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GENERAL SUMMARY
The main expansion of the discovery of genetic variants associated with 
complex diseases has occurred during the last decade. This expansion has been 
accompanied, and in some sense motivated, by the desire to use this information 
to improve the predictive capacity of many diseases with an unidentified familial 
component, including coronary heart disease (CHD), with the aim of translating 
this genetic knowledge into clinical practice. This doctoral thesis is structured 
in two lines of investigation that address distinct aspects of this issue, first to 
evaluate the possible role of genetic variation in a candidate gene in modulating 
CHD risk, and second to evaluate whether genetic information can be used to 
improve risk assessment tools used in clinical practice.

In the first research line (described in Part I), I investigate the contribution of 
genetic variation in one of the most widely-studied genes in cardiovascular 
genetics, ESR1, which encodes the Oestrogen receptor α protein. I provide a 
solid meta-analysis of evidence regarding the most widely-studied variant in 
this gene and we further explore the role of a broad range of common and 
uncommon variants in this gene in CHD risk. Using these approaches, we 
find no evidence of association between the genetic variants studied and 
CHD risk. However, although we can confidently accept that common genetic 
polymorphisms are not associated with CHD, we cannot discard the possibility 
that other types of variation in this gene (for instance epigenetic variation) 
could modify susceptibility to CHD, or that other elements of this pathway 
are associated with an increased risk of CHD. In this research I have provided 
a reliable answer to this long running unanswered question in cardiovascular 
genetics, allowing research to re-focus on other elements of this system or 
other pathways.

In the second line (described in Part II), I explored the possible utility of 
genetic information obtained from genome-wide association studies (GWAS) 
in prediction of 10-year risk of CHD events by adding this information to 
cardiovascular risk functions. I have followed the recommendations proposed 
by the American Heart Association for evaluating the utility of novel biomarkers 
in clinical practice, and have demonstrated that although the magnitudes of the 
effects of these genetic variants on CHD risk are modest, there is a tendency 
towards improvement in the capacity of the risk functions to predict future CHD 
events. The translation of genetic information into clinical practice was one of 
the main motivations for the investment in genome-wide association studies, 
and my research represents one of the first efforts to explore this possibility.

GENERAL SUMMARY



RESUM GENERAL
L’expansió principal pel que fa al descobriment de variants genètiques 
associades amb malalties complexes s’ha dut a terme durant la última dècada. 
Aquesta expansió ha estat acompanyada, i d’alguna forma motivada, pel desig 
d’usar aquesta informació per millorar la capacitat de predicció d’aquelles 
malalties on hi és present un cert component familiar però en les que no es 
coneixien les variants que conferien un major risc de patir la malaltia, entre 
elles la cardiopatia isquèmica (CI). La present tesis doctoral està estructurada 
en dues línies d’investigació que avaluen el possible rol d’un gen candidat en 
la susceptibilitat de la CI i també avalua la millora en la capacitat de predicció 
d’un esdeveniment coronari de les eines usades habitualment en la pràctica 
clínica mitjançant la inclusió d’informació genètica. 

Més concretament, la primera línea d’investigació es centra en la contribució 
de la variació genètica en un dels gens més estudiats en relació amb CI: el gen 
que codifica pel receptor d’estrogens α (ESR1). En aquesta línea he proveït un 
sòlid meta-anàlisis entre la variant més àmpliament estudiada d’aquest gen 
i risc coronari i també hem explorat el paper de la majoria de les variants 
comunes descrites en aquest gen i risc de CI. Mitjançant cap dels anàlisis he 
trobat evidència d’associació entre les variants genètiques en aquest gen i 
el risc de CI. No obstant això, i encara que podem acceptar que les variants 
genètiques comunes d’aquest gen no estan associades amb esdeveniments 
coronaris, no podem descartar que altres tipus de variació en aquest gen (com 
per exemple variació epigenètica) pugui estar modificant la susceptibilitat a 
patir un esdeveniment coronari, ni tampoc que altres elements de la mateixa 
cadena de senyalització estiguin associats amb la malaltia. En aquesta recerca 
he donat resposta a una qüestió que havia estat plantejada des de feia molts 
anys en el camp de la genètica de malalties cardiovasculars, permetent als 
investigadors de centrar tots els seus esforços en investigar altres elements 
d’aquest sistema o altres rutes metabòliques. 

En la segona línea d’investigació, hem explorat el possible paper de les variants 
genètiques, obtingudes mitjançant estudis d’associació global del genoma 
(GWAS), en la millora de la capacitat de predicció a 10 anys dels esdeveniments 
coronaris, mitjançant la seva addició en les funcions de risc cardiovascular 
clàssiques. Hem seguit les recomanacions proposades per la American Heart 
Association per l’avaluació en la pràctica clínica de nous biomarcadors, i hem 
demostrat que, tot i que la magnitud de l’associació d’aquestes variants és 
modesta, hi ha una tendència cap a la millora de la capacitat de predicció 
de les funcions de risc. La translació de la informació genètica en la pràctica 
clínica fou una de les principals motivacions dels estudis d’associació global 
del genoma, i la meva recerca representa un dels primers intents de posar en 
pràctica aquesta translació.
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PREFACE

0

0. PREFACE

The difference in incidence of cardiovascular diseases between 
males and females is one of the most striking observations in 
the epidemiology of ischaemic heart disease but still remains 
largely unexplained. Not even the observed differences between 
genders in terms of cardiovascular risk factors, lifestyle, 
environmental exposures, or any other known differences are 
able to explain this. Historically, the fact that this difference 
disappears almost completely after menopause has driven 
researchers to focus on physiological or social characteristics 
that also change during this period, such as the reproductive 
hormone system. 
Previous studies have extensively evaluated but not conclusively 
determined the role of genetic variation in one of the most 
attractive candidate genes for cardiovascular risk, ESR1 
(encoding the Oestrogen Receptor α protein). In this context, 
my aim was to perform a detailed exploration of the genetic 
variation in this gene in order to provide a more definitive 
answer to this question. The results of these studies are 
presented in the first research line of this doctoral thesis.

An important priority in modern medical research is that the 
knowledge obtained be rapidly and efficiently applied in clinical 
practice. Thus, one of the main motivations of my research is 
to explore how genetic information can be used to improve 
cardiovascular medicine.
During the last decade there has been an impressive expansion 
in our understanding of the genetic basis of complex diseases. 
My research represents one of the first attempts to begin the 
process of translating this new information into clinical practice, 
the results of which are presented in the second research line 
of this doctoral thesis. 

In this work, the approaches I have taken and the techniques 
I have used to investigate the role of genetic variation in 
cardiovascular risk are among the most advanced in our field, 
and are applicable to most other complex diseases. This is 
mainly thanks to the fact that I have been fortunate to conduct 
my research during one of the most important periods of 
advance in our ability to study complex diseases.
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Epidemiological Studies

1.1. GENERAL INTRODUCTION

1.1.1. Epidemiological studies

Definition of epidemiology and uses 

The main focus of epidemiology is the study of the distribution 
and determinants of disease frequency in populations and 
the application of this study to control health problems 
[Aschengrau, 2008]. Factors that are associated with an 
increased probability of a specific disease are known as risk 
factors, and can be studied using several types of study 
designs. 

	 There are two main groups of designs: interventional 
or experimental studies* (clinical trials) and observational 
studies (such as cohort or case-control studies) (see Box 1). 
Although interventional studies are the preferred design 
because they provide the most powerful evidence, the 
use of observational studies can help to avoid some of 
the economic and ethical limitations that clinical trials 
or interventional studies might have, in the case of both 
human subjects as well as other living organisms.

	 The different types of study designs can be 
classified in a hierarchy (see Box 1), according to the power 
of evidence provided by each design. The World Health 
Organization (WHO) has established a working group to 
develop a common, sensible and transparent approach 
to grading the quality of evidence. This grading is based 
on four domains: study design, study quality, consistency 
(measuring the internal validity of a study), and directness 
(external validity of a study, refers to the extent to which the 
people, interventions, and outcome measures are similar to 
those of interest. E.g. there may be uncertainty about the 
directness of the evidence if the people of interest are older 
or sicker than those in the studies) [Atkins, 2004].
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 Advantages and disadvantages of the use of case-control or cohort studies.  

To evaluate the influence of an exposure in the incidence of a disease given a certain 
population, and depending on the study design, some measurements can be 
obtained, such as relative risk or the odds ratio:  

 

Cohort Studies Case-Control Studies 

Useful for common disorders with short 
latency periods 

Useful for rare diseases or common diseases 
with long latency periods 

Need to be relatively large for the study of rare 
diseases 

Relatively smaller for any frequency of disease. 
Can be even smaller for rare diseases 

Allow study of multiple disease outcomes and 
multiple exposures 

Usually focused on one disease, but allow 
study of multiple exposures 

Considers the effect of time Limited ability to identify temporal patterns 
  

Relative risk (RR) is a ratio of the probability of 
the event occurring in the exposed group 
versus a non-exposed group [Sistrom, 2004]. 
RR is often used when the binary outcome that 
is being measured has a relatively low 
probability. It is thus often suited to clinical 
trials or cohort studies.   

Odds ratio (OR) is the ratio of the odds of an 
event occurring in one group to the odds of it 
occurring in another group [Sistrom, 2004]. 

 

Box 1. A hierarchical representation of the different types of study designs, 
according to the power of the evidence they provide. 

 

Meta-Analysis

Systematic Review

Randomised Controlled Trial

Cohort Studies

Case-Control Studies

Case Series / Case Reports

Animal Research / Laboratory Studies
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These two measures can be computed as follows:   

 Cases Controls   

dc

c
ba

a

RR

+

+=
 

cb

da
OR

⋅
⋅=  Exposed a b a + b  

Non-exposed c d c + d  
 a + c b + d   

 

In both measures, a value of 1 means absence of effect of the factor evaluated, a 
value <1 means a protective effect, and a value >1 means a harmful effect. 
These two measures can be considered almost equivalent, except when the incidence 
of a disease is very high, and there is a big difference in the incidences of the disease 
in those individuals exposed and non-exposed to the factor.  

