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Abstract

ABSTRACT. Transposable elements (TE) are repetitive sequences whose ability to
change their location in the genome defines them. They made up a important proportion
of the eukaryotic genomes, and although they are often considered as genetic parasites,
it has been also argued that they might have some still unknown cellular function.
Nevertheless, it is clear that they play a role as drivers of their host evolution, due to the

fact that TEs generate genetic variability.

The TE Galileo is involved in the generation of adaptive chromosomal
rearrangements in natural populations of Drosophila buzzatii, indicating that it would be
a driver of adaptation in its host. Moreover, all Galileo elements found in previous
works were incomplete — mainly composed by Foldback-like structures — and
homology relationships could not be established with any known sequence. With this
background, this thesis was proposed to characterise the mobile genetic element Galileo
in different Drosophila species and analyse its evolutionary dynamics. Thus, in a first
phase we searched for complete copies of Galileo in different species of the Drosophila
genus: D. buzzatii, D. mojavensis, D. virilis, D. willitoni, D. ananassae, D.
pseudoobscura and D. persimilis, using both bioinformatic and experimental methods
(depending on whether the analysed genome was available or not). The copies found
present long TIR (up to 1.2 Kb), high sequence identity with previously found Galileo
sequences and, moreover, they harbour coding sequences that have allowed the
classification of Galileo as a member of the P-element superfamily. Subsequently, by
means of phylogenetic analyses, we have found that there are Galileo subfamilies in
three different species (D. buzzatii, D. mojavensis, D. virilis) and evidence of recent
transpositional activity (in D. willitoni, D. ananassae, D. pseudoobscura, D. persimilis
and D. mojavensis). In a second phase of the thesis, we have conducted experiments
with part of the Galileo protein and detected specific binding to the Galileo TIR,
confirming that this sequence is responsible for the transposition reaction. Finally, we
have thoroughly studied the Galileo variability in the D. mojavensis genome and found
a striking structural variation, suggesting that the exchange of sequences among

different Galileo copies might be quite common and important for TEs evolution.






Resum

RESUM. Els elements transposables (TEs) son seqiiéncies repetitives amb el tret
definitori de canviar la seva posicid al genoma. Ocupen fraccions importants dels
genomes eucariotes, y, tot 1 que solen considerar-se parasits genetics, també s'especula
amb la possibilitat de que tinguessin alguna funcid cel-lular que encara ens ¢és
desconeguda. Tot i aixi, sembla evident que tenen un paper important com facilitadors

de I'evolucid, ja que generen variabilitat al genoma de I'hoste.

El TE Galileo esta implicat en la generaci6 de reordenacions cromosomiques
adaptatives naturals a I'espécie Drosophila buzzatii, en la que hauria generat variabilitat
amb valor adaptatiu per a I'hoste. A més, tots els elements Galileo trobats en treballs
anteriors eren defectius — composats basicament d'estructures similars a la dels elements
Foldback — 1 no es van poder establir relacions d'homologia amb ninguna seqiiéncia
coneguda. Amb aquest rerefons, en aquesta tesi es va plantejar caracteritzar 1'element
genetic mobil Galileo en diferents especies de Drosophila 1 analitzar la seva dinamica
evolutiva. D'aquesta forma, en una primera fase es van buscar elements Galileo
complets en diferents espécies del génere Drosophila: D. buzzatii, D. mojavensis, D.
virilis, D. willitoni, D. ananassae, D. pseudoobscura 1 D. persimilis, fent servir tant
metodes bioinformatics com experimentals (depenent de si el genoma analitzat estava
seqiienciat o no). Les copies trobades presenten llargues Repeticions Invertides
Terminals (TIR) de fins a 1,2 Kb, una elevada identitat amb seqiiéncies de Galileo
descrites anteriorment i, a més, contenen una zona codificant que ha permes classificar
Galileo com a membre de la superfamilia de I'element P. Posteriorment, mitjancant
analisis filogenetiques, hem trobat l'existéncia de subfamilies de Galileo en tres especies
(D. buzzatii, D. mojavensis, D. virilis) i evidéncia d'activitat transposicional recent (D.
willitoni, D. ananassae, D. pseudoobscura, D. persimilis 1 D. mojavensis). En una
segona fase de la tesi, hem dut a terme experiments amb part de la proteina que es
codifica a Galileo 1 hem comprovat que interacciona amb les TIR de Galileo,
confirmant que aquesta seqiiencia és la responsable de la reaccid de transposicio.
Finalment, hem analitzat en detall la diversitat de Galileo al genoma de D. mojavensis i
hem detectat una diversitat estructural molt important, on l'intercanvi de seqiieéncies

entre elements pareix forca freqiient per I'evolucié dels TEs.






Resumen

RESUMEN. Los elementos transponibles (TEs) son secuencias repetitivas cuya
caracteristica definitoria es la capacidad de cambiar de posicion en el genoma. Ocupan
fracciones muy importantes de los genomas de eucariotas, y aunque se suelen
considerar parasitos genéticos, también se especula con la posibilidad de que pudieran
tener alguna funcioén celular que aun nos es desconocida. No obstante, parece evidente
que tienen un papel importante como facilitadores de la evolucion, al generar

variabilidad en el genoma del huésped.

El TE Galileo estd implicado en la generacion de reordenaciones cromosoOmicas
adaptativas naturales en la especie Drosophila buzzatii, con lo que habria generado
variabilidad adaptativa para el huésped. Ademas, todos los elementos Galileo
encontrados en trabajos anteriores eran defectivos — compuestos basicamente de
estructuras similares a las de los elementos Foldback — y no se pudieron establecer
relaciones de homologia con ninguna secuencia conocida. Con este trasfondo, en esta
tesis se planted caracterizar el elemento genético movil Galileo en diferentes especies
de Drosophila y analizar su dindmica evolutiva. De esta manera, en una primera fase se
buscaron elementos Galileo completos en en diferentes especies del género Drosophila:
D. buzzatii, D. mojavensis, D. virilis, D. willitoni, D. ananassae, D. pseudoobscura 'y D.
persimilis, utilizando métodos tanto bioinformaticos como experimentales (dependiendo
de si el genoma analizado estaba secuenciado o no). Las copias encontradas presentan
largas Repeticiones Invertidas Terminals (TIR) de hasta 1,2 Kb, una elevada identidad
con secuencias de Galileo descritas con anterioridad y, ademas, contienen una zona
codificante que ha permitido clasificar Galileo como miembro de la superfamilia del
elemento P. Posteriormente, mediante andlisis filogenéticos, hemos encontrado la
existencia de subfamilias de Galileo en tres especies (D. buzzatii, D. mojavensis, D.
virilis) y evidencias de actividad transposicional reciente (D. willitoni, D. ananassae, D.
pseudoobscura, D. persimilis y D. mojavensis). En una segunda fase de la tesis, hemos
llevado a cabo experimentos con parte de la proteina que codifica Galileo y hemos
comprobado que interacciona con las TIR de Galileo, confirmando que esta secuencia
es la responsable de la reaccion de transposicion. Finalmente, hemos analizado en
detalle la diversidad de Galileo en el genoma de D. mojavensis y hemos detectado una
diversidad estructural muy importante, lo que sugiere que el intercambio de secuencias

entre elementos podria ser bastante frecuente para la evolucion de los TEs.
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Introduction

1.- Transposable Elements

Transposable elements (TEs) are genetic entities with the capability of changing
their location within the genome. They were discovered by Barbara McClintock in the
50s of the last century when she was exploring the origin and behaviour of mutable loci
in maize (McClintock 1950, 1951). McClintock's discovery challenged the concept of
the genome as a static set of instructions passed between generations, as genetic maps
had shown. Thus, her theories about how changes in gene expression could appear in
two successive generations were received with huge scepticism. Finally, since her
observations and theories were corroborated in other organisms, she was awarded in
1983 with the Nobel Price of Physiology and Medicine for her discovery of

transposition.

Usually, movement of TEs results in their multiplication, that can give rise to high
copy numbers. TEs have been included in the fraction of middle repetitive DNA of the
genome, as interspersed repeats (Britten & Kohne 1968). So far, TEs have been found
in almost all studied species, prokaryotes and eukaryotes, except in the protozoan
Plasmodium falciparum (Gardner et al. 2002). In all species, TEs make up a significant
but variable proportion of the genome, e.g.: 12 % in Caenorhabditis elegans (The C.
elegans Sequencing Consortium 1998), 14 % in Arabidpsis thaliana (Hua-Van et al.
2005), 16 % in Drosophila melanogaster (Kidwell 2002; Drosophila 12 Genomes
Consortium et al. 2007), 45 % in humans (Lander et al. 2001) and 80% in some crops
(Wicker et al. 2007).

TE activity in the genomes causes a broad range of mutations. Since their movement
is often random, a priori, they can insert anywhere in the genome. By chance, they can
insert in regions where they will not affect any function (heterochromatin, intergenic
regions, etc), but likewise, they can interfere in the cell working machinery. For
example, a gene can be inactivated because a TE insertion breaks the ORF or affects the
splicing, or the TE impairs the expression of the gene. In addition, TE activity generates
deletions, duplications and rearrangements in the genome. In summary, TEs generate a
huge range of mutations with a broad impact on host fitness (Kidwell & Lisch 2002;
Feschotte & Pritham 2007).
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Introduction

The expansive nature of TEs, occupying important fractions of genomes, along with
their mutational activity due to its random movement, made them to be considered as
selfish and/or junk DNA because no positive role for the cell was apparent (Doolittle &
Sapienza 1980; Orgel & Crick 1980). Likewise, the broad distribution among species
suggests they have a very successful parasitic strategy, although this broad distribution
could be also be pointing out a putative role for the cell, as it has been seen in some
cases; e.g. the telomere-length manteinance in Drosophila genus, which is carried out
by the retrotransposons HeT-A, TART and TAHRE (Casacuberta & Pardue 2005; Pardue
et al. 2005; Pardue & DeBaryshe 2011). Nevertheless, although most of the time the TE
activity has deleterious effects, it also generates variability and even advantageous
mutations, which indicates that they are facilitators of evolution (Kazazian 2004;

Cordaux et al. 2006; Oliver & Greene 2009, 2011).

1.1.- The evolutionary life-cycle of transposable elements

TEs are dynamic entities which multiply, move, evolve and interact with the host.
Their ability to invade genomes along with the fact that they do not play any cellular
function in the host makes them to be considered parasitic sequences (Doolittle &
Sapienza 1980; Orgel & Crick 1980). Thus, the evolutionary life-cycle of TEs has been
suggested to be analogous to that of parasitic organisms, with a first phase characterised
by the invasion and establishment of the host genome followed by a decrease of TE
activity and a phase of coexistence of different mutant sequences until the
disappearance of the mobile element (Figure 1) (Silva et al. 2004; Le Rouzic et al.
2007). During all this cycle, there are evidences of TE parasitism, such as their use of
the cell machinery for spreading themselves and the host fitness decrease due to TE
insertion mutations and chromosomal instability (Doolittle & Sapienza 1980; Orgel &

Crick 1980).

The complex evolutionary dynamics of TEs has required the development of a
theoretical framework based on population genetics models which provide a series of
predictions that can be tested later on empirical grounds. In the 80s of the last century,
several models were proposed to account for parasitic nature of TEs, such as the models
of Brookfield (1982) and Hickey (1982). Afterwards, Charlesworth and Charlesworth

(1983) modelled the dynamics of copy number taking into account the transposition rate
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Figure 1. Schematic view of TE dynamics after entering the genome. HT means horizontal transfer of the TE to
another host. The different steps are: (i) An element is transferred into a germline cell of host A. (ii) Transposition
activity starts after a successful integration of the TE. There is a rapid increase in copy number. (iii) Repression of
transposition arises the rate in copy number slows. (iv) Mutations accumulate in the different copies and the
number of functional elements in the genome slowly decreases. This process that can take many millions of years
(abbreviated period represented by a dashed line). (v) Finally, no functional elements are left in the genome of host
A, and this TE lineage becomes extinct. Sometime between (ii) and (v), a functional element may be transferred
horizontally (HT) to a new host and the process begins anew . Taken from Silva et al. (2004).

and the selective pressure against the TEs insertions. The exploration of the simulations
stated that copy number should reach an equilibrium between these two forces,
transposition and selection. This way, although element frequencies could change as a
result of different phenomena (such as, replicative transposition, loss of elements from
occupied sites, selection on copy number per individual, and genetic drift) the final
balance would depend on a strong transposition control or a high selective pressure, or

both (Charlesworth & Charlesworth 1983).

Purifying selection is a force opposing the spread of TEs, and it would act against (1)
TE insertions which disrupt functional genetic units and (ii) TEs which generate
deleterious products. Regarding these statements, it would be expected that the X
chromosome, where selection is stronger than in autosomes due to the hemizygous state
in males, would present a reduced number of TEs than the autosomes. This hypothesis
was tested with three TE families of D. melanogaster and there was no evidence for any
reduction in copy number for the X chromosome, leading to the suggestion that meiotic
recombination between transposable elements at non-homologous sites would be
responsible for the containment of TEs number in natural populations (Montgomery et
al. 1987). Thus, a new model was proposed taking into account the distribution of TEs

across genomic regions with different rates of unequal exchange or ectopic
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recombination (Langley et al. 1988; Charlesworth & Langley 1991). This would mean
that a TE insertion would disappear more quickly if it is located in a high recombination
rate region because it would be more prone to recombine with a non-allelic homologous
TE. This recombination event leads to the production of deleterious chromosomal
rearrangements, thus lowering the fitness of individuals as a function of the number of
elements carried. This model has been confirmed by some empirical data and seems to
fit quite well with the actual distribution of TEs in natural populations (Charlesworth et
al. 1992; Bartolomé¢ et al. 2002; Petrov et al. 2003, 2010).

These models provide predictions for populations in which TEs have reached an
asymptotic equilibrium state, but before this equilibrium is reached there are other steps
in a TE cycle which are sensitive for the success or survival of mobile elements, such as
the colonization of a new genome. Furthermore, the equilibrium could be affected by
demographic events of the host or reactivation of a TE (such as stress responses or
secondary contacts between geographically distant populations). Hence, not all genomes
might be at equilibrium, rather they could be in an unstable TE-host state. Recently,
new mathematical models have been proposed for predicting/modelling the whole cycle
of TE. Le Rouzic and Capy have run simulations to predict the behaviour of TEs in
different steps of the cycle: the invasion, the competition among subfamilies and the
long-term evolution (Le Rouzic & Capy 2005, 2006, 2009; Le Rouzic et al. 2007). Their
simulations predict that for a successful A

genome invasion, after a horizontal
Matural Selection

transfer event or a TE reactivation, a Deletion
high transposition activity is needed l
followed by a tight control of it, which

means a transposition burst. This way,

TE Copy number

the TE that arrived itself to a new
genome would overcome the genetic Genetic Drift
drift and its extinction. After the

Transpasition

establishment, TE activity starts to

generate mutant Copics, either Figure 2. Simple representation of the different genomic

forces which interact and affect TEs dynamics. The size
of the arrows depicts an schematic contribution of each

.. . phenomenon to the TE copy number. Modified from Le
mutants or transposition efficiency  rouzic and Capy (2009)

transposition machinery-coding
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mutants. Competition among these copies seems to prevent the system for achieving a
stable transposition-selection equilibrium, rendering non-autonomous copies to multiply
and spread at the expense of the autonomous elements (Leonardo & Nuzhdin 2002).
This results in a mainly cyclic dynamics which highlight the similarities between
genomic selfish DNA and host-parasite systems (Le Rouzic & Capy 20006).
Furthermore, long-term evolution was explored introducing variability in both the
effects of the insertion on host fitness and the production of functional transposition
proteins, along with mutations in transposition efficiency of the copies (Le Rouzic et al.
2007). The most common dynamics was found to be the occurrence of one or more
invasion-regression cycles (transposition bursts) followed by the definitive TE loss.
This questions the likelihood of the sustainable long-term stable transposition-selection
equilibrium of older models. Furthermore, TE domestication events could appear,
allowing the survival and fixation of those TE copies that enhance the fitness of the

host.

When genomes are explored, the proportion of active copies is highly heterogeneous
among species. For example, active copies account for: less than 20% in D.
melanogaster (Bartolomé et al. 2002), less than 5% in Schizosaccaromyces pombe
(Bowen et al. 2003), and only 1% of LINEs in the human genome (Ostertag & Kazazian
2001). Le Rouzic et al. (2007) propose two hypotheses for this heterogeneity. On the
one hand, different TE families and subfamilies are in different phases of their cycle, for
example, some of them are actively colonising the genome whereas others are in the
final step where there is no more mobilisation and the copies are accumulating
mutations. On the other hand, long-term evolution of a TE family is affected by
characteristics of the TE, the host and specific TE-host interactions, because slight
changes in the parameters of the model (transposition rate, deletion rate, impact in host
fitness, transposition activity and TE mutation) lead to distinct dynamics. Moreover, the
two hypothesis are not mutually exclusive and its combination is likely to shape the TE

ditribution observed in genomes (Le Rouzic et al. 2007).

In summary, although different models have been proposed, the TE dynamics are
complex to infer, but it seems clear that the genetic drift and the purifying selection play

a major role in TE control (Figure 2).
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1.2.- Classification of transposable elements

The increasing amount of TEs being discovered makes necessary to develop a
method of classifying and arranging all their information. Furthermore, the
classification along with all the knowledge of TEs is a fundamental tool for the proper
sequencing, assembly and annotation of the numerous genome projects that are being
carried out (Edgar & Myers 2005; Han & Wessler 2010). One of the first methodical
attempts to classify eukaryotic TEs was carried out by Finnegan (1989), who defined
two main classes of TEs: Class I are TEs with a retrotranscription step, where a RNA
state of the element is found and is retrotranscribed to DNA, while Class II are devoid
of this step and are always found as DNA molecules (Finnegan 1989). More recently,
Wicker et al. (2007) elaborated on this basic scheme and proposed different levels of
classification, such as; subclass, order, superfamily and family. Subclass is used, within
Class 11, to distinguish elements that copy themselves for insertion, from those that
leave the donor site to reintegrate elsewhere. It concomitantly reflects the number of
DNA strands that are cut at the TE donor site. At the next level, order takes into account
the element structure, for example, the existence of TIRs or LTR in the different classes.
These structural traits reflects major differences in the insertion mechanism and,
consequently, the overall organization and enzymology. The final levels are
superfamily, family and subfamily, where phylogenetic relationship along with

nucleotide identity are taken into account in each level of classification (Figure 3).
Class |

Class I of TEs, also known as retroelements, are characterised by a transposition
reaction where an intermediate molecule of RNA is transcribed from the donor site and,
afterwards, this RNA molecule will be retrotranscribed to DNA and inserted elsewhere
in the genome. Thus, the main trait of this group is the retrotranscription step. It is
noteworthy that this step is replicative (hence the “copy-and-paste” term often used to
refer to this group). Consequently, retrotransposons may reach high copy numbers and
are often the major contributors to the repetitive fraction in large genomes. Following
the more detailed classification of Wicker et al. (2007) this class is subdivided in five
orders on the basis of their mechanistic features, organization and reverse transcriptase

phylogeny: LTR retrotransposons (Long Terminal Repeats), DIRS-like elements
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(Dictyostelium intermediate repeat sequence; Cappello 1985), Penelope-like elements
(PLEs), LINEs and SINEs. Prior to this classification, Class I elements were usually
subdivided in LTR versus non-LTR elements (Kumar & Bennetzen 1999; Jurka et al.
2007).

LTR elements range in size from a few hundred base pairs up to, exceptionally, 25

kb (Wicker et al. 2007). The length of LTR range from a few hundred base pairs to
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Figure 3. Classification of transposable elements proposed by Wicker et al (2007).
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more than 5 kb, and start with 5'-TG-3' and end with 5'-CA-3'. Upon integration, LTR
retrotransposons generate a target site duplication (TSD) of 4-6 bp. They typically
contain ORFs for GAG, a structural protein for virus-like particles and for POL. Pol/
generally encodes an aspartic proteinase (AP), reverse transcriptase, RNaseH and DDE
integrase (INT). Occasionally, there is an additional ORF of unknown function (Wicker
et al. 2007).

DIRS-like elements contain a tyrosine recombinase gene instead of an integrase and,
therefore, they do not generate TSD upon insertion. Their termini are unusual,
resembling either split direct repeats (SDR) or inverted repeats. These features indicate
a mechanism of integration that is different from that of LTR elements and LINEs.
Nevertheless, their RT places them in Class I. Members of this order have been detected
in diverse species, ranging from green algae to animals and fungi. Penelope-like
elements (PLEs) encode a RT that is more closely related to telomerase than to the RT
of LTR retrotransposons or LINEs. Furthermore, they code for an endonuclease that is
related both to intron-encoded endonucleases and to the bacterial DNA repair protein
UvrC. These elements also have LTR-like sequences that can be in direct or an inverse

orientation (Wicker et al. 2007).

LINEs lack LTR, can reach several kilobases in length and encode at least a RT and
a nuclease in their po/ ORF for transposition. Sometimes there is also a gag-like ORF,
and other containing RNaseH. LINEs generate TSDs of 7-20 bp length upon insertion,
and usually they present truncated 5' ends as result from premature termination of their
primed reverse transcription (Ostertag & Kazazian 2001). At their 3' end, they can
display either a poly(A) tail, a tandem repeat or merely an A-rich region (Wicker et al.
2007). SINEs are non-autonomous elements but they are not deletion derivatives of
autonomous ones; instead, they originate form accidental retrotransposition of various
polymerase III (pol III) transcripts. Unlike retroprocessed pseudogenes, they possess
internal Pol III promoters which allow them to be expressed. They rely on LINEs for
trans-acting transposition functions such as RT. Some SINEs present a unique and
obligatory partner whereas others are generalists. SINEs are small (80-500 bp) and
generate TSDs (5-15bp). The Pol III promoter region defines SINE superfamilies and
reveals their origin: tRNA, 7SL RNA and 5S RNA. SINE internal regions (50-200 bp)

are family-specific and of variable origin, sometimes deriving from SINE dimerization
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or trimerization (Kramerov & Vassetzky 2005). The best known SINE is the Alu

element, which presents at least >10° copies in the human genome (Lander et al. 2001).
Class I1

Class II elements are devoid of the retrotranscription step. In this class there are
different strategies of transposition and some of them imply a direct replicative step.
Two different subclasses have been proposed, one with the cut-and-paste elements and
another one that entails replication without a double-stranded cleavage (Wicker et al.
2007). The first subclass is comprised by two orders: TIR containing elements and no-
TIR elements (Crypton). TIR elements are subdivided in superfamilies but different
proposed classifications do not agree in the number of them. For example, Feschotte
and Pritham (2007) proposed 10 superfamilies of eukaryotic TIR transposons. However,
Jurka et al. (2007) and Wicker et al. (2007) recognized 13 and 9 superfamilies,
respectively. Recently, Yuan & Wessler (2011) have proposed to revise the number of
cut-and-paste transposons because their phylogenetic analysis of the catalytic domain
uncovered new relationships among the different groups. They propose 17 superfamilies
clustered in three supergroups. Although the definition and number of superfamilies has
not reached a consensus, these clusterings are very useful for uncovering the TEs in the
different genome projects, because generally, they are searched by means of similarity
tools for locating and annotating different TEs. The second subclass is split in two
orders, Helitrons and Mavericks/Polintons. Helitrons replicate using a rolling-circle
strategy, whereas transposition reaction for Mavericks is still unknown (Feschotte &

Pritham 2007; Wicker et al. 2007).

The TEs studied in this thesis belong to the cut-and-paste class II transposons. In the

sections below these elements are explained in detail.
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2.- The Drosophila P-element

The Drosophila P-element is one of the best-studied eukaryotic mobile DNA
elements. It was discovered in the late 1960s because it causes in Drosophila
melanogaster a syndrome of genetic traits termed hybrid dysgenesis (HD) (Kidwell et
al. 1977). HD is a term used to describe a collection of symptoms including high rates
of sterility, mutation induction, male recombination and chromosomal abnormalities
and rearrangements (Kidwell 1977; Kidwell & Novy 1979; Kidwell et al. 1977; Engels
1979). The unstable nature and reversibility of the mutations caused by hybrid dysgenic
crosses first suggested that they might be caused by mobile element insertions (Kidwell
et al. 1973). A detailed molecular analysis of hybrid dysgenesis-induced mutations at
the white locus allowed the isolation and molecular cloning of the P transposable
element (Bingham et al. 1982; Rubin et al. 1982). The characterization of P-elements
rapidly let to the development of its use as a vector for efficient germ line transfer in
Drosophila (Rubin & Spradling 1982; Spradling & Rubin 1982). Since then, P-element

vectors have been widely used for transforming D. melanogaster (Figure 4).

Promoter P-alarment P-alemet end

Transposase White gene
promater
Helper vector P-glement vectar
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Figure 4. General procedure for Drosophila transformation using P-element-based vectors. General
traits of vectors are shown on top. The procedure for Drosophila transformation is sketched as well.
Adapted from Rio (2002).
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Furthermore, these elements have found additional and critically important uses as the
molecular genetics of Drosophila has evolved, such as, mutagenesis and gene-tagging,
enhancer trapping, homologous gene targeting and gene replacement (Engels 1996;
Rong & Golic 2000; Rubin et al. 2000). Nowadays, new vectors for transforming
Drosophila are being developed and they are P-element based vectors, so germinal
transformation is still the best choice for Drosophila transformation (Kondo et al. 2006;

Bachmann & Knust 2008).

2.1.- P-element structure

The P-element is a cut-and-paste transposon from Class II of mobile elements
(subclass I, TIR order, Wicker et al. 2007). The autonomous and complete copy is ~2.9
kb long and its structure consists of two 31-bp terminal inverted repeats (TIRs)
surrounding an ORF encoding the transposase (Figure 5). This ORF comprises four
exons and three introns and encodes the enzyme responsible for the transposition of the
element. This protein is able to bind close to the ends of the transposon, join and cut
them and insert the element in a new location (see below). Moreover, the alternative
splicing of the transposase ORF generates a transposition inhibitor (KP protein), that
directly binds to the transposase DNA binding sites and blocks the P-element DNA
cleavage (Misra et al. 1993; Lee et al. 1998). Other important regions in the P-element
are the binding sites, where the transposase binds (BS). The binding sites are not located
inside the TIRs and are not equidistant from the transposon ends, one is 21 bp from the
5' TIR and the other is 9 bp from the 3'TIR (Rio 2002). These sequences are 10-bp long
and correspond to GTTAAGTGGAT (3' end) and TTTAAGTGTAT (5' end) (Sabogal
et al. 2010). Finally, there are two internal inverted repeats of 11 bp (ATTAACCCTTA)
located 126 bp from the
5' end and 201 bp from

Exciis ¢onnihdages
B5-442 [UTR: 85-152) '
/ \ 0: 85-442 (U / \ the 3' end. Although not
2:1222-1911 .
k|

o 21822706 absolutely required for

TIR Enh E 1h I_B'S TIR . X
b 10ve W line el B SRy the transposition reaction,

Exu '.D Exomn 1 Exon 2 I:mﬁ 3 T
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Figure 5. D. melanogaster P-element canonical sequence structure. Total  they act as transpositional
length 2.9 kb. The binding sites (BS) of the transposase and the internal

inverted repeats that act as transpositional enhancers (Enh) are shown. The  enhancers (Rio 2002).
transposase CDS is depicted with its structure of 4 exons and 3 introns.

Adapted from Rio (2002).
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2.2.- P-element transposase

The P-element transposase is a trans-acting protein of 87 kDa, 751 amino-acids, that
catalyses the P-element mobilization through a cut-and-paste reaction. This protein has
a modular structure with different domains that are responsible for different steps of the

transposition reaction (Figure 6).

THAP Dimerization GTP binding Catalytic
domain regicn damain damain
1-77 10i-170 275-409 433-751

Figure 6. Structure of D. melanogaster P-element transposase. The different domains and their coordinates are
depicted. Adapted from Rio (2002).

THAP domain

The DNA binding domain (DBD) of the transposase is located in the N-terminus
and has been described as a special kind of zinc finger, the THAP domain (Roussigne et
al. 2003; Clouaire et al. 2005). This domain is shared with other cellular proteins found
in different animals, from Drosophila to humans, that are implicated in different
pathways, such as, cellular cycle, apoptosis and chromatin-associated proteins among
others (Figure 7) (Roussigne et al. 2003). This domain begins with a C2CH (cystein-
cystein-cystein-histidine) zinc coordinating region and ends with an AVP (alanine-
proline-valine) motif. Compared with the most common zinc fingers (e.g. C2H2 or C4-
type, Lee et al. 1989; Pavletich & Pabo 1991) the THAP domain can be considered as a

long domain.

Among the conserved features of the THAP domain are its location at the N-
terminus of the proteins, its size about 90 residues and, most importantly, the presence
of conserved sequence motifs. The defined THAP domain includes: a C2CH signature
(consensus cystein-Xaa 4-Cystein-Xaass.so-cystein-Xaap-histidine); three additional key
residues that are strictly conserved in all THAP domains (proline (P), tryptophan (W),
phenylalanine (F), see Figure 8); a C-terminal AVPTIF box (consensus: alanine(A)-
valine(V)-proline(P)-threonine(T)-isoleucine(I)-phenylalanine(F)); and several other
conserved amino acid positions with distinct physico-chemical properties (e.g.

hydrophobic and polar) (Roussigne et al. 2003).
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Figure 7. Alignment of different THAP domains from different proteins. dmTRP is P-element transposase
THAP. The conserved key residues are underlined. Taken from Roussigne et al. (2003).

Recently, the three dimensional structures of two different THAP domains bound to
DNA have been characterised: the human protein THAP1 and the P-element
transposase (Figure 8) (Bessiére et al. 2008; Sabogal et al. 2010). Despite the
conservation of the key residues of the domain, the overall sequence conservation is
very low. Nevertheless, the spatial conformation seems to be highly conserved and a
new DNA interaction manner has been proposed: a B-sheet interacts with the target
DNA through the major groove and a downstream loop in the domain interacts with the
minor groove of the double helix. Since the DNA interaction is conserved, it has been
proposed that the THAP DNA consensus binding sequence is TXXGGGX(A/T) or
TXXXGGCA (the X are spacing sequence of variable length; (Clouaire et al. 2005;
Campagne et al. 2010; Sabogal et al. 2010). It can be noticed that this two proposed
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Figure 8. THAP domain 3D structure interacting with DNA. a) Protein-DNA interface b) Structure-based
multiple sequence alignment of DmTHAP, human THAP1, THAP2, THAP7, THAP9 and THAPI11 and C.
elegans CtBP where conserved residues are highlighted; zinc-coordinating C2CH motif is highlighted in green;
base-specific DNA-binding residues of DmTHAP are indicated by magenta. The secondary structure diagram is
shown above the alignment. ¢) Schematic representation of all base-specific contacts in the major and minor
grooves . d) Surface representation of DmTHAP. Sequence-specific DNA-binding residues are highlighted in
magenta. DNA backbone is shown as lines with subsite positions labelled. Modified from Sabogal et al. (2010).

consensus binding sequences share similarities in sequence, such as the core of 3 GC
base pairs (GGG or GGCA) which is the major groove interacting sequence, and a
conserved AT base pair, which is the minor groove interacting sequence (Sabogal et al.
2010). Furthermore, the size of the two proposed consensus binding sequences are
similar (~10 bp), although they correspond to a Drosophila and a human THAP1

protein, respectively.

Oligomerization region

After the DNA binding domain, there is an oligomerization region. It consists of a
leucine zipper (Landschulz et al. 1988) responsible for the multimerization of the

transposase. After this leucine zipper, there is a second oligomerization region
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consisting of an unstructured region, possibly a coiled-coil region (Rio 2002; Sabogal et
al. 2010). The multimerization is not necessary for the high-affinity site-specific DNA

interaction, but it is essential for the transposition reaction (Rio 2002).

Putative regulatory domain

In the amino-terminal region, there is a regulatory domain that contains potential
sites for phosphorylation by different kinases, such as the DNA repair-checkpoint
phosphatidyl inositol-3-phosphate(PI;)-related protein kinases DNA-PK and ATM
(Ataxia telangiectasia mutated, Ku p70 and Ku p80 in Drosophila). Alterations of these
potential phosphorylations sites by mutagenesis to alanine result in both increased and
decreased transposase activity in vivo and in vitro. In this sense, when the transposase is
produced in bacteria, the enzyme is not active, due to the lack of phosphorylation.

Similarly, transposases treated with phosphatases presented reduced activity (Rio 2002).

GTP-binding domain

The P-element transposase has a unique requirement for guanosine triphosphate
(GTP) binding that distinguishes it from smaller transposases (e.g. those of Tn5 and
Mu). However, GTP is known to take part as a cofactor in many diverse biochemical
processes, such as Ras cellular signal transduction pathways, the assembly of dynamin
in vesicle transport, and the self-splicing of group I introns, among other cellular
functions (Bourne et al. 1991; Doudna & Cech 2002; Praefcke & McMahon 2004; Tang
et al. 2005). Thus, it has been of interest to understand the role of GTP in a transposase,
which has a very different function compared to the cellular proteins which need this
nucleotide. The GTP molecule is considered to be an allosteric effector required for
proper folding and domain positioning of the P-element transposase, because different
experiments have shown that the GTP is not hydrolysed during the transposition
reaction (Kaufman & Rio 1992). Without GTP, the transposase is not able to form the
synaptic complex which is vital for the transposition reaction. The synaptic complex is
the conformation when the transposase is bound to the two ends of the transposon (Rio

2002; Tang et al. 2005).

The GTP domain of the P-element transposase is a non-canonical version compared
to the motifs found in the GPTase superfamily (Bourne et al. 1991; Rio 2002).

Consequently, the boundaries of the domain could not been determined through
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sequence comparison. However, the GTP binding domain of the P-element transposase
has been recently characterised thanks to a green fluorescent protein (GFP) solubility
screening in E. coli (Sabogal & Rio 2010). This assay has allowed to locate the whole
region responsible for the GTP binding in coordinates from 275 to 409 of the
transposase. The GTP domain is able to bind GTP itself, without need of the other
protein domains or multimerization, thus it is a single and functional domain.
Furthermore, no GTPase activity has been detected, which is in agreement with the

observation that the GTP has a role of allosteric co-factor (Sabogal & Rio 2010).

Catalytic domain

The C-terminus of the P-element transposase protein contains many acidic residues
which would make up the catalytic domain of the transposase. Mechanistically, this
domain is thought to belong to the RNaseH-like superfamily of polynucleotidil
transferases. This superfamily includes different transposases and integrases such as: the
bacterial Tn5 transposase, the Mosl transposase, the HIV integrase, the phage Mu
transposase, the Holliday junction nuclease Ruv C and the RAG1 V(D)J recombinase,
among other proteins (Capy et al. 1996; Nowotny 2009; Hickman et al. 2010). Although
mechanistically the P-element transposase is related to this superfamily of proteins,
sequence and structure-based alignments reveal little or no sequence similarity. Thus, it
seems that the P-element transposase would have evolved from a different type of
polynucleotidil transferase, that could be related to the nucleic acid polymerases or

restriction-endonucleases (Rio 2002).

However, a recent sequence analysis of different transposases where no DDE motif
was found, has uncovered the putative DDE motif in the P-element superfamily (Yuan
& Wessler 2011). The proposed residues for the catalytic domain of the P-element
would be located in D230, D303 and E531 (Figure 9). These residues appear conserved
in the different transposases of the P-element superfamily along with surrounding
residues. However, the residues proposed by Yuan and Wessler (2011) are in
disagreement with those proposed previously by Rio (2002) (D444, D528, E531and
D545/628) which were seemingly detected through random mutagenesis of the catalytic

domain (Rio 2002). Experiments that could corroborate the residues proposed by Yuan
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and Wessler (2011) would be very interesting for finally including all the eukaryotic

transposases in the RNaseH superfamily of polynucleotidil transferases.

