the four sequences were 99.99% identical (a single mismatch), suggests that they come from a single genomic Galileo copy. The sequence of the TIR ends was taken from the previously known D. buzzatii Galileo-3 sequence (accession no. AF368897). (C) Sequences of the primers used for amplification and sequencing of PCR products. Primers M13F and M13R are universal primers from the sequencing vector, bacteriophage M13.

Primer	Sequence (5'-3')
G3	CAAAATCATTCCGCTTCGAG
G20	CAATCGCCGAGTATCACTTGT
G21	CGCAAATTCAGGTCACATATAAC
G23	TGTAAGGTTGATTAGCAGTAGC
G24	ATATTGGACTATCGCAGGCAT
G25	GCCCTGAGTTGTGGAGATGT
G26	ACACAGACCTGCTGACCTAGA
G27	CTAATCCAGAGTTGCTAGAA
G28	CATCCGTTATGTAGACATATT
G29	GCATAMCATCTCCACAACTCAG
G30	ATGTGCATGATACCTTCAGGA
G31	CAGTTCTTTGCAACAGCTTGTG
G32	TTGACACTCAACTTCCGA
M13F	GTAAACGACGGCCAG
M13R	CAGGAACAGCTATGAC

U
SI Table 1.1. Number of significant hits produced in BLAST searches of the 12 Drosophila species genomes using different parts of
Galileo and 1360 elements as queries. See Figure 1 for the longest copies of Galileo and 1360 in the six species and Materials and Methods for details.

		Algorithms and queries used in the different searches					
		TBLASTN	BLASTN	TBLASTN	BLASTN	BLASTN	BLASTN
Species	Database	DbuziGalileo TPase (912 aa)	$\begin{gathered} \text { Dbuz\|Galileo } \\ \text { TIR } \\ (40 \mathrm{bp}) \end{gathered}$	$\begin{gathered} \text { Dmel 1360 } \\ \text { TPase } \\ (854 \text { aa) } \end{gathered}$	Dmel 1360 TIR (31 bp)	Galileo longest copy	$\begin{gathered} 1360 \\ \text { longest copy } \end{gathered}$
D. simulans	CAF1 Mosaic Chromosomes	2	0	4	14	-	14
D. sechellia	CAF1 Contigs	18	0	84	575	-	690
D. melanogaster	Release 4.2.1 Chromosomes	2	0	6	7	-	7
D. yakuba	CAF1 Contigs	25	0	56	151	-	265
D. erecta	CAF1 Contigs	5	0	59	157	-	216
D. ananassae	CAF1 Contigs	11	4	8	0	216	-
D. pseudoobscura	CAF1 Contigs (reconciled)	23	0	12	0	109	121
D. persimilis	CAF1 Contigs	25	0	14	0	170	167
D. willistoni	CAF1 Contigs	90	17	49	0	495	-
D. mojavensis	CAF1 Contigs	64	25	35	0	367/287*	-
D. virilis	CAF1 Contigs	7	78	9	0	134	295
D. grimshawi	CAF1 Contigs	0	0	0	0	-	-

* Two different searches have been performed in D. mojavensis, one with Dmoj|GalileoC (contig 10758) and another with Dmoj|GalileoD (contig 9930).
SI Table 1.2. Best hits recovered using TBLASTN and the amino acid sequence of the Dbuz Galileo TPase as query. For D. sechellia, D. erecta and D. ananassae, two or three hits with similar E-values have been listed.

Species	Best hit	Coordinates	Identity	Positives	BLAST score	E-value
D. melanogaster	Chr. 4	$811865-809967$	$239 / 644(37 \%)$	$369 / 644(57 \%)$	420	$1 \mathrm{e}-123$
D. simulans	ChrU	$8187885-8186911$	$116 / 349(33 \%)$	$192 / 349(54 \%)$	194	$1 \mathrm{e}-083$
D. sechellia	Contig 5259	$3350-4663$	$162 / 456(35 \%)$	$261 / 456(56 \%)$	280	$1 \mathrm{e}-114$
	Contig 9279	$912-2552$	$203 / 557(36 \%)$	$323 / 557(57 \%)$	367	$1 \mathrm{e}-114$
	Contig 5902	$3196-4743$	$195 / 534(36 \%)$	$308 / 534(57 \%)$	340	$1 \mathrm{e}-92$
	Contig 7407	$139694-138903$	$90 / 269(33 \%)$	$131 / 269(48 \%)$	136	$1 \mathrm{e}-154$
D. erecta	Contig 7387	$107457-106795$	$80 / 233(34 \%)$	$124 / 233(52 \%)$	122	$5 \mathrm{e}-55$
	Contig 0.40	$345839-348313$	$296 / 892(33 \%)$	$466 / 892(52 \%)$	459	$1 \mathrm{e}-128$
D. yakuba	Contig 19410	$9020-10615$	$322 / 555(58 \%)$	$407 / 555(73 \%)$	633	0
D. ananassae	Contig 15556	$3697-5688$	$428 / 670(63 \%)$	$556 / 670(82 \%)$	897	0
	Contig 3152	$9685-8285$	$269 / 472(56 \%)$	$359 / 472(75 \%)$	542	$1 \mathrm{e}-164$
D. pseudoobscura	Contig 7728	$2761-3471$	$144 / 242(59 \%)$	$191 / 242(78 \%)$	287	$1 \mathrm{e}-128$
D. persimilis	Contig 10048	$88626-85993$	$381 / 889(42 \%)$	$583 / 889(64 \%)$	758	0
D. willistoni	Contig 16409	$4917-6518$	$208 / 539(38 \%)$	$311 / 539(57 \%)$	368	0
D. virilis	Contig 11255	$2735-5236$	$634 / 896(70 \%)$	$734 / 896(81 \%)$	1289	0
D. mojavensis						

SI Table 1.3. Best hits recovered using TBLASTN and the amino acid sequence of the Dmel $\backslash 1360$ TPase as query. For D. sechellia, D. erecta, and D. ananassae two or three hits with similar E-values have been listed.

Species	Best hit	Coordinates	Identity	Positives	BLAST score	E-value
D. melanogaster	Chr. 4	$811868-809910$	$652 / 653(99 \%)$	$653 / 653(99 \%)$	1333	0
D. simulans	ChrU	$8187927-8186911$	$307 / 342(89 \%)$	$321 / 342(93 \%)$	611	0
D. sechellia	Contig 5902	$5118-3148$	$565 / 672(84 \%)$	$589 / 672(87 \%)$	1097	0
	Contig 5259	$3347-4723$	$437 / 468(93 \%)$	$447 / 468(95 \%)$	882	0
	Contig 9279	$912-2606$	$533 / 565(94 \%)$	$548 / 565(96 \%)$	1083	0
D. erecta	Contig 7387	$136850-137770$	$225 / 308(73 \%)$	$247 / 308(80 \%)$	431	0
	Contig 7407	$139694-138894$	$192 / 272(70 \%)$	$204 / 272(74 \%)$	353	0
D. yakuba	Contig 0.40	$345812-348370$	$755 / 855(88 \%)$	$805 / 855(93 \%)$	1553	0
D. ananassae	Contig 19410	$9020-10603$	$176 / 536(32 \%)$	$282 / 536(51 \%)$	281	$1 \mathrm{e}-122$
	Contig 1556	$3697-5718$	$259 / 691(37 \%)$	$393 / 691(56 \%)$	445	$1 \mathrm{e}-124$
D. pseudoobscura	Contig 784	$23428-24918$	$179 / 542(33 \%)$	$276 / 542(50 \%)$	265	$1 \mathrm{e}-105$
D. persimilis	Contig 9857	$65325-64489$	$106 / 294(36 \%)$	$153 / 294(51 \%)$	154	$1 \mathrm{e}-107$
D. willistoni	Contig 10048	$88626-85951$	$296 / 908(32 \%)$	$469 / 908(51 \%)$	468	$1 \mathrm{e}-131$
D. virilis	Contig 17537	$35605-33872$	$373 / 582(64 \%)$	$440 / 582(75 \%)$	729	0
D. mojavensis	Contig 11255	$2777-5275$	$294 / 869(33 \%)$	$473 / 869(53 \%)$	474	$1 \mathrm{e}-133$

SI Table 1.4. Complete and nearly-complete Galileo copies. TIRa is the TIR that is positioned at 5 ' end of the TPase. TSD sequences are given in the orientation they appear in the contig. When both TSD are exactly the same, only one sequence is given. Total lenght is expressed in bp and without the insertions of ther TEs that do not correspond to Galileo sequences. Insertions marked with TE are sequences inserted inside Galileo which have themselves TE structure (inverted repeats and/or TSD) and the ones marked as Ins are repetitive sequences dispersed in the genome but without any identifiable structure. The insertions with homology to known elements are indicated with the name of the corresponding TE.
\(\left.$$
\begin{array}{|l|c|c|c|c|c|c|c|}\hline \text { Contig } & \text { Coordinates } & \text { Orientation } & \begin{array}{c}\text { Transposase } \\
\text { coordinates }\end{array}
$$ \& TIRa/ TIRb \& TSD \& \begin{array}{c}Total

lenght\end{array} \& Insertions\end{array}\right]\) Observations | |
| :--- |

D. ananassae

11169	$1-2142$	Direct	$745-2142$	$198 /-$	-	2142	-	TIRa: end 457 bp and TSD missing; TIRb: missing TPase: last 1178 bp missing
15556	$1821-6699$	Direct	$3049-5748$	$684 / 683$	ATATCAC	4849	-	-
15979	$71824-74395$	Direct	$73038-74395$	$661 /-$	GTAAAAT/-	2572	-	TIRb: missing; TPase: last 1154 bp missing
16863	$1564-5179$	Inverted	$4003-5179$	$-/ 561$	ATTATAT/-	2006	$1897-3506$ (Tc1- like)	TIRa: missing; TPase: first 1487 bp missing
16864	$6713-9433$	Inverted	$6713-8193$	$670 /-$	ATATAAT/-	2721	-	TIRb: missing
17710	$547-1780$	Inverted	$1107-1780$	$-/ 314$	-	1240	-	TPase: last 1666 bp missing
19410	$7756-12565$	Direct	$8996-11618$	$671 / 682$	GCATAAC	4810	-	-
19478	$8730-10438$	Direct	$8730-9620$	$-/ 602$	$-/ G G A T G A C$	1709	-	TIRa: missing; TIRb: end 350 bp and TSD missing TPase: first 1488 bp missing, internal 293-bp deletion
19479	$11782-13967$	Inverted	$13266-13967$	$-/ 621$	GTATAAT/-	2186	$1260-12706$ (TE)	TIRa: missing; TIRb: insertion 647 bp TPase: first 1675 bp missing, internal $309-b p ~ d e l e t i o n ~$

(Continue on next page)

| Contig | Coordinates | Orientation | Transposase
 coordinates | TIRa/ TIRb | TSD | Total
 lenght | Insertions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Observations | |
| :--- |

D. pseudoobscura

3151	$20609-23048$	Direct	$21387-22973$	$728 /-$	-	2439	-	TIRa: end 14 bp and TSD missing; TIRb: missing TPase: first 1128 bp missing
3152	$8138-10463$	Inverted	$8131-9685$	$729 /-$	-	2333	-	TIRa: end 14 bp and TSD missing; TIRb: missing TPase: first 1128 bp and last 25 bp missing
3409	$4744-6991$	Direct	$5918-6991$	$834 /-$	ATACAAC/-	2208	-	TIRa: $90-$-bp internal duplication; TIRb: missing TPase: first 547 bp and last 1079 bp missing
4007	$52290-58223$	Direct	$55218-55959$	$543 / 474$	-/GTTGTAC	2315	$52702-54863$ (Ins) $56378-57834$ (ISY3)	TIRa: end 194 bp and TSD missing TPase: first 1951 bp missing
4025	$5659-265$	Inverted	$782-265$	$658 /-$	-/GTAACTC	1832	$1527-5125$ (TE)	TIRb: missing; TPase: last 2190 bp missing

D. persimilis

2279	$35952-37563$	Direct	$35952-37131$	$-/ 235$	-	1612	-	TIRa: missing; TIRb: end 220 bp and TSD missing TPase: first 1251 bp missing
2979	$64157-66292$	Inverted	$64159-65245$	$740 /-$	-/GTATAAC	2136	-	TIRb: missing; TPase: first 540 bp and last 1079 missing
7728	$1680-3474$	Direct	$2328-3504$	$579 /-$	CTTATTA/-	1795	-	TIRb: missing; TPase: first 1084 bp and last 292 missing
7729	$3501-6297$	Direct	$4139-5587$	$579 / 394$	CTTATTA/ TAATAAG	2797	-	TIRb: internal 202-bp deletion TPase: first 1084 bp missing
13439	$141-2018$	Inverted	$141-740$	$689 /-$	-	1878	-	TIRa: end 145 bp and TSD missing TPase: last 2085 bp missing

(Continue on next page)

Contig	Coordinates	Orientation	Transposase coordinates	TIRa/ TIRb	TSD	Total lenght	Insertions	Observations
D. willistoni								
6088	3693-5141	Inverted	4395-5141	-/702	ATTAAAG/-	1449	-	TIRa: missing; TPase: first 2000 bp missing
8470	33713-37304	Direct	34270-35527	557/724	CTGGAGC/ ACAATTT	3095	36084-36580 (Ins)	TPase: first 1467 bp and last 16 bp missing
9276	1-1020	Direct	747-1020	514/-	-	1020	-	TIRa: end 257 bp and TSD missing; TIRb: missing TPase: first 51 bp and last 2409 bp missing
9452	361705-364507	Direct	362664-363501	959/959	CTACAAT	2803	-	TPase: first 1893 bp missing
9601	20770-22344	Inverted	21779-2234	-/411	GTTCTAG/-	1575	-	TIRa: missing; TPase: first 2173 bp missing
9602	1-1859	Direct	1-816	-/412	-/GTTCTAG	1859	-	TIRa: missing; TPase: first 1923 bp missing
10048	85257-89642	Inverted	85942-88633	765/757	ATTCTAG	4386	-	-
12170	1-1320	Inverted	994-1320	749/-	-	1320	-	TIRa: end 16 bp and TSD missing; TIRb: missing TPase: first 50 bp and last 2356 bp missing
D. virilis								
15993	12611-16444	Direct	12835-15635	-/309	-	3197	13500-14136 (Ins)	TIRa: missing; TIRb: end 495 bp and TSD missing TPase: 637 bp insertion
15994	297-4088	Direct	525-3328	-/326	-	3149	1190-1832 (Ins)	TIRa: missing; TIRb: end 495 bp and TSD missing TPase: 543-bp insertion
16409	3466-7941	Direct	4899-7707	767/232	-/CTTCAAT	4476	-	TIRa: end 78 bp and TSD missing TIRb: internal 553-bp deletion

(Continue on next page)

Contig	Coordinates	Orientation	Transposase coordinates	TIRa/ TIRb	TSD	Total lenght	Insertions	Observations
D. mojavensis								
7794	13889-19752	Direct	15733-19752	526/-	-	3456	14470-15114 (TE4) $16251-16995$ (ISBu) $17355-17921$ (TE5)	TIRa: end 64 bp and TSD missing; TIRb: missing TPase: deletion of first 71 bp and last 14 bp , internal 36-bp duplication
8435	1-4278	Direct	2326-4274	785/-	-	3726	125-676 (TE2)	TIRa: end 29 bp and TSD missing; TIRb: missing
9930	1467-8042	Inverted	2925-6622	574/576	GTCCAAG ATTTAAG	5675	2944-38449 (ISBu)	-
10367	3528-7520	Inverted	4941-5542	1104/1104	GTTGAGC	3119	5846-6719 (ISBu)	TPase: first 2212 bp missing TIRs: 391 bp of F 2 included in both TIRs
10369	31739-35574	Direct	33528-35574	694/-	CCTGAAC/-	2898	$\begin{aligned} & 32009-32946 \\ & \text { (TE2) } \\ & \hline \end{aligned}$	TIRb: missing; TPase: first 767 bp missing
10376	4316-10745	Direct	5737-8521	570/570	TAATAAA	5721	8815-9515 (TE1)	-
10758.1	37586-44126	Inverted	38993-41776	813/713	GTTACCG	5989	$\begin{aligned} & \begin{array}{l} 43097-43648 \\ \text { (TE2) } \end{array} \\ & \hline \end{aligned}$	-
10765	52988-62433	Inverted	54923-58610	610/395	CCACGAA/ CCACTAA	4412	53253-54435 (TE3) 55104-56352 (ISBu x2) $59103-61704$ (ISBu x4)	TPase: last 108 bp missing
10770.1	9949-16490	Direct	11540-14367	583/709	ATGGAGA TATTGAC	5836	$\begin{aligned} & 14413-15118 \\ & \text { (ISBu) } \\ & \hline \end{aligned}$	-

(Continue on next page)

Contig	Coordinates	Orientation	Transposase coordinates	TIRa/ TIRb	TSD	Total lenght	Insertions	Observations
10773	33627-39873	Inverted	35425-38494	570/376	-/TTTATAT	4130	34032-34586 (TE5) $35774-36615$ (IN) $38495-39214$ (ISBu)	TIRb: end 192 bp and TSD missing TPase: first 15 bp missing
10792	22486-27604	Inverted	23831-25781	815/645	AATATAT	5119	-	-
10918	2482-12359	Direct	8142-12359	694/-	ATACCAC/-	3943	 $3762-8075$ (Max_LTR) $8285-9121$ (ISBu) $9800-10583$ (ISBu)	TIRb: missing TPase: last 79 bp missing
10924	25932-30978	Direct	27530-30351	745/393	-/CTTAAAT	5047	-	TIRa: end 41 bp and TSD missing
10946	6739-13856	Direct	8917-12351	525/578	CTGAATC/ CTAAATC	5433	$\begin{aligned} & 7431-8233 \text { (ISBu) } \\ & 8942-9823 \text { (ISBu) } \end{aligned}$	-
11233	4001-11153	Inverted	5654-8461	788/959	GTAGAAC/ GTATGGT	6239	9305-10218 (ISBu)	TIRb: internal 216-bp duplication
11255	1328-6787	Direct	2735-5284	557/556	AATGTAT	5460	-	

SI Table 1.5. Short non-autonomous copies of Galileo characterised in the genomes of six Drosophila species. TIRa is the first TIR that appears in the contig and TIRb is the other one. When both TSD are exactly the same, only one sequence is given. Total lenght is given in bp.

Species	Contig	Beginning	Total length	TIRa/TIRb lenght	TSD	Observations
D. ananassae	16072	49428	1145	317/317	ATAGTAG	-
	16215	13660	1226	329/329	GTAATAC	-
	16457	13174	1220	329/329	GTTATAT	-
	16780	48830	1194	331/331	CATCAAC	-
	16799	18339	1194	331/331	GTAGCAG	-
	17082	56734	1228	318/320	GTTTCGT	-
	18115	31181	1233	329/329	ATTATAG	-
	18348	28163	1225	329/329	CTACGAG	-
	18752	112063	1236	329/329	GTATAAT	-
	18811	266133	1244	329/328	GATGAAC	-
	18844	8374	1254	329/340	CTTTTAT	-
	18855	7980	1245	329/329	GTATTAT	-
	19356	469604	1219	329/329	ACTGTAC	-
	19465	81512	1158	329/317	GTATAGT	-
	19598	190010	1236	329/329	CTTGTAC	-
	19813	40154	1236	329/329	GTTCAAC	-
	19892	26883	1236	329/329	GTATAAC	-
	20116	42794	1227	331/330	ACCAAAC	-
	20508	21472	1194	331/330	CTGCAAC	-
	20509	13568	1208	329/304	GTGCAAG	-

(Continue on next page)

Species	Contig	Beginning	Total length	TIRa/TIRb lenght	TSD	Observations
D. pseudoobscura	1082	770	2899	$462 / 464$	GTTCAAC	-
	3611	65029	4538	$545 / 541$	GTAATAT/GTTCTAT	-
	3949	17417	1095	$515 / 417$	ATAAATG	-
	4181	261898	2106	$664 / 630$	GTTCTAT	Worf insertion $(263302-264678)$
	4197	39495	2439	$629 / 630$	GTAGTAC	-
	4227	206109	1982	$552 / 552$	CTTCTGC	-
	4314	60436	4458	$543 / 545$	GTTCTAT	-
	4350	119298	1975	$514 / 514$	ATTCGAC	-
	4355	300467	4085	$528 / 493$	CTTTCAC/GTGAGAC	-
	4360	196165	2036	$630 / 629$	ATAAGAC	-
	4568	59125	2036	$630 / 629$	GCTAAAG	-
	4925	27994	2024	$623 / 623$	GTATACT	-
	5286	303008	2059	$778 / 778$	GTTTAAC	Insertion in TIRb $304447-304982)$
	5301	784883	2059	$630 / 658$	CTACTAT	-
	5346	39465	1954	$561 / 624$	GTAATAT	-
	5574	101925	3481	$662 / 630$	ATAGCAT	-
D. persimilis	5598	108632	2032	$630 / 629$	GTACTAC	-
	5611	88815	1610	$536 / 535$	GTTGAGG	-
	43	22757	1892	$555 / 565$	GTTGAAT	-
	497	41905	1893	$558 / 549$	ATTATAC	-
	661	13659	2012	$737 / 733$	GTTGTAC	-

[^3]
(Continue on next page)

Species	Contig	Beginning	Total length	TIRa/TIRb lenght	TSD	Observations
	6840	36681	1130	519/519	CTTGAAG	-
	6847	108816	1114	518/517	GTATTGA	-
	6851	324389	1124	517/517	CCTTTAC	-
	7963	399697	1196	557/557	CTACTGC	-
	8445	45999	1140	518/518	ATAGAAC	-
	8628	277645	1133	475/483	ATATTAC	-
	9000	395296	1133	483/475	GTCAAAG	-
	9436	199308	1109	482/490	CTTCTAC	-
	9906	5225	1422	482/483	GTATTAG	-
	10422	27432	1402	476/475	ATAACAG/CTCTAAC	-
D. virilis	13546	3646	1991	852/990	GTAATAC	Insertion within TIRa (3665-4506)
	13964	226944	1602	709/696	ACTGAAC/GCGATAG	-
	14705	256157	1339	584/400	ATATTAT	-
	15758	236804	2232	785/785	CTTAAAC	-
	16069	102584	1480	608/614	ACTTAAC	-
	16071	203037	2343	1051/1003	GTAACAG	-
	16072	413871	1774	795/839	GTATAAT/-	5 terminal bp and TSD missing from TIRb
	16403	21843	1635	725/730	ATCGAGC/ATGCTGC	-
	17557	39646	1882	824/832	-/ATTACCA	12 terminal bp and TSD missing from TIRa
	17577	4833	1247	305/307	GTAATAG	-
	17588	42042	1616	699/687	CAAGCAA	GTG is repeated between end of TIR and TSD

(Continue on next page)

Species	Contig	Beginning	Total length	TIRa/TIRb lenght	TSD	Observations
	17658	62428	1947	710/723	GTGATAC/CCATAAG	-
	18052	6453	1597	698/722	GTATTAC	-
	8189	12012	2382	894/894	GTGCAGC	124-bp internal direct repeats
D. mojavensis	8783	2229	2162	1039/990	CTATAAC	Insertion in TIRa (2503-4931)
	9647	4614	1903	578/578	ATTTGAA	-
	9832	28557	1600	577/565	GTGATAT/AATACAC	-
	10246	221912	2826	1116/1116	GTATTTT	Two 220-bp repeats in each TIR; 127-bp internal direct repeats
	10309	10744	2426	1147/1153	GTACCGC	Two 220-bp repeats in each TIR
	10727.1	44829	2206	1028/1030	TCATTAC	-
	10727.2	104767	3214	1260/1214	GTATTAT	-
	10741	55570	3363	1216/987	ATATGTA/CTAATTG	TIRa has three copies of 220-bp repeat. TIRb has only two. Immediately upstream of this copy there is another TIR 813 bp long with two copies of $220-\mathrm{bp}$ repeat flanked by 7-bp sequence CTATAAC.
	10751	25070	2195	1021/1026	TGTATAC	-
	10758.2	55001	1660	486/508	GTTATGC	119-bp end duplication in TIRb
	10764	29199	2369	715/715	TTTATAT	Insertion in TIRb (35259-35358); ISBu insertion (30625-34928)
	10770.2	92188	3199	1107/1107	ATAGTAG/CTACTAT	-
	10790.1	49101	1967	556/494	ATACTAC	-

(Continue on next page)

Species	Contig	Beginning	Total length	TIRa/TIRb lenght	TSD	Observations
	10790.2	84962	2199	$1022 / 1028$	TCGAAAC	-
	10940	39859	1547	$458 / 458$	ATTGGGG	-
	10945	2811	2179	$1033 / 997$	GATACAC	Insertion in TIRb (4741-5878)
	11229	48344	1736	$769 / 766$	TTAATGC	-
	11267	12789	2355	$627 / 616$	GTATCAA	-
	11679	95650	2174	$1012 / 1014$	TTATGAG	ISBu insertion in TIRb $(97089-$ $97880)$

SI Table 1.6. General characteristics of non-autonomous Galileo copies found in the genomes of six Drosophila species. In D. mojavensis, 3 and 4 additional copies with nearly complete TPase were included for computation of average pairwise divergence in groups C and D, respectively. N indicates the number of characterised non-autonomous elements and Number of sites refers to the aligned TIR sites used for divergence analysis. Molecular clock was set assuming an average synonymous substitution rate of 0.016 substitutions/nucleotide/million

Species	N	Average copy lenght (SD)	Average TIR length (SD)	Number of sites	Average pairwise divergence		Divergence time (myr)
					Within copies	Between copies	
D. ananassae	20	1217.9 (28.4)	328.9 (4.4)	286	0.0111	0.0282	1.76
D. pseudoobscura	18	2492.7 (989.7)	596.0 (76.0)	358	0.0053	0.0159	0.99
D. persimilis	18	1949.0 (81.1)	598.2 (76.4)	506	0.0044	0.0137	0.86
D. willistoni	20	1183.2 (110.5)	506.5 (35.6)	468	0.0161	0.0412	2.57
D. virilis	13	1745.0 (325.3)	737.3 (184.9)	-	-	-	-
Group A	6	2028.2 (216.6)	870.0 (125.2)	488	0.0245	0.0459	2.87
Group B	7	1502.3 (152.7)	623.6 (150.5)	248	0.0542	0.0571	3.57
D. mojavensis	20	2268.1 (525.2)	885.2 (259.5)	-	-	-	-
Group C	4	2284.5 (613.5)	739.0 (255.2)	408	0.0167	0.0242	1.51
Group D	2	1860.5 (443.4)	736.0 (393.1)	404	0.0120	0.0233	1.46
Group E	7	2147.4 (192.3)	936.0 (167.7)	555	0.0068	0.0221	1.38
Group F	6	2645.2 (626.0)	1024.5 (283.1)	460	0.0191	0.0887	5.54

SI Table 1.7. Complete and nearly-complete 1360 transposable elements found in different Drosophila species. TIRa is the TIR at 5' side
of the transposase while TIRb designates the TIR at its 3' end. TSD are given in the same orientation they have in the contig.

Species	Contig	Coordinates	Orientation	Transposase	TIRa/ TIRb	TSD	Total length	Insertions
D. melanogaster(*)	Chr. 4	809215-812470	Inverted	812470-809907	-/31	GCCATAC/-	3615	-
D. simulans	Chr. U	$\begin{aligned} & 8185141- \\ & 8188796 \end{aligned}$	Inverted	8188307-8185783	-/31	CCCGAAC/-	3656	-
D. sechellia	5259	961-5382	Direct	2194-4726	31/31	GTTCGAC/ ATTCCAC	4422	-
D. erecta	7407	137172-141324	Inverted	140279-137852	31/31	GTTTGAC	4153	-
D. yakuba	0.40	344624-349004	Direct	345812-348373	31/31	GTCAAAG	4381	-
D. pseudoobscura	784	22941-26100	Direct	23339-25777	31/32	ATCATAT	3160	-
D. persimilis	9857	64151-67135	Inverted	66929-64479	32/31	ATATGAT	2985	-
D. virilis	17537	32378-37583	Inverted	33160-36198	32/31	GTTTGAC	4702	$\begin{aligned} & \text { LINE (33361- } \\ & 33864) \end{aligned}$

(*) Type=chromosome; loc=4:1..1281640; ID=4; release=r4.2.1; species=dmel
SI Table 1.8. Comparison among the TPase proteins from different species. TPase length (L, first column), number of aligned amino acids omitting gaps (above diagonal) and percent identical amino acids (below diagonal) in pairwise comparisons between the sequences of the Drosophila 21 TPases (8 from Galileo, 8 from 1360 and 5 from P-element) and the THAP containing 9 protein from Homo sapiens. The global alignment of the 22 protein sequences comprised 1126 positions.

Species	L	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1. DanalGalileo	889		885	879	881	880	886	885	883	834	838	836	834	833	794	799	836	722	726	718	723	735	807
DpselGalileo	90	56,2		902	893	899	897	896	895	839	841	41	840	838	797	802	839	22	728	718	723	740	8
3. Dper ${ }^{\text {Galileo }}$	902	55,6	97,2		887	893	891	890	889	833	835	835	834	832	791	796	833	716	722	712	17	734	802
4. DwillGalileo	910	42,3	41,7	41,5		888	902	901	898	836	840	838	836	835	795	800	838	718	726	715	19	735	806
5. Dvir \backslash Galile	938	41,6	39,9	39,4	52,3		909	908	886	836	838	838	837	835	792	797	836	723	730	718	724	744	806
6. Dmoj \mid GalileoC	937	55,	52,8	52,1	43,1	40,0		936	905	840	844	842	840	839	800	805	842	24	31	721	725	740	09
7. Dmoj Galileo	936	7,2	55,0	54,3	43,3	41,0	87,3		904	839	843	841	839	838	799	804	841	723	730	720	24	739	808
Dbuz\|	912	58,3	56,2	55,	41,8	40,9	72,4	4,		837	840	839	837	836	796	801	838	723	729	719	7	739	808
9. Dmel 11360	854	34,7	32,2	32,2	33,9	31,1	34,4	34,7	34,4		54	854	853	852	797	802	853	721	727	716	72	738	98
11. Dsim 11360	858	34,6	31,6	31,6	33,1	30,9	33,2	33,7	33,1	93,8		856	854	853	800	805	856	723	30	719	23	739	02
11. Dsec 1 1360	856	34,7	32,1	32,1	33,	30,4	34,2	34,4	33,8	94,8	96,1		854	853	798	803	85	722	728	717	722	739	800
12. Derel1360	854	35,4	32,1	32,1	32,8	31,1	35,0	35,2	34,6	88,7	86,8	88,3		852	797	802	853	721	727	716	721	739	98
13. Dyakl1360	853	35,4	31,5	31,4	32,9	3,9	34,7	34,8	34,6	88,8	87,0	88,2	91,7		797	02	852	722	28	717	22	39	99
Dpsel1360	818	35,0	33,2	33,2	32,	30,3	33,5	34,0	33,9	5,4	34,1	35,1	35,1	35,4		811	804	695	703	691	695	710	64
15. Dper 11360	817	35,3	33,7	33,7	33,3	30,6	34,0	34,7	34,3	35,9	34,5	35,5	35,5	35,8	98,0		799	691	698	686	690	706	760
16. Dvirl 1360	856	34,7	32,4	32,4	32,7	29,5	33,8	33,9	33,9	71,7	70,4	71,5	72,5	72,5	34,8	34,5		722	729	718	22	738	800
17. Dmel	751	23,1	24,2	24,0	22,3	21,2	23,8	24,6	25,3	23,2	22,3	23,0	22,7	22,7	23,3	22,9	23,3		736	735	750	749	18
18. DbiflP	757	23,1	23,4	23,5	22,7	21,1	24,6	24,7	24,8	23,4	23,0	22,9	22,1	22,9	23,6	23,2	23,0	66,7		740	737	754	714
19. DhellP	746	22,7	22,8	22,9	22,1	20,1	23,9	24,0	24,1	23,2	22,7	22,6	21,9	22,3	22,3	22,0	22,6	75,0	66,5		736	743	704
20. Dwill P	751	22,5	23,7	23,4	22,3	21,1	23,0	23,9	24,9	23,2	22,3	23,0	22,7	22,6	23,3	22,9	23,4	98,1	66,9	75,7		749	718
21. Spall P	830	23,4	23,1	23,2	22,3	20,3	23,6	23,8	24,5	24,0	23,4	23,5	22,7	23,0	22,0	21,5	22,8	74,0	66,2	87,2	74,6		731
22. HsalTHAP9	903	20,9	20,9	21,1	19,1	19,1	20,5	20,3	20,4	18,8		18,6	18,9	19,9	18,1	17,6	19,1	21,0	19,2				

SI Table 1.9. Sequences used to construct the consensus transposases of Galileo and 1360 in the different species. Coordinates corresponding to the transposase sequence inside each contig are given following the transcriptional direction (from Methionine to STOP codon).
A. Galileo sequences

Species	Contig	Coordinates
D. ananassae	9736	951-1
	11169	745-2142
	15556	3049-5748
	15979	73038-74395
	16864	8193-6713
	19410	8996-11618
D. pseudoobscura	384	17-532
	521	5574-4963
	1362	13473-13218
	2192	3433-4322
	2193	3840-4137
	3151	21387-23048
	3152	9685-8131
	3311	5683-4590
	3409	5918-6991
	3514	4441-3863
	3688	28103-29511
	4007	55218-55959
	4025	782-265
	4842	7178-6832
	5255	6307-6857
	5529	5015-4446
	5668	514-1070
D. persimilis	2279	35952-37131
	2979	65246-64154
	7728	2360-3504
	7729	4139-5587
	7807	4183-4785
	9771	76484-77861
	11866	2506-3153
	12167	28-218
	12803	984-2401
	12806	4579-4847
	13439	740-141
	13644	5604-6247
	14651	3800-4468
	16801	936-669
D. willistoni	480	2760-1949
	1514	1430-255

(Continue on next page)

Species	Contig	Coordinates
D. willistoni	1633	1484-3134
	1765	758-1818
	3103	2956-1579
	3729	2677-1005
	4852	3775-2272
	5955	5147-3320
	5995	709-2234
	6043	7043-5519
	8665	22915-21026
	9276	484-1020
	9858	3576-3081
	10048	88633-85942
	12170	994-1320
	16933	1388-1
D. virilis	1717	1-1012
	15993	12835-13499, 14137-15635
	15994	525-1189, 1833-3328
	16046	32251-30912
	16409	4899-7707
D. mojavensis	7794	15733-16250, 16996-17354, 17922-19752
	8435	2326-4274
	9930	6622-3845, 2943-2925
	10367	5542-4941
	10369	33528-35574
	10376	5737-8521
	10758	41776-38993
	10765	58610-56353, 55103-54923
	10770	11540-14367
	10773	38494-36616, 35773-35425
	10792	25781-23831
	10918	8142-8284, 9122-9799, 10584-12359
	10924	27530-30351
	10946	8917-8941, 9824-12351
	11233	8461-5654
	11255	2735-5284

B. 1360 sequences

Species	Contig	Coordinates
D. melanogaster	Chr 4	812470-809907
	Chr 2L	20145959-20144580
	Hoppel-1	Ref. 25
	Hoppel-2	Ref. 25
	Hoppel Delta 5'	Ref. 25
D. simulans	Chr 2L Random	797960-799694
	Chr 2L Random	802845-804906
	Chr 2R	1199657-1199795
	Chr 2R	1200547-1201734
	Chr 2R	1208090-1206110
	Chr 3L	18143039-18143892
	Chr U	8188307-8185783
D. sechellia	3536	2255-2621
	9279	386-2615
	6826	2014-40
	11410	1640-11
	5259	2194-4726
	12180	2014-313
	5902	5125-2571
	3527	1-1564
D. erecta	7363	803868-801367
	6939	4861-5757
	7407	140279-137852
	7373	87864-86694
	7387	150284-149418
	7387	135352-137773
	7387	108989-106572
	6826	4906-5127
D. yakuba	260.3	23020-20458
	5.41	7616-10177
	0.40	345812-348373
	2.7	423893-421332
D. pseudoobscura	784	23339-25777
	1994	72290-72758
	4431	49805-50291
	520	17194-17712
D. persimilis	17644	428-816
	9857	66929-64479
	11446	2544-2069
	11871	3502-3042, 1903-1373

(Continue on next page)

Species	Contig	Coordinates
D. persimilis	14344	$495-1631$
D. virilis	17532	$8869-8505$
	13070	$7536-6667$
	15641	$25683-27672,28440-28823$
	17537	$36198-33865,33361-33160$
	4746	$3288-4134$

2.- DNA-binding properties of THAP-containing Galileo transposase.

Mar Marzo ${ }^{1,2}$, Danxu Liu ${ }^{2}$, Alfredo Ruiz ${ }^{1}$, Ronald Chalmers ${ }^{2}$
${ }^{1}$ Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{2}$ School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre NG7 2UH, UK
E-mails: Mar Marzo - mar.marzo@uab.cat, Danxu Liu - danxu.liu@nottingham.ac.uk, Ronald Chalmers
- chalmers@nottingham.ac.uk, Alfredo Ruiz - alfredo.ruiz@uab.cat
Corresponding author: alfredo.ruiz@uab.cat

Keywords: Transposable Element, P-element, Galileo, Foldback, THAP domain, TIR, DNA binding, transposase, reconstruction

2.1.- Abstract

Background: Transposable elements (TE) present huge variability in structure and transposition strategies. Galileo is a class II transposon involved in the generation of natural chromosomal inversions in Drosophila. It has been classified as a P-element superfamily thanks to the truncated transposase coding region found in the longest copies, although its long internally repetitive terminal inverted repeats (TIR) resemble the foldback-like type of TE. As repetitive sequences are a genomic instability source, the long Galileo TIR could affect the transposition reaction and/or have an active role in chromosomal rearrangements.

Results: In order to track possible effects of these long TIRs in the transposon mobilization, we tested the DNA binding activity, the first step of the transposition reaction. We inferred consensus and ancestor sequences for the DNA binding domain THAP domain - of Galileo from three different species. We expressed these sequences and tested their binding activity showing specific DNA binding activity to the endmost part (150 bp) of the Galileo TIR. The DNA binding site was isolated and shared common traits with other THAP domains binding sequences. Furthermore, putative secondary binding sites were found in the tandem repeats of the TIR, which shed some light about why Galileo TIRs are so long. Finally an in vivo transposition experiment was carried out in Drosophila embryos where no transposition activity was detected.

Conclusions: Galileo THAP DNA binding domains were successfully reconstructed and expressed and showed specific binding activity. The length of the Galileo TIR seem to have tranposition role: provide secondary binding sites.

2.2.- Introduction

Transposable elements (TEs) are mobile genetic components of virtually all eukaryotic species (Feschotte \& Pritham 2007; Wicker et al. 2007). These repetitive sequences make up a substantial proportion of most genomes and have a huge impact on the evolution of their hosts (Lander et al. 2001; Kidwell 2002; Kazazian 2004; Morgante 2006; Jurka et al. 2007). TEs are very diverse and employ many different mechanisms for mobilization. Two major groups are recognized depending on whether they use a retrotranscription step (retrotransposons or class I elements) or not (DNA transposons or class II elements) (Finnegan 1989). After this functional split TEs can be further grouped into subclasses, orders and superfamilies depending on their structure and sequence similarities (Feschotte \& Pritham 2007; Jurka et al. 2007; Wicker et al. 2007). TIR transposons are recognized as an order of DNA transposons and characterised by their terminal inverted repeats (TIRs) of variable length. They encode a protein, called transposase (TPase), that catalyzes their mobilization by a "cut-andpaste" reaction. All TIR transposon families comprise autonomous and non-autonomous copies. Autonomous copies possess the capability of catalyzing their own transposition/movement. Non-autonomous copies contain internal deletions or point mutations in the transposase coding sequences that render them non-functional. These non-autonomous copies, which often outnumber their full-length counterparts, exploit the gene products of the autonomous copies (Feschotte \& Pritham 2007).

The characterization of the different biochemical steps in the cut-and-paste reaction helps understanding how TIR transposons behave in the genome and make possible to recruit them as genetic tools. Since most of the transposon copies found in the genomes harbour mutations in the transposase coding region, rendering the encoded protein non functional, different strategies are used for inferring the possible functional sequences. Sometimes, a consensus sequence constructed from different genomic copies results in the restoring of the protein function (Ivics et al. 1997; Miskey et al. 2003; Sinzelle et al. 2008), but in other cases, because non functional sequences outnumbers the functional ones, the consensus results in a non functional sequence. For this reason, ancestor reconstruction is an alternative strategy that can be used for transposon recovery, where phylogenetic relationship among the sequences is taken in account for the putative
ancestral sequence deduction. This approach has successfully been used for the revival of different transposons, such as Hsmar1 (Miskey et al. 2007).

The P-element is one of the most intensively studied TEs. It was discovered in Drosophila melanogaster as the agent responsible for P-M hybrid dysgenesis (Rubin et al., 1982; Kidwell, 1985). It has since been studied in vivo and in vitro and is now widely used as a genetic engineering tool for genomic analysis of D. melanogaster (Rubin et al. 1985; Daniels et al. 1987; Spradling et al. 1995, 1999; Beall \& Rio 1997; Rio 2002; Ryder \& Russell 2003). The P-element defines a superfamily of TIR transposons, which includes 1360 and Galileo (see below). These elements harbour a transposase coding region surrounded by TIR, which are needed for the transposition reaction. The P-element transposase contains four functional domains: an N-terminal DNA binding domain, a coiled coil region involved in protein-protein interactions, a GTP binding domain and a catalytic domain with four acidic key residues (Rio 2002; Sabogal \& Rio 2010). The P-element catalytic domain is thought to belong to the RNase H-like superfamily of polynucleotidyl transferases, although this remains uncertain because of the extreme divergence of its amino acid sequence (Rio 2002; Hickman et al. 2010; Sabogal \& Rio 2010).

The cut-and-paste reaction of TIR transposons begins with the recognition and binding of the transposase to the transposon ends. The P-element transposase contains a THAP domain, which is responsible for site-specific DNA binding. The THAP domain is an evolutionary conserved motif shared by different animal proteins, including cellcycle regulators, pro-apoptotic factors, transcriptional repressors and chromatinassociated proteins (Roussigne et al. 2003; Clouaire et al. 2005; Quesneville et al. 2005). The domain has a long zinc finger (~ 90 amino-acids) in which key residues are highly conserved (Roussigne et al. 2003). Recently, the THAP domain 3D-structure has been elucidated in two different proteins: the human THAP1 protein and the D. melanogaster P-element transposase (Campagne et al. 2010; Sabogal et al. 2010). The THAP domain interacts with its binding sequence in a bipartite manner, through the major and minor grooves of the DNA (Bessière et al. 2008; Campagne et al. 2010; Sabogal et al. 2010).

The Galileo transposon was discovered in Drosophila buzzatii, where it has recently caused three large chromosomal inversions (Cáceres et al. 1999; Casals et al. 2003; Delprat et al. 2009). Although originally considered a Foldback-like element, it was later included in the P-element superfamily of cut-and-paste transposons based on the sequence of the putative transposase (Marzo et al. 2008). Galileo is probably widespread within the Drosophila genus because it has been found in species of the two subgenera of Sophophora and Drosophila (Marzo et al. 2008). Many incomplete (nonautonomous) copies of Galileo have been detected in all species tested and in some cases two or more Galileo subfamilies have been found coexisting in the same genome (Figure 2.1). For instance, three subfamilies are present in D. buzzatii (G, K and N for Galileo, Kepler and Newton), while D. mojavensis harbours four subfamililes (C, D, E and F) (Marzo et al. 2008; Delprat et al. 2009). To date no potentially active copies of the transposon have been found because they all harbour premature stop codons and/or frameshifts. Nevertheless, consensus sequences present putative ORFs which harbours the main domains of the P-element transposase.

The most conspicuous features of Galileo are the 0.5 to 1.2 kb long TIRs which. This is considerably longer than other members of the P-element superfamily, in which the TIRs are 31 bp long. Indeed, it was the extreme length of Galileo TIRs that defined it as a 'foldback' family of transposons before they were recognized as members of the P-element superfamily. Galileo TIRs have another interesting property: namely, that the sequence conservation between elements in different species is restricted to the outer $\sim 40 \mathrm{bp}$ (Marzo et al. 2008). One obvious possibility is that these regions are functional transposition sequences, and would be the equivalent of the short TIRs of the P-element. If true, this leaves the function of the remaining 0.5 to 1.2 kb open to question. The fact that they are not conserved between elements in different species, and that they sometimes contain internal tandem repeats, suggests that secondary structure of the DNA may play a role in transposition. The mechanism of Galileo transposition may therefore prove to be of considerable interest, and may explain the frequency with which this element is able to generate chromosomal inversions in Drosophila. In the present work we have focused on the reconstruction of an active transposase and its binding to the inverted repeat. Although we have not succeeded in a full reconstitution of the transposition reaction, we have detected transposase binding to the extremities of

Galileo and putative secondary binding sites in the tandem repeats of the TIR. This represents the first steps in the characterization of Galileo recombination. Further characterization promises to reveal fascinating details of the interactions between this transposon and its host and perhaps even the reason it promotes chromosomal inversions so frequently.

Figure 2.1. Structure of representative Galileo copies found in the species of Drosophila used in this work. Black arrows are the Terminal Inverted Repeats (TIR) of each element and white triangles are internal tandem repeats. Gray rectangles are the transposase coding regions and black arrowheads are internal inverted repeats found in some D. mojavensis copies. No copies harbour an intact ORF. Dbuz\GalileoSyn (constructed copy) and D. mojavensis (contigs: 10758, 9847, 9930 and 11679) and D. ananassae (contigs 15556 and 16052) copies are from Marzo et al 2008. Dbuz|GalileoN1 and Dbuz|GalileoK5 are Newton 1 and Kepler 5 elements from Casals et al 2005..