 

Example. Three different scenarios are presented below. In each scenario, the 
incidence of the disease varies among the exposed and unexposed groups, but the 
total of individuals (10,000), and the prevalence of smokers (40% of smokers) is 
constant in all situations.  

 
- Scenario 1: low disease incidence: 

- disease incidence among smokers: 4%  
- disease incidence among non smokers: 0.4%  

 

- Scenario 2: high disease incidence:  
- disease incidence among smokers: 40% 
- disease incidence among non smokers: 4% 

 

- Scenario 3: high disease incidence in both exposed and non-exposed: 
- disease incidence among smokers: 40% 
- disease incidence among non smokers: 35%  

 
 Scenario 1   Scenario 2   Scenario 3  

 cancer no cancer   cancer no cancer   cancer no cancer  
Smokers  160 3,840 4,000  1,600 2,400 4,000  1,600 2,400  4,000 

Non-smokers 24 5,976 6,000  240 5,760 6,000  2,100 3,900  6,000 
 184 9,816 10,000  1,840 8,160 10,000  3,700 6,300  10,000 
            

RR→ 0.10

000,6

24
000,4

160

=
 

 0.10

000,6

240
000,4

600,1

=
 

 1.1

000,6

100,2

000,4

600,1

=
 

      
OR→ 4.10

840,324

976,5160 =
⋅
⋅   0.16

400,2240

760,5600,1 =
⋅
⋅  

 2.1
400,2100,2

900,3600,1 =
⋅
⋅  

 
Note that the values obtained in the RR and the OR are more similar when the incidence 
of the disease is low, but also when the difference in the disease incidence in the 
exposed group and the non-exposed group is small.  
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Experimental studies: introduction, definition and uses

In biology, when we want to evaluate the “effect” that a 
certain characteristic or factor has on another condition 
(for example, a disease), the ideal type of study design is 
generally an interventional study, in which the investigator 
designs an experiment to evaluate the changes in disease 
status of a group exposed to the factor when compared to 
an unexposed group. The exposure to the factor of interest 
is usually introduced by the investigator in a random way: 
some individuals are randomly exposed to the factor and 
the others are not exposed (randomised clinical trial). The 
aim of randomisation is to ensure that the two groups are 
equal in all ways except with regard to their exposure to the 
factor of interest. If this is true and the disease or condition 
is more frequent in one of the two groups, we can conclude 
that the factor is causally associated with the condition. As 
an example, to evaluate the effects of a pesticide, we plant 
200 roses at the same time, and monitor all the conditions. 
During a two month period, we treat half of the flowers 
with pesticide and leave the rest untreated. If the untreated 
roses flower normally, and the treated roses fail to develop 
flowers, we could conclude that the pesticide prevents 
flower development in roses. If we try to perform the same 
type of experiment in other species, for instance humans, 
we may encounter ethical problems. For example, we could 
not expose individuals to chemicals with unknown effects 
in order to identify their side effects. Therefore, other types 
of study designs are often required for the evaluation of 
specific relations with certain exposures. 

Non-experimental studies: Cohort studies

While there are several types of non-experimental or 
observational study design [Rothman, 2008] (e.g. cohort 
studies, proportional mortality studies, case-control, case-
cohort, etc.), cohort studies give the closest approximation 
to the true influence of a risk factor in the populations 
under study. A cohort study is an analytical study in which 
a representative sample of individuals from a population is 
selected, each individual’s level of natural exposure to the 
factor of interest is measured, and the rate of occurrence 
of the outcome of interest (outcome incidence) during 
a specific time period (follow-up) is recorded [Rothman, 
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2008]. A requirement of this type of study is that all subjects 
must be free of disease at the time of enrolment, because 
in these longitudinal studies we compare the incidence of 
the disease of interest in those who are exposed and non-
exposed to the factor under study (time to event). A classical 
example of this type of study is the Framingham Heart 
Study, which started in 1948 with the follow-up of 5,209 
residents of Framingham (Massachusetts, USA). This study 
has identified most of the currently known risk factors for 
cardiovascular disease (www.framinghamheartstudy.org). 

Non-experimental studies: Case-control studies

Due to the elevated cost and the long period of time required 
to perform cohort studies, another type of study design that 
has also been widely used is the case-control design. In this 
type of study, a group of individuals who have a specific 
disease (cases) are compared with a group of individuals 
who are free from that disease (controls) [Rothman, 2008] 
(see Box 1). A classical example of an application of this 
type of study design is the demonstration by John Snow that 
persons who drank well water from the Broad Street Pump in 
London in 1849 had a much higher death rate from cholera 
than those who did not. The author also showed that the 
rate of death from cholera was much higher among those 
who had drunk water that had been polluted by sewage 
(www.sph.umich.edu/epid/GSS/pub.html).

Deciding when to use cohort and case-control study 
designs 

These distinct study designs can give answers to the same or 
different questions (see Table 1), and each has strengths and 
limitations (see Box 1). A common criticism of case-control 
studies is the potential for biases related to the individual 
levels of the exposures and the selection of participants. 
These biases are related to the fact that data collection is 
carried out after the disease occurs [White, 1998] and often 
relies on medical records and patient recall (recall bias). 
In addition, the cases in case-control studies are the same 
cases that would normally be included in a cohort study, 
whereas the sampling of controls from the population that 
gave rise to the cases is a key issue in this type of study 



and affords the efficiency gain from a case-control design 
over a cohort design [Rothman, 2008], especially for those 
diseases with low incidence, in which very large numbers 
of individuals would need to be collected in order to have 
the same number of events with a cohort study compared 
to a case-control study. However, as researchers’ general 
understanding of the principles and limitations of case-
control studies has evolved, their design and acceptance 
has also improved. Currently, case-control studies are 
commonly used to study factors associated with disease 
because cohort studies are very expensive and usually 
require long-term follow-up. A case-control study can be 
conceptualised as a more efficient version of a cohort study, 
while this advantage could be hampered by the potential for 
greater biases. Therefore, the choice of study design will 
depend on the type of question to be addressed (see Table 
1), and on the resources available.

Type of question Recommended study design

Therapeutic
Randomised clinical trial; cohort; case-
control; case series

Diagnostic
Prospective; blind comparison to a gold 
standard

Aetiology (the study of causation)
Randomised clinical trial; cohort; case-
control; case series

Prognostic Cohort; case-control; case series

Prevention
Randomised clinical trial; cohort; case-
control; case series

Clinical Exam
Prospective; blind comparison to a gold 
standard

Cost Economic analysis

Genetic epidemiology: Genetic factors as potential risk 
factors

Many different types of factors can be evaluated as 
potential contributors to disease incidence, including 
environmental elements (pollution, water contaminants, 
etc.), sociodemographic characteristics (age, socioeconomic 
position, etc.), and physical or phenotypic characteristics 
(body weight, blood pressure levels, etc.). Classically, 
because of their big contribution on disease, the most 
widely studied factors have been both environmental and 
physical characteristics. However, there is a clear pattern 
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Table 1. Types of 
study designs that can 

be used to address 
specific questions. 

INTRODUCTION: General Introduction

A brief description of the specific studies that have been used in the present 
doctoral thesis is presented in Section 7.1.
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of inheritance in some diseases since the incidence among 
siblings of patients with a disease have increased risk with 
respect to the general population. Therefore, we could 
also define genetics as a possible risk factor. In this sense, 
genetic epidemiology deals with the aetiology, distribution, 
transmission and management of disease among relative 
individuals, and with heritable factors that contribute to 
disease risk in populations [Morton, 1982].

	 As a result of classical epidemiological studies, in 
which various clinical forms of heart disease were found to 
occur more frequently in individuals with a family history 
of the disease (familial aggregation) [Thomas, 1955; White, 
1957; Mayer, 2007], it has been known for several decades 
that cardiovascular diseases (CVD) have an important 
hereditary component; this has also been observed for 
many other diseases (e.g. cancer). More recent studies 
indicate that a family history of ischaemic heart disease 
in parents [Lloyd-Jones, 2004] or siblings [Marenberg, 
1994; Murabito, 2005] is a risk factor for development of 
the disease, independent of traditional risk factors. This 
familial aggregation highlights the genetic component of 
cardiovascular disease risk, although this could also be 
related to environmental and behavioural factors, which are 
common and also display familial aggregation [Deutscher, 
1966]. 

1.1.2. Brief introduction to genetics

Origins of the concept of genetics and Mendel’s laws 

Beginning with the observations of Darwin and Wallace in 
the 19th century, the process of natural selection began 
to gain acceptance as an explanation for the design of 
living organisms [Barahona, 2009], where individuals were 
gradually transformed from simpler to more complex 
life forms [Fontdevila, 2009]. Later in the same century, 
Mendel initiated the concept of modern genetics through 
his experiments on the inheritance of morphologic 
characteristics in the pea plant, on the basis of which he 
formulated two laws, the “Law of Segregation” and the 
“Law of Independent Assortment” [Barahona, 2009]. His 
observations were possible due to the strong penetrance 
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of the phenotypic characteristics studied in the pea plant. 
Mendel’s observations were of extreme importance in 
determining the pattern of inheritance observed in some 
diseases, and in understanding the way in which genetic 
information is transmitted between generations. 