Regardless whether this catalytic domain harbours the DDE signature or not, this
kind of enzymes, where the P-element transposase can be mechanistically included, use
metal ion-mediated catalysis to hydrolyse the phosphodiester bond. The metal ion is
bivalent, usually Mg™, and it is coordinated with the protein through acidic protein
residues. This essential co-factor is needed for both DNA strand cleavage and strand
transfer, which means the double-strand breaks and the insertion of the transposon steps

(Hickman et al. 2010).
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Figure 9. a) Alignment of the catalytic region of different transposases of the P-element superfamily. The
conserved DDE residues are indicated. A part from the DDE residues, there is a region D(2)H which is conserved
among all the transposases. b) Putative secondary structure of the P-element catalytic domain. The DDE residues
are indicated with asterisks. Notice D. buzzatii Galileo element has been included. From Yuan and Wessler
(2011).
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2.3.- P-element transposition reaction

After transcription and translation of the P-element transposase ORF, the protein
assembles itself as a tetramer (Tang et al. 2007). This pre-formed tetramer binds to one
of the P-element ends and through a “looping" or intersegmental transfer (action helped
by the GTP interaction) the tetramer binds the second binding site (synapsis) (Tang et
al. 2007). After the binding, the transposase catalytic domains cut the transposon ends
through a strand-transfer reaction. This is a staggered cut that leaves 17-bp overhangs at
each 3' end. After that, the transpososome (transposon along with the transposition
machinery) goes to a new location where there is a target insertion sequence. A
staggered cut (8 bp length lag) is performed and the transposon inserts there. An eight
base pair target site duplication (TSD) surrounds the element in its new location after

the polymerase closes de remaining gaps (Rio 2002).

The gap left by the transposon jump, can generally have two different fates
depending on the repairing pathway. On the one hand, the pathway may be non-
homologous end joining repair (NHEJ), where the two 17 bp overhangs will be joined
and a transposon footprint will appear surrounded by the 8-bp TSDs (Beall & Rio 1997;
Dynan & Yoo 1998; Rio 2002). On the other hand, the repair may be done by the
synthesis-dependent strand annealing pathway (SDSA), a gap repair process that uses
the sister chromatid or the homologous chromosome as a template (Engels et al. 1990;
Rio 2002). In that case, the whole P-element would be copied again in the location
where it jumped from. This last step would be the responsible of the replicative
transposition of the element and the rapid spread of P-elements in wild populations. If
this repair synthesis is interrupted, this could give rise to the internally deleted P-

elements observed naturally (Rio 2002).

2.4.- Insertional preference of the P-element

The initial DNA sequence analysis of several cloned P-element insertions revealed
that 8-bp duplications of the target site (TSD) were found flanking all the P-elements
analysed. Comparisons of these target site sequences revealed a general high GC base
composition in the 8-bp sites, with the consensus sequence being 5'-GTCCGGAC-3'
(O’Hare & Rubin 1983). Another study analysed 2266 P-element insertion sites from
the Berkeley Drosophila Genome Project and showed that the 8-bp GC-rich TSD was
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centred in a longer 14-bp palindromic target sequence (Liao et al. 2000). Recently, a
more exhaustive bioinformatic analysis of the P-element insertion sites (over 10000 P-
element insertions) has uncovered the putative consensus sequence for this 14-bp target
palindrome (Linheiro & Bergman 2008). This sequence is S'-~ATRGTCCGGACWAT-
3' where the 8-bp palindromic target site duplication is shown in bold characters. All the
positions of the motif presented strong statistical support deviating significantly from
the overall D. melanogaster base composition. Strikingly, in this work from Linheiro
and Bergman (2008), they found that the sequence of the P-element TIR restores the 14
bp palindrome after insertion. This suggests a mechanistic link between staggered-cut
palindromic target sites and the structure of the transposon TIRs, specially involving the
terminal nucleotides of the TIR. Moreover, this special role for terminal nucleotides in
the P-element TIRs could explain the strong conservation of only the first 3 bp of the
TIRs among the P-element family members in insects and vertebrates (see below). A P-
element insertion becomes a new site for another P-element insertion. The fact that the
sequence recognized by the transposase is a palindrome is consistent with the
transposase acting as an homomultimeric complex with the target DNA (Linheiro &

Bergman 2008).

2.5.- D. melanogaster P-element origin

To study the evolutionary origin and history of mobile elements a survey of
phylogenetic distribution is very useful. These studies revealed P-element homologous
sequences were distributed throughout the species groups that comprise the subgenus
Sophophora, but were absent from the species most closely related to D. melanogaster
(Brookfield et al. 1984; Anxolabehere et al. 1985; Lansman et al. 1985; Daniels &
Strausbaugh 1986). This fact together with the P-element absence in old laboratory
strains of D. melanogaster, suggested P-element might had entered in D. melanogaster
through horizontal transfer from a distantly related member of the genus (Bingham et al.

1982; Anxolabéhére et al. 1988).

An exhaustive screening using Southern blot of 136 species of Drosophila genus
uncovered a broad distribution of P-element in the Sophophora subgenus and a lack in
the Drosophila subgenus. Furthermore, the strongest signals were found in the

willistoni and saltans species group (Daniels et al. 1990). The candidate source species
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for the putative horizontal transfer of the P-element were narrowed taking into account
the species in sympatry with D. melanogaster. Finally, a whole P-element from D.
willistoni was isolated and presented only one base-pair missmatch with D.
melanogaster P-element canonical sequence (Daniels et al. 1990). Given the time lapse
between the first collection of the stock flies and the new captures, the horizontal
transfer event of the P-element into the D. melanogaster genome and its immediate
spreading into different populations would have happened in the very short span of 40

years.

2.6.- P-element in other species

The P-element was first isolated in D. melanogaster (Bingham et al. 1982), but
further investigations led to the discovery of P homologs in many Drosophila species
(Clark & Kidwell 1997; Pinsker et al. 2001) and even in closely related genera like
Scaptomyza (Simonelig & Anxolabéhére 1991). Sequences homologous to the P-
element have also been detected in other Diptera, like Musca domestica (Lee et al.
1999), Lucilia cuprina (Perkins & Howells 1992), or Anopheles (Sarkar 2003; Oliveira
de Carvalho et al. 2004) and have been detected in humans as well (Hagemann &
Pinsker 2001). The study of P-element distribution reveals several discontinuities
suggesting the occurrence of horizontal gene transfer or differential loss of the element

(Pinsker et al. 2001).

Moreover, recent studies have uncovered the presence of sequences similar to P-
element homologous sequences in different vertebrates besides humans, such as Danio
rerio, Gallus gallus, mouse and rat (Quesneville et al. 2005). These sequences, except
for that of Danio rerio, seem to be located in an orthologous position and that could be
the result of an ancient P-element domestication (Hammer et al. 2005). Finally,
Kimbacher et al. (2009) looked for P-element homology in the Ciona sp. genome. This
organism is a direct descendant of the chordate ancestor, urochordata, located
phylogenetically at the base of the chordate lineage. The finding of P-element sequences
with the typical transposon traits (TIRs and TSDs) revealed that this TE could have
existed already in the base of vertebrate evolution. Likewise, the stable integration of
this P-element into the genome in higher vertebrates could be result of a molecular

domestication event during evolution of these animals (Kimbacher et al. 2009).

42



Introduction

Besides the sequence diversity and subfamilies of P-element found in different
species (for example, the P-element clades in Clark & Kidwell (1997)), a structural
dynamism in the copies has been observed as well. Incomplete copies are found that
have lost part of the middle region, were the transposase is located. This seems to have
an explanation. When a P-element has jumped from the donor site, this site has a DSB
which needs to be repaired. As mentioned above, this repairing can be done by NHEJ or
homologous recombination (gap repair). In this last case, if the synthesis of the new
copy of the transposon is accidentally stopped, as the DNA synthesis is triggered from
the transposon ends, the central part of the transposon is more prone to disappear from
the new copy of the transposon (synthesis-dependent strand annealing SDSA) (Rio
2002). Furthermore, it seems that the shorter a transposon is the higher is its
transpositional efficiency, so this accidental shortening might favour the spreading of

the short and non-autonomous copies (Atkinson & Chalmers 2010).

In this sense, in some genomes were the P-element has been studied with more
depth, these short copies, which are called MITEs, have been detected. Usually these
shortest copies outnumber the longest and complete ones. For example, in Anopheles
gambiae, the length of these P-element MITEs covers from 205 bp to 2450 bp
(Quesneville et al. 2006). MITEs have been found in other transposon superfamilies,
and since sometimes their relationship with the whole copies is not very clear, it could
be possible that its origin would be by chance through recombination (Gonzalez &

Petrov 2009).

2.7.- P-element-related elements: 1360

Element 7360 (also referred to as Hoppel by Reiss et al. 2003 and as Proto-P by
Kapitonov & Jurkal 2003) was discovered in the 80s in a region of the long arm of the
Y chromosome of D. melanogaster (Kholodilov et al. 1988). This sequence was found
to harbour terminal inverted repeats and it was repetitive and variable among different
strains. In the 90s, more /360-like elements were found in the D. melanogaster genome.
Although none of the copies harboured a coding region, the TIR and TSD structure
along with the repetitiveness in the genome, indicated that this was a class II
transposable element (Kurenova et al. 1990). The lack of a coding region prevented the

element to be assigned to a known superfamily of transposons.
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The sequencing of the D. melanogaster (Adams et al. 2000), provided the
opportunity to look for P-element related sequences. The reason for this searches was
that, after the discovery of the P-element in D. melanogaster, this transposon was found
to have a wide distribution in the Sophophora subgenus, with the exception of the D.
melanogaster sugroup. This wide distribution suggested the existence of a P-element in
the ancestor of this subgenus and when the D. melanogaster genome sequence was
available, different research groups searched for P-element sequences descendants of
this putative subgenus ancestor. These searches were fruitful and confirmed the
hypothesis, mainly thanks to the use of the P transposase sequence as query in similarity

searches (Kapitonov & Jurka 2003; Reiss et al. 2003).

The P related element found turned out to be /360 elements longer than those
characterised in the 90s, encoding a truncated transposase sequence which made
possible to place 71360 or Hoppel in the P-element superfamily of DNA transposons. All
the longest 7360 copies harboured truncated transposase sequences and seemed
incomplete, but a consensus sequence generated with the different copies pointed out
that the putative complete copy would be 4480 bp long, with 31-bp TIR and ~2.6 kb of
putative coding region (Kapitonov & Jurka 2003). Although the putative 7360
transposon encodes the same protein domains present in the P-element transposase with
similarity values of about 40%, /360 do not harbour any intron (Reiss et al. 2003).
Another difference between these two elements is the length of the TSD: 8 bp in the P-
element and 7 bp in the /360 element, but this kind of differences among members of

the same superfamily is not uncommon (Kapitonov & Jurka 2003).

Furthermore, /360 element is the most abundant DNA cut-and-paste transposon of
the D. melanogaster euchromatic genome fraction, reaching a total of 105 copies in the
sequenced strain (Kaminker et al. 2002). These copies harbour different deletions and
most of them could be considered as non-autonomous elements. Moreover, the 1360
element has been correlated with variegation through iRNA dependent mechanism in D.
melanogaster, providing insights into a role for TEs in sequence-specific
heterochromatic silencing (Haynes et al. 2006). This fact, along with the high copy
number of this transposon suggests an important role in genomic regulation and host

evolution of TEs.
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3.- The Foldback element

Foldback elements are a special group of TEs with a common structural trait,
namely, very long and internally repetitive TIRs. Although the existence of terminal
inverted repeats and TSD suggest they could be classified as class I elements, the fact
that they did not present sequence homology to known transposons and most of them
did not harbour any coding sequence, made them to be included in a putative class III of
TEs (Capy 1998). After the first foldback element was discovered in D. melanogaster,
structurally similar elements were found in different species, in both animals and plants,
such as, sea urchin, Chironomus thummi, rice, tomato, Arabidopsis, and rye (Hoffman-
Lieberman et al. 1989; Hankeln & Schmidt 1990; Rebatchouk & Narita 1997; Cheng et
al. 2000; Alves et al. 2005; Daskalova et al. 2005; Marquez & Pritham 2010). All these
elements only share structural features, never share similarities in their proteins or DNA
sequences. This observation suggests that this group is a kind of hotchpotch where

elements from different origins have been put together.

The first foldback element (FB) was discovered in D. melanogaster in the last 80s.
Since at this time sequencing techniques were expensive and laborious, indirect
techniques to uncover the nature of the DNA sequences were used, such as the search of
inverted repeat structures through electron microscopy (Potter et al. 1980). After the de-
naturalization and re-naturalization of the DNA, stem-and-loop structures appeared
because of the presence of inverted repeats. The detailed study of the sequences that had

“folded back” (this is the
origin of the name of this
class of  elements),
uncovered the unusual
highly repetitive structure
of the FB TIRs: where a
10 bp sequence is
repeated generating a
longer repetitive unit in

the TIR (Figure 10)

Figure 10. Restriction enzyme maps of a FB element containing clone. The
repetitive structure of the FB TIR is depicted. Different repetitive motifs are (Tmett et al. 198 1) The

found along the TIR sequence. From Harden and Ashburner (1990). sequences o fthe TIRs are
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similar, but not identical; some sequences are longer than others because the numbers of
repetitive units in the TIRs are variable. Likewise, the central region of the /B element
could be TIR sequence that is missing in the other TIR, because there is an important
length difference between the two TIR. However, in some copies of FB an extra
sequence with putative coding capabilities was found. It was named NOF and presented
no similarity to other known transposases or proteins, rendering the transposition

reaction of these elements as a mystery.

It has been proposed that NOF would be an independent transposon with insertion
preference for FB, because NOF is present in few copies of the FB element and
possesses its own TIR of 308 bp along with a putative coding region with 1 to 3 ORF
depending on the FB-NOF copy observed (Templeton & Potter 1989; Harden &
Ashburner 1990; Badal et al. 2006b). However, the ratio of autonomous to non-
autonomous elements (if NOF were the FB transposase), is similar to other TEs.
Furthermore, a NOF element without FB TIRs has never been found. Thus, it seems
reasonable to consider that NOF' is the transposase-coding ORF of FB. Recently, since
the TEs catalogue has greatly increased it has been possible to locate the FB-NOF
protein within a the MuDR superfamily of DNA transposons (class II, subclass I, TIR
elements order (Feschotte & Pritham 2007; Wicker et al. 2007).

The contribution of FB and FB-NOF elements to genome plasticity is well known
since they are able to promote all sort of genomic rearrangements: inversions,
duplications and translocations involving pairs of FB elements have been described
(Collins & Rubin 1984; Moschetti et al. 2004; Badal et al. 2006a). Likewise, FB
elements have been reported in the molecular descriptions of different D. melanogaster
unstable eye mutants. In this sense, /B elements have been found responsible for the
white crimson phenotype in the white locus. In these cases the instability has been found
to be due to the precise excision of FB which originates phenotype revertants (Collins &
Rubin 1983; Paro et al. 1983). Nevertheless, there are other cases where interaction with
zestel mutants is the responsible for the eye colour instability (Bingham & Zachar
1985; Rasmuson-Lestander & Ekstrom 1996; Badal et al. 2006a). Thus, the FB
transposon generates instability due to both processes, transposition activity and ectopic

recombination.
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4.- The Galileo element

The Galileo element was discovered when the breakpoints of the 2j polymorphic
chromosomal inversion of Drosophila buzzatii were isolated and annotated (Céceres et
al. 1999, 2001). A Galileo copy was found in each of the inversion breakpoints. These
two Galileo copies presented exchanged TSD, which would be a sign of ectopic
recombination responsible for the chromosomal inversion (Figure 11). This was the first

time a transposon was directly involved in
the generation of a chromosomal inversion in
natural  population.  Previously, other
inversions were known to have been
generated by transposable elements but in
laboratory experimental populations (Engels
& Preston 1984; Schneuwly et al. 1987; Lim
& Simmons 1994). Furthermore, the 2j

Figure 11. Schematic model for the generation of mnversion presents an adaptlve effect in D.

2j chromosomal inversion in D. buzzatii through
ectopic recombination between two Galileo copies.
The model explains why the TSD of the Galileo
elements have been exchanged. From Céceres et al
(1999).

buzzatii, because different pieces of evidence
have been found, such as, (I) the clinal
variation of the inversion frequencies along
latitunial and altitudinal geographic gradients or (ii) its effect on the adult fly size and
the development time (Ruiz et al. 1991; Hasson et al. 1995; Betran et al. 1998).

In the last decade, our research group has analysed the breakpoints of another two
D. buzzatii polymorphic inversions, 2¢’ and 22° (Casals et al. 2003; Delprat et al. 2009).
These two inversions were generated by the same transposable element and the same
mechanism, i.e. Galileo was the substrate for the ectopic recombination event that
generated the inversion. The fact that the same element is involved in three different
inversions 1is noteworthy and suggests Galileo unusual structure and/or its

transpositional activity contribute to its ability of generate chromosomal inversions

(Delprat et al. 2009).

The Galileo copies found in the inversion breakpoints were seemingly incomplete
because they did not contain any significant coding regions. In a subsequent study in

our group (Casals et al. 2005), new Galileo copies were isolated from D. buzzatii (total
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length ranging from 392 to 2304 bp) which corroborated the long TIR of Galileo
(Iengths up to 1115 bp) and its internally repetitive structure with tandem repeats of 136
bp (three and a half repetitions). Furthermore, Galileo elements presented target sites
duplications of 7 bp, with the palindromic consensus sequence GTAGTAC (Céceres et
al. 2001; Casals et al. 2005). Since Galileo copies did not present any similarity to
known transposons, it was tentatively classified as a Foldback element, using structural
criteria because of its main trait: long and internally repetitive TIR (Caceres et al. 2001;
Casals et al. 2005). Furthermore, the study of the breakpoints variability of the 2j
inversion in different D. buzzatii strains, uncovered the existence of two closely related
elements, which were named Kepler and Newton (Figure 12). These elements also
harboured long TIRs, along with an average 73% sequence identity to Galileo TIR,
identical 40 bp of the terminal TIR region and TSD of 7 bp long (Céceres et al. 2001).
These traits suggested these elements belonged to the same family, because they shared

both structure and sequence identity (Casals et al. 2005).

In neither Galileo, Kepler and Newton copies a putative ORF that could encode the
element transposase was found, although in some Galileo copies there was a short
region encoding a putative protein product with low similarity to the transposase of
1360 (Hoppel) element (Casals et al. 2005). Therefore, the Galileo copies isolated
seemed to be non-autonomous elements in which the coding region could have been
deleted and longer Galileo copies could exist in the genome with whole coding

capability.

The abundance of Galileo elements in D. buzzatii was assessed by Southern blot and
in situ hybridization. Southern blot yielded from 21 to 29 Galileo copies/genome, with
an average of 26.7 copies/genome and no significant different means among the
different D. buzzatii strains (Casals et al. 2005). In situ hybridization yielded a
somewhat higher copy number with no differences among strains but a significant
accumulation in the pericentromeric regions and dot chromosome (Casals et al. 2005).
Furthermore, when the presence of Galileo was explored in other species of the repleta
group, it was detected only in species closely related to D. buzzatii of the buzzatii,
martensis and stalkeri clusters. No Galileo signal was detected in other more distant
species from the repleta group, such as D. mulleri or D. repleta. This could be due to a

narrow species distribution of Galileo elements or it could be due to the fact that the
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sequence divergence of the elements makes them undetectable with the techniques used

(Casals et al. 2005).

Figure 12. Galileo, Kepler and Newton schematic structure. The TIR region are the different segments
considered inverted repeat (IR). The tandem repeats are the dashed rectangles, where the number depicts the
number of repetitions. The short region that presented homology with /360 transposase is depicted. Taken from
Casals et al. (2005).

49



Introduction

5.- Drosophila as a model organism

One of the most studied eukaryotes is the fruit fly Drosophila melanogaster which
has been used as model organism since the beginning of the last century (Figure 13).
Thomas H. Morgan was the first scientist to use this fly systematically for Genetics
studies, because of its short generation time (10 days), along with the numerous
offspring individuals and the phenotypic mutations easy to detect. All these traits made
Drosophila of exceptional utility for detecting and studying the inheritance of
mutations. Furthermore, since D. melanogaster is an organism easy to handle and cheap
to maintain, its use has been extended to other Biology fields, such as, development,
behaviour, physiology, immunology, neuroscience, along with evolution and population
genetics. It is worth to mention that 75% of the genes that are involved in human
illnesses possess an ortholog gene in D. melanogaster genome, a fact that emphasises
the importance of the generated knowledge in these flies and encourages further studies

(Rubin et al. 2000).

Furthermore, because of its historical importance, large research community, and
powerful research tools, as well as its modest genome size (~180 Mb), Drosophila was
chosen as a test system to explore the applicability of whole-genome shotgun (WGS)
sequencing for large and complex eukaryotic genomes (Venter et al. 1998; Adams et al.
2000). This way, the genome of D. melanogaster was the second animal genome to be
sequenced and annotated. This fact made D. melanogaster a model organism for
genomics as well, providing the foundation for a new era of sophisticated functional

studies and the set up of tools for whole-genome analysis for more complex genomes.

50



Introduction

Figure 13. a) Drosophila melanogaster 10 days life cycle. b) Media flask where Drosophila are
kept. This media is cheap and easy to handle. Pictures taken from http://www.hoxfulmonsters.com

and http://en.wikipedia.org.
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5.1.- The Drosophila genus

The genus Drosophila is a very large group of well over 2000 described species that
belong to the family Drosophilidae (Markow & O’Grady 2007). Its members are usually
called fruit flies (or vinegar fly) because some of its species linger around overripe or
rotting fruit. Currently, Drosophila i1s divided into ten subgenera, the largest of which is
undoubtedly the subgenus Drosophila. The subgenus Sophophora, with over 300
described species, is the second largest. Together, the subgenera Drosophila and
Sophophora account for roughly 90 per cent of the diversity in the genus Drosophila.
Generally, Drosophila phylogenetic studies have focused on different groups or species
complexes of this genus, which imply that few studies have worked with the whole
genus and many aspects of drosophilid phylogeny are controversial or poorly studied
(Ashburner et al. 2005; Markow & O’Grady 2006). However, recent molecular
systematic studies have shown that this genus is comprised of at least three independent
lineages and that several other genera are actually embedded within Drosophila
(O’Grady & Markow 2009; van der Linde et al. 2010). Since the phylogenetic basis of
the genus are not in total agreement with the developed Drosophila taxonomy, some
Drosophila researchers are advocating dividing this genus into three or more separate
genera, but others favour maintaining Drosophila as a single large genus (Figure 14)
(Markow & O’Grady 2006; O’Grady & Markow 2009; van der Linde et al. 2010). The
large number of species, along with the huge variability in the ecological habitats and
geographical regions where these flies are found, are probably a reflection of the age of

the genus, estimated in 40 to 60 myr (Russo et al. 1995; Tamura et al. 2004).

Although D. melanogaster is the most studied species of this genus, the other groups
of species have been of interest as well, because they are good models for studying
speciation patterns, adaptation and relationship with latitudinal gradients, chromosomal
evolution and morphology evolution. For example, one of the most eye-catching groups
is the Hawaiian Drosophila flies, which show a huge variability in size, colour and
shapes, along with behaviour (for an example of wing diversity see Edwards et al.
2007). This group comprise a radiation of approximately 1000 species and it seems to
be the result of a single colonist lineage that arrived in the islands 25 myr ago (Russo et

al. 1995; Markow & O’Grady 2006). This species diversity is a putative result of
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Figure 14. Genus Drosophila phylogenetic trees showing: a) monophyletic, b) paraphyletic, ¢) polyphiletic
groups in pink d) simplified version of phylogenetic relationships to illustrate the polyphyly of the genus
Drosophila. Taken from O'Grady and Markow (2009).
different factors, such as, sexual selection, geographic isolation, host plant
specialization and morphological innovation (Craddock 2000; Boake 2005). Other
species groups which have been studied by ecologist and evolutionary biologist are, for
example, the obscura group, where we find D. pseudoobscura, a well known species
studied by Dobzhansky and colleagues. Another example is the virilis group whose

speciation and chromosome evolution has been studied broadly (Popadi¢ & Anderson

1994; Caletka & McAllister 2004).

Another important Drosophila species group is the repleta group. This group is one
of the largest and most extensively studied groups in the subgenus Drosophila, with
more than 90 species classified in six species subgroups — mulleri, hydei, mercatorum,
repleta, fasciola, and inca. (Markow & O’Grady 2006; Béchli 2007). Many species of
the repleta group are adapted to arid or semiarid places and are cactophilic, feeding and

breeding on the rotting cactus tissues (Ruiz et al. 1990; Wasserman 1992). The repleta
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group has served as a model system for evolutionary and ecological studies. Some
species have been studied regarding their plant-insect interactions or insect-plant-
microbe interactions, along with adaptation to extreme environments (Barker & Starmer
1982; Ruiz & Heed 1988; Barker et al. 1990; Etges et al. 1999; Matzkin & Markow
2009). Furthermore, detailed polytene chromosome maps were conducted for almost all
the species of the group and more than 296 inversions were mapped. Several of the
chromosomal inversions were variable among closely related species which provided a
valuable tool for understanding the phylogeny of this group (Wasserman 1982, 1992).
The availability of molecular data offered the opportunity to test and complete the
phylogeny provided by the cytological studies. Although some molecular works did not
support the monophyletic nature of the repleta group, more recent data seem to point in

the opposite direction (Durando et al. 2000; Oliveira et al. 2011).

Drosophila buzzatii is a cactophilic species that breeds and feeds in the necroses of
Cactaceae, mainly Opuntia and secondarily Trichocereus (Hasson et al. 1992). It has an
American origin and has recently spread reaching a sub-cosmopolitan distribution
which covers South America, South Europe, North Africa and Australia (Fontdevila et
al. 1981, 1982; Barker & Starmer 1982). Different aspects of D. buzzatii evolutionary
biology have been studied such as: geographical patterns of inversion frequencies in
both the original species range and the colonizing population of the Old World
(Fontdevila et al. 1982; Hasson et al. 1995); latitudinal and altitudinal clines in
inversion frequencies (Hasson et al. 1995); the relationship between second
chromosome inversions and different phenotypic traits, such as, body size,
developmental time, viability and longevity (Ruiz et al. 1991; Betran et al. 1995;
Rodriguez et al. 1999; Fernandez Iriarte et al. 2003); and natural selection in the wild
because the knowledge of its breeding sites allows the assessment of changes of
inversion frequencies during life cycle (Ruiz et al. 1986; Hasson et al. 1991). This
species names its own species complex, the buzzatii complex, which belongs to the
mulleri subgroup in the repleta group in the Drosophila subgenus (Wasserman 1992;

Ruiz & Wasserman 1993).
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5.2.- Drosophila 12 genomes consortium

The extraordinary diversity of Drosophila has led to widespread use of species in
this genus as model systems for many aspects of genetics, ecology, evolutionary
biology, and comparative biology. The existence of the extraordinarily well-annotated
genome of D. melanogaster (Adams et al. 2000) embedded in the context of a species
group with a long history of biological research, immediately motivated the
development of comparative genomics in this genus. The D. pseudoobscura genome
was sequenced in 2005, triggering comparative genomics studies in the Drosophila
genus (Richards et al. 2005). Afterwards, 10 more Drosophila species were chosen to
generate a set of 12 Drosophila sequenced genomes: D. melanogaster, D. simulans, D.
sechellia, D. erecta, D. yakuba, D. pseudoobscura, D. persimilis, D. willistoni, D.
virilis, D. mojavensis and D. grimshawi (Figure 15). These genome sequences provide
an unprecedented dataset to contrast genome structure, genome content, and
evolutionary dynamics across the well-defined phylogeny of the sequenced species

(Clark et al. 2003; Singh et al. 2009).

The group of 12 sequenced species, capture a range of evolutionary distances, from
closely related sibling species pairs such as D. simulans and D. sechellia, to more
distantly related species defined by the subgenera of Sophophora and Drosophila.
Furthermore, there are species with broad distribution, such as the cosmopolitan species
D. melanogaster and D. simulans, as well as species with highly restricted geographic
ranges such as D. sechellia, whose distribution is limited to the Seychelles Islands
(Indian Ocean). Moreover, generalist and specialist species are multiply represented, a
large range of body sizes is encompassed, and a remarkable array of courtship and other
behaviours are sampled, as are divergent life histories (Powell 1997; Markow &
O’Grady 2007). Besides the common traits, these differences among the 12 Drosophila
species would be studied in depth thanks to the availability of the sequenced genomes

and it allows Drosophila researchers to place their questions in a phylogenetic context.
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Figure 15. Phylogeny of the 12 sequenced species of Drosophila showing host preference for oviposition,

developmental time from egg to adult in days, and the approximate geographic ranges of the species. Divergence
times between species are in millions of years (Tamura et al. 2004) . Geographic ranges of different species (the
ones with a “range jey”) are depicted. Modified from Signh et al (2009).

The 12 Drosophila genomes provide a tool to study the evolution of other types of

DNA sequences besides the protein-coding genes, such as the TEs. These genomes

provide a landscape where the relationship among the different genomes and TEs could

be studied, not only in one species, but rather from a phylogenetic perspective. Genomic

TE content is a variable trait that differ among the species. Some TEs appeared to be in
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the genus from the beginning, such as the telomeric retrotransposons (Villasante et al.
2007). Other present a patchy distribution among the species, which could be a result of
genomic losses or horizontal transfer events (Loreto et al. 2008). Furthermore, different
classes of transposable elements can vary in abundance owing to a variety of host
factors, motivating an analysis of the intragenomic ecology of transposable elements in
the 12 genomes. Although comprehensive analysis of the structural and evolutionary
relationships among families of transposable elements in the 12 genomes remains a
major challenge for Drosophila genomics, some initial insights can be gleaned from
analysis of particularly well-characterised transposable element families. The use of
these 12 genomes also facilitated the discovery of transposable element lineages not yet
documented in Drosophila, and a deeper study of the already known (Drosophila 12
Genomes Consortium et al. 2007; Singh et al. 2009).

57






IL.- OBJECTIVES






Objectives

The Galileo element has been directly involved in the generation of three different
natural chromosomal inversions in D. buzzatii. All copies found in the inversion
breakpoints as well as other copies isolated in our research group were incomplete
copies with no significant similarity to any known TE neither any known protein.
Hence, the Galileo element was worth to study in more depth due to its implication in
the D. buzzatii chromosomal evolution and its unknown nature as TE. Furthermore, the
availability of the 12 sequenced Drosophila genomes provided a very useful tool, not
only to look for Galileo-like elements, but also for studying the TE from a genomic

perspective.

The main objective of this thesis is to fully characterise the transposon Galileo along
with its classification based on functional means, such as the putative Galileo
mobilization proteins. Moreover, the classification allows the comparison of Galileo
with related transposons. Furthermore, other objectives of this thesis are to analyse the
Galileo copies found in different genomes and compare them inter-species and intra-
species, to test biochemically that the detected transposase interacts with Galileo TIR

sequences and, finally, characterise and study the dynamics of the Galileo long TIR.

This thesis is divided in three chapters. Each of them has different specific

objectives that are in part a consequence of previous results.
In the first chapter, the objectives are:

— To find a complete or nearly-complete copy of Galileo (which means a copy
with a protein-coding ORF) in the genome where Galileo was discovered,

D. buzzatii.

— To look for similar elements in the publicly available sequenced genomes of

12 Drosophila species.
— To unequivocally classify Galileo.
— To compare Galileo with other related TEs.
— To analyse the different Galileo elements found in each genome

In the second chapter, the objectives are:
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To reconstruct nucleotide coding for a functional Galileo transposase in D.
buzzatii and nucleotide coding sequences for the transposase DNA binding
domain in three different species (D. buzzatii, D. mojavensis and D.

ananassae).

To express and purify the transposase DNA binding domains and in vitro

test its binding properties

To isolate and determine the nucleotide sequence of the binding site of the

transposase binding domain in D. buzzatii

To test Galileo whole transposition reaction in D. melanogaster through

plasmid transformation of embryos and fly crosses.

In the third chapter of this thesis the objectives are:
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To isolate all Galileo copies in the D. mojavensis sequenced genome.
To carefully annotate all the regions in each Galileo copy.

To study the phylogenetic relationship among the elements taking into

account the TIR and the transposase sequence and compare the results.

To study the Galileo chormosomal distribution and its relation with D.

mojavensis genes

To study the composition and the cause of variation in Galileo TIR length

and propose mechanism responsible for it.
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Materials and Methods

1.- Drosophila strains

In this work the following Drosophila strains have been used for molecular work:
— D. buzzatii st-1, Maz-4, j-9, jq7-4, jz3-2, jq7-1, Sar-9 and j-4.

— D. mojavensis 15081-1352.22, Tucson Stock Center. This is the stock used for

genome sequencing (Drosophila 12 genomes consortium 2007).
— D. melanogaster white strain (w1118)

The 12 sequenced Drosophila genomes have been used for in silico analyses. For
the genomes of D. melanogaster (strain reference: 10421-0231.36, Tucson Stock
Center) and D. simulans (strain reference: 10421-0251.195, Tucson Stock Center) the
assembly which has been analysed corresponds to CAF1 chromosomes. For the rest of
species D. sechellia (strain reference: 10421-0248.25, Tucson Stock Center), D. yakuba
(strain reference: 10421-0231.36, Tucson Stock Center), D. erecta (strain reference:
10421-0224.01, Tucson Stock Center), D. ananassae (strain reference: 10421-0371.13,
Tucson Stock Center), D. pseudoobscura (strain reference: 10421-0121.94, Tucson
Stock Center), D. persimilis (strain reference: 10421-0111.49, Tucson Stock Center), D.
willistoni (strain reference: 10421-0811.24, Tucson Stock Center), D. virilis (strain
reference: 10421-1051.87, Tucson Stock Center) and D. grimshawi (strain reference:
10421-2541.00, Tucson Stock Center) the CAF1 contigs assembly was analysed. In the
case of D. mojavensis (strain reference: 10421-1352.22, Tucson Stock Center), both

CAF1 contigs and scaffolds assemblies have been explored.
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2.- Molecular techniques

2.1.- Nucleic acids isolation (Genomic and plasmid)

Total genomic DNA was extracted from 0.2 g of adult flies following the protocol
described by Pifiol et al. (1988). Plasmid DNA was extracted using standard methods
(Sambrook et al. 1989). The quality of the purified DNA was checked with an agarose
gel.

2.2.- PCR

PCRs were performed in a total volume of 25 pl, including 1 pl of cDNA or 100-
200 ng of genomic DNA, 10 pmol of each primer, 200 uM dNTPs, 1.5 mM MgCl2, and
1.5 units of Taq DNA polymerase (Roche or Bioron) or Phusion enzyme (Finnzymes).
Typical cycling conditions were 30 rounds of 30 sec at 94°C, 30 sec at 55-60°C
(depending on the primer pair used), and 60 sec at 72°C. The PCR products were loaded
in an agarose gel and purified with QiaQuick kit (Qiagen).

2.3.- Plasmid generation

For testing the transposition reaction of Galileo in vivo, a two plasmid system was
generated consiting in a helper plasmid, where Galileo transposase was cloned, and a
donor plasmid, where the miniwhite gene was contained in between two Galileo TIRs
with TSD. The co-injection of these two plasmids in Drosophila white embryos and the
posterior screening of the F1 generation should show when the transposition reaction
has happened because individuals with coloured eyes shall appear. In this experiment
the P-element transformation vectors were used as positive control, whereas the donor
plasmid alone was used as negative control. The details of the generation of the

plasmids are found in the second chapter of results.

2.4.- Protein assays

Protein expression and purification

Different ORF of the putative DNA binding domain proteins inferred (see below)
were cloned in expression vectors (N-ter MBP-tag vector from The Oxford Protein
Production Facility, UK) and transformed in Escherichia. coli BL21 (DE3) expression
cell strain. The protein expression was induced in DO680 =0.5 LB cultures with 100
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ug/ml ampicillin cultures, ImM of IPTG and 100uM of ZnCl, at 16°C over night. The
cells were harvested by centrifugation and resuspended in HSG buffer (50mM HEPES
pH 7.5, 200mM NaCl, 2mM dithiothreitol (DTT), SmM EDTA and 10% glycerol). The
cells were lysed in a French press and centrifuged at 25000g for 30 min. The
supernatant was loaded onto an amylose resin column (New England Biolabs). The
column was washed several times with HSG buffer and the protein eluted with HGS
buffer plus 10mM maltose. The fractions containing MBP transposase were pooled and

aliquots were stored at -80°C.