2.3.- Results

Galileo sequence reconstruction. We generated four different consensus sequences: one using multi-strain PCR amplification sequences of the DbuzlGalileo whole transposase, and the other three using the THAP domains from genomic sequences of Dmoj\Galileo subfamilies C and D and D. ananassae. These sequences showed a few differences when compared with previous studies (Marzo et al. 2008). Thus, the consensus sequence of the Dbuz\Galileo transposase no longer contains premature stop codons, and presented two amino-acid changes. Likewise, the THAP domain sequence obtained for the Dmoj\GalileoC was identical to the previously published, and the sequences for Dmoj\GalileoD and Dana|Galileo had two and one amino-acid changes, respectively. Additionally, we also reconstructed the ancestral sequences of the THAP domains by maximum likelihood. When the inferred ancestor and consensus pair of sequences were compared, three, two and three differences were found in D. ananassae, the Dmoj\Galileo subfamilies C and D, respectively (Figure 2.2). Although one of the amino-acid changes affected one of the key residues of the domain, it was a functionally similar amino-acid replacement (a Valine replaced by an Isoleucine). The comparison of the reconstructed sequences of the Galileo DNA binding domains with those of the P element of D. melanogaster and the human THAP1 protein showed that the structural key residues of the THAP domain are conserved (Figure 2.2). However, the THAP domains of Galileo showed a longer and more variable N-terminus, along with a shorter and highly conserved loop 4 (L4).

Testing the first step of the transposition reaction: DNA binding activity. The reconstructed amino-acid sequences (ancestor and/or consensus) of the different Galileo THAP domains were E. coli codon-optimised, chemically synthesised and, finally, cloned into protein expression vectors. Seven THAP proteins were obtained D. buzzatii (two proteins of 90 and 150 amino acid length), the consensus of D. ananassae (ancestral sequence could not be purified), the consensus and the ancestral reconstruction of Dmoj\Galileo C and D subfamilies(Figure 2.3A). Electrophoretic mobility shift assays (EMSA) were performed for each of the seven proteins with their cognate labelled TIR sequence (150 bp endmost portion). Different conditions for the assay were used: three different protein concentrations, presence/absence of ZnCl 2 and

Figure 2.2. THAP domain protein sequences. A) Domain structure of the Galileo transposase: the THAP domain is the DNA binding domain, the coiled coil region is responsible of protein-protein interactions (represented as two overlapping circles) and the catalytic domain is located in C-terminal region. B) Alignment of the consensus and ancestral Galileo THAP domain sequences with the THAP domain of the P-element TPase (D. melanogaster) and THAP1 protein (Homo sapiens). The predicted secondary structures are shown above the alignment (adapted from (Bessière et al. 2008) and (Sabogal et al. 2010)): yellow arrows represent β sheets and yellow cylinders are α helix regions. Key residues are coloured: zinc coordination residues (C 2 CH) in yellow, conserved hydrophobic residues in green, invariant residues in pink, nuclear localization signal (NLS) in light brown. Segments cloned for protein expression are between grey shaded residues. Residues coloured in cyan are the amino-acid changes between ancestor and consensus sequences.
addition of unspecific DNA competitor (pBl lueScript). Similar results were obtained for the seven proteins, but only the results for Dbuz\Galileo THAP are shown (Figure 2.3B). These assays showed specific binding activity to the TIR independently of the addition of ZnCl 2 or pBS to the reaction for all the tested THAP proteins. Furthermore, when an EMSA was performed with the same TIR and the respective ancestor and consensus proteins, no qualitative differences in binding activity were detected (Figure 3C). It is noteworthy that some extra shifted bands appeared with the highest protein concentrations (Figure 2.3 B and C). Thus, a fine titration was carried out with the Dbuz\GalileoG-THAP-90 amino acid domain (Figure 2.3D). The results showed that the second and subsequent shifted bands are concentration-dependent, probably due to protein aggregation.

To test if a transposase would be able to bind or transpose different families or subfamilies of Galileo transposons that coexist in the same genome, we performed a cross-binding EMSA with Dbuz-THAP-protein with the 3 TIR sequences from this
genome (G, K and N)(Figure 2.4A). We observed that the DbuzlGalileoG-THAP domain binds both the Dbuz\GalileoG TIR and the Dbuz\GalileoK TIR, although binding is weaker in the last case. However, no trace of binding activity was found with the Dbuz\GalileoN TIR. In this experiment, the size of the THAP domain (90 or 150 amino acid) did not show a qualitative effect on binding activity. Likewise, when we tested the 90 amino-acids protein of D. buzzatii against all the TIRs used in this work (D. buzzatii (G, K and N), D. mojavensis (C and D) and D . ananassae) a weak binding activity was observed in Dana\Galileo TIR along with DbuzlGalileoG and Dbuz\GalileoK binding (Figure 2.4B).

Figure 2.3. Protein assays. A) SDS-PAGE with the 7 expressed THAP domain proteins, $\sim 5 \mu \mathrm{~g}$ protein/well. 1. Dbuz\Galileo-THAP-90aa, 2. Dbuz\Galileo-THAP-150aa, 3. Dmoj\GalileoC-THAPAncestor, 4. Dmoj \backslash GalileoC-THAP-Consensus, 5. Dmoj 1 GalileoD-THAP-Ancestor, 6. Dmoj\GalileoD-THAP-Consensus and 7. Dana\Galileo-THAP-Consensus. B) EMSA performed with Dbuz\Galileo-THAP-90aa. Three different binding conditions were tested. First lane is Dbuz\GalileoG labelled TIR (2.2 nM). Lanes 2,3 and 4 are x 100 increasing protein concentrations ($470 \mathrm{pM}, 47 \mathrm{nM}$ and $4.7 \mu \mathrm{M}$). Lanes 5,6 and 7 are the same protein conditions as the previous lanes but $100 \mu \mathrm{M} \mathrm{ZnCl} 2$ reaction condition was added to the binding reaction. Lanes 8,9 and 10 are the same conditions as in the previous 3 lanes but 500 ng of pBlueScript (Stratagene) plasmid was added as an unspecific DNA competitor. C) EMSA assay where Dana\Galileo-THAP-Consensus (lane 2), Dmoj\GalileoC-THAP-Ancestor (lane 4), Dmoj\GalileoC-THAP-Consensus (lane 5), Dmoj\GalileoD-THAP-Ancestor (lane 7), Dmoj\GalileoD-THAP-Consensus (lane 9) have been tested to bind the consensus TIR of their Galileo subfamily. All the THAP domains bind their TIR DNA (final protein concentration: $\sim 5.87 \mathrm{nM}$ and TIR final concentration $\sim 0.28 \mathrm{nM}$). D) Fine titration EMSA of the Dbuz\Galileo-THAP-90aa with its TIR (0.14 nM). Protein concentrations (2 fold dilutions from $1 / 128$ to 2 X range): $0.184 \mathrm{nM}, 0.367 \mathrm{nM}, 0.734 \mathrm{nM}, 1.469 \mathrm{nM}, 2.938$ $\mathrm{nM}, 5.875 \mathrm{nM}, 11.75 \mathrm{nM}, 23.5 \mathrm{nM}, 47 \mathrm{nM}$ and 94 nM . A concentration dependence of the extra shifted bands can be appreciated.

Figure 2.4. Cross binding EMSA experiments. A) Dbuz\Galileo-THAP-90aa and Dbuz\Galileo-THAP150aa versus different Galileo TIRs from D. buzzatii. Lanes: 1. Dbuz\GalileoG-TIR, 2. Dbuz\GalileoGTIR and Dbuz \backslash Galileo-THAP-150aa, 3. Dbuz ${ }^{\text {GalileoG-TIR and Dbuz Galileo-THAP-90aa, } 4 .}$ Dbuz \backslash Galileo N-TIR, 5. Dbuz\GalileoN-TIR and Dbuz \backslash Galileo-THAP-150aa, 6. Dbuz \backslash GalileoN-TIR and Dbuz\Galileo-THAP-90aa, 7. Dbuz\GalileoK-TIR, 8. Dbuz\GalileoK-TIR and Dbuz\Galileo-THAP150aa, 9. Dbuz \backslash GalileoK-TIR and Dbuz Galileo-THAP-90aa (final protein concentration: $\sim 5.87 \mathrm{nM}$ and TIR final concentration $\sim 0.28 \mathrm{nM}$). B) Dbuz \backslash Galileo-THAP-90aa against Dbuz\GalileoG-TIR (lane 2), Dbuz\GalileoN-TIR (lane 4), Dbuz\GalileoK-TIR (lane 6), Dmoj\GalileoC-TIR (lane 8), Dmoj\GalileoD-TIR (lane 10), Dana\Galileo TIR (lane 12).

DNA binding site of Galileo. We performed a DNase I footprinting analysis to determine the Dbuz\GalileoG TIR binding site sequence (Figure 2.5). The protected region covers a continuous region of 18 bp from nucleotide +63 to +80 bp of the tested 150 bp sequence. The second shifted band seen in the EMSA was footprinted as well (Figure 2.5). There is no difference in the protection pattern, so the multiple shifted bands are due to protein aggregation in the same TIR location which is in agreement with the titration experiment.

The comparison of this 18 bp sequence with other THAP binding sites is shown in Figure 2.6. The Dbuz $\operatorname{Galileo}$ G binding site is almost twice as long as the P-element and

THAP1 binding sites (18 bp versus 11 bp). Nonetheless, based on similarities with the interaction sites of the P-element and THAP1, we propose that the putative major and minor groove sites are the GGGGT region and the upstream T, respectively (Figure 2.6). When we compared the binding sequence of Dbuz\GalileoG with the homologous regions of the Dbuz\GalileoK and Dbuz\GalileoN TIRs, we observed that they are poorly conserved (not shown). This could explain the weak binding to GalileoK TIR and the absence of binding to GalileoN TIR.

Figure 2.5. Sequence specific binding of THAP domain to Galileo element. The DNaseI footprints of the indicated complexes were performed as described in material and method. The footprints were resolved on a DNA sequencing gel and the radioactive signals were recorded on a phosphoimager. Lane $1, \mathrm{G}+\mathrm{A}$ ladder; Lane 2, Free DNA treated with DNaseI; Lane 3 and lane 5, footprints of complex 1; Lane 4 and Lane 6, footprints of complex 2; Lane 7, footprint of complex 3. The protected DNA sequence was shown on the left of the gel.

The Dbuz|GalileoG TIR is up to 1.2 kb long, partially due to the presence of three (and a partial fourth) internal tandem repeats. For that reason, we searched within the TIR for sequences similar to the identified binding site using Blast-2-sequences program (Altschul et al. 1997)), and found two significantly similar sequences located in the first two tandem repeats $(\mathrm{E}-\mathrm{values}=5 \times 10-5$ and $7 \mathrm{x} 10-4$, respectively). A comparison of the three binding sites located in the GalileoG TIR showed that the three sequences are very similar, particularly around the proposed GGGGT major groove region (Figure 2.6B). Although we did not test these internal sequences for binding activity with the THAP domain, the high sequence similarity with the identified binding site suggests that they might act as additional binding sites.

Figure 2.6. THAP domain binding sequence comparison. A) Dbuz \backslash GalileoG compared to Dmel \backslash P-element (Sabogal et al. 2010) and hTHAP1(Bessière et al. 2008; Campagne et al. 2010) binding sites. The major and minor groove interacting regions are coloured. A putative consensus THAP binding sequences, including DbuzlGalileoG sequences has been proposed. This consensus is in agreement with the previously proposed by (Sabogal et al. 2010). B) Alignment of the Dbuz\GalileoG binding site with other putative binding sites found downstream in the DbuzlGalileoG-TIR. C) Structure of the Dbuz\GalileoG-TIR where the tandem repeats are drawn as grey rectangles and the binding sites are drawn as white stripped rectangles (BS1, BS2 and BS3).

Galileo in vivo transposition. We performed an in vivo experiment to test whether the consensus whole transposase from D. buzzatii was fully functional. To this end, we adapted the Drosophila P-element-based general transformation vectors to test for Galileo activity in Drosophila melanogaster white strain. These vectors consisted in a helper plasmid where the transposase was cloned after a Hsp70 promoter, and a donor plasmid where a reporter gene (mini-white gene in this case) was cloned surrounded by the transposon TIRs. If the transposase is active, when these two plasmids are injected
into white (w-) Drosophila embryos, the enzyme will insert the mini-white gene in the precursors of the germinal cell line. Then, the crossing of injected individuals with noninjected w- adultss enables the detection of the transposition activity by screening the F1 generation for red eyes.

In our experiment we performed three different injections: i) one using the general P-element transformation vectors as a positive control, ii) a second one using these P element vectors with the original transposon sequences replaced by Galileo sequences (the whole D. buzzatii consensus sequence of Galileo transposase in the helper plasmid and 150 bp of Galileo TIR in the donor plasmid), and iii) a third injection with the Galileo donor plasmid but without the Galileo helper plasmid as a transposition negative control. The injection-surviving adults were crossed with D. melanogaster white (w -) individuals. The offspring of these crosses was screened for transformed flies by observing the eyes pigmentation. In the positive control, transposition events were detected in 19 of 91 of the crosses (384 flies with red eyes of 26637 F 1 screened flies). As expected, the negative control did not show any transformant (96 crosses, 31201 F 1 screened flies), discarding the spontaneous insertion of the miniwhite gene. Finally, when the offspring from Galileo sequences injection was screened, no transgenic individuals were found (99 crosses, 32537 F1 screened flies).

2.4.- Discussion

TIR transposons encode a transposase that is required for their mobilisation by a cut-and-paste reaction. However, most of the transposon copies found in the genomes harbour mutations in the coding regions that render non-functional proteins. The revival of these proteins allows studying how the transposition processes take place in real time. Different strategies can be used for inferring the original functional sequences of these transposons. Probably, the simplest approach is the construction of a consensus sequence using different transposon copies from the genome. Alternatively, a more sophisticated method that can be used consists in the reconstruction of ancestral sequences under a model of evolution by maximum-likelihood methods. These two approaches have successfully been used for the revival of several different transposons, such as Sleeping Beauty, Frog Prince, Hsmar1 and Harbinger (Ivics et al. 1997; Miskey et al. 2003, 2007; Sinzelle et al. 2008).

The transposon Galileo has been recently active in the genome of D. buzzatii (Delprat et al. 2009) and perhaps other species (Marzo et al. 2008). However, all Galileo copies found so far are not functional and we used both approaches to reconstruct the DNA binding domain. The ancestrally reconstructed and consensus sequences showed few differences which did not involve the domain key residues responsible of stabilising the hydrophobic core of the protein (Sabogal et al. 2010). When we compared these sequences with the homologues of other THAP domains, we found that the most divergent regions were the N -terminus and the Loop 4. The Nterminus was longer and more variable in Galileo, with a length ranging from 12 to 28 residues instead of the 2 to 5 residues found in other THAP domains. However, the Loop 4 was very conserved in all Galileo copies. This differentiation is in agreement with the binding-specificity role proposed for these two regions in P-element and hTHAP1 after the analysis of their tridimensional structure by X-Ray diffraction and NMR (Campagne et al. 2010; Sabogal et al. 2010).

We detected similar strength and specificity in the binding activity for sequences inferred by both strategies, at least qualitatively. Moreover, we detected some crossbinding where a Galileo THAP domain have been able to recognise and bind some TIR from different transposon subfamilies. This would be in agreement with the fact that, in
some cases, elements that do not own a transposase take advantage from functional transposons and use their transposition machinery. This is a general behavior found in different TE groups, for example SINEs parasitise LINEs and MITEs parasitise some class II elements, (Jurka et al. 2007; Wicker et al. 2007; Yang et al. 2009). If a transposition reaction would be set up, it could be tested that Galileo elements also suffer from its own parasites (Gonzalez \& Petrov 2009). In addition, although multiple shifted bands were observed in the EMSA, we ruled out the possibility of the existence of multiple binding sites in the 150 bp tested TIR region by means of a titration experiment and a footprint assay, leaving the aggregation of proteins as the only plausible explanation for our observations.

The isolated binding site of Galileo is almost twice as long as other THAP target sequences. This might be explained by the larger size of the protein due to the existence of an insertion of 16 amino-acids after the initial methionine, which seems important for the interaction with the binding site (Sabogal et al. 2010). However, we cannot discard that this length could be an experimental artefact due to steric hindrance between the large protein-expression tag MBP and the DNase I enzyme used in the assay. Despite this noticeable difference in length, the Galileo binding site does present regions homologous to the major and minor grooves interacting zones of DNA that have been found to be essential for the recognition by the THAP domains of other proteins (Campagne et al. 2010; Sabogal et al. 2010).

The location of the binding sites is strikingly similar in Galileo and the P-element, This way, 61 and 50 bp from each transposon end in the P-element, and at 63 bp from both transposon ends in Galileo. In contrast with the P-element, the binding sites of Galileo are located within its long TIRs. When we extended the comparisons to the whole TIRs of P-element and Galileo, we found profound differences in length and structure. Thus, whereas P-element TIR is a non-repetitive region of 31 bp length, the TIR of Galileo comprises up to 1.2 kb and harbours several internal tandem repeats. It is peculiar that although the part of the TIRs of Galileo involved in the binding recognition did not show any conservation, we found that the endmost region is highly conserved across different species. This suggests that this region may have a role in the catalytic step of the transposition reaction, in a similar way to the short TIR of the P element (Rio 2002).

The existence of secondary binding sites or transposition enhancers has been reported in different transposons and these sequences can be part of the TIR or not. For example, P-element has subterminal transposition enhancers located outside the short TIR (Rio 2002), whereas the secondary binding sites of Sleeping Beauty and Bari-like elements lie within the long TIRs in the form of tandem repeats (Ivics et al. 1997; Moschetti et al. 2008). A similar structure has been found in Tnr8 and Phantom elements, although if their tandem repeats act as binding sites remains untested (Cheng et al. 2000; Marquez \& Pritham 2010). Although evolutionary unrelated, Galileo is structurally more similar to these elements, where their secondary binding sites are found as tandem repeats. All these TIR elements have a considerable size, which is a trait negatively correlated with the efficiency of the transposition reaction (Atkinson \& Chalmers 2010). Therefore, the presence of multiple binding sites may constitute an evolutionary convergent strategy to overcome length limitation by successfully recruiting the transposase and enhancing the transposition process. In fact, this strategy has been already applied to artificially improve transposition reactions (Zayed et al. 2004).

Finally, we carried out an in vivo transposition experiment to test if consensus Dbuz\Galileo transposase was functional. After screening for transformants, we were not able to detect transposition activity. As we do not know the Galileo transposition frequency, this result could be due to a very low transposition rate that would need a bigger sampling for transformants (e.g. at least ~ 106.individuals must have been screened for a 10-6 transposition rate). But, if we assume that Galileo transposition rate could be similar to the P-element, our positive control in the experiment, some Galileo transformants must have been found. So, there may be other reasons responsible for the negative result, such as: the lack of secondary binding sites in the donor construct, the consensus transposase might not be functional or might be toxic for the flies, or, as the tested transposon comes from D. buzzatii, there may be missing specific cellular factor or unknown incompatibilities that do not allow Galileo to mobilize in D. melanogaster. These two flies are distantly related as they belong to two different lineages that split 40-60 million years ago (Russo et al. 1995; Tamura et al. 2004). Further studies could shed some light in this issue.

2.5.- Conclusions

This work constitutes the first step in the characterization of the transposition reaction of Galileo. Since Galileo copies are non-functional in the genomes of Drosophila species, we had to reconstruct functional sequences. Although we were not able to detect a whole transposition reaction with these revived candidates in an in vivo experiment, we confirmed that they can recognise and interact with DNA in vitro. Furthermore, we found that even though the isolated Galileo binding sequence is longer than in any other THAP domains, the recognised binding sites are homologous to those of other proteins. We also detected the presence of putative secondary binding sites in the TIR internal tandem repeats. The confirmation of these regions as functional binding sites would provide the first evidence of the convergent evolution of this mechanism to overcome the drawbacks caused by increased TIR length.

2.6.- Materials and methods

Amplification of D. buzzatii Galileo transposase coding sequence by PCR. Three overlapping regions, that spanning the whole transposase coding sequences were PCR amplified in eight D. buzzatii strains (st-1, Maz-4, j-9, jq7-4, jz3-2, jq7-1, Sar-9 and j4). These PCRs were carried out in a total volume of $25 \mu \mathrm{l}$ including $100-200 \mathrm{ng}$ of genomic DNA, 20 pmol of each primer, $200 \mu \mathrm{M} \mathrm{dNTPs}, 1.5 \mathrm{mM} \mathrm{MgCl} 2$ and 1-1.5 units of Taq DNA polymerase. The products were gel-purified and sequenced.

Generation of THAP domain sequences. A consensus sequence of the Dbuz\Galileo transposase segment was generated with the PCR products using the majority rule (Geneious assembly algorithm in Geneious (Drummond et al. 2010)). This consensus sequence differs from the reported Dbuz\Galileo sequence (Marzo et al. 2008) by 5 nucleotides and can be translated into a fully functional protein. The THAP domain region of the consensus sequence is located in the N -terminal 450 bp portion.

Consensus sequences were also generated for D . ananassae and D. mojavensis transposase sequences. The sequences found in these genomes in previous work (SI Table 2.1) were aligned with MUSCLE 4.8.4 algorithm (Edgar 2004) implemented in Geneious software (Drummond et al. 2010) and a majority rule consensus of the THAP domain was generated (450 bp). As described in our previous work, there are four different Galileo subfamilies (C-F) in D. mojavensis (Marzo et al. 2008). Here, we generated transposase consensus sequences for the GalileoC and GalileoD subfamilies.

Finally, a reconstruction of the 450 bp ancestral THAP domains was carried out for D. ananassae and D. mojavensis (C and D subfamilies). MUSCLE 4.8.4 (Edgar 2004) alignments were used for generating the best trees by maximum likelihood using RAxML phylogenetic software and GTR+gamma evolution model (Stamatakis 2006). The trees were rooted with an appropriate outgroup using FigTree 1.3.1 software (Rambaut 2006) and after rooting, the outgroup was removed from the tree manually. These rooted phylogenetic trees and the alignments were used for inferring the ancestral sequence by maximum likelihood using the CODEML module in PAML software (Yang, 1997) (parameters: seqtype $=1$ (codons); codonfreq=2; NSsites $=01$; rateancestor= 1 ; fix_blength= 1).

TIR cloning. In order to test the DNA binding ability of the Galileo THAP domains, 150 bp TIR consensus sequence was generated for Galileo elements in D. buzzatii (GalileoG, GalileoN and GalileoK subfamilies), D. mojavensis (GalileoC and GalileoD subfamilies) and D. ananassae. These consensus sequences were generated using the majority rule, as above. A genetic construct ($\mathrm{pRC1525}$) was created concatenating the inferred sequences plus Galileo representative target site duplications. Unique restriction sites were located in between each TIR for releasing them individually from the vector and allowing radioactive dCTP labelling using an exo- Klenow polymerase.

THAP Protein expression. The inferred ancestral and consensus 450 bp sequences were codon optimized and synthesized (Bio S and T Inc., Canada). From these sequences a 270 bp (90 amino acid) predicted core THAP domain was PCR amplified (Phusion enzyme) and cloned in pOPINM (N-ter MBP-tag vector from The Oxford Protein Production Facility, UK) using the In-Fusion® cloning technology (Clontech Inc.). In the D. buzzatii case, as no ancestral sequence was reconstructed the 450 bp THAP sequence (150 amino acid) was cloned in pOPINM expression vector as well. The effect of the THAP domain length could be tested this way. The expression vectors with the THAP domains were sequenced for verifying the ORF and were transformed in BL21 (DE3) E. coli expression cell line. The protein expression was induced in DO680 $=0.5 \mathrm{LB}$ cultures with $100 \mathrm{ug} / \mathrm{ml}$ ampicillin cultures, 1 mM of IPTG and 100 uM of ZnCl 2 at $16^{\circ} \mathrm{C}$ over night. The cells were harvested by centrifugation and resuspended in HSG buffer (50 mM HEPES $\mathrm{pH} 7.5,200 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM}$ dithiothreitol (DTT), 5 mM EDTA and 10% glycerol). The cells were lysed in a French press and centrifuged at 25000 g for 30 min . The supernatant was loaded onto an amylose resin column (New England Biolabs). The column was washed several times with HSG buffer and the protein eluted with HGS buffer plus 10 mM maltose. The fractions containing MBP transposase were pooled and aliquots were stored at $-80^{\circ} \mathrm{C}$.

Electrophoresis mobility shift assay (EMSA). Purified recombinant THAP domains were incubated for 2 hours at room temperature with the labelled TIR in 20 ul reaction of binding buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{~g} / \mathrm{ml}$ bovine serum albumin, 2.5 mM DTT, 5% glycerol). Different conditions were tested: different protein concentration ($1,1: 100,1: 10000$ from the stock protein solution ($5 \mathrm{ug} / \mu \mathrm{L}$ or $94 \mu \mathrm{M}$), addition of ZnCl 2 ($100 \mu \mathrm{M}$ final concentration) and addition of unspecific competitor

DNA (pBlueScript, $\sim 500 \mathrm{ng} /$ reaction). The reactions were loaded in a 4% TAEpolyacrilamide gel and run for 2 hours at 300 V at $4^{\circ} \mathrm{C}$.

Footprint assay. A sample of the EMSA reaction was digested by 0.05 U of DNase I for 1 minute at room temperature. The enzyme was diluted to $1 \mathrm{U} / \mu \mathrm{L}$ with dilution buffer ($5 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM} \mathrm{CaCl} 2$). The reaction was stopped using $1 \mu \mathrm{~L}$ of 500 mM EDTA. DNA was purified by phenol-chloroform extraction and ethanol precipitation. The cleavage pattern was analysed by electrophoresis on a 5% polyacrylamide sequencing gel. DMS/piperidin reactions were performed following standard procedures to reveal G positions and were used to localize the DNase I protected regions.

In vivo Galileo transposition experiment. Plasmids generation. Helper plasmid: pTURBO-Galileo (pRC1510). The inferred Dbuz\Galileo consensus transposase ORF (see above) was generated by directed mutagenesis PCR (see primers in SI Table 2.2). The different PCR fragments were assembled thanks to the addition of unique silent restriction sites at each end. This consensus ORF was cloned in the pTURBO (pUChs $\Delta 2-3$, FlyBase recombinant construct $F B \mathrm{mc} 0000938$, ($\mathrm{pRC1501))} \mathrm{plasmid}$ replacing the P-element transposase. For this purpose, a PCR of whole pTURBO sequence except the P-element ORF was performed and two unique restriction sites (MluI and EagI) were added for cloning the Galileo transposase. After cloning the ORF was sequenced to check that the coding sequence was the proper one.

Donor plasmid. pCASPER-Galileo (pRC1517). The plasmid pCaSpeR-4 (FlyBase recombinant construct $F B \mathrm{mc} 0000178$, (pRC1502)) was used as donor plasmid. Two PCRs were performed for amplifying and ligating all the plasmid without the P-element sequences. In this step 4 unique restriction sites were added (PstI, NotI, NsiI and BamHI) surrounding the miniwhite gene. These 4 unique restriction sites were used for cloning 150-pb Galileo TIR in the proper orientation and TSD, surrounding the miniwhite gene (TIR1: PstI and NotI, TIR2: NsiI and BamHI). The mini white ORF and the TIR were sequenced for checking the sequence. The PCRs carried out in this section were performed with Phusion polymerase (Finnzymes).

Drosophila injections. 3 different injections were performed in Drosophila melanogaster white embryos (strain w1118, Genetic Services Inc. USA): one with the P-element plasmids without any change as a positive control (pRC1501 -helper- and
pRC1502 -donor-), another one with the two Galileo generated plasmids (pRC1510 -helper- and pRC1517 -donor-) and the last one with pRC 1517 alone as a negative control. Each injected fly (91 positive controls, 99 Galileo transposition elements and 96 negative control) was crossed with three virgin females or three males depending on their gender. The tubes of the crosses with Drosophila media were changed every two days (in the case of one injected male with 3 virgin females) or every 4 days (in the case of one injected female with 3 males) during 12 to maximise the number of offspring. Finally the F1 of each cross was counted and non-white eyes were screened (from light orange to deep red eyes) as a marker of transposition activity.

2.7.- Supplementary material

Supporting tables list:
SI Table 2.1
SI Table 2.2

SI Table 2.1. Sequences used for inferring the THAP domain sequences. CAF1 assemblies.

Species/Group		Coordinates
D. mojavensis C	scaffold_6262	$13889-19752$
	scaffold_6541	$1141978-1149130$
	scaffold_6500	$31288762-312953303$
	scaffold_6358	$1-5345$
	scaffold_6500	$31981325-31980812$
D. mojavensis D	scaffold_6500	$31458921-31464785$
	scaffold_6482	$614003-617184$
	scaffold_6482	$617185-618411$
	scaffold_6485	$39163-45738$
	scaffold_6540	$1175880-1182997$
D. ananassae	contig_15979	$71824-74395$
	contig_11169	$1-2142$
	contig_19410	$7756-12565$
	scaffold_13082	$2449985-2467038$

SI Table 2.2. Primers used in this work

Name	Sequence (5'-3')	Template
TIR1_PstI-TSD-F	GACAGTCTGCAGGTGATAGCACTAACCATACAACACATAGACTG	pGPE_Dbuz\Galileo TIR
TIR1_NotI_150bp-R	GTGACTGAGCGGCCGCCGGAATGATTTTGTCATCA	pGPE_Dbuz\Galileo TIR
TIR2_BamHI-TSD-R	CTATGTGGATCCGTGATAGCACTAACCATACAACACATAGACTG	pGPE_Dbuz\Galileo TIR
TIR2_NsiI_150bp-F	GTGACTGAATGCATCGGAATGATTTTGTCATCA	pGPE_Dbuz\Galileo TIR
Dbuz_TPase_EagI_Met-F	GATCTACGGCCGAAAATGGCGCAAATAAGTGTTGTG	Consensus TPase
Dbuz_TPase_end-MluI-R	GACGAAACGCGTTATTTTTATTCACGAATCATTTTCAGTTTACTTTTAC	Consensus TPase
pTURBO-EagI-R	CTAGATCGGCCGTTTATTCCACGTAAGGGTTAATG	pTURBO
pTURBO-MluI-F	CTTCGTACGCGTGAGTTAATTCAAACCCCACG	pTURBO
Bb_pCAS-BamHI-F	TCTGATGGATCCGCAAGGAGTAGCCGACATATATC	pCASPER
Bb_pCAS-PstI-R	TAAGCATCTGCAGCGGAGAAGTTAAGCGTCTC	pCASPER
White-NsiI-BamHI-R	CATGCTAGGATCCATAGCTAGTTGAGATGCATCTACACAAGGAAC	pCASPER
White-PstI-(NotI)-F	CATGCTCTGCAGACTAGTGGCCTATGCGGC	pCASPER
GalBspEI-R	TTCATCCGGAATACAATTTCCAGATATTGAAG	Previous TPase sequence
GalBspEI-F	GTATTCCGGATGAAGATTCAATGCTAG	Previous TPase sequence
GalBsaI-F	TCTACGGGTCTCATGAGGTTAAAATTAAGAAAGGTCTTC	Previous TPase sequence
GalMet-F	ATGGCGCAAATAAGTGTTGTGAACG	Previous TPase sequence
GalBsaI-R	TCTTAAGGTCTCCCTCATCGAAAACTAATACTGCATAC	Previous TPase sequence
GalStop-R	TTATTCACGAATCATTTTCAGTTTACTTTTAC	Previous TPase sequence
An_pM-R	ATGGTCTAGAAAGCTTTAGTTCGGACACAGCAGGGAGT	BioS\&T plasmid
AnA-pM-F	AAGTTCTGTTTCAGGGCCCGATGAATCGCCAGAACATCCG	BioS\&T plasmid
AnC-pM-F	AAGTTCTGTTTCAGGGCCCGATGAATCGCCAGAACGTTCG	BioS\&T plasmid
Bu-150pM-F	AAGTTCTGTTTCAGGGCCCGATGGCTCAGATCAGCGTGG	BioS\&T plasmid
Bu-150-pM-R	ATGGTCTAGAAAGCTTTAAAAAATCAGCAGGTTTTCAATCAG	BioS\&T plasmid
Bu_pM-F	AAGTTCTGTTTCAGGGCCCGCGTAAATCCGGTGCGAAATG	BioS\&T plasmid
Bu_pM-R	ATGGTCTAGAAAGCTTTAATTGGAAAAGAAGTTCGGATCG	BioS\&T plasmid
MoC_pM-F	AAGTTCTGTTTCAGGGCCCGCAGCGTAATGGCGGTAAGGTG	BioS\&T plasmid
MoC_pM-R	ATGGTCTAGAAAGCTTTAGTTGTTAGAAATCAGGTTGGAGTTACC	BioS\&T plasmid
MoD-pM-F	AAGTTCTGTTTCAGGGCCCGCGTCGTAACGGTGGTAAATGC	BioS\&T plasmid
MoD-pM-R	ATGGTCTAGAAAGCTTTAATTGTTGGACAGCAGGTTGC	BioS\&T plasmid

List of abreviations
bp: base pair
BS: binding site
EMSA: electrophoretic mobility shift assay
kb: kilobase
MBP-tag: maltose binding protein tag
ORF: open reading frame
TIR: terminal inverted repeat

The authors declare that they have no competing interests.
Authors' contributions
MM constructed the ancestral and consensus sequences, cloned and expressed the tested proteins, performed the EMSA, constructed the Drosophila vectors, performed the in vivo transposition experiment and drafted the paper. DL carried out the footprint assay. RC and AR supervised the research, provided funding for the research and finalized the manuscript. All authors read and approved the final manuscript.
Description of additional data files
The following additional data are available with the on line version of this paper. Additional data file 1 is a table listing the genomic Galileo sequences used for inferring the consensus and ancestral THAP sequences of D. mojavensis and D. ananassae. Additional data file 2 is a table where the primers used in this work are shown.

Acknowledgements
We would like to thank Azeem Siddique and Corentin Claeys Bouuaert for helping with experimental design, Ray Owens for structural THAP protein suggestions and Martí Badal for Drosophila plasmids. Montse Sales, Raquel Ferraz, Alejandra Delprat, Núria Rius, Andrea Acurio and Víctor Soria helped with fly counting. This work was supported by a Formación de Personal Investigador doctoral fellowship (to M.M.) and grant BFU2008-04988 (awarded to A.R. from the Ministerio de Ciencia e Innovación, Spain).

3.- Striking structural dynamism and nucleotide sequence variation of the Galileo transposon in the genome of Drosophila mojavensis

Mar Marzo ${ }^{1,2}$, Xabier Bello ${ }^{3}$, Marta Puig ${ }^{1,4}$, Xulio Maside ${ }^{3}$ and Alfredo Ruiz ${ }^{1}$.

${ }^{1}$ Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
${ }^{2}$ School of Biomedical Sciences, Queen's Medical Centre, Univesity of Nottingham, UK
${ }^{2}$ Grupo de Medicina Xenómica, Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Spain
${ }^{3}$ Functional and Comparative Genomics group, Institut de Biotecnologia i Biomedicina, Univeristat Autònoma de Barcelona, Spain

E-mails: Mar Marzo - mar.marzo@uab.cat, Xabier Bello - xbello@gmail.com, Marta Puig marta.puig@uab.cat, Xulio Maside - xulio.maside@usc.es , Alfredo Ruiz - alfredo.ruiz@uab.cat

Keywords: transposable element, TIR, length, recombination, subfamily, evolution, Drosophila, foldback, transposase

3.1.- Abstract

Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long-internally repetitive Terminal Inverted Repeats (TIR) which resemble the Drosophila Foldback element, its transposase-coding sequence presents significant similarity to the P-element transposase. This has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo was detected in six of the 12 Drosophila sequenced genomes, suggesting a wide distribution in the Drosophila genus. D. mojavensis is among the six species, the closest to D. buzzatii, and the Galileo sequences found in this sequenced genome presented the highest diversity in sequence and structure.

In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. Our set of 170 Galileo copies present a huge variability in length and structure, ranging from nearly-complete copies to copies with only two TIR or even solo-TIR elements. In addition, the sequence diversity showed the existence of five subfamilies (C, D, E, F, and X), four of them harbouring transposase-coding sequence and a fifth one which presents a putative chimeric origin. Our analysis suggests that Galileo is currently active or has been active until very recently. Finally, we have explored the structure and length variation of the Galileo copies which points out to relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible of these rearrangements are discussed.

3.2.- Introduction

Transposable elements (TE) are genetic entities capable of changing their location in the genome (Kidwell \& Lisch 2002). Because of their disperse and repetitive nature, they are considered part of the middle repetitive DNA portion and they make up significant fractions of different genomes, such as 14% in Arabidopsis thaliana, $\sim 15 \%$ in D. melanogaster, $\sim 45 \%$ in humans or $\sim 80 \%$ in some crops (Lander et al. 2001; Kidwell 2002; Wicker et al. 2007; Hua-Van et al. 2005). They have been found in virtually all the studied species, showing what could be considered a great success in their strategy or the ancientness of their existence (Feschotte \& Pritham 2007). Since their new insertion sites are usually random, they are considered as mutational agents, which allowed them to be firstly considered as junk DNA (Doolittle \& Sapienza 1980; Orgel \& Crick 1980). Nevertheless, they can be taken as powerful facilitators of evolution, since they generate variability, the row material for evolution, along with some adaptive TE insertions which have been reported (Oliver \& Greene 2009, 2011).

Since TEs present huge variability in length, structure and transposition strategies, a classification system is needed to understand and handle all the information about this type of DNA. Although classification criteria have not reached a complete consensus, there is a general agreement about the first split in the classification: the existence of a retrotranscription step (Finnegan 1989). Structural and homology criteria are used to further classify the different elements in subclasses, orders, superfamilies and families (Feschotte \& Pritham 2007; Jurka et al. 2007; Wicker et al. 2007). TIR DNA transpososns (Class II, subclass I) comprise those elements without the retrotrascription step and with Terminal Inverted Repeats (TIR) (Wicker et al. 2007). These elements are mobilised by a transposase protein encoded by autonomous or canonical copies of the element usding a cut-and-paste mechanisms.

Apart from transcription-active (canonical) copies of a transposon family, most genomes also harbour defective copies which are unable to encode a functional protein and thus non-autonomous. These copies appear due to mutations in the canonicalstructured elements, along with genomic deletion and unequal exchange after nonallelic homologous recombination (NAHR) and the transposon activity, generate deletion derivatives copies (Petrov \& Hartl 1998; Rio 2002). These defective copies
usually present a gradient of random deletions and there are from almost-complete copies to copies that are only made up of TIRs and a spacing region (Brunet et al. 2002; Rio 2002; Feschotte \& Pritham 2007). Furthermore, there is a special kind of defective elements that are called MITEs (Miniature Inverted repeat Transposable Element), which seems to have acquired non-related sequences and only present homology to the canonical copies in the TIRs or the very ends of the TIRs. These MITEs use or parasite the transposition machinery coded in the complete copies and have been proposed as the ultimate parasites (Gonzalez \& Petrov 2009; Yang et al. 2009).

Galileo is a transposable element discovered in D. buzzatii where it has been responsible for the generation of three natural chromosomal inversions (Cáceres et al. 1999; Casals et al. 2003; Delprat et al. 2009). Because the first copies of Galileo were only made up of long TIR sequences, it was tentatively classified as Foldback-like element (Cáceres et al. 2001; Casals et al. 2005). However, when the Galileo transposase sequence was discovered, it was definitely classified as a member of the P element superfamily of DNA transposons (class II, subclass I and TIR elements order), being the longest TIR element (from $\sim 300 \mathrm{bp}$ to 1.2 kb TIR length) of its superfamily (Marzo et al. 2008). Despite the first studies pointed out that Galileo distribution was limited to the closest species to D. buzzatii (Casals et al. 2005), the bioinformatic analysis of the 12 sequenced Drosophila genomes uncovered a broader distribution, because six of the 12 species harboured it (Marzo et al. 2008). In this initial bioinformatic analysis, one of these species, D. mojavensis showed a remarkable diversification of Galileo sequences, with four phylogenetically differentiated groups, and huge structural variability among the copies. Both D. mojavensis and D. buzzatii are members of the repleta group of the Drosophila subgenus.

In the present work, we carried out a more detailed search and analysis of the transposon Galileo in the D. mojavensis genome. 170 Galileo copies were identified using different automated searching strategies coupled with a detailed manual annotation in each of them. A huge variability in length and structure were found, thus sequences from nearly-complete copies to only two TIR elements were found. In addition, the sequence diversity found allowed the description of five Galileo groups/subfamilies, one more than the previous work; four of them harbour defective transposase sequences and one of them could have a chimeric origin. The activity of
these Galileo copies has been explored through bayesian analysis, which suggests that it has been active until recently or maybe it could be still active. Finally, the structural dynamics, which comprise the TIR extension, has been analysed in detail and mechanisms for this dynamism are discussed.

3.3.- Methods

Bioinformatic searches of Galileo copies in the Drosophila mojavensis genome. Consensus TIR sequences of previously described Dmoj\Galileo subfamilies plus 50 bp overall consensus TIR end, were used as query sequences against the CAF1 scaffold assembly of D. mojavensis genome (Clark et al. 2007). The searches were carried out using an automated process based on wuBlast (http://blast.wustl.edu) and the Chao algorithm (Chao \& Miller 1995) for the handling of the sequence discontinuities in the blast searches. The hits were selected using a 80-80 criteria with the query TIR (80% identity and 80% of the length, (Wicker et al. 2007)) and were considered as part of the same Galileo copy if arranged in the proper orientation at a distance $<10 \mathrm{~Kb}$. If one TIR did not meet all the mentioned criteria the 3 kb flanking region where the other TIR would be expected to be found was further explored by blast. More Galileo copies were found in this way. When no partner was found for a given TIR in the surrounding area, it was considered as a solo-TIR copy for further analysis.

All hits from each search were manually curated and thoroughly analysed to discard wrong automated identifications. Decisions on the acceptance of a search hit were based on the comparison with previously characterised copies and the identification of characteristic structures by careful annotation. This way, we identified the different regions in each Galileo copy: the Terminal Inverted Repeats (TIR), the transposasecoding region, and the spacing sequences upstream and downstream of the transposasecoding region (those we have named F1 and F2 respectively). Only sequences showing a clear sign of some of these structures were selected for further analysis.

Annotation of Galileo copies. All selected sequences were manually analysed and annotated using several tools found in Geneious 5.1.7 software package (Drummond et al. 2010). The closest annotated sequence for each new copy was detected by a search with blastn (Altschul et al. 1997) and used as reference for the detailed annotation of the new copy. When a region of a new copy was not located in the chosen reference copy, this region was used as blast query against different Galileo sequences and other Drosophila TEs in order to detect regions in common with other Galileo copies or TE insertions. TIR span was determined by aligning each copy with the corresponding reverse complement sequence. All copies were classified by structure in one of the
following five categories: i) nearly-complete (NC), when two TIR and more than 2 kb of transposase-coding sequence were found; ii) deletion derivatives (DD), when either two TIR and less than 2 kb of transposase-coding sequence were found, or a complete or partial transposase-coding sequence was found, but only one TIR was identified; iii) two TIR elements (2T), when two TIR separated by a short middle region (usually not coding for transposase) were found; iv) two extended or recombinant TIR (2RT), when two TIR were found and they were either longer than the NC copies or presented duplicated sequences (there has been extra sequence recruited in a longer TIR); and v) solo-TIR (ST), when only one TIR was found. Detailed information of the genome location and annotation of each Galileo copy is provided in Supplemental Table 2.

TIR phylogeny. The phylogenetic relationship between Galileo copies was inferred from the analysis of a 630 bp sequence from the 5^{\prime} end of the representative consensus TIR. Shorter than 450 bp selected sequences (due to partial deletions) were excluded from the analysis to improve the alingment. These TIR regions were aligned with MAFFT using the following parameters: E-ins-I; --op 1.53; --maxiterate 1000; --genafpair; --ep 0; --inputorder; --kimura 200, as it is set in Geneious software (Katoh et al. 2002; Drummond et al. 2010). The alignment was filtered with Gblocks 0.91 b to remove regions too divergent and poorly aligned (Castresana 2000; Talavera \& Castresana 2007). Gblocks was set up with relaxed parameter values (Minimum Number Of Sequences For A Conserved Position: 120; Minimum Number Of Sequences For A Flanking Position: 120; Maximum Number Of Contiguous Nonconserved Positions: 10; Minimum Length Of A Block: 5; Allowed Gap Positions: With Half) selecting 53% of the original alignment (547 bp of the 1018 original positions). JModeltest 1.0 (Posada 2008) was used to find the substitution model that best fits the data by means of the Akaike Information Criterion (AIC), which resulted to be HKY+G (Hasegawa, Kishino and Yano plus gamma (Hasegawa et al. 1985)). Maximum likelihood (ML) search was performed with PhyML 3.0 (20110304) (Guindon \& Gascuel 2003; Guindon et al. 2010) using the Subtree Pruning and Regrafting (SPR) algorithm. The parameters of the substitution model were estimated by the program, using four categories to estimate the gamma distribution and support was calculated with 100 bootstrap replicates. Bayesian inference (BI) was carried out with BEAST 1.6.1 (Drummond \& Rambaut 2007), using an uncorrelated lognormal
relaxed clock (UCLN (Drummond et al. 2006)) and the substitution model from jModeltest . We used a birth-death process as a tree prior setting a uniform (0,1000) distribution for growth and death rates. All others priors were left with default values. Two MCMC chains of 50 million generations were run and combined with the LogCombiner program included in BEAST package. In both cases, the chains were sampled every 1,000 steps, and the first 10% of the samples was removed as burnin. Convergence was ensured checking that ESS values for all parameters were over 200. We obtained the maximum clade credibility summary tree with median node heights using TreeAnnotator (also included in BEAST package).

Recent transpositional activity. A BEAST phylogenetic inference was carried out with the aim of displaying the relative age of each Galileo copy. For this purpose only one TIR region (of at least 450 bp long) was picked up from each copy and chimeric elements were excluded. The BEAST priors were set up as mentioned above with the same evolutionary model (HKY+G). Absolute time estimation was performed using the 0.011 changes/base/myr proposed as neutral mutation rate in Drosophila (Tamura et al. 2004). After that, a lineage through time plot was generated which depicts copy accumulation through time (Barraclough \& Nee 2001). We performed statistical test to find out the best fitting model to a sample of 9000 trees from the BEAST inference. The diversification models tested were: pure-birth (constant rate), birth-and-death (constant rate), DDX (variable rate), DDL (progressive change with saturation) and Yule-tworates (abrupt change of the rate in one point). These models were adjusted by ML and the best one was chosen using an Akaike Information Criteria (AIC). Furthermore, simulations to test if the best fitting model was due to incomplete sampling or data variability were carried out.