Discovery of Mendelian inheritance patterns in human 
disease

In 1902, Garrod observed that the disease alkaptonuria 
followed the same patterns of inheritance that Mendel had 
described in the pea plant [Garrod, 1902; Dronamraju, 
1992]. This meant that the inheritance pattern observed 
in some plants was not exclusive to that kingdom, and 
could be extrapolated to some human diseases, and these 
would later be denoted as Mendelian diseases (discussed in 
Griffiths et al. [2000]). To date, the genetic basis of more 
than 2.000 Mendelian diseases have been established, 
including familial hypercholesterolemia [Civeira, 2004], 
familial defective apolipoprotein B-100 [Innerarity, 1987] 
and Brugada Syndrome [Lehnart, 2007]. However, from 
the point of view of public health, these diseases generally 
affect few individuals and do not have a very significant 
impact on the health of the general population.

Exceptions to Mendel’s Law of Independent Assortment

In 1905 Bateson coined the word “genetics” for the study 
of heredity, and also demonstrated the general validity and 
importance of Mendelian inheritance (as reported by Harper 
et al. [2005] and Barahona et al. [2009]). In the same year, 
he observed, together with Saunders and Punnett, one of 
the earliest exceptions to normal Mendelian ratios. In their 
work with pea plants, these researchers noticed that not all 
of their crosses yielded results that reflected the principle 
of independent assortment. Specifically, some phenotypes 
appeared far more frequently than Mendelian genetics 
would predict [Bateson, 1909]. Based on these findings, the 
researchers proposed that certain alleles must somehow be 
coupled or linked to each another, although they weren’t 
sure how this linkage occurred. The answer to this question 
came in 1911, when Morgan demonstrated that linked 
genes must be real physical objects that are located in 
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close proximity on the same chromosome [Morgan, 1911; 
Lobo, 2008]. Based on the observation that some traits are 
inherited together, Morgan and colleagues also defined the 
first genetic map of an organism (Drosophila melanogaster), 
and deduced that these traits must be located in a linear 
arrangement on the chromosomes.

	 Moreover, Morgan and his team discovered that 
some characteristics in the fruit fly were determined by the 
combined action of two or more genes, which is reminiscent 
of the type of inheritance observed in complex diseases as 
reported by Barahona et al. [2009]. In contrast to Mendelian 
diseases, complex diseases, which account for the majority 
of morbidity and mortality in industrialised countries, are 
caused by a combination of genetic as well as environmental 
and behavioural factors, and are the diseases with the 
greatest impact on general population health. The complex 
combination of various risk factors makes the identification 
of the genetic component of complex diseases more difficult 
than for Mendelian diseases.
 

DNA as a carrier of genetic information

In 1944, deoxyribonucleic acid (DNA) was identified by Avery 
and colleagues as the carrier of the genetic information 
[Avery, 1944], although some doubts remained about the 
assertion that genetic information was contained in DNA. 
At that time, the appearance of genetic effects was thought 
to be under the direct control of proteins. Therefore, the 
identification and characterisation of the DNA molecule 
was a crucial objective, not only in order to understand this 
molecule, but also to determine how and where the genetic 
information was stored. The idea of one gene-one enzyme 
had already been suggested as early as 1917, although 
with limited experimental support as reported by Beadle et 
al. [1941], but this theory became accepted when Watson 
and Crick described the structure of the double helix in 
1953 [Watson, 1953; Arber, 1978]. The importance of 
this theory was centred on the idea that genes encoded in 
the DNA were responsible for the generation of proteins, 
which were, in turn, the elements responsible for known 
molecular actions. In their discovery article, Watson and 
Crick proposed what is now accepted as the first correct 
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double-helix model of DNA structure and described a novel 
feature of this structure, which is the manner in which the 
two chains are held together [Watson, 1953]. This model 
focused attention, in particular, on the biological meaning 
of its physical structure [Khorana, 1968], but one of the 
most valuable characteristics of this discovery was the fact 
that DNA is composed of two mirror strands or chains; while 
genes are encoded on just one strand, the sequence of 
either strand can be established by determine the sequence 
of the other one. This is called complementary base pairing.

Cracking the Genome: the development of genotyping 
techniques

Regardless of the structural characteristics of DNA, the 
so-called “Cracking of the Genome” could not begin until 
the discoveries of Ochoa and Kornberg in the 1950s, 
who identified the enzyme PNPase (Polynucleotide 
Phosphorylase), and its ability to synthesize RNA in vitro. 
In his Nobel lecture, Ochoa commented that, “Since there 
are good indications that the genetic information stored in 
DNA is first transmitted to RNA, it is believed that DNA may 
function as a template for RNA replication” [Ochoa, 1959]. 
However, the enzymology of DNA began to develop rapidly 
with the work of Kornberg and co-workers [Nobelprize.org, 
2006], who detailed molecular images of RNA polymerase 
(the molecule responsible for DNA translation) during 
various stages of the transcription process. The discovery 
of this enzyme clarified the manner in which information in 
DNA is transcribed into RNA, now known as messenger RNA 
(mRNA), and made possible the development of techniques 
that are still used for identification of genetic polymorphisms 
(for example the invention of the polymerase chain reaction 
(PCR) technique by Mullis in 1986 [Mullis, 1986]). For more 
than two decades, PCR (and its adaptations) has been the 
most widely used technique in research into the genetic 
architecture of disease. 

Describing the human genome: The Human Genome Project 
& The HapMap Project

The early 1990s saw the start of the Human Genome Project 
(HGP; 1990-2003), whose main aim was to map and sequence 
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the human genome [Watson, 1989; Pearson, 1991; Roberts, 
2001; Venter, 2001] (genomics.energy.gov). In 2003, the 
goals of the HGP were achieved with the completion of the 
first human genome sequence (see Box 2). 

	 That same year also saw the initiation of another 
project that has had a crucial role in the field of genetics, 
The International HapMap Project (HapMap; 2002-2009). 
HapMap was a multi-country effort designed to identify 
and catalogue human genetic variation [The International 
HapMap Consortium, 2003], and played an important role 
in providing better estimates of allele frequencies [Fellay, 
2007], identifying additional variants for testing, and 
defining patterns of correlation between them (linkage 
disequilibrium, LD) [Manolio, 2008]. LD patterns across 
the genome were found to have a block structure (see 
Figure 1), which is the result of the molecular mechanism 
of chromosomal recombination throughout the history of 
our species [The International HapMap Consortium, 2007]. 
By computing the LD between variants across the genome, 
the HapMap project established that by genotyping only a 
small number of single nucleotide polymorphisms (SNPs) 
(called tag SNPs), the majority of common genetic variation 
throughout the genome could be captured. The first phase 
of the HapMap was completed in 2005, and phases II 
and III where carried out later [The International HapMap 
Consortium, 2007]. 

Figure 1. Linkage 
Disequilibrium patterns 
across the FTO gene in 
four HapMap population 
samples (European: 
CEU; East Asian: CHB 
and JPT; and African: 
YRI). 

Extracted from Adeyemo et al. [2010].
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From genetic variation to the discovery of the genetic basis 
of disease

Once the LD patterns across the genome had been clarified, 
researchers were able to use this information to locate 
genes involved in clinically important traits. Moreover, 
thanks to this researchers can now perform a more 
detailed exploration of specific association with disease of 
candidate genes, or even search on genome-wide scale for 
chromosomal regions that may be associated with a disease. 
These resources have driven disease gene discovery during 
the first generation of genome-wide association studies 
(GWAS), in which having data for hundreds of thousands 
of variants allow to test for association with disease for 
the vast majority of common variants in the genome (in 
this context, variants with a minor allele frequency of ≥5% 
are generally referred to as common) [The International 
HapMap Consortium, 2007].

Present and future of genotyping techniques

In recent decades, great improvements in the methodologies 
used to study the influence of genetic variation on diseases 
have been achieved through the use of information from 
collaborative projects such as the HGP and HapMap projects 
in combination with the advanced statistical methods that 
take advantage of the correlation between common variants 
in order to impute genotypes at additional variants not 
directly tested [Hirschhorn, 2011]. These technological 
developments and developments in high-throughput 
genotyping technologies have driven an order-of-magnitude 
expansion of genetic studies on a wide range of diseases 
in recent years [Visscher, 2009], from studying one or 
few genetic variants at a time to hundreds of thousands 
in a single experiment (GWAS) [Manolio, 2008], and more 
recently using complete sequences of the exome or the 
entire genome [Singleton, 2011]. Moreover, the rapid drop 
in cost and increase in scale of DNA sequencing has often 
been compared to the trend seen in the semiconductor 
industry in the second half of the twentieth century, which 
was described by Moore’s law (which described that the 
number of transistors that can be placed inexpensively on 
an integrated circuit doubles approximately every two year) 
[Muers, 2011]. This is true to the point where the rate-limiting 
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step is not variant identification, but the management and 
interpretation of the resulting data [Cooper, 2011]. This 
technical expansion has been accompanied by the creation 
of multi-centre consortiums and broad data-sharing, which 
have supported the identification of many new genetic 
variants associated with complex diseases. 

Ways to use this information 

In order to define a variant as being associated with 
a specific disease, it must first be identified, and the 
association replicated in multiple independent samples. 
Several such studies can then be meta-analysed in order 
to increase statistical power to identify additional variants 
(see upper part of Figure 2). Once these genetic variants 
are identified, the question that arises is how they may 
affect disease risk. To answer this question, several types 
of studies can be performed, including functional studies in 
animal models, integration of different sources of data (e.g. 
gene expression), and others (see central part of Figure 2). 
Finally, studies to demonstrate the clinical and biological 
effects of the genetic variants on disease can also to be 
performed (Figure 2, lower part). Above all, one of the most 
important motivations for the investments made in GWAS 
technology was the expectation that this new information 
could be translated to clinical practice; this issue will be 
explored in more detail in the next section and is also the 
focus of Part II of this doctoral thesis.

progress in SNPs imputation22 has allowed combining
GWAS data sets from different array platforms, and perform-
ing large-scale analyses became feasible (Figure 1).