Electrophoretic mobility shift assay

This assay was performed to test the binding activity of the expressed Galileo
protein domains. The purified recombinant THAP domains were incubated for 2 hours
at room temperature with the labelled TIR in 20 ul reaction of binding buffer (20 mM
Tris-HCIL, pH 7.5, 100 mM KCI, 100 g/ml bovine serum albumin, 2.5 mM DTT, 5%
glycerol). Different conditions were tested: different protein concentration (1, 1:100,
1:10000 from the stock protein solution (Sug/uL or 94 uM), addition of ZnCI2 (100 uM
final concentration) and addition of unspecific competitor DNA (pBlueScript,
~500ng/reaction). The reactions were loaded in a 4% TAE-polyacrilamide gel and run

for 2 hours at 300V at 4°C.

Footprint assay

A sample of the EMSA reaction was digested by 0.05U of DNase I for 1 minute at
room temperature. The enzyme was diluted to 1U/uL. with dilution buffer (5 mM
MgClI2, 0.5 mM CaCl2). The reaction was stopped using 1 uL of 500 mM EDTA. DNA
was purified by phenol-chloroform extraction and ethanol precipitation. The cleavage
pattern was analysed by electrophoresis on a 5% polyacrylamide sequencing gel.
DMS/piperidin reactions were performed following standard procedures to reveal G

positions and were used to localize the DNase I protected regions.
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3.- Sequence analysis

The sequences obtained in the different PCRs were assembled with Geneious and
aligned with Muscle 3.6 software (Edgar 2004; Drummond et al. 2010). The sequences
were compared to previous ones using Blast searches and alingments (Altschul et al.

1997; Katoh et al. 2002; Edgar 2004).

The 12 genomes searches were performed with Blast algorithms, using tBlastn for
looking for putative ORF and Blastn for non-coding sequences. Different thresholds of
scores have been used in the different searches during this thesis: an e-value of 10
(which corresponds to a fragment of at least ~200 amino-acids with a ~30 % of identity
for tBlastn searches); an e-value of 10~ for Blastn searches (which corresponds to 21-22
identical consecutive nucleotides); and an 80-80 criteria, where at least an 80% of the
length of the query was found along with a minimum of 80% identity. Different
sequences have been used as query, such as Galileo TIR, Galileo transposase, Galileo
whole element of each species. In each of the results chapters, these details are

specified. The parameters of the different Blast searches have been used as they are set

by default.

The sequences detected with the different Blast searches have been thoroughly
annotated using a group of different tools, most of them implemented in the Geneious
software, such as dotplot graphics for detecting repetitions and its span, different
alignment algorithms and custom Blast searches with specific Galileo and Drosophila
TEs databases (Drummond et al. 2010). All the Galileo copies found have been
classified regarding identity and phylogenetic inference in different subfamilies, and the
internal structure of each copy has been explored, annotating TIR regions, transposase

regions, F1 and F2 spacing regions, tandem repeat regions and insertions.

The putative ORF found in this work have been conceptually translated. In all
copies Galileo ORF presented frame-shift and premature stop codons mutations. In
these cases a consensus was reconstructed using all the sequences available and a
majority rule. The obtained sequences have been analysed using Blastp and domains
have been detected with Domain Conserve Search, InterProScan and Coils servers

(Lupas et al. 1991; Zdobnov & Apweiler 2001; Marchler-Bauer et al. 2005).
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The MEGA software have been used for calculation of the pairwise number of
differences among different sets of sequences (p-distance) (Tamura et al. 2004). These
nucleotide differences have been transformed to absolute time using the Drosophila
evolutionary rates of 0.016 changes/position/myr and 0.011 changes/position/myr (Li
1997; Tamura et al. 2004).

The different set of sequences have been aligned and filtered with Gblocks using
relaxed parameters (Talavera & Castresana 2007). jModelTest was run to find the best
evolutionary model for the different sets of sequences and phylogenetic trees were
inferred. For these inferences, different computer programs have been used, such as
MEGA 4 for Neighbor-joining trees, PhyML and RAXML for maximum-likelihood
inferences and BEAST for Bayesian inferences (Guindon & Gascuel 2003; Stamatakis
2006; Drummond & Rambaut 2007; Tamura et al. 2007).

Ad hoc perl scripts have been used to analyse the inter-chromosomal and
intrachromosome distribution of Galileo and to compare their position to the predicted
genes in the genome. The software package JMP 8.0.2 (SAS Institute Inc. 2009) has

been used for performing statistical tests.
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Results

1.- The Foldback-like element Galileo belongs to the P-element
superfamily of DNA transposons and is widespread within
the Drosophila genus.
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Results

The Foldback-like element Galileo belongs to the P
superfamily of DNA transposons and is widespread
within the Drosophila genus
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Galileo is the only transposable slement (TE) known to have
generated natural chromesomal nversions in the genus Drosoph-
ila. It was discovered in Drosophila buzzatii and dassified as a
Folddback-fike element because of its long, internally repetitive,
terminal inverted repeats (TIRs) and lack of coding capacity. Here,
we characterized a seemingly complete copy of Galileo from the O,
burratii genome. 1L is 5,406 bp long, podsesses 1,229-bp TIRL, and
encodas a 912-an transposase similar to those of the Drozophila
melanagaster 1360 (Hoppe!) and P elements. W also searched the
recently available genome sequences of 12 Drosophila species for
elemonts similar 1o Dbuz\Galiteo by using bloinformatic tools,
Galiteo was found in six species (ananassae, willistoni, peudoob-
scwra, persimilis, virilis, and mofavensis) from the two main lin-
eages within the Dresaphila genus, Our abservations place Galilea
within the P superfamily of cut-and-paste transposens and extend
considerably its phylogenetic distribution, The interspecific distr-
bution of Galileo indicates an ancient presence in the genus, but
the phylogenetic tree bullt with the transpesase amino add se-
quences contrasts significantly with that of the species, indicating
linmage sorting andlor horizontal transfer events. Our results also
suggest that Foldback-like elements such as Galilea may evalve
from DMA-based transposon ancestors by bods of the transposase
gene and disproporiienate elongation of THRs.

cladan Il glpmseits | Arandpois | lerminal insered rapoats
1360 | inversions

Tr.'lmpl.mlh'lc clements {TEs) are intracellular p:l:r:l.-dl;.,:s. thait
populate most eukaryotic genomes and hove a huge impact
om their evolutin { 1) Their abundance and diversity are aston-
shing and a considerable effont is needed o put arder in the
mereasing constellation of familics being discovered. So far, two
mnin ¢lasses are widely recognized, refrotransposons that trans-
pase by an intermedinie RMA molecule and transposons thai
muve by using a single- or double-strimded DMNA intermedhnle
{2). Three subclasses of transposons have been defined based on
the transposition mechanism: cut-amd-paste, rodling-circle, and
Mwvericks (3], Cut-and-paste transposons possess T1HRs, usually
shorl, and encode s protein called transposase (TPase) that
catalyees their excision from the original location in the genome
and promoics their reinsertion into o new site gencrating iarget
sile duplications (TSDs) in the process (4], The Droseyriili
elements P (5) and mariner (6) are among the besi known
familics of cut-and-paste iransposons bud there are many more
families classificad in ten transposon supsrfamifics on the basis of
similarity among the TPascs: Telfmurimrer, RAT, P, MuldE,
CACTA, PigvBac, PIF NHartinger, Menling, Trasih, nnd Samies
(3} Other elements are still unclassificd, seemingly becase only
defeetive copies have been found, Diefective | nonmilononwug)
copics coexist and ofien ootnumber the canonical {autonomous)
copics, and can move if there is a functional TPese provided by
canonical copies present somewhere ele in the same genome
and if they conserve ihe signals required for TPase recognition
{usaally the TIK ends),
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Foddback-like elements constitute a group of poorly known
TEs with wncertain classification {2, 3k They take their nome
fram the Faldback (FR) clement of Drosoplula srelanogosier (7.
8) and e present in a diverse array of organisms {9=13) The
unusial chormcterstics of Folfback-like elements include very
long TIHs that make wp almost the cntire element and are
separbed by o muddle domun with vanable length and compao-
sithon, Mo coding capacity has been found in many Foldbeck-like
clements, and thus, their mechanism of iransposition is uncee.
tain. However, n small proportion (=105} of F& copies in [)
metariogaster is associated with a 4-kb-long sequence called NOF
cncoding a 1306kDa protein of unknown function (14, 15). FiF
has been recenily included in the MaldR superfamily {3) because
of the similarity of the proteins encoded by both MR and NOF
i that of Murrisn, o transposon from Ervemeeba (16}, Besides,
some copies of FARE, another Foldback-like transposon from
Arabulopsis, harbor o large ORF with wienk similarity to the
MuDR TPasc {(13). The origin of many other Foldback-like
clements 15 0l uncertain,

Crafifec was discovered in Dvosaphila buzzati and is the only
TE in the gemrs Drosophdn that has been shown 1o have
generated chromosomal imversions in nadure (17=19). Other
TEs, such as P, Hobe, or FI are known (o induce chromosomal
rearrangements in expermmental populations of £, meloogasier
(20], bui there is no direct evidence of iheir implication i
Ihesophila chromoesomal evolution. Galilea, wgether with two
closely related elements, Kepler and Newrow, were classificd as
Foldback-like elements because of their long. imernally repeti-
tive TIHRs (18, Z1). Al copies of Galifeo, Kepler, and Newron
isolated so far from the genome of £, zzadl lnck any significant
provein=cosling capacity except for twe Cralifer copics bearing o
short segment with weak similanity to the TFPase of element 1360
(Hoppel) (21). An experimental search for Galifeo sequences bn
other Prosophila species suggested that thes TE has o mther
restricied distribution, being only present in the closest relatives
of £ bezzai bt not in more distantly related specics within the
repleta group (21). Here, we take advintage of the recently
sequenced genomes of [ melanogasier (22}, Drosophila
pactrdoodscinn (23), and ten additional Dresagdila specics (24) o
sedrch for sequences similar to Gunlifeo in these gevomes by using
ioanformatic ol We found that Gafiles lins o muoch wider
specres distnbution within the Drosepdiile genos than préviously
suspected. Funthermaore, our resulis allow us 1o fully charscterize
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Fig. 1. Mot complete (opss of falleo and 1260 fownd in thiv wodk. [4)
Putative complete Galieo oy Trom the D, burrati gendms. () Mol com-
pete coples of Galleo found in the 12 seguencesd genomes. (C) Most complete
copies of 1380 TIAs are represented a4 arrows snd TPases are represented as
gray rectangles. The dicect repeats of the TIRs 0 DburiGaliles are ndicated by
siriped patierns. DmohGalileo ntemal iverted repeats are reprasentied as
litthe triangler. in 3 mojavenc two Galifes copies representative af twa

vubdamilies found i this species she depicied. See 8 Tabile 4 for detail

the clement Cialifes and o classily i1 as o member of the P

superfamily of cut-and-pasic DINA transposons,
Results

Structure of Gafileo in O, buzeatii. By using as o query Califeo-3, o
defectnve copy of DR Wralilee (21), we carned oul preliminary
hipinformatic searches in the genome sequence of Drosapluls
mofaveriss, another member of the replein species group, Some
of the hits, on close examination, boumnded o protein-coding
sepment that might be the Gialilee TPase. Several PCREs were
then attempted (o isolate longer Gelifeo copies from the [
Druzzati genome (sec Methody ). In cach of them. one primer was
anchored in the known Dby \Gielitee TIRs and the oiher in the
possible DmefiGaliles TPase, A putatively complete copy of
f Dz Cedifen could be assembled in ihis way (Fig. 14 ). This copy
is 5406 bp long, posscsses 1.220bp TIRs and an intronles
2.738bp QORF {nt 1348 -4057) encoding a 91 2-am protein (afier
fixing two STOF codons, and o 1-bp deletion thot cavses o

frameshift mutation).

Acsearch using BLASTX revenled sigmificant simalaniy of the
Dbezradifen TPase to those of the related DL melanogasier 1360
and P elements (25, 26) [AANIYIEE, E-value = le-93
OTMIK2, E-value = Je-25], The MNus\Galilee TPase includes
a THAF domaim near the N termimes (amino wcids 27-104)
similar to the DMNA binding domain of Pelement TPase (27-30).
A copy ol 1300 located in chromosome 4 of DL mefanogester (31)
encodes o T Pase (854 an ) longer than that inthe Mational Center
for Biotechnology Information database (25), including a THAP
domain near the N terminus (after coration of a 1-bp frameshifi
mutationk, A global alignment of the DbusCielifen TPase with
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those of Denefd 360 and Deef® viclded 34.5% and 27.6%
identity, respectively. No significant similarity was found be-
tween the Muzreldeo TPuse and the proteins encoded b,
Driel PR (14, 15).

Distribution of Galileo and 1360 in the 12 Sequenced Drosophils
Genomes. Systematic bivinformatic searches using as quenies the
TPuses and TIRs of Dhuz\Cralifeo and Dol 2360 were carmied
out (see Methods), The resulis [supporiing information (S1]
Tables 1-3] suggested that clements similar 1o Galifee are
present in [P anenesae, 12 mesdoshicwn, 0. persinnilis, 1
willistawnd, L. virelis, and £ mojavensis, whereas elements similia
to [36 are present in the five melanogasier subgroup species
(melanogaster, sinudans, sechellta, yaknba, and erecra) plus
peeidoohaciens, . peestimilis, and [, virdis, Therefore, none of the
twis TES 1= seemingly present in . grivesliasd but both are found
in I prendosbscure, [ persimilis, and £, vielis,

Characterization of Galileo Copies. W characterized 46 relatively
long copies of Celifeo containing segments cneoding a partial o
full TPase from the six genoemes where this TE is present (51
Table 4} All of them possess one or two leng TIRswith similarity
to those of Dbuwziallee (see below) and nine are flanked by
perfect T-bp TSDs. The structure of the longest, presumabiy
most complete, copy i each specics s depicted m Fig, L8, These
Califen copies are 4,386 bp (0. willisfons) 1o 5,989 bp long (1%
mofavensis j and exhibit TIRs of 684 bp (I anemessae) o 813 bp
(% sreywvensis). However, none of ihem contains a single ORF
ccoding a Tully functional TPase (all bear STOP codons
frameshift mutations, snd’or deletions), In £ majavensis 16 long
copics were characterized, Many of them include nearly com-
plete TPase-coding segments amd all but three contain one oa
mare inseriions of other TEs (51 Takle 4). These 16 copics
belong to two groups with distinelive structures (sce Fig. 15 foa
representative cogaes b and encoding somewhat different TPases
(see below),

We ilso senrched cach of the six Dvosopdiile genomes for shori
nonautonomos Gielieo copics by using BLASTN and the mosi
complete copy already found in the same genome (Fig. 18) as
query (see Methds), Galiles was rather abundant in the sis
genomes, the number of significant hits being = 10 in all cases
with o maximum of 495 in ¥ willisond (51 Table 1). We identified
amd isolated 100 Galifes copies from the contigs producing
significant hits in the six species, All of them possess two long
TIRs separated by o relutively short middle segment and %7 shomw
perfect T-bp TSDs (51 Tobkde 3} Thus. these copies are struc-
turally similar to the copics of Galieo, Kepler, and Mewdon
previously found im £ Buezzants (21), A summary of the chirsc-
teresdics of these relatively short roRulonomous Copees i given
im 51 Tahle &,

TSO0s In £ Muezzactd, Galifes generates on inscribon 7-bp TS0=
with the consensus GTAGTAC (21), Likewisc, in the six Dro-
sopfild genomes anabvzed here, 106 Cealifer copies wene (lanked
by identical T-bp sequences (51 Tables 4 and 5), We enleulated
the frequency of the four mucleotides in each of the seven sites
for each specics separately. The frequency pattern observed in
the six specics wos similar v that of D Califes and the 106
sequences were combinesd, All positions but the fourth show a
significant departure from mndomness, and the consensus is the
palindrome GTANTAC.

Divergence Between Galileo Copies. To cstimale the time since the
il recen] iranspositional actnaty of Canliles, we measured the
wvernge pairwise divergence between the short nonautondasmous
copics within each species (see Meatfods and 51 Tuble &) In [
amanesure, the average pairwise divergence among 20 cophes was
28%, which implics a divergence time of = 1.8 myr. However.
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Fig. 2. Heighbor-jaining phylogenetic tree inferred from the analyiis of M0
Galfeo coples found in the D mojsvensis genome. The teo T8 of each copy
were included in the tree & separate sequences o allow their comparison
within AN BETwean copies. TIRS & thit TIR Iocated &1 5° froim the TPes oF 1
forit TER that appears in e contig if the copy Could nol be oriented, The
complete deletion option was ued leaving 269 informative e Bootitrap
walues &1 main nodes are shawn. The average paireshe divergence betaeen
groups O and E i =25%, indaating & divergence time of =8 myr, and the
avarage pairwiee deerganse Between these Two groups and grougs Cand F i
=11%, inplying 8 divergence time of =10 myr. The putathe chamerss ele-
ments with highly divergent Tifs are marked with an arrow. Detail of these
Galfeo coples are given in %1 Tables 4 and &

evidence for more recent irenspositional events was found
because a subgroup of 13 copies shows an average divergence of
0.36% equivalent 1o a divergence time of only 0,225 awvr, Similar
observations were made in L psendoobeenre, D, perdpulis, amd
B, willistoun (51 Table 6). In cach case, & ups with =1%
average divergence (implying divergence times =06 myr) were
found, In £, virdis, analysis of 13 short nonautononious copics
uncovercd rwo highly divergent groups that we nomed A and B
(51 Frg. 5). Copies within each group were aligned and anodyzed
separnbely (5] Table &) The average pairwise divergence within
groups A und B was 4.6 and 5.7%, implving divergence times of
2% and 36 myr. respectively. Inclusion in the analysis of the
longest copy found in the species (comtig 16408) indicated
uncipuivocally that it is 0 member of group A (51 Fig. 5) In IX
miofavernss, analyss of 20 shor nonuseromous copies revealed
the presence of four well defined groups, here named C-F, We
included i the analysis nine of the long coples containing the
twi TIRs and generaied a phylogenetic tree with the 29 copies
(Fig. 2} Groups C and I correspond to the wo groups
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previously detected when the bang, nearly complete, copies were
mmhyzed, Copies within each group were separately aligned and
anabyzed. Average pairwise divergences within groups C through
F were 2.2%, 13%, 24%, and 89%, respectively, indicating
divergence times ranging from 1.4 10 5.5 myr (51 Table 6). The
two anel four Galifes groups or subfamilies found in D, vinlis and
I prgjavensis, respectively, seemingly represent relanively old
tranposition bursts in these genomes. We sugpest that the
Newron and Kepler elements previously found in the [ buzzami
genome (18, 21) should likewse be considered only as different
groaps or subfamilies of Cialileo in this specics.

One copy in 0. preudostscw (contig 4335, one copy in £
willistonyd (contig 10422), and three copies in O, miofavessiy (contigs
11233, 107D, and 9832) are likely chimenc because they are
flanked by dissimilar 7-bp sequences and show increased levels of
divergence between the o TIRs (see for instance Fig. ),

Characterization of 1360 Copies. The longest and complete or nearly
complete copics of clement L300 foumd in the cight genomes ane
shown in Fig. 1C (see also 81 Table 7), The cight copics posscss
THPase-coding segments Z428 bp (X erecra) to 2565 bp long (0,
melanopester), olthough only IX yvakobse inchedes three different
copics with 2.562-bp DRFs encoding a fully funciional TPase. All
of them bear 31- or 32-bp-long TIRs and 1otal size for scemingly
complete copies varies between 2,985 bp (I3 persmilis) and 4,702
by (£, virifis), The longest copics found i each species (Fig. 1)
were used as querics o inermogate the eight genomes by using
BLASTN. The resules showed that £360 s very abumdant in all
genomes with o maximuem aumber of 690 significany hits in £
sechellio (51 Table 1),

Comparison of Gallleo, 1360, and P Element TIRs. With the exception
of [ peeidihacienr and £ persindily, the long Galiteo TIRS show
Lintke similarity between the different species either in fength or
sequence composition. Conservation seems 1o be restrcted to
the terminus s revealed by the alignment of the first 40 bp of
Coaalilee in [ buzzai {incleding Kepler and Newron ) and the six
specics analyzed here (including £ virlis groups A and B and £,
miegaverisis groups C-F). A total of 17 of the 40 terminal bp arc
comscrvedd in the 13 sequences (Fig, 34). Likewise, alignment of
the 31 bp of 1760 TIRs in the longest copies described earlier
{Fig. 1) revealed 14 conserved bp (Fig. 28). We generated the
conscnsus sequences of the clement terminus in Coaflfes and [i6d
in the dilfercnt species. Fifteen of 31 bp are identical, which
provides further evidence of the evolutionary relationship be-
tween both TEs. In sddition, the consensus Galifes terminus
shares 17 bp with the 31-bp TIRs of Dwmehd (Fig. 3C)

Comparison of Galileo, 1260, and P Element TPases. Wo gencrated
comsensus pming acid sequences for the Galifeo and 1380 T Pases
within ench species {see Methods). For DmoffGalilee, the con-
sensus sequences of the TPases encoded by copics in groups C
amd [ are 937 and 936 aa long, respoctively, and when aligned
alone show a 87.2% identity and a %.4% similarity,

A multiple alignment of the eight consensus Gilifeo TPases,
the gight consensus /368 TPases, and five TPuses of represen-
tative I clements was carricd out (51 Fig. 6). Besides, the human
Plike THAPY protein (32) was included in the analysis s
outgroup, The Galilee TPases are 30-35% sdentical 1o those of
T30 and 20-257 identical to those of P elements (51 Table 5),
Within the Galileo T Pases, identity varies between %7.2% in the
closely related pair ) prendoobsenra—I perstrlis, and 33%
Between [ perstmilis and L virdts. In addition, we examined the
maltiple slignment for conservation of several functional do-
ks and matifs that have been identified in the D TPase
{5y The THAF domain is a zinc-dependent DNA binding
domain evolutionarily conserved in an array of different proteins
including the P TFase, cell-cycle regulators, proapoptotic fac-
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Fig. 3. Comparmon of TIK endh. [A) Aligrmar of 40 bp of the TIR end of
Galifeo, A coneenus sequenoe was comyirecied Tor Gadleo TERs in each TE
subfamily and species. (B) Algnrent of ihe 31-bp TR of T360. A representar
tie THR from acehgle copy of 1he TE & included. [C) Compar i of The Galeo
TIR #nd with 1he TIRG of elements 1360 and P, Identical positiorm in &l
sequenset ste showen in black. Sies identicsl between Galileo and 1M or P
are b in griny.

tors, transcriptional repressors, and chromatin-asocined pro.
teims (3H-30) v includes a metal-coordinating CICH signaiure
plus four cther residues (P, W, F, and P) that ane also reguired
for DNA binding. These cight residues are fully conserved (with
one exception) in positions C29, C34, P53, Wa3, C89, H92, Fo3,
and P11 of the multiple alignment (51 Fig. 6k A leucine zipper
coled-codl monill involved in protein dimerization is located afier
the DNA binding domain (5}, We predicied iv silico a similar
ema-dong coiled-coll monl after the THAP domain in the
Chififeo omad T30 T Pases (51 Fig. 6). Finally, alihough the DaeefP
TPuase does nol contain the characteristic catalyiic motil
DM 35)E shared by many other T Pases and integrases (4}, the
C-terminal poriion of this prolein conlains numerous aspartic
(D) or glutamic (E) residecs and four of them scem to be critic
for TPase function: D{A3)D(2VE( 13} (see rell 51 The first 3 aa
are fully conserved in positions DTT, D774, and ETTT of the
multiple alignment with one excepiion (51 Fig. 6), thus support-
ing this madel (3). The conservation of the fourth amino acid is
unchear.

A phylopenctic tree was generated with the 21 Galiler, 1360,
and P TPases and the human THA P prodcin {see Mettods ), The
tree (Fig. 4) shows three cliskes corresponding to the Gralien,
13680, nndd P elements. Therefore, the three TEs seem monophy-
letic, although only the Galtfeo and P clades have very high
statistical suppon. Culifes and J360 are more closcly related o
cach other than to the Pelement, which s conneeted o the other
twir by 0 decper branch.

Discussion

We characterized o seemingly complete copy of Galiles from the
penome of LY biezzer that contains a L738-bp ORF encoding a
TPase. Three observations indicate that this is the true Galifes
TPase instead of that of another TE accidentally associated with
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Fag. d.  Ngighborgaining phylogenetic thes conitructed with the sight oom-
wensus. Galdeo TPasel, eight consenus 1380 TP, and five TPases frem
representative Pelements. The human Plike THAPS protein is inchaded as sn
outgroup. The complete alignment without Gbiocks Fittering i showmn in 51
Fig. B. The tree topology was identical when using maximun likelihood ard
parsimony misthods.

the long Galiles TIRs. (/) Two previously isolaied Galileo copics
bear a 141-Bp portion of the same ORF in the rght position and
orientation (21). suggesting that all previowsly isolated Calilee
copics are defective versions of the complete structure repored
here, (i) Our bioinformatic searches wncovered TEs struciurally
similar to Cralifes in the genomes of six phybogenctically distant
Drosopiila specics, These senrches were earried out by using s
queries the Dbz \Galtfeo and DwelJ 368 TPases, and a carciul
seruting of the contigs producing significant his ked 1w the
findfing of the TIRs sssociated with the TPase scgment and the
charscterization of the clements as cither Galifeo or 1360, Mo
other TIR= besides those of these two TEs were found flanking
the hits {but note that in DersfuGalilee 160-bp internal imerted
repeats bound the TPase; Fig. 18), The persistent association
{owver tens of myr) of this TPase with the same type of TIRs
renders the possibility of an sceidental sssockation extremcly
unkikely. (i) The presence of multiple Cirlifeo copics comprising
both TIRs and TPasc-coding scgmenis in seven Dvosaphile
genomes suggests that these are integral components of the same
clements, and these elements are (or have been) able 1o replicate
amdd transpose within these genomes.

Further evidence leads ws 1o infor that Galifeo, previously
considercd a Foldback-like clement, 5 in foct o transposon
related o the I melenogaster L300 and P elements, and ths, it
is probably a TE maoving by o cut-nnd-paste reaction (3, 4). (iv)
The Galilee TPase s 30=-35% and 20-25% identical 10 those of
1368 and P elemvents, respectively, and the three profeins harbor
simtilar functional domains such as a DNA binding THAP
domain, a coaled-conl mohl for |'|n|r|.¢ir| dmerenhon, and =
catalytic domain (5, Z7-30). (v) Despite their dramatically
different siee (several humndred base pairs vs. 31 bp), the Cralifeo
termimes includes sequences clearly related o the 1360 and P
TIRs. Specifically, the consensus Galifeo terminus shares 15 bp
with the L) consensis TIR and 17 bp with the el TIR,
The ihree elements share identical 3°-CAL . TG-3° termini. (vi)
Boah Craliterr and J380 generite on insertion T-bp TSDs teat. in
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the case of Galilee, match the consensas sequence GTANTAL,
o palindrome, The TSDs of DmelF are 8 bp long and the
consensus also corresponds to a palindrome, GTOOGGAC, o
et related to the dimerization of the P TPase (5. This suggess
that the functional Galitee TPase ts also a dimer. We conclude
thot Crwfifens belongs 1o the P osuperfamily of cut-and-paste
tramsposcs,

A pursimaonows interpretation of the phylogenetic tree relat-
ing Chlilen with the f3680 and * clements (Fig. 4) suggesis that
Cralifeo arose from an ancestor with muech shoner TIRs, Galiles
long TIRs are variable in size both between and within species,
sugpesting a remarkable strectural dynamism. For instance, in I3,
willisrewsé, the longest and putatively complete copy (contig
1HMR) has To3-bp TIRs, but another copy (contig 9452) has
‘!S'Jrhp loneg TIRs, Similarly, TIRs of Galiles copies in [ mio
Jrvensis are 458 bp (contig 109407 w0 1,260 bp (contig 10757.2)
lemg. TIRs may accidentally shorien (e.g., by deletion) but very
likcly they may also be elongoted by internal duplication, un-
equal recombination, andior other mechanisms, such as long-
tract gene conversion [ 33) of smgle-strand break and symhesis-
repair (see figure 5B i rel, 34), We sugpest that different
Foldback-like elements might have originated from independent
tramnsposon lineages in a similar manner as the Drossphils
clement Giafies. In other words, TIR lengih and struciure B mst
n relisble criterion for TE clnssafication, and Foldback-like
clements do not comstitute a monophyletic group,

The phylogeny of the (iafifeo elements in the seven Dirosoplila
species { Fig. 4) i clearly inconsisient with thii of the species (el
figure 1 in rel. 24y The clements of [ willisrond and [, virdlis,
pertaining to different subgenera (Sopfophorg and Drosopiila,
respectively) are each other's closest relntive, Similurly, the
Cralileo elements of OL profavensis anad Y brzzain (Drosopila
subgenus) are more closely relaicd to those of IV anerrssae, [
ricirdoedacien, and 2, peramailis (Sophophon subgenus) than to
those of £3 viridis, a species from the same subgenes. Equally
inconsistent with the species relationships is the phylogeny of the
136 element (Fig. 4) There are two possible explanations for
ihese topological disparities: lincage sorting and horizonial
transler (33). Lincage sorting refers to the vertical diversification
ol TE lineages and their differentinl loss along the branches of
the species tree, Horizontal transfer is the process of invasion of
a new genome by a TE, which & common for transposons and is
considiered as an integral lph-.n-u: of the transposon life cyele that
allows long-term survival (6, 36). The stropgest evidence for
horizomal tranafer is probably the detection of elements with o
high degree of similarity in very divergent tasa, such us in the P
clement colonizaton of the D melorogaster genome within the
last century from the distanily related species £ willisfostd (37)
Many more events of horeontal transfer have occurred during
the evodution of P elensents in the genus Drosophils bosed on the
available evidence (38), However, despite their chose evolution-
ary relationship o P the available evidence for horizonial
transier in Galileo and F360 [ Fig. 4) is not compelling and lineage
sorting should be considered, at this time, o5 an cqually likely
explanntion.

The origin of the numerous chromosomal iwersions in Do
sopfiily and other Diprerans is still an open guestion and very few
speckes have been investignted In this regand, Strong evidence
implicating TE-mediated eclopic exchange has been found in
four polymorphic inversions only, including the two D0 bz
inversions genernted by Galifeo (39). In D0 melanogesier and its
close relativies, no TEs have been involved in the ongin of three
polymorphic imversions and only 2 of 29 fixed inversions contain
repelitive sequences inverted with respect to cach other at bath
breukpaints, peinting 1o o completely different mechanism for
imversion gmﬂnllun {349y, The fact that Galileo g{:n:mh‘d wo
independent inwversions in DL fuzzond sugpests thar Galifeo ks mot
a passive substrale where cotopic recombination operatcs but
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may be actively generating inversions as a byproduct of s
trnsposition mechanism, I this is corneet, to create inversions,
Ceaaliled has to be active inoo genome and o recent franspositional
activity would be a necessary condition for Cralifes to have amy
role in the generation of current inversions, We have pot found
wiy fuenctional TPase in any of these species but only one gepome
was scquenced in each case. so they could siill exist in unse-
queneed gemamic regions, other genomes, andior other natural
popslntions, However, we have provided evidence of recent (<1
myr) irnnspositional activity of Ciefifeo in 0L euemassae, L
perstmilis, I preiadoolscin, and D willigori, These four are
among the most palymorphic species of the genus with 24, 28, 13,
w50 inve rsione, respectively (400, In I mofavensix, with fewer
inversions (41}, the most recent transpositsonn sctivity of G-
Tilews seems somew i edder (= 1.5 myr), Finally, I3, virdis with the
oldest Crlifeo sctivity (=3 myr) is chromosomally monomaorphic
{40}, Therefore, there is 3 qualitative correkation beiween the
number of inversions and the tme of the most recent activity of
Cradifeer iy this small group of species. This correlation B sug-
gestive but might be only eoincidental. However, the detection
of chimerscal copies thot may be the result of chromasomal
rearmngements [ 19) indbcates that, indecd, Galifeo might have
been mvalved in the ongin of inmversions, al lcast in some other
species besides 13, Puezzoni.

Methods

PCR Amplification and DNA Sequencing. Genomic DNA from O hirssny (s
S-1h amd D mefwvendi (eain B5081-1352.22, Tuoan Drasaghila Stock Cen-
ter] {as control) was wied as template for PCE amplification of Gallen coples.
Primers locabed in the TIRs were designed based on 0. burrati knorm
incompleie copses of Galileo [21), whereas primers inside the TRae were
dtigghid o thir B, majavemin pulative complite TP feund in b gdelimi-
rary hicénformatic search (3 Fig. T). Primers in the TERs were abwars uned in
combination with primers anchored in the TPase to avold multiple bands.
generated by the highly repetitive primer along or the amglificaton of
dalectivg copins without TPake, PORS watl Cartsed oul ih & 1ol volume of 25
el inchudirg 100-200 ng of genomic DA, 20 pmol of cach primer, 200 uM
dMTPs, 1.5 mM MAQCTy, and 1=1.5 units of Tag DMA polymerase. PCA products
were gel-purified by using QuAguick Gel Ewtraction kit (QHagen] and e
guenced ditectly with the amplificstion primers ard wquensing prirse.
designed oyver the end sequences bo close gaps (31 Fig. 7L Sequences were
aligreed and asembled by wiing multiatign softwane MUSCLE 3.6 (42).

Biginformatic Searches, BLAST searches were perfarmed an the chmamesame
assermblies of O melanagaster snd O siminians snd the contig CAF 1 assemblies.
of 1the other ten publicly available Drosaphils genomes (hitpoirana bl gost
drosophila). We used BLAST sigorithm version 2.2.2 {43) implemerted in the
Dreiaphila Podymorphivm Databaie dadwed (MOpASieiAlormatsls ual sy
dpdb] with default paramefers. TELASTM seanches in the different species.
wene performed by using s queries the TPases of DbuAGH e and Dme T 160
it} lell (1] Ilm.mmlnlmrl = 1073 fwhich bn the conditionm of our

AFHTTL of b = 0% idertiny cwlt 8 retch of 200 &) wire
comsidered significant BLASTN searches were also carried out vith the 40
terminal bp of DburGalleo and the 11 bp of the Dmeh 110 Tl {9 Table 1)
Thee cutoff in this case was.an E-value < 10 {that requires =2 1=27 condeutive
ideriiacal Base pairy.