Transposase-coding region phylogeny. Transposase-coding sequences found in the different groups longer than 2 kb (12 elements: 6498-22531F, 6500-31458D, 6541$16442 \mathrm{D}, 6540-11758 \mathrm{D}, 6540-23860 \mathrm{D}, 6485-39163 \mathrm{D}, ~ 6540-41449 \mathrm{X}, ~ 6262-30856 \mathrm{C}$, $6541-11419 \mathrm{~F} / \mathrm{C}, 6500-31288 \mathrm{C}, 6482-60893 \mathrm{~F}$) were aligned with MAFFT (same parameters as above), and jModelTest was run to find the best evolutionary model for the transposase-coding sequences. ML and BEAST tree were inferred for these sequences (evolutionary model $\mathrm{JC}+\mathrm{G}+\mathrm{I}$). The cognate TIR of each copy with a transposase-coding segment $>2 \mathrm{~kb}$ were aligned with MAFFT and new phylogenies
with PhyML and BEAST were obtained. The topologies of the transposase-coding sequences and TIR phylogenies were compared and the differences were evaluated with an Approximated Unbiased test (AU test) performed with CONSEL program (Shimodaira \& Hasegawa 2001; Shimodaira 2002).

Chromosomal distribution of Galileo copies and relation to protein-coding and RNA genes. The genomic and cytological location of Galileo copies was inferred from the scaffold coordinates and the correspondence of scaffolds with polytene chromosomes (Schaeffer et al. 2008). In order to analyse the intrachromosomal distribution of Galileo copies, each chromosome was divided in three regions: telomeric, central and centromeric, conainting $10 \%, 80 \%$ and 10% of the sequence, respectively (Casals et al. 2005, 2006). This was only possible for chromosomes 2, 3, and 4, each of them represented by a single major scaffold (Schaeffer et al. 2008). Statistical analyses of chromosomal distribution were carried out with JMP 8.0.2 (SAS Institute Inc. 2009). The D. mojavensis gene annotations were downloaded from Flybase.org (ftp://ftp.flybase.net/releases/FB2011 04/). The coordinates of protein-coding and RNA genes were compared with those of Galileo copies using ad hoc perl scripts. All Galileo copies were classified as located in scaffolds without genes, in intergenic regions or in intronic regions. Statistical tests to compare the total length and TIR length with genes distances were performed with JMP 8.0.2 (SAS Institute Inc. 2009). Information about the gene function was extracted from FlyBase.

3.4.- Results

Different bioinformatic search strategies were used to maximise the probability of finding Galileo copies (see Methods). A total of 170 Galileo copies were identified and manually annotated (a 370% sample increase over the 36 previously described copies (Marzo et al. 2008)). These copies were classified according to subfamily, structure and chromosomal distribution (see Table 3.1 for a summary and SI Table 3.1 and SI Table 3.2 for detailed information). Subfamily classification was based on the phylogenetic analysis of TIR sequences and resulted in five well-supported groups (C, D, E, F and $\mathrm{X})$. Twelve copies were found to contain sequences belonging to different subfamilies and were considered as chimeric (Table 3.1). Structural classification produced five groups: nearly-complete (NC), deletion derivatives (DD), two TIR elements (2T), two extended or recombinant TIR elements (2RT) and solo-TIR (Table 3.1). Some representative copies of these structural groups are depicted in Figure 3.1.

Table 3.1. Summary of the Galileo copies studied in this work. The different subfamilies and structures are indicated.

Structural type	Subfamily						
	C	D	E	F	X	Chimeric	
Nearly complete $(>2$ kb Tpase $)$	2	5	0	1	1	1	10
Nearly complete deletion derivatives	4	2	0	1	2	0	9
2 TIR	5	0	7	28	3	6	49
2 TIR longer	2	2	22	3	4	5	38
solo TIR	6	10	19	26	3	0	64
Total	19	19	48	59	13	12	170

Galileo subfamilies in the D. mojavensis genome. A phylogenetic tree was built using the homologous TIR region of all the copies (Figure 3.2A). The tree shows five groups with significant statistical support, four of them (C, D, E and F) agree with the previously described Dmoj|Galileo subfamilies (Marzo et al. 2008), whereas the fifth, that we have named X , is a novel group (Figure 3.2A). The general relationship among the groups is similar to that found in the previous work, with two main lineages, one comprises the D, E and X group, and the other the C and F groups. Furthermore, the phylogeny also detected 12 chimeric copies (not shown in Figure 3.2A) with the two TIR belonging to different phylogenetic groups. In addition, these copies are flanked by non-matching 7-bp sequences instead of identical direct target site duplications (TSD) as most other copies.

6498-25411-X
6473-11762-C
6500-31083-C
6500-30596-F
4502-5732-E

6540-31163-E
6500-30702-E
6500-31506-E
6500-29864-F
6496-23195-F
6498-21770-C
6500-31506-E

Figure 3.1. Structures of representative Galileo copies found in the D. mojavensis genome. The black arrows are the TIR, the grey middle region is the transposase sequence, the yellow region is the F1 (spacing sequence between the TIR 1 and transposase coding segment), the green region is the F2 (spacing sequence after the transposase-coding segment and the TIR-2). The blue squares are tandem repeats found in the F group. The region with bracketed pattern (>>>) is the extra TIR region recruited in the extended TIR copies. The black arrowheads are internal short inverted repeats found in C and D groups. NC copies are nearly-complete, NC_DD are deletion derivatives of the nearly-complete ones.

Figure 3.2. Galileo phylogenetic analyses. A) Unrooted tree inferred using 241 TIR sequences of Galileo. Phylogenetic reconstructions were carried out by means of ML (PhyML) and BI (BEAST) methods using a HKY + G evolutionary model. Numbers on nodes indicate the support of each group as bootstrap and Bayesian posterior probability, respectively. The five groups show strong support. B) BEAST ultrametric summary tree inferred using 148 TIR sequences of Galileo (only one TIR of each Galileo copy was used and chimeric copies were excluded). The yellow bars correspond to the 95% Highest Posterior Density intervals for node ages. The ML best-fit model of diversification was a yule-2-rate in which a constant duplication rate changes to another constant rate at a certain time, and the discontinuous vertical line indicates the shift in the duplication rate (0.048 substitutions/position, $\sim 4.36 \mathrm{myr}$) and the grey area represents the 95% confidence interval obtained using 10,000 trees sampled from the Bayesian analysis. C) Lineages Through Time (LTT) plots representing the accumulation of cladogenesis events. The black line shows the LTT plot of the summary Bayesian tree. Red and blue lines represent the mean and the 2.5% and 97.5% percentiles of the 10,000 sampled trees LTT plots, respectively.

In order to explore the evolutionary dynamics of Galileo copies through time, an ultrametric tree was generated using a relaxed molecular clock (Figure 2B). In this case, only one TIR sequence per Galileo copy was included (usually TIR1, and in some cases TIR2 when TIR1 was not present or was too short) and chimeric copies were omitted. In this tree we included an estimation of absolute time, which provides ages for each node. If we take into account the common ancestral node for each one of the Galileo subfamilies, different ages are found. For example, the last common ancestral node for all the F copies is $\sim 8.6 \mathrm{myr}$, which means this group would be the first one diversifying in this genome. It would be followed by $\mathrm{E}(\sim 7.45 \mathrm{myr}), \mathrm{C}(\sim 4.35 \mathrm{myr}), \mathrm{D}$ and X (these last two less than 4 myr). Most of the copies ($\sim 60 \%$), regardless the phylogenetic group, seem to be quite recent as they appeared in the last million year. In addition, the cumulative graphic of Lineages Through Time (LTT plot) showed an exponential growth of the number of Galileo sequences without any apparent deceleration in the curve (Figure 3.2C). Thus, Galileo has not stopped its transposition activity in the time depicted in the graphic. Furthermore, we have performed a diversification rate test and, at least, one shift has been detected which is located in 0.048 relative time units (substitutions/position) ($\sim 4.36 \mathrm{myr}$ vertical discontinuous line in the tree, Figure 3.2 B and C) where the rate of Galileo proliferation changes from 16.28 sequences/relative time units to 48.66 sequences/relative time units (95% confidence interval for each rate: 5.87-30.31 and 39.77-58.24 lineages/time). These observations indicate that Galileo is still active or has been active until very recently.

Twenty Galileo copies were found to contain variable portions of the transposasecoding region (Table 3.1, SI Table 3.1), yet none of them harbours an intact ORF that can be translated into a functional protein (i.e. all of them contain chain termination mutations and/or deletions and frame-shift mutations). These copies belong to subfamilies C, D, F and X, whereas no copies of the E subfamily contain any trace of the transposase-coding region. A phylogenetic tree was built with transposase-coding sequences longer than 2 kb found in the different subfamilies (12 Galileo copies in total, see methods). For comparison, the TIR region of these 12 copies was used to generate a new tree with the same methods. Both phylogenetic trees were similar and recovered the same groups (Figure 3.3, Table S3). However, the relationship among the subfamilies seem somewhat discordant: in the transposase-coding region tree groups F and D belong
to one of the main lineages, and groups X and C belong to the other, whereas the TIR tree shows the same relationship between groups found previously in the global TIR tree (Figure 3.2 A and B). Differences in topology can be due to different evolutionary histories, but also to phylogenetic uncertainty. In fact, the grouping of F and D in the transposase-coding tree has a low bootstrap support (41\%). Moreover, an AU test was performed (CONSEL program) to test if any of the two topologies could be significantly rejected using the information in both alignments. This way, neither of the two topologies could be rejected in the case of the transposase alignment (TIR topology: $\mathrm{P}=0.39$, transposase-coding topology: $\mathrm{P}=0.61$), indicating that information in the alignment does not allow discriminating between both phylogenetic hypotheses. However, when the TIR alignment was used, we found that the transposase-coding topology was significantly rejected (TIR topology $\mathrm{P}=1$; transposase-coding topology P $=7 \mathrm{e}-11$). These results suggest that the position of the F subfamily in the transposase coding segment tree might be biased, as a consequence of the reduced number of sequences used, phylogenetic noise in this Galileo region or recombination.

Figure 3.3. TIR and transposase coding region phylogenies. 12 Galileo elements were used for these analyses. A) TIR phylogeny. B) Transposase phylogeny, PhyML analysis with JC+G+I evolutionary model. The AU test was performed to compare the two tree topologies.

Galileo structural variation. Galileo copies exhibit a striking amount of structural variation (Figure 1). For the purpose of description and analysis, we have grouped all copies into five structural groups: NC, DD, 2T, 2RT and solo-TIR (see methods). All phylogenetic groups except D and E contained copies of the five different structures described (see Table 3.1). The D subfamily lacked 2T elements, whereas the E subfamily did not contain any copy with transposase sequence (neither NC nor DD).

The Galileo TIR, defined as the terminal sequence inverted and repeated in each end, is the most variable region among the copies of the element, not only in nucleotide sequence as phylogeny shows but also in length. TIR length varies from 18 bp to 1250 bp with a total average of 668 bp . The variation of TIR length is found in all the subfamilies (see SI Table 3.1 where means and standard deviation are found), but when the five subfamilies means are compared, the only pairs of comparisons that present statistical differences are between the X and E subfamily and X and F subfamily (Tukey-Kramer means comparison test, $\mathrm{P}<0.05$). The X subfamily possesses the shortest TIR, and subfamilies E and F the longest TIRs. When the TIR length is compared among the different structural types, the only significant length different is found between the 2 T and the 2RT type, which is in agreement with the classification criterion (Tukey-Kramer means comparison test, $\mathrm{P} \ll 0.05$). We have explored the sequences comprising the TIRs. Generally, the shortest TIRs are due to the lack of TIR sequence in one of the Galileo ends. Thus, although one transposon end still posses a whole TIR, the repeated span gets shorter because of the sequence missing in the other end (it is not repeated any more). This is how some very short TIRs are found in copies like F subfamily 6680-244202 or X subfamily 6498-95069, E subfamily 4198-1393 or C subfamily 6540-613211 (see copy 4502-5732E in Figure 3.1).

On the other hand, when the longest TIR are explored, we have observed differences among the subfamilies. For example, in the F subfamily, the presence of direct tandem repeats inside the TIR (located in $\sim 264-467 \mathrm{bp}$ from the TIR end) seems to account for part of the variation in the TIR length. There are TIRs with no internal repeats and TIRs with two or three copies of the internal tandem repeat. Since the tandem repeat region is $\sim 210 \mathrm{bp}$ long, when three copies of this sequence are present, TIR length increases by $\sim 420 \mathrm{bp}$. This fact was found in the TIR1 of $6500-30596 \mathrm{~F}$ and $6500-31107 \mathrm{~F}$ which are 1264 and 1263 bp long because they harbour three internal tandem repeats. In contrast,
copies $6540-32286 \mathrm{~F}$ or $6540-57500 \mathrm{~F}$ harbour 892 -bp TIRs due to the lack of internal tandem repeats. It is noteworthy that the tandem repeat expansion and contraction was only found in the F group and was located always in the same region of the TIR, except in copy $6500-30494 \mathrm{~F}$ which harboured two tandem repeats located in 196-101 bp from the TIR2 end.

In the other groups, although the tandem repeat structure in the TIR was not found, some copies showed also longer TIR, when compared to the NC copies. In these cases, the detailed exploration of the TIR sequences uncovered the recruitment of non-TIR Galileo sequences (usually the region found immediately after the TIR in the NC Galileo element) to generate a longer TIR. For example, part of the sequence of the F1 area (the sequences after TIR1 but upstream the transposase coding segment) appeared repeated in inverted orientation immediately before the beginning of the TIR2 extending the repetitive span inside the Galileo element. This way, an originally nonduplicated neither repetitive Galileo sequence made up a longer TIR. We observed that the extra region of TIRs can come both from the F1 or the F2 region, however, the F2 region appeared duplicated only in the groups C (2 copies) and F (once as direct repeat, another time as inverted repeat and it is found in a chimeric copy, as well) whereas F1 region appeared repeated in the C, D (2 copies), E (22 copies) and X (4 copies plus 2 chimeric) groups.

The Galileo copy with the longest TIRs showed a combination of the two expansive traits: tandem repeat expansion (two times the tandem repeat in each TIR) along with the recruitment of 121 bp of F2 sequence in the TIR. This copy is $6500-29864 \mathrm{~F}$ (see Table S2), and has TIR lengths of 1260 bp and 1241 bp (TIR1 and TIR2, respectively with a 95.2% of nucleotide identity). The second and third longest TIR copies belonged to the C group, where two 2RT copies recruited F2 region for the TIR reaching 1107 bp long. The next longest copy was found in the E group, followed by copies in the D and X groups (SI Table 3.2). It is noteworthy that the copies with the longest TIRs were never the nearly-complete ones but the non-autonomous without the transposase-coding ORF, i.e. 2T and 2RT copies (SI Table 3.1 and SI Table 3.2). All Galileo subfamilies present substantial TIR length variation, because in all the groups there are copies with very short and very long TIR.

Chimeric copies. Twelve Galileo copies were composed of two TIR with an unusually high nucleotide divergence and were bounded by different 7 -bp sequences instead of identical TSD (see SI Table 3.2). The TIR phylogeny confirmed that these Galileo copies were chimeric (not shown). Structurally, one of these copies was NC and all the others are 2 T . Regarding the subfamily, there are $4 \mathrm{~F} / \mathrm{C}$ (including the NC), 1 $\mathrm{F} / \mathrm{D}, 2 \mathrm{E} / \mathrm{F}, 1 \mathrm{E} / \mathrm{C}$ and $4 \mathrm{~F} / \mathrm{X}$. The contribution of each subfamily to the chimeric copies is in agreement with its abundance (Chi square test, $\mathrm{P}>0.05$). The fact that F TIR were more frequent in the chimeric copies would be due to the larger number of F copies in the genome. On the other hand, we have tested if the different subfamilies are randomly combined or whether there are subfamily preferences when the chimeric copies are generated. We have not detected any significant departure from randomness ($\mathrm{P} \gg 0.05$).

We have detected the presence of another kind of chimeric copies, with the two TIR from the same phylogenetic subfamily, but the internal region from another one. Furthermore, the central region of all these copies seems to have the same origin, the central region of 6680-240698D, one of the 2RT copies of the D subfamily. The central region of this copy presents 441 bp of F1 duplicated and inverted expanding the TIR length. When the E subfamily was explored, the central region of its copies presents high identity to this internal region of the 6680-240698D copy (98% of identity), while the 570 bp of the end of each TIR presents 77% of identity and, as the phylogenies show, belong to different subfamilies. Likewise, we have found this same central region in two 2 T copies classified in the X group (copies 6498-29033 and 6500-29395, classified as X group, $\sim 1640 \mathrm{bp}$ total length). Thus, the same central region was found accompanied by TIRs from three different subfamilies, D E and X.

Galileo chromosomal distribution and relationship with genes. We have analysed the interchromosomal and intrachromosomal distribution of the Galileo copies (SI Table 3.3 and SI Table 3.4). 138 of the 170 Galileo copies are located in scaffolds assigned to the D. mojavensis chromosomes (Schaeffer et al. 2008). The remaining 32 copies are located in scaffolds that are likely to contain pericentromeric heterochromatin and have not been assigned to any chromosomes yet. The distribution of the 138 copies was 29 , 26, 43, 14, 3 and 23 for D. mojavensis chromosomes $\mathrm{X}, 2,3,4,5$, and 6 (dot), respectively. This interchromosomal distribution shows a significant departure from a random distribution (taking into account the size of each chromosome, chi square test
$\mathrm{P} \ll 0.05$). There is an excess of Galileo copies in the dot chromosome, whereas fewer than expected copies are found in the chromosome 5.

In addition, we have explored, the intrachromosomal distribution of Galileo copies. In the D. mojavensis there are three chromosomes (2,3 and 4) represented each by a single major scaffold (6540, 6500, 6680, respectively) (Schaeffer et al. 2008)). We have subdivided these scaffolds in distal (10% of the sequence), central $(80 \%$ of the sequence) and proximal (or centromeric, 10% of the sequence) segments in relation to the position of the centromere, and tested if Galileo copies present a uniform distribution in these regions. We observed a very significant departure from what was expected by chance, since Galileo copies tend to accumulate in the proximal region near to the centromere ($\mathrm{P} \ll 0.01$, in the three cases, SI Table 3.4).

Furthermore, coordinates of Galileo copies have been compared to those of the predicted genes in D. mojavensis genome (including protein-coding and RNA-coding genes). The 170 Galileo copies were classified as follows: 23 are located in scaffolds without genes, 23 are located inside genes (all of them inside introns) and 124 are located in intergenic regions (see SI Table 3.5 and SI Table 3.6). The distances to the closest gene of the intergenic Galileo copies ranged from 29 to 110537 bp (average 11439 bp , median 5253bp). No correlation was observed between copy length and distance to the nearest gene (Spearman's rho $\mathrm{P} \gg 0.05$), or between copy length and intergenic region length (Spearman's rho $\mathrm{P} \gg 0.05$). There was no differential distribution regarding the 5^{\prime} or 3^{\prime} gene regions (chi-square test $\mathrm{P} \gg 0.05$) neither when the different subfamilies ($\mathrm{P} \gg 0.05$, from 1 to 0.36) or the structural Galileo type ($\mathrm{P} \gg 0.05$, from 0.22 to 1) were taken into account.

A set of 17 Galileo copies are located very close to genes (less than 500 bp , SI Table 3.5). The function of these genes have been explored and they are involved in different cellular processes, such as tRNAs, methyl transferases, helicases, DNA binding proteins and 14 of them possess a D. melanogaster ortholog. Another group of copies (23 Galileo) have been found inside genes. In all the cases the Galileo elements were located inside 16 different introns (in some introns there were more than one Galileo element). The length of these introns ranged from 1478 to 172415 bp , and 10 of the 16 genes whose introns harboured Galileo copies, have been assigned an orthologous gene
in D. melanogaster. (SI Table 3.6). There was no correlation between Galileo length and intron length, neither type nor subfamily is over-represented inside the genes ($\mathrm{P} \gg 0.05$).

3.5.- Discussion

In a previous work, we uncovered the presence of Galileo elements in six of the 12 sequenced Drosophila genomes (Marzo et al. 2008). Among them, D. mojavensis genome showed the highest variability in Galileo sequence and structure. A small sample of 16 nearly-complete copies that contained transposase-coding sequences and 20 non-autonomous copies was analysed. Analysis of the TIR sequence variation showed that the copies clustered in four different groups or subfamilies (that were named C, D, E and F). Two of these subfamilies, C and D, harboured truncated transposase coding region, while the other two groups were only composed by nonautonomous copies (mainly 2 TIR structure). The existence of different groups in the same genome suggested different amplification bursts in the past. Furthermore, a high variability in TIR length was detected. Since the TIR length is the most characteristic feature of Galileo elements, the D. mojavensis genome offered the opportunity to study this trait in detail.

Here, we carried out a thorough analysis of Galileo variation and distribution in the D. mojavensis genome sequence. In the present work we have uncovered the existence of at least 5 subfamilies of Galileo elements. Four of them contain nearly complete copies with transposase-coding segments, what implies the putative co-existence of four fully functional subgroups. The co-existence of different subgroups or subfamilies has previously been reported for D. melanogaster P-element and other transposons (Hartl et al. 1997; Quesneville et al. 2006; Miskey et al. 2007; Moschetti et al. 2008). There are two main hypotheses which would explain the co-existence of different subfamilies in the same genome: horizontal transfer and genomic diversification. On the one hand, in case of horizontal transfer events, the Galileo element could have arrived to D. mojavensis via some close spatio-temporal species, such as mites or other intimate parasites (Houck et al. 1991; Silva et al. 2004; Le Rouzic \& Capy 2005; Loreto et al. 2008). If the five subfamilies (C, D, E, F and X) had arrived through this mechanism, this would imply at least 5 independent events of successful horizontal transfer and invasion of D. mojavensis genome. If our estimation of each subfamily age is taken into account, these horizontal transfer events would have happen in a ~ 5 myr period, which would mean an average of one horizontal transfer event per million year. When the
variability of the age nodes is taken into account, this time range reaches $\sim 9.5 \mathrm{myr}$ (from 0.125 to 0.02 changes/time, 11.36 and 1.81 myr , respectively), which would mean ~ 0.53 horizontal transfers per myr. This would imply something like a "Galileo bombing" against D. mojavensis genome in the past. This HT rate is higher than the $0.04 \mathrm{HT} / \mathrm{myr} /$ family obtained by Bartolomé et al. (2009), even if we divide our estimation among the number of Galileo subfamilies, we still get a higher rate of 0.1 $\mathrm{HT} / \mathrm{myr} /$ subfamily. This massive horizontal transfer seems unlikely.

On the other hand, the different Galileo subfamilies could have diverged vertically from an ancestral resident in the genome. This putative ancestor sequence would have existed $\sim 18 \mathrm{myr}$ ago (0.20 units/relative time, considering 0.011 changes $/$ position $/ \mathrm{myr}$ (Tamura et al. 2004), as it is seen in our Beast ultrametric tree (Figure 2B). Such functional differentiation would have to be driven by specific selective pressures to form several subfamilies producing distinct Galileo transposases to overcome the cell transposition repression. When a new transposase appears along with high-affinity sequences, a tranposition burst would happen. After that, truncated copies of the successfully transposed ones would appear, rendering deletion derivatives, 2T, 2RT and solo_TIR copies. In each subfamily, all these structural types would appear independently and could spread while they conserve the affinity for the enzymes encoded elsewhere in the genome by an autonomous copy (Le Rouzic \& Capy 2006; Gonzalez \& Petrov 2009; Yang et al. 2009). This is the landscape Galileo presents in D. mojavensis genome.

Furthermore, another factor that would influence the Galileo diversification would be the genetic drift, which is very sensitive to the host population structure. D. mojavensis is a species with very divergent populations which are even considered as races. It could be possible that in each population a different Galileo subfamily evolved and secondary contacts with these populations mixed the different groups. However, our time estimation of each subfamily it is not in agreement with the putative ages of the different D. mojavensis races, which would have probably less than one myr (Machado et al. 2007; Reed et al. 2007). Thus, population structure seems not to explain the existence of Galileo subfamilies in D. mojavensis.

Nevertheless, the two mechanisms, horizontal transfer and genetic diversification are not mutually exclusive, thus, a combination of the two phenomena could have happened. However, it seems more parsimonious the vertical diversification of Galileo. Our estimations depicted that D. mojavensis Galileo subfamilies have a common ancestor ~ 18 myr ago. This is showing us that Galileo has an old history in D. mojavensis, which is in agreement with the Galileo ancient origin in the genus (Marzo et al. 2008). Likewise, recent data from the repleta Drosophila species group have uncovered the existence of Galileo elements in almost all the species of the complex (Andrea Acurio, Deodoro Oliveira and Alfredo Ruiz, in preparation). However, although the Galileo last common ancestor in the genus could be as old as the origin of the Drosophila genus, the subfamilies found in D. mojavensis diversified quite recently (4-9 myr ago). Consequently, only closely related species to D. mojavensis are expected to harbour these very same subfamilies, and other different subfamilies probably exist in more distantly related species.

The genomic dynamics of transposons seems to be similar for the different subfamilies. The natural cycle of a transposon would begin with the invasion of a new genome of a fully functional transposon, for example through horizontal transfer (Silva et al. 2004; Le Rouzic \& Capy 2006; Loreto et al. 2008). After that, since class II transposition depends entirely on the cell replication and repairing machineries of the double strand breaks, the truncated copies start to appear due to errors in the repair process. Likewise, the truncated copies that would maintain the sequences recognised by the transposase, would be able to spread better than the complete copies, probably due to the overcome of the putative length penalty some transposons suffer (Atkinson \& Chalmers 2010). Moreover, even shorter copies would appear, the so-called MITEs and, eventually, the transposon would end inactivated and disappear (Silva et al. 2004; Feschotte \& Pritham 2007).

Galileo element structures clearly show this dynamics. The nearly-complete copies are 5.2 kb average length and a gradient of shorter copies with different deletions appeared. This way, a bunch of copies where no transposase sequence is found appears, which is composed almost entirely of TIR. Maybe, these copies could be considered as Galileo MITEs, but there are some drawbacks for this definition. First of all, the main trait of MITE is its length, usually less than 600bp (Feschotte et al. 2002; Feschotte \&

Pritham 2007; Wicker et al. 2007). Galileo 2-TIR elements are 1.7-2.2 kb average length, mainly due to the TIR length per se. Secondly, MITEs usually posses sequences which are not found in the complete copies, a fact that made very difficult to find the parental elements of the first MITEs (Feschotte et al. 2003). In Galileo, the changes from the most complete copies to the 2TIR elements are traceable virtually all copies. Finally, although the 2TIR copies outnumber the nearly-complete ones, the number of copies is not as many as the MITEs thousand copies reached in some genomes (Feschotte \& Pritham 2007). Thus, we propose 2TIR element tag for this kind of Galileo copies.

Regarding the Galileo TIR dynamics, we have observed length expansion and contraction. On the one hand, for the contraction, the genomic deletion rate in TEs has been studied and would explain how this would happen (Petrov \& Hartl 1998). On the other hand, the expansion of the TIR would be a bit more complex than deletion. The expansion of the TIR in the F groups is mainly due to the expansion and contraction of the direct tandem repeats which are located inside the TIR. We have observed different number of tandem repeats in each of the TIR of a Galileo-F copy, rendering independent TIR dynamism. This would be in agreement with the statement that any region generated by duplication can thereafter be duplicated (Newman \& Trask 2003; Fiston-Lavier et al. 2007). Furthermore, the tandem repeats in the TIR or in subterminal regions of transposons have been proposed to be secondary binding sites for the transposase (Cheng et al. 2000; Cui et al. 2002; Moschetti et al. 2008; Marquez \& Pritham 2010). In our case, Galileo elements contain these tandem repeats as well, and they have been found independently in two different subfamilies: D. mojavensis F(Dmoj\GalileoF) and D. buzzatii G (Dbuz\GalileoG) (Casals et al. 2005; Marzo et al. 2008, 2011). The multiple binding sites seems to be a convergent trait that appears in different transposable element superfamilies and could be positively selected for an improved transposition reaction, thanks to a higher affinity for the transposition machinery.

Besides the tandem repeat expansion, we have detected another source of TIR extension: the recruitment of internal sequences to extend the TIR. This could be due to the structure of the Galileo sequences, where two close inverted repeats of least $\sim 600 \mathrm{bp}$ long might attract recombination, whether due to the DSB after transposon excision,
the structural instability or ectopic recombination as a result of being a genomic dispersed repetition. We could suggest that Galileo would have a behaviour similar to the segmental duplications besides its transpositional nature. Segmental duplications are repetitive regions of the genome that are able to recombine, exchange and convert sequences (Bailey \& Eichler 2006). For example, if a Galileo copy suffers a DSB in the TIR2 (due to a problem during replication step, for example) it could be repaired through non-allelic homologous recombination (NAHR). If for repairing this TIR2 it is used as template the TIR1 of a copy of the same subfamily (the two TIR present 98$100 \%$ nucleotide identity between the TIRs of the same Galileo copy) it is possible that it would be copied more sequence than the strictly TIR. In that case, since the TIR1 is being copied where the TIR2 is located, the region that was downstream of the TIR1 would appear upstream of the TIR2 as well, becoming a repetitive sequence in inverted orientation and extending the TIR span. The result is TIR1-F1-F1-TIR2. The expansion of inverted repeat sequences have been reported for segmental duplications, and Polintons inverted repeats (TE), thus, the dynamics of inverted repeats seems a general genomic dynamic trait (Cáceres et al. 2007; Fiston-Lavier et al. 2007; Jurka et al. 2007)

Thus, we can imagine ectopic recombination and genomic conversion would be acting among all Galileo copies and different products may appear, among them the chimeric elements. In these cases, if one of the exchange breakpoints (of the conversion tract) is located inside the element, it would generate a chimeric element with two welldefined segments from two different subfamilies. These chimeric copies resemble the Galileo copies found in the breakpoints of polymorphic inversions in D. buzzatii, what is in agreement with the Galileo inversion generations due to ectopic recombination attraction (Cáceres et al. 1999; Casals et al. 2003; Delprat et al. 2009). Furthermore, if the two exchange breakpoints are located inside the element, this would render, for example, the X-E-X copies and, probably, this could be the origin of the whole E subfamily as well.

We would like to propose that long TIR, although they imply a handicap for the transposition reaction (Atkinson \& Chalmers 2010), they could be useful for the survival of the transposon: the more recombination rate among these sequences due to the length of the TIRs, the more chance to appear a new Galileo subfamily. There would be more raw material where the transposase could choose from and a new
transposition burst would be triggered. The TIR length dynamics, along with the chimeric origin observed among Galileo copies is in agreement with an important dynamic DNA exchange of sequences and recombination (Bailey \& Eichler 2006; Cáceres et al. 2007; Fiston-Lavier et al. 2007). Thus, this would explain why different non-related class II transposon present subfamilies with long TIR and why TIR length is not a reliable feature for transposon classification (Ivics et al. 1997; Cheng et al. 2000; Moschetti et al. 2008; Marquez \& Pritham 2010).

Generally, the mutations or inactivation of the transposase sequence drives the death of a transposon, because without the transposition reaction there is no duplication of the sequences. The fact that we have not found any Galileo functional transposase, points out that Galileo may be an inactive element. However, our Galileo sequences lineages through time (LTT) plot, where the accumulation of nodes in the tree is depicted, did no show any decrease or stationary rate of Galileo sequences duplication. Thus, if Galileo is not still active, it has stopped working quite recently. In this regard, it is worth to mention that in genome sequencing projects, there are heterochromatic regions that have not been sequenced. Furthermore, there is a lot of variability among the individuals of a species which it is not represented by only one genome sequence. Then, we cannot discard the existence of Galileo active sequences in other individuals or other genomic regions of D. mojavensis.

3.6.- Supplementary material

Supporting tables list
SI Table 3.1. Summary table of the copies found (groups, structures and TIR length) and statistical tests.

SI Table 3.2. Detailed data of the Galileo copies included in this study.
SI Table 3.3. Interchromosome distribution of Galileo elements.

SI Table 3.4. Intrachromosome distribution of Galileo elements and statistical tests.
SI Table 3.5. Nearest genes to Galileo copies.
SI Table 3.6. Intronic Galileo copies.

Results

SI Table 3.1. Copy total element length and TIR length in the different Galileo subfamilies and subgroups.

	Total length			TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.
Nearly complete (>2 kb TPase)	2	5912.5	108.19	2	704.5	82.73
Nearly complete deletion derivatives	4	4070	1185.41	3	730.67	34.00
2 TIR	5	1383.8	530.50	5	318.3	242.31
2 TIR longer	2	3119	0	2	1107	0
solo TIR	6	772.5	171.47	-	-	-
Total	19	2504.5			617.208	

D

	Total length				TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.	
Nearly complete $(>2$ kb TPase $)$	5	5283.8	657.41	5	545.2	41.482	
Nearly complete deletion derivatives	2	3286	147.08	0	0	0	
2 TIR		0	0	0	0	0	
2 TIR longer	2	1860.5	443.36	2	735.5	392.44	
solo TIR	10	552.2	146.68	-	-	-	
	Total	19	2222.67			599.57	

E

	Total length			TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.
Nearly complete (>2 kb TPase)	0	0	0	0	0	0
Nearly complete deletion derivatives	0	0	0	0	0	0
2 TIR	7	1424.86	695.49	7	289.07	225.93
2 TIR longer	22	2114.045	369.76	22	907.21	210.37
solo TIR	19	778.90	285.43	-	-	-
Total	48	1469.29			758	

	Total length				TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.	
Nearly complete (>2 kb TPase)	1	0	0	1	733	0	
Nearly complete deletion derivatives	1	0	0	0	0	0	
2 TIR	28	1424.86	695.49	28	709.88	308.85	
2 TIR longer	3	2114.046	369.76	3	1086.83	180.03	
solo TIR	26	778.90	285.43	-	-	-	
Total	59	1528.42			776		

X

	Total length			TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.
Nearly complete $(>2$ kb TPase)	1	5047	0	1	147.5	0
Nearly complete deletion derivatives	2	2249.5	245.37	2	168	0
2 TIR	3	1262.33	666.27	3	311.67	192.84
2 TIR longer	4	1723.25	77.66	4	581.75	28.01
solo TIR	3	517	209.45	-	-	-
Total	13	1675.15			374.55	

Chimeric

	Total length				TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.	
Nearly complete $(>2$ kb TPase $)$	1	6239	0	1	873.5	0	
Nearly complete deletion derivatives	0	0	0	0	0	0	
2 TIR	6	1769.17	389.7474	6	599.67	196.51	
2 TIR longer	5	1903.6	576.99	5	491.3	252.22	
solo TIR	-	-	-	-	-	-	
Total	12	2197.67			528.65		

Total

	Total length				TIR length		
	N	Mean	Std. Dev.	N	Mean	Std. Dev.	
Nearly complete $(>2$ kb TPase $)$	10	5356.6	745.61	10	588.9	196.24	
Nearly complete deletion derivatives	9	3436.11	1047.91	5	505.6	309.12	
2 TIR	49	1738.88	562.31	49	571.93	322.95	
2 TIR longer	38	2139.5	497.62	38	833.88	271.38	
solo TIR	64	741.47	234.82	0	0	0	
	170	1755.59	1259.58	102	667.93	317.045	

Statistical Tests

1. Total Galileo length.

Galileo length distribution
Fitted Normal
Parameter Estimates

Type	Parameter	Estimate	Lower 95\%	Upper 95\%
Location	μ	1755.5941	1564.8851	1946.3031
Dispersion	σ	1259.5819	1138.4166	1409.8387

$-2 \log ($ Likelihood $)=2908.54105324984$

Goodness-of-Fit Test: Shapiro-Wilk W Test

W	$\mathrm{Prob}<\mathrm{W}$
0.834216	$<.0001^{*}$

Ho = The data is from the Normal distribution. Small p-values reject Ho.

Galileo length by Galileo subfamily

Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD Abs(Dif)-LSD

	C	D	Chimeric	X	F	E
C	-1148.26	-955.473	-1087.05	-533.405	-58.4314	-28.685
D	-955.473	-1148.26	-1279.84	-726.195	-251.221	-221.474
Chimeric	-1087.05	-1279.84	-1444.87	-894.295	-463.593	-429.642
X	-533.405	-726.195	-894.295	-1388.18	-949.693	-916.45
F	-58.4314	-251.221	-463.593	-949.693	-651.617	-632.487
E	-28.685	-221.474	-429.642	-916.45	-632.487	-722.433

Positive values show pairs of means that are significantly different.

Level		Mean
C	A 2415.6316	
D	A 2222.8421	

Z.Chimeric A 2197.6667

X A 1675.1538
F A 1540.4915
E A 1485.0417
Levels not connected by same letter are significantly different.

Total length distribution in the different Galileo subfamilies of D. mojavensis.
Galileo length by Galileo structural type
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD Abs(Dif)-LSD

| | 1.NC | 2.NC_DD 4. Longer_2TIR | | 3.2TIR | 5.SOLO |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.NC | -619.371 | 1284.146 | 2724.874 | 3137.145 | 4144.195 |
| 2.NC_DD | 1284.146 | -652.874 | 783.1924 | 1194.971 | 2201.598 |
| 4.Longer_2TIR | 2724.874 | 783.1924 | -317.731 | 101.2543 | 1114.4 |
| 3.2TIR | 3137.145 | 1194.971 | 101.2543 | -279.803 | 734.511 |
| 5.SOLO | 4144.195 | 2201.598 | 1114.4 | 734.511 | -244.828 |

Positive values show pairs of means that are significantly different.

Level	Mean	
1.NC	A	5356.6
2.NC_DD	B	3436.1111
4.2RT	C	2139.5
3.2T	D	1738.8776
5.SOLO	E	741.4688

Levels not connected by same letter are significantly different.

Total length distribution in the different Galileo structural types of D. mojavensis.

1. Galileo TIR length.

TIR length distribution
Fitted Normal
Parameter Estimates

Type	Parameter	Estimate	Lower 95\%	Upper 95\%
Location	μ	661.95146	599.16181	724.74111
Dispersion σ	321.27395	282.58952	372.32654	

$-2 \log ($ Likelihood $)=2908.54105324984$

Goodness-of-Fit Test: Shapiro-Wilk W Test

W	$\mathrm{Prob}<\mathrm{W}$
0.954506	0.0014^{*}

Ho = The data is from the Normal distribution. Small p-values reject Ho.

TIR length by Galileo subfamily

Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD Abs(Dif)-LSD

	F	E	C	Z.Chimeric X		
F	-223.629	-215.854	-174.065	-226.88	-134.19	47.31895
E	-215.854	-230.963	-188.276	-240.578	-148.401	33.28627
C	-174.065	-188.276	-365.184	-407.789	-325.309	-140.35
D	-226.88	-240.578	-407.789	-478.138	-403.188	-215.8
Z.Chimeric	-134.19	-148.401	-325.309	-403.188	-365.184	-180.225
X	47.31895	33.28627	-140.35	-215.8	-180.225	-400.039

Level	Mean	
F	A	745.9375
E	A	734.46667
C	AB	617.20833
D	AB	599.57143
Z.Chimeric	AB	577.33333
X	B	374.55

Levels not connected by same letter are significantly different.

TIR length by Structural Type
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD
Abs(Dif)-LSD

	4.2RT	1.NC	3.2T	2.NC DD
4.2RT	-176.177	-27.9503	95.9579	-37.0464
1.NC	-27.9503	-343.432	-249.502	-337.316
3.2T	95.9579	-249.502	-155.147	-294.2
2.NC_DD	-37.0464	-337.316	-294.2	-485.686

Positive values show pairs of means that are significantly different.

Level	Mean	
4.2RT	A	833.88158
1.NC	AB	588.9
3.2T	B	571.92857
2.NC DD	AB	505.6

Levels not connected by same letter are significantly different.

SI Table 3.2. Galileo copies
I. Nearly Complete copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig	Start	End	Total_length	$\begin{array}{r} \text { TIR1 } \\ \text { length } \end{array}$	$\begin{gathered} \text { TIR2 } \\ \text { length } \\ \hline \end{gathered}$	TIR identity	TPase
6500-30856C	6500	30856283	30862823	C	GTTACCG	GTTACCG	10758	37586	44126	5989	813	713	98.7	2784
$6500-31288 \mathrm{C}$	6500	31288762	31295303	C	ATGGAGA	TATTGAC	10770	9949	16490	5836	583	709	61.9	2828
6541-11419q	6541	1141978	1149130	Chimeric F/C	GTAGAAC	GTATGGT	11233	4001	11153	6239	788	959	80.1	2808
6485-39163D	6485	39163	45738	D	GTCCAAG	ATtTAAG	9930	1467	8042	5675	574	576	99.3	2814
6498-23860D	6498	2386095	2392524	D	TAATAAA	TAATAAA	10376	4316	10745	5721	570	570	100	2785
$6500-31458 \mathrm{D}$	6500	31458921	31465167	D	-	TTTATAT	10773	33627	39873	4130	570	376	94.1	2228
6540-11758D	6540	1175880	1182997	D	CTGAATC	CTAAATC	10946	6739	13856	5433	525	578	89.3	2553
6541-16442D	6541	1644296	1649755	D	AATGTAT	AATGTAT	11255	1328	6768	5460	557	556	99.1	2550
6498-22531F	6498	2253149	2269701	F	CCTGAAC	GTAGCAG	10369	31739	35574	4036	693	773	95.4	2047
6540-41449X	6540	414493	419539	X	-	CTTAAAT	10924	25932	30978	5047	127	168	98.4	2822

II. Nearly Complete Deletion Derivatives copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig 1	Start	End	Total lengt	TIR1 length	TIR2 length	TIR identit	Tpase
$6262-13889 \mathrm{C}$	6262	13889	19752	C	no	no	7794	13889	19752	3899	526	0	0	2698
6358-1C	6358	1	5345	C	no	GTACAAT	8435	1	$\begin{gathered} 4274 \\ 736 \end{gathered}$	4793	732	662	99.4	1949
6500-31981C	6500	31981325	31986443	C	antatat	atatatat	10792	22486	27604	5119	815	645	91.9	1951
6482-61400D	6482	614003	617184	D	no	no	9847	20748	23929	3182	254	0	0	1739
6482-61718D	6482	617185	621442	D	no	no	9847	23930	25156	3390	0	0	0	2704
6482-60893F	6482	608936	612509	F	GCGCTAT	no	9847	15681	19245	3574	911	0	0	2323
6406-4469X	6406	4469	6544	X	GCCTTAG	GCCTTAG	8836	146	2221	2076	168	168	97.6	284
6498-25411X	6498	2541172	2544793	X	CTTGTAC	CTTGTAC	10383	26876	30497	2423	168	168	99.4	276

SI Table 3.2. Continuation. III. 2-TIR copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig_1	Start	End	Total length	TIR1 length	TIR2 length	TIR identity
6433-41007C	6433	41007	42966	C	ATACAAC	ATACAAC	8990			929	335	339	98.2
							8989	4387	5010				
6473-11762C	6473	11762829	11764731	C	ATTTGAA	ATtTGAA	9647	4614	6516	1903	578	578	100
6500-31884C	6500	31884435	31886401	C	ATACTAC	ATACTAC	10790	49101	51067	1967	556	494	81.6
6540-61321C	6540	6132112	6133394	C	GTCTGGC	GTCTGGC	10985	125776	127058	1283	18	18	100
6680-24265C	6680	24265741	24266577	C	GTTCGGC	GTTCGGC	11684	12780	13616	837	133	134	94
6482-26902q	6482	269026	270625	Chimeric E/C	GTGATAT	AATACAC	9832	28557	30156	1600	577	565	67
6500-30179q	6500	30179877	30181717	Chimeric F/C	GTAGTAT	CGTAGAT	10737	2699	4539	1841	432	566	53.9
6500-30733q	6500	30733241	30734538	Chimeric D/F	no	TCTTTGG	10753	9551	10848	1298	399	535	60.5
6540-55852q	6540	558528	561650	Chimeric E/F	-	ATtTTAG	10925	93044	96166	2443	897	1050	43.5
6541-16186q	6541	1618681	1620248	Chimeric F/C	CTTTTAG	GTAACAC	11252	5173	6740	1568	754	526	80.7
6541-16912q	6541	1691275	1695391	Chimeric F/C	ATATAAC	GTCTTAA	11256	5973	10089	1865	441	454	76.5
$4124-318 \mathrm{E}$	4124	318	3097	E	GTAGTAA	GTAGTAA		1 318	3832	1866	676	559	99.1
							4795	318	880				
4198-1393E	4198	1393	3341	E	GCTATAC	GCTATAC				1949	72	72	100
							4931	1393	1464				
4502-5732E	4502	5732	6311	E	GTTGTAT	CCTTAAT	5475	5732	6311	580	195	195	95.9
$6115-956 \mathrm{E}$	6115	956	2582	E	ATATGGC	ATATGGC	7618	956	2582	1927	477	478	96.4
6482-45393E	6482	453934	454728	E	GTCAGAC	GTCAGAC	9840	16922	17716	795	53	53	98.1
6498-19996E	6498	1999631	2001782	E	ATATAAG	ATATAAG	10352	110278	112924	697	145	145	99.3
6500-31360E	6500	31360321	31362480	E	-	GTtTTAT	10770	81508	83667	2160	481	446	74.4
1776-3477F	1776	3477	4795	F	GAAGAAC	-	1899	3477	4170	1319	291	291	90.8
3792-475F	3792	475	3832	F	GTACCGC	GTACCGC	4241	475	3832	2193	846	1075	98.1
6473-16293F	6473	16293472	16295724	F	ATACAAT	ATTACAC	9762	19387	20553	2253	651	650	99.7
							9763	1	656				
6482-21925F	6482	2192546	2194452	F	ATtTGAT	ATtTGAT	9896	8068	9974	1907	812	812	100
6482-25792F	6482	2579294	2581638	F	ATtGAGT	ATtGAGT	9911	1113	3457	2345	1032	1032	99.7
6496-25846F	6496	25846816	25848819	F	ACTCTAT	ACTCTAT	10271	1	1156	2004	727	727	100
							10270	145320	146046				