For CAD, the Coronary ARtery DIsease Genome-Wide
Replication Meta-Analysis (CARDIoGRAM) consortium
meta-analyzed 14 GWASs.23,24 CARDIoGRAM included
22 233 cases and 64 762 controls. The pooled analysis of this
large sample replicated almost all previously identified com-
mon genetic variants and led to identification of 13 new loci
with genome-wide significance (Table).24 Using a more
focused study design, 2 additional loci were identified by
members of this consortium.19,25

In addition to CARDIoGRAM, the International Consor-
tium for Coronary Artery Diseases (C4D)26 is another large-
scale meta-analysis of GWASs for CAD that was not limited
to populations of European descent. C4D identified 3 addi-
tional new CAD/MI loci, which are listed in the Table. In the
future, the pooling of samples from the 2 consortia and
conducting even larger meta-analyses will probably allow
identification of additional variants with small effects.

Considering these 18 loci identified by CARDIoGRAM24

and the C4D,26 the 12 previously identified genetic vari-

ants,11–13,17–19,21,25,27,28 a new locus identified by Wang et al29

in a Han Chinese population, and a variant in the DAB2IP
gene identified by Gretarsdottir et al,30 32 loci have now been
established as having genome-wide significance (Table).

CAD/MI loci identified by GWASs are characterized by
the following proprieties:

1. Only a minority cover previously known CAD candi-
date genes. Rather, most loci harbor genes that have not
been anticipated to be involved in the pathogenesis of
atherosclerosis (Table). An example for a new kid on
the block is ADAMTS7, which appears to be involved
in vascular smooth muscle cell migration and neointima
formation in balloon-injured rat arteries,31 vascular
remodeling,32 and the pathogenesis of arthritis.33

2. Many loci are devoid of protein-coding genes. For some
variants, the signal is even located in gene deserts.
Herrington7 suggests the existence of novel mechanisms
for genotype-phenotype interactions that are still not yet
understood. Indeed, the functional importance of gene
deserts needs to be reevaluated given these findings.

3. With the exception of 7q32.2 (ZC3HC1) and 15q25
(MORF4L1), most loci show pleiotropic effects (ie, they

Figure 1. Post–genome-wide association study (GWAS) strategies, and biological and clinical implications of GWAS findings. The fig-
ure depicts the different ongoing post-GWAS strategies to understand the mechanisms underlying the associations identified by GWAS
approach. The Manhattan plot showing the new coronary artery disease (CAD)/myocardial infarction (MI)–related loci that were identi-
fied by CARDIoGRAM was previously used in Schunkert et al.24 eQTL indicates expression quantitative trait locus; SNP, single-nucleo-
tide polymorphism.
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Figure 2. Post–
genome-wide 
association study 
(GWAS) strategies, and 
biological and clinical 
implications of GWAS 
findings. 

Extracted from Maouche et al. [2012].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 2. Genomes vary widely in size: the smallest known genome for a free-living 

organism (a bacterium) contains about 600,000 DNA base pairs, while human and 

mouse genomes have ~3 billion. Except for mature red blood cells, all human cells 

contain a complete genome. 

Each chromosome (physically separate molecules that range in length from about 

50 million to 250 million base pairs) contains many genes, the basic physical and 

functional units of heredity. Genes comprise only about 2% of the human genome 

(which is estimated to contain >30,000 genes); the remainder consists of non-

coding regions, whose functions may include providing chromosomal structural 

integrity and regulating where, when, and in what quantity proteins are made. 

Note that the numbers presented in this box have been extracted from the summary of 

the GenBank data provided by NCBI, based on genomic sequence information available 

on Oct 05, 2011. 

There are several types of genetic variation, classified according the amount of 

genetic material that is involved in that genetic variation: 

 

Note that we have to consider that there are also genome modifications that do not 

involve a change in the nucleotide sequence (i.e. DNA methylation and histone 

modification), known as epigenetic variation. 

By 2012 the public catalogue of variant sites (dbSNP135) contained approximately 

41 million SNPs (www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi). 
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Box 2

1.1.3. Translation from genetics to clinics

Why and when is it necessary to translate genetics to 
clinical practice? 

One of the primary motivations for investing in large GWAS 
studies was to translate this information to clinical practice, 
which can be achieved in two main ways (see Figure 3): 

i) Determining new therapeutic targets. Until now, the 
selection of targets to be studied in genetics was mainly 
based on knowledge of physiology. Currently, the 
hypothesis-free nature of GWAS allows us identify new 
target regions in the genome, and may help identify new 
drug targets for the treatment or prevention of disease. A 
classic example is the gene encoding HMGCoA reductase, 
variation in which explains only a small fraction of the 
total variance in cholesterol levels, but is a target for 
powerful cholesterol-lowering drugs [Lander, 2011; Zuk, 
2012].

ii) Improving diagnosis and prediction of disease. For 
some diseases, early detection, often before signs of 
the disease are visible, is crucial for the survival of the 
individual, and the identification of individuals that are at 
high risk of disease is of particular importance. Genetic 
information can serve as a diagnostic tool (mainly in the 
case of monogenic or Mendelian diseases such as Tay-
Sachs Disease), or it can also be used to improve the 
predictive capacity of other tools (mainly for complex 
diseases). 

	 However, before using genetic information in 
practical applications at the population level, a series of 
natural steps, shown in Figure 3 and detailed below, need 
to be taken. Briefly, these steps go from identifying and 
quantifying the genetic contribution to disease risk to 
evaluating the use of this information in clinical practice. 
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





















  










Step 1: Determine whether the disease being studied has a 
genetic component 

To quantify this genetic contribution, measures such as 
heritability may be used (see Box 3). This heritability can be 
defined as the proportion of phenotypic variation that can 
be attributed to genetic variation [Visscher, 2008]. In order 
to compute the heritability values, mainly family-based or 
twin studies are required. If the disease under evaluation 
has a genetic component, the next step will be designed to 
identify which are the specific genetic determinants of that 
disease. 

Step 2: Establish the genetic architecture of the disease

Second, the genetic variants that confer an excess in risk of 
the disease must be identified (Part I of the present doctoral 
thesis is designed to answer this specific question). The 
identification of these genetic variants has been widely 
successful for simple Mendelian diseases as they also 
usually express a highly penetrant phenotype and a very 
clear inheritance pattern. In the case of complex diseases, 

Figure 3. Steps from 
populations to genes, 

and from genes to 
populations. 

INTRODUCTION: General Introduction

The steps described in this figure correspond to the steps described in the text below.
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the approaches used for Mendelian diseases have not been 
very successful to identify genetic factors, because they 
generally make a smaller contribution to these diseases.

Step 3: Determine the impact of the genetic variability on 
disease risk

The third step that needs to be achieved is to determine 
the amount of variance in risk of the disease that can be 
explained by the genetic variants observed. For example, if 
the sole presence of a SNP was necessary and sufficient for 
a disease status, we would say that 100% of the risk variance 
was explained by that variant. For Mendelian diseases the 
variance explained by genetic variants is much higher than 
for complex diseases. 

Step 4: Evaluate the utility of the genetic information in 
the diagnosis, prediction, prevention and treatment of the 
disease

In the last step, the utility of genetic variation in general 
clinical practice is evaluated. To this end, specific guidelines 
have been proposed by the American Heart Association 
[Hlatky, 2009] for the evaluation of novel cardiovascular 
risk biomarkers, and these guidelines can be extended to 
genetic markers, and might also be applied to other diseases 
(discussed in more detail in Part II of the doctoral thesis).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 3. The Phenotypic variance (V
P
) observed within a population consists of a genetic 

component (V
G
) and/or an environmental component (V

E
), which can be computed as follows 

[Falconer, 1996; Lynch, 1998]: 

EGP VVV +=  

Note that in order to determine the values for both V
G
 and V

E
, researchers must consider 

that both genetic and environmental sources of variation are a composite of different 

components. 

- Environmental Variation: Environmental variation can be subdivided into various 

subcategories; including specific environmental variance (V
Es
: deviation from the population 

mean due to environmental conditions experienced by each individual, known as residual 

variance or error), general environmental variance (V
Eg
: non-genetic sources of variation between 

individuals that are experienced by many individuals in a population), and genotype-environment 

interaction (V
GxE

: involves the unique or different responses of genetic lines to general 

environmental variation):  

EgGxEEsE VVVV ++=  

- Genetic Variation: Genetic variation can also be divided into several subcategories, including 

additive variance (V
A
: deviation from the phenotypic mean due to inheritance of a particular allele 

and this allele's relative effect on phenotype), dominance variance (V
D
: involves deviation due to 

interactions between alternative alleles at a specific locus), and epistatic variance (V
I
: involves 

an interaction between alleles at different loci): 

IDAG VVVV ++=  

Schema of the quantitative contribution of the components of inclusive heritability, from 

Danchin et al. [2011]. 

 

 

Phenotypes that vary between individuals in a population do so because of both environmental 

factors and the genes that influence traits, as well as various interactions between genes and 

environmental factors. Therefore, we can measure the proportion of phenotypic variation in a 

population that is due to genetic variation between individuals, a measure known as heritability 

[Visscher, 2008]. 
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 Under this last definition, there are two types of heritability estimate:  

- Broad-sense heritability: The proportion of phenotypic variation due to genetic variation, 

including effects due to dominance and epistasis. 

P

G2

V

V
H =  

- Narrow-sense heritability: Captures only that proportion of genetic variation that is due to 

additive genetic values. 

P

A2

V

V
h =  

Note that since heritability is a proportion, its numerical value will range from 0 (genetic 

variation does not contribute to individual phenotypic differences in any way) to 1 

(genetic variation is responsible for all individual variation). 