Cantigi produding tighilcant hits with the DburGalilea and Dmell ] 350
TPaset in each species were scrutinized to dharscterize the different copiet of
bath TEs. TIRs ard T508 were searched around the putatiee TPases by using
Dothet 1.5 {44} to diting e Boundarien of sach copry. Indartiond of other TEs
indiche Gahlng weds kdentified by aligning the dithedent Galiles copied found i
the same species and further analyring the sequences present in cnly one of
tham. Significant contigs < 1 iy long and thase that were found 1o contain
complex clusters of several TE insertions Mikely of hoterachscmatic arigin)
wre ne furthar investigated,

Nonsutesemous Cophes. BLASTM seasches were carried out with the langest
cogiirs af Galilpa and 1260 (Fag, 1 B and O} 1o estimate the abundanoe of the
e TES weithin each species (51 Table 1} Sigraficant hits wene 1hose with
E-walue = 10 (equivalent to -m-liuﬂrrrm-:lmtd'rufmm The
numbser of contigs in these searches p Iby a revenimuam
estenate for the numbser of TE copies because the searched databases were the
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CAF1 pentig asembilion in moest cades and each cantig cormarn at least ore
oy bull may acually (onthin Two of mane, For iimilarity snahdes, anly 1he
TiRs were uned as they produwced the most reliabée alignments. The twa TIRsof
each TE copy were analyzed sepaately to cstimate the divergence between
thie tw TIRE within sach cogy o well &1 the pairwive deergence beteean
Lot

Conseniun % The « ¥ lor Galfeo and 7360 TPasey
and Gafifea TiRs wers genersted by using BloEde 7.0.5 (45%] sfer algning the
respective nucheatde seqguences (§ Table 3) with MUSCLE 3.6 software (&2). In
v caree of TPagrs, This corrnsus sequence wa Then ramlasied into protsin
ter alless i comparisen amang ditfedent spocies (51 Fig. 5], Conserved protein
domaing wehe detecied by using WterProSan (45 and Conderved Doimain
Search {47). Colled-coil regions wene predicbed by using the Coili server (48],

Fintegemeiic Analyser. TPase soquences were aligned with MUSOLE 36 (420
and the alignment was liered with Gbledkd version 0906 [49) o e

ceenplate deletion and 500 replicale 10 generste Bootsirap values. Pobsr
correction and Kimwra 1 paramedens were used a3 wubstitution model fos
amirg sid and nuceotide seguences, respectaely. We dated the most recent
transposition ewers within each speckss by dividing the average pasrwise
divergencs Datein the alements it 1he me group of subgroup Ty thd
Oroacphila syranymons substitution rate, 0016 substitutions per nuieatide
myr (21). To date the devergence between ditferent groups or subfamilies we
calibeatd the 1roa with the same subsittion rals by uing the appropaatg
option in MEGA (520, Time evtimates for T shaould be taken with caution; it
thee synorrymmoLs sulstitution rabewere an urdercstimate of the true mstatior
rate Tor TES, our time estimates would provide an upper bound Tor the trug
vakupes,
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SI Figure 5. Neighbor-joining phylogenetic tree built with 14 Galileo copies found
in the D. virilis genome by using MEGA (16409 is the most-complete copy, see Fig.
1B). The two TIRs of each copy were included in the tree as separate sequences to
allow their comparison within and between copies. TIRa is the TIR located at 5'
from the TPase or the first TIR that appears in the contig if the copy could not be
oriented. The complete deletion option was used leaving 76 informative sites (an
almost identical tree results when omitting some of the shortest sequences,
increasing the number of informative sites to 258). Bootstrap values of main nodes
are shown. Groups A and B show a ~68% divergence indicating ~20 myr of
separation. Details of these Galileo copies are given in SI Tables 4 and 5.
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SI Figure 6. Multiple alignment of 22 proteins: eight Galileo TPases, eigth 1360
TPases, five representative P-element TPases and THAP9 protein from Homo sapiens.
The alignment of the THAP domain region was corrected by hand to align the
functional and conserved amino acids of the domain. Conserved blocks selected with
Gblocks are marked with a blue box. Identical positions are black-shaded and the
positions with similar amino acids are gray-shaded. THAP domain conserved residues
are marked with a red star and the three final residues (AVP) are included in a red box.
A red line marks the entire THAP domain region. The coiled-coil region is marked with
an orange-filled box. The Leucine amino acids of the Leucine zipper coiled-coil motif
of the Dmel\P TPase are marked with a yellow triangle. GTP binding sites of the
Dmel\P TPase are marked with a yellow-filled box. The catalytic amino acids are
labeled with a green star. The fourth acidic catalytic amino acid of the P-element
transposase that is not conserved in the TPases of Galileo and 1360 is indicated with a
gray star. Accession numbers for P-element TPases and THAP9 are: Dmel\P: Q7TM3K2,
Dbif\P: AAB31526, Dhel\P: AAKO8181, DwillP: AAT96022, Spal\P: M63341,
THAP9: NP_(078948.
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Dmel\P-alamant
DbhifZP-ealemant
Dhel\P-element
Dwil\P-alemant
Spal\P-element
Hzap\THAFY
Dana‘\Galileo
Dpse\Galileo
Dper\Galilea
Dwil\Galileo
Dvir\Galileo
Dmej\Galileal
Dmoj\GalilecD
Dbuz\Galileo
Dmely 1360
Dsimh 1360
Dsechl3&d
Dere\1360
Dyakh 1360
Dper% 1360
Dpee’\1360
Dvwirh 1360

Dmel\P-element
Dbif\P-alemant
Dhel\P-element
Dwil\P-element
Spal\P-element
Hsaph\THAFY
pDana‘Galileo
Dpseh\Galileo
Dper\Galileo
DwillZGalileo
Dvir\Galileo
Dmoj\GalileoC
Dmoj\GalileoD
Dbuz\Galileo
Dmel\1360
Dsim\1360
Dsech 1360
Derely 1360
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Dper\1360
Dp=e’ 1360
Dvir\1360
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SI Figure 7. Isolation of Galileo in D. buzzatii. (A) Molecular structure of the putative
full Galileo element from D. buzzatii. The big blue arrows are the TIRs and the white
rectangle is the ORF coding for the TPase with the THAP domain shown in red. Primer
location is indicated by small arrows underneath. (B) PCR amplification of the full
Dbuz\Galileo copy. Four PCR reactions yielded relatively long products that were
subsequently sequenced and assembled. The fact that each PCR product produced a
single nucleotide sequence and that the overlapping portions between the four
sequences were 99.99% identical (a single mismatch), suggests that they come from a
single genomic Galileo copy. The sequence of the TIR ends was taken from the
previously known D. buzzatii Galileo-3 sequence (accession no. AF368897). (C)
Sequences of the primers used for amplification and sequencing of PCR products.
Primers M13F and MI13R are universal primers from the sequencing vector,
bacteriophage M13.
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SI Table 1.9. Sequences used to construct the consensus transposases of Galileo and
1360 in the different species. Coordinates corresponding to the transposase sequence
inside each contig are given following the transcriptional direction (from Methionine to
STOP codon).

A. Galileo sequences

Species Contig Coordinates
D. ananassae 9736 951-1

11169 745-2142
15556 3049-5748
15979 73038-74395
16864 8193-6713
19410 8996-11618

D. pseudoobscura 384 17-532
521 5574-4963
1362 13473-13218

2192 3433-4322
2193 3840-4137

3151 21387-23048
3152 9685-8131
3311 5683-4590

3409 5918-6991
3514 4441-3863
3688 28103-29511
4007 55218-55959
4025 782-265
4842 7178-6832
5255 6307-6857
5529 5015-4446
5668 514-1070

D. persimilis 2279 35952-37131
2979 65246-64154
7728 2360-3504

7729 4139-5587
7807 4183-4785
9771 76484-77861
11866 2506-3153
12167 28-218
12803 984-2401
12806 4579-4847
13439 740-141
13644 5604-6247
14651 3800-4468
16801 936-669
D. willistoni 480 2760-1949
1514 1430-255

(Continue on next page)
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Species Contig Coordinates

D. willistoni 1633 1484-3134
1765 758-1818
3103 2956-1579
3729 2677-1005
4852 3775-2272
5955 5147-3320
5995 709-2234
6043 7043-5519
8665 22915-21026
9276 484-1020
9858 3576-3081
10048 88633-85942
12170 994-1320
16933 1388-1

D. virilis 1717 1-1012

15993 12835-13499, 14137-15635
15994 525-1189, 1833-3328
16046 32251-30912

16409 4899-7707

D. mojavensis 7794 15733-16250, 16996-17354, 17922-19752
8435 2326-4274
9930 6622-3845, 2943-2925

10367 5542-4941

10369 33528-35574

10376 5737-8521

10758 41776-38993

10765 58610-56353, 55103-54923
10770 11540-14367

10773 38494-36616, 35773-35425
10792 25781-23831

10918 8142-8284, 9122-9799, 10584-12359
10924 27530-30351

10946 8917-8941, 9824-12351
11233 8461-5654

11255 2735-5284
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B. 1360 sequences

Species Contig Coordinates
D. melanogaster Chr 4 812470-809907
Chr 2L 20145959-20144580
Hoppel-1 Ref. 25
Hoppel-2 Ref. 25
Hoppel Delta 5° | Ref. 25
D. simulans Chr 2L Random | 797960-799694
Chr 2L Random | 802845-804906
Chr 2R 1199657-1199795
Chr 2R 1200547-1201734
Chr 2R 1208090-1206110
Chr 3L 18143039-18143892
Chr U 8188307-8185783
D. sechellia 3536 2255-2621
9279 386-2615
6826 2014-40
11410 1640-11
5259 2194-4726
12180 2014-313
5902 5125-2571
3527 1-1564
D. erecta 7363 803868-801367
6939 4861-5757
7407 140279-137852
7373 87864-86694
7387 150284-149418
7387 135352-137773
7387 108989-106572
6826 4906-5127
D. yakuba 260.3 23020-20458
541 7616-10177
0.40 345812-348373
2.7 423893-421332
D. pseudoobscura 784 23339-25777
1994 72290-72758
4431 49805-50291
520 17194-17712
D. persimilis 17644 428-816
9857 66929-64479
11446 2544-2069
11871 3502-3042, 1903-1373
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Species Contig Coordinates

D. persimilis 14344 495-1631

D. virilis 17532 8869-8505
13070 7536-6667
15641 25683-27672, 28440-28823
17537 36198-33865, 33361-33160
4746 3288-4134
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2.- DNA-binding properties of THAP-containing Galileo
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2.1.- Abstract

Background: Transposable elements (TE) present huge variability in structure and
transposition strategies. Galileo is a class II transposon involved in the generation of
natural chromosomal inversions in Drosophila. It has been classified as a P-element
superfamily thanks to the truncated transposase coding region found in the longest
copies, although its long internally repetitive terminal inverted repeats (TIR) resemble
the foldback-like type of TE. As repetitive sequences are a genomic instability source,
the long Galileo TIR could affect the transposition reaction and/or have an active role in

chromosomal rearrangements.

Results: In order to track possible effects of these long TIRs in the transposon
mobilization, we tested the DNA binding activity, the first step of the transposition
reaction. We inferred consensus and ancestor sequences for the DNA binding domain —
THAP domain — of Galileo from three different species. We expressed these sequences
and tested their binding activity showing specific DNA binding activity to the endmost
part (150 bp) of the Galileo TIR. The DNA binding site was isolated and shared
common traits with other THAP domains binding sequences. Furthermore, putative
secondary binding sites were found in the tandem repeats of the TIR, which shed some
light about why Galileo TIRs are so long. Finally an in vivo transposition experiment

was carried out in Drosophila embryos where no transposition activity was detected.

Conclusions: Galileo THAP DNA binding domains were successfully reconstructed
and expressed and showed specific binding activity. The length of the Galileo TIR seem

to have tranposition role: provide secondary binding sites.
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2.2.- Introduction

Transposable elements (TEs) are mobile genetic components of virtually all
eukaryotic species (Feschotte & Pritham 2007; Wicker et al. 2007). These repetitive
sequences make up a substantial proportion of most genomes and have a huge impact on
the evolution of their hosts (Lander et al. 2001; Kidwell 2002; Kazazian 2004;
Morgante 2006; Jurka et al. 2007). TEs are very diverse and employ many different
mechanisms for mobilization. Two major groups are recognized depending on whether
they use a retrotranscription step (retrotransposons or class I elements) or not (DNA
transposons or class II elements) (Finnegan 1989). After this functional split TEs can be
further grouped into subclasses, orders and superfamilies depending on their structure
and sequence similarities (Feschotte & Pritham 2007; Jurka et al. 2007; Wicker et al.
2007). TIR transposons are recognized as an order of DNA transposons and
characterised by their terminal inverted repeats (TIRs) of variable length. They encode a
protein, called transposase (TPase), that catalyzes their mobilization by a “cut-and-
paste” reaction. All TIR transposon families comprise autonomous and non-autonomous
copies. Autonomous copies possess the capability of catalyzing their own
transposition/movement. Non-autonomous copies contain internal deletions or point
mutations in the transposase coding sequences that render them non-functional. These
non-autonomous copies, which often outnumber their full-length counterparts, exploit

the gene products of the autonomous copies (Feschotte & Pritham 2007).

The characterization of the different biochemical steps in the cut-and-paste reaction
helps understanding how TIR transposons behave in the genome and make possible to
recruit them as genetic tools. Since most of the transposon copies found in the genomes
harbour mutations in the transposase coding region, rendering the encoded protein non
functional, different strategies are used for inferring the possible functional sequences.
Sometimes, a consensus sequence constructed from different genomic copies results in
the restoring of the protein function (Ivics et al. 1997; Miskey et al. 2003; Sinzelle et al.
2008), but in other cases, because non functional sequences outnumbers the functional
ones, the consensus results in a non functional sequence. For this reason, ancestor
reconstruction is an alternative strategy that can be used for transposon recovery, where

phylogenetic relationship among the sequences is taken in account for the putative
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ancestral sequence deduction. This approach has successfully been used for the revival

of different transposons, such as Hsmarl (Miskey et al. 2007).

The P-element is one of the most intensively studied TEs. It was discovered in
Drosophila melanogaster as the agent responsible for P-M hybrid dysgenesis (Rubin et
al., 1982; Kidwell, 1985). It has since been studied in vivo and in vitro and is now
widely used as a genetic engineering tool for genomic analysis of D. melanogaster
(Rubin et al. 1985; Daniels et al. 1987; Spradling et al. 1995, 1999; Beall & Rio 1997;
Rio 2002; Ryder & Russell 2003). The P-element defines a superfamily of TIR
transposons, which includes 1360 and Galileo (see below). These elements harbour a
transposase coding region surrounded by TIR, which are needed for the transposition
reaction. The P-element transposase contains four functional domains: an N-terminal
DNA binding domain, a coiled coil region involved in protein-protein interactions, a
GTP binding domain and a catalytic domain with four acidic key residues (Rio 2002;
Sabogal & Rio 2010). The P-element catalytic domain is thought to belong to the RNase
H-like superfamily of polynucleotidyl transferases, although this remains uncertain
because of the extreme divergence of its amino acid sequence (Rio 2002; Hickman et al.

2010; Sabogal & Rio 2010).

The cut-and-paste reaction of TIR transposons begins with the recognition and
binding of the transposase to the transposon ends. The P-element transposase contains a
THAP domain, which is responsible for site-specific DNA binding. The THAP domain
is an evolutionary conserved motif shared by different animal proteins, including cell-
cycle regulators, pro-apoptotic factors, transcriptional repressors and chromatin-
associated proteins (Roussigne et al. 2003; Clouaire et al. 2005; Quesneville et al.
2005). The domain has a long zinc finger (~90 amino-acids) in which key residues are
highly conserved (Roussigne et al. 2003). Recently, the THAP domain 3D-structure has
been elucidated in two different proteins: the human THAP1 protein and the D.
melanogaster P-element transposase (Campagne et al. 2010; Sabogal et al. 2010). The
THAP domain interacts with its binding sequence in a bipartite manner, through the
major and minor grooves of the DNA (Bessiére et al. 2008; Campagne et al. 2010;
Sabogal et al. 2010).
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The Galileo transposon was discovered in Drosophila buzzatii, where it has recently
caused three large chromosomal inversions (Céceres et al. 1999; Casals et al. 2003;
Delprat et al. 2009). Although originally considered a Foldback-like element, it was
later included in the P-element superfamily of cut-and-paste transposons based on the
sequence of the putative transposase (Marzo et al. 2008). Galileo is probably
widespread within the Drosophila genus because it has been found in species of the two
subgenera of Sophophora and Drosophila (Marzo et al. 2008). Many incomplete (non-
autonomous) copies of Galileo have been detected in all species tested and in some
cases two or more Galileo subfamilies have been found coexisting in the same genome
(Figure 2.1). For instance, three subfamilies are present in D. buzzatii (G, K and N for
Galileo, Kepler and Newton), while D. mojavensis harbours four subfamililes (C, D, E
and F) (Marzo et al. 2008; Delprat et al. 2009). To date no potentially active copies of
the transposon have been found because they all harbour premature stop codons and/or
frameshifts. Nevertheless, consensus sequences present putative ORFs which harbours

the main domains of the P-element transposase.

The most conspicuous features of Galileo are the 0.5 to 1.2 kb long TIRs which.
This is considerably longer than other members of the P-element superfamily, in which
the TIRs are 31 bp long. Indeed, it was the extreme length of Galileo TIRs that defined
it as a 'foldback' family of transposons before they were recognized as members of the
P-element superfamily. Galileo TIRs have another interesting property: namely, that the
sequence conservation between elements in different species is restricted to the outer
~40 bp (Marzo et al. 2008). One obvious possibility is that these regions are functional
transposition sequences, and would be the equivalent of the short TIRs of the P-element.
If true, this leaves the function of the remaining 0.5 to 1.2 kb open to question. The fact
that they are not conserved between elements in different species, and that they
sometimes contain internal tandem repeats, suggests that secondary structure of the
DNA may play a role in transposition. The mechanism of Galileo transposition may
therefore prove to be of considerable interest, and may explain the frequency with
which this element is able to generate chromosomal inversions in Drosophila. In the
present work we have focused on the reconstruction of an active transposase and its
binding to the inverted repeat. Although we have not succeeded in a full reconstitution

of the transposition reaction, we have detected transposase binding to the extremities of
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Galileo and putative secondary binding sites in the tandem repeats of the TIR. This
represents the first steps in the characterization of Galileo recombination. Further
characterization promises to reveal fascinating details of the interactions between this
transposon and its host and perhaps even the reason it promotes chromosomal

inversions so frequently.

Figure 2.1. Structure of representative Galileo copies found in the species of Drosophila used in this work.
Black arrows are the Terminal Inverted Repeats (TIR) of each element and white triangles are internal tandem
repeats. Gray rectangles are the transposase coding regions and black arrowheads are internal inverted repeats
found in some D. mojavensis copies. No copies harbour an intact ORF. Dbuz\GalileoSyn (constructed copy) and
D. mojavensis (contigs: 10758, 9847, 9930 and 11679) and D. ananassae (contigs 15556 and 16052) copies are
from Marzo et al 2008. Dbuz\GalileoN1 and Dbuz\GalileoKS5 are Newtonl and Kepler5 elements from Casals et
al 2005..
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2.3.- Results

Galileo sequence reconstruction. We generated four different consensus sequences:

one using multi-strain PCR amplification sequences of the Dbuz\Galileo whole
transposase, and the other three using the THAP domains from genomic sequences of
Dmoj\Galileo subfamilies C and D and D. ananassae. These sequences showed a few
differences when compared with previous studies (Marzo et al. 2008). Thus, the
consensus sequence of the Dbuz\Galileo transposase no longer contains premature stop
codons, and presented two amino-acid changes. Likewise, the THAP domain sequence
obtained for the Dmoj\GalileoC was identical to the previously published, and the
sequences for Dmoj\GalileoD and Dana|Galileo had two and one amino-acid changes,
respectively. Additionally, we also reconstructed the ancestral sequences of the THAP
domains by maximum likelihood. When the inferred ancestor and consensus pair of
sequences were compared, three, two and three differences were found in D. ananassae,
the Dmoj\Galileo subfamilies C and D, respectively (Figure 2.2). Although one of the
amino-acid changes affected one of the key residues of the domain, it was a functionally
similar amino-acid replacement (a Valine replaced by an Isoleucine). The comparison of
the reconstructed sequences of the Galileo DNA binding domains with those of the P-
element of D. melanogaster and the human THAPI1 protein showed that the structural
key residues of the THAP domain are conserved (Figure 2.2). However, the THAP
domains of Galileo showed a longer and more variable N-terminus, along with a shorter

and highly conserved loop 4 (L4).

Testing the first step of the transposition reaction: DNA binding activity. The

reconstructed amino-acid sequences (ancestor and/or consensus) of the different Galileo
THAP domains were E. coli codon-optimised, chemically synthesised and, finally,
cloned into protein expression vectors. Seven THAP proteins were obtained D. buzzatii
(two proteins of 90 and 150 amino acid length), the consensus of D. ananassae
(ancestral sequence could not be purified), the consensus and the ancestral
reconstruction of Dmoj\Galileo C and D subfamilies(Figure 2.3A). Electrophoretic
mobility shift assays (EMSA) were performed for each of the seven proteins with their
cognate labelled TIR sequence (150 bp endmost portion). Different conditions for the

assay were used: three different protein concentrations, presence/absence of ZnCl2 and
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Figure 2.2. THAP domain protein sequences. A) Domain structure of the Galileo transposase: the THAP
domain is the DNA binding domain, the coiled coil region is responsible of protein-protein interactions
(represented as two overlapping circles) and the catalytic domain is located in C-terminal region. B) Alignment of
the consensus and ancestral Galileo THAP domain sequences with the THAP domain of the P-element TPase (D.
melanogaster) and THAP1 protein (Homo sapiens). The predicted secondary structures are shown above the
alignment (adapted from (Bessiére et al. 2008) and (Sabogal et al. 2010)): yellow arrows represent 3 sheets and
yellow cylinders are o helix regions. Key residues are coloured: zinc coordination residues (C2CH) in yellow,
conserved hydrophobic residues in green, invariant residues in pink, nuclear localization signal (NLS) in light
brown. Segments cloned for protein expression are between grey shaded residues. Residues coloured in cyan are
the amino-acid changes between ancestor and consensus sequences.

addition of unspecific DNA competitor (pBlueScript). Similar results were obtained for
the seven proteins, but only the results for Dbuz\Galileco THAP are shown (Figure
2.3B). These assays showed specific binding activity to the TIR independently of the
addition of ZnCl2 or pBS to the reaction for all the tested THAP proteins. Furthermore,
when an EMSA was performed with the same TIR and the respective ancestor and
consensus proteins, no qualitative differences in binding activity were detected (Figure
3C). It is noteworthy that some extra shifted bands appeared with the highest protein
concentrations (Figure 2.3 B and C). Thus, a fine titration was carried out with the
Dbuz\GalileoG-THAP-90 amino acid domain (Figure 2.3D). The results showed that
the second and subsequent shifted bands are concentration-dependent, probably due to

protein aggregation.

To test if a transposase would be able to bind or transpose different families or
subfamilies of Galileo transposons that coexist in the same genome, we performed a

cross-binding EMSA with Dbuz-THAP-protein with the 3 TIR sequences from this
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genome (G, K and N)(Figure 2.4A). We observed that the Dbuz\GalileoG-THAP
domain binds both the Dbuz\GalileoG TIR and the Dbuz\GalileoK TIR, although
binding is weaker in the last case. However, no trace of binding activity was found with
the Dbuz\GalileoN TIR. In this experiment, the size of the THAP domain (90 or 150
amino acid) did not show a qualitative effect on binding activity. Likewise, when we
tested the 90 amino-acids protein of D. buzzatii against all the TIRs used in this work
(D. buzzatii (G, K and N), D. mojavensis (C and D) and D. ananassae) a weak binding

activity was observed in Dana\Galileo TIR along with Dbuz\GalileoG and

Dbuz\GalileoK binding (Figure 2.4B).
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Figure 2.3. Protein assays. A) SDS-PAGE with the 7 expressed THAP domain proteins, ~5 pg
protein/well. 1. Dbuz\Galileo-THAP-90aa, 2. Dbuz\Galileo-THAP-150aa, 3. Dmoj\GalileoC-THAP-
Ancestor, 4. Dmoj\GalileoC-THAP-Consensus, 5. Dmoj\GalileoD-THAP-Ancestor, 6. Dmoj\GalileoD-
THAP-Consensus and 7. Dana\Galileo-THAP-Consensus. B) EMSA performed with Dbuz\Galileo-
THAP-90aa. Three different binding conditions were tested. First lane is Dbuz\GalileoG labelled TIR (2.2
nM). Lanes 2, 3 and 4 are x100 increasing protein concentrations (470pM, 47nM and 4.7uM). Lanes 5, 6
and 7 are the same protein conditions as the previous lanes but 100uM ZnCl2 reaction condition was
added to the binding reaction. Lanes 8, 9 and 10 are the same conditions as in the previous 3 lanes but
500ng of pBlueScript (Stratagene) plasmid was added as an unspecific DNA competitor. C) EMSA assay
where  Dana\Galileo-THAP-Consensus ~ (lane  2), Dmoj\GalileoC-THAP-Ancestor (lane  4),
Dmoj\GalileoC-THAP-Consensus (lane 5), Dmoj\GalileoD-THAP-Ancestor (lane 7), Dmoj\GalileoD-
THAP-Consensus (lane 9) have been tested to bind the consensus TIR of their Galileo subfamily. All the
THAP domains bind their TIR DNA (final protein concentration: ~5.87 nM and TIR final concentration
~0.28nM). D) Fine titration EMSA of the Dbuz\Galileo-THAP-90aa with its TIR (0.14nM). Protein
concentrations (2 fold dilutions from 1/128 to 2X range): 0.184nM, 0.367 nM, 0.734 nM, 1.469 nM, 2.938
nM, 5.875 nM, 11.75 nM, 23.5 nM, 47 nM and 94 nM. A concentration dependence of the extra shifted
bands can be appreciated.
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Figure 2.4. Cross binding EMSA experiments. A) Dbuz\Galileo-THAP-90aa and Dbuz\Galileo-THAP-
150aa versus different Galileo TIRs from D. buzzatii. Lanes: 1. Dbuz\GalileoG-TIR, 2. Dbuz\GalileoG-
TIR and Dbuz\Galileo-THAP-150aa, 3. Dbuz\GalileoG-TIR and Dbuz\Galileo-THAP-90aa, 4.
Dbuz\GalileoN-TIR, 5. Dbuz\GalileoN-TIR and Dbuz\Galileo-THAP-150aa, 6. Dbuz\GalileoN-TIR and
Dbuz\Galileo-THAP-90aa, 7. Dbuz\GalileoK-TIR, 8. Dbuz\GalileoK-TIR and Dbuz\Galileo-THAP-
150aa, 9. Dbuz\GalileoK-TIR and Dbuz\Galileo-THAP-90aa (final protein concentration: ~5.87 nM and
TIR final concentration ~0.28nM). B) Dbuz\Galileo-THAP-90aa against Dbuz\GalileoG-TIR (lane 2),
Dbuz\GalileoN-TIR (lane 4), Dbuz\GalilecoK-TIR (lane 6), Dmoj\GalileoC-TIR (lane 8),
Dmoj\GalileoD-TIR (lane 10), Dana\Galileo TIR (lane 12).

DNA binding site of Galileo. We performed a DNase I footprinting analysis to
determine the Dbuz\GalileoG TIR binding site sequence (Figure 2.5). The protected
region covers a continuous region of 18 bp from nucleotide +63 to +80 bp of the tested
150 bp sequence. The second shifted band seen in the EMSA was footprinted as well
(Figure 2.5). There is no difference in the protection pattern, so the multiple shifted
bands are due to protein aggregation in the same TIR location which is in agreement

with the titration experiment.

The comparison of this 18 bp sequence with other THAP binding sites is shown in

Figure 2.6. The Dbuz\GalileoG binding site is almost twice as long as the P-element and
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THAP1 binding sites (18 bp versus 11bp). Nonetheless, based on similarities with the
interaction sites of the P-element and THAP1, we propose that the putative major and
minor groove sites are the GGGGT region and the upstream T, respectively (Figure
2.6). When we compared the binding sequence of Dbuz\GalileoG with the homologous
regions of the Dbuz\GalileoK and Dbuz\GalileoN TIRs, we observed that they are
poorly conserved (not shown). This could explain the weak binding to GalileoK TIR
and the absence of binding to GalileoN TIR.

Figure 2.5. Sequence specific binding of THAP domain to Galileo element. The DNasel footprints of the
indicated complexes were performed as described in material and method. The footprints were resolved on a
DNA sequencing gel and the radioactive signals were recorded on a phosphoimager. Lane 1, G+A ladder;
Lane 2, Free DNA treated with DNasel; Lane 3 and lane 5, footprints of complex 1; Lane 4 and Lane 6,
footprints of complex 2; Lane 7, footprint of complex 3. The protected DNA sequence was shown on the left
of the gel.
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The Dbuz\GalileoG TIR is up to 1.2 kb long, partially due to the presence of three
(and a partial fourth) internal tandem repeats. For that reason, we searched within the
TIR for sequences similar to the identified binding site using Blast-2-sequences
program (Altschul et al. 1997)), and found two significantly similar sequences located
in the first two tandem repeats (E-values = 5x10-5 and 7x10-4, respectively). A
comparison of the three binding sites located in the GalileoG TIR showed that the three
sequences are very similar, particularly around the proposed GGGGT major groove
region (Figure 2.6B). Although we did not test these internal sequences for binding
activity with the THAP domain, the high sequence similarity with the identified binding

A

ATGTC Dbuz\GalileoG
Omel\P-elemeant
DmalP-efarmeant
Dmeal\P-glament
Dmel\P-glement
hTHAP
hTHAP1
Consensus

DRSNS NE R |
5 10 B
PRPEFMASA
A
e
>

I 5 ] D D e
H a3
a0

1
-

BS1
Bs2

site suggests that they might act as additional binding sites.
A BS3
B Minor groove region B Major groove region

G
A
C
c
> ' o

¢ I  Obur\GalieoG-TIR

BS1 B2 B33

naon
HHa
—
0

T
L
T

o

A
|E|
A

R
0 Oo

= = =

O Blm »=0030

Figure 2.6. THAP domain binding sequence comparison. A) Dbuz\GalileoG compared to Dmel\P-element
(Sabogal et al. 2010) and hTHAP1(Bessicre et al. 2008; Campagne et al. 2010) binding sites. The major and
minor groove interacting regions are coloured. A putative consensus THAP binding sequences, including
Dbuz\GalileoG sequences has been proposed. This consensus is in agreement with the previously proposed by
(Sabogal et al. 2010). B) Alignment of the Dbuz\GalileoG binding site with other putative binding sites found
downstream in the Dbuz\GalileoG-TIR. C) Structure of the Dbuz\GalileoG-TIR where the tandem repeats are
drawn as grey rectangles and the binding sites are drawn as white stripped rectangles (BS1, BS2 and BS3).

Galileo in vivo transposition. We performed an in vivo experiment to test whether

the consensus whole transposase from D. buzzatii was fully functional. To this end, we
adapted the Drosophila P-element-based general transformation vectors to test for
Galileo activity in Drosophila melanogaster white strain. These vectors consisted in a
helper plasmid where the transposase was cloned after a Hsp70 promoter, and a donor
plasmid where a reporter gene (mini-whifte gene in this case) was cloned surrounded by

the transposon TIRs. If the transposase is active, when these two plasmids are injected
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into white (w-) Drosophila embryos, the enzyme will insert the mini-white gene in the
precursors of the germinal cell line. Then, the crossing of injected individuals with non-
injected w- adultss enables the detection of the transposition activity by screening the

F1 generation for red eyes.

In our experiment we performed three different injections: 1) one using the general
P-element transformation vectors as a positive control, ii) a second one using these P-
element vectors with the original transposon sequences replaced by Galileo sequences
(the whole D. buzzatii consensus sequence of Galileo transposase in the helper plasmid
and 150 bp of Galileo TIR in the donor plasmid), and iii) a third injection with the
Galileo donor plasmid but without the Galileo helper plasmid as a transposition
negative control. The injection-surviving adults were crossed with D. melanogaster
white (w-) individuals. The offspring of these crosses was screened for transformed flies
by observing the eyes pigmentation. In the positive control, transposition events were
detected in 19 of 91 of the crosses (384 flies with red eyes of 26637 F1 screened flies).
As expected, the negative control did not show any transformant (96 crosses, 31201 F1
screened flies), discarding the spontaneous insertion of the miniwhite gene. Finally,
when the offspring from Galileo sequences injection was screened, no transgenic

individuals were found (99 crosses, 32537 F1 screened flies).
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2.4.- Discussion

TIR transposons encode a transposase that is required for their mobilisation by a
cut-and-paste reaction. However, most of the transposon copies found in the genomes
harbour mutations in the coding regions that render non-functional proteins. The revival
of these proteins allows studying how the transposition processes take place in real time.
Different strategies can be used for inferring the original functional sequences of these
transposons. Probably, the simplest approach is the construction of a consensus
sequence using different transposon copies from the genome. Alternatively, a more
sophisticated method that can be used consists in the reconstruction of ancestral
sequences under a model of evolution by maximum-likelihood methods. These two
approaches have successfully been used for the revival of several different transposons,
such as Sleeping Beauty, Frog Prince, Hsmarl and Harbinger (Ivics et al. 1997; Miskey
et al. 2003, 2007; Sinzelle et al. 2008).

The transposon Galileo has been recently active in the genome of D. buzzatii
(Delprat et al. 2009) and perhaps other species (Marzo et al. 2008). However, all
Galileo copies found so far are not functional and we used both approaches to
reconstruct the DNA binding domain. The ancestrally reconstructed and consensus
sequences showed few differences which did not involve the domain key residues
responsible of stabilising the hydrophobic core of the protein (Sabogal et al. 2010).
When we compared these sequences with the homologues of other THAP domains, we
found that the most divergent regions were the N-terminus and the Loop 4. The N-
terminus was longer and more variable in Galileo, with a length ranging from 12 to 28
residues instead of the 2 to 5 residues found in other THAP domains. However, the
Loop 4 was very conserved in all Galileo copies. This differentiation is in agreement
with the binding-specificity role proposed for these two regions in P-element and
hTHAPI1 after the analysis of their tridimensional structure by X-Ray diffraction and
NMR (Campagne et al. 2010; Sabogal et al. 2010).

We detected similar strength and specificity in the binding activity for sequences
inferred by both strategies, at least qualitatively. Moreover, we detected some cross-
binding where a Galileo THAP domain have been able to recognise and bind some TIR

from different transposon subfamilies. This would be in agreement with the fact that, in
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some cases, elements that do not own a transposase take advantage from functional
transposons and use their transposition machinery. This is a general behavior found in
different TE groups, for example SINEs parasitise LINEs and MITEs parasitise some
class II elements, (Jurka et al. 2007; Wicker et al. 2007; Yang et al. 2009). If a
transposition reaction would be set up, it could be tested that Galileo elements also
suffer from its own parasites (Gonzalez & Petrov 2009). In addition, although multiple
shifted bands were observed in the EMSA, we ruled out the possibility of the existence
of multiple binding sites in the 150 bp tested TIR region by means of a titration
experiment and a footprint assay, leaving the aggregation of proteins as the only

plausible explanation for our observations.

The isolated binding site of Galileo is almost twice as long as other THAP target
sequences. This might be explained by the larger size of the protein due to the existence
of an insertion of 16 amino-acids after the initial methionine, which seems important for
the interaction with the binding site (Sabogal et al. 2010). However, we cannot discard
that this length could be an experimental artefact due to steric hindrance between the
large protein-expression tag MBP and the DNase I enzyme used in the assay. Despite
this noticeable difference in length, the Galileo binding site does present regions
homologous to the major and minor grooves interacting zones of DNA that have been
found to be essential for the recognition by the THAP domains of other proteins

(Campagne et al. 2010; Sabogal et al. 2010).

The location of the binding sites is strikingly similar in Galileo and the P-element,
This way, 61 and 50 bp from each transposon end in the P-element, and at 63 bp from
both transposon ends in Galileo. In contrast with the P-element, the binding sites of
Galileo are located within its long TIRs. When we extended the comparisons to the
whole TIRs of P-element and Galileo, we found profound differences in length and
structure. Thus, whereas P-element TIR is a non-repetitive region of 31bp length, the
TIR of Galileo comprises up to 1.2 kb and harbours several internal tandem repeats. It is
peculiar that although the part of the TIRs of Galileo involved in the binding
recognition did not show any conservation, we found that the endmost region is highly
conserved across different species. This suggests that this region may have a role in the
catalytic step of the transposition reaction, in a similar way to the short TIR of the P-

element (Rio 2002).
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The existence of secondary binding sites or transposition enhancers has been
reported in different transposons and these sequences can be part of the TIR or not. For
example, P-element has subterminal transposition enhancers located outside the short
TIR (Rio 2002), whereas the secondary binding sites of Sleeping Beauty and Bari-like
elements lie within the long TIRs in the form of tandem repeats (Ivics et al. 1997;
Moschetti et al. 2008). A similar structure has been found in Tnr8 and Phantom
elements, although if their tandem repeats act as binding sites remains untested (Cheng
et al. 2000; Marquez & Pritham 2010). Although evolutionary unrelated, Galileo is
structurally more similar to these elements, where their secondary binding sites are
found as tandem repeats. All these TIR elements have a considerable size, which is a
trait negatively correlated with the efficiency of the transposition reaction (Atkinson &
Chalmers 2010). Therefore, the presence of multiple binding sites may constitute an
evolutionary convergent strategy to overcome length limitation by successfully
recruiting the transposase and enhancing the transposition process. In fact, this strategy
has been already applied to artificially improve transposition reactions (Zayed et al.