SI Table 3.2. Continuation. III. 2-TIR copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig_1	Start	End	Total length	TIR1 length	TIR2 length	TIR identity
6497-23418F	6497	234188	236613	F	GTACCGC	GTACCGC	10309	10744	13169	2426	1147	1153	98.8
6498-18188F	6498	1818872	1820002	F	ATCAAAT	GTGAAAC	13050	8248	9378	1032	23	23	91.3
6498-29668F	6498	2966893	2969965	F	GTAATAG	-	10404	26506	29578	2137	665	646	82.8
6498-32815F	6498	3281538	3283440	F	GTAGTAT	GTAGTAT	10415	25282	27184	1903	810	810	99.8
6500-30329F	6500	30329586	30332946	F	CTATAAC	TACATAT/TGCTAAT	10741	55570	58930	3361	985	1214	97.8
6500-30494F	6500	30494802	30496424	F	ATtTTAC	TTACGCA	10742	42243	43865	1344	396	502	91.7
6500-30596F	6500	30596827	30599409	F	GTCGTGG	GTCGTGG	10744	15274	17856	2583	1264	1038	99.3
6500-30684F	6500	30684259	30686266	F	ATAGCGT	TTGAACC	10751	6539	8546	2008	753	957	97.4
6500-30873F	6500	30873698	30875357	F	GTTATGC	GTTATGC	10758	55001	56660	1660	485	626	91.7
6500-30976F	6500	30976506	30978415	F	ATAGTAG	ATAGTAG	$\begin{aligned} & 10762 \\ & 10761 \end{aligned}$	$\begin{gathered} 1 \\ 9087 \end{gathered}$	$\begin{gathered} 940 \\ 10031 \end{gathered}$	1910	944	760	93.1
6500-31107F	6500	31107017	31109152	F	CTTAAAT	CTTAAAT		$\begin{gathered} 53125 \\ 1 \end{gathered}$	$\begin{gathered} 53803 \\ 1465 \end{gathered}$	2136	677	679	99.8
6500-31694F	6500	31694898	31696939	F	no	GTATCAG	10387	1	2042	2042	1020	892	99.5
6540-56432F	6540	564326	566215	F	TGTACAT	ATGTACA	10925	98843	100731	1889	803	806	99
6540-79670F	6540	796704	798194	F	GTTCGTG	CCAGACA	$\begin{aligned} & 10931 \\ & 10930 \end{aligned}$	$\begin{gathered} 1 \\ 17100 \end{gathered}$	$\begin{gathered} 676 \\ 17422 \end{gathered}$	1491	108	109	30.2
6540-57500F	6540	5750063	5751976	F	CTTTAAC	CTTTAAC	10984	336595	338508	1914	892	892	100
6540-33286F	6540	33286261	33288174	F	ATAAAAA	ATAAAAA	11176	117065	118978	1914	892	892	100
							11193	1	975				
6541-17831F	6541	178316	180001	F	ATAAGAC	ATAAGAC	11192	15669	16353	1686	682	683	98.7
6541-10035F	6541	1003587	1007838	F	ATATAAG	CCCATAT	11229	9895	14146	1876	712	688	93
6541-12491F	6541	1249195	1251094	F	CTAATAT	CTAATAT	11238	17034	18933	1900	811	811	99.1
6541-15113F	6541	1511326	1513666	F	CTTTGTG	CTTTGTG		1	1329	2341	751	964	95.3
6680-24420F	6680	24420206	24421090	F	GTAGTAT	GTAGTAT	11248 11687	12735 39553	13721 40437	885	86	86	93

SI Table 3.2. Continuation. III. 2-TIR copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig 1	Start	End	Total length	th	th	ity
6680-24422F	6680	24422223	24425258	F	GTACACA	GTACACA	11687	41570	44605	1451	335	335	97
6498-95069X	6498	950693	951185	X	TCCATAT	TCCATAT	10339	90483	90975	493	90	88	98.8
6498-29033X	6498	2903343	2904985	X	CTTATAT	CTTATAT	10400	3858	5500	1643	423	423	100
6500-29395X	6500	29395284	29396934	X	ATAATAC	TATAAAC	10722	198610	200260	1651	423	423	99.1

SI Table 3.2. Continuation. IV. 2 Recombinant TIR or 2 longer TIR copies

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig_1	Start	End	Total_length	TIR1 length	TIR2 length	TIR identity	TPase
6498-21770C	6498	2177013	2181005	C	GTTGAGC	GTTGAGC	10367	3528	7520	3119	1107	1107	99.1	599
6500-31083C	6500	31083091	31089863	C	TTTATAT	TTTATAT	10764	29199	35971	2469	815	715	86.4	57
6500-31371C	6500	31371001	31374119	C	ATAGTAG	CTACTAT	10770	92188	95306	3119	1107	1107	98.7	602
6500-29973q	6500	29973001	29975284	Chimeric F/X	TAGGTAA	ATACAAC	10735	14871	17154	2284	590	746	49.8	0
6500-30183q	6500	30183437	30184591	Chimeric F/X	ATAATAC	CATATAT	10737	6259	7413	1155	449	714	59.3	0
6541-99710q	6541	997100	998743	Chimeric E/F	ACCATAC	GTACAGC	11229	3408	5051	1644	46	47	87.2	0
6680-24427q	6680	24427759	24434511	Chimeric E/X	TTTGGGT	ATGTTAA	$\begin{aligned} & 11687 \\ & 11688 \end{aligned}$	$\begin{gathered} 47106 \\ 1 \end{gathered}$	$\begin{gathered} 52345 \\ 552 \end{gathered}$	2643	555	552	85.5	0
6680-24440q	6680	24440484	24442275	Chimeric E/X	Ttttgat	ATGTTAA	11688	6525	8316	1792	608	606	86.8	0
6540-10358D	6540	1035815	1037361	D	ATtGGGG	ATTGGGG	10940	39859	41405	1547	458	458	96.5	0
6680-24069D	6680	24069812	24072777	D	TTATGAG	TTATGAG	11679	95650	98615	2174	1012	1014	98.9	0
4503-1178E	4503	1178	7564	E	TCGTGAC	TCGTGAC	5476	1178	7564	1991	954	979	98.1	0
6395-2229E	6395	2229	6819	E	CTATAAC	CTATAAC	8783	2229	6819	2151	991	1028	95.6	0
6473-10080E	6473	1008070	1010341	E	GCGCTGA	GCGCTGA		$\begin{gathered} 1 \\ 9335 \end{gathered}$	1207 10394	2272	1002	1002	99.7	0
								$\begin{gathered} 9335 \\ 20890 \end{gathered}$						
6482-36252E	6482	362528	364455	E	-	GTtTAC	9835	327	959	1928	741	741	98.4	0
6496-15292E	6496	15292514	15294879	E	TAAGTGG	TAAGTGG	10177	520481	522846	2366	1075	1075	100	0
6498-95355E	6498	953555	955919	E	GCCAAAG	GCCAAAG	10339	93345	95709	2365	1075	1074	99.9	0
6498-29938E	6498	2993866	2995242	E	CTTGTAC	CTTGTAC	10405	19460	20836	1377	193	193	100	0
$6500-29804 \mathrm{E}$	6500	29804958	29807163	E	TCATTAC	TCATTAC	10727	44829	47034	2206	1029	1027	99.6	0
$6500-30306 \mathrm{E}$	6500	30306361	30308225	E	GTGGTAT	GTGGTAT	10741	32345	34209	1865	645	678	96	0
6500-30702E	6500	30702790	30704984	E	TGTATAC	TGTATAC	10751	25070	27264	2195	1021	1026	99.3	0
6500-31202E	6500	31202553	31204509	E	ACATCAA	ACATCAA	10766	25837	26845	1957	832	819	96.6	0
6500-31506E	6500	31506397	31509717	E	GTAAAAA	GTAAAAC	10767	1 18407	913 21727	3321	1048	1043	97.4	0
$6500-31516 \mathrm{E}$	6500	31516211	31518161	E	ATACTAG	GTACAGG	10774	28221	29239	1951	962	906	92.2	0
					ATACTAG	-	10775	1	907					
6500-31920E	6500	31920296	31922494	E	TCGAAAC	TCGAAAC	10790	84962	87962	2199	1028	1022	98.2	0
6500-32268E	6500	32268286	32271024	E	ATTATAG	ATTATAG	10803	46034	48772	2184	1016	1017	99.2	0

SI Table 3.2. Continuation. IV. Recombinant TIR or 2 longer TIR copies (continuation).

TAG	Scaffold	Start	End	Subfamily	TSD1	TSD2	Contig_1	Start	End	Total length	TIR1 length	IR2 length	IR identity	Tpase
6540-11650E	6540	1165033	1168349	E	GATACAC	GATACAC	10945	2811	6127	2180	998	1034	96.2	0
6540-13720E	6540	1372066	1373808	E	ATATAAT	ATATAAT	10949	9737	1479	1743	771	771	99.2	0
6540-14510E	6540	14510521	14512886	E	CTTTTGT	Ctttiga	11044	136297	138662	2366	1075	1075	100	0
6540-31163E	6540	31163990	31166355	E	CTTAAAC	TTAGTGC	11157	380472	382837	2366	1075	1075	99.3	0
6541-10420E	6541	1042036	1043771	E	TTAATGC	TTAATGC	11229	48344	50079	1736	769	971	96.5	0
6541-10885E	6541	1088506	1090501	E	ATAGAGC	ATAGAGC	$\begin{aligned} & 11232 \\ & 11231 \end{aligned}$	$\begin{gathered} 1 \\ 24008 \end{gathered}$	$\begin{gathered} 1014 \\ 24917 \end{gathered}$	1996	910	915	98.1	0
6541-20142E	6541	2014221	2016575	E	GTATCAA	GTATCAA	11267	12789	15143	1794	613	623	98.1	0
6328-16507F	6328	1650720	1653101	F	GTGCAGC	GTGCAGC	8189	12012	14393	2382	894	894	99.9	0
6496-23195F	6496	23195067	23197892	F	GTATTTT	GTATTTT	10246	221912	224737	2826	1116	1116	99.6	211
6500-29864F	6500	29864896	29868109	F	GTATTAT	GTATTAT	10727	104767	107980	3214	1260	1241	95.2	0
6500-30351X	6500	30351497	30353286	X	CTATAAC	CTATAAC	10741	77481	79270	1790	606	606	99.5	0
6680-24283X	6680	24283772	24285562	X	GCTAAAG	ATTAAAG	11684	30811	32601	1791	606	606	98.3	0
6680-24520X	6680	24520907	24522561	X	ATAAGAC	ATAAGAC	11693	28363	30017	1655	548	566	95.2	0
6680-24538X	6680	24538620	24540276	X	GTTACGG	GTTACGG	11694	11280	12936	1657	550	566	95.1	0

SI Table 3.2. Continuation. V. Solo-TIR copies

TAG	Scaffold	Start	End	Subfamily	TSD1	Contig 1	Start	End	Total length
4159-2383C	4159	2383	3089	C	no	4862	93	745	707
4315-36359C	4315	36359	37136	C	ATTTAGG	5157	597	1374	778
6475-6418C	6475	6418	6949	C	GTTATGC	9793	6418	6949	532
6500-29798C	6500	29798764	29799506	C	-	10727	39377	38635	743
6540-59683C	6540	596833	597648	C	GTTGAAC	10925	131349	132164	816
6540-13434C	6540	13434776	13435834	C	ATACCC	11040	106510	108568	1059
3967-5428D	3967	5428	5995	D	GTATTGA	4504	449	1016	568
4302-1710D	4302	1710	2167	D	TTCACGA	5129	23	480	458
5820-1010D	5820	1010	1528	D	GCTTTAT	7167	1010	1528	519
6115-1D	6115	1	291	D	ATtTAAG	7618	1	291	291
6422-3900D	6422	3900	4471	D	TTGATGT	8929	3900	4471	572
6439-76259D	6439	76259	76829	D	GATAAAT	9016	2195	2765	571
6482-25268D	6482	2526809	2527340	D	CTACTAC	9907	14465	14996	532
6498-25609D	6498	2560957	2561558	D	TCATAAC	10383	46934	47262	602
6500-30590D	6500	30590766	30591289	D	CTTCTAG	10744	9213	9736	524
6541-24219D	6541	2421943	2422508	D	ATCGTTC ?	11283	10937	11502	885
3878-2398E	3878	2398	2973	E	ATAATAG	4340	2398	2973	576
4315-35763E	4315	35763	36259	E	GCGCAAC	9252	9355	9851	497
4552-6419E	4552	6419	7232	E	CCATAAA	5552	3434	4074	814
4621-5761E	4621	5761	6344	E	CTTCTAG	5655	474	1057	584
6070-5751E	6070	5751	6783	E	TCGTGAC	7517	5751	6783	1033
6320-38399E	6320	38399	38982	E	GTTCTGC	8092	3568	4151	584
6329-49349E	6329	49349	50504	E	TTACTAC	8308	1	1156	1156
6404-43168E	6404	43168	43745	E	GTTGAAG	8826	832	1409	578
6498-24079E	6498	2407995	2408421	E	GTtCTAT	10376	26216	26642	427
6498-26098E	6498	2609857	2611989	E	GTtTTGA	10385	7751	8354	1149
6498-28362E	6498	2836237	2836700	E	TTGAAAG	10397	7407	7870	464

SI Table 3.2. Continuation. V. Solo-TIR copies (continuation)

TAG	Scaffold	Start	End	Subfamily	TSD1	Contig 1	Start	End	Total length
$6498-31200 \mathrm{E}$	6498	3120041	3121220	E	CAGTTGG	10408	4700	5879	1180
$6500-31339 \mathrm{E}$	6500	31339017	31339980	E	atattat	10770	60532	61167	964
$6500-31499 \mathrm{E}$	6500	31499776	31500354	E	cattanc	10774	11786	12364	579
$6500-31817 \mathrm{E}$	6500	31817847	31818422	E	GTCACGA	10789	10934	11509	576
$6540-75029 \mathrm{E}$	6540	750291	750804	E	accatac	10928	42449	42962	514
$6540-89813 \mathrm{E}$	6540	898138	898666	E	cttatat	10934	44264	44792	529
$6540-10067 \mathrm{E}$	6540	1006735	1007752	E	no	10940	10779	11429	1018
$6680-23161 \mathrm{E}$	6680	23161869	23162539	E	atatang	11659	26002	26672	821
6498-17302F	6498	1730250	1731243	F	CtGttac	10349	8459	9452	994
6498-23818F	6498	2381827	2382890	F	attanat	10376	48	1111	1064
6498-25144F	6498	2514476	2515268	F	gCaAAAT	10383	180	972	793
6498-25221F	6498	2522128	2522920	F	gCaAAAT	10383	7832	8624	793
6498-27869F	6498	2786970	2787863	F	atcatat	10394	5133	6204	894
6498-30224F	6498	3022490	3023060	F	no	10406	18750	19320	571
$6500-29965 \mathrm{~F}$	6500	29965273	29966306	F	GTAGTAC	10735	7404	7734	1034
6500-29967F	6500	29967217	29968358	F	gTGCtat	10735	9087	10228	1142
6500-29976F	6500	29976999	29977829	F	taAgTac	10735	18869	19699	831
6500-30981F	6500	30981230	30981940	F	no	10762	3155	4465	711
$6500-31888 \mathrm{~F}$	6500	31888888	31889062	F	gTatait	10790	53554	53728	175
6500-32144F	6500	32144419	32145123	F	ttatant	10797	25558	26210	705
6540-32266F	6540	322669	323530	F	tcactac	10921	4012	4873	862
6540-46643F	6540	466436	467246	F	ttianag	10925	952	1762	811
6540-62798F	6540	627982	628716	F	atattga	10925	162498	163232	735
6540-69428F	6540	694288	695126	F	GTTCAGA	10927	19474	20312	839
6540-75429F	6540	754292	755195	F	gtagtat	10928	46450	47353	904
6540-10727F	6540	1072704	1073438	F	cttatat	10941	6593	7327	735
6540-73206F	6540	7320643	7321437	F	GTGGAAC	10998	72162	72956	795
6541-83575F	6541	835755	836619	F	attatat	11224	13291	14155	865
6541-10932F	6541	1093209	1093801	F	gTACAGA	11232	3722	4314	593

SI Table 3.2. Continuation. V. Solo-TIR copies (continuation)

TAG	Scaffold	Start	End	Subfamily	TSD1	Contig_1	Start	End	Total_length
$6541-24225 \mathrm{~F}$	6541	2422509	2423290	F	GTTCAGG	11283	11503	12284	782
$6680-23160 \mathrm{~F}$	6680	23160719	23161539	F	GTTATAA	11659	24852	25672	671
$6680-23219 \mathrm{~F}$	6680	23219687	23220569	F	CTCTAAC	11661	17802	18684	
$6680-23825 \mathrm{~F}$	6680	23825194	23825885	F	GCAGAAA	11672	39965	40656	883
$6680-24145 \mathrm{~F}$	6680	24145587	2414665	F	GTACAGA	11680	28664	29736	1073
$6493-38387 \mathrm{X}$	6493	38387	39006	X	GTAATAT	9982	1	620	620
$6500-31891 \mathrm{X}$	6500	31891331	31891606	X	no	10790	55997	56272	276
$6540-72269 \mathrm{X}$	6540	722695	723349	X	ATATGAA	10928	14931	15507	655

SI Table 3.3. Chromosomal distribution of Galileo copies in D. mojavensis.

CAF1 scaffold	Galileo start	Galileo end	Galileo Group	Galileo Type	Galileo length	GenBank Scaffold Acc	Scaffold length (bp)	Chr arm
6328	1650720	1653101	F	2TIR	2382	CH933812.1	4453435	X
6473	1008070	1010341	E	Longer_2TIR	2272	CH933810.1	16943266	X
6473	11762829	11764731	C	2TIR	1903	CH933810.1	16943266	X
6473	16293472	16295724	F	2TIR	2253	CH933810.1	16943266	X
6482	269026	270625	Chimeric	2TIR	1600	CH933815.1	2735782	X
6482	362528	364455	E	Longer_2TIR	1928	CH933815.1	2735782	X
6482	453934	454728	E	2 TIR	795	CH933815.1	2735782	X
6482	608936	612509	F	NC_DD	3574	CH933815.1	2735782	X
6482	614003	617184	D	NC_DD	3182	CH933815.1	2735782	X
6482	617185	621442	D	NC_DD	3390	CH933815.1	2735782	X
6482	2192546	2194452	F	2TIR	1907	CH933815.1	2735782	X
6482	2526809	2527340	D	SOLO	532	CH933815.1	2735782	X
6482	2579294	2581638	F	2TIR	2345	CH933815.1	2735782	X
6496	15292514	15294879	E	Longer_2TIR	2366	CH933808.1	26866924	5
6496	23195067	23197892	F	NC_DD	2826	CH933808.1	26866924	5
6496	25846816	25848819	F	2TIR	2004	CH933808.1	26866924	5
6498	950693	951185	X	2TIR	493	CH933813.1	3408170	6
6498	953555	955919	E	Longer_2TIR	2365	CH933813.1	3408170	6
6498	1730250	1731243	F	SOLO	994	CH933813.1	3408170	6
6498	1818872	1820002	F	2TIR	1032	CH933813.1	3408170	6
6498	1999631	2001782	E	2TIR	697	CH933813.1	3408170	6
6498	2177013	2181005	C	Longer_2TIR	3119	CH933813.1	3408170	6
6498	2253149	2269701	F	NC	4036	CH933813.1	3408170	6
6498	2381827	2382890	F	SOLO	1064	CH933813.1	3408170	6
6498	2386095	2392524	D	NC	5721	CH933813.1	3408170	6
6498	2407995	2408421	E	SOLO	427	CH933813.1	3408170	6
6498	2514476	2515268	F	SOLO	793	CH933813.1	3408170	6
6498	2522128	2522920	F	SOLO	793	CH933813.1	3408170	6

SI Table 3.3. Chromosomal distribution of Galileo copies in D. mojavensis (continuation).

CAF1 scaffold	Galileo start	Galileo end	Galileo Group	Galileo Type	Galileo length	GenBank Scaffold Acc	Scaffold length (bp)	Chr_arm
6498	2541172	2544793	X	NC_DD	2423	CH933813.1	3408170	6
6498	2560957	2561558	D	SOLO	602	CH933813.1	3408170	6
6498	2609857	2611989	E	SOLO	1149	CH933813.1	3408170	6
6498	2786970	2787863	F	SOLO	894	CH933813.1	3408170	6
6498	2836237	2836700	E	SOLO	464	CH933813.1	3408170	6
6498	2903343	2904985	X	2TIR	1643	CH933813.1	3408170	6
6498	2966893	2969965	F	2TIR	2137	CH933813.1	3408170	6
6498	2993866	2995242	E	2TIR	1377	CH933813.1	3408170	6
6498	3022490	3023060	F	SOLO	571	CH933813.1	3408170	6
6498	3120041	3121220	E	SOLO	1180	CH933813.1	3408170	6
6498	3281538	3283440	F	2TIR	1903	CH933813.1	3408170	6
6500	29395284	29396934	X	2TIR	1651	CH933807.1	32352404	3
6500	29798764	29799506	C	SOLO	743	CH933807.1	32352404	3
6500	29804958	29807163	E	Longer_2TIR	2206	CH933807.1	32352404	3
6500	29864896	29868109	F	Longer_2TIR	3214	CH933807.1	32352404	3
6500	29965273	29966306	F	SOLO	1034	CH933807.1	32352404	3
6500	29967217	29968358	F	SOLO	1142	CH933807.1	32352404	3
6500	29973001	29975284	Chimeric	2TIR	2284	CH933807.1	32352404	3
6500	29976999	29977829	F	SOLO	831	CH933807.1	32352404	3
6500	30179877	30181717	Chimeric	2TIR	1841	CH933807.1	32352404	3
6500	30183437	30184591	Chimeric	2TIR	1155	CH933807.1	32352404	3
6500	30306361	30308225	E	Longer_2TIR	1865	CH933807.1	32352404	3
6500	30329586	30332946	F	2TIR	3361	CH933807.1	32352404	3
6500	30351497	30353286	X	Longer_2TIR	1790	CH933807.1	32352404	3
6500	30494802	30496424	F	2TIR	1344	CH933807.1	32352404	3
6500	30590766	30591289	D	SOLO	524	CH933807.1	32352404	3

SI Table 3.3. Chromosomal distribution of Galileo copies in D. mojavensis (continuation).

CAF1 scaffold	Galileo start	Galileo end	Galileo Group	Galileo Type	Galileo length	GenBank Scaffold Acc	Scaffold length (bp)	Chr arm
6500	30596827	30599409	F	2 TIR	2583	CH933807.1	32352404	3
6500	30684259	30686266	F	2TIR	2008	CH933807.1	32352404	3
6500	30702790	30704984	E	Longer_2TIR	2195	CH933807.1	32352404	3
6500	30733241	30734538	Chimeric	2TIR	1298	CH933807.1	32352404	3
6500	30856283	30862823	C	NC	5989	CH933807.1	32352404	3
6500	30873698	30875357	F	2TIR	1660	CH933807.1	32352404	3
6500	30976506	30978415	F	2TIR	1910	CH933807.1	32352404	3
6500	30981230	30981940	F	SOLO	711	CH933807.1	32352404	3
6500	31083091	31089863	C	NC_DD	2469	CH933807.1	32352404	3
6500	31107017	31109152	F	2TIR	2136	CH933807.1	32352404	3
6500	31202553	31204509	E	Longer_2TIR	1957	CH933807.1	32352404	3
6500	31288762	31295303	C	NC	5836	CH933807.1	32352404	3
6500	31339017	31339980	E	SOLO	964	CH933807.1	32352404	3
6500	31360321	31362480	E	2TIR	2160	CH933807.1	32352404	3
6500	31371001	31374119	C	Longer_2TIR	3119	CH933807.1	32352404	3
6500	31458921	31465167	D	NC	4130	CH933807.1	32352404	3
6500	31499776	31500354	E	SOLO	579	CH933807.1	32352404	3
6500	31506397	31509717	E	Longer_2TIR	3321	CH933807.1	32352404	3
6500	31516211	31518161	E	Longer_2TIR	1951	CH933807.1	32352404	3
6500	31694898	31696939	F	2TIR	2042	CH933807.1	32352404	3
6500	31817847	31818422	E	SOLO	576	CH933807.1	32352404	3
6500	31884435	31886401	C	2TIR	1967	CH933807.1	32352404	3
6500	31888888	31889062	F	SOLO	175	CH933807.1	32352404	3
6500	31891331	31891606	X	SOLO	276	CH933807.1	32352404	3
6500	31920296	31922494	E	Longer_2TIR	2199	CH933807.1	32352404	3
6500	31981325	31986443	C	NC_DD	5119	CH933807.1	32352404	3
6500	32144419	32145123	F	SOLO	705	CH933807.1	32352404	3
6500	32268286	32271024	E	Longer_2TIR	2184	CH933807.1	32352404	3

SI Table 3.3. Chromosomal distribution of Galileo copies in D. mojavensis (continuation).

CAF1 scaffold	Galileo start	Galileo end	Galileo Group	Galileo Type	Galileo length	GenBank Scaffold Acc	Scaffold length (bp)	Chr arm
6540	322669	323530	F	SOLO	862	CH933806.1	34148556	2
6540	414493	419539	X	NC	5047	CH933806.1	34148556	2
6540	466436	467246	F	SOLO	811	CH933806.1	34148556	2
6540	558528	561650	Chimeric	2TIR	2443	CH933806.1	34148556	2
6540	564326	566215	F	2TIR	1889	CH933806.1	34148556	2
6540	596833	597648	F	SOLO	816	CH933806.1	34148556	2
6540	627982	628716	F	SOLO	735	CH933806.1	34148556	2
6540	694288	695126	F	SOLO	839	CH933806.1	34148556	2
6540	722695	723349	X	SOLO	655	CH933806.1	34148556	2
6540	750291	750804	E	SOLO	514	CH933806.1	34148556	2
6540	754292	755195	F	SOLO	904	CH933806.1	34148556	2
6540	796704	798194	F	2TIR	1491	CH933806.1	34148556	2
6540	898138	899882	Chimeric	SOLO	1285	CH933806.1	34148556	2
6540	1006735	1007752	E	SOLO	1018	CH933806.1	34148556	2
6540	1035815	1037361	D	2TIR	1547	CH933806.1	34148556	2
6540	1072704	1073438	F	SOLO	735	CH933806.1	34148556	2
6540	1165033	1168349	E	Longer_2TIR	2180	CH933806.1	34148556	2
6540	1175880	1182997	D	NC	5433	CH933806.1	34148556	2
6540	1372066	1373808	E	Longer_2TIR	1743	CH933806.1	34148556	2
6540	5750063	5751976	F	2TIR	1914	CH933806.1	34148556	2
6540	6132112	6133394	C	2TIR	1283	CH933806.1	34148556	2
6540	7320643	7321437	F	SOLO	795	CH933806.1	34148556	2
6540	13434776	13435834	C	SOLO	1059	CH933806.1	34148556	2
6540	14510521	14512886	E	Longer_2TIR	2366	CH933806.1	34148556	2
6540	31163990	31166355	E	Longer_2TIR	2366	CH933806.1	34148556	2
6540	33286261	33288174	F	2TIR	1914	CH933806.1	34148556	2
6541	178316	180001	F	2TIR	1686	CH933817.1	2543558	X

SI Table 3.3. Chromosomal distribution of Galileo copies in D. mojavensis (continuation).

CAF1 scaffold	Galileo start	Galileo end	Galieo Group	Galileo Type	Galieo length	GenBank Scaffold Acc	Scaffold length (bp)	Chr arm
6541	835755	836619	F	SOLO	865	CH933817.1	2543558	X
6541	997100	998743	Chimeric	2 TIR	1644	CH933817.1	2543558	X
6541	1003587	1007838	F	2 TIR	1876	CH933817.1	2543558	x
6541	1042036	1043771	E	Longer_2TIR	1736	СН933817.1	2543558	x
6541	1088506	1090501	E	Longer_2TIR	1996	СH933817.1	2543558	x
6541	1093209	1093801	F	SOLO	593	CH933817.1	2543558	x
6541	1141978	1149130	Chimeric	NC	6239	CH933817.1	2543558	x
6541	1249195	1251094	F	2 TIR	1900	CH933817.1	2543558	x
6541	1511326	1513666	F	2 TIR	2341	CH933817.1	2543558	x
6541	1618681	1620248	Chimeric	2 TIR	1568	CH933817.1	2543558	X
6541	1644296	1649755	D	NC	5460	CH933817.1	2543558	x
6541	1691275	1695391	Chimeric	2 TIR	1865	CH933817.1	2543558	x
6541	2014221	2016575	E	2TIR	1794	CH933817.1	2543558	x
6541	2421943	2422508	D	SOLO	885	СH933817.1	2543558	x
6541	2422509	2423290	F	SOLO	782	CH933817.1	2543558	x
6680	23160719	23161539	F	SOLO	671	СН933809.1	24764193	4
6680	23161869	23162539	E	SOLO	821	СН933809.1	24764193	4
46680	23219687	23220569	F	SOLO	883	CH933809.1	24764193	4
6680	23825194	23825885	F	SOLO	692	СН933809.1	24764193	4
6680	24069812	24072777	D	Longer_2TIR	2174	С[933809.1	24764193	4
6680	24145587	24146659	F	SOLO	1073	СН933809.1	24764193	4
6680	24265741	24266577	C	2 TIR	837	СН933809.1	24764193	4
6680	24283772	24285562	x	Longer_2TIR	1791	CH933809.1	24764193	4
6680	24420206	24421090	F	2 TIR	885	CH933809.1	24764193	4
6680	24422223	24425258	F	2 TIR	1451	СН933809.1	24764193	4
6680	24427759	24434511	Chimeric	2 TIR	2643	СН933809.1	24764193	4
6680	24440484	24442275	Chimeric	2 TIR	1792	CH933809.1	24764193	4
6680	24520907	24522561	X	Longer_2TIR	1655	CH933809.1	24764193	4
6680	24538620	24540276	X	Longer 2TIR	1657	СН933809.1	24764193	

SI Table 3.4. Intrachromosomal distribution of Galileo elements. Chromosome X

Scaffold	Scaffold length	GenBank acc	Chr arm	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Chr region
6482	2735782	CH933815.1	X	269026	270625	Chimeric	2TIR	1600	Central
6482	2735782	CH933815.1	X	362528	364455	E	Longer_2TIR	1928	
6482	2735782	CH933815.1	X	453934	454728	E	Central		
6482	2735782	CH9338815.1	X	608936	612509	F	NC_DD	395	Central
6482	2735782	CH933815.1	X	614003	617184	D	NC_DD	3182	Central
6482	2735782	CH933815.1	X	617185	621442	D	NC_DD	3390	Central
6482	2735782	CH933815.1	X	2192546	2194452	F	2TIR	1907	Central
6482	2735782	CH933815.1	X	2526809	2527340	D	SOLO	532	2
6482	2735782	CH933815.1	X	2579294	2581638	F	2TIR	2345	2

	Proportion	Region Start	Region End	Galileo Obs	Galileo Exp		
Region 1	10.00%	1	273578	0	0.9	Chi square test	
Central region	80.00%	273579	2462203	7	7.2	P-val=	$\mathbf{0 . 3 2 4 6 5 2 4 6 7 4}$
Region 2	10.00%	2462204	2735782	2	0.9		

SI Table 3.4. Intrachromosomal distribution of Galileo elements (continuation).

SI Table 3.4.. Intrachromosomal distribution of Galileo elements (continuation).
Chromosome 2

Scaffold	GenBank acc	Chr arm	Scaffold length	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Region
6540	CH933806.1	2	34148556	322669	323530	F	SOLO	862	1
6540	CH933806.1	2	34148556	414493	419539	X	NC	5047	1
6540	CH933806.1	2	34148556	466436	467246	F	SOLO	811	1
6540	CH933806.1	2	34148556	558528	561650	Chimeric	2TIR	2443	1
6540	CH933806.1	2	34148556	564326	566215	F	2 TIR	1889	1
6540	CH933806.1	2	34148556	596833	597648	F	SOLO	816	1
6540	CH933806.1	2	34148556	627982	628716	F	SOLO	735	1
6540	CH933806.1	2	34148556	694288	695126	F	SOLO	839	1
6540	CH933806.1	2	34148556	722695	723349	X	SOLO	655	1
6540	CH933806.1	2	34148556	750291	750804	E	SOLO	514	1
6540	CH933806.1	2	34148556	754292	755195	F	SOLO	904	1
6540	CH933806.1	2	34148556	796704	798194	F	2TIR	1491	1
6540	CH933806.1	2	34148556	898138	899882	Chimeric	SOLO	1285	1
6540	CH933806.1	2	34148556	1006735	1007752	E	SOLO	1018	1
6540	CH933806.1	2	34148556	1035815	1037361	D	2TIR	1547	1
6540	CH933806.1	2	34148556	1072704	1073438	F	SOLO	735	1
6540	CH933806.1	2	34148556	1165033	1168349	E	Longer_2TIR	2180	1
6540	CH933806.1	2	34148556	1175880	1182997	D	NC	5433	1
6540	CH933806.1	2	34148556	1372066	1373808	E	Longer_2TIR	1743	1
6540	CH933806.1	2	34148556	5750063	5751976	F	2TIR	1914	Central
6540	CH933806.1	2	34148556	6132112	6133394	C	2TIR	1283	Central
6540	CH933806.1	2	34148556	7320643	7321437	F	SOLO	795	Central
6540	CH933806.1	2	34148556	13434776	13435834	C	SOLO	1059	Central
6540	CH933806.1	2	34148556	14510521	14512886	E	Longer_2TIR	2366	Central
6540	CH933806.1	2	34148556	31163990	31166355	E	Longer_2TIR	2366	2
6540	CH933806.1	2	34148556	33286261	33288174	F	2TIR	1914	2

SI Table 3.4. Intrachromosomal distribution of Galileo elements (continuation).

Scaffold	GenBank acc	Chr arm	Scaffold length	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Region
6500	CH933807.1	3	32352404	29395284	29396934	X	2TIR	1651	1
6500	CH933807.1	3	32352404	29798764	29799506	C	SOLO	743	1
6500	CH933807.1	3	32352404	29804958	29807163	E	Longer_2TIR	2206	1
6500	CH933807.1	3	32352404	29864896	29868109	F	Longer_2TIR	3214	1
6500	CH933807.1	3	32352404	29965273	29966306	F	SOLO	1034	1
6500	CH933807.1	3	32352404	29967217	29968358	F	SOLO	1142	1
6500	CH933807.1	3	32352404	29973001	29975284	Chimeric	2 TIR	2284	1
6500	CH933807.1	3	32352404	29976999	29977829	F	SOLO	831	1
6500	CH933807.1	3	32352404	30179877	30181717	Chimeric	2TIR	1841	1
6500	CH933807.1	3	32352404	30183437	30184591	Chimeric	2TIR	1155	1
6500	CH933807.1	3	32352404	30306361	30308225	E	Longer_2TIR	1865	1
6500	CH933807.1	3	32352404	30329586	30332946	F	2TIR	3361	1
6500	CH933807.1	3	32352404	30351497	30353286	X	Longer_2TIR	1790	1
6500	CH933807.1	3	32352404	30494802	30496424	F	2TIR	1344	1
6500	CH933807.1	3	32352404	30590766	30591289	D	SOLO	524	1
6500	CH933807.1	3	32352404	30596827	30599409	F	2TIR	2583	1
6500	CH933807.1	3	32352404	30684259	30686266	F	2TIR	2008	1
6500	CH933807.1	3	32352404	30702790	30704984	E	Longer_2TIR	2195	1
6500	CH933807.1	3	32352404	30733241	30734538	Chimeric	2TIR	1298	1

SI Table 3.4.. Intrachromosomal distribution of Galileo elements (continuation).

SI Table 3.4.. Intrachromosomal distribution of Galileo elements (continuation).
Chromosome 4

| Scaffold | GenBank acc | Chr arm | Scaffold length | Galileo start | Galileo end | Galileo subfam | Galileo type | Galileo length | Region |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6680 | CH933809.1 | 4 | 24764193 | 23160719 | 23161539 | F | SOLO | 671 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 23161869 | 23162539 | E | SOLO | 821 | |
| 6680 | CH933809.1 | 4 | 24764193 | 23219687 | 23220569 | F | SOLO | 883 | |
| 6680 | CH933809.1 | 4 | 24764193 | 23825194 | 23825885 | F | SOLO | 692 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24069812 | 24072777 | D | Longer_2TIR | 2174 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24145587 | 24146659 | F | SOLO | 1073 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24265741 | 24266577 | C | 2TIR | 837 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24283772 | 24285562 | X | Longer_2TIR | 1791 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24420206 | 24421090 | F | 2TIR | 885 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24422223 | 24425258 | F | 2TIR | 1 | |
| 6680 | CH933809.1 | 4 | 24764193 | 24427759 | 24434511 | Chimeric | 2TIR | 2643 | |
| 6680 | CH933809.1 | 4 | 24764193 | 24440484 | 24442275 | Chimeric | 2TIR | 1792 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24520907 | 24522561 | X | Longer_2TIR | 1655 | 1 |
| 6680 | CH933809.1 | 4 | 24764193 | 24538620 | 24540276 | X | Longer_2TIR | 1657 | 1 |

Scf 6680	Proportion	Region Start	Region End	Galileo Obs	Galileo Exp		
Telomeric (3)	10.00%	0	2476419	0	1.4	Chi square test	
Central (2)	80.00%	2476420	22287773	0	11.2	P-value $=$	4.35961000006307E-028
Centromeric (1)	10.00%	22287774	24764193	14	1.4		
				14	14		

SI Table 3.4. Intrachromosomal distribution of Galileo elements (continuation).

Scaffold	GenBank acc	Chr arm	Scaffold length	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Region
6496	CH933808.1	5	26866924	15292514	15294879	E	Longer_2TIR	2366	Central
6496	CH933808.1	5	26866924	23195067	23197892	F	NC_DD	2826	Central
6496	CH933808.1	5	26866924	25846816	25848819	F	2TIR	2004	3

Region	Proportion	Region Start	Region End
Telomeric (1)	10.00%	0	2686692
Central	80.00%	2686693	24180231
Centromeric (2)	10.00%	24180232	26866924
No enough copies for a Chi square test			

Chromosome 6

Scaffold	GenBank acc	Chr_arm	Scaffold length	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Region
6498	CH933813.1	6	3408170	950693	951185	X	2TIR	493	Central
6498	CH933813.1	6	3408170	953555	955919	E	Longer_2TIR	2365	Central
6498	CH933813.1	6	3408170	1730250	1731243	F	SOLO	994	Central
6498	CH933813.1	6	3408170	1818872	1820002	F	2TIR	1032	Central
6498	CH933813.1	6	3408170	1999631	2001782	E	2TIR	697	Central
6498	CH933813.1	6	3408170	2177013	2181005	C	Longer_2TIR	3119	Central
6498	CH933813.1	6	3408170	2253149	2269701	F	NC	4036	Central
6498	CH933813.1	6	3408170	2381827	2382890	F	SOLO	1064	Central
6498	CH933813.1	6	3408170	2386095	2392524	D	NC	5721	Central
6498	CH933813.1	6	3408170	2407995	2408421	E	SOLO	427	Central
6498	CH933813.1	6	3408170	2514476	2515268	F	SOLO	793	Central
6498	CH933813.1	6	3408170	2522128	2522920	F	SOLO	793	Central
6498	CH933813.1	6	3408170	2541172	2544793	X	NC_DD	2423	Central
6498	CH933813.1	6	3408170	2560957	2561558	D	SOLO	602	Central
6498	CH933813.1	6	3408170	2609857	2611989	E	SOLO	1149	Central

SI Table 3.4. Intrachromosomal distribution of Galileo elements (continuation).

Scaffold	GenBank acc	Chr arm	Scaffold length	Galileo start	Galileo end	Galileo subfam	Galileo type	Galileo length	Region
6498	CH933813.1	6	3408170	2786970	2787863	F	SOLO	894	Central
6498	CH933813.1	6	3408170	2836237	2836700	E	SOLO	464	Central
6498	CH933813.1	6	3408170	2903343	2904985	X	2TIR	1643	Central
6498	CH933813.1	6	3408170	2966893	2969965	F	2TIR	2137	Central
6498	CH933813.1	6	3408170	2993866	2995242	E	2TIR	1377	Central
6498	CH933813.1	6	3408170	3022490	3023060	F	SOLO	571	Central
6498	CH933813.1	6	3408170	3120041	3121220	E	SOLO	1180	2
6498	CH933813.1	6	3408170	3281538	3283440	F	2TIR	1903	2
Region	Proportion	Region Start	Region End	Galileo Obs	Galileo Exp				
Region 1	10.00\%	0	340817	0	2.3	Chi square test			
Central Region	80.00\%	340818	3067352	21	18.4	P-val=	0.2583962888		
Region 2	10.00\%	3067353	3408170	2	2.3				
				23	23				

SI Table 3.5. Nearest genes to Galileo copies.

Scaffold	Start	Type	Group	Gene	Galileo position	Distance	D. melanogaster orthologous gene	Molecular function	Biological process
6540	5750063	2TIR	F	Dmoj-GI24072	downstream	29	Unknown	Unknown	Unknown
6540	31163990	Longer_2TIR	E	Dmoj-GI10679	upstream	69	Unknown	Unknown	Unknown
6500	29395284	2 TIR	X	Dmoj-GI18249	downstream	131	Dmel\CG2614	Methyl-transferase (InterProScan)	Metabolic process
6540	14510521	Longer_2TIR	E	DmojtRNA:GI25221	upstream	144	tRNA	tRNA	tRNA
				Dmoj- tRNA:GI25222	downstream	153	tRNA	tRNA	tRNA
6540	6132112	2TIR	C	Dmoj-GI23502	downstream	147	Unknown	Unknown	Unknown
				Dmoj-GI23503	upstream	219	CSN5	NEDD8 activating enzyme activity	Biological regulation; neuron differentiation; system development; multicellular organism reproduction; macromolecule modification; cellular component organization or biogenesis; localization; gamete generation; anterior/posterior axis specification; sensory organ development; dorsal/ventral axis specification
6496	23195067	NC_DD	F	Dmoj-GI18468	upstream	148	Dmel\CG7922	Helicase activity	ATP-dependent RNA helicase activity
				Dmoj-GI18348	upstream	152	Dmel\CG9890	Zinc ion binding	Unknown
6496	25846816	2TIR	F	Dmoj-GI21310	downstream	371	Nop60B (Nucleolar protein at 60B)	Pseudouridylate synthase activity	Wing disc development; ribosome biogenesis; germ cell development; rRNA processing; pseudouridine synthesis

SI Table 3.5. Nearest genes to Galileo copies (continuation).

Scaffold	Start	Type	Group	Gene	Galileo position	Distance	D. melanogaster orthologous gene	Molecular function	Biological process
6540	33286261	2TIR	F	Dmoj-GI21981	upstream	165	Orc2	DNA-binding	Mitotic chromosome condensation; DNA-dependent DNA replication initiation; cell proliferation; eggshell chorion gene amplification; mitotic spindle organization; DNA replication; chromosome condensation
				Dmoj-GI10788	downstream	371	T-cp1	Unfolded protein binding	Mitotic spindle organization; phagocytosis, engulfment
6680	23825194	SOLO	F	Dmoj-GI13965	downstream	209	GNBP1 (Gramnegative bacteria binding protein 1)	Protein binding	Peptidoglycan binding; immune response; peptidoglycan catabolic process; defense response to Grampositive bacterium
6498	2786970	SOLO	F	Dmoj-GI14139	upstream	445	Nmdyn-D6	Nucleoside diphosphate kinase activity	Nucleoside diphosphate phosphorylation; GTP biosynthetic process; CTP biosynthetic process; UTP biosynthetic process
6328	1650720	2TIR	F	Dmoj-GI16179	upstream	463	Dmel\CG4332	Unknown	Unknown
6540	1072704	SOLO	F	Dmoj-GI23814	upstream	486	DmellCG16899 // FoxP	Sequence-specific DNA binding transcription factor activity	Regulation of transcription, DNAdependent
6540	31163990	Longer_2TIR	E	Dmoj-GI10680	downstream	426	His4r	DNA binding;	Chromatin assembly or disassembly

SI Table 3.6. Intronic Galileo copies

Scaffold	Start	End	Type	Group	Gene	$F B$ gene name	Intron length	D. melanogaster orthologous
6473	11762829	11764731	2TIR	C	Dmoj\GI15819	Fbgn0138568	5920	Dmel\CG9572
6482	269026	270625	2TIR	Chimeric	DmojlGI14384	FBgn0137136	119822	Unknown
6482	362528	364455	Longer_2TIR	E	DmojlGI14384	FBgn0137136	119822	Unknown
6482	614003	617184	NC_DD	D	Dmoj\GI14397	FBgn0137149	16289	Unknown
6482	617185	621442	NC_DD	D	Dmoj\GI14397	FBgn0137149	16289	Unknown
6482	2579294	2581638	2 TIR	F	DmojlGI14475	FBgn0137227	48340	Dmel 1 S6kII
6498	2407995	2408421	SOLO	E	Dmoj\GI14130	FBgn0136884	1478	Dmel\C12.2
6498	2903343	2904985	2TIR	X	Dmoj\GI14010	FBgn0136764	55397	Unknown
6498	2993866	2995242	2TIR	E	Dmoj ${ }^{\text {a }}$ I14008	FBgn0136762	172415	Dmel\CG32627/NnaD
6498	3022490	3023060	SOLO	F	DmojlGI14008	FBgn0136762	172415	Dmel\CG32627/NnaD
6498	3120041	3121220	SOLO	E	DmojlGI14008	FBgn0136762	172415	Dmel\CG32627/NnaD
6500	30733241	30734538	2TIR	Chimeric	DmojlGI18277	FBgn0141016	65803	Unknown
6500	31339017	31339980	SOLO	E	DmojlGI18740	FBgn0141479	15508	Dmel\CG5708
6500	31884435	31886401	2 TIR	C	DmojlGI18594	FBgn0141333	9452	Dmel\Cdk5alpha
6500	31888888	31889062	SOLO	F	DmojlGI18594	FBgn0141333	9452	Dmel\Cdk5alpha
6500	31891331	31891606	SOLO	X	DmojlGI18594	FBgn0141333	9452	Dmel\Cdk5alpha
6540	694288	695126	SOLO	F	DmojlGI23792	FBgn0146517	69549	Unknown
6540	722695	723349	SOLO	X	DmojlGI23792	FBgn0146517	69549	Unknown
6541	835755	836619	SOLO	F	Dmoj\GI14178	FBgn0136931	11198	Dmel\Stim
6541	1042036	1043771	Longer_2TIR	E	Dmoj\GI14176	FBgn0136929	47317	DmellCG8578
6541	1249195	1251094	2TIR	F	Dmoj\GI14213	Fbgn0136966	8704	Unknown
6541	1511326	1513666	2TIR	F	Dmoj\GI14170	FBgn0136923	16452	Dmel\Ranbp16
6680	24283772	24285562	Longer 2TIR	X	Dmoj\GI11297	FBgn0134058	37777	Dmel\Pka-C3

V.- DISCUSSION

1.- Galileo and the P-element superfamily of transposons

Galileo was discovered by our research group in D. buzzatii (Cáceres et al. 1999, 2001).The first Galileo sequences did not harbour any coding region neither presented any significant identity to any know TE. Thus, Galileo was tentatively classified as a class II Foldback-like tranposon, due to its structure, which was mainly composed by long internally repetitive TIR (Cáceres et al. 2001; Casals et al. 2005). In the present thesis, the putatively complete copy of Galileo with transposase-coding segment was isolated from D. buzzatii. In addition, similar nearly-complete elements were detected in 6 of the 12 sequenced Drosophila genomes. These observations provided valuable information for a new classification of the transposon. The transposase analysis showed significant identity to the P-element and 1360 transposases along with the same functional protein domains. This fact allowed a functional classification of Galileo in the P-element superfamily of DNA transposons (Class II, subclass I, TIR elements order, Wicker et al. 2007) which predicts a similar transposition reaction. Conceivably, all the P-element superfamily members transpose through a cut-and-paste reaction, where transposon staggered ends are generated after the transposon excision and TSD appear after the transposon insertion.