Example. Traditionally, heritability was estimated from simple, often balanced, designs, such as 

the correlation between offspring and parental phenotypes, the correlation between full and half 

siblings, and the difference in correlation between monozygotic (MZ) and dizygotic (DZ) twin 

pairs. In artificial selection experiments, heritability can also be estimated from the ratio of 

the observed selection response (R) to the observed selection differential (S). This relationship is 

summarized in the "breeder's equation", R = h2S, where:  

- R: is the “Response to Selection”, which is the difference between the mean of the 

parents before selection and the mean of the offspring. 

- S: is the “Selection Differential”, which is the difference between the mean of the 

population and the mean of the individuals that reproduce. 

Therefore, it is possible to estimate Narrow sense heritability simply from the regression of 

offspring phenotypic values on the average of parental phenotypic values. The following 

example [Wray, 2008] concerns traits with high (0.9) and low (0.1) heritability. 

 

Note that to compute the proportions of the environmental and genetic contributions to 

disease risk, it is usually assumed that the resemblance between monozygotic and 

dizygotic twins due to shared environment is the same. 

Note also that the Breeder’s equation is mainly used in selective breeding of plants and 

animals.  

There are also more sophisticated ways of estimating heritability [Lee, 2011], although a specific 

description of the methods available is beyond the scope of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 3. The Phenotypic variance (V
P
) observed within a population consists of a genetic 

component (V
G
) and/or an environmental component (V

E
), which can be computed as follows 

[Falconer, 1996; Lynch, 1998]: 

EGP VVV +=  

Note that in order to determine the values for both V
G
 and V

E
, researchers must consider 

that both genetic and environmental sources of variation are a composite of different 

components. 

- Environmental Variation: Environmental variation can be subdivided into various 

subcategories; including specific environmental variance (V
Es
: deviation from the population 

mean due to environmental conditions experienced by each individual, known as residual 

variance or error), general environmental variance (V
Eg
: non-genetic sources of variation between 

individuals that are experienced by many individuals in a population), and genotype-environment 

interaction (V
GxE

: involves the unique or different responses of genetic lines to general 

environmental variation):  

EgGxEEsE VVVV ++=  

- Genetic Variation: Genetic variation can also be divided into several subcategories, including 

additive variance (V
A
: deviation from the phenotypic mean due to inheritance of a particular allele 

and this allele's relative effect on phenotype), dominance variance (V
D
: involves deviation due to 

interactions between alternative alleles at a specific locus), and epistatic variance (V
I
: involves 

an interaction between alleles at different loci): 

IDAG VVVV ++=  

Schema of the quantitative contribution of the components of inclusive heritability, from 

Danchin et al. [2011]. 

 

 

Phenotypes that vary between individuals in a population do so because of both environmental 

factors and the genes that influence traits, as well as various interactions between genes and 

environmental factors. Therefore, we can measure the proportion of phenotypic variation in a 

population that is due to genetic variation between individuals, a measure known as heritability 

[Visscher, 2008]. 
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1.1.4. Coronary heart disease: an example of 
complex disease

Definition and stages of atherosclerosis 

Atherosclerosis can be defined as a chronic, complex 
inflammatory disease that causes a narrowing of the small 
blood vessels that supply oxygen to the cells, due to the 
formation of atheroma plaques consisting of deposits of 
cholesterol and other lipids, which ultimately cause a chronic 
inflammatory response in the artery walls) [Ross, 1999]. 
The American Heart Association [Stary, 1995] identifies six 
stages of atherosclerosis progression (see Figure 4):
- Type I (initial): isolated macrophage foam cells.
- Type II (fatty streak): primarily intracellular lipid 

accumulation.
- Type III (intermediate): small extracellular lipid pools.
- Type IV (atheroma): extracellular lipid core.
- Type V (fibroatheroma): Lipid core and fibrotic layer; 

formation of prominent new fibrous connective tissue.
- Type VI (complicated): complicated surface, with 

haemorrhage or thrombus formation.

Figure 4. Graphical 
representation of the 
stages of progression 

of arteriosclerosis over 
time.

INTRODUCTION: General Introduction

Released under the GNU Free Documentation License: commons.wikimedia.org/wiki/File:Endo_dysfunction_Athero.PNG.
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	 Atherosclerotic plaques can also be separated into 
two broad categories: stable and unstable (also called 
vulnerable) [Ross, 1999]. Vulnerable plaques are rich in 
foam cells, lipids and inflammatory cells, and have a thin 
fibrous cap. These types of plaques are prone to rupture, 
which causes an acute thrombus that may occlude the 
arterial lumen, triggering an acute cardiovascular event. 
Stable plaques are rich in extracellular matrix and smooth 
muscle cells, making them more difficult to break, with the 
result that they are usually asymptomatic.

Definition and manifestations of coronary heart disease 

Coronary heart disease (CHD) is one of the main 
manifestations of atherosclerosis. It is a complex disease 
characterised by various clinical presentations, a complex 
aetiopathogenesis, and a strong environmental component 
(diet, smoking habit, physical activity). The two main clinical 
manifestations of CHD are acute coronary syndrome and 
stable angina. Two main types of acute coronary syndrome 
have been characterised: i) myocardial infarction (MI), which 
results from the interruption of blood supply to a part of 
the heart, causing heart cells to die (in order to determine 
an MI event it is required that evidence of myocardial 
necrosis exists by laboratory tests) [Thygesen, 2007]; 
and ii) unstable angina, which is a strong indicator of an 
impending MI, is caused by a reduction of coronary blood 
flow due to transient platelet aggregation on apparently 
normal endothelium, coronary artery spasms (temporary, 
sudden narrowing of one of the coronary arteries) or 
coronary thrombosis (formation of a clot in one of the 
arteries that conduct blood to the heart muscle) [Lenfant, 
2010]. In stable angina, the blood flow and oxygen supply 
to the myocardium is compromised, causing oppressive 
chest discomfort/pain that occurs mainly when performing 
some physical activity and usually disappears with rest.

Global burden of disease

CHD accounts for nearly 20% of deaths worldwide [European 
Heart Network, 2008; World Health Organization, 2009 ] (see 
Figure 5) and it mainly occurs from the fifth or sixth decade 
in men, and from the sixth or seventh decade in women 



(see Figure 6). Moreover, the incidence of CHD is expected 
to increase in the coming decades due to an increase in the 
prevalence of cardiovascular risk factors (CVRFs; described 
in more detail below).
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Figure 5. Causes of 
death in Europeans 

(data extracted from 
the European Heart 

Network Report 
[2008]).

Figure 6. Deaths 
estimates due to 
ischaemic heart 
disease in 2008 

stratified by country 
from the European 

Union  (data extracted 
from the European 

Heart Network Report 
[2008]).

CVD: Cardiovascular disease.

INTRODUCTION: General Introduction

a) Death estimates for individuals between 15 and 59 years, and separated by sex. 
b) Death estimates for individuals with 60 or more years, and separated by sex.
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Factors that increase risk of coronary heart disease 

The first study performed to identify the causes or factors 
that modulate risk of CHD to be completely performed 
and that obtained the most remarkable results was the 
Framingham Heart Study (www.framinghamheartstudy.org) 
[Dawber, 1951]. The main objective of that project was to 
search for factors that influence the development of disease 
by performing a cohort study comparing individuals who 
had had a cardiovascular event to the group who did not 
suffer from any event at the end of the follow-up [Dawber, 
1951]. After just 4 years of follow-up, the authors observed 
that certain attributes were strongly related to risk of 
developing CHD, such as elevated lipid levels and elevated 
blood pressure. Later, they also identified smoking, excess 
of body weight, lack of physical activity, low vital capacity 
(the maximum amount of air a person can expel from the 
lungs after a maximum inspiration), gout, and diabetes as 
relevant risk factors. Moreover, they also concluded that 
when more than one of these risk factors were present, there 
was a marked increase in susceptibility to CHD [Dawber, 
1966]. These findings had important consequences for 
our understanding of the physiological aspects of the 
disease, as well as for primary prevention. Currently, the 
cardiovascular risk factors (CVRFs) that are considered to 
cause an increase in risk can be classified as modifiable 
or non-modifiable (see Table 2). Also, the importance of 
genetic factors in risk prediction has long been appreciated, 
and is exemplified in a simple form by the value of family 
history in increasing CVD risk [Jostins, 2011].

Non-modifiable Modifiable

Age Smoking

Sex Hypertension

Genetics Hypercholesterolemia

Family history Type II Diabetes 

Body Mass Index

Physical activity 

Table 2. 
Classification of 
cardiovascular risk 
factors.
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1.1.5. Current state of the field of complex 
disease genetics 

Problems in genetic studies: Lack of robust findings 

Using the candidate gene approach, a large number of genetic 
variants have been studied during the last 20 years, but robust, 
replicable evidence has been found for only a limited number, 
while the majority showed contradictory results between 
studies [Ioannidis, 2001]. This lack of robust findings for 
genetic studies in complex diseases may be due to different 
reasons. One of the possible explanations has been described 
as the “winner’s curse” effect, where the magnitude of the 
associations observed for the genetic variants is higher in early 
studies than in subsequent replication studies. This effect may 
represent either i) a spurious finding that is not validated by 
subsequent research, ii) an exaggerated finding that eventually 
finds its appropriate measure, or iii) an effect that is stronger in 
some subpopulations than in others [Ioannidis, 2001]. 

	 Some recommendations have been proposed to increase 
the reliability of the reported evidence, particularly the STREGA 
guidelines (STrengthening the REporting of Genetic Association 
studies) [Little, 2009], which suggest a series of steps that 
might be followed in order to enhance the transparency of 
the reporting of genetic association studies. Briefly, these 
guidelines are an extension of the STROBE (STrengthening the 
Reporting of OBservational studies in Epidemiology) [von Elm, 
2007] statement that include recommendations on items that 
are specifically relevant to genetic studies, including laboratory 
methods for genotyping and allele-calling, genotyping accuracy, 
haplotype modelling, population stratification, relatedness 
between subjects, and statistical adjustments to allow for 
multiple hypothesis testing [Hudson, 2009]. STREGA also 
recommends that the stage involving identification of genetic 
variants be followed by a subsequent stage of validation of 
those findings in independent populations in order to verify 
or improve the estimate of the true effect [Hlatky, 2009] and 
minimise the publication of false positive results. 