2004).

Finally, we carried out an in vivo transposition experiment to test if consensus
Dbuz\Galileo transposase was functional. After screening for transformants, we were
not able to detect transposition activity. As we do not know the Galileo transposition
frequency, this result could be due to a very low transposition rate that would need a
bigger sampling for transformants (e.g. at least ~106.individuals must have been
screened for a 10-6 transposition rate). But, if we assume that Galileo transposition rate
could be similar to the P-element, our positive control in the experiment, some Galileo
transformants must have been found. So, there may be other reasons responsible for the
negative result, such as: the lack of secondary binding sites in the donor construct, the
consensus transposase might not be functional or might be toxic for the flies, or, as the
tested transposon comes from D. buzzatii, there may be missing specific cellular factor
or unknown incompatibilities that do not allow Galileo to mobilize in D. melanogaster.
These two flies are distantly related as they belong to two different lineages that split
40-60 million years ago (Russo et al. 1995; Tamura et al. 2004). Further studies could

shed some light in this issue.
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2.5.- Conclusions

This work constitutes the first step in the characterization of the transposition
reaction of Galileo. Since Galileo copies are non-functional in the genomes of
Drosophila species, we had to reconstruct functional sequences. Although we were not
able to detect a whole transposition reaction with these revived candidates in an in vivo
experiment, we confirmed that they can recognise and interact with DNA in vitro.
Furthermore, we found that even though the isolated Galileo binding sequence is longer
than in any other THAP domains, the recognised binding sites are homologous to those
of other proteins. We also detected the presence of putative secondary binding sites in
the TIR internal tandem repeats. The confirmation of these regions as functional binding
sites would provide the first evidence of the convergent evolution of this mechanism to

overcome the drawbacks caused by increased TIR length.
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2.6.- Materials and methods

Amplification of D. buzzatii Galileo transposase coding sequence by PCR. Three
overlapping regions, that spanning the whole transposase coding sequences were PCR
amplified in eight D. buzzatii strains (st-1, Maz-4, j-9, jq7-4, jz3-2, jq7-1, Sar-9 and j-
4). These PCRs were carried out in a total volume of 25 pl including 100-200 ng of
genomic DNA, 20 pmol of each primer, 200 uM dNTPs, 1.5 mM MgCIl2 and 1-1.5 units
of Taq DNA polymerase. The products were gel-purified and sequenced.

Generation of THAP domain sequences. A consensus sequence of the Dbuz\Galileo
transposase segment was generated with the PCR products using the majority rule
(Geneious assembly algorithm in Geneious (Drummond et al. 2010)). This consensus
sequence differs from the reported Dbuz\Galileo sequence (Marzo et al. 2008) by 5
nucleotides and can be translated into a fully functional protein. The THAP domain

region of the consensus sequence is located in the N-terminal 450 bp portion.

Consensus sequences were also generated for D. ananassae and D. mojavensis
transposase sequences. The sequences found in these genomes in previous work (SI
Table 2.1) were aligned with MUSCLE 4.8.4 algorithm (Edgar 2004) implemented in
Geneious software (Drummond et al. 2010) and a majority rule consensus of the THAP
domain was generated (450 bp). As described in our previous work, there are four
different Galileo subfamilies (C-F) in D. mojavensis (Marzo et al. 2008). Here, we

generated transposase consensus sequences for the GalileoC and GalileoD subfamilies.

Finally, a reconstruction of the 450 bp ancestral THAP domains was carried out for
D. ananassae and D. mojavensis (C and D subfamilies). MUSCLE 4.8.4 (Edgar 2004)
alignments were used for generating the best trees by maximum likelihood using
RAXML phylogenetic software and GTR+gamma evolution model (Stamatakis 2006).
The trees were rooted with an appropriate outgroup using FigTree 1.3.1 software
(Rambaut 2006) and after rooting, the outgroup was removed from the tree manually.
These rooted phylogenetic trees and the alignments were used for inferring the ancestral
sequence by maximum likelihood using the CODEML module in PAML software
(Yang, 1997) (parameters: seqtype= 1 (codons); codonfreq=2; NSsites = 0 1;

rateancestor=1; fix_blength= 1).
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TIR cloning. In order to test the DNA binding ability of the Galileo THAP domains,
150 bp TIR consensus sequence was generated for Galileo elements in D. buzzatii
(GalileoG, GalileoN and GalileoK subfamilies), D. mojavensis (GalileoC and GalileoD
subfamilies) and D. ananassae. These consensus sequences were generated using the
majority rule, as above. A genetic construct (pRC1525) was created concatenating the
inferred sequences plus Galileo representative target site duplications. Unique
restriction sites were located in between each TIR for releasing them individually from

the vector and allowing radioactive dCTP labelling using an exo- Klenow polymerase.

THAP Protein expression. The inferred ancestral and consensus 450 bp sequences

were codon optimized and synthesized (Bio S and T Inc., Canada). From these
sequences a 270 bp (90 amino acid) predicted core THAP domain was PCR amplified
(Phusion enzyme) and cloned in pOPINM (N-ter MBP-tag vector from The Oxford
Protein Production Facility, UK) using the In-Fusion® cloning technology (Clontech
Inc.). In the D. buzzatii case, as no ancestral sequence was reconstructed the 450 bp
THAP sequence (150 amino acid) was cloned in pOPINM expression vector as well.
The effect of the THAP domain length could be tested this way. The expression vectors
with the THAP domains were sequenced for verifying the ORF and were transformed in
BL21 (DE3) E. coli expression cell line. The protein expression was induced in DO680
=0.5 LB cultures with 100 ug/ml ampicillin cultures, ImM of IPTG and 100uM of
ZnCl2 at 16°C over night. The cells were harvested by centrifugation and resuspended
in HSG buffer (50mM HEPES pH 7.5, 200mM NaCl, 2mM dithiothreitol (DTT), SmM
EDTA and 10% glycerol). The cells were lysed in a French press and centrifuged at
25000g for 30 min. The supernatant was loaded onto an amylose resin column (New
England Biolabs). The column was washed several times with HSG buffer and the
protein eluted with HGS buffer plus 10mM maltose. The fractions containing MBP

transposase were pooled and aliquots were stored at -80°C.

Electrophoresis mobility shift assay (EMSA). Purified recombinant THAP domains

were incubated for 2 hours at room temperature with the labelled TIR in 20 ul reaction
of binding buffer (20 mM Tris-HCI, pH 7.5, 100 mM KCl, 100 g/ml bovine serum
albumin, 2.5 mM DTT, 5% glycerol). Different conditions were tested: different protein
concentration (1, 1:100, 1:10000 from the stock protein solution (Sug/uL or 94 uM),
addition of ZnCl12 (100 uM final concentration) and addition of unspecific competitor
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DNA (pBlueScript, ~500ng/reaction). The reactions were loaded in a 4% TAE-
polyacrilamide gel and run for 2 hours at 300V at 4°C.

Footprint assay. A sample of the EMSA reaction was digested by 0.05U of DNase I
for 1 minute at room temperature. The enzyme was diluted to 1U/uL with dilution
buffer (5 mM MgCl2, 0.5 mM CaCl2). The reaction was stopped using 1 pL of 500 mM
EDTA. DNA was purified by phenol-chloroform extraction and ethanol precipitation.
The cleavage pattern was analysed by electrophoresis on a 5% polyacrylamide
sequencing gel. DMS/piperidin reactions were performed following standard procedures

to reveal G positions and were used to localize the DNase I protected regions.

In vivo_Galileo transposition experiment. Plasmids generation. Helper plasmid:

pTURBO-Galileo (pRC1510). The inferred Dbuz\Galileo consensus transposase ORF

(see above) was generated by directed mutagenesis PCR (see primers in SI Table 2.2).
The different PCR fragments were assembled thanks to the addition of unique silent
restriction sites at each end. This consensus ORF was cloned in the pTURBO
(pUChsA2-3, FlyBase recombinant construct FBmc0000938, (pRC1501)) plasmid
replacing the P-element transposase. For this purpose, a PCR of whole pTURBO
sequence except the P-element ORF was performed and two unique restriction sites
(Mlul and Eagl) were added for cloning the Galileo transposase. After cloning the ORF

was sequenced to check that the coding sequence was the proper one.

Donor plasmid. pCASPER-Galileo (pRC1517). The plasmid pCaSpeR-4 (FlyBase
recombinant construct #Bmc0000178, (pRC1502)) was used as donor plasmid. Two
PCRs were performed for amplifying and ligating all the plasmid without the P-element
sequences. In this step 4 unique restriction sites were added (Pstl, Notl, Nsil and
BamHI) surrounding the miniwhite gene. These 4 unique restriction sites were used for
cloning 150-pb Galileo TIR in the proper orientation and TSD, surrounding the
miniwhite gene (TIR1: Pstl and Notl, TIR2: Nsil and BamHI). The miniwhite ORF and
the TIR were sequenced for checking the sequence. The PCRs carried out in this section

were performed with Phusion polymerase (Finnzymes).

Drosophila injections. 3 different injections were performed in Drosophila
melanogaster white embryos (strain wl118, Genetic Services Inc. USA): one with the

P-element plasmids without any change as a positive control (pRC1501 -helper- and
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pRC1502 -donor-), another one with the two Galileo generated plasmids (pRC1510
-helper- and pRC1517 -donor-) and the last one with pRC1517 alone as a negative
control. Each injected fly (91 positive controls, 99 Galileo transposition elements and
96 negative control) was crossed with three virgin females or three males depending on
their gender. The tubes of the crosses with Drosophila media were changed every two
days (in the case of one injected male with 3 virgin females) or every 4 days (in the case
of one injected female with 3 males) during 12 to maximise the number of offspring.
Finally the F1 of each cross was counted and non-white eyes were screened (from light

orange to deep red eyes) as a marker of transposition activity.
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2.7.- Supplementary material

Supporting tables list:
SI Table 2.1

SI Table 2.2

SI Table 2.1. Sequences used for inferring the THAP domain sequences. CAF1
assemblies.

Species/Group Coordinates
D. mojavensis C  scaffold 6262 13889-19752
scaffold 6541 1141978-1149130
scaffold 6500 31288762-312953303
scaffold 6358 1-5345
scaffold 6500 31981325-31980812
D. mojavensis D scaffold 6500 31458921-31464785
scaffold 6482 614003-617184
scaffold 6482 617185-618411
scaffold 6485 39163-45738
scaffold 6540 1175880-1182997
D. ananassae contig 15979  71824-74395
contig 11169 1-2142
contig 19410 7756-12565
scaffold 13082 2449985-2467038
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List of abreviations

bp: base pair

BS: binding site

EMSA: electrophoretic mobility shift assay
kb: kilobase

MBP-tag: maltose binding protein tag
OREF: open reading frame

TIR: terminal inverted repeat
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3.1.- Abstract

Galileo is a transposable element responsible for the generation of three
chromosomal inversions in natural populations of Drosophila buzzatii. Although the
most characteristic feature of Galileo is the long-internally repetitive Terminal Inverted
Repeats (TIR) which resemble the Drosophila Foldback element, its transposase-coding
sequence presents significant similarity to the P-element transposase. This has led to its
classification as a member of the P-element superfamily (Class II, subclass 1, TIR
order). Furthermore, Galileo was detected in six of the 12 Drosophila sequenced
genomes, suggesting a wide distribution in the Drosophila genus. D. mojavensis is
among the six species, the closest to D. buzzatii, and the Galileo sequences found in this

sequenced genome presented the highest diversity in sequence and structure.

In the present work, we carried out a thorough search and annotation of all the
Galileo copies present in the D. mojavensis sequenced genome. Our set of 170 Galileo
copies present a huge variability in length and structure, ranging from nearly-complete
copies to copies with only two TIR or even solo-TIR elements. In addition, the sequence
diversity showed the existence of five subfamilies (C, D, E, F, and X), four of them
harbouring transposase-coding sequence and a fifth one which presents a putative
chimeric origin. Our analysis suggests that Galileo is currently active or has been active
until very recently. Finally, we have explored the structure and length variation of the
Galileo copies which points out to relatively frequent rearrangements within and
between Galileo elements. Different mechanisms responsible of these rearrangements

are discussed.
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3.2.- Introduction

Transposable elements (TE) are genetic entities capable of changing their location in
the genome (Kidwell & Lisch 2002). Because of their disperse and repetitive nature,
they are considered part of the middle repetitive DNA portion and they make up
significant fractions of different genomes, such as 14% in Arabidopsis thaliana, ~15%
in D. melanogaster, ~45% in humans or ~80% in some crops (Lander et al. 2001;
Kidwell 2002; Wicker et al. 2007; Hua-Van et al. 2005). They have been found in
virtually all the studied species, showing what could be considered a great success in
their strategy or the ancientness of their existence (Feschotte & Pritham 2007). Since
their new insertion sites are usually random, they are considered as mutational agents,
which allowed them to be firstly considered as junk DNA (Doolittle & Sapienza 1980;
Orgel & Crick 1980). Nevertheless, they can be taken as powerful facilitators of
evolution, since they generate variability, the row material for evolution, along with

some adaptive TE insertions which have been reported (Oliver & Greene 2009, 2011).

Since TEs present huge variability in length, structure and transposition strategies, a
classification system is needed to understand and handle all the information about this
type of DNA. Although classification criteria have not reached a complete consensus,
there is a general agreement about the first split in the classification: the existence of a
retrotranscription step (Finnegan 1989). Structural and homology criteria are used to
further classify the different elements in subclasses, orders, superfamilies and families
(Feschotte & Pritham 2007; Jurka et al. 2007; Wicker et al. 2007). TIR DNA
transpososns (Class II, subclass I) comprise those elements without the retrotrascription
step and with Terminal Inverted Repeats (TIR) (Wicker et al. 2007). These elements are
mobilised by a transposase protein encoded by autonomous or canonical copies of the

element usding a cut-and-paste mechanisms.

Apart from transcription-active (canonical) copies of a transposon family, most
genomes also harbour defective copies which are unable to encode a functional protein
and thus non-autonomous. These copies appear due to mutations in the canonical-
structured elements, along with genomic deletion and unequal exchange after non-
allelic homologous recombination (NAHR) and the transposon activity, generate

deletion derivatives copies (Petrov & Hartl 1998; Rio 2002). These defective copies
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usually present a gradient of random deletions and there are from almost-complete
copies to copies that are only made up of TIRs and a spacing region (Brunet et al. 2002;
Rio 2002; Feschotte & Pritham 2007). Furthermore, there is a special kind of defective
elements that are called MITEs (Miniature Inverted repeat Transposable Element),
which seems to have acquired non-related sequences and only present homology to the
canonical copies in the TIRs or the very ends of the TIRs. These MITEs use or parasite
the transposition machinery coded in the complete copies and have been proposed as the

ultimate parasites (Gonzalez & Petrov 2009; Yang et al. 2009).

Galileo is a transposable element discovered in D. buzzatii where it has been
responsible for the generation of three natural chromosomal inversions (Céceres et al.
1999; Casals et al. 2003; Delprat et al. 2009). Because the first copies of Galileo were
only made up of long TIR sequences, it was tentatively classified as Foldback-like
element (Caceres et al. 2001; Casals et al. 2005). However, when the Galileo
transposase sequence was discovered, it was definitely classified as a member of the P-
element superfamily of DNA transposons (class II, subclass I and TIR elements order),
being the longest TIR element (from ~300 bp to 1.2 kb TIR length) of its superfamily
(Marzo et al. 2008). Despite the first studies pointed out that Galileo distribution was
limited to the closest species to D. buzzatii (Casals et al. 2005), the bioinformatic
analysis of the 12 sequenced Drosophila genomes uncovered a broader distribution,
because six of the 12 species harboured it (Marzo et al. 2008). In this initial
bioinformatic analysis, one of these species, D. mojavensis showed a remarkable
diversification of Galileo sequences, with four phylogenetically differentiated groups,
and huge structural variability among the copies. Both D. mojavensis and D. buzzatii are

members of the repleta group of the Drosophila subgenus.

In the present work, we carried out a more detailed search and analysis of the
transposon Galileo in the D. mojavensis genome. 170 Galileo copies were identified
using different automated searching strategies coupled with a detailed manual
annotation in each of them. A huge variability in length and structure were found, thus
sequences from nearly-complete copies to only two TIR elements were found. In
addition, the sequence diversity found allowed the description of five Galileo
groups/subfamilies, one more than the previous work; four of them harbour defective

transposase sequences and one of them could have a chimeric origin. The activity of
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these Galileo copies has been explored through bayesian analysis, which suggests that it
has been active until recently or maybe it could be still active. Finally, the structural
dynamics, which comprise the TIR extension, has been analysed in detail and

mechanisms for this dynamism are discussed.
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3.3.- Methods

Bioinformatic searches of Galileo copies in the Drosophila mojavensis genome.

Consensus TIR sequences of previously described Dmoj\Galileo subfamilies plus 50 bp
overall consensus TIR end, were used as query sequences against the CAF1 scaffold
assembly of D. mojavensis genome (Clark et al. 2007). The searches were carried out

using an automated process based on wuBlast (http://blast.wustl.edu) and the Chao

algorithm (Chao & Miller 1995) for the handling of the sequence discontinuities in the
blast searches. The hits were selected using a 80-80 criteria with the query TIR (80%
identity and 80% of the length, (Wicker et al. 2007)) and were considered as part of the
same Galileo copy if arranged in the proper orientation at a distance < 10 Kb. If one
TIR did not meet all the mentioned criteria the 3 kb flanking region where the other TIR
would be expected to be found was further explored by blast. More Galileo copies were
found in this way. When no partner was found for a given TIR in the surrounding area,

it was considered as a solo-TIR copy for further analysis.

All hits from each search were manually curated and thoroughly analysed to discard
wrong automated identifications. Decisions on the acceptance of a search hit were based
on the comparison with previously characterised copies and the identification of
characteristic structures by careful annotation. This way, we identified the different
regions in each Galileo copy: the Terminal Inverted Repeats (TIR), the transposase-
coding region, and the spacing sequences upstream and downstream of the transposase-
coding region (those we have named F1 and F2 respectively). Only sequences showing

a clear sign of some of these structures were selected for further analysis.

Annotation of Galileo copies. All selected sequences were manually analysed and

annotated using several tools found in Geneious 5.1.7 software package (Drummond et
al. 2010). The closest annotated sequence for each new copy was detected by a search
with blastn (Altschul et al. 1997) and used as reference for the detailed annotation of the
new copy. When a region of a new copy was not located in the chosen reference copy,
this region was used as blast query against different Galileo sequences and other
Drosophila TEs in order to detect regions in common with other Galileo copies or TE
insertions. TIR span was determined by aligning each copy with the corresponding

reverse complement sequence. All copies were classified by structure in one of the
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following five categories: 1) nearly-complete (NC), when two TIR and more than 2 kb
of transposase-coding sequence were found; ii) deletion derivatives (DD), when either
two TIR and less than 2 kb of transposase-coding sequence were found, or a complete
or partial transposase-coding sequence was found, but only one TIR was identified; iii)
two TIR elements (2T), when two TIR separated by a short middle region (usually not
coding for transposase) were found; iv) two extended or recombinant TIR (2RT), when
two TIR were found and they were either longer than the NC copies or presented
duplicated sequences (there has been extra sequence recruited in a longer TIR); and v)
solo-TIR (ST), when only one TIR was found. Detailed information of the genome

location and annotation of each Galileo copy is provided in Supplemental Table 2.

TIR phylogeny. The phylogenetic relationship between Galileo copies was inferred

from the analysis of a 630 bp sequence from the 5' end of the representative consensus
TIR. Shorter than 450 bp selected sequences (due to partial deletions) were excluded
from the analysis to improve the alingment. These TIR regions were aligned with
MAFFT using the following parameters: E-ins-I; --op 1.53; --maxiterate 1000;
--genafpair; --ep 0; --inputorder; --kimura 200, as it is set in Geneious software (Katoh
et al. 2002; Drummond et al. 2010). The alignment was filtered with Gblocks 0.91b to
remove regions too divergent and poorly aligned (Castresana 2000; Talavera &
Castresana 2007). Gblocks was set up with relaxed parameter values (Minimum
Number Of Sequences For A Conserved Position: 120; Minimum Number Of
Sequences For A Flanking Position: 120; Maximum Number Of Contiguous
Nonconserved Positions: 10; Minimum Length Of A Block: 5; Allowed Gap Positions:
With Half) selecting 53% of the original alignment (547 bp of the 1018 original
positions). JModeltest 1.0 (Posada 2008) was used to find the substitution model that
best fits the data by means of the Akaike Information Criterion (AIC), which resulted to
be HKY+G (Hasegawa, Kishino and Yano plus gamma (Hasegawa et al. 1985)).
Maximum likelihood (ML) search was performed with PhyML 3.0 (20110304)
(Guindon & Gascuel 2003; Guindon et al. 2010) using the Subtree Pruning and
Regrafting (SPR) algorithm. The parameters of the substitution model were estimated
by the program, using four categories to estimate the gamma distribution and support
was calculated with 100 bootstrap replicates. Bayesian inference (BI) was carried out

with BEAST 1.6.1 (Drummond & Rambaut 2007), using an uncorrelated lognormal
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relaxed clock (UCLN (Drummond et al. 2006)) and the substitution model from
jModeltest. We used a birth-death process as a tree prior setting a uniform (0, 1000)
distribution for growth and death rates. All others priors were left with default values.
Two MCMC chains of 50 million generations were run and combined with the
LogCombiner program included in BEAST package. In both cases, the chains were
sampled every 1,000 steps, and the first 10% of the samples was removed as burnin.
Convergence was ensured checking that ESS values for all parameters were over 200.
We obtained the maximum clade credibility summary tree with median node heights

using TreeAnnotator (also included in BEAST package).

Recent transpositional activity. A BEAST phylogenetic inference was carried out

with the aim of displaying the relative age of each Galileo copy. For this purpose only
one TIR region (of at least 450bp long) was picked up from each copy and chimeric
elements were excluded. The BEAST priors were set up as mentioned above with the
same evolutionary model (HKY+G). Absolute time estimation was performed using the
0.011 changes/base/myr proposed as neutral mutation rate in Drosophila (Tamura et al.
2004). After that, a lineage through time plot was generated which depicts copy
accumulation through time (Barraclough & Nee 2001). We performed statistical test to
find out the best fitting model to a sample of 9000 trees from the BEAST inference. The
diversification models tested were: pure-birth (constant rate), birth-and-death (constant
rate), DDX (variable rate), DDL (progressive change with saturation) and Yule-two-
rates (abrupt change of the rate in one point). These models were adjusted by ML and
the best one was chosen using an Akaike Information Criteria (AIC). Furthermore,
simulations to test if the best fitting model was due to incomplete sampling or data

variability were carried out.

Transposase-coding region phylogeny. Transposase-coding sequences found in the
different groups longer than 2 kb (12 elements: 6498-22531F, 6500-31458D, 6541-
16442D, 6540-11758D, 6540-23860D, 6485-39163D, 6540-41449X, 6262-30856C,
6541-11419F/C, 6500-31288C, 6482-60893F) were aligned with MAFFT (same
parameters as above), and jModelTest was run to find the best evolutionary model for
the transposase-coding sequences. ML and BEAST tree were inferred for these
sequences (evolutionary model JC+G+I). The cognate TIR of each copy with a

transposase-coding segment >2 kb were aligned with MAFFT and new phylogenies

159



Results

with PhyML and BEAST were obtained. The topologies of the transposase-coding
sequences and TIR phylogenies were compared and the differences were evaluated with
an Approximated Unbiased test (AU test) performed with CONSEL program
(Shimodaira & Hasegawa 2001; Shimodaira 2002).

Chromosomal distribution of Galileo copies and relation to protein-coding and RNA

genes. The genomic and cytological location of Galileo copies was inferred from the
scaffold coordinates and the correspondence of scaffolds with polytene chromosomes
(Schaefter et al. 2008). In order to analyse the intrachromosomal distribution of Galileo
copies, each chromosome was divided in three regions: telomeric, central and
centromeric, conainting 10%, 80% and 10% of the sequence, respectively (Casals et al.
2005, 2006). This was only possible for chromosomes 2, 3, and 4, each of them
represented by a single major scaffold (Schaeffer et al. 2008). Statistical analyses of
chromosomal distribution were carried out with JMP 8.0.2 (SAS Institute Inc. 2009).
The D. mojavensis gene annotations were downloaded from Flybase.org

(ftp://ftp.flybase.net/releases/FB2011_04/). The coordinates of protein-coding and RNA

genes were compared with those of Galileo copies using ad hoc perl scripts. All Galileo
copies were classified as located in scaffolds without genes, in intergenic regions or in
intronic regions. Statistical tests to compare the total length and TIR length with genes
distances were performed with JMP 8.0.2 (SAS Institute Inc. 2009). Information about

the gene function was extracted from FlyBase.
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3.4.- Results

Different bioinformatic search strategies were used to maximise the probability of
finding Galileo copies (see Methods). A total of 170 Galileo copies were identified and
manually annotated (a 370% sample increase over the 36 previously described copies
(Marzo et al. 2008)). These copies were classified according to subfamily, structure and
chromosomal distribution (see Table 3.1 for a summary and SI Table 3.1 and SI Table
3.2 for detailed information). Subfamily classification was based on the phylogenetic
analysis of TIR sequences and resulted in five well-supported groups (C, D, E, F and
X). Twelve copies were found to contain sequences belonging to different subfamilies
and were considered as chimeric (Table 3.1). Structural classification produced five
groups: nearly-complete (NC), deletion derivatives (DD), two TIR elements (2T), two
extended or recombinant TIR elements (2RT) and solo-TIR (Table 3.1). Some

representative copies of these structural groups are depicted in Figure 3.1.

Table 3.1. Summary of the Galileo copies studied in this work. The different subfamilies and structures
are indicated.

Subfamily
Structural type —— Total
C D E F X Chimeric
Nearly complete (>2 kb Tpase) 2 5 0 1 1 1 10
Nearly complete deletion derivatives 4 2 0 1 2 0 9
2 TIR 5 0 7 28 3 6 49
2 TIR longer 2 2 22 3 4 5 38
solo TIR 6 10 19 26 3 0 64
Total 19 19 48 59 13 12 170

Galileo subfamilies in the D. mojavensis _genome. A phylogenetic tree was built
using the homologous TIR region of all the copies (Figure 3.2A). The tree shows five

groups with significant statistical support, four of them (C, D, E and F) agree with the
previously described Dmoj\Galileo subfamilies (Marzo et al. 2008), whereas the fifth,
that we have named X, is a novel group (Figure 3.2A). The general relationship among
the groups is similar to that found in the previous work, with two main lineages, one
comprises the D, E and X group, and the other the C and F groups. Furthermore, the
phylogeny also detected 12 chimeric copies (not shown in Figure 3.2A) with the two
TIR belonging to different phylogenetic groups. In addition, these copies are flanked by
non-matching 7-bp sequences instead of identical direct target site duplications (TSD)

as most other copies.
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Figure 3.1. Structures of representative Galileo copies found in the D. mojavensis genome. The black arrows
are the TIR, the grey middle region is the transposase sequence, the yellow region is the F1 (spacing sequence
between the TIR 1 and transposase coding segment), the green region is the F2 (spacing sequence after the
transposase-coding segment and the TIR-2). The blue squares are tandem repeats found in the F group. The
region with bracketed pattern (>>>) is the extra TIR region recruited in the extended TIR copies. The black
arrowheads are internal short inverted repeats found in C and D groups. NC copies are nearly-complete, NC DD
are deletion derivatives of the nearly-complete ones.
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Figure 3.2. Galileo phylogenetic analyses. A) Unrooted tree inferred using 241 TIR sequences of Galileo.
Phylogenetic reconstructions were carried out by means of ML (PhyML) and BI (BEAST) methods using a
HKY+G evolutionary model. Numbers on nodes indicate the support of each group as bootstrap and Bayesian
posterior probability, respectively. The five groups show strong support. B) BEAST ultrametric summary tree
inferred using 148 TIR sequences of Galileo (only one TIR of each Galileo copy was used and chimeric copies
were excluded). The yellow bars correspond to the 95% Highest Posterior Density intervals for node ages. The
ML best-fit model of diversification was a yule-2-rate in which a constant duplication rate changes to another
constant rate at a certain time, and the discontinuous vertical line indicates the shift in the duplication rate (0.048
substitutions/position, ~4.36 myr) and the grey area represents the 95% confidence interval obtained using 10,000
trees sampled from the Bayesian analysis. C) Lineages Through Time (LTT) plots representing the accumulation
of cladogenesis events. The black line shows the LTT plot of the summary Bayesian tree. Red and blue lines
represent the mean and the 2.5% and 97.5% percentiles of the 10,000 sampled trees LTT plots, respectively.
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In order to explore the evolutionary dynamics of Galileo copies through time, an
ultrametric tree was generated using a relaxed molecular clock (Figure 2B). In this case,
only one TIR sequence per Galileo copy was included (usually TIR1, and in some cases
TIR2 when TIR1 was not present or was too short) and chimeric copies were omitted. In
this tree we included an estimation of absolute time, which provides ages for each node.
If we take into account the common ancestral node for each one of the Galileo
subfamilies, different ages are found. For example, the last common ancestral node for
all the F copies is ~8.6 myr, which means this group would be the first one diversifying
in this genome. It would be followed by E (~7.45 myr), C (~ 4.35 myr), D and X (these
last two less than 4 myr). Most of the copies (~ 60%), regardless the phylogenetic
group, seem to be quite recent as they appeared in the last million year. In addition, the
cumulative graphic of Lineages Through Time (LTT plot) showed an exponential
growth of the number of Galileo sequences without any apparent deceleration in the
curve (Figure 3.2C). Thus, Galileo has not stopped its transposition activity in the time
depicted in the graphic. Furthermore, we have performed a diversification rate test and,
at least, one shift has been detected which is located in 0.048 relative time units
(substitutions/position) (~4.36 myr vertical discontinuous line in the tree, Figure 3.2 B
and C) where the rate of Galileo proliferation changes from 16.28 sequences/relative
time units to 48.66 sequences/relative time units (95% confidence interval for each rate:
5.87-30.31 and 39.77-58.24 lineages/time). These observations indicate that Galileo is

still active or has been active until very recently.

Twenty Galileo copies were found to contain variable portions of the transposase-
coding region (Table 3.1, SI Table 3.1), yet none of them harbours an intact ORF that
can be translated into a functional protein (i.e. all of them contain chain termination
mutations and/or deletions and frame-shift mutations). These copies belong to
subfamilies C, D, F and X, whereas no copies of the E subfamily contain any trace of
the transposase-coding region. A phylogenetic tree was built with transposase-coding
sequences longer than 2 kb found in the different subfamilies (12 Galileo copies in total,
see methods). For comparison, the TIR region of these 12 copies was used to generate a
new tree with the same methods. Both phylogenetic trees were similar and recovered the
same groups (Figure 3.3, Table S3). However, the relationship among the subfamilies

seem somewhat discordant: in the transposase-coding region tree groups F and D belong
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to one of the main lineages, and groups X and C belong to the other, whereas the TIR
tree shows the same relationship between groups found previously in the global TIR
tree (Figure 3.2 A and B). Differences in topology can be due to different evolutionary
histories, but also to phylogenetic uncertainty. In fact, the grouping of F and D in the
transposase-coding tree has a low bootstrap support (41%). Moreover, an AU test was
performed (CONSEL program) to test if any of the two topologies could be
significantly rejected using the information in both alignments. This way, neither of the
two topologies could be rejected in the case of the transposase alignment (TIR topology:
P = 0.39, transposase-coding topology: P = 0.61), indicating that information in the
alignment does not allow discriminating between both phylogenetic hypotheses.
However, when the TIR alignment was used, we found that the transposase-coding
topology was significantly rejected (TIR topology P = 1; transposase-coding topology P
= T7e-11). These results suggest that the position of the F subfamily in the transposase
coding segment tree might be biased, as a consequence of the reduced number of

sequences used, phylogenetic noise in this Galileo region or recombination.

F
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Figure 3.3. TIR and transposase coding region phylogenies. 12 Galileo elements were used for these analyses.
A) TIR phylogeny. B) Transposase phylogeny, PhyML analysis with JC+G+I evolutionary model. The AU test
was performed to compare the two tree topologies.
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Galileo structural variation. Galileo copies exhibit a striking amount of structural

variation (Figure 1). For the purpose of description and analysis, we have grouped all
copies into five structural groups: NC, DD, 2T, 2RT and solo-TIR (see methods). All
phylogenetic groups except D and E contained copies of the five different structures
described (see Table 3.1). The D subfamily lacked 2T elements, whereas the E

subfamily did not contain any copy with transposase sequence (neither NC nor DD).

The Galileo TIR, defined as the terminal sequence inverted and repeated in each
end, is the most variable region among the copies of the element, not only in nucleotide
sequence as phylogeny shows but also in length. TIR length varies from 18 bp to 1250
bp with a total average of 668 bp. The variation of TIR length is found in all the
subfamilies (see SI Table 3.1 where means and standard deviation are found), but when
the five subfamilies means are compared, the only pairs of comparisons that present
statistical differences are between the X and E subfamily and X and F subfamily
(Tukey-Kramer means comparison test, P<0.05). The X subfamily possesses the
shortest TIR, and subfamilies E and F the longest TIRs. When the TIR length is
compared among the different structural types, the only significant length different is
found between the 2T and the 2RT type, which is in agreement with the classification
criterion (Tukey-Kramer means comparison test, P<<0.05). We have explored the
sequences comprising the TIRs. Generally, the shortest TIRs are due to the lack of TIR
sequence in one of the Galileo ends. Thus, although one transposon end still posses a
whole TIR, the repeated span gets shorter because of the sequence missing in the other
end (it is not repeated any more). This is how some very short TIRs are found in copies
like F subfamily 6680-244202 or X subfamily 6498-95069, E subfamily 4198-1393 or
C subfamily 6540-613211 (see copy 4502-5732E in Figure 3.1).

On the other hand, when the longest TIR are explored, we have observed differences
among the subfamilies. For example, in the F subfamily, the presence of direct tandem
repeats inside the TIR (located in ~264-467 bp from the TIR end) seems to account for
part of the variation in the TIR length. There are TIRs with no internal repeats and TIRs
with two or three copies of the internal tandem repeat. Since the tandem repeat region is
~210 bp long, when three copies of this sequence are present, TIR length increases by
~420 bp. This fact was found in the TIR1 of 6500-30596F and 6500-31107F which are

1264 and 1263 bp long because they harbour three internal tandem repeats. In contrast,
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copies 6540-32286F or 6540-57500F harbour 892-bp TIRs due to the lack of internal
tandem repeats. It is noteworthy that the tandem repeat expansion and contraction was
only found in the F group and was located always in the same region of the TIR, except
in copy 6500-30494F which harboured two tandem repeats located in 196-101 bp from
the TIR2 end.

In the other groups, although the tandem repeat structure in the TIR was not found,
some copies showed also longer TIR, when compared to the NC copies. In these cases,
the detailed exploration of the TIR sequences uncovered the recruitment of non-TIR
Galileo sequences (usually the region found immediately after the TIR in the NC
Galileo element) to generate a longer TIR. For example, part of the sequence of the F1
area (the sequences after TIR1 but upstream the transposase coding segment) appeared
repeated in inverted orientation immediately before the beginning of the TIR2
extending the repetitive span inside the Galileo element. This way, an originally non-
duplicated neither repetitive Galileo sequence made up a longer TIR. We observed that
the extra region of TIRs can come both from the F1 or the F2 region, however, the F2
region appeared duplicated only in the groups C (2 copies) and F (once as direct repeat,
another time as inverted repeat and it is found in a chimeric copy, as well) whereas F1
region appeared repeated in the C, D (2 copies), E (22 copies) and X (4 copies plus 2

chimeric) groups.