In this sense, the TSD present different lengths among the P-element superfamily members. The P-element generates 8 -bp palindromic TSD, whereas Galileo and 1360 present palindromic TSD of 7-bp. Although the length of the TSD can be used as a diagnostic trait for TE classification (Wicker et al. 2007), there is variability in its length within several transposon superfamilies, such as MuDR, CACTA, Merlin, Banshee (reviewed in Feschotte \& Pritham 2007). Likewise, TIR length is also a variable trait within different transposon superfamilies, such as, MuDR, Tcl/mariner, PIF-harbinger, (Feschotte \& Pritham 2007; Wicker et al. 2007). Despite the length differences, it is noteworthy that TIR and TSD ends of P-element, Galileo and 1360 start with CA sequence. Since the transposase binding site is not located at the very end in Galileo and P-element, the reason of this conservation could be the need of this sequence for the endonuclease reaction of the transposon excision.

Element	Total length	TIR	Transposase coding segment	Introns Protein residues	TSD	
P-element	2907	31	2256	3	751	8
1360	3614	31	2564	no	863	7
Galileo	5407	1229	2739	no	912	7

Table 1.1: Comparison of different features of P-element, 1360 and Galileo. Both P-element and 1360 are from D. melanogaster and Galileo corresponds to the synthetic copy from D. buzzatii (Marzo et al. 2008). P-element accession number: K06779; 1360 accession number: AE014135 (D. melanogaster dot chromosome, coordinates 809591-813204).

Regarding the transposase of this superfamily, Galileo and 1360 putative proteins harbour the same domains present in the P-element transposase. From our analysis, the Galileo THAP domain is longer than the other THAP domains (such as P-element or THAP1, see Results-Chapter two) and presents a longer N -terminal region as well. This longer THAP domain sequence could be related to the longer binding site of Dbuz \backslash GalileoG. Despite its increased length, in accordance to other traits of the transposon, the Galileo binding site sequence conserves the proposed consensus nucleotides (Campagne et al. 2010; Sabogal et al. 2010). Thus, we can conclude that the THAP domain of Galileo presents significant amino acid identity with other THAP domains and there is also similarity in the recognised nucleotide sequence.

After the THAP domain, there is a coiled coil region where the transposase interacts with other transposase monomers for assembling a transposase multimer. This multimer is a tetramer in the P-element (Tang et al. 2007). Presumably, Galileo would interact in the same way, although a different number of units in the multimer could be expected, similarly to other superfamilies of transposons, such as Tcl/Mariner, where Mosl acts as a dimer and Hermes as an hexamer (Hickman et al. 2005; Richardson et al. 2006). Since we have only predicted these regions using computational tools, further experimental analysis with the purified transposase would be very interesting.

The next domain that appears in the P-element transposase is the GTP binding domain. The GTP acts as an allosteric co-factor and it is not hydrolysed during the reaction (Rio 2002; Tang et al. 2005). Recently, this domain has been delimited by Sabogal \& Rio (2010) after isolating it and checking that the GTP binding activity remained. These residues can be located in the Galileo transposase when aligned with the P-element transposase. In the P-element the GTP binding domain is located in residues 275 to 409 , and in Duz 1 GalileoG, in residues 403 to 519. This region presents
27% aminoacid identity when the two transposases are aligned (21.3% identity fot the entire protein). Thus, Galileo seems to harbour this domain as well. Experimental evidences would be needed to corroborate the involvement of GTP in Galileo transposition reaction and to conclude that GTP would be an important cofactor in the Galileo transposition like in the P-element transposition.

The last domain in the transposase of the P-element superfamily is the catalytic domain, which is characterised by a high proportion of acidic residues and performs cuts in the DNA through an endonuclease reaction (Rio 2002). The catalytic domain of almost all DNA transposons shared the DDE signature with integrases of retroelements, however, the P-element did not seem to present it (Hickman et al. 2010). Recently, Yuan and Wessler (2011) have studied systematically a broad sample of transposases of different superfamilies with the aim of uncovering conserved residues not detected before. This way, they have found the DDE motif in the P-element superfamily among other superfamilies. The residues proposed by Yuan \& Wessler (2011) are not in agreement with those proposed by Rio (2002). In this this work, the catalytic domain of the Galileo transposase was found and the key catalytic residues identified (Results Chapter 1) based on Rio 2002. However, Yuan and Wessler (2011) suggested other key catalytic residues in Dbuz GalileoG transposase, which are D337, D426 and E651. There is only one residue in common with those proposed by Rio (2002), E651. Since the proposed residues are highly conserved among the superfamily transposases, including Galileo from different species, it would be very interesting to corroborate experimentally its key role in the transposition reaction along with the Mg^{++} conjugation.

The catalytic domain cuts the transposon at the very end of the TIR, thus, the conservation found in this region must be very important for the proper cut of the transposon. This fact could be the reason why the most conserved region of the different Galileo subfamilies is the end of the TIR, especially the nine terminal nucleotides:
CACTACCAA (CACTGCCAA in C, D, E and X D. mojavensis subfamilies).
However, when the different families of the P-element superfamily are compared, this conservation is only found in the first two residues of the TIR (CA). Although there are few residues conserved, they might be a trait of a common catalytic domain. Maybe,
the fact that other cut-and-paste transposon TIR start with CA (such as some hAT, CACTA or transib, Feschotte \& Pritham 2007; Yuan \& Wessler 2011) is another trait of the shared DDE domain (Hickman et al. 2010; Yuan \& Wessler 2011).

Since these three elements, Galileo, 1360 and P-element, probably share a common ancestor, we could hypothesise which of them could be the most similar to the ancestor of the group. Since the three main members of the P-element superfamily are contained in Drosophila genus species, the species distribution of these elements would shed some light on the evolutionary relationships among P-element, 1360 and Galileo, at least in this host genus. The P-element does not exist in the Drosophila subgenus but Galileo and 1360 have been found in the two main subgenera of the Drosophila genus. This could be indicating a more ancient origin of Galileo and 1360 in the whole genus, which would be in agreement with the lack of complete functional copies found so far. However, since more than 2000 species make up the Drosophila genus, the study of more species could uncover very different landscapes.

To sum up, Galileo classification is strong and well-supported. The variation in TSD and TIR length does not represent any classification conflict. From our experience, we corroborate that the most powerful criterion for transposon classification is the transposase similarity, which is where the transposition mechanism reside.

2.- Long TIR and transposon evolution

Since transposons do not present any selective constraint for the host, they evolve neutrally, with the only requirement of keeping the transposase affinity. Furthermore, since the cell would be repressing the TE activity, the mobile elements would be more able to avoid the cell repression if they are freer to change. However, there is a region with some constraint, the coding sequence. Thus, the higher conservation found in the transposase region, where homology is detected, is in agreement with the transposon selective constraint that would keep it active in the genome. Thanks to this conservation, it is possible to relate divergent transposons in superfamilies, such as the case of Galileo, P-element and 1360 (Feschotte \& Pritham 2007; Jurka et al. 2007; Wicker et al. 2007).

Excision of cut-and-paste transposons generates double-strand breaks which have to be repaired by the cell machinery. This repair is one of the mechanisms that cut-andpaste transposon use for their proliferation, along with the coupling of transpositional activity to S phase of the cell cycle (Craig et al. 2002; Feschotte \& Pritham 2007). On the one hand, as in the case of P-element, the staggered ends can join through nonhomologous end joining (NHEJ) and a footprint of the transposon would remain at the donor site (Engels et al. 1990). On the other hand, this double strand break can be fixed through a gap repair process using the sister chromatid (G2 cellular stage) or the homologous chromosome (G1 cellular stage) as template through a synthesis-dependent strand annealing (SDSA, Formosa \& Alberts 1986). This way, transposon sequence could be both, restored at the donor site or completely erased, depending on the content of the template sequence. (Engels et al. 1990; Rio 2002). Furthermore, besides the sister chromatid or the homologous chromosome, any copy of the transposon could be used as template as well in the gap repair process (Hastings 1988; Gloor et al. 1991). The interruption of the SDSA process would cause a deleted copy (Engels et al. 1990; Gloor et al. 1991; Plasterk 1991; Hsia \& Schnable 1996; Dray \& Gloor 1997; Rubin \& Levy 1997). This way, transposon copies get shorter and there is no selective constraint that would prevent it. Moreover, shorter copies can exhibit a higher transposition rate (as long as the sequences needed for transposase binding and cutting are kept in the copy) than the complete ones and they could outnumber the longest ones (Yang et al. 2009; Atkinson \& Chalmers 2010).

The spreading of the incomplete copies would have two effects: on the one hand, the insertion of short copies would have a lower impact in the new genomic location than the longer ones. These insertions would be less harmful for the host and these copies would have advantage over the longer ones, favouring again the spreading of shorter copies. On the other hand, the more transposase target sequences which no transposase production, the less transposition rate, due to the lack of all the required transposase monomers in a given copy at a given time. This is a titration effect which down-regulates the transposition rate and it would be another reason for the short copies be less deleterious than the longest ones. Nevertheless, all these mechanisms seem to be a death sentence for the transposon. This fate, however, could be overcome by the arrival of new TEs through horizontal transfer or by reactivation of formerly inactive
copies (Kidwell 1992; Silva et al. 2004; Sánchez-Gracia et al. 2005; Loreto et al. 2008). We would like to propose that cut-and-paste transposon reactivation could be enhanced by long TIR.

Long-TIR elements have arisen in several transposon superfamilies besides the P element superfamily (Feschotte \& Pritham 2007). For example, relatively long TIR elements have been reported in the Tcl/mariner superfamily as well, such as Sleeping Beauty (225 bp), Tc3 (462 bp) and Minos (245 bp) (Collins et al. 1989; Franz \& Savakis 1991; Ivics et al. 1997). Another example is the Phantom transposon, which has recently been classified as a member of the Mutator superfamily (Marquez \& Pritham 2010). The TIR of Phantom are longer than other related families and present different structures, from simple long TIR to long internally repetitive TIR which resemble the Foldback structure . Since the TIR seems a dynamic trait in transposons, it is not a reliable character for classification (Marzo et al. 2008; Marquez \& Pritham 2010).

Long TIR could have a negative effect for transposons, because the more distance between the two TIR, the less efficiency in transposition reaction (Atkinson \& Chalmers 2010). Furthermore, DNA secondary structures appear with repetitive sequences rendering more chances of DNA breaks during replication. However, since the long TIR appear in different superfamilies they may entail some benefit for the transposon, although they could be a shared trait only by chance. Maybe, the long TIR expands a region without disrupting the promoter sequences and the CDS of the transposon. This way, new binding sites or other transposition enhancing sequences could be located in a longer TIR. Direct repeats, which correspond to binding sites, have been found in different transposons, such as Sleeping Beauty, Bari, Herves (Cui et al. 2002; Moschetti et al. 2008; Kahlon et al. 2011) and in Galileo we have strong evidences that its direct repeats would be binding sites as well. The existence of several binding sites in each TIR or transposon end could be useful for a more efficient recruitment of the transposition machinery, where the different binding sites could be driving the transposition proteins to the transposon ends.

Another positive effect of long TIR could be the fact that longer TIR are more prone to recombine and suffer gene conversion. Although it could be a drawback at first
sight, because ectopic recombination, along with deletion, are the main forces to prevent TE spreading (Petrov 2002; Petrov et al. 2003, 2010), gene conversion could favour, for example, the formation of highly identical TIR. Although in some transposons an asymmetry in the binding sites is needed for the transposition reaction (P-element and Herves for example Rio 2002; Kahlon et al. 2011), maybe other groups, such as long TIR elements (Galileo, Sleeping Beauty, Phantom) transpose better with highly identical and symmetrical binding sites. It would be very interesting to test how identity between the two long TIRs of a transposon affects the transposition reaction.

The possibility that TIRs could behave similarly to segmental duplications provides the transposon with a faster change rate which could result in new sequences that could scape the titration down-regulation and start new transposition bursts. This phenomenon could be considered transposon reactivation, being more useful for the transposon survival compared to punctual mutations, which would take very long to generate new transposon subfamilies or variants. In this sense, conversion and recombination have been found intimately related with transposons in different organisms, such as Wolbachia endosymbiont (Cordaux 2009; Ling \& Cordaux 2010), and other procaryotes (Redder \& Garrett 2006; Beare et al. 2009), yeast (Roeder 1983), and metazoans, such as humans (Schwartz et al. 1998; Lee et al. 2008) or D. buzzatii, where inversions have been generated through TE ectopic recombination (Cáceres et al. 1999; Casals et al. 2003; Delprat et al. 2009). Furthermore, the Galileo TIR length dynamics we have found in D. mojavensis could be the result of this process as well (see Chapter 3 of Results). Thus, TEs evolution seems linked to recombination and conversion where transposon long TIR would favour this association. This could be the reason of the convergence of this trait in different superfamilies of cut-and-paste transposons.

The following conclusions can be drawn from this work:

1. Galileo is a class II element (DNA transposon) belonging to subclass 1 order TIR and P-element superfamily.
2. Putative complete copies in D. buzzatii are $5.4-\mathrm{kb}$ long and contain long TIR $(1.2 \mathrm{~kb})$, a transposase-coding segment $(2.7 \mathrm{~kb})$ and spacing regions.
3. Similarly to the P-element transposase, the Galileo transposase contains the following domains: THAP DNA binding domain, coiled coil region, GTP binding domain and catalytic domain similarly to the P-element transposase.
4. The common traits between Galileo and P-element are the palindromic structure of the TSD, the beginning of the TIR sequences (17 out of 31 bp including the first two nucleotides CA) and the similarity in the transposase sequences along with equal disposition of the same protein domains in it.
5. The main differences between Galileo and P-element are: the length of the TSD, where P-element present $8-\mathrm{bp}$ and Galileo, 7-bp; the TIR length, where P element present $31-\mathrm{bp}$ and Galileo from $\sim 500 \mathrm{bp}$ to $\sim 1,2 \mathrm{~kb}$; the length of the putative binding site, where P-element presents $10-11 \mathrm{bp}$ binding site and Galileo presents 18-bp.
6. Galileo is found, besides D. buzzatii, in six of the 12 sequenced genomes: D. mojavensis, D. virilis, D. willistoni, D. ananassae, D. pesudoobscura and D. persimilis. This means that Galileo is found in the two main subgenera of Drosophila genus, Sophophora and Drosophila and it is likely widespread in the genus.
7. Galileo presents different subfamilies within the genomes of D. mojavensis (GalileoC, GalileoD, GalileoE, GalileoF, GalileoX) and D. virilis (GalileoA and GalileoB). Similarly, the D. buzzatii elements Galileo, Kepler and Newton can be considered as subfamilies of Galileo in this species (Dbuz|GalileoG, Dbuz \backslash Galileo N, Dbuz \backslash GalileoK, prespectively).
8. The transposase phylogeny generated with consensus transposases of the Galileo elements found in each genome, presents a topology that differ from the species phylogeny. This incongruence could be due to horizontal transfer,
incomplete lineage sorting or phylogenetic artefacts, such as long branch attraction as a result of the high divergence the sequences analysed.
9. The transposase THAP DNA binding domains of Dbuz GalileoG, Dmoj \backslash GalileoC, Dmoj 1 GalileoD and DanalGalileo have been successfully reconstructed and expressed in vitro. They present specific binding activity for Galileo TIR sequences.
10. The DNA binding domain of Dbuz\GalileoG was isolated and it was located in nucleotides 63-80 of the Galileo TIR. This 18-bp sequence shows similarity to the binding sites of other THAP domains, such as those of P-element transposase or human THAP1 protein.
11. No Galileo transposase activity has been detected in our in vivo transposition experiments
12. Within the genome of D. mojavensis, Galileo presents, besides its nucleotide variability, huge structural variation in its copies. The TIR is the most variable region in length and structure of the element. This structural dynamism may be explained by several mechanisms, including deletion, duplication, recombination and conversion.
13. D. mojavensis genome contains five different Galileo subfamilies, four of them harbour transposase coding regions (none of them coding for a functional protein) and the fifth presents a putative chimeric origin.
14. The accumulation of linages through time (LTT) in the phylogeny of D. mojavensis Galileo elements shows an exponential increase of copies without any trace of evident deceleration or stationary rate. This suggests that the element is still active in D. mojavensis genome or has been active until very recently.

Evolution of genes and genomes on the Drosophila phylogeny

Drosophila 12 Genomes Consortium*

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojovensis, virilis and grimshowi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melonogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

As one might expect from a genus with species living in deserts, in the tropics, on chains of volcanic islands and, often, commensally with humans, Drosophila species vary considerably in their morphology, ecology and behaviour'. Species in this genus span a wide range of global distributions; the 12 sequenced species originate from Africa, Asia, the Americas and the Pacific islands, and also include cosmopolitan species that have colonized the planet (D. melanogaster and D. simulans) as well as closely related species that live on single islands (D. sechellia) ${ }^{2}$. A variety of behavioural strategies is also encompassed by the sequenced species, ranging in feeding habit from generalist, such as D. ananassae, to specialist, such as D. sechellia, which feeds on the fruit of a single plant species.

Despite this wealth of phenotypic diversity, Drosophila species share a distinctive body plan and life cycle. Although only D. melamogaster has been extensively characterized, it seems that the most important aspects of the cellular, molecular and developmental biology of these species are well conserved. Thus, in addition to providing an extensive resource for the study of the relationship between sequence and phenotypic diversity, the genomes of these species provide an excellent model for studying how conserved functions are maintained in the face of sequence divergence. These genome sequences provide an unprecedented dataset to contrast genome structure, genome content, and evolutionary dynamics across the well-defined phylogeny of the sequenced species (Fig. 1).

Genome assembly, annotation and alignment

Genome sequencing and assembly. We used the previously published sequence and updated assemblies for two Drosopitila species, D. melanogaster ${ }^{14}$ (release 4) and D. psctudoobscura' (release 2), and generated DNA sequence data for 10 additional Drosophila genomes by whole-genome shotgun sequencing ${ }^{N 7}$. These species were chosen to span a wide variety of evolutionary distances, from closely related pairs such as D. sechellia/D. simulans and D. persimilis/D. pseudoobscura to the distantly related species of the Drosophila and Sophophora subgenera. Whereas the time to the most recent common ancestor of the sequenced species may seem small on an evolutionary timescale, the evolutionary divergence spanned by the genus Drosopitila exceeds
that of the entire mammalian radiation when generation time is taken into account, as discussed further in ref. 8. We sequenced seven of the new species (D, yakuba, D, erecta, D, ananassac, D. willistoni, D, virilis, D, mojavensis and D, grimshawi) to deep coverage ($8.4 \times$ to $11.0 \times$) to produce high quality draft sequences. We sequenced two species, D. sechellia and D. persimilis, to intermediate coverage ($4.9 \times$ and $4.1 \times$, respectively) under the assumption that the availability of a sister species sequenced to high coverage would obviate the need for deep sequencing without sacrificing draft genome quality. Finally, seven inbred strains of D. simulans were sequenced to low coverage ($2.9 \times$ coverage from $w^{\text {sot }}$ and $-1 \times$ coverage of six other strains) to provide population variation data". Further details of the sequencing strategy can be found in Table 1, Supplementary Table 1 and section 1 in Supplementary Information.

We generated an initial draft assembly for each species using one of three different whole-genome shotgun assembly programs (Table 1). For D. anamassac, D. erecta, D. grimshawi, D. mojavensis, D. virilis and D. willistomi, we also generated secondary assemblies; reconciliation of these with the primary assemblies resulted in a $7-30 \%$ decrease in the estimated number of misassembled regions and a $12-23 \%$ increase in the N50 contig size ${ }^{\text {0 }}$ (Supplementary Table 2). For D. yukuba, we generated 32,000 targeted reads across low-quality regions and gaps to improve the assembly. This doubled the mean contig and scaffold sizes and increased the total fraction of high quality bases (quality score $(Q)>40$) from 96.5% to 98.5%. We improved the initial $2.9 \times$ D. simulans $w^{\text {set }}$ whole-genome shotgun assembly by filling assembly gaps with contigs and unplaced reads from the $-1 \times$ assemblies of the six other D, simulans strains, generating a 'mosaic' assembly (Supplementary Table 3). 'This integration markedly improved the D. simulans assembly: the N 50 contig size of the mosaic assembly, for instance, is more than twice that of the initial $w^{\text {eit }}$ assembly (17 kb versus 7 kb).

Finally, one advantage of sequencing genomes of multiple closely related species is that these evolutionary relationships can be exploited to dramatically improve assemblies. D. yokuba and D, simulans contigs and scaffolds were ordered and oriented using pairwise alignment to the well-validated D. melanogaster genome

[^4]

Figure 1 | Phylogram of the 12 sequenced species of Drosophilla. Phylogram derived using pairwise genomic mutation distances and the neighbourjoining method ${ }^{13} 2 \times 3$, Numbers below nodes indicate the per cent of genes supporting a given relationship, based on evolutionary distances estimated froms fourfold-degenerate sites (left of solidus) and second codon positions (right of solidus). Coloured blocks indicate support from bayesian
sequence (Supplementary Information section 2). Likewise, the $4-5 \times D$. persimilis and D. sechellia assemblies were improved by assisted assembly using the sister species (D. pseudoobscura and D, simulans, respectively) to validate both alignments between reads and linkage information. For the remaining species, comparative syntenic information, and in some cases linkage information, were also used to pinpoint locations of probable genome misassembly, to assign assembly scaffolds to chromosome arms and to infer their order and orientation along euchromatic chromosome arms, supplementing experimental analysis based on known markers (A. Bhutkar, S, Russo, S. Schaeffer, T. F. Smith and W. M. Gelbart, personal communication) (Supplementary Information section 2).

The mitochondrial (mt)DNA of D. melanogaster, D. sechellia, D, simulans (sill), D, mauritiana (mall) and D, yakuba have been previously sequenced ${ }^{11,13}$. For the remaining species (except D. psesdoobscura, the DNA from which was prepared from embryonic nuclei), we were able to assemble full mitochondrial genomes, excluding the A + T-rich control region (Supplementary Information section 2$)^{13}$. In addition, the genome sequences of three Wolbachia endosymbionts (Wolbachia wSim, Wolbachia wAna and Wolbachia wWil) were assembled from trace archives, in D, simulans, D. anarnassae and D. willistoni, respectively ${ }^{4}$. All of the genome sequences described here are available in Flylase (www.flybase.org) and GenBank (www,ncbi-nlm.nih.gov) (Supplementary Tables 4 and 5).
Repeat and transposable element annotation. Repetitive DNA sequences such as transposable elements pose challenges for
(posterior probability (PP), upper blocks) and maximum parsimony (MP: bootstrap values, lower blocks) analyses of data partitioned by chromosome arm. Branch lengths indicate the number of mutations per site (at fourfolddegenerate sites) using the ordinary least squares method. See ref. 154 for a discussion of the uncertainties in the D. yukuba/D, erecta clade.
whole-genome shotgun assembly and annotation. Because the best approach to transposable element discovery and identification is still an active and unresolved research question, we used several repeat libraries and computational strategies to estimate the transposable element/repeat content of the 12 Drosophila genome assemblies (Supplementary Information section 3). Previously curated transposable element libraries in D. melanogaster provided the starting point for our analysis; to limit the effects of ascertainment bias, we also developed de novo repeat libraries using PILER-DF ${ }^{\text {shas }}$ and ReAS ${ }^{17}$. We used four transposable element/repeat detection methods (RepeatMasker, BLASTER-TX, RepeatRunner and CompTE) in conjunction with these transposable element libraries to identify repetitive elements in non-melanogaster species. We assessed the accuracy of each method by calibration with the estimated 5.5% transposable element content in the D. melanogaster genome, which is based on a high-resolution transposable element annotation ${ }^{\text {T }}$ (Supplementary Fig. 1). On the basis of our results, we suggest a hybrid strategy for new genome sequences, employing translated BLAST with general transposable element libraries and RepeatMasker with species-specific ReAS libraries to estimate the upper and lower bound on transposable element content.
Protein-coding gene annotation. We annotated protein-coding sequences in the 11 non-melanogaster genomes, using four different de now gene predictors (GenelD ${ }^{19}, \mathrm{SNAP}^{30}, \mathrm{~N}-\mathrm{SCAN}^{21}$ and CONTRAST ${ }^{2+}$); three homology-based predictors that transfer annotations from D, melanogaster (GeneWise") Exonerate ${ }^{24}$, GeneMapper ${ }^{23}$); and one predictor that combined de novo and homology-based evidence $\left(G n o m o{ }^{2 *}\right)$. These gene prediction sets

Table 1 A summary of sequencing and assembly properties of each new genome

Final assembly	Genome centre	920 ctiverage (X)	Astembly sipe (Mb)	Na. of contige 2 2 2 kb	N50 contig 22 kb (kb)	Per cent of base pairs with ¢uality $>$ Q40
D. simulons	WUGSC*	2.9	137.8	10.843	17	90.3
D. sechemio	Broadt	4.9	166.6	9.713	43	90.6
D. yakuba	WUGSC+	9.1	1657	6.344	125	98.5
D. erecto	Agencourt \dagger	10.6	152.7	3.283	458	99.2
D. ananassee	Agencourt \dagger	8.9	231.0	8.155	113	98.5
D. persimils	Broadt	4.1	188.4	14.547	20	93.3
D. wilistani	JCVIt	8.4	235.5	6.652	197	97.4
D. virits	Agencourt ${ }^{\text {P }}$	8.0	2060	5,327	136	98.7
D. mojortresis	Agencourt ${ }^{\text {a }}$	8.2	193.8	5.734	132	98.6
D. grimshawi	Agencourt!	7.9	2005	9.632	114	97.1

Table 2 | A summary of annotated features across all 12 genomes

	Froteis-coding gene annotations		thina (gievdo)	Non-codirg RNA annotations				Repeat ceverage (W)	Genome sice (Mb. assemblyt/Row cytometry?
	Total no. of proteis- ooding getes (ger cent with D. melinogariter homologue)	Coding sequence/ intron (Mb)		InoRNA	miRkA	IRNA $(5 .-35+55)$	SARNA		
D. melonogaster	13.733 (100\%)	38.9/21.8	297 (4)	250	78	101	28	535	118/200
D. simulans	15,983 (800\%)	45.8/19.6	268 (2)	246	70	72	32	273	111/162
D. sechetra	$16.884(81.2 \%)$	47.9/21.9	312 (13)	242	78	133	30	3.67	115/171
D. yotuba	16.423 (82.5\%)	50.8/22.9	380 (52)	255	80	55	37	12.04	127/190
D. erecto	15,324 (86.4\%)	49.1/22.0	286 (2)	252	81	101	38	6.97	134/135
D. ananastep	15.276 (83.0\%)	573/22.3	472 (165)	194	76	134	29	24.93	$176 / 217$
D. pseudoobscura	$16.363(78.25)$	49.7/24.0	295 (1)	203	73	55	31	2.76	127/193
D. persimitis	17.325 (72.6\%)	54.0/21.9	306 (1)	199	75	80	31	8.47	138/193
D. williston	15.816 (78.8\%)	65.4/23.5	484 (164)	216	77	76	37	1557	187/222
D. vioilis	$14.680(82.7 \%)$	57.9/21.7	279 (2)	165	74	294	31	13.96	172/364
D. mojavensis	14.849 (80.875)	578/21.9	267 (3)	139	71	74	30	8.92	161/130
D. grimshowi	15.270 (81.3\%)	54.9/22.5	261 (1)	154	82	70	32	2.84	138/231

-Repeat coverage calculated as the traction of scaftolds $>200 \mathrm{~kb}$ covered by repeath eitimated as the midpoint between BLASTCH-ta + PatR and RepeatMasker + ReAS cSupplementary

were combined using GLEAN, a gene model combiner that chooses the most probable combination of start, stop, donor and acceptor sites from the input predictions ${ }^{\text {th3 }}$. All analyses reported here, unless otherwise noted, relied on a reconciled consensus set of predicted gene models-the GLEAN-R set (Table 2, and Supplementary Information section 4.1).
Quality of gene models. As the first step in assessing the quality of the GLEAN-R gene models, we used expression data from microarray experiments on adult flies, with arrays custom-designed for D. simulans, D. yakuba, D, ananassac, D. psendoobrcura, D. virilis and D. mojavnisis" (GEO series GSE6640; Supplementary Information section 4.2). We detected expression significantly above negative controls (false-discovery-rate-corrected Mann-Whitney U (MWU) $P<0.001$) for $77-93 \%$ of assayed GLEAN-R models, representing $50-68 \%$ of the total GLEAN-R predictions in each species (Supplementary Table 6). Evolutionarily conserved gene models are much more likely to be expressed than lineage-specific ones (Fig. 2), Although these data cannot confirm the detailed structure of gene models, they do suggest that the majority of GLEAN-R models contain sequence that is part of a poly-adenylated transcript. Approximately 20% of transcription in D. melanogaster seems to be unassociated with protein-coding genes ${ }^{30}$, and our microarray experiments fail to detect conditionally expressed genes. Thus,
transcript abundance cannot conclusively establish the presence or absence of a protein-coding gene. Nonetheless, we believe these expression data increase our confidence in the reliability of the GLEAN-R models, particularly those supported by homology evidence (Fig. 2).
Because the GL.EAN-R gene models were built using assemblies that were not repeat masked, it is likely that some proportion of gene models are false positives corresponding to coding sequences of transposable elements, We used RepeatMasker with de novo ReAS libraries and PFAM structural annotations of the GLEAN-R gene set to flag potentially transposable element-contaminated gene models (Supplementary Information section 4.2). These procedures suggest that $5.6-32.3 \%$ of gene models in non-melanogaster species correspond to protein-coding content derived from transposable elements (Supplementary Table 7); these transposable element-contaminated gene models are almost exclusively confined to gene predictions without strong homology support (Fig. 2). Transposable elementcontaminated gene models are excluded from the final gene prediction set used for subsequent analysis, unless otherwise noted.
Homology assignment. Two independent approaches were used to assign orthology and paralogy relationships among euchromatic D. melanogaster gene models and GLEAN-R predictions. The first approach was a fuzzy reciprocal BLAST (FRB) algorithm, which is an

Figure 2 |Gene models in 12 Drosophila genomes, Number of gene models that fall into one of five bomology classes single-copy orthologues in all species (single-copy orthologues), conserved in all species as orthologues or paralogaes (conserved homologues), a D. melanogaster homologue, but not found in all species (patchy homologues with mel.), conserved in at least two
species but without a D. melamogaster homologue (patchy homologues, no mel.), and found only in a single lineage (lineage specific). For those species with expression data ${ }^{19}$, pie charts indicate the fraction of genes in cach homology class that fall into one of four evidence classes (see text for details).
extension of the reciprocal BLAST method ${ }^{3}$ applicable to multiple species simultancously (Supplementary Information section 5.1). Because the FRB algorithm does not integrate syntenic information, we also used a second approach based on Synpipe (Supplementary Information section 5.2), a tool for synteny-aided orthology assignment ${ }^{33}$. To generate a reconciled set of homology calls, pairwise Synpipe calls (between each species and D. melanogaster) were mapped to GLEAN-R models, filtered to retain only $1: 1$ relationships, and added to the FRB calls when they did not conflict and were non-redundant. This reconciled FRB + Synpipe set of homology calls forms the basis of our subsequent analyses. There were 8,563 genes with single-copy orthologues in the melanogaster group and 6,698 genes with single-copy orthologues in all 12 species; similar numbers of genes were also obtained with an independent approach". Most single-copy orthologues are expressed and are free from potential transposable element contamination, suggesting that the reconciled orthologue set contains robust and high-quality gene models (Fig. 2).
Validation of homology calls. Because both the FRB algorithm and Sympipe rely on BLAST-based methods to infer similarities, rapidly evolving genes may be overlooked. Moreover, assembly gaps and poor-quality sequence may lead to erroneous inferences of gene loss. To valddate putative gene absences, we used a synteny-based GeneWise pipeline to find potentially missed homologues of D. melanogaster proteins (Supplementary Information section 5.4). Of the 21,928 cases in which a D. melanogaster gene was absent from another species in the initial homology call set, we identified plausible homologues for $13,265(60.5 \%)$, confirmed $4,546(20,79)$ as genuine absences, and were unable to resolve 4,117 (18.8%). Because this approach is conservative and only confirms strongly supported absences, we are probably underestimating the number of genuine absences.
Coding gene alignment and filtering. Investigating the molecular evolution of orthologous and paralogous genes requires accurate multi-species alignments, Initial amino acid alignments were generated using TCOFFEE ${ }^{54}$ and converted to nucleotide alignments (Supplementary Table 8). To reduce biases in downstream analyses, a simple computational screen was developed to identify and mask problematic regions of each alignment (Supplementary Information section 6). Overall, 2.8% of bases were masked in the melanogaster group alignments, and 3.0% of bases were masked in the full 12 species alignments, representing 8.5% and 13.8% of alignment columns, respectively. The vast majority of masked bases are masked in no more than one species (Supplementary Fig. 3), suggesting that the masking procedure is not simply eliminating rapidly evolving regions of the genome. We find an appreciably higher frequency of masked bases in lower-quality D. simulans and D, sechellia assemblies, compared to the more divergent (from D. melanogaster) but higherquality D, erecta and D. yakuba assemblies, suggesting a higher error rate in accurately predicting and aligning gene models in lowerquality assemblies (Supplementary Information section 6 and Supplementary Fig, 3). We used masked versions of the alignments, including only the longest D. melanogaster transcripts for all subsequent analysis unless otherwise noted.
Annotation of non-coding ($\mathbf{n c}$)RNA genes. Using de novo and homology-based approaches we annotated over 9,000 ncRNA genes from recognized ncRNA classes (Table 2, and Supplementary Information section 7). In contrast to the large number of predictions observed for many neRNA families in vertebrates (due in part to large numbers of ncRNA pseudogenes ${ }^{35 \%}$), the number of ncRNA genes per family predicted by RFAM and tRNAscan in Drosophtila is relatively low (Table 2). This suggests that ncRNA pseudogenes are largely absent from Drosophila genomes, which is consistent with the low number of protein-coding pseudogenes in Drosophila". The relatively low numbers of some classes of ncRNA genes (for example, small nuclcolar (sno)RNAs) in the Drosophila subgenus are likely to be an artefact of rapid rates of evolution in these types
of genes and the limitation of the bomology-based methods used to annotate distantly related species.

Evolution of genome structure

Coarse-level similarities among Drosophilids. At a coarse level, genome structure is well conserved across the 12 sequenced species. Total genome size estimated by flow cytometry varies less than threefold across the phylogeny, ranging from 130 Mb (D. mojavensis) to 364 Mb (D, virilis) ${ }^{6}$ (Table 2), in contrast to the order of magnitude difference between Dresophila and mammals. Total protein-coding sequence ranges from 38.9 Mb in D. melanogaster to 65.4 Mb in D. willistoni. Intronic DNA content is also largely conserved, ranging from 19.6 Mb in D. simulans to 24.0 Mb in D. pseudoobscura (Table 2). This contrasts dramatically with transposable elementderived genomic DNA content, which varies considerably across genomes (Table 2) and correlates significantly with euchromatic genome size (estimated as the summed length of contigs $>200 \mathrm{~kb}$) (Kendall's $\tau=0.70, P=0.0016$),
To investigate overall conservation of genome architecture at an intermediate scale, we analysed synteny relationships across species using Synpipe ${ }^{32}$ (Supplementary Information section 9.1). Synteny block size and average number of genes per block varies across the phylogeny as expected, with the number of blocks increasing and the average size of blocks decreasing with increasing evolutionary distance from D. melanogaster (A. Bhutkar, S. Russo, T, F. Smith and W, M. Gelbart, personal communication) (Supplementary Fig. 4). We inferred 112 syntenic blocks between D. melanogaster and D. sechellia (with an average of 122 genes per block), compared to 1,406 syntenic blocks between D. melanogaster and D. grimshawi (with an average of 8 genes per block). On average, 66% of each genome assembly was covered by syntenic blocks, ranging from 68% in D. sechellia to 58% in D. grimshawi.
Similarity across genomes is largely recapitulated at the level of individual genes, with roughly comparable numbers of predicted protein-coding genes across the 12 species (Table 2). The majority of predicted genes in each species have homologues in D. melanogaster (Table 2, Supplementary Table 9). Moreover, most of the 13,733 protein-coding genes in D. melanogaster are conserved across the entire phylogeny: 77\% have identifiable homologues in all 12 genomes, 62% can be identified as single-copy orthologues in the six genomes of the melanogaster group and 49% can be identified as single-copy orthologues in all 12 genomes. The number of functional non-coding RNA genes predicted in each Drosophila genome is also largely conserved, ranging from 584 in D. mojawensis to 908 in D. ananassate (Table 2).

There are several possible explanations for the observed interspecific variation in gene content. First, approximately 700 D , melanogaster gene models have been newly annotated since the FlyBase Release 4.3 annotations used in the current study, reducing the discrepancy between D. melanogaster and the other sequenced genomes in this study. Second, because low-coverage genomes tend to have more predicted gene models, we suspect that artefactual duplication of genomic segments due to assembly errors inflates the number of predicted genes in some species. Finally, the non-melanogaster species have many more predicted lineage-specific genes than D. melanegaster, and it is possible that some of these are artefactual. In the absence of experimental evidence, it is difficult to distinguish genuine lineage-specific genes from putative artefacts. Future experimental work will be required to fully disentangle the causes of interspecific variation in gene number.
Abundant genome rearrangements during Drosophila evolution. To study the structural relationships among genomes on a finer scale, we analysed gene-level synteny between species pairs. These synteny maps allowed us to infer the history and locations of fixed genomic rearrangements between species. Although Drosophila species vary in their number of chromosomes, there are six fundamental chromosome arms common to all species. For ease of denoting
chromosomal homology, these six arms are referred to as 'Muller elements' after Hermann J. Muller, and are denoted A-F. Although most pairs of orthologous genes are found on the same Muller element, there is extensive gene shuffling within Muller elements between even moderately diverged genomes (Fig. 3, and Supplementary Information section 9.1).

Previous analysis has revealed heterogeneity in rearrangement rates among close relatives: careful inspection of 29 inversions that differentiate the chromosomes of D. melanogaster and D. yakuba revealed that 28 were fixed in the linesge leading to D. yakuba, and only one was fixed on the lineage leading to D. melanogaster". Rearrangement rates are also beterogeneous across the genome among the 12 species; simulations reject a random-breakage model, which assumes that all sites are free to break in inversion events, but fail to reject a model of coldspots and hotspots for breakpoints (S. Schaeffer, personal communication). Furthermore, inversions seem to have played important roles in the process of speciation in at least some of these taxa*".
One particularly striking example of the dynamic nature of genome micro-structure in Drosophila is the homeotic homeobox (Hox) gene cluster(s) ${ }^{41}$. Hox genes typically occur in genomic clusters, and this clustering is conserved across many vertebrate and invertebrate taxa, suggesting a functional role for the precise and collinear arrangement of these genes. However, several cluster splits have been previously identified in Drosophild ${ }^{2043}$, and the 12 Drosophila genome sequences provide additional evidence against the functional importance of Hox gene clustering in Drosophila. There are seven different gene arrangements found across 13 Drosophila species (the 12 sequenced genomes and D. buzzatii), with no species retaining the inferred ancestral gene order ${ }^{4+}$, It thus seems that, in Drosophila, Hox genes do not require clustering to maintain proper function, and are ${ }^{a}$ powerful illustration of the dynamism of genome structure across the sequenced genomes.
Transposable element evolution. Mobile, repetitive transposable element sequences are a particularly dynamic component of eukaryotic genomes. Transposable element/repeat content (in scaffolds $>200 \mathrm{~kb}$) varies by over an order of magnitude across the genus, ranging from -2.7% in D. simulans and D. grinshawi to -25% in D. ananassae (Table 2, and Supplementary Fig. 1). These data support the lower etuchromatic transposable element content in D. simulans relative to D. melanegoster ${ }^{n 3}$, and reveal that euchromatic transposable element/repeat content is generally similar within the melanogaster subgroup. Within the Drosophila subgenus,
D. grimshawi has the lowest transposable element/repeat content, possibly relating to its ecological status as an island endemic, which may minimize the chance for horizontal transfer of transposable element families. Finally, the highest levels of transposable element/ repeat content are found in D. anamassac and D, willistoni. These species also have the highest numbers of pseudo-transfer (t)RNA genes (Table 2), indicating a potential relationship between pseudo-tRNA genesis and repetitive DNA, as has been established in the mouse genome ${ }^{\text {²}}$.

Different classes of transposable elements can vary in abundance owing to a variety of host factors, motivating an analysis of the intragenomic ecology of transposable elements in the 12 genomes. In D. melanegaster, long terminal repeat (LTR) retrotransposons have the highest abundance, followed by LINE (long interspersed nuclear element)-like retrotransposons and terminal inverted repeat (TIR) DNA-based transposons ${ }^{18}$. An unbiased, conservative approach (Supplementary Information section 3) for estimating the rank order abundance of major transposable element classes suggests that these abundance trends are conserved across the entire genus (Supplementary Fig. 5). Two exceptions are an increased abundance of TIR elements in D. erecta and a decreased abundance of LTR elements in D. pseudoobscura; the latter observation may represent an assembly artefact because the sister species D. persimilis shows typical LTR abundance. Given that individual instances of transposable element repeats and transposable element families themselves are not conserved across the genus, the stability of abundance trends for different classes of transposable elements is striking and suggests common mechanisms for host-transposable element co-evolution in Drosophila.

Although comprehensive analysis of the structural and evolutionary relationships among families of transposable elements in the 12 genomes remains a major challenge for Drosophila genomics, some initial insights can be gleaned from analysis of particularly wellcharacterized transposable element families. Previous analysis has shown variable dynamics for the most abundant transposable element family (DINE-1) ${ }^{\text {max}}$ in the D. melanogaster genome ${ }^{i \infty+1}$: although inactive in D. melanogaster ${ }^{t s}$, DINE- 1 has experienced a recent transpositional burst in D. yukuba ${ }^{\text {te }}$. Our analysis confirms that this clement is highly abundant in all of the other sequenced genomes of Drosophila, but is not found outside of Dipterasast. Moreover, the inferred phylogenetic relationship of DINE-1 paralogues from several Drosophila species suggests vertical transmission as the major mechanism for DINE-I propagation. Likewise, analysis of the Galileo

Figure 3 | Synteny plots for Muller elements B and C with respect to D. melanogaster gene order. The horizontal axis shows D. melanogaster gene order for Muller clements B and C , and the vertical axis maps homologous locations ${ }^{23} 55$ in individual species ($a-f$ in increasing evolutionary distance from D. melanogaster). Left to right on the xaxis is
from telomere to centromere for Maller element B, followed by Muller element C from centromere to telomere. Red and green lines represent syntenic segments in the same or reverse orientation along the chromosome relative to D. melamogaster, respectively. Blue segments show gene transposition of genes from one element to the other.
and $I 360$ transposons reveals a widespread but discontinuous phylogenetic distribution for both families, notably with both families absent in the geographically isolated Hawailian species, D. grimshawi ${ }^{22}$. These results are consistent with an ancient origin of the Galileo and 1360 families in the genus and subsequent horizontal transfer and/or loss in some lineages.

The use of these 12 genomes also facilitated the discovery of transposable element lineages not yet documented in Drosophila, specifically the P instability factor (PIF) superfamily of DNA transposons. Our analysis indicates that there are four distinct lineages of this transposon in Drosophila, and that this element has indeed colonized many of the sequenced genomes ${ }^{33}$. This superfamily is particularly intriguing given that P/F-transposase-like genes have been implicated in the origin of at least seven different genes during the Drosophila radiation ${ }^{33}$, suggesting that not only do transposable elements affect the evolution of genome structure, but that their domestication can play a part in the emergence of novel genes.
D. melanogaster maintains its telomeres by occasional targeted transposition of three telomere-specific non-LTR retrotransposons (HeT-A, TART and TAHRE) to chromosome ends ${ }^{3435}$ and not by the more common mechanism of telomerase-generated G-rich repeats*. Multiple telomeric retrotransposons have originated within the genus, where they now maintain telomeres, and recurrent loss of most of the ORF2 from telomeric retrotransposons (for example, TAHRE) has given rise to half-telomeric-retrotransposons (for example, HeT.A) during Drosophila evolution ${ }^{3 /}$. The phylogenetic relationship among these telomeric elements is congruent with the species phylogeny, suggesting that they have been vertically transmitted from a common ancestor ${ }^{3 /}$.
ncRNA gene family evolution. Using ncRNA gene annotations across the 12 -species phylogeny, we inferred patterns of gene copy number evolution in several ncRNA families. Transfer RNA genes are the most abundant family of ncRNA genes in all 12 genomes, with 297 tRNAs in D, melanogaster and 261-484 tRNA genes in the other species (Table 2). Each genome encodes a single selenocysteine tRNA, with the exception of D. willistoni, which seems to lack this gene (R. Guigo, personal communication). Elevated tRNA gene counts in D. anamassae and D. willistoni are explained almost entirely by pseudo-tRNA gene predictions. We infer from the lack of pseudotRNAs in most Drosophila species, and from similar numbers of tRNAs obtained from an analysis of the chicken genome $(n=280)^{\circ}$, that the minimal metazoan tRNA set is encoded by -300 genes, in contrast to previous estimates of 497 in human and 659 in Caenorhabditis elegans ${ }^{2 m}$. Similar numbers of snoRNAs are predicted in the D. melanogaster subgroup ($n=242-255$), in which sequence similarity is high enough for annotation by homology, with fewer snoRNAs ($n=194-216$) annotated in more distant members of the Sophophora subgenus, and even fewer snoRNAs ($n=139-165$) predicted in the Drosophila subgenus, in which annotation by homology becomes much more difficult.