Problems in genetic studies: Correct selection of genes/loci

Another of the reasons of such lack of robust results in 
genetic association studies was the selection of appropriate 

INTRODUCTION: General Introduction
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genes and genetic variants to test for association with 
diseases. Even more, the correct coverage of the genes 
selected had been shown to be a poorly considered 
methodological point for many studies [Drago, 2007]. 
Moreover, the selection of those loci had to be performed on 
the basis of pathophysiological knowledge, biasing in some 
cases the possible loci that presented a real association 
with disease. During the last decade, the development 
and application of GWAS study designs, which facilitate 
genotyping of hundreds of thousands of SNPs in thousands 
of individuals, have largely circumvented the need to select 
specific candidate genes or SNPs for study. 

How much information have we gained using GWAS? Is it 
enough?  

Advanced new methods for studying genetic variation 
including high-throughput genotyping [Ding, 2009], GWAS 
[Manolio, 2008], genotype imputation [Howie, 2009], second 
generation sequencing [Wheeler, 2008], in combination with 
some projects that describe natural human genetic variation 
(e.g. HapMap [2007] or 1000 Genomes Project [Durbin, 
2010]) allow us to explore the effect of genetic variation 
on phenotype more thoroughly. Moreover, the effort that 
scientists are making to collaborate and to standardise 
their procedures and reporting of the articles is increasing 
the quality and reliability of the works published. Since 
2006-2007 a large number of GWAS have been performed 
for complex diseases revealing loci robustly associated with 
these diseases [Visscher, 2009; Jostins, 2011]. 

	 Although the number of loci identified is increasing, 
these variants still explain only a minor proportion of the 
heritability of complex diseases (e.g. ~10% for variants 
associated with CHD [The CARDIoGRAM Consortium, 2011]), 
leading to the question of where the ‘‘missing heritability’’ 
lies. To explain this observation, various hypotheses have 
emerged that focus on two main lines of thought: the first 
one questions the initial heritability estimates and the 
second considers genetic or non-genetic factors that could 
explain this missing heritability [Manolio, 2009]: i) a much 
larger numbers of variants with smaller effects yet to be 
found; ii) rarer variants (possibly with larger effects) that are 
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poorly captured by current genotyping arrays, which focus 
on variants with a population frequency ≥0.05; iii) structural 
variants, some of which may be poorly captured by current 
arrays; iv) gene–gene interactions; v) shared environment 
among relatives; vi) true causal may have stronger effects 
than those estimated for the observed variant as a result of 
imperfect LD between them; vii) heritable effects that are 
not represented by primary genomic sequence. 

Characteristics of the variants obtained with GWAS 

The variants identified by GWAS for complex diseases 
generally have minor allele frequencies ranging from 5-50%, 
and also tend to have moderate to weak effects on the 
phenotype [Park, 2010]. In contrast, variants identified by 
linkage analysis to be associated with Mendelian diseases 
have large effect sizes and rarer allele frequencies (see 
Figure 7). The reason why these variants could be detected 
by linkage analysis is that they usually cause severe 
disruptions or truncations of the encoded protein that are 
a strong predictor of disease onset, thereby resulting in 
clearly recognisable familial inheritance patterns. This fact 
made linkage analysis highly successful in the mapping and 
identification of the genetic causes of Mendelian diseases 
[Hirschhorn, 2011]. Common variants with large effect 
sizes are expected to be removed from the population by 
the process of (purifying) natural selection [Ng, 2006] if 
they express their effects before reproductive age, and 
therefore, are largely absent from the populations. 
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Figure 7. Effect sizes 
observed and expected 

for genetic variants 
associated with 

complex or Mendelian 
(or monogenic) 

diseases. 
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Adapted from Manolio et al. [2009] and McCarthy et al. [2008].
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Is there more?

Results obtained from GWAS do not discard that other 
previously studied candidate genes, selected on the basis 
of pathophysiological knowledge, could still play important 
roles in the development of the diseases. Studies performed 
in the past could still bring us valuable information. For 
example, maybe some common variants could not be 
captured correctly by the classical genotyping techniques 
and therefore the association would have remained 
undetected, or some rare variants could have been not 
detected by GWAS because of their effect size. Evidence 
from GWAS to support the possibility of some rarer variants 
having greater effects than the common variants that tagged 
the rarer variant on a disease can be found for example in 
an article by Nejentsev et al. [2009], where they were able 
to detect greater effects in risk of type I diabetes with 4 
rare variants (variants with ~1% frequency) in a gene, than 
with a common variant associated with the disease in the 
same gene. Therefore, some other type of variants (i.e. rare 
variants, epigenetic variants, etc.) could be the cause of 
this so called missing heritability. In the following article, 
published in the Spanish Journal of Cardiology, a review 
about the state of the field in 2009 of genetics of ischaemic 
heart was disease was presented. 

1.1.6. Revision Article: 

disease: from linkage studies to genome-wide 
genotyping. Rev Esp Cardiol Supl. 2009; 9:24B-38B.

Ressearch into the genetic component of heart 
Elosua, R; Lluís, C; Lucas, G.

http://www.revespcardiol.org/es/node/2080778
http://www.revespcardiol.org/es/node/2080778
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Revision article

1.1.7. Update on cardiovascular genetics 
research in the GWAS era 

In the case of CHD, the majority of loci now known to be 
robustly associated with disease risk have been discovered 
since the beginning of the GWAS era. Most of these loci 
have been replicated in meta-analyses of those GWAS (meta-
GWAS), involving more than 200,000 individuals in total [The 
CARDIoGRAM Consortium, 2011; Coronary Artery Disease 
(C4D) Genetics Consortium, 2011] (see Table 3). Briefly, the 
CARDIoGRAM consortium [2011] performed a meta-analysis 
of 14 genome-wide association studies and 56,682 additional 
replication samples (26 studies), representing 143,677 
individuals of European descent in total. Simultaneously, the 
Coronary Artery Disease (C4D) Genetics Consortium [2011]
performed a similar meta-GWAS including 71,075 individuals 
from four large GWAS carried out in individuals of European 
and South Asian descent. The majority of GWAS focussed on 
CHD and MI that have been performed up to 2011 have been 
included in one of these two meta-GWAS consortia. Thus, the 
results provided by these two studies (detailed in Table 3) 
consolidated the evidence reported by the contributing GWAS 
studies, and capture most or all of the best evidence currently 
available regarding the genetic component of CHD risk.
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Update on cardiovascular genetics research in the GWAS era

1.2. GLOBAL HYPOTHESES

i)  Some previously studied candidate genes for coronary 
heart disease (CHD) harbour genetic variants that are 
associated with disease risk, but have not yet been 
discovered because of the low genetic coverage or the 
small sample size of previous studies.

ii) The information provided by genetic variants that 
modulate increased risk of CHD, could be used to 
improve estimates of coronary risk above those provided 
by classical cardiovascular risk factors alone.

1.3. GLOBAL OBJECTIVES

i)  To explore the role of variation in a previously studied 
candidate gene for CHD risk through an evaluation 
of previous evidence and the use new post-genomic 
resources and tools.

ii) To evaluate whether genetic variants identified by GWAS 
to be associated with CHD risk improve coronary risk 
estimation when added to classical risk functions.

Table 3. Summary 
of results from the 
CARDIoGRAM [2011] 
and C4D [2011] 
consortia, representing 
current best evidence 
for the genetic 
component of CHD 
risk.
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2.0. ABSTRACT

ESR1 has been one of the most widely studied candidate 
genes for CHD, driven by the observation of marked 
differences in CHD risk between sexes and the implication of 
the reproductive hormone system as possible explanation. 
In this part of the doctoral thesis, I perform a qualitative and 
quantitative evaluation of all reported evidence regarding a 
widely studied putative association between the rs2234693 
variant in the first intron of the ESR1 gene and CHD. I update 
and extend two previous meta-analyses of association 
studies in >32,000 individuals. I also provide evidence to 
suggest that the quality of studies is a key determinant of 
the results obtained in the genetic association analyses they 
report. I also exploit powerful new post-genomic methods 
and resources to perform more thorough evaluation of the 
role of genetic variation in the ESR1 gene in risk of CHD, in 
order to resolve this long-running unanswered question in 
cardiovascular genetics. For common variation in a genomic 
region centred on ESR1, I present association results from a 
large meta-analysis of GWAS of MI and CHD. I also perform 
an in-silico fine mapping analysis of additional common and 
uncommon genetic variation in this region, and explore 
possible gender differences. None of the genetic variants 
tested for association with CHD present a statistically 
significant association, suggesting that primary genetic 
variation in this gene is not the cause of differences in CHD 
risk.

2.1. INTRODUCTION

2.1.1. Gender differences in CHD risk

Epidemiologic evidence of gender differences in CHD risk 

After age, gender is the most important risk factor for CHD 
events, with women aged 35 to 64 years having two to four 
times lower MI incidence than age-matched men (see Figure 
8) [Tunstall-Pedoe, 1999]. However, the differences in CHD 
incidence between genders diminish gradually, with the rate 
among women increasing in later decades to the point where 
it approaches that among men (see Figure 9) [Evangelista, 
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2009; Healthy, 2009]. While cumulative incidence rates 
for men and women tend to converge, they never actually 
cross [Marrugat, 2004]. The mechanism that underlies this 
difference in rates of incidence between males and females 
is not understood. 