The Galileo copy with the longest TIRs showed a combination of the two expansive
traits: tandem repeat expansion (two times the tandem repeat in each TIR) along with
the recruitment of 121 bp of F2 sequence in the TIR. This copy is 6500-29864F (see
Table S2), and has TIR lengths of 1260 bp and 1241 bp (TIR1 and TIR2, respectively
with a 95.2% of nucleotide identity). The second and third longest TIR copies belonged
to the C group, where two 2RT copies recruited F2 region for the TIR reaching 1107 bp
long. The next longest copy was found in the E group, followed by copies in the D and
X groups (SI Table 3.2). It is noteworthy that the copies with the longest TIRs were
never the nearly-complete ones but the non-autonomous without the transposase-coding
OREF, i.e. 2T and 2RT copies (SI Table 3.1 and SI Table 3.2). All Galileo subfamilies
present substantial TIR length variation, because in all the groups there are copies with

very short and very long TIR.
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Chimeric _copies. Twelve Galileo copies were composed of two TIR with an
unusually high nucleotide divergence and were bounded by different 7-bp sequences
instead of identical TSD (see SI Table 3.2). The TIR phylogeny confirmed that these
Galileo copies were chimeric (not shown). Structurally, one of these copies was NC and
all the others are 2T. Regarding the subfamily, there are 4 F/C (including the NC), 1
F/D, 2 E/F, 1 E/C and 4 F/X. The contribution of each subfamily to the chimeric copies
1s in agreement with its abundance (Chi square test, P > 0.05). The fact that F TIR were
more frequent in the chimeric copies would be due to the larger number of F copies in
the genome. On the other hand, we have tested if the different subfamilies are randomly
combined or whether there are subfamily preferences when the chimeric copies are

generated. We have not detected any significant departure from randomness (P>>0.05).

We have detected the presence of another kind of chimeric copies, with the two TIR
from the same phylogenetic subfamily, but the internal region from another one.
Furthermore, the central region of all these copies seems to have the same origin, the
central region of 6680-240698D, one of the 2RT copies of the D subfamily. The central
region of this copy presents 441bp of F1 duplicated and inverted expanding the TIR
length. When the E subfamily was explored, the central region of its copies presents
high identity to this internal region of the 6680-240698D copy (98% of identity), while
the 570 bp of the end of each TIR presents 77% of identity and, as the phylogenies
show, belong to different subfamilies. Likewise, we have found this same central region
in two 2T copies classified in the X group (copies 6498-29033 and 6500-29395,
classified as X group, ~1640 bp total length). Thus, the same central region was found
accompanied by TIRs from three different subfamilies, D E and X.

Galileo chromosomal distribution and relationship with genes. We have analysed

the interchromosomal and intrachromosomal distribution of the Galileo copies (SI Table
3.3 and SI Table 3.4). 138 of the 170 Galileo copies are located in scaffolds assigned to
the D. mojavensis chromosomes (Schaeffer et al. 2008). The remaining 32 copies are
located in scaffolds that are likely to contain pericentromeric heterochromatin and have
not been assigned to any chromosomes yet. The distribution of the 138 copies was 29,
26, 43, 14, 3 and 23 for D. mojavensis chromosomes X, 2, 3, 4, 5, and 6 (dot),
respectively. This interchromosomal distribution shows a significant departure from a

random distribution (taking into account the size of each chromosome, chi square test
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P<<0.05). There is an excess of Galileo copies in the dot chromosome, whereas fewer

than expected copies are found in the chromosome 5.

In addition, we have explored, the intrachromosomal distribution of Galileo copies.
In the D. mojavensis there are three chromosomes (2, 3 and 4) represented each by a
single major scaffold (6540, 6500, 6680, respectively) (Schaeffer et al. 2008)). We have
subdivided these scaffolds in distal (10% of the sequence), central (80% of the
sequence) and proximal (or centromeric, 10% of the sequence) segments in relation to
the position of the centromere, and tested if Galileo copies present a uniform
distribution in these regions. We observed a very significant departure from what was
expected by chance, since Galileo copies tend to accumulate in the proximal region near

to the centromere (P<< 0.01, in the three cases, SI Table 3.4).

Furthermore, coordinates of Galileo copies have been compared to those of the
predicted genes in D. mojavensis genome (including protein-coding and RNA-coding
genes). The 170 Galileo copies were classified as follows: 23 are located in scaffolds
without genes, 23 are located inside genes (all of them inside introns) and 124 are
located in intergenic regions (see SI Table 3.5 and SI Table 3.6). The distances to the
closest gene of the intergenic Galileo copies ranged from 29 to 110537 bp (average
11439bp, median 5253bp). No correlation was observed between copy length and
distance to the nearest gene (Spearman's rho P>>0.05), or between copy length and
intergenic region length (Spearman's rho P>>0.05). There was no differential
distribution regarding the 5' or 3' gene regions (chi-square test P>>0.05) neither when
the different subfamilies (P>>0.05, from 1 to 0.36) or the structural Galileo type

(P>>0.05, from 0.22 to 1) were taken into account.

A set of 17 Galileo copies are located very close to genes (less than 500 bp, SI Table
3.5). The function of these genes have been explored and they are involved in different
cellular processes, such as tRNAs, methyl transferases, helicases, DNA binding proteins
and 14 of them possess a D. melanogaster ortholog. Another group of copies (23
Galileo) have been found inside genes. In all the cases the Galileo elements were
located insidel6 different introns (in some introns there were more than one Galileo
element). The length of these introns ranged from 1478 to 172415 bp, and 10 of the 16

genes whose introns harboured Galileo copies, have been assigned an orthologous gene
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in D. melanogaster. (SI Table 3.6). There was no correlation between Galileo length

and intron length, neither type nor subfamily is over-represented inside the genes
(P>>0.05).
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3.5.- Discussion

In a previous work, we uncovered the presence of Galileo elements in six of the 12
sequenced Drosophila genomes (Marzo et al. 2008). Among them, D. mojavensis
genome showed the highest variability in Galileo sequence and structure. A small
sample of 16 nearly-complete copies that contained transposase-coding sequences and
20 non-autonomous copies was analysed. Analysis of the TIR sequence variation
showed that the copies clustered in four different groups or subfamilies (that were
named C, D, E and F). Two of these subfamilies, C and D, harboured truncated
transposase coding region, while the other two groups were only composed by non-
autonomous copies (mainly 2 TIR structure). The existence of different groups in the
same genome suggested different amplification bursts in the past. Furthermore, a high
variability in TIR length was detected. Since the TIR length is the most characteristic
feature of Galileo elements, the D. mojavensis genome offered the opportunity to study

this trait in detail.

Here, we carried out a thorough analysis of Galileo variation and distribution in the
D. mojavensis genome sequence. In the present work we have uncovered the existence
of at least 5 subfamilies of Galileo elements. Four of them contain nearly complete
copies with transposase-coding segments, what implies the putative co-existence of four
fully functional subgroups. The co-existence of different subgroups or subfamilies has
previously been reported for D. melanogaster P-element and other transposons (Hartl et
al. 1997; Quesneville et al. 2006; Miskey et al. 2007; Moschetti et al. 2008). There are
two main hypotheses which would explain the co-existence of different subfamilies in
the same genome: horizontal transfer and genomic diversification. On the one hand, in
case of horizontal transfer events, the Galileo element could have arrived to D.
mojavensis via some close spatio-temporal species, such as mites or other intimate
parasites (Houck et al. 1991; Silva et al. 2004; Le Rouzic & Capy 2005; Loreto et al.
2008). If the five subfamilies (C, D, E, F and X) had arrived through this mechanism,
this would imply at least 5 independent events of successful horizontal transfer and
invasion of D. mojavensis genome. If our estimation of each subfamily age is taken into
account, these horizontal transfer events would have happen in a ~5 myr period, which

would mean an average of one horizontal transfer event per million year. When the
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variability of the age nodes is taken into account, this time range reaches ~9.5 myr
(from 0.125 to 0.02 changes/time, 11.36 and 1.81 myr, respectively), which would mean
~0.53 horizontal transfers per myr. This would imply something like a “Galileo
bombing” against D. mojavensis genome in the past. This HT rate is higher than the
0.04 HT/myr/family obtained by Bartolomé et al. (2009), even if we divide our
estimation among the number of Galileo subfamilies, we still get a higher rate of 0.1

HT/myr/subfamily. This massive horizontal transfer seems unlikely.

On the other hand, the different Galileo subfamilies could have diverged vertically
from an ancestral resident in the genome. This putative ancestor sequence would have
existed ~18 myr ago (0.20 units/relative time, considering 0.011 changes/position/myr
(Tamura et al. 2004), as it is seen in our Beast ultrametric tree (Figure 2B). Such
functional differentiation would have to be driven by specific selective pressures to
form several subfamilies producing distinct Galileo transposases to overcome the cell
transposition repression. When a new transposase appears along with high-affinity
sequences, a tranposition burst would happen. After that, truncated copies of the
successfully transposed ones would appear, rendering deletion derivatives, 2T, 2RT and
solo TIR copies. In each subfamily, all these structural types would appear
independently and could spread while they conserve the affinity for the enzymes
encoded elsewhere in the genome by an autonomous copy (Le Rouzic & Capy 2006;
Gonzalez & Petrov 2009; Yang et al. 2009). This is the landscape Galileo presents in D.

mojavensis genome.

Furthermore, another factor that would influence the Galileo diversification would
be the genetic drift, which is very sensitive to the host population structure. D.
mojavensis is a species with very divergent populations which are even considered as
races. It could be possible that in each population a different Galileo subfamily evolved
and secondary contacts with these populations mixed the different groups. However, our
time estimation of each subfamily it is not in agreement with the putative ages of the
different D. mojavensis races, which would have probably less than one myr (Machado
et al. 2007; Reed et al. 2007). Thus, population structure seems not to explain the

existence of Galileo subfamilies in D. mojavensis.
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Nevertheless, the two mechanisms, horizontal transfer and genetic diversification
are not mutually exclusive, thus, a combination of the two phenomena could have
happened. However, it seems more parsimonious the vertical diversification of Galileo.
Our estimations depicted that D. mojavensis Galileo subfamilies have a common
ancestor ~18 myr ago. This is showing us that Galileo has an old history in D.
mojavensis, which is in agreement with the Galileo ancient origin in the genus (Marzo
et al. 2008). Likewise, recent data from the repleta Drosophila species group have
uncovered the existence of Galileo elements in almost all the species of the complex
(Andrea Acurio, Deodoro Oliveira and Alfredo Ruiz, in preparation). However,
although the Galileo last common ancestor in the genus could be as old as the origin of
the Drosophila genus, the subfamilies found in D. mojavensis diversified quite recently
(4-9 myr ago). Consequently, only closely related species to D. mojavensis are expected
to harbour these very same subfamilies, and other different subfamilies probably exist in

more distantly related species.

The genomic dynamics of transposons seems to be similar for the different
subfamilies. The natural cycle of a transposon would begin with the invasion of a new
genome of a fully functional transposon, for example through horizontal transfer (Silva
et al. 2004; Le Rouzic & Capy 2006; Loreto et al. 2008). After that, since class II
transposition depends entirely on the cell replication and repairing machineries of the
double strand breaks, the truncated copies start to appear due to errors in the repair
process. Likewise, the truncated copies that would maintain the sequences recognised
by the transposase, would be able to spread better than the complete copies, probably
due to the overcome of the putative length penalty some transposons suffer (Atkinson &
Chalmers 2010). Moreover, even shorter copies would appear, the so-called MITEs and,
eventually, the transposon would end inactivated and disappear (Silva et al. 2004;

Feschotte & Pritham 2007).

Galileo element structures clearly show this dynamics. The nearly-complete copies
are 5.2 kb average length and a gradient of shorter copies with different deletions
appeared. This way, a bunch of copies where no transposase sequence is found appears,
which is composed almost entirely of TIR. Maybe, these copies could be considered as
Galileo MITEs, but there are some drawbacks for this definition. First of all, the main

trait of MITE is its length, usually less than 600bp (Feschotte et al. 2002; Feschotte &
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Pritham 2007; Wicker et al. 2007). Galileo 2-TIR elements are 1.7- 2.2 kb average
length, mainly due to the TIR length per se. Secondly, MITEs usually posses sequences
which are not found in the complete copies, a fact that made very difficult to find the
parental elements of the first MITEs (Feschotte et al. 2003). In Galileo, the changes
from the most complete copies to the 2TIR elements are traceable virtually all copies.
Finally, although the 2TIR copies outnumber the nearly-complete ones, the number of
copies is not as many as the MITEs thousand copies reached in some genomes
(Feschotte & Pritham 2007). Thus, we propose 2TIR element tag for this kind of

Galileo copies.

Regarding the Galileo TIR dynamics, we have observed length expansion and
contraction. On the one hand, for the contraction, the genomic deletion rate in TEs has
been studied and would explain how this would happen (Petrov & Hartl 1998). On the
other hand, the expansion of the TIR would be a bit more complex than deletion. The
expansion of the TIR in the F groups is mainly due to the expansion and contraction of
the direct tandem repeats which are located inside the TIR. We have observed different
number of tandem repeats in each of the TIR of a Galileo-F copy, rendering
independent TIR dynamism. This would be in agreement with the statement that any
region generated by duplication can thereafter be duplicated (Newman & Trask 2003;
Fiston-Lavier et al. 2007). Furthermore, the tandem repeats in the TIR or in subterminal
regions of transposons have been proposed to be secondary binding sites for the
transposase (Cheng et al. 2000; Cui et al. 2002; Moschetti et al. 2008; Marquez &
Pritham 2010). In our case, Galileo elements contain these tandem repeats as well, and
they have been found independently in two different subfamilies: D. mojavensis
F(Dmoj\GalileoF) and D. buzzatii G (Dbuz\GalileoG) (Casals et al. 2005; Marzo et al.
2008, 2011). The multiple binding sites seems to be a convergent trait that appears in
different transposable element superfamilies and could be positively selected for an
improved transposition reaction, thanks to a higher affinity for the transposition

machinery.

Besides the tandem repeat expansion, we have detected another source of TIR
extension: the recruitment of internal sequences to extend the TIR. This could be due to
the structure of the Galileo sequences, where two close inverted repeats of least ~600 bp

long might attract recombination, whether due to the DSB after transposon excision,
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the structural instability or ectopic recombination as a result of being a genomic
dispersed repetition. We could suggest that Galileo would have a behaviour similar to
the segmental duplications besides its transpositional nature. Segmental duplications are
repetitive regions of the genome that are able to recombine, exchange and convert
sequences (Bailey & Eichler 2006). For example, if a Galileo copy suffers a DSB in the
TIR2 (due to a problem during replication step, for example) it could be repaired
through non-allelic homologous recombination (NAHR). If for repairing this TIR2 it is
used as template the TIR1 of a copy of the same subfamily (the two TIR present 98-
100% nucleotide identity between the TIRs of the same Galileo copy) it is possible that
it would be copied more sequence than the strictly TIR. In that case, since the TIRI is
being copied where the TIR2 is located, the region that was downstream of the TIR1
would appear upstream of the TIR2 as well, becoming a repetitive sequence in inverted
orientation and extending the TIR span. The result is TIR1-F1-F1-TIR2. The expansion
of inverted repeat sequences have been reported for segmental duplications, and
Polintons inverted repeats (TE), thus, the dynamics of inverted repeats seems a general

genomic dynamic trait (Caceres et al. 2007; Fiston-Lavier et al. 2007; Jurka et al. 2007)

Thus, we can imagine ectopic recombination and genomic conversion would be
acting among all Galileo copies and different products may appear, among them the
chimeric elements. In these cases, if one of the exchange breakpoints (of the conversion
tract) is located inside the element, it would generate a chimeric element with two well-
defined segments from two different subfamilies. These chimeric copies resemble the
Galileo copies found in the breakpoints of polymorphic inversions in D. buzzatii, what
is in agreement with the Galileo inversion generations due to ectopic recombination
attraction (Céceres et al. 1999; Casals et al. 2003; Delprat et al. 2009). Furthermore, if
the two exchange breakpoints are located inside the element, this would render, for
example, the X-E-X copies and, probably, this could be the origin of the whole E

subfamily as well.

We would like to propose that long TIR, although they imply a handicap for the
transposition reaction (Atkinson & Chalmers 2010), they could be useful for the
survival of the transposon: the more recombination rate among these sequences due to
the length of the TIRs, the more chance to appear a new Galileo subfamily. There

would be more raw material where the transposase could choose from and a new
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transposition burst would be triggered. The TIR length dynamics, along with the
chimeric origin observed among Galileo copies is in agreement with an important
dynamic DNA exchange of sequences and recombination (Bailey & Eichler 2006;
Céceres et al. 2007; Fiston-Lavier et al. 2007). Thus, this would explain why different
non-related class II transposon present subfamilies with long TIR and why TIR length is
not a reliable feature for transposon classification (Ivics et al. 1997; Cheng et al. 2000;

Moschetti et al. 2008; Marquez & Pritham 2010).

Generally, the mutations or inactivation of the transposase sequence drives the death
of a transposon, because without the transposition reaction there is no duplication of the
sequences. The fact that we have not found any Galileo functional transposase, points
out that Galileo may be an inactive element. However, our Galileo sequences lineages
through time (LTT) plot, where the accumulation of nodes in the tree is depicted, did no
show any decrease or stationary rate of Galileo sequences duplication. Thus, if Galileo
is not still active, it has stopped working quite recently. In this regard, it is worth to
mention that in genome sequencing projects, there are heterochromatic regions that have
not been sequenced. Furthermore, there is a lot of variability among the individuals of a
species which it is not represented by only one genome sequence. Then, we cannot
discard the existence of Galileo active sequences in other individuals or other genomic

regions of D. mojavensis.
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3.6.- Supplementary material

Supporting tables list

SI Table 3.1. Summary table of the copies found (groups, structures and TIR length)

and statistical tests.

SI Table 3.2. Detailed data of the Galileo copies included in this study.

SI Table 3.3. Interchromosome distribution of Galileo elements.

SI Table 3.4. Intrachromosome distribution of Galileo elements and statistical tests.
SI Table 3.5. Nearest genes to Galileo copies.

SI Table 3.6. Intronic Galileo copies.
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SI Table 3.1. Copy total element length and TIR length in the different Galileo

subfamilies and subgroups.

C
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 2 5912.5 108.19 2 704.5 82.73
Nearly complete deletion derivatives 4 4070  1185.41 3 730.67  34.00
2 TIR 5 1383.8  530.50 5 318.3 24231
2 TIR longer 2 3119 0 2 1107 0
solo TIR 6 772.5 171.47 - - -
Total 19 2504.5 617.208
D
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 5 5283.8 65741 5 5452 41482
Nearly complete deletion derivatives 2 3286 147.08 0 0 0
2 TIR 0 0 0 0 0
2 TIR longer 2 1860.5 443.36 2 735.5  392.44
solo TIR 10 552.2 146.68 - - -
Total 19 2222.67 599.57
E
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 0 0 0 0 0 0
Nearly complete deletion derivatives 0 0 0 0 0 0
2 TIR 7 1424.86  695.49 7 289.07  225.93
2 TIR longer 22 2114.045 369.76 22 907.21  210.37
solo TIR 19 778.90  285.43 - - -
Total 48 1469.29 758
F
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 1 0 0 1 733 0
Nearly complete deletion derivatives 1 0 0 0 0 0
2 TIR 28 142486  695.49 28 709.88  308.85
2 TIR longer 3 2114.046 369.76 3 1086.83  180.03
solo TIR 26 778.90  285.43 - -
Total 59 1528.42 776
X
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 1 5047 0 1 147.5 0
Nearly complete deletion derivatives 2 2249.5 24537 2 168 0
2 TIR 3 1262.33  666.27 3 311.67  192.84
2 TIR longer 4 1723.25  77.66 4 581.75  28.01
solo TIR 3 517 209.45 - - -
Total 13 1675.15 374.55
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Chimeric
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 1 6239 0 1 873.5 0
Nearly complete deletion derivatives 0 0 0 0 0 0
2 TIR 6 1769.17 389.7474 6 599.67  196.51
2 TIR longer 5 1903.6  576.99 5 4913 25222
solo TIR - - - - - -
Total 12 2197.67 528.65
Total
Total length TIR length
N Mean  Std. Dev. N Mean  Std. Dev.
Nearly complete (>2 kb TPase) 10 5356.6  745.61 10 588.9 196.24
Nearly complete deletion derivatives 9 3436.11 1047.91 5 505.6  309.12
2 TIR 49 1738.88  562.31 49 571.93 32295
2 TIR longer 38 2139.5  497.62 38 833.88  271.38
solo TIR 64 741.47  234.82 0 0 0
170 1755.59 1259.58 102 667.93  317.045

Statistical Tests
1. Total Galileo length.

s ad oaw

S000

1.Ii I]UrUE}. IHLIII[JUr
Galileo length distribution

Fitted Normal
Parameter Estimates

Type  Parameter Estimate Lower 95% Upper 95%
Location u 1755.5941 1564.8851 1946.3031
Dispersion c 1259.5819 1138.4166 1409.8387

-2log(Likelihood) = 2908.54105324984
Goodness-of-Fit Test: Shapiro-Wilk W Test

W Prob<wW
0.834216 <.0001*
Ho = The data is from the Normal distribution. Small p-values reject Ho.
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Galileo length by Galileo subfamily
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD
Abs(Dif)-LSD

C D Chimeric X F E
C -1148.26 -955.473 -1087.05 -533.405 -58.4314 -28.685
D -955.473 -1148.26 -1279.84 -726.195 -251.221 -221.474
Chimeric -1087.05 -1279.84 -1444.87 -894.295 -463.593 -429.642
X -533.405 -726.195 -894.295 -1388.18 -949.693 -916.45
F -58.4314 -251.221 -463.593 -949.693 -651.617 -632.487
E -28.685 -221.474 -429.642 -916.45 -632.487 -722.433
Positive values show pairs of means that are significantly different.
Level Mean
C A 2415.6316
D A 2222.8421
Z.Chimeric A 2197.6667
X A 1675.1538
F A 1540.4915
E A 1485.0417
Levels not connected by same letter are significantly different.

60004 o
f "
= '
S000 ] &
L ]
= 4000y | - .
2 3000 |- :
E Pl ,n -.h:- g — : - i x#.
e wol~ L <> A | i
: == i S - ....L.. - e ;_é_-.; 1':'1. "‘-L-‘::_-u-""
L B T e = S -
1000 i T """‘I n=all 2
" r 1
I' - - -
C ! ] ; I ) I ! b "Chimeric Al Pairs Each Fair
Tukey-Kramer Stdent’s 1
Subfamily 005 .15

Total length distribution in the different Galileo subfamilies of D. mojavensis.

Galileo length by Galileo structural type
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD
Abs(Dif)-LSD

1.NC 2.NC DD 4.Longer 2TIR 3.2TIR 5.SOLO

1.NC -619.371 1284.146 2724.874 3137.145 4144.195
2.NC DD 1284.146 -652.874 783.1924 1194.971 2201.598
4.Longer 2TIR 2724.874 783.1924 -317.731 101.2543 11144
3.2TIR 3137.145 1194.971 101.2543 -279.803 734.511
5.S0LO 4144.195 2201.598 1114.4 734.511 -244.828
Positive values show pairs of means that are significantly different.

Level Mean

1.NC A 5356.6

2.NC DD B 3436.1111

4.2RT C 21395

32T D 1738.8776

5.SOLO E 741.4688

Levels not connected by same letter are significantly different.
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Total length distribution in the different Galileo structural types of D. mojavensis.
1. Galileo TIR length.

A~
o N

— ™

f’ﬁ T

0 200 400 600 800 1100
TIR length distribution

Fitted Normal
Parameter Estimates

Parameter Estimate Lower 95% Upper 95%
Location p 661.95146 599.16181 724.74111
Dispersion ¢ 321.27395 282.58952 372.32654
-2log(Likelihood) = 2908.54105324984

Type

Goodness-of-Fit Test: Shapiro-Wilk W Test

W Prob<W
0.954506 0.0014*
Ho = The data is from the Normal distribution. Small p-values reject Ho.
TIR length by Galileo subfamily
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD
Abs(Dif)-LSD

F E C D

Z.Chimeric X

F -223.629 -215.854 -174.065 -226.88 -134.19 47.31895
E -215.854 -230.963 -188.276 -240.578  -148.401 33.28627
C -174.065 -188.276 -365.184 -407.789  -325.309 -140.35
D -226.88 -240.578 -407.789 -478.138  -403.188  -215.8
Z.Chimeric  -134.19 -148.401 -325.309 -403.188  -365.184 -180.225
X 47.31895 33.28627 -140.35 -215.8 -180.225 -400.039
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Level Mean

F A 7459375
E A 734.46667
C AB 617.20833
D AB 599.57143
Z.Chimeric AB 577.33333
X B 374.55

Levels not connected by same letter are significantly different.
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TIR length by Structural Type
Means Comparisons: Comparisons for all pairs using Tukey-Kramer HSD
Abs(Dif)-LSD

4.2RT 1.NC 3.2T 2.NC DD

42RT -176.177 -27.9503 959579 -37.0464

IL.NC -27.9503 -343.432 -249.502 -337.316

32T 95.9579 -249.502 -155.147 -294.2

2.NC DD -37.0464 -337.316  -294.2 -485.686
Positive values show pairs of means that are significantly different.
Level Mean

4.2RT A 833.88158

I.NC AB 588.9

3.2T B 571.92857

2.NC DD AB 505.6
Levels not connected by same letter are significantly different.
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Discussion

1.- Galileo and the P-element superfamily of transposons

Galileo was discovered by our research group in D. buzzatii (Caceres et al. 1999,
2001).The first Galileo sequences did not harbour any coding region neither presented
any significant identity to any know TE. Thus, Galileo was tentatively classified as a
class II Foldback-like tranposon, due to its structure, which was mainly composed by
long internally repetitive TIR (Céceres et al. 2001; Casals et al. 2005). In the present
thesis, the putatively complete copy of Galileo with transposase-coding segment was
isolated from D. buzzatii. In addition, similar nearly-complete elements were detected in
6 of the 12 sequenced Drosophila genomes. These observations provided valuable
information for a new classification of the transposon. The transposase analysis showed
significant identity to the P-element and 1360 transposases along with the same
functional protein domains. This fact allowed a functional classification of Galileo in
the P-element superfamily of DNA transposons (Class II, subclass I, TIR elements
order, Wicker et al. 2007) which predicts a similar transposition reaction. Conceivably,
all the P-element superfamily members transpose through a cut-and-paste reaction,
where transposon staggered ends are generated after the transposon excision and TSD

appear after the transposon insertion.

In this sense, the TSD present different lengths among the P-element superfamily
members. The P-element generates 8-bp palindromic TSD, whereas Galileo and 1360
present palindromic TSD of 7-bp. Although the length of the TSD can be used as a
diagnostic trait for TE classification (Wicker et al. 2007), there is variability in its length
within several transposon superfamilies, such as MuDR, CACTA, Merlin, Banshee
(reviewed in Feschotte & Pritham 2007). Likewise, TIR length is also a variable trait
within different transposon superfamilies, such as, MuDR, Tcl/mariner, PIF-harbinger,
(Feschotte & Pritham 2007; Wicker et al. 2007). Despite the length differences, it is
noteworthy that TIR and TSD ends of P-element, Galileo and 1360 start with CA
sequence. Since the transposase binding site is not located at the very end in Galileo and
P-element, the reason of this conservation could be the need of this sequence for the

endonuclease reaction of the transposon excision.
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Element Total length TIR Transposase Introns Protein residues TSD
coding segment

P-element 2907 31 2256 3 751 8
1360 3614 31 2564 no 863 7
Galileo 5407 1229 2739 no 912 7

Table 1.1: Comparison of different features of P-element, 1360 and Galileo. Both P-element
and 1360 are from D. melanogaster and Galileo corresponds to the synthetic copy from D.

buzzatii (Marzo et al. 2008). P-element accession number: K06779; 1360 accession number:
AE014135 (D. melanogaster dot chromosome, coordinates 809591-813204).

Regarding the transposase of this superfamily, Galileo and 1360 putative proteins
harbour the same domains present in the P-element transposase. From our analysis, the
Galileo THAP domain is longer than the other THAP domains (such as P-element or
THAP1, see Results-Chapter two) and presents a longer N-terminal region as well. This
longer THAP domain sequence could be related to the longer binding site of
Dbuz\GalileoG. Despite its increased length, in accordance to other traits of the
transposon, the Galileo binding site sequence conserves the proposed consensus
nucleotides (Campagne et al. 2010; Sabogal et al. 2010). Thus, we can conclude that the
THAP domain of Galileo presents significant amino acid identity with other THAP

domains and there is also similarity in the recognised nucleotide sequence.

After the THAP domain, there is a coiled coil region where the transposase
interacts with other transposase monomers for assembling a transposase multimer. This
multimer is a tetramer in the P-element (Tang et al. 2007). Presumably, Galileo would
interact in the same way, although a different number of units in the multimer could be
expected, similarly to other superfamilies of transposons, such as Tcl/Mariner, where
Mos1 acts as a dimer and Hermes as an hexamer (Hickman et al. 2005; Richardson et al.
2006). Since we have only predicted these regions using computational tools, further

experimental analysis with the purified transposase would be very interesting.

The next domain that appears in the P-element transposase is the GTP binding
domain. The GTP acts as an allosteric co-factor and it is not hydrolysed during the
reaction (Rio 2002; Tang et al. 2005). Recently, this domain has been delimited by
Sabogal & Rio (2010) after isolating it and checking that the GTP binding activity
remained. These residues can be located in the Galileo transposase when aligned with
the P-element transposase. In the P-element the GTP binding domain is located in

residues 275 to 409, and in Duz\GalileoG, in residues 403 to 519. This region presents
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27% aminoacid identity when the two transposases are aligned (21.3% identity fot the
entire protein). Thus, Galileo seems to harbour this domain as well. Experimental
evidences would be needed to corroborate the involvement of GTP in Galileo
transposition reaction and to conclude that GTP would be an important cofactor in the

Galileo transposition like in the P-element transposition.

The last domain in the transposase of the P-element superfamily is the catalytic
domain, which is characterised by a high proportion of acidic residues and performs
cuts in the DNA through an endonuclease reaction (Rio 2002). The catalytic domain of
almost all DNA transposons shared the DDE signature with integrases of retroelements,
however, the P-element did not seem to present it (Hickman et al. 2010). Recently,
Yuan and Wessler (2011) have studied systematically a broad sample of transposases of
different superfamilies with the aim of uncovering conserved residues not detected
before. This way, they have found the DDE motif in the P-element superfamily among
other superfamilies. The residues proposed by Yuan & Wessler (2011) are not in
agreement with those proposed by Rio (2002). In this this work, the catalytic domain of
the Galileo transposase was found and the key catalytic residues identified (Results —
Chapter 1) based on Rio 2002. However, Yuan and Wessler (2011) suggested other key
catalytic residues in Dbuz\GalileoG transposase, which are D337, D426 and E651.
There is only one residue in common with those proposed by Rio (2002), E651. Since
the proposed residues are highly conserved among the superfamily transposases,
including Galileo from different species, it would be very interesting to corroborate
experimentally its key role in the transposition reaction along with the Mg™

conjugation.

The catalytic domain cuts the transposon at the very end of the TIR, thus, the
conservation found in this region must be very important for the proper cut of the
transposon. This fact could be the reason why the most conserved region of the different
Galileo subfamilies is the end of the TIR, especially the nine terminal nucleotides:
CACTACCAA (CACTGCCAA in C, D, E and X D. mojavensis subfamilies).
However, when the different families of the P-element superfamily are compared, this
conservation is only found in the first two residues of the TIR (CA). Although there are

few residues conserved, they might be a trait of a common catalytic domain. Maybe,

213



Discussion

the fact that other cut-and-paste transposon TIR start with CA (such as some hAT,
CACTA or transib, Feschotte & Pritham 2007; Yuan & Wessler 2011) is another trait of
the shared DDE domain (Hickman et al. 2010; Yuan & Wessler 2011).

Since these three elements, Galileo, 1360 and P-element, probably share a
common ancestor, we could hypothesise which of them could be the most similar to the
ancestor of the group. Since the three main members of the P-element superfamily are
contained in Drosophila genus species, the species distribution of these elements would
shed some light on the evolutionary relationships among P-element, 1360 and Galileo,
at least in this host genus. The P-element does not exist in the Drosophila subgenus but
Galileo and 1360 have been found in the two main subgenera of the Drosophila genus.
This could be indicating a more ancient origin of Galileo and 1360 in the whole genus,
which would be in agreement with the lack of complete functional copies found so far.
However, since more than 2000 species make up the Drosophila genus, the study of

more species could uncover very different landscapes.

To sum up, Galileo classification is strong and well-supported. The variation in
TSD and TIR length does not represent any classification conflict. From our experience,
we corroborate that the most powerful criterion for transposon classification is the

transposase similarity, which is where the transposition mechanism reside.

2.- Long TIR and transposon evolution

Since transposons do not present any selective constraint for the host, they evolve
neutrally, with the only requirement of keeping the transposase affinity. Furthermore,
since the cell would be repressing the TE activity, the mobile elements would be more
able to avoid the cell repression if they are freer to change. However, there is a region
with some constraint, the coding sequence. Thus, the higher conservation found in the
transposase region, where homology is detected, is in agreement with the transposon
selective constraint that would keep it active in the genome. Thanks to this
conservation, it is possible to relate divergent transposons in superfamilies, such as the
case of Galileo, P-element and 1360 (Feschotte & Pritham 2007; Jurka et al. 2007;
Wicker et al. 2007).
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Excision of cut-and-paste transposons generates double-strand breaks which have
to be repaired by the cell machinery. This repair is one of the mechanisms that cut-and-
paste transposon use for their proliferation, along with the coupling of transpositional
activity to S phase of the cell cycle (Craig et al. 2002; Feschotte & Pritham 2007). On
the one hand, as in the case of P-element, the staggered ends can join through non-
homologous end joining (NHEJ) and a footprint of the transposon would remain at the
donor site (Engels et al. 1990). On the other hand, this double strand break can be fixed
through a gap repair process using the sister chromatid (G2 cellular stage) or the
homologous chromosome (G1 cellular stage) as template through a synthesis-dependent
strand annealing (SDSA, Formosa & Alberts 1986). This way, transposon sequence
could be both, restored at the donor site or completely erased, depending on the content
of the template sequence. (Engels et al. 1990; Rio 2002). Furthermore, besides the sister
chromatid or the homologous chromosome, any copy of the transposon could be used as
template as well in the gap repair process (Hastings 1988; Gloor et al. 1991). The
interruption of the SDSA process would cause a deleted copy (Engels et al. 1990; Gloor
et al. 1991; Plasterk 1991; Hsia & Schnable 1996; Dray & Gloor 1997; Rubin & Levy
1997). This way, transposon copies get shorter and there is no selective constraint that
would prevent it. Moreover, shorter copies can exhibit a higher transposition rate (as
long as the sequences needed for transposase binding and cutting are kept in the copy)
than the complete ones and they could outnumber the longest ones (Yang et al. 2009;

Atkinson & Chalmers 2010).

The spreading of the incomplete copies would have two effects: on the one hand,
the insertion of short copies would have a lower impact in the new genomic location
than the longer ones. These insertions would be less harmful for the host and these
copies would have advantage over the longer ones, favouring again the spreading of
shorter copies. On the other hand, the more transposase target sequences which no
transposase production, the less transposition rate, due to the lack of all the required
transposase monomers in a given copy at a given time. This is a titration effect which
down-regulates the transposition rate and it would be another reason for the short copies
be less deleterious than the longest ones. Nevertheless, all these mechanisms seem to be
a death sentence for the transposon. This fate, however, could be overcome by the

arrival of new TEs through horizontal transfer or by reactivation of formerly inactive
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copies (Kidwell 1992; Silva et al. 2004; Sanchez-Gracia et al. 2005; Loreto et al. 2008).
We would like to propose that cut-and-paste transposon reactivation could be enhanced

by long TIR.