Of 78 previously reported micro (mi)RNA genes, 71 (91\%) are highly conserved across the entire genus, with the remaining seven genes (mir-2b-1, 289, -303, -310, -311, -312 and -313) restricted to the subgenus Sophophora (Supplementary Information section 7.2). All the species contain similar numbers of spliceosomal snRNA genes (Table 2), including at least one copy each of the four U12-dependent (minor) spliceosomal RNAs, despite evidence for birth and death of these genes and the absence of stable subtypes ${ }^{-1}$. The unusual, lin-eage-specific expansion in size of U11 snRNA, previously described in Drosophilda ${ }^{\text {nind }}$, is even more extreme in D, willistoni. We annotated 99 copies of the $5 S$ ribosomal (r)RNA gene in a cluster in D. melanogaster, and between 13 and 73 partial $5 \$$ rRNA genes in clusters in the other genomes. Finally, we identified members of several other classes of neRNA genes, including the RNA components of the RNase P (1 per genome) and the signal recognition particle (SRP) RNA complexes ($1-3$ per genome), suggesting that these functional RNAs are involved in similar biological processes throughout the
genus. We were only able to locate the roX (RNA on X) ${ }^{\text {asht }}$ genes involved in dosage compensation using nucleotide homology in the melanogaster subgroup, although analyses incorporating structural information have identified roX genes in other members of the genus ${ }^{03}$.

We investigated the evolution of rRNA genes in the 12 sequenced genomes, using trace archives to locate sequence variants within the transcribed portions of these genes. This analysis revealed moderate levels of variation that are not distributed evenly across the rRNA genes, with fewest variants in conserved core coding regions, more variants in coding expansion regions, and higher still variant abundances in non-coding regions. The level and distribution of sequence variation in rRNA genes are suggestive of concerted evolution, in which recombination events uniformly distribute variants throughout the rDNA loci, and selection dictates the frequency to which variants can expand".
Protein-coding gene family evolution. For a general perspective on bow the protein-coding composition of these 12 genomes has changed, we examined gene family expansions and contractions in the 11,434 gene families (including those of size one in each species) predicted to be present in the most recent common ancestor of the two subgenera. We applied a maximum likelihood model of gene gain and loss ${ }^{\text {ni }}$ to estimate rates of gene turnover. This analysis suggests that gene families expand or contract at a rate of 0.0012 gains and losses per gene per million years, or roughly one fixed gene gain/ loss across the genome every $60,000 \mathrm{yr}^{5 \prime}$. Many gene families (4,692 or 41.0%) changed in size in at least one species, and 342 families showed significantly elevated ($P<0.0001$) rates of gene gain and loss compared to the genomic average, indicating that non-neutral processes may play a part in gene family evolution. Twenty-two families exhibit rapid copy number evolution along the branch leading to D, melanogaster (eighteen contractions and four expansions; Supplementary Table 10). The most common Gene Ontology (GO) terms among families with elevated rates of gain/loss include'defence response', 'protein binding', 'zinc ion binding', 'protcolysis', and 'trypsin activity'. Interestingly, genes involved in 'defence response' and 'proteolysis' also show high rates of protein evolution (see below). We also found heterogeneity in overall rates of gene gain and loss across lineages, although much of this variation could result from interspecific differences in assembly qualit ${ }^{\boldsymbol{}} \boldsymbol{}{ }^{\boldsymbol{}}$.
Lineage-specific genes. The vast majority of D. melanogaster proteins that can be unambiguously assigned a homology pattern (Supplementary Information section 5) are inferred to be ancestrally present at the genus root ($11,348 / 11,644$, or $97,5 \%$). Of the 296 nonancestrally present genes, 252 are either Sophophora-specific, or have a complicated pattern of homology requiring more than one gain and/or loss on the phylogeny, and are not discussed further. The remaining 44 proteins include 14 present in the melanogaster group. 23 present only in the melanogaster subgroup, 3 unique to the mel anogaster species complex, and 4 found in D. melanogaster only. Because we restricted this analysis to unambiguous homologues of high-confidence protein-coding genes in D. melanogaster", we are probably undercounting the number of genes that have arisen de now in any particular tineage. However, ancestrally heterochromatic genes that are currently euchromatic in D. melanogaster may spuriously seem to be lineage-specific.

The 44 lineage-specific genes (Supplementary Table 11) differ from ancestrally present genes in several ways. They have a shorter median predicted protein length (lineage-specific median 177 amino acids, other median 421 amino acids, MWU, $P=3.6 \times 10^{-13}$), are more likely to be intronless (Fisher's exact test (FET), $P=$ 6.2×10^{-6}), and are more likely to be located in the intron of another gene on the opposite strand (FET, $P=3.5 \times 10^{-4}$). In addition, 18 of these 44 genes are testis- or accessory-gland-specific in D. melanogaster, a significantly greater fraction than is found in the ancestral set (FET, $P=1.25 \times 10^{-4}$). This is consistent with previous observations that novel genes are often testis-specific in Drosophild ${ }^{20-73}$ and
expression studies on seven of the species show that species-restricted genes are more likely to exhibit male-biased expression ${ }^{20}$, Further, these genes are significantly more tissue-specific in expression (as measured by ז; ref. 74) (MWU, $P=9.6 \times 10^{-6}$), and this pattern is not solely driven by genes with testis-specific expression patterns.

Protein-coding gene evolution

Positive selection and selective constraints in Drosophila genomes. To study the molecular evolution of protein-coding genes, we estimated rates of synonymous and non-synonymous substitution in 8.510 single-copy orthologues within the six melanogaster group species using PAML ${ }^{\text {75 }}$ (Supplementary Information section 11.1); synonymous site saturation prevents analysis of more divergent comparisons. We investigate only single-copy orthologues because when paralogues are included, alignments become increasingly problematic. Rates of amino acid divergence for single-copy orthologues in all 12 species were also calculated; these results are largely consistent with the analysis of non-synonymous divergence in the melanogaster group, and are not discussed further.
To understand global patterns of divergence and constraint across functional classes of genes, we examined the distributions of ω ($=d_{N} / d_{\text {s, }}$ the ratio of non-synonymous to synonymous divergence) across Gene Ontology categories (GO) ${ }^{\text {º }}$, excluding GO
annotations based solely on electronic support (Supplementary Information section 11.2). Most functional categories of genes are strongly constrained, with median estimates of ω much less than one. In general, functionally similar genes are similarly constrained: 31.8% of GO categories have significantly lower variance in ω than expected (q-value true-positive test ${ }^{77}$). Only 11% of GO categories had statistically significantly elevated ω (relative to the median of all genes with GO annotations) at a 5% false-discovery rate (FDR). suggesting either positive selection or a reduction in selective constraint. The GO categories with elevated ω include the biological process terms 'defence response', 'proteolysis', 'DNA metabolic process' and 'response to biotic stimulus'; the molecular function erms 'transcription factor activity", "peptidase activity', "receptor binding', 'odorant binding', 'DNA binding', 'receptor activity' and 'G-protein-coupled receptor activity'; and the cellular location term 'extracellular' (Fig, 4, and Supplementary Table 12). Similar results are obtained when d_{N} is compared across GO categories, suggesting that in most cases differences in ω among GO categories is driven by amino acid rather than synonymous site substitutions. The two exceptions are the molecular function terms 'transcription factor activity' and 'DNA binding activity', for which we observe significantly decelerated d_{5} (FDR $=7.2 \times 10^{-4}$ for both; Supplementary Information section 11.2) and no significant differences in d_{N}

Figure 4 | Patterns of constraint and positive selection among GO terms. Distribution of average 60 per gene and the negative $\log _{10}$ of the probability of positive selection (Supplementary Information section 11.2) for genes annotated wish: \mathbf{a}, biological process GO terms; \mathbf{b}, cellular component GO terms; and c, molecular function GO terms. Only GO terms with 200 or more
genes annotated are plotted. See Supplementary Table 12 for median values and significance. Note that most genes evolve under evolutionary constraint at most of their sites, leading to low values of eic even genes that experience positive selection do not typically have an average 60 across all codons that exceeds one.

To distinguish possible positive selection from relaxed constraint, we tested explicitly for genes that have a subset of codons with signatures of positive selection, using codon-based likelihood models of molecular evolution, implemented in PAML ${ }^{78 / 3}$ (Supplementary Information section 11.1). Although this test is typically regarded as a conservative test for positive selection, it may be confounded by selection at synonymous sites. However, selection at synonymous sites (that is, codon bias, see below) is quite weak. Moreover, variability in ω presented here tends to reflect variability in d_{N}. We therefore believe that it is appropriate to treat synonymous sites as nearly neutral and sites with $\omega>1$ as consistent with positive selection. Despite a number of functional categories with evidence for elevated ω, 'helicase activity' is the only functional category significantly more likely to be positively selected (permutation test, $P=2 \times 10^{-4}, \mathrm{FDR}=0.007$; Supplementary Table 12); the biological significance of this finding merits further investigation. Furthermore, within each GO class, there is greater dispersion among genes in their probability of positive selection than in their estimate of ω (MWU one-tailed, $P=0.01$ 1; Supplementary Information section 11.1), suggesting that although functionally similar genes share patterns of constraint, they do not necessarily show similar patterns of positive selection (Fig. 4).

Interestingly, protein-coding genes with no annotated ("unknown') function in the GO database seem to be less constrained (permutation test, $P<1 \times 10^{-4}, \mathrm{FDR}=0.006$) ${ }^{\text {mo }}$ and to have on average lower P-values for the test of positive selection than genes with annotated functions (permutation test, $P=0.001, \mathrm{FDR}=$ 0.058). It is unlikely that this observation results entirely from an over-representation of mis-annotated or non-protein-coding genes in the 'unknown' functional class, because this finding is robust to the removal of all D. melanogaster genes predicted to be non-proteincoding in ref. 8 . The bias in the way biological function is ascribed to genes (to laboratory-induced, casily scorable functions) leaves open the possibility that unannotated biological functions may have an important role in evolution. Indeed, genes with characterized mutant alleles in FlyBase evolve significantly more slowly than other genes (median $\omega_{\text {whh alle }}=0.0525$ and $\omega_{\text {withoun allele }}=0.0701 ; \mathrm{MWU}$, $\left.P<1 \times 10^{-16}\right)$.

Previous work has suggested that a substantial fraction of nonsynonymous substitutions in Drosophila were fixed through positive selection ${ }^{\text {ni-ss }}$. We estimate that 33.1% of single-copy orthologues in the melanogaster group have experienced positive selection on at least a subset of codons (q-value true-positive tests ${ }^{77}$) (Supplementary Information section 11.1). This may be an underestimate, because we have only examined single-copy orthologues, owing to difficulties in producing accurate alignments of paralogues by automated methods. On the basis of the 878 genes inferred to have experienced positive selection with high confidence ($\mathrm{FDR}<10 \%$), we estimated that an average of 2% of codons in positively selected genes have $\omega>1$. Thus, several lines of evidence, based on different methodologies, suggest that patterns of amino acid fixation in Drosophila genomes have been shaped extensively by positive selection.

The presence of functional domains within a protein may lead to heterogeneity in patterns of constraint and adaptation along its length. Among genes inferred to be evolving by positive selection at a 10% FDR, 63.7% (q-value true-positive tests ${ }^{77}$) show evidence for spatial clustering of positively selected codons (Supplementary Information section 11.2). Spatial heterogeneity in constraint is further supported by contrasting ω for codons inside versus outside defined InterPro domains (genes lacking InterPro domains are treated as 'outside' a defined InterPro domain). Codons within InterPro domains were significantly more conserved than codons outside InterPro domains (median ox 0,062 InterPro domains, 0.084 outside InterPro domains; MWU, $P<2.2 \times 10^{-16}$; Supplementary Information section 11.2), Similarly, there were significantly more positively selected codons outside of InterPro domains than inside domains (FET $P<2.2 \times 10^{-15}$), suggesting that in addition to
being more constrained, codons in protein domains are less likely to be targets of positive selection (Supplementary Fig, 6).
Factors affecting the rate of protein evolution in Drosophila. The sequenced genomes of the melanogaster group provide unprecedented statistical power to identify factors affecting rates of protein evolution. Previous analyses have suggested that although the level of gene expression consistently seems to be a major determinant of variation in rates of evolution among proteins ${ }^{\operatorname{mox} x}$, other factors probably play a significant, if perhaps minor, part ${ }^{\text {³- }}-9$. In Drosophiht, although highly expressed genes do evolve more slowly, breadth of expression across tissues, gene essentiality and intron number all also independently correlate with rates of protein evolution, suggesting that the additional complexities of multicellular organisms are important factors in modulating rates of protein evolution ${ }^{\text {² }}$. The presence of repetitive amino acid sequences has a role as well: nonrepeat regions in proteins containing repeats evolve faster and show more evidence for positive selection than genes lacking repeats ${ }^{\text {n2 }}$.

These data also provide a unique opportunity to examine the impact of chromosomal location on evolutionary rates. Population genetic theory predicts that for new recessive mutations, both purifying and positive selection will be more efficient on the X chromosome given its hemizygosity in males". In contrast, the lack of recombination on the small, mainly heterochromatic dot chromosome ${ }^{\text {tess }}$ is expected to reduce the efficacy of selection ${ }^{m}$. Because codon bias, or the unequal usage of synonymous codons in proteincoding sequences, reflects weak but pervasive selection, it is a sensitive metric for evaluating the efficacy of purifying selection. Consistent with expectation, in all 12 species, we find significantly elevated levels of codon bias on the X chromosome and significantly reduced levels of codon bias on the dot chromosome ${ }^{57}$. Furthermore, X-chromosome-linked genes are marginally over-represented within the set of positively selected genes in the melanogaster group (FET, $P=0.055$), which is consistent with increased rates of adaptive substitution on this chromosome. This analysis suggests that chromosomal context also serves to modulate rates of molecular evolution in protein-coding genes.
To examine further the impact of genomic location on protein evolution, we examined the subset of genes that have moved within or between chromosome arms ${ }^{32=}$. Genes inferred to have moved between Muller elements have a significantly higher rate of protein evolution than genes inferred to have moved within a Muller element (MWU, $P=1.32 \times 10^{-14}$) and genes that have maintained their genomic position (MWU, $P=0.008$) (Supplementary Fig. 7). Interestingly, genes that move within Muller elements have a significantly lower rate of protein evolution than those for which genomic locations have been maintained (MWU, $P=3.85 \times 10^{-14}$). It remains unclear whether these differences reflect underlying biases in the types of genes that move inter- versus intra-chromosomally, or whether they are due to in situ patterns of evolution in novel genomic contexts.
Codon bias, Codon bias is thought to enhance the efficiency and/or accuracy of translation ${ }^{-101}$ and seems to be maintained by muta-tion-selection-drift balance ${ }^{101-134}$. Across the 12 Drosophila genomes, there is more codon bias in the Sophophora subgenus than in the Drosophila subgenus, and a previously noted ${ }^{10 s \rightarrow}$;00 striking reduction in codon bias in D. willistoni ${ }^{10.111}$ (Fig. 5). However, with only minor exceptions, codon preferences for each amino acid seem to be conserved across 11 of the 12 species. The striking exception is D. willistoni, in which codon usage for 6 of 18 redundant amino acids has diverged (Fig. 5), Mutation alone is not sufficient to explain codonusage bias in D. willistorti, which is suggestive of a lineage-specific shift in codon preferences ${ }^{111,122}$. We found evidence for a lineagespecific genomic reduction in codon bias in D. melanogaster (Fig. 5), as has been suggested previously ${ }^{113-119}$. In addition, max-imum-likelihood estimation of the strength of selection on synonymous sites in 8,510 melanogaster group single-copy orthologues revealed a marked reduction in the number of genes under selection
for increased codon bias in D. melanogaster relative to its sister species D. sechellia ${ }^{120}$.
Evolution of genes associated with ecology and reproduction. Given the ecological and environmental diversity encompassed by the 12 Drosophrila species, we examined the evolution of genes and gene families associated with ecology and reproduction. Specifically, we selected genes with roles in chemoreception, detoxification/ metabolism, immunity/defence, and sex/reproduction for more detailed study.
Chemoreception. Drosophila species have complex olfactory and gustatory systems used to identify food sources, hazards and mates, which depend on odorant-binding proteins, and olfactory/odorant and gustatory receptors (Ors and Grs). The D, melanogaster genome has approximately $60 \mathrm{Or}, 60 \mathrm{Grs}$ and 50 odorant-binding protein genes. Despite overall conservation of gene number across the 12 species and widespread evidence for purifying selection within the melanogaster group, there is evidence that a subset of Or and Grgenes experiences positive selection ${ }^{121-123}$. Furthermore, clear lineagespecific differences are detectable between generalist and specialist species within the melanogaster subgroup. First, the two independently evolved specialists (D. sechellia and D. erecta) are losing Gr genes approximately five times more rapidly than the generalist species ${ }^{12.14}$. We believe this result is robust to sequence quality, because all pseudogenes and deletions were verified by direct re-sequencing and synteny-based orthologue searches, respectively. Generalists are expected to encounter the most diverse set of tastants and seem to have maintained the greatest diversity of gustatory receptors. Second, Or and Gr genes that remain intact in D. sechellia and D. erecta evolve significantly more rapidly along these two lineages ($\omega=0.1556$ for Ors and 0.1874 for Grs) than along the generalist lineages ($\omega=0.1049$ for Ors and 0.1658 for Grs; paired Wilcoxon, $P=0.0003$ and 0.003 , respectively ${ }^{124}$). There is some evidence that odorant-binding protein genes also evolve significantly faster in specialists compared to generalists ${ }^{122}$. This elevated ω reflects a trend observed throughout the genomes of the two specialists and is likely to result, at least in part, from demographic phenomena. However, the difference between specialist and generalist of for $\mathrm{Or} / \mathrm{Gr}$ genes (0.0292) is significantly greater than the difference for genes across the genome $(0.0091 ; \text { MWU, } P=0.0052)^{121}$, suggesting a change in selective regime. Morcover, the observation that elevated ω as well as accelerated gene loss disproportionately affect groups of Or and Gr genes that respond to specific chemical ligands and/or are expressed during specific life stages suggests that rapid evolution at Or ' Gr loci in specialists is related to the ecological shifts these species have sustained ${ }^{131}$.

Figure 5 Deviations in codon bias from D. melanogaster in 11 Drosophila species. The upper panel depicts differences in ENC (effective number of codons) between D, melanegaster and the 11 non-melamegasfer species, calculated on a gene-by-gene basis. Note that increasing levels of ENC indicates a decrease in codon bias. The Sophophora sulggenus in general has higher levels of codon bias than the Drosophila stabgenus with the exception of D. willistomi, which shows a dramatic reduction in codon bias. The lower panel shows the 7 codons for which preference changes across the 12 Drosophila species. A dot indicates identical codon preference to D. melanogaster, otherwise the preferred codon is indicated.

Detoxification/metabolism. The larval food sources for many Drosophila species contain a cocktail of toxic compounds, and consequently Drosophila genomes encode a wide variety of detoxification proteins. These include members of the cytochrome P450 (P450), carboxy//choline-esterase (CCE) and glutathione 5 -transferase (GST) multigene families, all of which also have critical roles in resistance to insecticides ${ }^{123-122}$. Among the P450s, the five enzymes associated with insecticide resistance are highly dynamic across the phylogeny, with 24 duplication events and 4 loss events since the last common ancestor of the genus, which is in striking contrast to genes with known developmental roles, eight of which are present as a single copy in all 12 species (C, Robin, personal communication). As with chemoreceptors, specialists seem to lose detoxification genes at a faster rate than generalists. For instance, D. sechellia has lost the most P450 genes; these 14 losses comprise almost one-third of all P450 loss events (Supplementary Table 13) (C. Robin, personal communication). Positive selection has been implicated in detoxi-fication-gene evolution as well, because a search for positive selection among GSTs identified the parallel evolution of a radical glycine to lysine amino acid change in GSTD1, an enzyme known to degrade DDT ${ }^{128}$. Finally, although metabolic enzymes in general are highly constrained (median $\omega=0.045$ for enzymes, 0.066 for nonenzymes; MWU, $P=5.7 \times 10^{-24}$), enzymes involved in xenobiotic metabolism evolve significantly faster than other enzymes (median $\omega=0.05$ for the xenobiotic group versus $0=0,045$ overall, two-tailed permutation test, $P=0.0110 ; \mathrm{A}$. J. Greenberg, personal communication).

Metazoans deal with excess selenium in the diet by sequestration in selenoproteins, which incorporate the rare amino acid selenocysteine (Sec) at sites specified by the TGA codon. The recoding of the normally terminating signal TGA as a Sec codon is mediated by the selenocystein insertion sequence (SECIS), a secondary structure in the 3' UTR of selenoprotein messenger RNAs. All animals examined so far have selenoproteins; three have been identified in D. melanograster (SELG, SELM and SPS2 ${ }^{139150}$). Interestingly, although the three known melanogaster selenoproteins are all present in the genomes of the other Drosophila species, in D. willistoni the TGA Sec codons have been substituted by cysteine codons (TGT/TGC). Consistent with this finding, analysis of the seven genes implicated to date in selenoprotein symthesis including the Sec-specific tRNA suggests that most of these genes are absent in D, willistoni (R . Guigo, personal communication). D. willistoni thus seems to be the first animal known to lack selenoproteins. If correct, this observation is all the more remarkable given the ubiquity of selenoproteins and the selenoprotein biosynthesis machinery in metazoans, the toxicity of excess selenium, and the protection from oxidative stress mediated by selenoproteins. However, it remains possible that this species encodes selenoproteins in a different way, and this represents an exciting avenue of future research.
Immunity/defence. Drosophrila, like all insects, possesses an innate immune system with many components analogous to the innate immune pathways of mammals, although it lacks an antibodymediated adaptive immune system ${ }^{\text {bl }}$. Immune system genes often evolve rapidly and adaptively, driven by selection pressures from pathogens and parasites ${ }^{\mathrm{t} 22-14}$. The genus Drosophila is no exception: immune system genes evolve more rapidly than non-immune genes, showing both high total divergence rates and specific signs of positive selection ${ }^{\text {b3 }}$. In particular, 29% of receptor genes involved in phagocytosis seem to evolve under positive selection, suggesting that molecular co-evolution between Drosophila pattern recognition receptors and pathogen antigens is driving adaptation in the immune system ${ }^{13}$. Somewhat surprisingly, genes encoding effector proteins such as antimicrobial peptides are far less likely to exhibit adaptive sequence evolution. Only 5% of effector genes (and no antimicrobial peptides) show evidence of adaptive evolution, compared to 10% of genes genome-wide. Instead, effector genes seem to evolve by rapid duplication and deletion. Whereas 49% of genes genome-wide, 63%
of genes involved in pathogen recognition and 81% of genes implicated in immune-related signal transduction can be found as singlecopy orthologues in all 12 species, only 40% of effector genes exist as single-copy orthologues across the genus ($\chi^{2}=41.13, P=2.53 \times$ 10^{-2}), suggesting rapid radiation of effector protein classes along particular lineages ${ }^{153}$. Thus, much of the Drosophila immune system seems to evolve rapidly, although the mode of evolution varies across immune-gene functional classes.
Sex/reproduction. Genes encoding sex- and reproduction-related proteins are subject to a wide array of selective forces, including sexual conflict, sperm competition and cryptic female choice, and to the extent that these selective forces are of evolutionary consequence, this should lead to rapid evolution in these genes ${ }^{\text {is }}$ (for an overview see refs 137, 138). The analysis of 2,505 sex- and reproduction-related genes within the melanogaster group indicated that male sex- and reproduction-related genes evolve more rapidly at the protein level than genes not involved in sex or reproduction or than female sex- and reproduction-related genes (Supplementary Fig. 8). Positive selection seems to be at least partially responsible for these patterns, because genes involved in spermatogenesis have significantly stronger evidence for positive selection than do nonspermatogenesis genes (permutation test, $P=0.0053$). Similarly, genes that encode components of seminal fluid have significantly stronger evidence for positive selection than "non-sex genes'". Moreover, protein-coding genes involved in male reproduction, especially seminal fluid and testis genes, are particularly likely to be lost or gained across Drosophila species ${ }^{2 v, t y}$,
Evolutionary forces in the mitochondrial genome. Functional elements in mtDNA are strongly conserved, as expected: tRNAs are relatively more conserved than the mtDNA overall (average pairwise nucleotide distance $=0,055$ substitutions per site for tRNAs versus 0.125 substitutions per site overall). We observe a deficit of substitutions occurring in the stem regions of the stem-loop structure in tRNAs, consistent with strong selective pressure to maintain RNA secondary structure, and there is a strong signature of purifying selection in protein-coding genes ${ }^{13}$. However, despite their shared role in acrobic respiration, there is marked heterogeneity in the rates of amino acid divergence between the oxidative phosphorylation enzyme complexes across the 12 species (NADH dehydrogenase, $0.059>$ ATPase, $0.042>$ CytB, $0.037>$ cytochrome oxidase, 0.020 ; mean pairwise d_{N}), which contrasts with the relative homogeneity in synonymous substitution rates. A model with distinct substitution rates for each enzyme complex rather than a single rate provides a significantly better fit to the data ($P<0.0001$), suggesting complexspecific selective effects of mitochondrial mutations ${ }^{13}$.

Non-coding sequence evolution

ncRNA sequence evolution. The availability of complete sequence from 12 Drosopitila genomes, combined with the tractability of RNA structure predictions, offers the exciting opportunity to connect patterns of sequence evolution directly with structural and functional constraints at the molecular level. We tested models of RNA evolution focusing on specific ncRNA gene classes in addition to inferring patterns of sequence evolution using more general datasets that are based on predicted intronic RNA structures.

The exquisite simplicity of miRNAs and their shared stem-loop structure makes these ncRNAs particularly amenable to evolutionary analysis. Most miRNAs are highly conserved within the Drosophila genus: for the 71 previously described miRNA genes inferred to be present in the common ancestor of these 12 species, mature miRNA sequences are nearly invariant. However, we do find a small number of substitutions and a single deletion in mature miRNA sequences (Supplementary Table 14), which may have functional consequences for miRNA-target interactions and may ultimately help identify targets through sequence covariation. Pre-miRNA sequences are also highly conserved, evolving at about 10% of the rate of synonymous sites.

To link patterns of evolution with structural constraints, we inferred ancestral pre-miRNA sequences and deduced secondary structures at each ancestral node on the phylogeny (Supplementary Information section 12.1). Although conserved miRNA genes show little structural change (little change in free energy), the five melanogaster group-specific miRNA genes (miR-303 and the mir-310/311/ $312 / 313$ cluster) have undergone numerous changes across the entire pre-miRNA sequence, including the ordinarily invariant mature miRNA. Patterns of polymorphism and divergence in these lin-eage-specific miRNA genes, including a high frequency of derived mutations, are suggestive of positive selection ${ }^{140}$. Although lineagespecific miRNAs may evolve under less constraint because they have fewer target transcripts in the genome, it is also possible that recent integration into regulatory networks causes accelerated rates of miRNA evolution.

We further investigated patterns of sequence evolution for the subset of 38 conserved pre-miRNAs with mature miRNA sequences at their 3^{\prime} end by calculating evolutionary rates in distinct site classes (Fig. 6, and Supplementary Information section 12.2). Outside the mature miRNA and its complementary sequence, loops had the highest rate of evolution, followed by unpaired sites, with paired sites having the lowest rate of evolution. Inside the mature miRNA, unpaired sites evolve more slowly than paired sites, whereas the opposite is true for the sequence complementary to the mature miRNA. Surprisingly, a large fraction of umpaired bulges or internal loops in the mature miRNA seem to be conserved-a pattern which may have implications for models of miRNA biogenesis and the degree of mismatch allowed in miRNA-target prediction methods. Overall these results support the qualitative model proposed in ref. 141 for the canonical progression of miRNA evolution, and show that functional constraints on the miRNA itself supersede structural constraints imposed by maintenance of the hairpin-loop.

To assess constraint on stem regions of RNA structures more generally, we compared substitution rates in stems (S) to those in nominally unconstrained loop regions (L) in a wide variety of ncRNAs (Supplementary Information section 12.3). We estimated substitution rates using a maximum likelihood framework, and compared the observed L / S ratio with the average L / S ratio estimated from published secondary structures in RFAM, which we normalized to 1.0. L / S ratios for Drosophila ncRNA families range from a highly constrained 2.57 for the nuclear RNase P family to 0.56 for the $5 \$$ ribosomal RNA (Supplementary Table 15).

Figure 6 | Substitution rate of site classes within miRNAs. Bootstrap distributions of miRNA substitution rates. Structural alignments of miRNA precursor hairpins were partitioned into six site-classes (inset): (1) hairpin loops, unpaired sites (2) outside, (3) in the complementary region of, and (4) inside the miRNA; and base pairs (\$) adjacent to and (6) involving the miRNA. Whiskers show approximate 95% confidence intervals for median differences, boxes show interquartile range.

Finally, we predicted a set of conserved intronic RNA structures and analysed patterns of compensatory nucleotide substitution in D. melanogaster, D. yakula, D. ananassac, D. psendoobscura, D. virilis and D. mojavensis (Supplementary Information section 13). Signatures of compensatory evolution in RNA helices are detected as covarying nucleotide sites or 'covariations' (that is, two WatsonCrick bases that interact in species A replaced by a different Watson-Crick pair in species B). The number of covariations (per base pair of a helix) depends on the physical distance between the interacting nucleotides (Supplementary Fig. 9), as has been observed for the RNA helices in the Drosophila bicoid 3' UTR region ${ }^{142}$. Shortrange pairings exhibit a higher average number of covariations with a larger variance among helices than longer-range pairings. The decrease in rate of covariation with increasing distance may be explained by physical properties of a helix, which may impose selective constraints on the evolution of covarying nucleotides within a helix. Alternatively, if individual mutations at each locus are deleterious but compensated by mutations at a second locus, given sufficiently strong selection against the first deleterious mutation these epistatic fitness interactions could generate the observed distance effect ${ }^{143}$.
Evolution of cis-regulatory DNAs. Comparative analyses of cisregulatory sequences may provide insights into the evolutionary forces acting on regulatory components of genes, shed light on the constraints of the eis-regulatory code and aid in annotation of new regulatory sequences. Here we rely on two recently compiled databases, and present results comparing cis-regulatory modules ${ }^{14}$ and transcription factor binding sites (derived from DNase I footprints) ${ }^{\text {tes }}$ between D. melanogaster and D. simulans (Supplementary Information section 8). We estimated mean selective constraint (C, the fraction of mutations removed by natural selection) relative to the 'fastest evolving intron' sites at the 5^{\prime} ' end of short introns, which represent putatively unconstrained neutral standards (Supplementary Information section 8.2$)^{146}$. Note that this approach ignores the contribution of positively selected sites, potentially underestimating the fraction of functionally relevant sites ${ }^{167}$.
Consistent with previous findings, Drosophila cis-regulatory sequences are highly constrained ${ }^{188 / 19}$, Mean constraint within cisregulatory modules is 0.643 (95% bootstrap confidence interval $=0.621-0.662$) and within footprints is $0.692(0.655-0.723)$, both of which are significantly higher than mean constraint in non-coding DNA overall (0.555 ($0.546-0.563$)) and significantly lower than constraint at non-degenerate coding sites (0,862 ($0.856-0.868$)) and ncRNA genes (0.864 ($0,846-0.880$)) (Supplementary Fig. 10). The high level of constraint in cis-regulatory sequences also extends into flanking sequences, only declining to constraint levels typical of non-coding DNA 40 bp away. This is consistent with previous findings that transcription factor binding sites tend to be found in larger blocks of constraint that cluster to form cis-regulatory modules ${ }^{10}$. To understand selective constraints on nucleotides within cis-regulatory sequences that have direct contact with transcription factors, we estimated the selective constraint for the best match to position weight matrices within each footprint ${ }^{13 /}$; core motifs in transcription-factor-binding sites have a mean constraint of 0.773 ($0.729-0.814)$, significantly greater than the mean for the footprints as a whole, and approaching the level of constraint found at non-degenerate coding sites and in ncRNA genes (Supplementary Fig. 10).

We next examined the variation in selective constraint across cisregulatory sequences. Surprisingly, we find no evidence that selective constraint is correlated with predicted transcription-factor-binding strength (estimated as the position weight matrix score P-value) (Spearman's $r=0.0681, P=0.0609$). We observe significant variation in constraint both among target genes (Kruskal-Wallis tests, footprints, $P<0,0001$: and position weight matrix matches within footprints, $P=0.0023$) and among chromosomes (cis-regulatory modules, $P=0.0186$; footprints, $P=0.0388$; and position weight
matrix matches within footprints, $P=0.0108$; Supplementary Table 16).

Discussion and conclusion

Each new genome sequence affords novel opportunities for comparative genomic inference. What makes the analysis of these 12 Drosophila genomes special is the ability to place every one of these genomic comparisons on a phylogeny with a taxon separation that is ideal for asking a wealth of questions about evolutionary patterns and processes. It is without question that this phylogenomic approach places additional burdens on bioinformatics efforts, multiplying the amount of data many-fold, requiring extra care in generating multispecies alignments, and accommodating the reality that not all genome sequences have the same degree of sequencing or assembly accuracy. These difficulties notwithstanding, phylogenomics has extraordinary advantages not only for the analyses that are possible. but also for the ability to produce high-quality assemblies and accurate annotations of functional features in a genome by using closely related genomes as guides. The use of multi-species orthology provides especially convincing evidence in support of particular gene models, not only for protein-coding genes, but also for miRNA and other neRNA genes.

Many attributes of the genomes of Drosophila are remarkably conserved across species. Overall genome size, number of genes, distribution of transposable element classes, and patterns of codon usage are all very similar across these 12 genomes, although D, willistoni is an exceptional outlier by several criteria, including its unusually skewed codon usage, increased transposable element content and potential lack of selenoproteins. At a finer scale, the number of structural changes and rearrangements is much larger, for example, there are several different rearrangements of genes in the Hox cluster found in these Drosophila species.

The vast majority of multigene families are found in all $12 \mathrm{gen}-$ omes, although gene family size seems to be highly dynamic: almost half of all gene families change in size on at least one lineage, and a noticeable fraction shows rapid and lineage-specific expansions and contractions. Particularly notable are cases consistent with adaptive hypotheses, such as the loss of Gr genes in ecological specialists and the lineage-specific expansions of antimicrobial peptides and other immune effectors. All species were found to have novel genes not seen in other species. Although lineage-specific genes are challenging to verify computationally, we can confirm at least 44 protein-coding genes unique to the melanogaster group, and these proteins have very different properties from ancestral proteins. Similarly, although the relative abundance of transposable element subclasses across these genomes does not differ dramatically, total genomic transposable element content varies substantially among species, and several instances of lineage-specific transposable elements were discovered.

There is considerable variation among protein-coding genes in rates of evolution and patterns of positive selection. Functionally similar proteins tend to evolve at similar rates, although variation in genomic features such as gene expression level, as well as chromosomal location, are also associated with variation in evolutionary rate among proteins. Whereas broad functional classes do not seem to share patterns of positive selection, and although very few GO categories show excesses of positive selection, a number of genes involved in interactions with the environment and in sex and reproduction do show signatures of adaptive evolution. It thus seems likely that adaptation to changing environments, as well as sexual selection, shape the evolution of protein-coding genes.

Annotation of ncRNA genes across all 12 species allows comprehensive analysis of the evolutionary divergence of these genes. MicroRNA genes in particular are more conserved than proteincoding genes with respect to their primary DNA sequence, and the substitutions that do occur often have compensatory changes such that the average estimated free energy of the folding structures remains remarkably constant across the phylogeny. Surprisingly,
mismatches in miRNAs seem to be highly conserved, which may impact models of miRNA biogenesis and target recognition. Lineage-restricted miRNAs, however, have considerably elevated rates of change, suggesting either reduced constraint due to novel miRNAs having fewer targets, or adaptive evolution of evolutionarily young miRNAs.

Virtually any question about the function of genome features in Drosophila is now empowered by being embedded in the context of this 12 species phylogeny, allowing an analysis of the ways by which evolution has tuned myriad biological processes across the hundreds of millions of years spanned in total by this phylogeny. The analyses presented herein have generated more questions than they have answered, and these results represent a small fraction of that which is possible. Because much of this rich and extraordinary comparative genomic dataset remains to be explored, we believe that these 12 Drosophila genome sequences will serve as a powerful tool for gleaning further insight into genetic, developmental, regulatory and evolutionary processes.

METHODS

The full methods for this paper are described in Supplementary Information. Here, we describe the datasets generated by this project and their availability. Genomic sequence. Scaffolds and assemblies for all genomic sequence generated by this project are availhble from GenBank (Supplensentary Tables 4 and 5), and Flylase (ftpu//tpp.flybuse.net/12_species_analysis/). Genome browsers are available from UCSC (http//genome.tes.edu/cgi-bin/hgGateway?hgsid = 9818033 ssclade $=$ insectsorg $=08 \mathrm{db}=0$) and Hytase (http:/flybaseorg/ cej-bin/sbrowe//dmet/). BLAST search of these genomes is avalible at HyBese (httpolifytuse.org/blast).
Predicted gene models. Consensus gene predictions for the 11 non-melamegaster species, produced by combining several different GLEAN runs that weight homology evidence mote or less strongly, are available from Flyase as GFF files for each species (ftpo/fip.flybase.net//12_species_analysis/). These gene models can also be accessed from the Genome Browser in FlyBase (Gbrowes hutp // fhtase.org/cgi-bin/gbrowse/dmel/). Predicions of non-protein-coding genes are also available in GFF formut for each species, from Flyllase (ftpo/fip. Whtuse.bet/12_specics_analysi//),
Homology. Multiway homsology asilgnments are available from FlyBase (fpe/f fp.flytasenet/12_species_analysis/), and also in the Genome Bromer (Gbrowse).
Alignments. All alignment sets produced are available in FASTA format from

PAML parameters. Output from PAML. models for the alignments of single copy orthologues in the melanogaster group, including the if value for the test for positive selection, are available from Flylase (fipi/ffp,fybase,net/ 12 specie__analyis/).

Received 19 July: accepted 5 October 2007.

1. Markow, T. A. 5 OGrady, P. M. Drosophila biology in the genomic age. Genetics doi $10.1534 /$ sernetics 107.074112 (in the press).
2. Powell. I. R. Progesis and Prospects in Fvelutionary Biology The Drosophila Model (Oxford Univ. Press, Oxford. 1997),
3. Adams. M. D. et al. The gengene sequence of Drosophiliomelanopaster. Science 287. 2585-2195 (2000).
4. Celniker, S. C. et al. Finishing a whole-genome shotgant release 3 of the Orosophila melanogaster tuchromatic genome sequence. Genome Biol 3. research $0079.1-0079.14$ (2002).
5. Richards, S. ef al. Comparative genome sequencing of Drosophile pseudoodscurt chromosomal gene, and cis-element evolution Genome Res. 15, 1-1B (2005).
6. Myers, E. W, et al, A whole-genome assembly of Drosophila. Science 287, 2196-2204 (2000)
7. Fleischmann, R. D. et at Whole-genome random sequencing and assembly of Hopmophils influenzes Red Science 269, 496-512 (1995).
基. Stark et al. Discovery of functional elements in 12 Orosophila genomes using evolutionary signatures. Nature doi 10.1038/nature06340 (this issue).
8. Begun D. 1. et al. Population genoenics: whole-genome analysis of polymorphism and divergence in Drosophila simulons. PlaS Biol S, e310, doit10.137V jouirnalpbio:0050310 (2007)
9. Zirnin, A. V. Smith, D. R., Sutton, G. \& Yorke, 1. A. Assembly reconcliation. Alisinformotics (in the press).
II. Clary, D. O. \& Wolstenholme, D. R. The mitochondrial DNA molecule of Drosephilt yasaba: notleotide sequence, gene organisation, and genetic code 1. Mol. Erol 22, 252-271 (1985).
10. Ballard, 1. W. When one is not enought introgression of mitochondrial DNA in Drowophila. Mot. Bol Evol, 17, 1126-1130 (2000)
11. Mompoth KL. Abt D. N. Heffman, 1.5. Pand, D. M. Evelution of the mitochondrial DNA across twelve species of Drosophila. Mot. Aot fvol (submitted).
12. Salaberg Set al. Serendipitous discovery of Wolbochia genomes in multiple Drowephild species. Genome Biol 6, R23 (2005)
13. Edgar, R. C. \&. Myers. E. W. PilER identification and classification of genomic repeats. Fioinformatics 21, i52-a158 (2005).
14. Smith, C D. et al. Improved repeat identification and masking in Dipterans. Gene 389, 1-9 (2007).
15. Li.Q.et ol. ReAs Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole shotgun. PloS Comput. Biol. 1, e. 43 (2005).
16. Bergman, C.M. Quesneville. H. Ansolabehere. D. \& Ashburner, M. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome Genome Biol 7, R112 (2006).
17. Guigo R, Knudsen. S, Drake, N. S. Smith. T. Prediction of gene structure. 1. Mot Fiol 226. 141-157 (1992).
18. Korf, I, Gene finding in novel genomes. ADAC Blioinformatics 5, 59 (2004)
19. Gross, 5. S. \& Brent. M. R. Using mulliple alignments to improve gene prediction. L Comput Blot 13, 379-393 (2006).
20. Gross, 5. 5. Da. C. B. \& Batzoglou. 5. in BCATS 2005 Symposium Proc. 82 (2005).
21. Birney. E. Clamp, M. 5. Durbin. R. GeneWise and Genomewise. Genome Res. 14, 988-995 (2004).
22. Slater, G. \& Birney, E. Automated generation of heuristici for biological iequence comparison. BMC Bioinformatics 6, 31 C2005)
23. Chatterk 5. \& Pachter, L Reference based annotation with GeneMapper, Genome Biol 7, R29 (2006).
24. Souverov. A et a! in NCEI News Foll/Winter, NiH Publication Na. O4-3272 (eds Benson, D \& Wherier, D) (2006).
25. Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honerbee Apis mellifera. Nature 443. 931-949 (2006).
26. Elsik, C. G. et at Creating a honey bee consensus gene set. Genome Blot. 8, R13 (2007)
27. Zhane, Y, Sturgil, D, Parist, M, Kumar, S. \&r Oliver, B. Constraint and turnever in sex-biased gene expression in the genus Drosophila. Noture dois10.1038/ nature 06323 (this issue)
28. Manak, \&. R. et of Biological function of unannotated transcription dueing the early development of Drojephila melanogater. Noture Gienet. 38, 1151-1158 (2006).
29. Tatusov, R. L. Koonin E. V. E. Lipman, D. I. A genomic perspective on protein familes. Science 278, 631-637 (1997).
30. Bhutkar, A. Russo S. Smith T. F. \& Gelbart, W. M. Techriques for multi-genome syefteny analysis to overcome assembly limitations. Genome ingomatics 17, 152-161 (2006)
31. Heger, A. \& Ponting, C. Evolutionary rate analyses of orthologues and paralogues from twelve Drasophile genomes. doi:10.110V/g6249707 Genome Res. (in the press).
32. Notredame. C. Higgins. D. G. Gi Heringa. 1. T-Coffee: A novel method for fast and accurate multiple sequence aligrment. \& Mol Biol 302, 205-217 (2000).
33. Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493-521 (2004).
34. Waterston, R. H. ef ol. Initial secuencing and comparative analysis of the mouse genome. Nature 420, 520-562 (2002).
35. Harrison. P. M. Miburn. D. Zhane Z. Bertone, P. \&. Gerstein, M. Identification of pseudogenes in the Drosophila melonogaster genome. Nucleic Acids fies. 34 1033-1037 (20033
36. Bosco. G. Campbell, P, Leiva-Neto, 1.Ea Markow, T. Analysis of Drosophila species genome sise and satelite DNA content reveals sigrificant differences among strairs as well as between specier. Geneticr dok 10.1534/Genetics 107.075069 (in the press).
37. Ranz, L.ef al. Principles of genome evolution in the Drosophlamplonogaster species group. Pto5 Biol 5, e152 dok $10.137 \mathrm{M} / \mathrm{joumal}$ pbio. 0050152 (2007).
38. Noer, M. A. F, Garfield. D. A. Schaeffer, S. W. 5. Machado. C. A. Divergence between the Drosophila pseudoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Gerveties doi:10.1534/genetics 107.070672 (in the press).
39. Lewis. E. B. A gene complex controlling segmentation in Drasophila. Nature 276 565-570 (7978).
40. Negre. B, Rans, I. M, Casals, F. Caceres. M. ER Ruis. A. A new splt of the Hox gene complex in Drosophlla. relocation and evolution of the gene labial. Mol. Blof. Evol. 20, 2042-2054 (2003).
41. Von Allmen, G. ef al Splits in fruiffly Hax gene complexes. Noture 380, 116 (1996).
42. Negre, B. \& Rulx, A. HOM -C evolution in Drosophila: is there a need for Hox gene slustering? Trends Genet. 23. 55-59 (2007).
43. Dowsett, A.P. \& Young. M. W. Differing levels of dispersed repetitive DNA. among closely related species of Drosophila. Proc. Not' Acad. Sci. 79, 4570-4574 (1982)
44. Kapitonov, V. V. 5 Lurka. I. DNAREP1_DM. (Repbase Update Release 3.4, 1999)
45. Kapitonov, V. V. 5 Jurka, 1. Molecular paleontology of transposable elements in the Draspphily melanoguster genome. Proc. Natl Acad. Sci. USA 100, 6569-6574 (2003).
46. Singh. N. D. Amdt, P. F. 5. Petrov, D. A. Genomic heterogeneity of background swbstitutional patterns in Drosophla melanogatter, Genetici 169, 709-722 (2004).
47. Yane H.-P, Hunge T.L. You, T.-L. \& Yang T.-H. Genomewide comparative analyin of the highly abundant transposable element DINF-1 suggests a recent transpositional burst in Drosophilo yokuba. Genetics 173, 189-196 (2006)
48. Yang H.P. 6. Barbath, D. Abundant and species-specilic miniature irvertedrepeat transposable elements in 12 Drosophila genomes. Genome Biod. (sutmitted).
49. Wider, $1:$ Hollocher, H. Mobile elements and the genesis of microsatellites in dipterans. Mol. Alol. Evol. tet. 384-392 (2001).
50. Marzo, M. Puig, M. \& Ruls, A. The foldback-lke element Galleo belongs to the P superfarnily of DNA transposons and is widespread within the genus Drosophila Proc. Nati Acod Sci. USA (submitted).
51. Casola, C, Lawing, A, Betran, E. \& Feschotte, C. PIF-\$ke transposons are common in Orosophil and have been repeatedly domesticated to generate new host genes