Differences in cardiovascular risk factor profile between 
sexes 

It has been suggested that differences in the prevalence 
of CVRFs could drive the differences observed for CHD 
incidence between sexes [Barrett-Connor, 1997] (see Table 

Abstract

 

 

The average incidence and 95% confidence intervals of the populations shown are indicated by a black diamond 
and a horizontal line, respectively.

Figure 8. Cumulative 
incidence of coronary 
events per 100,000 
individuals aged 
35-64yrs in the WHO 
MONICA study (1985-94) 
[Tunstall-Pedoe, 1999].

Figure 9. Sex 
distribution of 
mortality due to CHD, 
stratified by age group 
[Evangelista, 2009; 
Healthy, 2009].
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











     


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4). Although men have generally less favourable CVRF 
profiles than women [Fowkes, 1994; Grau, 2011], the most 
important CVRFs do not appear to explain the gender gap 
entirely [Wingard, 1983; Isles, 1992].

Reproductive steroid hormones as a candidate system to 
explain gender differences in CHD risk

The exact mechanism through which women are 
protected from CHD is still largely unknown, but data 
from epidemiological and observational studies and the 
fact that CHD risk in women after menopause approaches 
that of males suggests that elements of the sex steroid 
hormone system could be involved in the variation in CHD 
risk [Grodstein, 1997; Mendelsohn, 2005]. The idea that 
the endogenous oestrogen system is cardio-protective 
has been reinforced by the observation that women who 
experience early menopause also show increased CHD risk 
[Barrett-Connor, 1997]. This hypothesis was also initially 
supported by the results of observational studies showing 
lower CHD risk among postmenopausal women undergoing 
hormone replacement therapy (HRT) [Grodstein, 1997; 
Barrett-Connor, 1998; Varas-Lorenzo, 2000]. Moreover, 
differences in hormonal levels are associated with changes 
in several CVRFs, such as increasing LDL cholesterol levels, 
decreasing HDL cholesterol levels [Kuller, 1994], thereby 
increasing the incidence of CHD events in postmenopausal 

Males Females P-value

N 13,425 15,462

Age 53.81 [42,64] 53.37 [42,64] 0.9558

Diabetes (%) 16 [14,18] 11 [9,13] 0.0005

Hypertension (%) 47 [42,51] 39 [34,43] 0.0137

SBP, mmHg 131 [128,133] 122 [121,123] 6.1x10-7

DBP, mmHg 79 [78,80] 75[74,77] 1.4x10-5

Overweight (BMI [25,30)) (%) 51 [49,52] 36 [34,48] 4.0x10-5

Obesity (BMI ≥30) (%) 29 [26,32] 29 [25,34] 1

Smoking (%) 33 [32,35] 21 [18,24] 2.3x10-12

LDL colesterol (mg/dL) 140 [137,144] 138 [134,141] 0.4284

HDL cholesterol (mg/dL) 49 [48,50] 58 [56,59] 2.6x10-21

Triglycerides (mg/dL) 142 [135,149] 108 [102,114] 4.9x10-13

Table 4. Prevalence 
of cardiovascular risk 
factors in males and 

females in Spain (2000-
2010; pooled analysis 

with individual data 
from 11 population-

based studies: The 
DARIOS study). Based 

on epidemiological data 
from Grau et al. [2011].

DBP: diastolic blood pressure; SBP: systolic blood pressure. Values are presented in 
the units shown [95% Confidence interval].

PART I: Introduction
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women. Nonetheless, as mentioned above, the changes 
observed in CVRFs do not entirely explain the differences 
observed in CHD incidence between genders.

Lifetime variation in sex steroid hormone levels in women

Levels of oestrogen start to increase during puberty in 
girls as a result of low-amplitude nocturnal pulses of 
gonadotropin that raise serum oestradiol concentrations 
[Molina, 2004]. During menstrual cycles, oestradiol 
production varies cyclically. During the perimenopausal 
period, depletion of ovarian follicles leads to a steady 
decline in ovarian oestradiol production. During menopause 
itself, levels of oestrogen and other female hormones 
decline such that the hormone profile of postmenopausal 
women is characterised by lower levels of oestrogens and 
oestrone as the predominant oestrogen (see Figure 10)  
[Gruber, 2002; Sigelman, 2009]. Serum androgen levels 
decline steeply in the early reproductive years and do not 
vary as a consequence of natural menopause [Davison, 
2005], therefore making it less likely that this hormone is 
involved in modulating CHD risk after menopause. For this 
reason, most research on the potential role of reproductive 
hormones on CHD risk has focused on oestrogen-related 
and not androgen-related molecules.

Hormone replacement therapy and the effects of 
exogenous oestrogens on health: before and after the WHI 
trial 

Hormone replacement therapy (HRT) is a medical treatment 
for the effects of surgical menopause, and peri- and, to a 
lesser extent, postmenopausal symptoms. HRT contains 

Gender differences in CHD risk

FSH: Basal follicle-stimulating hormone

Figure 10. Schematic 
representation of 
17β-oestradiol levels 
variation through a 
woman’s life [Butts, 
2009].
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hormone supplements such as oestrogens, typically 
combined with progestagens (which serve as precursors for 
all other steroids and are also present in different phases of 
the menstrual cycle, see Figure 11). 

	 Oestrogens have been used since the late 1930s 
to slow and prevent aging, to stop hot flashes, to avoid 
pregnancy or miscarriage and physical changes that 
women experience during menopause. The Food and Drug 
Administration of the United States (U.S. FDA) initially 
approved hormone treatment for hot flashes and other 
problems associated with menopause, but not for disease 
prevention [Boston Women’s Health Book Collective, 
2007]. Because exogenous ovarian steroid hormones have 
multiple target tissues, such as bone, endometrium, the 
vascular system, and breast tissue [Grady, 1992; Women’s 
Health Initiative, 1998], during the 1960s and subsequent 
decades drug companies promoted and doctors prescribed 
hormones to women to prevent and treat an increasingly 
broad range of ailments associated with aging, from 
wrinkles to Alzheimer’s disease, depression, and heart 
disease. In the late 1980s and 1990s several observational 
studies suggested that hormone treatment might improve 
women’s quality of life and even protect them against CHD. 
A description of the effects of HRT use on cardiovascular 
traits is shown in Table 5 [Taylor, 2011]. However, evidence 
from clinical trials on the use of exogenous oestrogens 
and their effects on women’s health was limited, until 
publication of the results of the Women’s Health Initiative in 
2002 [Rossouw, 2002]. Initial clinical trials of HRT showed 
unexpected negative results [Hulley, 1998; Rossouw, 2002], 
including the finding that HRT use did not reduce the rate of 
CHD among women as had been observed in observational 
studies, but was actually associated with greater risk, not 
only of CHD, but also of other diseases [Rossouw, 2002; 
Taylor, 2011]. Currently, new clinical trials are underway 
to explore, among other questions, the early and late 
effects of exogenous 17β-oestradiol administration on the 
progression of subclinical atherosclerosis and cognitive 
decline in healthy postmenopausal women (ClinicalTrials.
gov Identifier: NCT00114517). According to the Clinical 
Trials database, more than 900 trials regarding the effects 
of the oestradiol molecule on different diseases and 
conditions are currently underway. 
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Possible explanations for the negative findings in HRT: 
should this therapy still be used?

Inconsistencies between the results of observational 
and experimental studies may be explained by i) the use 
of oral oestrogen treatment versus transdermal therapy 
(the administration route hypothesis [Canonico, 2007]); 
ii) the type and combination of oestrogens used, such as 
natural versus synthetic oestrogens, or oestrogen only 
versus oestrogen plus progestagens; or iii) the time from 
menopause to the initiation of HRT therapy (the timing 
hypothesis [Dubey, 2005; Salpeter, 2006; Rossouw, 2007; 
Harman, 2011]). 

	 It is noteworthy that the use of HRT has known effects 
on other phenotypes, such as risk of cancer or stroke, and 
cognitive function, evidence that should be taken into account 
when prescribing HRT. The available evidence indicates 
that hormone therapy in younger postmenopausal women 
increases risk of breast cancer and pulmonary embolism, 
and reduces risk of cardiovascular events, colon cancer, 
and hip fracture [Grodstein, 2000; Beral, 2002; Nelson, 
2002; Beral, 2003; Salpeter, 2006; Manson, 2007; Rossouw, 
2007]. It has been postulated that the cardiovascular benefit 

Disease Study (or study type) Treatment Effect

CHD

WHI: randomised trial [Rossouw, 2002] E+P ↑ CHD risk vs. placebo*

WHI: randomised trial [Rossouw, 2002] E alone ~ CHD risk vs. placebo*

WHI: nested case control [Bray, 2008] E+P & E alone

↑ CHD risk vs. placebo when LDL/HDL 
baseline ratio >2,5mg/dl. Otherwise: ↓ 
CHD risk. It was suggested that baseline 
cardiovascular risk may modulate CHD 
outcome among women on hormone 
therapy

Meta-analysis of 19 randomised trials 
[Salpeter, 2009]

E+P & E alone

↓ CHD risk vs. placebo in younger 
postmenopausal women. The analysis 
also demonstrated a cardiovascular 
benefit when MHT was initiated early*

Lipid 
profile

Association studies OE vs. TDE

Oral regimens provide superior benefits 
on lipids, showing greater reductions 
in total cholesterol and LDL and 
increases in HDL than do transdermal 
preparations. However, clotting factors 
and triglycerides are raised to a greater 
degree by the use of oral preparations.