Long-TIR elements have arisen in several transposon superfamilies besides the P-
element superfamily (Feschotte & Pritham 2007). For example, relatively long TIR
elements have been reported in the Tcl/mariner superfamily as well, such as Sleeping
Beauty (225 bp), Tc3 (462 bp) and Minos (245 bp) (Collins et al. 1989; Franz & Savakis
1991; Ivics et al. 1997). Another example is the Phantom transposon, which has
recently been classified as a member of the Mutator superfamily (Marquez & Pritham
2010). The TIR of Phantom are longer than other related families and present different
structures, from simple long TIR to long internally repetitive TIR which resemble the
Foldback structure . Since the TIR seems a dynamic trait in transposons, it is not a

reliable character for classification (Marzo et al. 2008; Marquez & Pritham 2010).

Long TIR could have a negative effect for transposons, because the more distance
between the two TIR, the less efficiency in transposition reaction (Atkinson & Chalmers
2010). Furthermore, DNA secondary structures appear with repetitive sequences
rendering more chances of DNA breaks during replication. However, since the long TIR
appear in different superfamilies they may entail some benefit for the transposon,
although they could be a shared trait only by chance. Maybe, the long TIR expands a
region without disrupting the promoter sequences and the CDS of the transposon. This
way, new binding sites or other transposition enhancing sequences could be located in a
longer TIR. Direct repeats, which correspond to binding sites, have been found in
different transposons, such as Sleeping Beauty, Bari, Herves (Cui et al. 2002; Moschetti
et al. 2008; Kahlon et al. 2011) and in Galileo we have strong evidences that its direct
repeats would be binding sites as well. The existence of several binding sites in each
TIR or transposon end could be useful for a more efficient recruitment of the
transposition machinery, where the different binding sites could be driving the

transposition proteins to the transposon ends.

Another positive effect of long TIR could be the fact that longer TIR are more

prone to recombine and suffer gene conversion. Although it could be a drawback at first
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sight, because ectopic recombination, along with deletion, are the main forces to prevent
TE spreading (Petrov 2002; Petrov et al. 2003, 2010), gene conversion could favour, for
example, the formation of highly identical TIR. Although in some transposons an
asymmetry in the binding sites is needed for the transposition reaction (P-element and
Herves for example Rio 2002; Kahlon et al. 2011), maybe other groups, such as long
TIR elements (Galileo, Sleeping Beauty, Phantom) transpose better with highly
identical and symmetrical binding sites. It would be very interesting to test how identity

between the two long TIRs of a transposon affects the transposition reaction.

The possibility that TIRs could behave similarly to segmental duplications
provides the transposon with a faster change rate which could result in new sequences
that could scape the titration down-regulation and start new transposition bursts. This
phenomenon could be considered transposon reactivation, being more useful for the
transposon survival compared to punctual mutations, which would take very long to
generate new transposon subfamilies or variants. In this sense, conversion and
recombination have been found intimately related with transposons in different
organisms, such as Wolbachia endosymbiont (Cordaux 2009; Ling & Cordaux 2010),
and other procaryotes (Redder & Garrett 2006; Beare et al. 2009), yeast (Roeder 1983),
and metazoans, such as humans (Schwartz et al. 1998; Lee et al. 2008) or D. buzzatii,
where inversions have been generated through TE ectopic recombination (Caceres et al.
1999; Casals et al. 2003; Delprat et al. 2009). Furthermore, the Galileo TIR length
dynamics we have found in D. mojavensis could be the result of this process as well
(see Chapter 3 of Results). Thus, TEs evolution seems linked to recombination and
conversion where transposon long TIR would favour this association. This could be the
reason of the convergence of this trait in different superfamilies of cut-and-paste

transposons.
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Conclusions

The following conclusions can be drawn from this work:

1.

Galileo is a class II element (DNA transposon) belonging to subclass 1 order

TIR and P-element superfamily.

Putative complete copies in D. buzzatii are 5.4-kb long and contain long TIR

(1.2 kb), a transposase-coding segment (2.7 kb) and spacing regions.

Similarly to the P-element transposase, the Galileo transposase contains the
following domains: THAP DNA binding domain, coiled coil region, GTP

binding domain and catalytic domain similarly to the P-element transposase.

The common traits between Galileo and P-element are the palindromic structure
of the TSD, the beginning of the TIR sequences (17 out of 31 bp including the
first two nucleotides CA) and the similarity in the transposase sequences along

with equal disposition of the same protein domains in it.

The main differences between Galileo and P-element are: the length of the TSD,
where P-element present 8-bp and Galileo, 7-bp; the TIR length, where P-
element present 31-bp and Galileo from ~500 bp to ~1,2 kb; the length of the
putative binding site, where P-element presents 10-11 bp binding site and

Galileo presents 18-bp.

Galileo 1s found, besides D. buzzatii, in six of the 12 sequenced genomes: D.
mojavensis, D. virilis, D. willistoni, D. ananassae, D. pesudoobscura and D.
persimilis. This means that Galileo is found in the two main subgenera of
Drosophila genus, Sophophora and Drosophila and it is likely widespread in the

genus.

Galileo presents different subfamilies within the genomes of D. mojavensis
(GalileoC, GalileoD, GalileoE, GalileoF, GalileoX) and D. virilis (GalileoA
and GalileoB). Similarly, the D. buzzatii elements Galileo, Kepler and Newton
can be considered as subfamilies of Galileo in this species (Dbuz\GalileoG,

Dbuz\GalileoN, Dbuz\GalileoK, prespectively).

The transposase phylogeny generated with consensus transposases of the
Galileo elements found in each genome, presents a topology that differ from the

species phylogeny. This incongruence could be due to horizontal transfer,
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10.

11.

12.

13.

14.

incomplete lineage sorting or phylogenetic artefacts, such as long branch

attraction as a result of the high divergence the sequences analysed.

The transposase THAP DNA binding domains of Dbuz\GalileoG,
Dmoj\GalileoC, Dmoj\GalileoD and Dana\Galileo have been successfully
reconstructed and expressed in vitro. They present specific binding activity for

Galileo TIR sequences.

The DNA binding domain of Dbuz\GalileoG was isolated and it was located in
nucleotides 63-80 of the Galileo TIR. This 18-bp sequence shows similarity to
the binding sites of other THAP domains, such as those of P-element

transposase or human THAP1 protein.

No Galileo transposase activity has been detected in our in vivo transposition

experiments

Within the genome of D. mojavensis, Galileo presents, besides its nucleotide
variability, huge structural variation in its copies. The TIR is the most variable
region in length and structure of the element. This structural dynamism may be
explained by several mechanisms, including deletion, duplication, recombination

and conversion.

D. mojavensis genome contains five different Galileo subfamilies, four of them
harbour transposase coding regions (none of them coding for a functional

protein) and the fifth presents a putative chimeric origin.

The accumulation of linages through time (LTT) in the phylogeny of D.
mojavensis Galileo elements shows an exponential increase of copies without
any trace of evident deceleration or stationary rate. This suggests that the
element is still active in D. mojavensis genome or has been active until very

recently.
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Evolution of genes and genomes on the
Drosophila phylogeny

Drosophila 12 Genomes Consortium™

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity
of evelutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12
Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis,
willistoni, mojovensis, virilis and grimshow), illustrate how rates and patterns of sequence divergence across taxa can
illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that
have made Drosophila melanegaster a pre-eminent madel for animal genetics, and will further catalyse fundamental research
on mechanisms of development, cell biclogy, genetics, disease, neurobiclogy, behaviour, physiclogy and evolution. Despite
remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in
protein-coding genes, non-coding RMA genes, and cis-regulatory regions. These may prove to underlie differences in the

ecalogy and behaviour of these diverse species.

As e might expect froom & genes with species living in deserts, in the
trovpics, om chains of volcanic islands and, ofien, commensally with
humans, rosophila species vary considerably in their morphology,
ecobogy and behaviour'. Species in this genus span a wide range of
global distributions; the 12 sequenced species originate from Africa,
Asia, the Americas and the Pacific [slands, and also include cos-
mopolitan species that have colonized the planet (£ melanogasier
ana L3, streneleres) as well as closely related species that live on single
mlands (10 sechiellia)’. A variety of behavioural strategies is also
encomipassed by the sequenced species, manging in feeding habit from
pencralist, such as [L amamassae, 10 specialisg, such as [ secheilfa,
which feeds on the fruit of a single plan species.

Degpite this wealth of phenotypic diversity, Dwosopliila species
share a distinctive body plan and life cyele, Although only 1% meld
magasrer has been extensively characterized, it scemis that the most
important aspects of the cellular, molecular and developmental bio-
logy oo these species are well conserved. Thus, in addition o provid-
ing an extensive resource for the study of the rdationship between
sequence and phenotypic diversity, the genomes of these species
provide an excellent model for studying how conserved functions
are maintained in the face of sequence divergence. Thiese genome
seqquences provide an unprecedented datasel to contrast genome
struciure, genome content, and evolutionary dyvnamics across the
well-defined phylogeny of the sequenced species (Fig. 1.

Ganame assembly, annotation and alignment

Genome sequencing and assembly. We used the previously pub-
lished sequence and updated assemblies for two Drosaphile species,
I melanegaster™ (release 4) and I, peewalpolscnra® (release 2, and
generated DINA sequence data for 10 additional Drosoplila genomes
by while-genome l'.llnl]:;url m]l,len:inﬂ" . Thiese :.pl'n:iﬁ- were chosen
o span a wide variety of evolutionary distamces, from chosely related
pairs such as [ sechieflial I3, stnnnlors and 1. persimilis/ [T, peendorhs-
curd to the distanily related species of the Drosoplailo anad Sepluspliong
subpgensera, Whereas the time to the most recent common ancestor of
the sequenced species may seem small on an evolutionary tmescale,

the evalutionary divergenoe spanned by the genus Dirosoplrila exceeds

“A B ol pariicipanis and sl i appeaes ol e ol of the paper

that of the entire mammalian radiation when peneration tme s
taken into sccount, as discussed further in ref. 8. We sequenced seven
of the new species (1% yakidwa, D, erecta, I anenassee, B willision,
I0, wirilis, 13, srojavesrsis and [0, grimshuned) to deep coverage (B4 1o
110 ) bo produce high quality drafl sequences. We sequenced two
species, [ sochellia and I persimilis, 1o intermediate coverage
(4.9 and 4.1%, respectively ) under the assumption that the avail-
abality of a sister spocies sequenced 1o high coverage would obviate
the need for deep sequencing without sacrificing draft genome gual
ity. Finally, seven inbred strains of L. sirndiens were sequenced 1o bow
coverage (2.9 coverage from w™" aml —1% coverage of six other
straina) to provide population variation data®, Further details of the
senjuencing strategy can be found in Table 1, Supplementary Table |
amd section | in Supplementary Information,

We generated an initial draft assembly for each species using one of
three different whole-genome shotgun assembly programs (Tabbe 1)
For DL aramassae, [ erectar, T grineshand, [ mjiovendcs, D virifisand
I, willisions, we also generated secondary assemblies; reconciliation
of these with the primary assemblics resulted in o 7-30% decrease in
the cstimated number of misassembled regions and a 12-23%
increase in the W30 contig size™ (Supplementary Tahle 2j. For
2 parkuba, we generated 52,000 targeved reads across low-quality
regions and gaps o improve the asembly. This doobled the mean
contig and scaffold sizes and increased the wotal fraction of high
quality bases {quality score (03} = 40 from 96.5% (o 98.5%, We
improved the indtial 29 [ senieliers v whobe-genome shotgun
assembdy by filling assemnbly gaps with contigs and unplaced reads
from the — 1 assemblics of the six other [, simulos strains, gene-
rating a “mosaic’ assembly (Supplementary Table 3). This inegration
markedly improved the I% sonulans assembly: the M50 contig size o
the mosaic assembly, for instance, is more than twice that of the
initial W™ assembly {17 kb versus 7 kb,

Finally, one advantage of sequencing genomes of multiple closely
related species i that these evolutionzry relationships can be
cxploited to dramatically mprove assemblies. % pokuba and
I3, sinnelins contigs and scaffolds were ordered and oriented using
pairwise alignment to the well-validated L sclonogasier genome
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sequence [Supplementary Information section 2). Likewise, the
-5 [0 persimiilis and D0 sechellna assemblies were improved by
assisted assembly wsing the sister species (I peowdoodscura and
I3 siemulans, respectively) to validate both alignmenis between
reads and linkage information. For the remaining species, com-
parative symienic information, and in some cases linkage informa-
thon, were also used o pinpoint locations of probable genome mis-
assembly, (o assign assembly scaffolds io chromosome arms and o
mnfer their order and orientation abong cuchromaiic chromosomse
arms, supplementing expenmental analvsis based on known
markers (A, Bhutkar, 5, Russo, 5. Schaeffer, T, F. Smith and W, M.
Gelbart, persomal communication) (Supplementary  [nformation
section 2).

The mitochondrial (medDNA of D melonogaster, . sechellin,
12, sirenabans (sill), D, prawriiiana (mall) and B vakuba have been
previously sequenced ', For the remaining specics (except [ pacir-
doobscra, the DNA from which was prepared from embryonic
nuclell, we were able to assemble full mivechomdrial genomes,
excluding the A+ T-rich control région (Supplementary Informa-
tion section 21, In sddition. the genome sequences of three
Wollurchin endosymbicats | Wollvachia wiim, Waellachia wAna and
Walhachio wWil) were assembled from trace archives, in I3 siulies,
I anancssae and D, willised, respectively™. All of the genome
sequences described here are available in FlyBase (www. flybaseorg)
and GenBank {www neblnlmanih.govh (Supplementary Tables 4
and 5).

Repeat and transposable element annotation, Hepetitive DMA
sequences such as transposable elements pose challenges for

o ate sites) using the ordinary least hod. See refl 154 fora
discussion of the wncertainties in the n-phrha'll' wrectin clae,

whole-genome shotgun assembly and annotation, Because the best
approach o transposable element discovery and identification is seill
an active and onresolved research question, we used several repeat
libraries and compuiational sirategies to estimate the transposable
clementirepeat content of the 12 Drowsphifa genome assemblics
[Supplementary Information section 3}, Previously curated trans-
posable clement librarics in L smcfanogioier provided the starting
point for our analysis to limit the effects of ascertainment bias, we
also developed de pove repeat librarses using PILER-DF™'™ and
ReAS"". We used four transposable element/repeat detection meth-
wids { RepeatMasker, BLASTER-TX, RepeaiRunner and CompTE) in
comjunction with these transposable element librarics 1o uentify
repetitive elements in non- meln er species, We assessed the
accuracy of cach method by calibration with the estimated 5.5%
transposable element content in the 12 melanogester genome, which
is based on a high-resolition transposable element annotation'™
{Supplementary Fig. 1). On the basis of our results, we suggest a
hylhred strategy for new genome sequences, employing translaned
BLAST  with general  transposable  clement  libraries  and
RepeatMasker with species-specific ReAS libraries to estimate the
upgrer and lower bound on transposable element content.

Protein-coding gene annotation. We annotated protein-coding
seqquences in the 11 non-melanegastier genomes, using foar different
de move gene predictors  (GenelD', SNAPY, N.-SCANY and
CONTRAST™); three homology-based  predictors  that  ransfer
annotitions  from [} melorogaster  [GeneWise™,  Exonerate™,
Genehapper” ) and one predictor that combined de movo and
homology-based evidence (Gnomon™). These gene prediction sets

Table 1| A summary of sequencing and assembly properties of each new genome

Finul annembiy Ganomes cenime QN eowerage (W) Aajembly sice (B Mo of contign =3 kb M contig =TkS (kb Per cent ol Base pain with guality =40
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[ erecia Ager oist t 104 1527 3283 458 9.2
B areraiue Aypere ot a9 2310 8155 113 i
[¥ persimiby Broad® il 1884 1 547 n #i3
[ waTlighond Howvag a4 2355 665F 1%7 974
D wirdis Agerc ot an 60 537 136 0.7
b mojrerms Agencoatt B2 1934 734 132 R,
[ gt i Aigpare caait I8 2005 Re3F 114 971
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Table 2 | A summary of annotated features across all 12 genomes
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were combined using GLEAMN, a gene masdel combiner thai chooses
the most probable combinatbon of stan, stop, donor and acceplor
sites from the input predictions™ . All analyses reported here, unless
otherwise noted, relied on a reconciled consensus set of predicied
gene models—the GLEAM-R set (Table 2, and Supplementary
Information section 4,1 ).

Quality of gene models. As the first step in assessing the quality of the
GLEAM-R gene models, we used expression dama from microarray
experiments on adult flies, with arrays custom-designed for D simu-
lans, I3, yakwba, [ anonassee, [V peesdoolscura, 1 wirilis and
L majevensis” (GEO series GSE6S40; Supplementary Information
section 4.2). We detected expression significantly above negative
cantrols (false-discovery-rate-comected Mann—Whitney LI (MWL)
P2 0001 for 77-93% of awsayed GLEAN-R models, representing
50-68% of the total GLEAN-R predictions in each species [Supple-
mentary Table &), Evolutbonarily conserved gene models are much
more likely to be expressed than lineage-specific ones (Fig. 2,
Although these data cannot confirm the detailed structure of gene
masdels, they do suggest that the majority of GLEAN-R models
contain sequence that §s part of a poly-adenylated ranscript,
Approximately 20% of transcription in 10 eclanogasier seems to
bre unassociated with protein-coding genes™, and our microarmay
experimients fall o detect conditionally expressed genes, Thus,

b, rrislansaguiaine

QMML

transcript abundance cannot conclusively establish the presence or
absence of a protein-coding gene. Nonetheless, we believe these
expression data increase our confidence in the reliability of the
GLEAM-R models, pamicularly those supported by homology evid-
ence [Fig. 2).

Because the GLEAM-B gene mosdels were buill using assemblics
that were not repeat masked, it is likely that some progartion of gene
mixlels are false positives corresponding to coding sequences of
transposable elements, We used RepeatMasker with e nove ReAS
libraries and PFFAM structural annotations of the GLEAN- R gene set
to flag potentially transposable element-comaminated gene models
{Supplementary Information section 4.2). These procedures suggest
that 5.6-32.3% of gene models in non-melanogaster species corre-
sponad 1o protein-coding content derived from transposable ebements.
{Supplementary Table 7} these vransposable element-contaminated
gene models are almost exclusively confined to gene prediciions
without strong homalogy support (Fig 20 Trangposable clement-
contaminated gene models are excluded from the final gene predic-
tion sci usexd for subsequent analysis, unbess otherwise noted.
Homology assignment. Two independent approaches were used o
assign orthology and paralegy relationships among cuchromatic
B, mictanogester gene moddels and GLEAN-R predictions. The first
approach was a fuzzy reciprocal BLAST (FIB) algorithen, which is an

Enpiras s, o ransposatibs
*® glemant conbminaton
Expeessod, transposabe
.ﬁ-nmtmn L]
o, o

v

wExpe 1y i o

ST GO 1
Esi L i |
T —— e S wEEvRssion not dslecied. posgiuly

D ma . 2
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+] .000 TR 15,000 0 (KM #5000
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Figure I | Gena modals in 12 Brozophila gen of gene modcl
that fall inte one of five hcl'rrulnﬁdtmum;la—tnw -nrﬂml:@.lu in all

species (single-copy orthologues), conserved in all specics as arthologues ar
paraboguies (conserved homologues), a [ mclimogesier homologue, bat nod
fuid im all species | patchy homologises with mal ), conserved |m @1 least rwo

species but without a I malamogasier homologue [ patchy homologuees, no
el ], and found only in a single lineage (linscage specific), For those species
with expression daa®, pie charts indicate the fraction of genes in cach

honvolngy class that fall inbo one of four evidence classes (see text for details),
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extension of the reciprocal BLAST method®' applicable to multiple
specics simultancously (Supplementary Information section 5.1,
Because the FRE algorithm does not integrate syntenle information,
wie also used a second approach based on Synpipe (Supplementary
Information section 5.2), a toal for symieny-aided omhology assign-
ment™, To penerate a reconciled set of homology calls, pairwise
Synpipe calls (between cach species and [} mielonogaster) were
mapped to GLEAN-R models, fltered to retain only |21 relation-
ships, and added 1o the FER calls when they did noi conflict and
were pon-redundant, This reconciled FRE + Synpipe sét of homo-
logy calls forms the basis of our subsequent analyses, There were
8,563 penes with single-copy onhologues in the prelinnogasier group
andd 6,698 genes with single-copy orthalogues in all 12 species; similar
numbers of genes were also obiained with an independen
approach™. Most single-copy onthologues are expressed and are froe
from potential transposable element contamination, suggesting that
the reconciled onhologue sci contains robust and high-guality gene
models (Fig 21

Validation of homaology calls, Because both the FRE algorithm and
Synpipe rely on BLAST-based methods to infer similaritbes, rapidly
evolving genes may be overlooked. Moreover, assembly gaps and
poar-quality sequence may lead o erroncous inferences of gene
loss, To validate putative gene absences, we wed a synteny-based
GeneWise pipeline to find potentially missed homologues of 13, mel-
anogaster proteins (Supplementary Information section 540, Of the
21,928 cases in which a I melirnogaster gene was absent from another
species in the initial homaology call set, we identified plavsible homo-
logues for 13,265 (60.5%). confirmed 4.546 (20.7%) a5 genuine
absences, and were unable 1o resolve 4,017 (18.8%) Because this
approach is conservative and only confirms strongly supported
absences, we are probably underestimating the number of genuine
absences.

Coding gene alignment and Gltering. Investigating the molecular
cvalution of orthologous and paralogous genes requires accurate
multi-species alignments, Initial amino acid alignments were gener-
ated using TCOFFEE™ and converted 1o nucleotide alignments
{Supplementary Table 81, To reduce biases in downstream analyses,
a simple compuiational screen was developed 1o identify and mask
problematic reglons of each alignment (Supplementary Information
section 8), Overall, 2.8% of bases were maskesd in the melanogister
group alignments, and 5L0% of bases were masked in the full 12
species alignments, representing 8.5% and 13.8% of alignment col-
ummns, respectively, The vast majority of masked bases are masked in
na mare than one species (Supplementary Fig. 1), suggesting that the
miasking procedure is not simiphy eliminating rapidly evolving regions
of the genome. We find an appreciably higher frequency of masked
bases in loswer-cquality £ sirndans and I3 sachellia assemiblies, com-
pared to the more divergent (from DL mebmnogrsterd b higher-
quality I}, erecta and I yakuba sssemblics, suggesting a higher error
rate in accurately predicting and aligning gene models in bower-
quality  assemblics  (Supplementary  Information  section & and
Supplementary Fig. 31, We used masked versions of the alignments,
including only the longest I3 wprcliriogasrer transcripts for all sub-
seqquent analysis unbess otherwise noted.

Annotation of non-coeding (nelRNA genes. Using de pove and
homology-based approaches we annotated over 9,000 ncEMNA penes
from recognized ncBMNA classes (Table 2, and Sopplementary
Indosrmation section 7). In contrast to the Lairge number of predictions
observed for many mcBNA Gmilies in vertebrates (due in part wo large
numbers of ncANA pseudogenes’ ™), the number of ncRNA penes
per family predicted by REAM and itRMNAscan in Drosophila is rela-
tively low (Table 2). This suggests that neRNA pseudogenes are
largely absent from [ewoplils genomes, which s consistent with
the low number of protein-coding paeudogenes in Drosoplfle®.
The relatively low numbers of some classes of ncRNA genes (for
cxample, small nucleolar (snojRNAs) in the Dvosophila subgenus
are likely to be an anefact of rapid rates of evolution in these types

NATURE| Vol 4508 Hovernber 7007

of genes and the limitation of the homology-based methods wed 1o
annotate distantly related species.

Ewclution of genome structure

Coarse-level similarities among Drosophilids. At a coarse level,
pename structure is well conserved across the 12 sequenced species.
Taotal genome size estimated by flow cytometry vares bess than three-
fold across the phylogeny. ranging from 130 Mb (D, mejawensis) (o
34 M (12, virilis) ™ (Table 2). in contrast to the order of magnitude
difference between Drodophifa and mammals, Total protein-coding
sequence ranges from 389 Mb in D mefarogaster 1o 654 Mb in
I3, williston, Intronic DA contend is also largely conserved, ranging
from 196Mb in [ seulbas vo 240 Mb in [0 pseudoobiciern
{Table 2} This contrastz dramatically with transposable element-
derived genomic DNA content, which varies considerably across
genomes { Table 2} and correlates significamly with euchromatic
genome size (estimated as the summed length of contigs = Mk kh)
[ Kendall’s 1= 0,70, P = 0,0016),

To investigate overall conservation of genome architecture at an
imtermediate scale, we analysed synteny relationships across species
using Synpipe™ (Supplementary Information section 2.1 ). Synteny
block size and average numbser of genes per block varies across the
phylogeny as expected, with the numbser of blocks increasing and the
average size of hlocks decreasing with increasing evolutionary dis-
tance from 1. mrelnrogaster (A, Bhutlkar, 5, Russo, T, F, Smith and W,
M. Gelbart, personal communication) (Supplementary Fig. 4. We
inferred 112 syntenic blocks between [, mefanogasterand I sechellin
{with an average of 122 genes per block ), compared 1o 1406 synienic
blocks between £ mrelinogaster and [2, grivestund (with an average of
& genes per block). On average, 66% of each genome assembly was
covered by syntenic blocks, ranging from 68% in 1. sechellia 1o 58%
im L. griemshimwd

Similarity across genomes is largely recapitulated at the kevel of
individual genes, with roughly comparible numbers of predicred
protein-coding genes across the 12 species (Table 2). The majpority
of predicted genes in each species have homaologues in [ meelanoga-
ster (Table 2, Supplementary Table 9), Moreover, most of the 13,733
pmbrin-l;udins genes in [ melonogaster are conserved across the
cntire phylogeny: 77% have identifiable homioloegues in all 12 gen-
omcs, 62% can be fentified as single-copy orthologues in the six
genomes of the melanogaster group and 49% can be identified as
single-copy orthologees in all 12 gewomes. The number of functional
non-coding BNA penes predicted in each Drosophile genome s
also largely conserved, ranging from 384 in 1 mrofavensis to 908 in
Iy, arueruessiee (Table 2).

There are several possible explanations for the observed interspe-
cific variation in gene content, First, approsimaiely 700 L) pelone-
paster gene models have been newly annotated since the FlyBase
Release 4.5 annotations used in the current study, reducing the dis-
crepancy between [ mreliveogaster and the other sequenced genames
in this study. Second, because low-coverage genoines tend 1o have
mare predicied gene models, we suspect that ariefactual duplication
of genombe scgments due 1o assembly errors inflates the numiber of
predicted genes in some species. Finally, the non-meliorogasier spe-
cies have many more predicted lincage-specific genes than [, mefa-
regurster, and 11 is possible that some of these are anefactual. In the
absence of experimental evidence, it is difficult to distinguish genuine
lineage-specific genes from putative amefacts. Future experimental
work will be required 1o fully disentangle the causes of interspecific
variation in gene number.

Abundant genome rearrangements during Drosophila evolution.
To study the structural relationships among genomes on a fimer
scale, we analvsed gene-level synteny between species pairs. These
symiteny maps allowed us to infer the history and locations of fixed
peramic rearrangements between species. Although Drosophela spe-
<ies vary in their number of chromasomes, there are six fundamenial
chromosome arms common o all species. For case of denoting

C2007 Mature Publishing Group

228


mar
Line


Appendixes

MATURE | Ved 450|8 Movernbar 2007

chromosomal homology, these six arms are referred 1o as “Muller
elemenis’ after Hermann 1. Muller, and are denoted A-F. Alilough
mast pairs of orthologous genes are found on the same Muller ele-
ment, there is extensive gene shufiling within Muller elements
between even moderately diverged genomes (Fig. 3, and Supplemen-
tary Information section 2.1,

Previous analysis has revealed heterogeneity in rearrangement
rates amaong close pelatives: careful Inspection of 29 bversioms that
differentiate the chromosomes of DL mefanogaster and IV pakuba
reveabed that 28 were fined in the lineage beading o Ih yakuba, and
only one was fixed on the lineage leading to IV sriclarogesrer™,
Bearrangement rates are also hbeterogencows across the genome
among the 12 species; simulations reject a random-breakage moded,
which asswmes that all sites are free 1o beeak in inversion evenits, but
fail 1o reject a model of coldspots and hotspots for breakpainis
{5, Schaefier, personal communication). Furthermore, inversions
seem to have plaved important rales in the process of speciation in
at least same of these taxs™,

One particularly striking example of the dynamic nature of gen-
e micro-structure in Drosophifa ks the homeotle homeoboy (Hoxl
gene cluster(s)*'. Hox genes typically occur in genomic clusters, and
this clustering is conserved across many veriebrate and inveriebrate
faxa, suggesting a functional role for the precise and collinear
arrangeinent of these genes, However, several cluster splits have been
previously identified in Drosophila®™®and the 12 Drosaphila genome
sequences provide additional evidence against the functional impor -
ance of Hax gene clustering in Drosophile. There are seven different
gene arrangements found scross 13 Drosophila species (the 12
sequenced genomes and [ buzsanid), with no species retaining the
inferred ancestral gene order™. [ thus seems that, in Drosophile, Hox
genes do not require dustering to maintain proper function, and are
a poweriul illustration of the dynamism of genome structure across
the sequenced genomes.

Transposable element evolution, Mobile, repetitive transposable
element sequences are a particularly dymamic component of eukar-
yoric genomes. Transposable dlement'repeat content (in scaffolds
=200kb) varies by over an arder of magnitude across the genus,
ranging from —279% in [ strmcliens and L, gromsfanwd 1o —25% in
1. avanassae (Table 2, and Supplementary Fig. 1), These data
suppon the lower cuchromatic transposable element coment in
D, simvubans relative to I3 melanogester™, and reveal that cuchromatic
ransposable element/repeat content is generally similar within
the  metamogaster  subgroup. Within the Drosephila  subgenus,

o Muillisr B Bl 2 b Mukar B

B, grimshawi has the lowest transposable clement/repeat content,
possibly relating to its ecolegical staius as an island endemic, which
may minimize the chance for horizontal ransfer of transposable
element families. Finally, the highest bevels of transposable element!
repeat content are found in [ ameraessee and D willistorn, These
species also have the highest numbers of pseudo-transfer (RMA
genes  (Table 2}, indicating a potential relationship  between
peeudo-1RMA genesis and repetitive DMA, as has boen established
in the mouse genome™.

ifferent classes of transposable dements can vary in abundance
owing to a variety of host faciors, motivating an analysis of the
intragenomic ecolegy of transposable elements in the 12 genomes.
In 12 miclanegaster, long terminal repeat (LTR) retrotransposons
have the highest abundance, followed by LINE (long interspersed
nuclear  element)-like retrotransposons and  terminal  inverted
repeat (TIR) DNA-based rransposens'®. An unbiased, conservative
approach {Supplementary Information section 3) for estimating the
rank order abundance of major ransposable element classes suggests
that thewe abundance trends are conserved across the entire genus
(Supplementary Fig. 55 Two exoeptions are an increased abundance
of TIR elements in [ erecta and a decreased abundance of LTR
elemenis in [} presdordscura; the latter observation may represent
an assembly artefact because the sister species [L perstmnilis shows
typical LTR abundance. Given thay individual instances of tramspaos-
able element repeats and transposable element Bamilies themselves
are not conserved across the genus, the stahility of abundance trends
for different classes of ransposable elements is striking and suggests
common mectanisms for hos—ransposable element co-evolution in
Dirosophilia

Although comprehensive analysis of the strocoaral and evolution-
ary relationships among families of transposable elements in the 12
genomes remains a major challenge for Presoplila genomics, some
initial insights can be gleaned from analysis of particulardy well-
characterized ransposable element familics. Previous analysis has
shown variable dynamics for the most abundant transposable ele-
ment family {IHNE-1 7 in the [, miclnagasier genome' ™ although
inactive in [ meelanogaster™, INMNE- | has experienced a recent trans-
positional burst in B0 pekaba™. Our analysis confirms that this ele-
ment is highly abundant in all of the other sequenced genomes of
Drrvsophiliz, but is not found outside of Diprera™ . Moreover, the
inferred  phylogenetic relationship of INNE-I paralogues from
several Dirosophile species suggesis vertical rransmission as the major
mechanism for DIME- ] propagation. Likewise, analysis of the Califer
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and 360 tranaposons reveals o widespread bat discontinuous phylo-
genetic distribution for both families, notably with both familics
absent kn the geographically solated Hawallan species, [0 grime-
shawi™. These results are consistent with an ancient origin of the
Galileo and 1360 families in the genus and subsegquent horizontal
transfer and/or loss in some lineages.

Thie wse of these 12 genomes also facilitated the discovery of trans-
pasable clement lincages not yet documented in Dresoplilie, specif-
ically the P instability factor { PIF) superfamily of DINA transposons.
Cher amalysis indicates that there are four distinct lincages of this
transposon in Drossphela, and that this ebement has indeed eolonized
many of the sequenced genomes™, This superfamily is particularly
intriguing given that PIF-transpossse-like genes have been impli-
cated in the orgin of at least seven different genes during the
Dresopheili radiation™, suggesting that not only do transposable ele-
ments affect the evolution of genomie structure, but that their
domestication can play a part in the emergence of novel genes.

I prelonogasier maintaing its telomeres by occasional iargeted
transposition of three telomere-specific non-LTH retrotransposons
{HeT-A, TART and TAHRE) to chromosome ends™"* and not by the
miore comman mechanism of ielomerase-generated G-rich repeats™,
Multiple telomeric retrotransposons have onginated within the
genus, where they now maintain telomeres, and recurrent boss of
most of the ORF2 from ielomeric retrotranspaosons {for example,
TAHRE} has given rise to half-telomeric-retrotranspasons {for
example, HeT-A) during Drosophila evolution™, The phylegenetic
relationship among these iclomeric elemenis is congreent with the
species phylogeny, suggesting that they have been vertically transmit -
ted from o common ancestor'”,
ncBMNA gene family evolution. Using ncRMA gene annotations
across the 12-species phylogeny, we inlerred patterns of gene copy
number evolution in several ncRMA families. Transfer RMA genes are
the most abundant family of ncRNA genes in all 12 genomes, with
27 IRNAs in I, melanogaster and 261-484 tRNA genes in the other
specics ( Table 2. Bach genome encodes a single selenocysteine tRNA,
with the exception of I% willistoni, which seems 1o lack this gene
(R, Guige, personal communication). Elevated tRNA gene counts
i % mruerapase and L) williseond are explained almost entirely by
preudo-tRMNA gene predictions. We infer from the lack of pseudo-
tRNAs in most Drosophile species, and from similar numbers of
tkNAs obtained from an analysis of the chicken genome
{r= 2800™, that the minimal metazoan (RMA se1 is encoded by
. | ] Renes, im conirast o Frﬂ'imu. estimates of 497 in human and
659 in Caerorhabditis elegans™, Similar numbers of snoRNAs arc
predicted in the [ mekorogaster subgroup (= 242-255), in which
sexquence similarity is high enough for annotation by homobegy, with
fewer snollMNAS (= 1"4-216) annotated in more distant members
of the Saphaphora subgenus, and even fewer snoBRMNAs (1= 1309-165)
predicted in the Drosaphila subgenus, in which annotation by homo-
losgy becommes much mare difficult.