S.4. Abod, 1. P. et ot Genomic analysis of Drosophily melanogaster telomeres: fultlength copies of HeT-A and TART elements at telomeres. Mol. Aliol. Evol. 21. 1613-1619 (2004).
52. Abad, 1. P. ef at. TAHRE, a novel telomeric retrotransposon from Drouephila melanogoster, reveals the origin of Drosophila telomeres. Mol. Biol. Evol. 2t, 1620-1624 (2004).
53. Blackburn, E. H. Telomerases. Annu. Rev. Biochem. 61, 113-129 (1992).
54. Viltasante, A. et af. Drosophila telomeric retrotransposons derived from an ancestral element that as recruited to replace telomerase. Genome ReL. (in the press).
55. International Chicken Genome 5equencing Comortiumi. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716 (2004),
56. Lander, E. S. ot ol. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).
57. C. elegans Sequencirg Consortium. Genome sequence of the nematode C elegans. a platform for investigating biology. Science 282, 2012-2018 (1998).
58. Mount 5. M. Gotea. V. Lin. C. F. Hernandez, K. \& Makalowsk W. Spliceosomal wmat nuclear RNA gernes in 11 imsect genomes. RNA 13, 5-14 (2007).
62 Schneider, C. Will C. L. Brosius. 1. Frilander, M. S. \& Luhmann, R. Identification of an evolutionarily oivergent UII small nuclear ribonucleoprotein particle in $^{\text {s }}$ Drosaphila Proc Nati Acad Sci USA 101,9584-9589 (2004).
59. Deng X. \&. Meller, V. H. Non coding RNA in tly dowage compensation. Trends Brochem. Scl. 31, 526-532 (2006).
60. Amrien, H. \& Axel R Genes expressed in neiarans of adit male Drotophila. Cefl 88, 459-469 (1997).
61. Park, 5.W. et at An evolutionarily conserved domsin of ro $\times 2 \mathrm{RNA}$ is sufficlent for induction of $\mathrm{H} 4-\mathrm{L}$-1 16 acetylation on the Drasophily X chromosome. Genefics (in the press).
62. Stage. D. E. \& Elckbush T. H. Seguence variation within the rPNA gene loci of 12 Drosophifa species Genome Res (in the press).
63. Kahn, M. W. De Bie, T., Stajich, J. E, Nguyen C. \& Cristianini, N. Estimating the tempo and mode of gene family evolution from comparative genoenic data. Genome Res. 15, 1153-1160 (2005).
64. Hatr, M. W. Hant M. V. 5i Han, 5.-G. Gene famly evolution across 12 Dresephila genomes. PLos AloL 3, e797 (2007).
65. Levine, M. T. Jones, C. D. Kern, A. D, Linafors, H. A. 6 Begun, D. 1. Novel genes derived from noncodieg DNA in Drosophild melonogaster are frequently X-linked and exhibit testis-biased exprestion, Proc Nafl Acad. Sci USA 103, 9935-9939 (2006).
66. Ponce R. \& Hart, D. L. The evolution of the novel Sdic gene cluster in Drosophila melanegaster. Gene 376, 174-183 (2006).
67. Agguefo, 1.:R, Chen, Y_Tang, S, Wang W. E Long, M. Originiation of an X-limied testes chimeric gene by iliegitimate recombination in Drosophila. Ples Genet. 2. e77 (2006)
68. Begun D. 1. Lindlore, H. A. Thompson M. E. \& Hotloway, A. K. Becently evolved genes iderititied from Drosiophila yahubp and D. erecta accessory gland expressed vequence tags. Genetics 172. 1675-1681 (2006),
73 Betran E. Thornton K. \& Lone M, Retroposed new genes out of the X in Drosophlia Genome Res. 12. 1854-1859 (2002)
69. Yanai, i, et of. Genome-aide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21,650 -659 (2005).
70. Yane Z. PAML a program package for phologenetic analysis by masimum likelinood. Comput. Appl. Biosch. 13, 555-556 (1997).
71. The Gene Ontology Consortium. Gene Ontslogy: tool for the unification of biology. Nature Genet. 25, 25-29 (2000).
72. Storey,). D. A direct approach to false discovery tates. I. R. 5tat. 5oc. 86.64. 479-498 (2002).
73. Larracuente, A. M. ef al. Evolution of protein-coding genes in Drosophila. Trends Geset. (submitted).
74. Yang Z. Nielsen, R, Goldman, N. \& Pedersen A. M. Codon-substitution models for heterogeneous setection pressure at amino acid sifes. Genedics 155, 431-449 (2000)
75. Bergman. C. M. et al. Assessing the impact of comparative genomic sequence data on the functional annotation of the Orotophilo genome. Genome fiod. 3. research0086.1-0086.20 (2002).
BL. Bierne, N. \& Eyre Waker, A. C. The genomic rate of adaptive amino acid substitution in Drosophila. Mol. Bliot. Evol. 21, 1350-1360 (2004).
B2. Sawyer, S. A., Kulathinal R. 1., Bustamante, C. D. 6 Harti. D. L. Bayesisn analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. 1. Mot Evot 57 (suppl. 1), 5154-5164 (2003).
76. Sawyer, S. A. Parsch. 1, Zhang Z. \&. Hartl, D. L. Prevalence of positive selection among nearly neutral amino acid replacements in Drosoghba. Proc. Nat! Acod. Sol. USA t04, 6504-6510 (2007).
77. Smith, N, G. \& Eyre-Walker, A. Adaptive peotein evolution in Drsiophila. Nature 415, 1022-1024 (2002).
78. Welch. 1. 1. Estimating the genomewide rate of adaptive protein evolution in Drosophila Genetics 173. 821-837 (2006).
79. Drummond. D. A. Bloom, J. D. Adami C. Wike. C. O. E. Amold, F. H. Why highly expressed proteins evolve slowly. Proc. Noti Acod Sei U5A 102, 14338-14343 (2005)
80. Drummond, D. A. Raval, A. \& Wike, C O, A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327-337 (2006),
81. Pat. C. Papp. B. \& Hurst. L. D. Highly eapressed genes in yeast evolve slowly. Genetics 158, $927-931$ (2001).
82. Pat C. Papa 8. \& tercher, M. I An integrated view of protein evolution. Noture Rev. Genet. 7, 337-348 (2006).
83. Wall, D. P.et al. Functional genomic analysis of the rates of protein evolution, Proc. Notf Acod. Sei. USA 102. 5483-5488 (2005).
84. Rocha, E. P. The quest for the universals of protein evolution. Trends Genet. 22. 412-416 (2006)
85. Huntler, M. A. \& Clark, A. G. Evelutionary analysis of amino acid repeats across the genomes of 12 Drosophlla species. Mol Biol. Evol (in the press)
86. Charlesworth, B, Coyne. L.A. 6 . Barton, N.H. The relative rates of evolution of sex chromosomes and zutosomes. Am. Not 130, 113-146 (1987)
87. Larsson, 1. \& Meller, V, H. Dosage compensation, the origin and the afterlife of sex chromosomes. Chromosome Res. 14, 417-431 (2006).
88. Riddle, N. C. G Eigin. S. C. The dot chromosome of Drosophilar insights into chromatin states and their change over evolutionary time. Chromosome Res. 14. 405-416 (2006).
89. Gordo, 1. 5. Charlesworth, B. Genetic linkage and molecular evolution. Curr, Biol. 71, R684-R686 (2001).
90. Singh. N. D. Larracuente, A.M. G. Clark, A. G. Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mel. Biol. Evol. (submitted).
91. Bhutkar, A, Russo. 5. M, 5mith T. F. \& Gelbart, W. M. Genome scale anahysis of positionally relocated genes. Genome Res (in the press)
92. Akashi, H. St Eyre-Walker, A. Transtational selection and molecular evolution. Cart Opint Genet Dev 8, 688-693 (1998).
100 . Akashi. H, Kliman. R. M. \&. Eyer-Walker, A. Mutation presture, natural selection, and the evolution of base composition in Drosophila Geretita (Dordrecte) 102-103, 49-60 (1998).
93. Bulmer, M. The selection-mutation-drift theory of synommous codon usage. Genetics 129, 897-908 (1991)
94. McVean G. A. T. \& Charlesworth. B. A population genetic model for the evolution of synonymous codon usage: Patterns and predictions. Genct. Res. 74, 145-158 (1999).
95. Sharp. P. M. 6 LU W. H. An evolutionary perspective on synonymous codon usage in unicellular organisms. 1. Mol. Evol. 24, 28-38 (1986).
96. Akashi. H. \& Schaeffer. 5. W. Natural selection and the frequency distributions of "silent" DNA polymorphism in Drasophila. Geneties 146, 295-307 (1997).
97. Powell, I. R, Sezzi, E., Moriyama, E. N. Gleason, 1 M. \& Caccone, A. Analysis of a shift in codon usage in Drosophila \& Mol. fvol 57, 5214-5225 (20032.
98. Anderson, C. L. Carew, E. A. 8 Powell. 1. R. Evolution of the Adh locus in the Drosophilo wittistoni group The loss of an intron, and shift in codon usage. Mol. Biol, Evol 10, 605-618 (1993)
99. Aodriguer-Trelles, F. Tarrio, R. \& Ayala, F. 1. Switch in codoo bias and increased rates of aming acif substitution in the Drasophild saltons igecies group. Gerietics 153. 399-350 (7999).
100. Rodrigues-Trelles, F. Tarrio, R. F. Ayata, F. \&. Evidence for a high ancestral GC content in Drosophila. Mol. Biol. Evol. 17, 1710-1717 (2000).
101. Rodriguez-Trelles, F. Tarrio, R. \& Ayala. F. A. Fuctuating mutation bias and the evolution of base composition in Drasophila 1 Mol Evol 50, 1-10 (2000).
102. Heger, A. \& Ponting C. Variable strength of translational selection among twelve Drosophilo species. Genetics (in the press).
103. Vicario. 5. Moriyama E. N. E. Powel. I R. Codon Usage in Twelve Species of Drosophila ©MC fvol Biol (subimitted).
$112.5 i n g t$ N. D. Arndt, P. F. \& Petrov, D. A. Minor shit in background substitutional patterm in the Drosophilg saltans and willintoni lineages is insufficient to explain GC content of coding sequences BMC Biot $4,10,1186 / 1741-7007-4 \cdot 37(2006)$.
104. Akashi, H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics 139, 1067-1076 (1995),
105. Akashi, H. Moleculur evolution between Drosophifa melanogaster and D. simulons: reduced codon bias, faster rates of amino acid substitution. and larger peoteins in D. melonogaster. Genetics 144, 1297-1307 (1996).
106. Akashi. H. et at Molecular evalution in the Drosophila melanogaster species subgroug: Frequent parameter fluctuations on the timescale of molecular dirergence Genetics 172. 1711-1726 (2006)
107. Bauer DuMont, V, Fay, J. C. Calabrese. P. P. .5. Aquadro, C. F, DNA variabiaty and divergence at the Notch locus in Drosophila melanogaster and D. imulars: a case of accelerated synonymous ste divergence. Genetics 167, 171-185 (2004).
108. McVean G. A. 5 Vieira. L. The evolution of codon preferences in Drosophila: a masimum-likelihood approach to parameter estimation and lrypothesis testing. 1. Mol Fvol 49, 63-75 (1999)
109. Nielsen, R., Bauer DuMont, V_ Hubisz, M. J. \& Aquadro, C. F. Maximum likelhood estimation of ancestral codon usage bias parameters in Dresophila. Mol Biol. Evol. 24, 228-235 (2007).
110. Beguh D. 1. The frequensy distribution of nucleotide variation in Drasophils simulans. Mot Aliot Evot. 18, 1343-1352 (2001).
111. Singht. N. S. Buaer DuMont, V. L. Hubisz, M. A, Nielser. R. Ea Aquadra, C. F. Patterns of mutation and selection at synorymous sites in Drosophla, MoL Biol Evel. doi:10.1093//mobermseni96 (in the press).
112. Mcliride. C. S. S. Arguello, L. R. Five Drosophilo genomes reveal non-neutral evolution and the siznature of host specialization in the chemsoreceptor superfamily. Genetics (in the press).
113. Vieira. F. G. Sanches-Gracia. A. 5. Rozas. 1. Comparative genomic analysis of the odorant-binding protein farmily in 12 Drosephila genemes: Parifying selection and birth-and-death evolution. Genome Blof. \& . 235 (2007)
114. Gardiner. A. Barker. D. Butine, R. K. Jordan, W. C. \& Retchie. M. G. Dropophllt chemoreceptor evolution Selection, specialisation and genome size. Genome Biol. (submitted)
115. Mclride. C. S. Rapid evolution of smell and taste receptor genes during host specialization in Drosophile sechema, Froc. Notl Acad. Sol USA 104, 4996-5001 (2007)
116. Ranson, H. et al. Evelution of supergene families ansociated with insecticide resistance science 298, 179-181 (2002).
117. Tijet, N. Helvig C. \&. Feyereisen, R. The cytochrome P450 gene superfarnily in Drosephilo melanogastec Gene 262. 189-198 (2001).
118. Claudianos, C et ol A deficit of detoxification enzymes pesticide sensitivity and ecvironmental response in the honeybee. Ansect Mol. Biod. 15, 615-636 (2006),
119. Low, W. L et at. Molecular evolution of ghtathione 5 -transferases in the genus Drasophila. Genetics (in the press).
120. Castellana, S. et af, in silico identilication of novel selenoproteins in the Drosophila melanoparter genome. EMBO Rep. 2, 697-702 (2001).
121. Matin-Romera, F. I ef al. Selenlum metabolism in Drowphliw. selenoproteins. selenoprotein mRNA expression, fertily, and mortality, \& Biol. Chem. 276. 29798-29804 (2001).
122. Lemaitre, B. E. Hoffmann. 2. The host defense of Drosophila melanganter. Amu Mev. hmmunol 25, 697-743 (2007).
123. Hughes, A. L. \& Nei M. Pattern of nucleotide substitution at major histocompatiblity complex class I loci reveals overdominant selection. Noture 335, 167-170 (1988).
124. Murply. P. M. Molecular mimicry and the geveration of host defense protein diversity. Cell 72, 823-826 (1993).
125. Schlenke, T. A. \& Begun. D. 2. Natural selection drives Drosophila immune system evolution, Genetics 164, 1471-1480 (2003).
126. Sackiton. T. B. ef of The evolution of the innate immune system across Drosophila. Nature Genet. (submitted)
127. Chetta, A \& Singh, R. S. High divergence of reproductive tract proteins and their ansociation with postrygotic reproductive isolation in Drosophlomelonopaster and Drosephito viritis group species L. Mot Evot 4t, 1085-1095 (1995).
128. Civetta. A. Shall we dance of shall we fight? Using DNA sequence data to untangel controversies surrounding sexual selection. Genome 46. 925-929 (2003)
129. Clark, N. L. Aagard, L. E. \& Swanson, W. I. Evolution of repeoductive proteins from animals and plants. Reproduction 13t, 11-22 (2006).
130. Haerty. W.et al. Evolution in the fast lane rapidly evolving sex-and repeoductionrelated genes in Drosophilo species. Genetics (in the press)
131. Lu, J. et at. Adaptive evolition of nesty-ermerged microRNA genes in Drosophila. Mot. Biot Evat (submitted).
132. Lai. E. C. Tomancak, P. Wiliams, R. W. \&. Aubin, G. M. Computational identification of Drosophily microRNA genes. Genome Biol. 4, R42 (2003)
133. Parsch, 1. Braverman. J. M. Sa Stephan. W. Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics 154, 509-921 (2000):
134. Stephan. W. The rate of compensatory evolution. Genetics 144, 419-42.6 (1996). 144. Gallo, S. M. LS, L. Hu, Z. G. Halfon. M. S. RED Fly a Regulatory Element Database for Drosophile. Alioinformatics 22, 381-383 (2006)
135. Bergrinan, C. M, Carison, 1. W. \& Celnaker, S. E. Drosophla DNase I footprint database: a systematic genome annotation of transcription factor binging sites in the fruitfly, Drosophilg melanogaster, Bioinformotics 21, 1747-1749 (2005)
136. Halligan, D. L. E. Keightley, P. D. Ubiquitous selective constraints in the Drespphilt genome revealed by a genome-wide interspecies comparison. Genome Res. to. $875-884$ (2006).
137. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosopbla. Nafure 437. 1149-1152 (2005)
138. Bird. C. P. Stracger, B. E. 5. Dermitzakis, E. T. Functional variation and evolution of non-coding DNA. Curr. Opin. Genet. Dev. 16, 5S9-564 (2006).
139. Wittkopp. P. . Evolution of cis-regulatory sequence and function in Diptera. Heredity 97, 139-147 (2006).
140. Ludwie M. Z. Patel N. H. \& Kreitman M. Finctional anslysis of eve stripe ? enhancer evolution in Drosophila. Development 125, 949-958 (1998).
151, Down. A. T. A. Bergman, C. M, Su, 1. 5 . Hubbard, T. 1. P. Large scale discovery of promoter motifs in Drosophila melanogaster. MoS Comput. Biol 3, e7 (2007).
141. Tamura K, Subramanian, S. \&. Kumar, S. Temporal patterns of fruit tiy (Drosophio) evolution revealed by mutation clocks. Mot fiod focl 2t. 36-44 (2004)
142. Kumar, S. Tamura, K. E. Nei, M, MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence aligmenent. Arief. Bioinform 5. 150-163 (2004)
143. Follard. D. A. lyer, V. N. Moses, A.M. C. Eisen, M. B. Widespread discordance of gene trees with species tree in Drovophiltr: evidence for incomplete lineage sorting. Plo5 Genet. 2 e173 (2006)
144. Bhutkar, A. Gelbart, W. M. \& Smith. T. F. Inferring genome-scale rearrangement ptyplogeny and ancestrat gent order: A Drusophile case study-Genome Biot (in the press).
Supplementary Information is linked to the online version of the paper at wow.nature com/nature.
Acknowledgements Agencourt Bioscience Corporation. The Broad institute of MIT and Harvard and the Washington University Genome Sequencing Center were supported by grants and contracts from the National Human Genome Research Insititule (NHGRI). T.C. Kaufman acknowledges suppert frem the Indian Genomics Initiative.
Author Contributions The laboratory groups of A. G. Clark Cincluding A. M Larracuente, T. B. Sackton, and N. D. Singh) and Michael B. Eisen (including V. N. Iyer and D. A. Pollard) played the part of coordinating the primary writing and editing of the manuscript with the considerable help of D. R. Smith. C. M. Bergmar, W. M. Gelbart, B. Oliver, T. A. Markow, T. C. Kaufruan and M. Kellis. D. R. Smith served as primary coordinator for the assemblies. The remaining authors contributed either through their efforts in sequence production, assembly and annotation or in the analysis of specific topics that served as the focus of more than 40 companion papers.

Author Information Reprints and permissions information is available at (www-nature com/reprints. Correspondence and requests for materials should be addressed to A.G.C. (ac347acomelledu), M.B.E. (mbeisen/lbl gov), D.R.S. (douglas smithiagencourt.com), CM.B. (casey bergmanifmanchester.ac uk). W.G. (gelbartimorganharvard edu). BO. (oliver ibhelixnih gov), T.A.M. (tmarkowibpublic. art arizona edu), T.C.K. (kaufrnangindiana.edu), M.K. (manoliamit edu). VN.I (venkyaberkeley edu). T.BS. (tbs7acomell edu) A.M.L (aml69acomell edu). D.A.P. (danielapollard balum bowdoin edu), N.D.S (nds25/3comell edu), or collectively to 12 flies 3 morganharvard.edu.

Drosophila 12 Genomes Consortium

Project Leaders Andrew G. Clark', Michael 8. Disen ${ }^{23}$, Douglas R. Smith ${ }^{4}$, Casey M.
 5. Waliam Gelburt ${ }^{\text {th }}$

Annotation Coordination Venky N. Iyer ${ }^{3}$ g Daniel A. Pollard ${ }^{14}$
Analysis/Writing Coordination Timothy B. Sackton ${ }^{235}$. Amanda M. Larracuente ${ }^{3}$ \& Nadia D. Singh

Sequencing, Assembly, Annotation and Analysis Contributors Jose P. Abad ${ }^{\text {² }}$, Dawh N. Abt ${ }^{7 \prime}$, Boris Adryan ${ }^{\text {" }}$, Montserrat Aguade ${ }^{\text {", Hiroshi Akashipo. Wyatt W. }}$ Anderson 21. Charles F. Aquadro', David H. Andell ${ }^{22}$, Roman Arguellon, Carlo G. Artieri ${ }^{24}$, Dariel A. Barbash, Daniel Barker ${ }^{25}$, Paolo Barsant i^{25}, Phil Batterhaer ${ }^{27}$ Serafim Batzoglou ${ }^{2 *}$. Dave Begun ${ }^{2 *}$. Arjun Bhutkar ${ }^{20} 30^{4}$, Enrico Blanco ${ }^{\prime \prime}$. Stephanie A. Bosak ${ }^{4}$, Robert K. Bradley ${ }^{30}$ Adrianne D. Brand ${ }^{4}$, Michsel R. Brent ${ }^{33}$, Angela N. Brooks ${ }^{6}$, RandallH. Brown ${ }^{35}$, Roger K Buatlin ${ }^{34}$, Corrado Caggese ${ }^{24}$, Brian R. Cahvi", A. Bernardo de Carvalho ${ }^{16}$, Anat Caspi ${ }^{12}$, Sergio Castrezanar ${ }^{21}$, Susan E. Celhiker ${ }^{2}$, Jean L Chang 10, Charles Chapple ${ }^{13}$, Sourav Chatterj ${ }^{12}$ In, Asif Chinwalla ${ }^{40}$, Alberto Civetta ${ }^{41}$, Sandra W. Clifton ${ }^{40}$, Josep M. Comeron ${ }^{42}$, James C. Costello ${ }^{43}$, Jerry A Coyne ${ }^{23}$, Jennifer Daub ${ }^{44}$, Robert G. David ${ }^{4}$, Arthur L- Dekher ${ }^{45}$, Kim Delehaunty ${ }^{40}$, Chuong il. $\mathrm{Do}^{2 t}$, Heather Ebling", Kevin Edwards ${ }^{46}$, Thomas Eiclbush ${ }^{47}$, Jay D. Evais ${ }^{\text {t3 }}$, Alan Filipsb ${ }^{30}$, Sven Findeis ${ }^{\text {sisio }}$, Eva Frephult ${ }^{22}$, Lucinda Fultor ${ }^{40}$, Robert Fulton ${ }^{40}$, Ana C. 1 Garcias Anastasia Gardiner"s, David A. Garfield ${ }^{32}$, Barry E. Garvin", Greg Gibson³ Don Giltert', Sante Ginerre ${ }^{10}$, Jennifer Godtrey ${ }^{* 1}$, Robert Good ${ }^{27}$, Valer Gotea ${ }^{20}$, Brenton Gravelys. Anthony L. Greenbere', Sam Geiffiths-Jones ${ }^{\text {Las }}$, Sarmuel Gross ${ }^{\text {n }}$ Hoderic Guigo ${ }^{105}$, Grik A. Gustafson ${ }^{4}$. Wilfried Haerty ${ }^{24}$, Matthew W. Hahn ${ }^{2.43}$,
 Melissa I. Hubisz ${ }^{61}$, Dan Hultmark ${ }^{62}$, Melanie A. Huntley', David B. Jaffe ${ }^{10}$, Santosh Jagadesshan ${ }^{24}$, William R. Jeck ${ }^{63}$, Justin Johenson ${ }^{51}$, Corbin D. Jones ${ }^{63}$, William C.
 Kheradpour", Ewen F. Kirkness ${ }^{\text {² }}$, Leonardo B. Koerich ${ }^{20}$, Karsten Kristiansen ${ }^{\text {b] }}$, Dave
 Charles H. Langley ${ }^{70}$. Richard Lapoint ${ }^{73}$, Brian P. Lazzaro ${ }^{72}$. So-jeorg Lee ${ }^{65}$, Lisa Levesque ${ }^{41}$, Ruiglang 1^{6173}, Chiao-Feng Lin ${ }^{20}$, Michael F. Lin ${ }^{2010}$, Kerstin
 Lu^{23}, Meizhong Luo ${ }^{60}$, Carlos A. Machado', Woiciech Maialowaki ${ }^{20}$, Mar Marzo ${ }^{74}$, Muneo Matsuda ${ }^{\text {4 }}$, Lucimo Matzkin? Beyant McAltster ${ }^{47}$, Cwolyn 5. McBrisde². Brendan McKKernan ${ }^{4}$, Kevin MoKerrann, Maria Mender-Lago", Patrick Minx ${ }^{40}$
 Eugene Myers ${ }^{\text {5 }}$, Barbara Negre ${ }^{\text {rt }}$. Stuart Newield ${ }^{\text {ro }}$, Rasmus Nelsen" ${ }^{\text {™ }}$, Mohamed A F. Noor ${ }^{12}$, Pattick O'Grady ${ }^{71}$, Lior Pachter ${ }^{1 / 2}$, Montserrat Papacest ${ }^{\circ}$, Matthew I. Parisi ${ }^{4}$

 Ram', David Rand ${ }^{\text {" }}$. Matthew D. Rasmussen , Laura K. Reed ${ }^{53}$. Robert Reenan ${ }^{53}$. Arry Reily ${ }^{\text {t0 }}$, Karin A. Remington ${ }^{37}$, Tania T. Kieger ${ }^{\text {to }}$, Michael G. Ritchie ${ }^{n}$, Charles Robin ${ }^{21}$
 Susan Russo ${ }^{\text {n1] }}$, Steven L. Salzberg ${ }^{45}$, Alejandro Sanchez-Gracia ${ }^{\text {tohat }}$, Dawid J Saranga ${ }^{4}$, Hajime Sato ${ }^{60}$, Stephen W. Schaeffer ${ }^{20}$, Michsel C. Schatz ${ }^{25}$, Todd Schlenke ${ }^{23}$, Russell Schwartz ${ }^{20}$, Carmen Segarra ${ }^{10}$, Rama S. Singh ${ }^{24}$, Laura Sirot', Marina Sirota", Nicholas B. Sisneros ${ }^{69}$. Chris D. Smith ${ }^{66 * 2}$. Temple F. 5 mith ${ }^{* 0}$, John Spieth ${ }^{40}$, Deborah E Stage ${ }^{67}$, Alexander Stark ${ }^{210}$, Woltgang Stephan", Robert L. Spleth ${ }^{40}$, Deborah E Stage, Alexander Stark Strausberg 53, Sebastian Strempelgang Stephan", Dobert L.
 Sutton ${ }^{5 /}$, Wei Tao ${ }^{2}$, Sarah Teichmann", Yoshiko N. Tobari ${ }^{44}$, Yoshihiko Tomimura
Jason M. Tsolas ${ }^{4}$, Vera L. 5. Valente" Eli Venter ${ }^{57}$, J. Craig Venter ${ }^{57}$, Saverio Vicario ${ }^{m \prime}$ Filipe G. Vieira ${ }^{10}$, Albert J. Viella ${ }^{\text {now }}$, Alfredo Vilasamte", Brian Walent ${ }^{19}$, Jun Wang ${ }^{63}$, Marvin Wasserman ${ }^{97}$, Thomas Watts', Derek Wilson ${ }^{\text {¹0 }}$, Richard K. Witson $^{n c}$, Rod A. Wing"t, Mariana F. Woilner', Alex Wong', Gane Kar. Shu Wong ${ }^{\text {rave }}$
 Yang 01, James A. Yorke ${ }^{100}$, Kyphito Yoshida, Evgeny Zdobnov ${ }^{\text {to }}$, Pell Zhang try Y_{u} Zhang ${ }^{6}$. Aleksey V. Zimin ${ }^{100}$, Brosd Institute Genome Sequencing Platform' E Ercad Institute Whole Genome Assembly Team*

Department of Molecular Biology and Genetics. Cornell University, lthaca, New York 14853, USA. Life Sciences Division, Lawrence Berkeley National Laboratory. Berkeley. Calfornis94720, U5A 'Center for integrative Genomics. Department of Molecular and Cell Biology, Uwiversity of Califonsia at Berkeley, Berkeley, California 94720, USA
-Agencourt Bioscience Corporation. Beverty, Massachusetts 01915. USA 'Taculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK. 'Laboratory of Celular and Developemental Bioloty. National leatitutes of Hesith Bethesda Maryland 20592 USA. ${ }^{7}$ Department of Ecology and Evolutionary Biologr. University of Aptzona. Tucson. Arizona 85721, U5A. "Degariment of Biologr, Indana University, Bloomington, Indiana 47405. USA 'Computer Sclence and Artificial Intellygence Laboratory. Combridge. Massachusetts O2139, USA. ${ }^{6}$ Beoad Inseitute of MIT and Harvard. 7 Cambridge Center Cambridge. Massachusetts 02142, U5A. "Departanent of Molecular and Cellular Biology Harvard University, Cambridge. Massachuietts 02135, USA "Fly Base, The Biological Laboratories. Harvard Uhiversity, Cambridge, Massachusetts 02138. USA. "Department of Molecular and Cell Biology. University of Califormia at Berkeley. Berkeley, California 94720, U5A "Biophysics Groduate Group, University of Caifornia at Berkeiey, Berkeley Cabfornis 94720 . USA. "Field of Ecology and tvoutionary Biology. Cornell University. thaca. New York 14853, U5A. "Centro de Biologia Molecular Severo Ochoa
Universidad Autónoma de Madrid, Madrid 260.99, Spain. "Depariment of Ecology and Evolutionary Biology, Brown University. Providence, Rhode lsland 02912, USA
Etnuctural Studies Division. MRC Laboratory of Molecular Biology. Cambridge CB? 2 OH , UK. ²"Departament de Genetica. Universitat de Barceiona Barcelona 08071, Spain Depariment of Biology. Pennsylvania State University. University Park, Perroytivania 16802 USA "Department of Genetics. University of Georga, Athens. Georgla 30602 USA ${ }^{23}$ Linnaeus Centre for Bioinformaticx, Uppsala Universitet, Uppsala, SE-75124, 5 weden. ${ }^{33}$ Department of Ecology and fvolution. University of Chicaga Chicago. Ilinois 60637, U5A. ${ }^{24}$ Department of Blologr, McMaster University, Mamiton, Ontario, 185 4K1, Canads. "School of Biology. University of St. Andrews. Fife KY) 9 9TH, UK
${ }^{25}$ Dipartimento di Genetica e Microbiologia delrUniversita di Bark, Bart, 70126, Italy. "Department of Genetics. University of Melbourne, Melbourne 3010, Australia ${ }^{*}$ Computer Sclence Department Stanford Untiversity, Stanford Caldomia 94305, USA Asection of Evolution and Ecology and Certer for Population Biology. Univeristy of Calfornis at Davis, Davis, Calitorria 95616. USA NGioMolecular Ingineering Research Center, Boston Uriversity, Boston, Massachusetts 02215, USA "Research Group in Biomedical Informatics institut Municipal dilmestigacio Medica. Universitat Pompeu Fabra. Sarcelona 08003, Catalonia, Spain ${ }^{33}$ Department of Bioengineering University of Calfornis at Berkeley, Berkeley, Casforria 94720, U5A. "Laboratory for Compotational Genomica. Washington University, St Lovia. Missouri 63108, USA "Animal and Plant sciences. The Univernity of 5heffield, Sheffield 510 2TN, UK. "Department of Blolors, Syracuse University. Syracuse. New York 11244, USA. "Departamento de Genetica. Universidade Federal do Rio de lanero. Rio de Ianearo 21944-970, Brazil " Tucson Stock Center, Tucson Arizona 85721, USA. "Department of Mathematics. University of Calfornis at Berkeley, Berkeley, Calfornia 94720. USA. ${ }^{3 \prime}$ Genome Center. University of Calfornis at Davis. Davic, Calfornia 95616, U5A. *"Genome Sequencing Center, Washington University School of Medicine, St Louls. Missouri 6310 UR. USA
"Department of Biology. Universty of Winnipeg. Winnipee. Manitoba R38 2E9, Canada ${ }^{* 3}$ Department of Bological Sciences. Univernity of lowa, Iowa City. Iowa 52242. USA. ${ }^{*}$ School of Informatics, Indiana University, Bloomington. Indiana 47405, USA. ${ }^{34}$ Wellcome Trust Sanger Institute. Wellcome Trust Genome Carpus, Miraton, Cambridge CB10 15A. UK. "C Center for Bloinformatics and Computational Biology.

Universty of Maryland, College Park, Maryland 20742. USA. "Department of Biological Sciences, ilinols State University. Normat Binois 61790, USA. "7 Department of Biology. Univers ty of Pochester, Rochenter, New York 14627, USA. Ai Bee Besearch lab, USDA-ARS, Beltswille, Maryland 20705, USA. ${ }^{* 3}$ Center for Evolutionary Functional Genomics, Biodesign Institute, Apizona State University, Tempe. Arizors BSas7, USA ${ }^{\circ}$ Department of Computer Science, University of Leiovig. Leipeig 04107, Germany. 'Deplitantento de Genetica, Univeridade Federal do Rio Granse do Sut, Parto Alegre/ RS 6801t, Brarl. ${ }^{53}$ Department of Biology, Duke Uriversity. Durham. New Caroling 2770B, USA. "3epartment of Genetics, North Carolina State University, Raleigh, North Carpline 27695. U5A. "Health Center. University of Connecticut. Farmington, Connecticut 06030. USA. "Center of Genomic Regulation, Barcelona 8003 , Catalonia 5 pain ${ }^{16}$ Institute of Evplutionary Biology, University of Edieburgh. Edieburgh EH9 3IT, UK^{57}, Craig Verter Institute, Rockvile, Maryland 20850 , U5A. "MRC Functional Genetics Unit, University of Osford. Osford OXI 30X, UK. "Department of Physiology. Anatomy and Genetics. University of Oxford, Osford OXI $3 Q X$, UK. "C Center for Biomolecular Science and Engineering, University of Calfomia at Santa Cruz. Santa Cruz. Calfornia 95064, USA. "Department of Human Genetics, University of Chicago Chicago, 价mpis 60637, U5A Umed Center for Molecular Pathogenesic, Umed Universty. Umeal St-901s7, Sweden -Department of Elology and Carblina Center for Genome Sclences. The University of North Carolina at Chapel Hill Chacel Hill Nonth Carotins 27599, U5A. ${ }^{* 4}$ Institute of Zoology, Regent's Park, London NWI 4KY, UK ${ }^{\text {Es Drosophils Heterochromatin Genome Project. Department of Genome and }}$ Computational Biology, Lawtence Berkeley National Laboratory, Berieley. Caliomia 4720. USA. ${ }^{54}$ Kyorin University. School of Medicine, Mitaka, Tokyo 551-8611, Japan "Department of Biochemiatry and Molecular Biologr, University of Southern Deemark. Odense M DK. 5230 . Denmark " Apizona Genomici Institite, Departmert of Plant Sciences and DiOS. University of Arizona. Tucson, Anizona 85721 , USA. "Department of Organiarnic and Evolutionary Blology, Harvard University, Cambridge, Massachusetts 02138 U5A. "School of LIe Seiencel. Arizona 5tate University. Tempe. Aripons 85287, USA. "Department of Environmental Science, Policy and Management. University of Caifornia at Berkeley, Berkeley, Cablornia 94720, USA. "Department of Entomology. Comell University, Phaca, Now York 14653. U5A. "Beyigg Genomici instifute at Shenthen, ShenZhen 518083, Chins. 'Departament Genetica I Microbiologia. Universat Autobioma de Barcelona. Belaterra 08193, Spain. "Department of Cel Biology and Molecular Genetics. Univensity of Maryland. College Park, Maryland 20742. JSA. "lanelia Faren Research Campus, Howard Hughes Medical Institue, Ashburn. Viginia 20147-2408, U5A. "Department of Zoologr, Univervity of Cambinge. Cambridge. CB2 3E1, UK. "Insttue of Biology. University of Copentagen. DK-2100 Coperhagen Q. Denmark. "Bioinformatics Centre, Department of Molecular Biology. Universty of Copentugen. DK-2200 Copenhagen N. Dermark. "Dipartimento di fiochimica e Piologia Molecolare. Universits if flari and istituto Tecnologie fiomediche del Consigio Nazionale delle Ricerche, Bari 70126 , ttaly. "Depertmert, of Ecology and Evolutionary Fiologr. Yale University, New Haven. Coninecticut 06520. USA. Department of 首iomedical Informatics, Arizons State Uliversity. Tempe, Arizona 15287, USA " ${ }^{\text {National }}$ Center for Hiotechnology intormation, Nartional Institutes of Heaith Bethesda, Maryland 20894, USA "-Elioinformatics and Genomics Laboratory Instrut lacques Monod. Paris, 75251 , France - Department of Moiecular Biology, Cell Biology and Biochemistry. Brown Universify. Providence. Rhode Island 02912, USA. Departamento de Genética, Centro de Cièncias Alologicas. Universidade Federal de Perrambuca, Recife/PE 6801 , Brazil "'Centro Acadenico de Vitdela Universidade Federal de Pernambuca, Vitória de Santo Aetla/PE, Brasil. "It Cajal Insatitute, CSIC, Madrid 28002. Spain. ${ }^{\prime 3}$ Department of Eiology, Emory University, Atlanta. Georgia 30322, USA. Department of Biological Sciences. Carnegie Mellon University. Pittsburgh, Pennsylvania 15213, USA. "Biomedical Intormatics, Stumbord University, stanford, Casfornia 94305, USA. . ${ }^{33}$ Department of Biologr. San Francisco State Universty, San Frascisco, California 94132, U5A .33 Department of Biology, University of Murich $\$ 2152$ Planegs-Martinspied. Germarty. "Institute of Evolutionary Biology. Setagaya-ku, Tokyo 158-0098, Japan. 'Shiba Gahuen, Minato-ku, Tokyo 105-00n, lapan. European Bioinformatics Inst mute. Hiaxton CB1O 150, UK. "Department of Diology. City University of New York at Queens, Flushing. New York 11367, USA Department of Biological Sciences and Department of Medicine, University of Alberts. Edmonton. Aberta T6G 2E9, Canada. "Department of Developmsental Biclogy and Neurosciences. Toholu University, Sendsi 980 -8578, lapan Nom Institute for Physical cience and Technology, University of Maryland, College Park, Maryland 20742. U5A Hokkaido Univernity, EES8iO. Sappora. Hokkaigo 060-0810, Jopan Fajulty of Medecine. Universite de Geneve. Geneva CH-1211, Switrerland

Broad Institute Genome Sequencing Platform Jennifer laldwin ${ }^{10}$, Arvr Abdouellel ${ }^{10}$ Iamal Abdukadi! ${ }^{10}$, Adal Abebe ${ }^{\circ}$, Brikti Abera ${ }^{10}$, Justin Abreu ${ }^{10}$. St Chriatophe Acer ${ }^{*}$ Linne Aftuct ${ }^{10}$, Allen Alexander ${ }^{10}$, Peter An ${ }^{20}$, Frica Anderson ${ }^{10}$, Scott Anderion ${ }^{10}$, Harindra Arachi ${ }^{10}$, Marc Arer ${ }^{10}$, Pasang lachantsang ${ }^{10}$, Andrew Alarry ${ }^{10}$, Tashi Bayul ${ }^{10}$, Aaron Berlin ${ }^{10}$, Dariel Bessette ${ }^{10}$, Toby Bloom ${ }^{10}$, Iavon Blye ${ }^{10}$, Leonid Bogunlavskjy ${ }^{10}$,
 Sheridon Channerf ${ }^{\circ}$, Yama Cheshatsange", Lisa Chuda ${ }^{\circ}$, Mieke Ctroen ${ }^{\circ 0}$. Aville Collymore ${ }^{10}$, Patrick Cooke ${ }^{10}$, Maura Costello ${ }^{10}$, Katie D Aco ${ }^{20}$, Riza Daza ${ }^{10}$, Georgins De Haan ${ }^{\text {" }}$. Stuart DeGiray". Christina DeMaso ${ }^{15}$, Norbu Dhargay ${ }^{10}$. Kamberly Dooley ${ }^{19}$, Erin

 Chistina R Gearin*", Georgia Giannoukos*, Tina Goode", Joseph Graham" , Edward Grandbois ${ }^{10}$, Sharleen Grewal ${ }^{10}$, Kunsang Gyatsen ${ }^{10}$, Nabil Hafez" ${ }^{10}$, Blirhane Hagos ${ }^{10}$ leorifer Halish Charlotte Henson ${ }^{10}$, Andrew Holinger ${ }^{15}$. Tracey Honan ${ }^{10}$, Monaka D. Huard 10, Leanne Hughes ${ }^{* 0}$, Brian Hurhula ${ }^{* 0}$, M Erii Husby ${ }^{* 0}$, Asha Kamat ${ }^{* 0}$, Ben Kargaº,

Seva Kashin ${ }^{00}$, Dentry Khazanovich ${ }^{00}$, Peter Kisner ${ }^{* 0}$, Krista Lance ${ }^{10}$, Marcia Lara ${ }^{10}$, William Lee ${ }^{19}$, Niall Lennon ${ }^{20}$, Frances Letendre ${ }^{10}$, Rovie LoVine ${ }^{* 0}$. Alex Lipoviky,
 Lubonja ${ }^{5}$. Amnie Lui ${ }^{10}$. Pen MacDonald ${ }^{10}$, Vasilla Magnisalis ${ }^{\circ}$. Kebede Maru ${ }^{\circ}$. Charles Mathews ${ }^{19}$, Wiliam McCusker ${ }^{10}$, Susan McDonough ${ }^{10}$, Teena Methan , James Meldrims ${ }^{* 1}$, Lous Meneus ${ }^{10}$, Oana Mihai", Atanas Mihalev", Tanya Mihova", Rachel Mitelman ${ }^{20}$, Valentine Mienga ${ }^{20}$, Anna Montmaryeur ${ }^{20}$, Leonidas Mulain" ${ }^{20}$. Adam
 Nicol ${ }^{10}$. Chot Norbu ${ }^{6}$, Nyma Norbu', Nathaniel Novod ${ }^{10}$, Barry O'Neil ${ }^{10}$, Sahal
 Frita Perre ${ }^{* 0}$, Margaret Priest ${ }^{\circ}$. Sujay Raghoraman ${ }^{10}$, Filip Rege ${ }^{10}$. Rebecta Reyes ${ }^{10}$.

Ceol Rise ${ }^{10}$, Pleter Rogov ${ }^{10}$, Keenan Ross ${ }^{60}$, Elizabeth Ryan ${ }^{10}$, Sampath Settipalif, Terry
 John Staker ${ }^{\circ}$. Nicole Stange-Thomann ${ }^{10}$. Sharon Stavropoulos ${ }^{10}$. Catherine Stone ${ }^{100}$. Christopher Strader", Senait Testave", Talene Thomson", Yana Thoulutsang", Dawa Thoulutsang ${ }^{10}$, Kerri Topham ${ }^{19}$, Ira Topping"0, Tsamia Tsamla ${ }^{10}$, Helen Vassiliev", Andy Vo ${ }^{*}$, Tsering Wangchuk ${ }^{*}$. Tsering Wangd ${ }^{10}$, Michael Weiand ${ }^{*}$, Jane Wikinson ${ }^{60}$, Adam Wison**, Shaiendra Yadar", Geneva Young ${ }^{* 5}$, Qing Yu, Lisa Zembeit ${ }^{10}$, Danni Zhong", Andrew Zimmer ${ }^{19}$ G Zac Zwirko ${ }^{10}$ Broad Institute Whole Genomse Assembly Team David B. Jaffe ${ }^{10}$, Pablo Alvare z^{10}, Wa Brockman ${ }^{10}$, Jonathan Butler ${ }^{10}$. CheeWhye Chin ${ }^{10}$, Sante Grerre ${ }^{20}$, Martred Grabherr ${ }^{10}$, Michael Kleber ${ }^{10}$, Evan Mauceli ${ }^{10}$ Ea Lain MacCallum ${ }^{*}$

VIII.- REFERENCES

Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., et al. (2000). The Genome Sequence of Drosophila melanogaster. Science, 287, 2185-2195.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389-3402.
Alves, E., Ballesteros, I., Linacero, R. \& Vázquez, A.M. (2005). RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet, 111, 431-436.

Anxolabéhère, D., Kidwell, M.G. \& Periquet, G. (1988). Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P-elements. Mol. Biol. Evol, 5, 252-269.

Anxolabehere, D., Nouaud, D. \& Periquet, G. (1985). Séquences homologues à l'élément P chez des espèces de Drosophila du groupe obscura et chez Scaptomyza pallida (Drosophilidae). Genet Sel Evol, 17, 579.
Ashburner, M., Golic, K.G. \& Hawley, R.S. (2005). Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press.

Atkinson, H. \& Chalmers, R. (2010). Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica, 138, 485-498.

Bächli, G. (2007). Taxodros: The Database on taxonomy of Drosophilidae v1.03. http://taxodros.unizh.ch/.
Bachmann, A. \& Knust, E. (2008). The use of P-element transposons to generate transgenic flies. Methods Mol. Biol, 420, 61-77.
Badal, M., Portela, A., Baldrich, E., Marcos, R., Cabré, O. \& Xamena, N. (2006a). An FB-NOF mediated duplication of the white gene is responsible for the zeste 1 phenotype in some Drosophila melanogaster unstable strains. Mol Genet Genomics, 275, 35-43.

Badal, M., Portela, A., Xamena, N. \& Cabré, O. (2006b). Molecular and bioinformatic analysis of the $F B$-NOF transposable element. Gene, 371, 130-135.

Bailey, J.A. \& Eichler, E.E. (2006). Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet, 7, 552-564.
Barker, J.S.F. \& Starmer, W.T. (1982). Population genetics of Opuntia breeding Drosophila in Australia. In: Ecological Genetics and Evolution. The Cactus-Yeast-Drosophila Model System (eds. Barker, J.S.F. \& Starmer, W.T.). Academic Press, Sydney, pp. 209-224.

Barker, J.S.F., Starmer, W.T. \& MacIntyre, R.J. (1990). Ecological and evolutionary genetics of Drosophila. Plenum Press.

Barraclough, T.G. \& Nee, S. (2001). Phylogenetics and speciation. Trends in Ecology \& Evolution, 16, 391-399.

Bartolomé, C., Maside, X. \& Charlesworth, B. (2002). On the Abundance and Distribution of Transposable Elements in the Genome of Drosophila melanogaster. Molecular Biology and Evolution, 19, 926-937.
Beall \& Rio. (1997). Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev, 11, 2137-2151.

Beare, P.A., Unsworth, N., Andoh, M., Voth, D.E., Omsland, A., Gilk, S.D., et al. (2009). Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus Coxiella. Infect. Immun., 77, 642-656.

Bessière, D., Lacroix, C., Campagne, S., Ecochard, V., Guillet, V., Mourey, L., et al. (2008). Structure-function analysis of the THAP zinc finger of THAP1, a large C2CH DNAbinding module linked to Rb/E2F pathways. J. Biol. Chem, 283, 4352-4363.
Betrán, E., Quezada-Díaz, J.E., Ruiz, A., Santos, M. \& Fontdevila, A. (1995). The evolutionary history of Drosophila buzzatii. XXXII. Linkage disequilibrium between allozymes and chromosome inversions in two colonizing populations. Heredity, 74 (Pt 2), 188-199.

Betrán, E., Santos, M. \& Ruiz, A. (1998). Antagonistic Pleiotropic Effect of SecondChromosome Inversions on Body Size and Early Life-History Traits in Drosophila buzzatii. Evolution, 52, 144-154.
Bingham, P.M., Kidwell, M.G. \& Rubin, G.M. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P-element, a P-strain-specific transposon family. Cell, 29, 995-1004.
Bingham, P.M. \& Zachar, Z. (1985). Evidence that two mutations, wDZL and z1, affecting synapsis-dependent genetic behavior of white are transcriptional regulatory mutations. Cell, 40, 819-825.

Boake, C.R.B. (2005). Sexual Selection and Speciation in Hawaiian Drosophila. Behav Genet, 35, 297-303.
Bourne, H.R., Sanders, D.A. \& McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349, 117-127.
Bowen, N.J., Jordan, I.K., Epstein, J.A., Wood, V. \& Levin, H.L. (2003). Retrotransposons and Their Recognition of pol II Promoters: A Comprehensive Survey of the Transposable Elements From the Complete Genome Sequence of Schizosaccharomyces pombe. Genome Research, 13, 1984-1997.

Britten, R.J. \& Kohne, D.E. (1968). Repeated sequences in DNA. Hundreds of thousands of
copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 161, 529-540.

Brookfield, J.F., Montgomery, E. \& Langley, C.H. (1984). Apparent absence of transposable elements related to the P-elements of D. melanogaster in other species of Drosophila. Nature, 310, 330-332.

Brookfield, J.F.Y. (1982). Interspersed repetitive DNA sequences are unlikely to be parasitic. Journal of Theoretical Biology, 94, 281-299.

Brunet, F., Giraud, T., Godin, F. \& Capy, P. (2002). Do Deletions of Mos1 -Like Elements Occur Randomly in the Drosophilidae Family? Journal of Molecular Evolution, 54, 227-234.

Cáceres, M., National Institutes of Health Intramural Sequencing Center Comparative Sequencing Program, Sullivan, R.T. \& Thomas, J.W. (2007). A recurrent inversion on the eutherian X chromosome. Proceedings of the National Academy of Sciences, 104, 18571-18576.

Cáceres, M., Puig, M. \& Ruiz, A. (2001). Molecular Characterization of Two Natural Hotspots in the Drosophila buzzatii Genome Induced by Transposon Insertions. Genome Research, 11, 1353-1364.

Cáceres, M., Ranz, J.M., Barbadilla, A., Long, M. \& Ruiz, A. (1999). Generation of a Widespread Drosophila Inversion by a Transposable Element. Science, 285, 415-418.

Caletka, B.C. \& McAllister, B.F. (2004). A genealogical view of chromosomal evolution and species delimitation in the Drosophila virilis species subgroup. Molecular Phylogenetics and Evolution, 33, 664-670.
Campagne, S., Saurel, O., Gervais, V. \& Milon, A. (2010). Structural determinants of specific DNA-recognition by the THAP zinc finger. Nucleic Acids Res, 38, 3466-3476.

Cappello, J. (1985). Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell, 43, 105-115.

Capy, P. (1998). Dynamics and evolution of transposable elements. Springer.
Capy, P., Vitalis, R., Langin, T., Higuet, D. \& Bazin, C. (1996). Relationships between transposable elements based upon the integrase-transposase domains: Is there a common ancestor? Journal of Molecular Evolution, 42, 359-368.
Casacuberta, E. \& Pardue, M.-L. (2005). HeT-A and TART, two Drosophila retrotransposons with a bona fide role in chromosome structure for more than 60 million years. Cytogenetic and Genome Research, 110, 152-159.

Casals, F., Caceres, M., Manfrin, M.H., Gonzalez, J. \& Ruiz, A. (2005). Molecular Characterization and Chromosomal Distribution of Galileo, Kepler and Newton, Three

Foldback Transposable Elements of the Drosophila buzzatii Species Complex. Genetics, 169, 2047-2059.
Casals, F., Caceres, M. \& Ruiz, A. (2003). The Foldback-like Transposon Galileo Is Involved in the Generation of Two Different Natural Chromosomal Inversions of Drosophila buzzatii. Mol Biol Evol, 20, 674-685.
Casals, F., González, J. \& Ruiz, A. (2006). Abundance and chromosomal distribution of six Drosophila buzzatii transposons: BuT1, BuT2, BuT3, BuT4, BuT5, and BuT6. Chromosoma, 115, 403-412.

Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17, 540-552.
Chao, K. \& Miller, W. (1995). Linear-space algorithms that build local alignments from fragments. Algorithmica, 13, 106-134.
Charlesworth, B. \& Charlesworth, D. (1983). The Population Dynamics of Transposable Elements. Genetics Research, 42, 1-27.
Charlesworth, B. \& Langley, C.H. (1991). Population genetics of Transposable Elements in Drosophila. In: Evolution at the molecular level (eds. Selander, R.K., Clark, A.G. \& Whittam, T.S.). Sinauer Associates, pp. 150-176.
Charlesworth, B., Lapid, A. \& Canada, D. (1992). The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet. Res, 60, 115-130.
Cheng, C., Tsuchimoto, S., Ohtsubo, H. \& Ohtsubo, E. (2000). Tnr8, a foldback transposable element from rice. Genes Genet. Syst, 75, 327-333.
Clark, A.G., Eisen, M.B., Smith, D.R., Bergman, C.M., Oliver, B., Markow, T.A., et al. (2007). Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203-18.

Clark, A.G., Gibson, G., Kaufman, T.C., McAllister, B., Myers, E.W. \& O'Grady, P.M. (2003). Proposal for Drosophila as a Model System for Comparative Genomics. http://flybase.org/static pages/news/wpapers.html.
Clark, J.B. \& Kidwell, M.G. (1997). A phylogenetic perspective on P transposable element evolution in Drosophila. Proc. Natl. Acad. Sci. U.S.A, 94, 11428-11433.
Clouaire, T., Roussigne, M., Ecochard, V., Mathe, C., Amalric, F. \& Girard, J.-P. (2005). The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequencespecific DNA-binding activity. Proceedings of the National Academy of Sciences of the United States of America, 102, 6907-6912.
Collins, J., Forbes, E. \& Anderson, P. (1989). The Tc3 Family of Transposable Genetic Elements in Caenorhabditis elegans. Genetics, 121, 47-55.

Collins, M. \& Rubin, G.M. (1983). High-frequency precise excision of the Drosophila foldback transposable element. Nature, 303, 259-260.

Collins, M. \& Rubin, G.M. (1984). Structure of chromosomal rearrangements induced by the FB transposable element in Drosophila. Nature, 308, 323-327.
Cordaux, R. (2009). Gene conversion maintains nonfunctional transposable elements in an obligate mutualistic endosymbiont. Mol. Biol. Evol, 26, 1679-1682.

Cordaux, R., Udit, S., Batzer, M.A. \& Feschotte, C. (2006). Birth of a chimeric primate gene by capture of the transposase gene from a mobile element, 103, 8101-8106.

Craddock, E. (2000). Speciation processes in the adaptive radiation of Hawaiianplants and animals. Evolutionary Biology, 31, 1-53.

Craig, N.L., Craigie, R., Gellert, M. \& Lambowitz, Alan M. (Eds.). (2002). Mobile DNA II. ASM Press.

Cui, Z., Geurts, A.M., Liu, G., Kaufman, C.D. \& Hackett, P.B. (2002). Structure-Function Analysis of the Inverted Terminal Repeats of the Sleeping Beauty Transposon. Journal of Molecular Biology, 318, 1221-1235.
Daniels, S.B., Clark, S.H., Kidwell, M.G. \& Chovnick, A. (1987). Genetic transformation of Drosophila melanogaster with an autonomous P-element: phenotypic and molecular analyses of long-established transformed lines. Genetics, 115, 711-723.

Daniels, S.B., Peterson, K.R., Strausbaugh, L.D., Kidwell, M.G. \& Chovnick, A. (1990).
Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics, 124, 339-355.

Daniels, S.B. \& Strausbaugh, L.D. (1986). The distribution of P-element sequences in Drosophila: the willistoni and saltans species groups. J. Mol. Evol, 23, 138-148.
Daskalova, S.M., Scott, N.W. \& Elliott, M.C. (2005). Folbos, a new foldback element in rice. Genes Genet. Syst, 80, 141-145.

Delprat, A., Negre, B., Puig, M. \& Ruiz, A. (2009). The Transposon Galileo Generates Natural Chromosomal Inversions in Drosophila by Ectopic Recombination. PLoS ONE, 4, e7883.

Doolittle, W.F. \& Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature, 284, 601-603.
Doudna, J.A. \& Cech, T.R. (2002). The chemical repertoire of natural ribozymes. Nature, 418, 222-228.

Dray, T. \& Gloor, G.B. (1997). Homology Requirements for Targeting Heterologous Sequences During P-Induced Gap Repair in Drosophila melanogaster. Genetics, 147, 689-699.

Drosophila 12 Genomes Consortium, Clark, A.G., Eisen, M.B., Smith, D.R., Bergman, C.M.,

Oliver, B., et al. (2007). Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203-18.

Drummond, A., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., et al. (2010). Geneious Pro. Geneious. Biomatters Ltd.
Drummond, A., Ho, S.Y.W., Phillips, M.J. \& Rambaut, A. (2006). Relaxed Phylogenetics and Dating with Confidence. PLoS Biol, 4, e88.
Drummond, A. \& Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
Durando, C.M., Baker, R.H., Etges, W.J., Heed, W.B., Wasserman, M. \& DeSalle, R. (2000). Phylogenetic Analysis of the repleta Species Group of the Genus Drosophila Using Multiple Sources of Characters. Molecular Phylogenetics and Evolution, 16, 296-307.
Dynan, W.S. \& Yoo, S. (1998). Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Research, 26, 1551-1559.
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res., 32, 1792-1797.
Edgar, R.C. \& Myers, E.W. (2005). PILER: identification and classification of genomic repeats. Bioinformatics, 21, i152-i158.

Edwards, K.A., Doescher, L.T., Kaneshiro, K.Y. \& Yamamoto, D. (2007). A Database of Wing Diversity in the Hawaiian Drosophila. PLoS ONE, 2, e487.
Engels, W.R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genet. Res., 33, 219.
Engels, W.R. (1996). P-elements in Drosophila. Curr. Top. Microbiol. Immunol, 204, 103-123.
Engels, W.R., Johnson-Schlitz, D.M., Eggleston, W.B. \& Sved, J. (1990). High-frequency Pelement loss in Drosophila is homolog dependent. Cell, 62, 515-525.
Engels, W.R. \& Preston, C.R. (1984). Formation of chromosome rearrangements by P factors in Drosophila. Genetics, 107, 657-678.

Etges, W., Johnson, W., Duncan, G., Huckins, G. \& Heed, W. (1999). Ecological genetics of cactophilic Drosophila. In: Ecology of Sonoran Desert Plants and Plant Communities (ed. Robichaux, R.). University of Arizona Press, Tucson, pp. 164-214.
Fernandez Iriarte, P.J., Norry, F.M. \& Hasson, E.R. (2003). Chromosomal inversions effect body size and shape in different breeding resources in Drosophila buzzatii. Heredity, 91, 51-59.
Feschotte, C., Jiang, N. \& Wessler, S.R. (2002). Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 3, 329-341.

Feschotte, C. \& Pritham, E.J. (2007). DNA Transposons and the Evolution of Eukaryotic

Genomes. Annu. Rev. Genet., 41, 331-68.
Feschotte, C., Swamy, L. \& Wessler, S.R. (2003). Genome-Wide Analysis of mariner-Like Transposable Elements in Rice Reveals Complex Relationships With Stowaway Miniature Inverted Repeat Transposable Elements (MITEs). Genetics, 163, 747-758.

Finnegan, D.J. (1989). Eukaryotic transposable elements and genome evolution. Trends Genet, 5, 103-107.

Fiston-Lavier, A.-S., Anxolabehere, D. \& Quesneville, H. (2007). A model of segmental duplication formation in Drosophila melanogaster. Genome Research, 17, 1458-1470. Fontdevila, A., Ruiz, A., Alonso, G. \& Ocaña, J. (1981). Evolutionary History of Drosophila buzzatii. I. Natural Chromosomal Polymorphism in Colonized Populations of the Old World. Evolution, 35, 148-157.

Fontdevila, A., Ruiz, A., Ocaña, J. \& Alonso, G. (1982). Evolutionary History of Drosophila buzzatii. II. How Much Has Chromosomal Polymorphism Changed in Colonization? Evolution, 36, 843-851.

Formosa, T. \& Alberts, B.M. (1986). DNA synthesis dependent on genetic recombination: characterization of a reaction catalyzed by purified bacteriophage T4 proteins. Cell, 47, 793-806.

Franz, G. \& Savakis, C. (1991). Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res, 19, 6646.

Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498-511.

Gloor, G., Nassif, N., Johnson-Schlitz, D., Preston, C. \& Engels, W. (1991). Targeted gene replacement in Drosophila via P-element-induced gap repair. Science, 253, 1110-1117.

Gonzalez, J. \& Petrov, D. (2009). MITEs--The Ultimate Parasites. Science, 325, 1352-1353.
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. \& Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59, 307-321.

Guindon, S. \& Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52, 696-704.

Hagemann, S. \& Pinsker, W. (2001). Drosophila P Transposons in the Human Genome? Molecular Biology and Evolution, 18, 1979-1982.

Hammer, S.E., Strehl, S. \& Hagemann, S. (2005). Homologs of Drosophila P Transposons Were Mobile in Zebrafish but Have Been Domesticated in a Common Ancestor of Chicken and Human. Molecular Biology and Evolution, 22, 833-844.

Hankeln, T. \& Schmidt, E.R. (1990). New foldback transposable element TFB1 found in histone genes of the midge Chironomus thummi. J. Mol. Biol, 215, 477-482.

Han, Y. \& Wessler, S.R. (2010). MITE-Hunter: a program for discovering miniature invertedrepeat transposable elements from genomic sequences. Nucleic Acids Research.
Harden, N. \& Ashburner, M. (1990). Characterization of the FB-NOF Transposable Element of Drosophila melanogaster. Genetics, 126, 387-400.

Hartl, D.L., Lohe, A.R. \& Lozovskaya, E.R. (1997). Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet, 31, 337-358.

Hasegawa, M., Kishino, H. \& Yano, T.-aki. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol, 22, 160-174.

Hasson, E., Naveira, H. \& Fontdevila, A. (1992). The breeding sites of Argentiniancactophilic species of the Drosophila mulleri complex. Rev. Chilena de Historia Natural, 65, 319326.

Hasson, E., Rodriguez, C., Fanara, J.J., Naveira, H., Reig, O.A. \& Fontdevila, A. (1995). Macrogeographic patterns in the inversion polymorphisms of Drosophila buzzatii in New World populations. Journal of Evolutionary Biology, 8, 369-384.

Hasson, E., Vilardi, J.C., Naveira, H., Fanara, J.J., Rodriguez, C., Reig, O.A., et al. (1991). The evolutionary history of Drosophila buzzatii. XVI. Fitness component analysis in an original natural population from Argentina. Journal of Evolutionary Biology, 4, 209225.

Hastings, P.J. (1988). Recombination in the eukaryotic nucleus. BioEssays, 9, 61-64.
Haynes, K.A., Caudy, A.A., Collins, L. \& Elgin, S.C.R. (2006). Element 1360 and RNAi Components Contribute to HP1-Dependent Silencing of a Pericentric Reporter. Current Biology, 16, 2222-2227.
Hickey, D.A. (1982). Selfish DNA: a sexually-transmitted nuclear parasite. Genetics, 101, 519 -531.

Hickman, A.B., Chandler, M. \& Dyda, F. (2010). Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Critical Reviews in Biochemistry and Molecular Biology, 45, 50-69.

Hickman, A.B., Perez, Z.N., Zhou, L., Musingarimi, P., Ghirlando, R., Hinshaw, J.E., et al. (2005). Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol, 12, 715-721.

Hoffman-Lieberman, B.D., Lieberman, D. \& Cohen, S.N. (1989). TU elements and puppy sequences. In: Mobile DNA (eds. Berg, D.E. \& Howe, M.M.). American Society for Microbiology, Washington DC, pp. 593-617.

Houck, M.A., Clark, J.B., Peterson, K.R. \& Kidwell, M.G. (1991). Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science, 253, 1125-1128.

Hsia, A.P. \& Schnable, P.S. (1996). DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics, 142, 603-618.

Hua-Van, A., Le Rouzic, A., Maisonhaute, C. \& Capy, P. (2005). Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res, 110, 426-440.

Ivics, Hackett, P.B., Plasterk, R.H. \& Izsvák, Z. (1997). Molecular Reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells. Cell, 91, 501-510.

Jurka, Kapitonov, V.V., Kohany, O. \& Jurka, M.V. (2007). Repetitive sequences in complex genomes: structure and evolution. Аппи Rev Genomics Hum Genet, 8, 241-259.
Kahlon, A.S., Hice, R.H., O’Brochta, D.A. \& Atkinson, P.W. (2011). DNA binding activities of the Herves transposase from the mosquito Anopheles gambiae. Mobile DNA, $2,9$.
Kaminker, J.S., Bergman, C.M., Kronmiller, B., Carlson, J., Svirskas, R., Patel, S., et al. (2002). The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol, 3, RESEARCH0084.

Kapitonov, V.V. \& Jurka, J. (2003). Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 6569-6574.
Katoh, K., Misawa, K., Kuma, K. \& Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059-3066.

Kaufman, P.D. \& Rio, D.C. (1992). P-element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell, 69, 27-39.

Kazazian, H.H. (2004). Mobile Elements: Drivers of Genome Evolution. Science, 303, 1626 -1632.

Kholodilov, N.G., Bolshakov, V.N., Blinov, V.M., Solovyov, V.V. \& Zhimulev, I.F. (1988). Intercalary heterochromatin in Drosophila. III. Homology between DNA sequences from the Y chromosome, bases of polytene chromosome limbs, and chromosome 4 of D. melanogaster. Chromosoma, 97, 247-253.

Kidwell, M.G. (1977). Reciprocal differences in female recombination associated with hybrid dysgenesis in Drosophila melanogaster. Genet. Res, 30, 77-88.

Kidwell, M.G. (1985). Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of

P-element regulation. Genetics, 111, 337-350.
Kidwell, M.G. (1992). Horizontal transfer. Current Opinion in Genetics \& Development, 2, 868-873.

Kidwell, M.G. (2002). Transposable elements and the evolution of genome size in eukaryotes. Genetica, 115, 49-63.
Kidwell, M.G., Kidwell, J.F. \& Nei, M. (1973). A case of high rate of spontaneous mutation affecting viability in Drosophila melanogaster. Genetics, 75, 133-153.

Kidwell, M.G., Kidwell, J.F. \& Sved, J.A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics, 86, 813-833.

Kidwell, M.G. \& Lisch, D.R. (2002). Transposable Elements as sources of genomic variation. In: Mobile DNA II (eds. Craig, N., Craigie, R., Gellert, M. \& Lambowitz , Alan M.). ASM Press, Washington DC, pp. 485-515.
Kidwell, M.G. \& Novy, J.B. (1979). Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonadal dysgenesis in the P-M system. Genetics, 92, 1127-1140.
Kimbacher, S., Gerstl, I., Velimirov, B. \& Hagemann, S. (2009). Drosophila P transposons of the urochordata Ciona intestinalis. Mol Genet Genomics, 282, 165-172.

Kondo, T., Inagaki, S., Yasuda, K. \& Kageyama, Y. (2006). Rapid construction of Drosophila RNAi transgenes using pRISE, a P-element-mediated transformation vector exploiting an in vitro recombination system. Genes Genet. Syst, 81, 129-134.
Kramerov, D.A. \& Vassetzky, N.S. (2005). Short Retroposons in Eukaryotic Genomes. In: A Survey of Cell Biology. Academic Press, pp. 165-221.
Kumar, A. \& Bennetzen, J.L. (1999). Plant retrotransposons. Annu. Rev. Genet, 33, 479-532.
Kurenova, E.V., Leǐbovich, B.A., Bass, I.A., Bebikhov, D.V., Pavlova, M.N. \& Danilevskaia, O.N. (1990). [Hoppel-family of mobile elements of Drosophila melanogaster, flanked by short inverted repeats and having preferential localization in the heterochromatin regions of the genome]. Genetika, 26, 1701-1712.

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860-921.
Landschulz, W.H., Johnson, P.F. \& McKnight, S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 240, 1759-1764.
Langley, C.H., Montgomery, E., Hudson, R., Kaplan, N. \& Charlesworth, B. (1988). On the Role of Unequal Exchange in the Containment of Transposable Element Copy Number. Genetics Research, 52, 223-235.

Lansman, R.A., Stacey, S.N., Grigliatti, T.A. \& Brock, H.W. (1985). Sequences homologous to
the P mobile element of Drosophila melanogaster are widely distributed in the subgenus Sophophora. Nature, 318, 561-563.

Lee, C.C., Beall, E.L. \& Rio, D.C. (1998). DNA binding by the KP repressor protein inhibits P element transposase activity in vitro. EMBO J, 17, 4166-4174.
Lee, J., Han, K., Meyer, T.J., Kim, H.-S. \& Batzer, M.A. (2008). Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons. PLoS ONE, 3, e4047.

Lee, M., Gippert, G., Soman, K., Case, D. \& Wright, P. (1989). Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 245, 635-637.

Lee, S.H., Clark, J.B. \& Kidwell, M.G. (1999). A P-element-homologous sequence in the house fly, Musca domestica. Insect Mol. Biol, 8, 491-500.

Leonardo, T.E. \& Nuzhdin, S.V. (2002). Intracellular Battlegrounds: Conflict and Cooperation Between Transposable Elements. Genetics Research, 80, 155-161.
Liao, G.C., Rehm, E.J. \& Rubin, G.M. (2000). Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A, 97, 3347-3351.
Lim, J.K. \& Simmons, M.J. (1994). Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays, 16, 269-275.
van der Linde, K., Houle, D., Spicer, G.S. \& Steppan, S.J. (2010). A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet Res (Camb), 92, 25-38.

Ling, A. \& Cordaux, R. (2010). Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats. PLoS ONE, 5, e15654.
Linheiro, R.S. \& Bergman, C.M. (2008). Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucl. Acids Res., 36, 6199-6208.

Li, W.-H. (1997). Molecular evolution. Sinauer Associates.
Loreto, E.L.S., Carareto, C.M.A. \& Capy, P. (2008). Revisiting horizontal transfer of transposable elements in Drosophila. Heredity, 100, 545-554.

Lupas, A., Van Dyke, M. \& Stock, J. (1991). Predicting coiled coils from protein sequences. Science, 252, 1162-1164.
Machado, C.A., Matzkin, L.M., Reed, L.K. \& Markow, T.A. (2007). Multilocus nuclear sequences reveal intra- and interspecific relationships among chromosomally polymorphic species of cactophilic Drosophila. Molecular Ecology, 16, 3009-3024.
Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., et al. (2005). CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res, 33, D192-196.

Markow, T.A. \& O'Grady, P.M. (2006). Drosophila: a guide to species identification and use. Academic Press.

Markow, T.A. \& O'Grady, P.M. (2007). Drosophila Biology in the Genomic Age. Genetics, 177, 1269-1276.
Marquez, C.P. \& Pritham, E.J. (2010). Phantom, a New Subclass of Mutator DNA Transposons Found in Insect Viruses and Widely Distributed in Animals. Genetics, genetics.110.116673.
Marzo, M., Liu, D., Ruiz, A. \& Chalmers, R. (2011). DNA-binding properties of THAPcontaining Galileo transposase. In preparation.

Marzo, M., Puig, M. \& Ruiz, A. (2008). The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci U S A, 105, 2957-62.
Matzkin, L.M. \& Markow, T.A. (2009). Transcriptional Regulation of Metabolism Associated With the Increased Desiccation Resistance of the Cactophilic Drosophila mojavensis. Genetics, 182, 1279-1288.
McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. U.S.A, 36, 344-355.

McClintock, B. (1951). Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol, 16, 13-47.
Miskey, C., Izsvák, Z., Plasterk, R.H. \& Ivics, Z. (2003). The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Research, 31, 6873-6881.
Miskey, C., Papp, B., Mates, L., Sinzelle, L., Keller, H., Izsvak, Z., et al. (2007). The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends. Mol. Cell. Biol., 27, 4589-4600.

Misra, S., Buratowski, R.M., Ohkawa, T. \& Rio, D.C. (1993). Cytotype Control of Drosophila melanogaster P-element Transposition: Genomic Position Determines Maternal Repression. Genetics, 135, 785-800.
Montgomery, E., Charlesworth, B. \& Langley, C.H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res, 49, 31-41.

Morgante, M. (2006). Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotechnol, 17, 168-173.

Moschetti, R., Chlamydas, S., Massimiliano Marsano, R. \& Caizzi, R. (2008). Conserved motifs
and dynamic aspects of the terminal inverted repeat organization within Bari -like transposons. Molecular Genetics and Genomics, 279, 451-461.

Moschetti, R., Marsano, R.M., Caggese, C., Caizzi, R. \& Barsanti, P. (2004). FB elements can promote exon shuffling: a promoter-less white allele can be reactivated by $F B$ mediated transposition in Drosophila melanogaster. Molecular Genetics and Genomics, 271, 394401.

Newman, T. \& Trask, B.J. (2003). Complex Evolution of 7E Olfactory Receptor Genes in Segmental Duplications. Genome Research, 13, 781-793.

Nowotny, M. (2009). Retroviral integrase superfamily: the structural perspective. EMBO Rep, 10, 144-151.

O'Grady, P.M. \& Markow, T.A. (2009). Phylogenetic taxonomy in Drosophila: Problems and prospects. fly, 3, 10-14.

O'Hare, K. \& Rubin, G.M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell, 34, 25-35.
Oliveira, D.C.S.G., Almeida, F.C., O’Grady, P., Etges, W., Armella, M.A. \& DeSalle, R. (2011). A molecular phylogenetic hypothesis, divergence times, host use, and comments on the evolutionary history of the Drosophila repleta species group. In preparation.

Oliveira de Carvalho, M., Silva, J.C. \& Loreto, E.L.S. (2004). Analyses of P-like transposable element sequences from the genome of Anopheles gambiae. Insect Mol. Biol, 13, 55-63.
Oliver, K.R. \& Greene, W.K. (2009). Transposable elements: powerful facilitators of evolution. Bioessays, 31, 703-714.
Oliver, K.R. \& Greene, W.K. (2011). Mobile DNA and the TE-Thrust Hypothesis: Supporting Evidence from the Primates. Mobile DNA, 2, 8 .

Orgel, L.E. \& Crick, F.H. (1980). Selfish DNA: the ultimate parasite. Nature, 284, 604-607.
Ostertag, E.M. \& Kazazian, H.H., Jr. (2001). Biology of mammalian L1 retrotransposons. Aпnu. Rev. Genet, 35, 501-538.

Pardue, M.-L. \& DeBaryshe, P.G. (2011). Retrotransposons that maintain chromosome ends. Proceedings of the National Academy of Sciences.
Pardue, M.-L., Rashkova, S., Casacuberta, E., DeBaryshe, P.G., George, J.A. \& Traverse, K.L. (2005). Two retrotransposons maintain telomeres in Drosophila. Chromosome Research, 13, 443-453.

Paro, R., Goldberg, M.L. \& Gehring, W.J. (1983). Molecular analysis of large transposable elements carrying the white locus of Drosophila melanogaster. EMBO J, 2, 853-860.

Pavletich, N. \& Pabo, C. (1991). Zinc finger-DNA recognition: crystal structure of a Zif268-

DNA complex at 2.1 A. Science, 252, 809-817.
Perkins, H.D. \& Howells, A.J. (1992). Genomic sequences with homology to the P-element of Drosophila melanogaster occur in the blowfly Lucilia cuprina. Proceedings of the National Academy of Sciences of the United States of America, 89, 10753-10757.
Petrov, D.A. (2002). DNA loss and evolution of genome size in Drosophila. Genetica, 115, 8191.

Petrov, D.A., Aminetzach, Y.T., Davis, J.C., Bensasson, D. \& Hirsh, A.E. (2003). Size Matters: Non-LTR Retrotransposable Elements and Ectopic Recombination in Drosophila. Molecular Biology and Evolution, 20, 880-892.

Petrov, D.A., Fiston-Lavier, A.-S., Lipatov, M., Lenkov, K. \& González, J. (2010). Population genomics of transposable elements in Drosophila melanogaster. Molecular Biology and Evolution.

Petrov, D.A. \& Hartl, D.L. (1998). High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Molecular Biology and Evolution, 15, 293-302.
Piñol, J., Francino, O., Fontdevila, A. \& Cabré, O. (1988). Rapid isolation of Drosophila high molecular weight DNA to obtain genomic libraries. Nucleic Acids Res, 16, 2736.

Pinsker, W., Haring, E., Hagemann, S. \& Miller, W.J. (2001). The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma, 110, 148-158.

Plasterk, R.H. (1991). The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J., 10, 1919-1925.

Popadić, A. \& Anderson, W.W. (1994). The history of a genetic system. Proceedings of the National Academy of Sciences, 91, 6819-6823.

Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253-1256.

Potter, S., Truett, M., Phillips, M. \& Maher, A. (1980). Eucaryotic transposable genetic elements with inverted terminal repeats. Cell, 20, 639-647.

Powell, J.R. (1997). Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press.
Praefcke, G.J.K. \& McMahon, H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol, 5, 133-147.
Quesneville, H., Nouaud, D. \& Anxolabehere, D. (2005). Recurrent Recruitment of the THAP DNA-Binding Domain and Molecular Domestication of the P-Transposable Element. Molecular Biology and Evolution, 22, 741-746.

Quesneville, H., Nouaud, D. \& Anxolabehere, D. (2006). P-elements and MITE relatives in the
whole genome sequence of Anopheles gambiae. BMC Genomics, 7, 214.
Rambaut, A. (2006). FigTree.
Rasmuson-Lestander, A. \& Ekström, K. (1996). Genetic and molecular analysis of a set of unstable white mutants in Drosophila melanogaster. Genetica, 98, 179-192.

Rebatchouk, D. \& Narita, J.O. (1997). Foldback transposable elements in plants. Plant Mol. Biol, 34, 831-835.

Redder, P. \& Garrett, R.A. (2006). Mutations and Rearrangements in the Genome of Sulfolobus solfataricus P2. J. Bacteriol., 188, 4198-4206.

Reed, L.K., Nyboer, M. \& Markow, T.A. (2007). Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae. Mol. Ecol, 16, 1007-1022.

Reiss, D., Quesneville, H., Nouaud, D., Andrieu, O. \& Anxolabéhère, D. (2003). Hoppel, a Plike Element Without Introns: a P-Element Ancestral Structure or a Retrotranscription Derivative? Molecular Biology and Evolution, 20, 869-879.
Richardson, J.M., Dawson, A., O’hagan, N., Taylor, P., Finnegan, D.J. \& Walkinshaw, M.D. (2006). Mechanism of Mos1 transposition: insights from structural analysis. EMBO J, 25, 1324-1334.

Richards, S., Liu, Y., Bettencourt, B.R., Hradecky, P., Letovsky, S., Nielsen, R., et al. (2005). Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res, 15, 1-18.

Rio. (2002). P transposable elements in Drosophila melanogaster. In: Mobile DNA II (eds.
Craig, N., Craigie, R., Gellert, M. \& Lambowitz, Alan M.). ASM Press, Washington DC, pp. 485-515.
Rodriguez, C., Fanara, J.J. \& Hasson, E. (1999). Inversion Polymorphism, Longevity, and Body Size in a Natural Population of Drosophila buzzatii. Evolution, 53, 612-620.

Roeder, G.S. (1983). Unequal crossing-over between yeast transposable elements. $M G G$ Molecular \& General Genetics, 190, 117-121.

Rong, Y.S. \& Golic, K.G. (2000). Gene targeting by homologous recombination in Drosophila. Science, 288, 2013-2018.

Roussigne, M., Kossida, S., Lavigne, A.-C., Clouaire, T., Ecochard, V., Glories, A., et al. (2003). The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P-element transposase. Trends in Biochemical Sciences, 28, 66-69.

Le Rouzic, A., Boutin, T.S. \& Capy, P. (2007). Long-term evolution of transposable elements. Proceedings of the National Academy of Sciences, 104, 19375-19380.

Le Rouzic, A. \& Capy, P. (2005). The First Steps of Transposable Elements Invasion: Parasitic

Strategy vs. Genetic Drift. Genetics, 169, 1033-1043.
Le Rouzic, A. \& Capy, P. (2006). Population Genetics Models of Competition Between Transposable Element Subfamilies. Genetics, 174, 785-793.

Le Rouzic, A. \& Capy, P. (2009). Theoretical approaches to the dynamics of transposable elements in genomes, populations and species. In: Transposons and the dynamic genome, Genome dynamics and stability (eds. Lankenau, D.-H. \& Volff, J.-N.). Springer, Heidelberg, pp. 1-19.

Rubin, E. \& Levy, A.A. (1997). Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell. Biol., 17, 6294-6302.

Rubin, G.M., Hazelrigg, T., Karess, R.E., Laski, F.A., Laverty, T., Levis, R., et al. (1985). Germ line specificity of P-element transposition and some novel patterns of expression of transduced copies of the white gene. Cold Spring Harb. Symp. Quant. Biol, 50, 329335.

Rubin, G.M., Kidwell, M.G. \& Bingham, P.M. (1982). The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell, 29, 987-994.

Rubin, G.M. \& Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science, 218, 348-353.

Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor Miklos, G.L., Nelson, C.R., Hariharan, I.K., et al. (2000). Comparative genomics of the eukaryotes. Science, 287, 2204-2215.

Ruiz, A., Fontdevila, A., Santos, M., Seoane, M. \& Torroja, E. (1986). The Evolutionary History of Drosophila buzzatii. VIII. Evidence for Endocyclic Selection Acting on the Inversion Polymorphism in a Natural Population. Evolution, 40, 740-755.
Ruiz, A. \& Heed, W.B. (1988). Host-Plant Specificity in the Cactophilic Drosophila mulleri Species Complex. Journal of Animal Ecology, 57, 237-249.

Ruiz, A., Heed, W.B. \& Wasserman, M. (1990). Evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species. J. Hered, 81, 30-42.

Ruiz, A., Santos, M., Barbadilla, A., Quezada-Diaz, J.E., Hasson, E. \& Fontdevila, A. (1991). Genetic Variance for Body Size in a Natural Population of Drosophila buzzatii. Genetics, 128, 739-750.

Ruiz, A. \& Wasserman, M. (1993). Evolutionary cytogenetics of the Drosophila buzzatii species complex. Heredity, 70, 582-596.

Russo, C., Takezaki, N. \& Nei, M. (1995). Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol, 12, 391-404.

Ryder, E. \& Russell, S. (2003). Transposable elements as tools for genomics and genetics in Drosophila. Briefings in Functional Genomics and Proteomics, 2, 57-71.

Sabogal, A., Lyubimov, A.Y., Corn, J.E., Berger, J.M. \& Rio, D.C. (2010). THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat Struct Mol Biol, 17, 117-123.

Sabogal, A. \& Rio. (2010). A green fluorescent protein solubility screen in E. coli reveals domain boundaries of the GTP-binding domain in the P-element transposase. Protein Sci, 19, 2210-2218.

Sambrook, J., Fritsch, E.F. \& Maniatis, T. (1989). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press.

Sánchez-Gracia, A., Maside, X. \& Charlesworth, B. (2005). High rate of horizontal transfer of transposable elements in Drosophila. Trends in Genetics, 21, 200-203.

Sarkar, A. (2003). P-elements are found in the genomes of nematoceran insects of the genus Anopheles. Insect Biochemistry and Molecular Biology, 33, 381-387.

Schaeffer, S.W., Bhutkar, A., McAllister, B.F., Matsuda, M., Matzkin, L.M., O’Grady, P.M., et al. (2008). Polytene Chromosomal Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps. Genetics, 179, 1601 -1655.

Schneuwly, S., Kuroiwa, A. \& Gehring, W.J. (1987). Molecular analysis of the dominant homeotic Antennapedia phenotype. $E M B O J, 6,201-206$.

Schwartz, A., Chan, D.C., Brown, L.G., Alagappan, R., Pettay, D., Disteche, C., et al. (1998). Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Hum. Mol. Genet., 7, 1-11.

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Syst. Biol, 51, 492-508.

Shimodaira, H. \& Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 17, 1246-1247.

Silva, J.C., Loreto, E.L. \& Clark, J.B. (2004). Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol, 6, 57-71.

Simonelig, M. \& Anxolabéhère, D. (1991). A P-element of Scaptomyza pallida is active in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 88, 6102-6106.

Singh, N., Larracuente, A., Sackton, T. \& Clark, A. (2009). Comparative Genomics on the Drosophila Phylogenetic Tree. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 40, 459-480.

Sinzelle, L., Kapitonov, V.V., Grzela, D.P., Jursch, T., Jurka, J., Izsvák, Z., et al. (2008).

Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proceedings of the National Academy of Sciences, 105, 4715-4720.
Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., et al. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics, 153, 135-177.
Spradling, A.C., Stern, D.M., Kiss, I., Roote, J., Laverty, T. \& Rubin, G.M. (1995). Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. U.S.A, 92, 10824-10830.

Spradling \& Rubin, G.M. (1982). Transposition of cloned P-elements into Drosophila germ line chromosomes. Science, 218, 341-347.

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.

Talavera, G. \& Castresana, J. (2007). Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology, 56, 564-577.

Tamura, K., Dudley, J., Nei, M. \& Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol, 24, 1596-1599.

Tamura, K., Subramanian, S. \& Kumar, S. (2004). Temporal Patterns of Fruit Fly (Drosophila) Evolution Revealed by Mutation Clocks. Mol Biol Evol, 21, 36-44.

Tang, M., Cecconi, C., Bustamante, C. \& Rio, D.C. (2007). Analysis of P-element transposase protein-DNA interactions during the early stages of transposition. J. Biol. Chem, 282, 29002-29012.

Tang, M., Cecconi, C., Kim, H., Bustamante, C. \& Rio, D.C. (2005). Guanosine triphosphate acts as a cofactor to promote assembly of initial P-element transposase-DNA synaptic complexes. Genes Dev, 19, 1422-1425.

Templeton, N.S. \& Potter, S.S. (1989). Complete foldback transposable elements encode a novel protein found in Drosophila melanogaster. EMBO J, 8, 1887-1894.

The C. elegans Sequencing Consortium. (1998). Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology. Science, 282, 2012-2018.
Truett, M.A., Jones, R.S. \& Potter, S.S. (1981). Unusual structure of the FB family of transposable elements in Drosophila. Cell, 24, 753-763.

Venter, J.C., Adams, M.D., Sutton, G.G., Kerlavage, A.R., Smith, H.O. \& Hunkapiller, M. (1998). Shotgun Sequencing of the Human Genome. Science, 280, 1540-1542.

Villasante, A., Abad, J.P., Planelló, R., Méndez-Lago, M., Celniker, S.E. \& de Pablos, B.
(2007). Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Research, 17, 1909-1918.

Wasserman, M. (1982). Cytological evolution in the Drosophila repleta species group. In: Ecological Genetics and Evolution. The Cactus-Yeast-Drosophila Model System (eds. Barker, J.S.F. \& Starmer, W.T.). Academic Press, Sydney, pp. 49-64.
Wasserman, M. (1992). Cytological evolution of the Drosophila repleta species group. In: Drosophila Inversion Polymorphism (eds. Krimbas, C.B. \& Powell, J.R.). CRC Press, Boca Raton, Florida, pp. 455-552.

Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., et al. (2007). A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 8, 973-982.

Yang, G., Nagel, D.H., Feschotte, C., Hancock, C.N. \& Wessler, S.R. (2009). Tuned for Transposition: Molecular Determinants Underlying the Hyperactivity of a Stowaway MITE. Science, 325, 1391-1394.
Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci, 13, 555-556.

Yuan, Y.-W. \& Wessler, S.R. (2011). The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proceedings of the National Academy of Sciences.

Zayed, H., Izsvak, Z., Walisko, O. \& Ivics, Z. (2004). Development of Hyperactive Sleeping Beauty Transposon Vectors by Mutational Analysis. Mol Ther, 9, 292-304.
Zdobnov, E.M. \& Apweiler, R. (2001). InterProScan--an integration platform for the signaturerecognition methods in InterPro. Bioinformatics, 17, 847-848.

Acknowledgements

En primer lugar, quiero agradecer a Alfredo Ruiz el que me diera la oportunidad de llevar a cabo este proyecto. En segon lloc, agrair a la Marta Puig el haver-me introduït al món de la experimental i la bioinformàtica "artesanal", i el suport del Grup de Genòmica, Bioinformàtica i Evolució. Per una altra part, agrair a les secretàries (la Julia, la Maite, l'Elena i la Conchi) i a les tècnics (la Montse i la Raquel) l'ajut en les diferents gestions i, fins i tot, en l'interminable comptatge de mosques.

Als companys de laboratori i als de la segona planta, sempre els tindré present per totes els moments de pausa, cafè i les activitats "extra-escolars" que hem dut a terme durant aquestos anys.

A very-big thank you to all the members of the Ronnie Chalmers' lab in the University of Nottingham, for their patience teaching me protein techniques: Azeem, Danxu, Belinda and Neill. And, of course, Corentin and all the people from the Box that were always up for some pints.

També m'agradaria nomenar al Dojo del Shihan Gallego i a tots els companys d'entrenament, que han fet el periode d'escriptura de la tesi fos més desafiant, "mens sana in corpore sano". OSU! Jo ara diria "si no duele no es una tesis..haha"!

I fer una molt especial menció al Víctor, gràcies per tot i per estar ahí.
I des d'aquí nomenar a la família i als amics de tota la vida, que m'han vist tan poquet durant aquests últims anys, però amb els qui sempre he pogut comptar tot i la distància.

Finally, I would like to thank the Thesis Dissertation Committee for accepting to be part of it: Dr Pierre Capy, Dr Mario Cáceres, Dra Elena Casacuberta, Dr Julio Rozas and Dra Josefa González.

This work was supported by a Formación de Personal Investigador doctoral fellowship (to Mar Marzo.) and Secretaria de Estado de Universidades e Investigacion (Ministerio de Educacion y Ciencia, Spain) Grant BFU2005-022379 and BFU2008-04988 awarded to Alfredo Ruiz.

Moltes gràcies a tots els que heu estat ahí durant aquesta etapa! De tot cor! ;)

[^0]: Author contributions: A. designed retearct MM, M.P. and A. 2 . performed reveartc $M . M, M . P$. and A.R. analyzed dsta and M.M, M.P. and A.R. wrote the paper.
 The authors dedare no conflict of interest.
 Data depositionc Hucleotide sequences reported in this paper have been depovited in the
 \#Nocs36) (TPA pectionif
 *To whom correspondence should be addrewed. E-mal Alfredo Ruirtuash en
 Thin artide contains supporting information online at www.pnas.ongtgitomentitaly 0712110sosioct.

 - 2008 by The National Acaderny of Sciences of the USA

[^1]:

 -CCSLSNENKSLRQMIRAMEYDLQRLRNQLE------------------------ES
 -SCSLFNENKSLREKIRTLEYEMRRLEQQLR------------------------ES
 RCCSLSTENKSLTETIQAMEYDLQRLRNQLE-----------------------ES
 HNYSLKTPLTIGAEKLAEVQQMLQVSKKRLISVKNYR---MIKKRKGLRL KNYEMELELKKYKEKMQKMGRALVLMKNASRRRGK-----RNSRKTTPNL KYYELMADQKKRENGFIKLKDRFLALKRVVYRRNRRYR--IKTTNLKPNI KYYELMADQKKRENGEKKLKDRELALKMVVYRRNRRYR--IKTTNLKPNI KCEEMSENLKKEIQKVKLCNKKIRHLRIVLRNERARKLK-YLKEKKKIDI KYWKFELKCTREYKQVQHYKRKLHRMQILLRSERIKEASYEKKSRKNINI KYYEMKVALQNVQKENYNLKKRYSFLRNAHRQRNIYQR--ARKEKKHVNI KYYDMGVDLKKSQQEELKLKKKYLALKNASRHRNIYYR--IRKVKKHVNV KYYEIGLDLKKVQERYTKLKRREISEKRVSNYRGVSER--VRRAKKTVNV KCIAFKKLSDERQIRIKMLRKENSNLKRKLV----------RLESKTEKNI KYLSEKKMSDERQTLIKNLRKENSNLKRKLV---------RLESKSKKNI KYEASKKLSDERQTLIKNLRKENSNLKRKLV----------- RLESKSKKNI KYLAEKKLSDERQIRIKMLRRENSNLKRKVI----------- RLESKSEKNL KYISYKKMSDERQIRIKMLRKENSNLKRKII----------RLESKSEKNL
 KCNRLLAEIKKLKKELKSKKYIPKNKKYVVS----------------------0KI QYFTEKKIAEARKIRINLLKRENTNLKRKIK----------RLKVNAYESL

[^2]: Dmel \P-element Dbif $\backslash P$-element Dhel\P-element Dwil\P-element Spal\p-element Hsap \THAP9 Dana\Galileo Dpse\Galileo Dper\Galileo Dwil\Galileo Dvir\Galileo Dmoj\Galileoc Dmoj\GalileoD Dbuz\Galileo Dmel\1360 Dsim\1360 Dsec\1360 Dere\1360 Dyak\1360 Dper\1360 Dpse\1360 Dvir\1360

[^3]: (Continue on next page)

[^4]: "A list of participants and attilations appears at the end of the paper.