Of 78 previously reported micro (milRMA genes, 71 (91%) are
highly conserved across the entire genus, with the remaining scven
genes (mnir-2h- |, -289, -303, <310, - 311, - 312 and -313} restricted to
the subgenus Sephophora (Supplementary Information section 7.21.
All the species contain similar numbers of splicecsomal snilNA genes
{Table 2}, inchuding at least one copy each of the four L112-dependent
{minor] spliceosomal RN As, despite evidence for birth and death of
these genes and the absence of stable subtypes™. The unusual, lin-
eage-specific expansion in size of Ul snRNA, previowsly described
in Dyvasaphila™ *, is even maore extreme in 3, willisgoni. We annotated
99 copies of the 55 rbosomal (r)ENA gene inoa cluster in [0 prolie-
magaster, and between 13 and 73 partial 55 rRNA genes in clusters in
the other genomes, Finally, we identified members of several other
classes of neRMA genes, including the BMA components of the
RENase P (| per genome) and the signal recognition particle (SRP)
RMA complexes (1-3 per genome ), suggesting that these funciional
BMAL are involved in similar biological processes throughout the
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genus, We were only able to locate the reX [RNA on X
invedvied in dosage compensation wing nucleotide homology in the
sclanegacrer subgroup, although analyses incorporating stractural
information have identified roX genes in other members of the
genus®’,

We investigated the evolution of rfRNA genes in the 12 sequenced
genames, using irace archives to locate sequence variants within the
transcribed portions of these genes. This analysis revealed moderate
levels of variation that are not distributed cvenly across the rREA
genes, with fewest variants in conserved core coding regions, more
variants in coding expansion regions, and higher suill variant abun-
dances in non-coding regions. The level and distibution of sequence
variation in rRMNA genes are suggestive of concerted evolution, in
which recombination events uniformly distribute varianis through-
oul the rfDNA loci, and selection dictates the frequency 1o which
variants can expand™,

Protein-coding gene family evolution, For a general perspective on
hiow the protein-coding composition of these 12 genomes has chan-
ged, we examined gene family expansions and contractions in the
11,434 gene Families {including those of size one in each species)
predicied o be present in the most recent commn ancesior of the
twn subgenera. We applicd a maximum lkeibood model of gene
gain and loss™" 1o estimate rates of gene turmover. This analysis sug-
gests that gene familics expand or contract at a rate of 00012 gains
and losses per gene per million years, or roughly one fixed gene gain/
loas across the genome every GO0 yr™*. Many gene families {4,692
or 41.0%) changed in size in ai beasi one species, and 342 families
showed significantly clevated (P == 001 ) rates of gene gain and loss
compared 1o the genomic average, indicating that non-neutral pro-
cesses may play a pan in gene family evolution. Twenty-two familics
exhibil rapid copy number evolution alang the branch leading 1o
IV, melanegazter (eighteen contractions and four expansions; Sup-
plementary Table 100, The most comman Gene Omalogy (GO
terms among families with dlevated rates of gainfloss include ' defence
response’, “pratein binding’, “zinc ion binding', "profeclysis’, and
‘wrypsin activity”. Interestingly, genes involved in ‘defence response”
and “proteolysis’ also show high rates of protein evolution (see
belowh, We alw found heterogeneity in overall rates of gene gain
and loss across lineages, although much of this varation could resuli
from interspecilic differences in assembly qualing™,
Linecage-specific genes. The wast majority of [L melanogasier
proteins that can be unambiguously assigned a homology paltern
(Supplementary Information section 5} are inferred to be ancestrally
present an the genus root {13481 1,644, or 97.5% 1. OF the 296 noa-
ancestrally present genes, 2532 are cither Sephophora-specific, or have
a complicated pattern of homalogy requiring more than one gain
andfor loss on the phylogeny, and are not discussed further, The
remaining 44 proteins inclede 14 present in the melanmogaster group,
23 present anly in the prelorogasier subgroup, 3 unique to the mei-
anpgasier specles complex, and 4 found in £ smclanegasier only.
Because we restricted this analysis to unambiguoas homologues of
high-confidence profein-coding genes in [, melanogaster”, we are
probably undercounting the number of genes that have arisen
de nove in any particular lineage, However, ancestrally heterochro-
matic genes that are currently euchromatic in I melanogaster may
spuriously secm o be lneage-specilic.

The 44 lineage-specific genes (Supplementary Table 11) differ
from ancestrally present genes in several ways. They have a shorter
miedian predicted protein length {lineage-specific medion 177 aming
acids, other median 421 amino scids, MWL, P= 36 107",
are more likely 1o be intronbess (Fisher's exact et (FET), P=
6.2 % 107 ") and are more likely 10 be located in the intron of another
gene on the opposite strand (FET, P= 3.5 > 10"} In addition, 18 of
these 44 genes are testis- or accessory-gland-specific in [0 sielariega -
ster, a significanily greater fraction than is found in the ancestral sei
(FET, P= 1,25 % 107 "), This is consistent with previous olwserva-
thoiis that novel genes are often testis-specific in Drosophela™ ™' and
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expression studies on seven of the species show that species- restricted
genes are more likely to exhibit male-biased expression™, Further,
these genes are significantly more tissue-specilic in expression [as
measured by 3 ref, 74) (MWL, P= 9.6 % 10"}, and this pattern is
il sobely driven by gemes with testis-specific expressbon patterns.

Protein-coding gene eveolution

Paoaitive selecilon and selective consirainis in Drosophila genomes,
T studdy the molecular evolution of protein-coding genes, we esti-
mated rates of synonymous and non-smonymaeus substituton in
A510 single-copy orthologues within the six melanogaster group
species using PAML™ (Supplementary Information section 10,0k
symnyIvous site saturatbon prevents analysis of more divergent com-
parisons, We investigaie only single-copy orthologues because when
paralogues are included, alignmenis become increasingly proble-
matic, Rates of amino aciad divergence for single-copy arthologues
in all 12 species were also caleulated; these results are largely consis-
ent with the analysis of non-synonymous divergence in the mekimo-
guster group, and are not discussed furiher,

T understand global patierns of divergence anad constraing
acroas functional classes of genes, we examined the distributions of
i | =ayldy, the ratin of non-synonymous to synonymoos diver-
gence) across Gene Ontology categories (GO)™, excluding GO

anncdations based solely on electronic support (Supplementary
Information section 10.2). Mosi functional categories of gencs ane
stronply constrained, with median estimates of o much less than one.
I general, functionally similar genes are similarly constrained:
ILE% of GO caregories have significantly lower vartance in e than
expected {g-value true-positive test™ ), Only 1% of GO categories
had stavistically skgnificantly elevated oo (relative to the median of all
genes with GO annotations) ot a 5% [alse-discovery mte {FOR),
suggesting cither positive selecrion or a reductbon in selective con-
straimt. The GO categories with clevated o include the bialogical
process terms “defence response’, ‘proveolysis’, DINA - metabolic
process’ and “response to biotic stimulus’s the molecular function
ferms transcription factor activity”, “peptidase activity”, ‘recepior
binding”, ‘cdoram binding', 'DNA binding’, “recepror activity” and
‘Geprotein-coupled receptor activity”; and the cellular bocation term
‘extracellular’ (Fig. 4, and Supplementary Table 12). Similar resulis
are obtained when oy is compared acros GO categories, suggesting
that in maost cases differences in or among GO categories isdriven by
aming ackd rather than synonymous site substitutions. The two
exceptions are the malecular function terms “transcription factor
activity” and "DNA binding activity', for which we obierve signifi-
cantly decelerated s (FDR = 7.2 % 10" for both; Supplementary
Information sectlon 11.23 and no significant differences in b,
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Figure 4 | Patterns of constraint and positive selection amang GO terms,

Dristribution of average o perpnl lni thi negative bog,, of the probability of
positive selection [Suppl i section 11.2] for genes

penes annotated are plotied, Sev Supplensentary Talbde 12 for median values
and significance. Note that most genes evolve under evolutionary constraing
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To distinguish possible positive selection from relaxed constraing,
we tested explicitly for genes that have a subset of codons with sig-
natures of positive selection, using codon-hased likelihood models of
mobecular evolution, implemented in PAML™™ [Supplementary
Information section 101}, Although this test s typically regarded
as a conservative test for positive selection, it may be confounded
by selection at synonymous sites, However, selection at synanymius
sites (that is, codon bias, see below) is quite weak, Moreover, vari-
ability in o presenied here tends o reflect variabiliny n oy, We
therefore believe that it is appropriate to treat synonymons sites as
nearly newtral and sites with o > 1 as consistent with positive selec-
thon. Dhespite a number of functional categories with evidence for
elevated o, “helicase activity’ ks the only functional category signifi-
cantly more likely 1o be poshively selecied [permutation test,
P= 2% 107 FDR = 0.007; Supplementary Table 12); the biological
significance of this finding merits further investigation. Furthermaore,
within each GO class, there s greater dispersion amang genes in their
probability of positive selection than in thar estimate of o (MWL
one-tailed. P 0011 Supplementary Information section 11.1],
suggesting that although funciionally similar genes share patterns
of constraint, they do not necessarily show similar patterns of
positive sebection (Fig. 4).

Interestingly, protein-coding  genes  with no  annotated
{*unknown’] function in the GO database seem (o be less constrained
{permutation test, F< 1% 10 % FDR = 00061 and to have on
average lower Povalues for the test of positive selection than genes
with annotated functions (permuiation fesi, P=0, FDR =
0,058), I s unlikely thar this ebservation results entirely from an
over-representation of mis-annotated or non-protein-coding penes
inthe ‘unknown’ functional class, because this finding is robost o the
removal of all [ erclancgasrer genes predicted to be non-protein-
coding in ref, & The biss in the way biological function is ascribed
to genes (to laboratory-induced, easily scorable functions) leaves
apen the possibility that unannotated bioksgical functions may have
an important rele in evolution. Indeed, genes with characterized
muiant alleles in FlyBase evolve significantly more slowly than other
penes (modian fegh spde = 00525 a0 6 ihom anie = 00701 MWL,
P=1% 107",

Previous work has suggested that a substantial fractbon of non-
synomymeaes substitutions in Drosaphils were fixed through positive
selection™ ™, We estimate that 53, 1% of single-copy onhaologues in
the melamogaster group have experienced positive selection an at beas
a subset of codons {gvalue true-positive tests” ) (Supplementary
Information section 11,10, This may be an underestimate, because
wie have only examined single-copy artholegues, owing to difficulues
in producing accurate alignments of paralogues by automated meth-
ods, On the basis of the 878 genes inferrad o have experienced
positive selection with high confidence { FIML < 1000, we estimated
that an average of 2% of codons in positively selected genes have
= 1, Thuss, several Hnes of evidence, based on different methodo-
losgies, suggest that patterns of amino acid fixatbon in Drosephila
penomes have been shaped extensively by positive selection.

The presence of functional domains within a protein may lead to
heterogensity in paticrns of constraini and adapiation along its
length, Among genes inferred to be evolving by positive selection
at a 1% FIR, 63.7% (g-value true-positive tests™ ) show evidence
for spatial clustering of positively selecied codons (Supplementary
Information section 11,2}, Spatial heterogeneity in constraint is fur-
ther supported by contrasting @ for codons inside versus outside
defined InterPro domains (genes lacking InterPro domains are
treated as ‘outside’ a defined InterPro domaind. Codons within
InterPro domains were significantly more conserved than codons
outside [nterPro domains (median o 0,062 InterPro domains,
DOR outside [nterPro domaing MWL, = 22 %100 " Supple-
mentary Information section 10,2}, Similaddy, ihere were significantly
more positively selected codons outside of InterPro domains than
ingide domains (FET P= 2.2 % 107"}, suggesting that in addition 1o
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being more constrained, codons in protein domains are bess likely 1o
Ive targets of positive selection (Supplementary Fig. 61,

Factors affecting the rate of protein evolution in Drosophila. The
sequenced genomes of the melanogaster group provide unpreced-
chted statistical power to identlfy facwors affecting rates of protein
evolution. Previous analyses have suggested thay although the
level of gene expression consistently seems to be a mapor determinant
af variation kn rates of evolution among proteins™*, other Bctors
probably play a significant, if perhaps minor, pan™ "', In Drosaphilis,
although highly expressed genes do evolve maore slowly, breadih of
CRPression across tssues, gene cssentialiy and inpron number all also
independently correlate with rates of protein evolution, suggesting
that the additional complesities of multicellular organisms are
important factors in modulating raves of protein evolution™. The
presence of repetitive aming acid sequences has a role as well: non-
repeat Feghons in proteins containing repeats evalve faster and show
o cvidence for positive selection than genes lacking repears™.,

These data alse provide a unique opponunity to examing the
impact of chromosomal location on evelutionary rates. Population
genetic theory predicts that for new recessive mutations, both
purifying and positive selection will be more efficient on the
X chromosome given its hemizygosity in males™. In comtrag, the lack
of recombination on the small, mainly heterochromatic dot chro-
mosome™ " is expected to reduce the efficacy of selection™. Because
codon bias, or the unequal usage of synonymous codons in protein-
coding sequences, reflects weak but pervasive selection, it is a sen-
sitive meiric for evaluating the efficacy of purifying selection.
Consstent with expectation, in all 12 species, we lind significanily
clevated bevels of codon bias an the X chromosome and significantly
reshuced levels of codon bias an the dot chromasoms™, Furthermore,
X-chromosome-linked genes are marginally over-represented within
the set of positively selected genes in the metanagaster group (FET,
F=0,055), which is consistent with increased rates of adaptive sub-
stitution on this chromosome. This analysis suggests that chromo-
somal context abso serves 1o modulate rates of mobecular evedution in
protein-coding genes.

To examine further the impact of genomic lecation on protein
evalution, we examinad the subset of genes thar have moved within
or between chromosome arms". Genes inferred o have moved
between Muller elemenis have a significantly higher rate of protein
evolution than genes inferred 1o have maved within a Muller ebernent
(MWL, P= 132 x 107" and genes that have maintained
their genomic position (MWL, P= 0,008) (Supplementary Fig. 7).
Interestingly, genes that move within Muller elements have a signifi-
cantly lower rate of prodein evolution than those for which genomic
lncations have been maintmined (MWL, P=335 = 10 ') I
remnabing unclear whether these differences reflect underlying bases
in the types of genes that move inter- versus intra-chromossmally, or
whether they are due to in sitw patterns of evalution in novel genomic
Conlexs,

Codon bixs, Codon bias is thought to enhance the efficiency andfor
aceuracy of ranslation™ '™ and seems to be maintined by mua-
tivn=selection=drift balance'" ", Across the 12 Drogophila genomes,
there is more codon bias in the Sephophora subgenus than in the
Dvasoplila subgenus, and a previously noved™ "™ striking reduction
in codon bias in 0 willistee' ™" {Fig. 5). However, with only minor
exceptions, codon preferences for each amino acid seem 1o be con-
served across 11 of the 12 species. The stnking exceplion is LY will-
istoand, in which codon usage for & of 18 redundant amino acids has
diverged {Fig. 51, Mutation alone is not sufficient to explain codoen-
usape bias in £ willtstond, which is suggestive of a lincage-specific
shift in codon preferences’""", 'We found evidence for a lineage-
specific genomic reduciion in codon bias in [ meelanegasier
{Fig. 5). as has been suggested previousdy' ™ '™, In addition, max-
imum-likelihood esiimation of the sirengih of selection on synonym:
ous sites in 8510 mefamogester group single-copy  orthologecs
revedled a marked reduction in the number of genes under selection
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for increased codon bias in [, mefavogester relative 1o its sister spe-
ces 1 sechellio'™,

Evolution of genes associated with ecology and reproduction,
Given the ecological and epvironmental diversity encompassed by
the 12 Drasopliila species, we examined the evolution of genes and
gene families associated with ecology and reproduction, Specifically,
we selected genes with roles in chemoreception, detoxification/
metabolism, immunity/defence, and sexfreproduction for more
detailed study,

Chemoreception. Dirosophila species have complex alfactory and
gustatery systems wsed 1o dentify food sources, hazands and mares,
which depend on odorant-binding proteins, and alfactorv'odorant
and gustatary receptors (O and Grs), The [% srelanogasier genome
has approximately 60 Chs, 60 Gs and 50 odorant-binding protein
genes, Dhespite overall conservation of gene number across the 12
species and widespread evidence for purifying selection within the
rekrmogasier group, there is evidence thar a subset of Orand Crgenes
experiences positive selection''", Furthermare, clear lineage-
specific differences are deteciable beiween generalist and specialisi
species within the miclanogester subgroup. First, the two indepen-
dently evolved specialists (I3 sechellio and 1. evevta) are losing Gr
genes approximately five times more rapidiy than the generalisy spe-
cles" " W helieve this result is nobust to sequence quality, becanse
all pseudogenes and deletions were verified by direct re-sequencing
and synteny-hased onhologue searches, respectively. Generalists are
expected o encounter the most diverse set of adants and seem to
have maintained the greatest diversity of gustatory recepiors, Second,
Crand G genes that remain intact in [ sochicllio and I erecti evolve
significanily more rapidly along these two lineages (o0 = 01556 for
Ors and 01874 for Grs) than aloag the geoneralist lincages
{or = 00048 for Ors and (L1658 for Geg paired Wilcoxon,
P = 00003 and 0,003, respectively' ™), There is some evidence that
adborani-binding protein gemes also evalve significantly faster in spe-
cialists compared to generalists'™, This elevated o reflects a trend
observed throaghout the genomes of the two specialists and is likely
1o result, at least in par, from demographic phenomena, However,
the difference between specialist and generalist o for O Gr genes
(0.02%2) is significanily greater than the difference for genes across
the genome (00091 MWL, P 000532)'", supgesting a change in
selective regime. Moreover, the observation that elevated oo as well as
accclerated gene loss disproportionately affect groups of Oy and G
genes that respond 1o specific chemical ligands andfor are expressed
during specific life stages suggests that rapid evelution at On'Gr loc
in specialists is related to the ecological shifts these species have
sustained '™,
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Figure 5 | Deviations in codon bias from D, melanegester in 11 Drosophile
specles. The upper panel dephots differesces in ENC (effective number of
wiudans) between [, anelwioganter and the 11 non-melnepainer specics,
calculated on a gene-by-gene basis. Note that inoreasing bevels of ENC
imlicanes a decrease in codon bias. The Sophephant subgenus in general has
higher bevels of codon bias than the Drasophile sulbgenus with the exception
of ¥, willistani, which shows & dramatic reduction in codon biss. The bewer
panel shows the 7 codons for which preference chamges across the 12
Diroienphita specics, A dit indicates identical coslan prefs va £,
melanepasier; otherwise the preferred codon is indicated.

Detoxification/metabolism, The larval food sources for many
Direeophilin species contain a cockiail of foxic compounds, and con-
sequenitly Drossphila genomes enoode a wide variety of detoxification
proteins, These include members of the cytochrome P450 (P450],
carboxylicholing-gsterase  (CCE} and  glutathione  S-tromsferase
(GST) muliigene familics, all of which alss have critical roles in
resistance to insecticides' ™", Among the P450s, the five eneymes
assaciated with insecticide resistance are highly dynamic scross the
phvbogeny, with 24 duplicathon events and 4 bois events since the last
common ancestor of the genus, which is in stiking contrast to genes
with known developmental roles, eight of which are preseni as a
simghe copy in all 12 species (C, Robin, personal communication).
As with chemareceptors, specialists seem to lose detoxification genes
at o faster rate than generalists. For instance, [ sechellia has lost the
most P45 genes; these 14 bowses comprise almost one-third of all
P450 loss events (Supplementary Table 13) (C. Robin, personal
communication), Positive selection has been implicated in deroxi-
fication-gene evolution as well, because a search for positive
selection among GSTs identified the parallel evolution of a radical
glyvcine 1o lvsine amino acid change in GSTLN, an engyme known to
degrade DI¥T'™, Finally, although metabolic enzymes in general are
highly constrained (median o = W45 for eneymes, 0066 for von-
eneymes; MWLU, P= 5.7 % 107 ™), eneymes involved in senobiotic
metabolism evolve significantly faster than other enzymes (median
w= 05 for ihe xenobiolic group wersus o= 0,045 overall,
rwo-tailed permutation test, = 00110z A | Greenberg, personal
conmmumication .

Metaroans deal with excess selenium in the diet by sequestration in
selenoproteins, which incorporate the rare amino scid selenocyiteine
{5ec) at sives specified by the TGA codon, The recoding of the norm-
ally vermimating signal TGA as a Sec eodon is mediated by the sele-
naocystein inseriion sequence (SECIS), a secondary structure in the
3 UTH of selenoprotein messenger RNAs, All animals examined so
far have selenoproteins; three have been identified in [ melamogaseer
(SELG, SELM and SPSZ'™'™, Interestingly, although the three
known melrogaster selenoproteins are all present in the genomes
of the other Dirosophilia species, in EL willvseord the TGA Sec codons
have been substituted by cysteine codons (TGTITGC). Consistent
with this finding, analysis of the seven genes implicated 1o date in
selenoprotein synthesis including the Sec-specific tRNA suggests that
maost of these genes are absent in [ willisteond (K. Guigo, personal
communication), [} williston thus secms vo be the first animal
known to lack selenoproteins. If correct, this observation is all the
more remarkable given the ubiquity of selenoproteins and the seleno-
protein biosmthesis machinery in metazoans, the oxicity of excess
selenium, and the protection from oxidative stress mediated by
selenoproteins, However, it remains possible that this  species.
encodes selenoproteins in a different way, and this represents an
exciting avenue of future rescarch,

Immunityfdefence. Drosophifa, like all insects, posesses an innate
immune system with many components analogous to the innate
immune pathways of mammals, alihough &t lacks an aniibody-
mediated adaptive immune system'”. Immune system genes often
evalve mpidly and adaptively, driven by selection pressures from
pathogens and parasites'™ "™, The genus Drosopiiila is no exceprion:
immune system genes evolve more rapidly than non-immune genes,
showing bath high total divergence rates and specific signs of positive
selection'™, In pamicular, 2% of recepror genes involved in phago-
eytosis seem to evolve under positive selection, supgesting that
mlecular co-evolution between Droesophils patiern  recognition
recepiors and pathogen antigens is driving adapiation in the immune
system'™. Samewhat surprisingly, genes encoding effector proteins
such as antimicrobdal peptides are far kess likely to exhibin adaptive
sequenice evalution. Only 5% of effector genes (and no antimicrobdal
peptides] show evidence of adapiive evolution, compared o 1% of
genes genome-wide, Instead, effector genes seem to evalve by rapid
duplication and debetion, Whereas 49% of genes genome-wide, 63%
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of genes involved in pathogen recognition and 81% of genes imphi-
cated in immune-related signal transduction can be foumnd as :ing]-:u
copy orthologues nall 12 species, only 40% of effector genes exist as
unﬂj’: -copy orthologues across the genus (32 = 41,13, P= 251 x
. suggesting rapid radiation of effector protein classes along
p:u-ln.ular limeages' ™. Thus, much of the Drosaphils immune system
seems to evolve r:p'idlr,al.'limu“_h the mode of evolution varies across
immiune-gene funciional classes.
Sexfreproduction. Genes encoding sex- and reproduction:related
proteins are subjeci to o wide ammay of selective forces, including
sexual conflict, sperm competition and eryptic female choiee, and
to the extent that these selective forces are of evolutionary con-
seqquienoe, this should lead to rapid evolution in these genes™™ (for
an overview see rels 137, 138} The analysis of 2,505 sex- and
reproduction-related genes within the melanogesier group indicated
that mabe sex- and reproduction-related genes evolve maore rapidly at
the protein level than genes not involved in sex or reproduction or
than female sex- and reproduction-related genes (Supplementary
Fig. 8] Positive sclection seems 1o be at least partially responsible
for these patterns, because genes involved in spermatogenesis have
significantly stronger evidence for positive selection than do nop-
spermatogenesis genes (permulation test, P = 0.0053). Similarly,
genes that encode components of seminal fuid have significantly
stronger evidence for positive selection than “non-sex’ genes'™,
Maoreover, protein-coding genes involved in male reproduction,
especially seminal fuid and testis genes, are particularly likely to be
lost or gained across Drsaplils species™' ™,
Evolutionary forces in the mitochondrial genome. Funciional ele-
ments in milNA are strongly conserved, as expeciod: 1RNAs are
relitively more conserved than the milNA overall {average pairwise
nucleatide distance = 0,055 substitutions per site for tRMNAs versus
0.1 25 substitutions per site overall ). We observe a deficit of substina-
thons ssecurring in the stem regions af the stem-loop structure n
tRM As, consistent with sirong selective pressure to maintain RNA
secondary structure, and there s a strong signature of purifying
selection in protein-coding genes' . However, despite their shared
role in aerobic respiration, there is marked heterogeneity in the mates
of amino acid divergence between the oxidative phosphorylation
enzyme complexes across the 12 species {NADH dehydrogenase,
0,059 = ATPase, 0M2 = Cyif, 0,037 > cytochrome oxidase, 0,020;
mean pairwise dy). which contrases with the relative homogeneity in
synonymous substitution rates, A model with distinet substitution
rates for each enzyme complex rather than o single rate provides a
significantly better fit to the dara { P < 00001}, suggesting comples-
specific selective elfecs of mitochondrial mutations'".

Mon-coding sequence evelution

nelNA sequence evolution. The availability of complae sequence
from 12 Drasoplila genomes, combined with the tractability of BNA
structure prediciions, offers the exciting opportunity to connect pat-
terins of sequence evolution direcily with structural and functicnal
constraints at the molecular level. We tested models of REMA evolu-
tion focusing on specific neBNA gene classes in addition 1o inferring
patteris of sequence evolution wsing more generdl datasets that are
based on predicted intronic EMA structures,

The exguisite simplicity of miRMAs and their shared stem-loop
structure makes these neRMAs particularly amenable 1o evolutionary
analysis. Most miRMNAs are highly conserved within the Dvasophila
genus: for the 71 previously described mikNA genes inferred 1o
be present in the common ancestor of these 12 species. mature
mil M A sequences ane nearly invariant, However, we do find a small
number of substitutions and a single deletion in mature mikNA
sevquences | Supplementary Table 14}, which may have functional
consequences for milNA-targel interactions and may uliimately
help ideniify targets through sequence covanation. Pre-miRNA
seqquendges are also highly conserved, evolving at about 10% of the
rate of synonymous sites.

NATURE| Vol 4508 Hovernber 7007

To link pamterns of evalution with structural constraints, we
inferred ancestral pre-miRMNA sequences and deduced secondary
structures at each ancestral node on the phylogeny {Supplementary
Information section 12,1}, Although conserved miBMNA genes show
litthe structural change (little change in free energy ), the five melano-
gasier group-specific mikNA genes (rall- 305 and the mir- 3000301/
Ar 2303 clusterh have undergone numerous changes across the entire
pre-milNA sequence, including the ordinarly invariant mature
miRkMA. Patterns of polymorphism and divergence in these lin-
cage-speciiic miRNA genes, including a high frequency of derived
mutations, are suggedive of positive selection'*, Although lineage-
specific miRNAs may evolve under less constraint because they have
fewer targel transcripts in the genome, it is also possible thay recent
integration into regulatory networks causes accelerated rates of
miRMNA evolution,

We further investigated patterns of sequence evalution for the
subset of 38 conserved pre-miRMNAs with mature miENA sequences
at their 2° end by calculating evolutionary rates in distinct site classes
{(Fig. & and Supplementary Information seetion 12.2]. Outside the
mature miRNA and its complementary sequence, boops had the high-
est rate of evolution, followed by unpaired sites, with paired sites
having the lowest rate of evolution. Inside the mature milRNA,
unpaired sites evolve more slowly than paired sites, whercas the
oppasite is true for the sequence complementary to the manere
mmiEMNAL Surprisingly, a large fraction of unpained bulges or internal
lops in the mature mift™NA scem o be conserved—a pattern which
may have implications for models of miRNA biogenesis and the
degree of mismatch allowed in miRMNA-tanget prediction methods.
Owerall these resulits support the qualitative model proposed in ref.
141 for the canonical progression of miRMA evalution, and show thai
functional constrainis on the miBNA itself supersede struciural con-
straints impaosed by maintenance of the hairpin-loog,

To pssess constraint on stem regions of RNA structures maore
generally, we compared substinution rates in stems [ 5) 1o those in
nominally unconstrained loop regions (L) in a wide vanety of
ncRMAs (Supplementary Information section 12,3, We estimated
substitution rates using a maximum likelikood framework, and com-
pared the observed L5 ratio with the average L'5 rmitio estimated
from published secondary structures in REAM, which we normalized
o Lk LA ratios for Drosophila ncBBA families range from a highly
constrained 2.57 for the nuclear RMase PP family 1o .56 for the 55
ribosomal RNA { Supplementary Table 15).
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Finally, we predicted a set of conserved intronic ENA sructures

and analvsed patierns of compensatory nucleatide substitution in
13 prelanogaster, [ pekubun, [ arianassae, [ psewdoclscurd, D0 vieilis
and I mofavensis (Supplementary Information section 13). Signa.
tres of compensatory evolution in RNA helices are detecied as
covarying nucleothde sites or ‘covariations” (thar ks, two Watson—
Crick bases that interact in species A replaced by a different
Watson=Crick pair in species B). The number of covariafions (per
base pair of a helix) depends on the physical distance between the
interacting nucleotides (Supplementary Fig. 91, as his been observed
for the RNA helices in the Droseplila bicord 3° UTR region®, Shart-
range pairings exhibit a higher average number of covariations with a
larger variance among helices than Jonger-range pairings. The
decrease in rate of covartation with increasing distance may be
explained by physical propertics of a helix, which may impose selec-
tive constraints on the evolution of covarying nucleotides within a
helix. Alvernatively, if individual muiations a1 cach bocus are dele-
terous but compensated by mutations at a second locus, given suffi-
ciently stromg selection against the first deleterious mutation these
epistatic fitness intersctbons could generate the observed distamce
ﬂi’mldl‘
Evolution of cis-regulatory DNAs, Comparative analyses of ofs-
regulatory sequences may provide insights into the evolutionary
forces acting on regulatory components of genes, shed light on the
constrainis of the cs-regulatory code and abd in annotation of
new regulatory sequences. Here we rely on two recently compiled
databases, and present results comparing s regulatory modules™
and transcription factor binding sives (derived from DNase [ foor-
prints )" between DL nrelonogaster and DL stmudinns (Supplementary
Information section 8}, We estimated mean selective constraint (€,
the fraction of mutations removed by natural selection) relative to
the 'Fastest evolving intron” sites at the 537 end of short introns, which
represent putatively unconstrained neutral standards (Supplemen-
tary Information section £ Node that this approach ignores the
contribution of positively selected sites, potentially underestimating
the fraction of functionally rebevant sites'™’,

Consistent with  previous  findings, Dresophile  cs-regulatory
sequences are highly constrained™'"™, Mean constraint within ois-
regulatory modules s 0643 [95% bootstrap confidence inter-
val = 0,62 1=0.662} and within foolprints is (L692 [D655-0.723),
bath of which are significantly higher tham mean constraint in
non-coding DA overall (0,555 (05460036301 and significantly
lower than constraint at rmn-i.l:g:nml: wding sites (LRG3
(0, 856-0.4868)) and ncRMA genes (0864 (0846088011 [Supple-
mentary Fig. 101 The high level of constraint in cs-regulatory
sequences also extends into Aanking sequences, only declining to
constraint levels typical of non-coding DRA Hibp away. This is
consistent with previouws findings that vanseription factor binding
sites tend to be found in larger blecks of constraint that custer to
form cis-regulatory modules"™, To understand sedective constrainis
o nucleatides within cis-regulatory sequences that have direct con-
tact with transcription factors, we estimated the selective constraing
for the best match to position weight matrices within cach foo-
print'* core miotifs in transcription-factor-binding sites have a
mean constraint of 0,773 (0,729-0L814), significantly greater than
the mean for the footprints as a whole, and approaching the level
of constraint found at non-degenerate coding sites and in neR A
genes (Supplementary Fig. 10,

We next examined the variation in selective constraint across ois-
regulatory sequences. Surprisingly, we find no evidence that selective
constraint is correlated with predicted transcription -factor-binding
strength {estimated as the position weight matrix score Povalue)
(Spearman’s r= 00681, P= (0600), We observe significant vari-
atlon in constraint both among target genes | Kruskal-Wallis tests,
fooiprints, [« 0.0001; and position weight mairix matches within
fooiprings, P= 00023 and among chromosomes {cisregulatory
maodules, = 00186 footprings, P= 0L0388; and position weight

matrix matches  within footprinis, P= 00108 Supplemenary
Tahle 1&),

Discussion and conclusion

Each new genome sequence affords novel opportunities for compar-
ative genomic inference. What makes the analysis of these 12
Prosophila genomes special is the ability to place every one of these
genomic comparisons on a phylogeny with a taxon separation that is
ideal for asking o wealth of questions about evolutionary patterns and
processes. It is without question that this phylogenomic approach
paces additional burdens on bioinformatics effors, muhiplying the
aimwunt of data many-fold, requiring extra care in generating multi-
species alignments, and accommusdating the reality that not all gen-
ome sequences have the same degree of sequencing or assembly
accuracy. These difficulties nowdthstanding, phylogenomics has
extraordinary advantages not only for the analyses that are possible,
bt also for the ability io produce high-quality assemblics and acour-
ate annotations of functbonal features in a genome by using closely
related genomes as guides. The use of multi-species onthology pro-
vides expecially convincing evidence in support of particular gene
masdels, not only for proein-coding genes. but alsa for milthA
and other nelMA gemes.

Many antribunes of the genomes of Drosoplila are remarkably con-
served across species. Overall genome size, number of genes, distri-
bution of rransposable element <lasses. and panterns of codon usage
are all very similar scross these 12 genaomes, althaough £ willisrond is
an exceptional outlier by several criteria, including its unusually
skewed codon usage, increased iransposable element conent and
potential lack of sebenoproteins. At a finer scale, the number of struc-
tural changes and resnrrangements is much largen: for example, there
are several different rearrangements of genes in the Hox chuster found
in these Dvosophila species.

The vast majority of multigene families are found in all 12 gen-
omes, although gene family size seems 1o be highly dynamic: almost
half of all gene families change in size on at beast one lineage, and a
noticeable fraction shows rapid and lineage-specific expansions and
contractions, Paricularly notable are cases consisient with adaptive
hypotheses, such as the loss of Gr genes in ecalogical specialists and
the lineage-specific expansions of antimicrobial peptides and other
immune effectors. All species were found to have novel genes nob seen
in other species. Although lincage-specific genes are challenging to
verify computationally, we can confirm at least 4 protein-coding
genes unigue to the relmeogaster growp, and these proteins have very
different propertics from ancestral proteins. Similarly, although the
relative abundance of transposable element subclasses across these
genomnes does not differ dramatically, toral genomic iransposalble
elemeni content varies substantially among specics, amd several
instances of lineage-specific transposable elements were discovered.

There 15 considerable varation among protein-coding genes in
rates of evolution and patterns of positive selection. Functionally
similar proteins fend to evolve at similar rates, althowgh variation
in genomic features such as gene expression level, as well as chromo-
sornal location, are also associated with variation in evolutionany rate
amaong proteins, Whereas broad functional classes do not seem o
share patterns of positive selection. and although very few GO can-
egories show excesses of positive selection, a number of genes
involved in interactions with the environment and in sex and repro-
duction do show signatures of adaprive evolution. [ thus seems likely
that adaptation to changing environments, as well as sexual selection,
shape the evolution of pretein-coding genes.

Annstation of nclNA genes across all 12 specics allows com-
prehensive analysis of the evolutionary divergence of these genes,
MicroRMNA genes in particular are mome conserved than protein-
coding genes with respect to their pramary DNA sequence, and the
substitutions that do occur often have compensatory changes such
thai the average estimaied free energy of the folding struciures
remidins remarkably constant across the phylogeny. Surprisingly,

C2007 Mature Publishing Group

235


mar
Line


Appendixes

mismatches i miRNAs seem to be highly conserved, which may
impact maedels of miRMNA biogenesis and  target  recognition.
Lineage-restricted milMAs, however, have considerably clevated
rates of change, suggesting either reduced constraint due o novel
miENAs having fewer targets, or adaptive evolution of eveluthonarily
young milkhkAs,
Virtually any question about the function of genome features in
il is now empowered by being embedded in the context of
this 12 species phylogeny, allowing an analysis of the ways by which
evolution has tuned myriad biological processes across the hundreds
of millions of years spanned in 1otal by this phylogeny. The analyses
presented herein have generated more guestions than they hawve
answered, and these results represent a small fraction of that which
s podsible. Because much of this rich and extraordinary comparative
genomic dataset remains to be explored, we believe that these 12
Dhrpsaphiln genome sequences will serve as a powerful tool for glean-
ing further msight into genetic, developmental, regulatory and evolu-
thanary processes.

METHODS

The full malbunr.ll four this paper are described in Supplementary Information.
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