CHD: Coronary heart disease; E+P: conjugated equine oestrogens (CEE) + medroxyprogesterone acetate (MPA); E alone: 
conjugated equine oestrogens; MHT: Menopause hormone therapy; OE: oral oestrogen treatment; TDE: transdermal 
therapy; WHI: Women’s Health Initiative. 
* Prompted the proposal of the timing hypothesis: the results varied depending on the time of initiation of the therapy 
(protective when the therapy was begun less than a decade after menopause)

Table 5. Effects of the 
use of oestrogens on 
coronary heart disease 
and lipid profile, 
summarised from 
Taylor et al. [2011].
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is a result of a small absolute increase in stroke risk but 
a greater reduction in risk of coronary events [Grodstein, 
2000; Bath, 2005; Rossouw, 2007]. Guidelines published 
after the first WHI report concluded that hormone therapy 
represented greater harm than benefits in women of all ages 
and should be used only for short durations in women with 
severe menopausal symptoms [U.S. Preventive Services Task 
Force, 2002; North American Menopause Society, 2003; 
Wathen, 2004]. However, in the publication of age-specific 
data from the WHI [Rossouw, 2007], it was concluded that 
the initiation of hormone therapy in younger women may 
in fact reduce cardiovascular morbidity and mortality, but 
no mention was made of an overall reduction in mortality 
[Pines, 2007; North American Menopause Society, 2007]. 
Therefore, HRT can not be considered a general therapy for 
the target symptoms, but rather requires the consideration 
of various factors. 

2.1.2. Oestrogen physiology

Sources and types of oestrogens  

Cholesterol is the precursor of the five major classes 
of steroid hormones, progestagens, glucocorticoids, 
mineralocorticoids, androgens, and oestrogens (see Figure 
11). Oestrogens are made from androgens [Berg, 2002] in 
the ovaries and are rapidly delivered throughout the body 
[Goodsell, 2003]. Some of the molecules that form part of 
the oestrogen system are: oestrone (E1), which is derived 
from androstenedione; oestradiol (E2 or 17β-oestradiol), 
formed from testosterone; and oestriol, which is a less 
active metabolite derived from oestrone and oestradiol. 

Figure 11. Overview 
of the steroid hormone 

biosynthesis pathway 
[Berg, 2002].

Cholesterol

Pregnenolone

Progestagens

Mineralocorticoids

Glucocorticoids

Oestrone
(postmenopausal females)

17β-oestradiol
(males/premenopausal females)

Testosterone Oestriol
(pregnancy)

Oestrogen
Receptors
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Oestrogen receptors: structure, transcripts and localisation  

Oestrogen receptors are members of a large family of 
proteins that act as receptors for a wide range of hydrophobic 
molecules, including steroid hormones, thyroid hormones, 
and retinoids. They are ligand-activated transcription 
factors composed of several domains important for hormone 
binding, DNA binding, and activation of transcription 
(OMIM: 133430). While several oestrogen receptors have 
been described [Murphy, 2011], ERα, which is encoded 
by the ESR1 gene (chromosome 6q25.1) is an important 
signalling gateway within this system and is expressed in 
multiple cardiovascular tissues in both males and females 
[Mendelsohn, 2005]. ERα is mainly expressed in reproductive 
tissues (breast, uterus, ovaries), cardiovascular tissues, liver 
and the central nervous system, whereas ERβ is expressed in 
tissues such as bone, lungs, endothelium, urogenital tract, 
the central nervous system, ovaries and prostate [Kuiper, 
1997; Krege, 1998; Couse, 1999; Couse, 1999; Nilsson, 
2001; Anderson, 2002; Palmieri, 2002]. Alternative splicing 
results in several transcript variants, which differ in their 5’ 
UTRs and use different promoters (see Figure 12; extracted 
from: www.ncbi.nlm.nih.gov/gene/2099). Despite in vitro 
demonstrations of a possible role for some of the ESR1 
isoforms in hormonal sensitivity, the clinical significance 
of this evidence is uncertain [Balleine, 1999], and may also 
offer an explanation for discordant results between genetic 
association studies. 

Molecular actions of oestrogens

It has been known since 1962 that oestrogen receptor(s) 
in oestrogen’s target tissues capture circulating steroids 
and initiate the cascade of biochemical events associated 
with oestrogen action in that particular tissue [Jensen, 

Figure 12. Structure 
of the Oestrogen 
Receptor 1 gene (ESR1).

152000000 152100000 152200000 152300000 152400000 152500000

ESR1 non-coding exons ESR1 non-coding exonsESR1 coding exons

NR_DBD_ER NR_LBD_ER

Chromosomal position
152000000 152100000 152200000 152300000 152400000

coding5’ regulatory

NR_DBD_ER (dark blue line): DNA-binding domain of oestrogen receptors (ER); NR_LBD_ER (light blue line): Ligand 
binding domain of oestrogen receptor. Chromosomal position according to GRCh37.p5. Coding and non-coding 
exons are represented in dark and light green, respectively.
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1962]. There are two known types of action associated 
with oestrogens: i) the classical pathway (slow response) 
[McDevitt, 2008] and ii) a fast cytoplasmic response 
[Boulware, 2005; Revankar, 2005]. The main receptors 
associated with the classical pathway are ERα and ERβ, 
and the main mediator of the fast cytoplasmic response is 
the G-protein coupled receptor (GPER, described in more 
detail below). For both mechanisms, the specific actions of 
oestrogens are mainly determined by the structure of the 
hormone, the isoform of the oestrogen receptor involved, 
the characteristics of the target gene promoter (in the case 
of the nuclear response), and the balance of co-activators 
and co-repressors that modulate the final response [Gruber, 
2002].

	 It has been suggested that in mice, when there is 
presence of injured vessels, ERα but not ERβ mediates the 
beneficial effect of 17β-oestradiol on re-endothelialisation 
[Brouchet, 2001], that it inhibits smooth muscle cell 
proliferation and matrix deposition following vascular 
injury [Pare, 2002], it alters endothelial nitric oxide (NO) 
production [Pendaries, 2002], and attenuates atherosclerotic 
plaque progression [Hodgin, 2002; Egan, 2004]. Both ERα 
and ERβ are considered to exert their main effects via their 
role as transcription factors in mammals [White, 1987; 
Toran-Allerand, 2004].

2.1.3. Previous research into the ESR1 gene 
and other oestrogen receptors

ESR1 discovery  

ESR1 was first cloned in 1985 by Walter et al. [1985]. Using 
in situ hybridization, Gosden et al. [1986] localised the 
gene to 6q24-q27, by means of a cDNA probe containing 
the coding sequence for the oestrogen receptor. In 1988 
Ponglikitmongkol et al. [1988] showed that the human ESR1 
gene is more than 140 kb long and contains 8 exons, and 
that the positions of its introns is remarkably similar to 
those of one of the chicken thyroid hormone receptor genes. 
In 2001, Koš et al. reviewed the organisation of the ESR1 
gene, describing the promoters used in the generation of 
ESR1 transcripts in humans and other species. The possible 
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role of multiple promoters in the differential expression of 
ESR1 in tissues and during development was also discussed.

Other oestrogen receptors  

For a long time, ERα was thought to be the only receptor for 
oestrogens, but in 1996 Mosselman et al. [1996] identified 
and characterised human ERβ, which has an overlapping 
but non-identical tissue distribution with ERα, and which 
is encoded by a gene (ESR2) that is homologous to the 
previously identified ESR1. The DNA-binding domain of ERβ 
is 96% conserved with respect to ERα, and the ligand-binding 
domain shows 58% conservation. In 1997, Enmark et al. 
[1997] mapped the ESR2 gene to 14q22-q24 and identified 
its 8 exons. Between 1996 and 1997 the G protein-coupled 
oestrogen receptor (GPER) was also identified [Owman, 
1996; Carmeci, 1997]. 

First signs of association between ESR1 and CHD  

In 1994 Smith et al. [1994] described a 28-year-old man 
with oestrogen resistance, characterised by continued linear 
growth into adulthood despite otherwise normal pubertal 
development and bone mineral density of the lumbar spine 
below the mean for age-matched normal men. Single-strand 
conformation polymorphism analysis followed by direct 
sequencing revealed a homozygous C-T transition at codon 
157 in exon 2 of the ESR1 gene, resulting in the introduction 
of a termination codon and truncation of the protein. From 
the subject’s physiological characteristics, the authors 
concluded that oestrogen is important for bone maturation 
and mineralization in men as well as in women. Moreover, 
a second study of the same subject revealed evidence 
of early atherosclerosis in the left anterior descending 
coronary artery, leading to the hypothesis that the absence 
of functional oestrogen receptors may be a novel risk factor 
for coronary artery disease in men [Sudhir, 1997].

Studies of genetic variation in the ESR1 gene  

Initial genetic association studies (in the 1980s and 1990s) 
for most phenotypes focussed on the evaluation of one or 
few variants within a single gene, often those that could 
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be assayed using a popular technique based on restriction 
enzymes, such as EcoRI, BamHI or PvuII. Variants discovered 
in this way were frequently evaluated for association in 
various diseases. This is the case for an ESR1 SNP described 
in 1987 by Castagnoli et al. [1987] (dbSNP id rs2234693, 
often referred to by the name of a restriction enzyme widely 
used to genotype it, PvuII), and then studied in relation to 
cancer [Hill, 1989; Kjaergaard, 2007], bone mineral density 
and osteoporosis [Kobayashi, 1996; Ioannidis, 2002], 
Alzheimer’s disease [Brandi, 1999], multiple sclerosis 
[Niino, 2000] and stroke [Shearman, 2005; Kjaergaard, 
2007] among others. In relation to CHD, ESR1 has been 
the subject of several candidate gene association studies 
over the past 15 years, primarily focussed on rs2234693, 
and with generally inconsistent results [Shearman, 2006; 
Kjaergaard, 2007; Lluís-Ganella, 2009]. Even by 2007 two 
meta-analyses of association studies including data on 
several thousands of individuals and centred on the role of 
rs2234693 in CHD risk had been published, but reported 
conflicting conclusions [Shearman, 2006; Kjaergaard, 
2007]. However, from the ~7.200 variants described for 
the ESR1 gene, less than 10 variants have been explored 
in relation to CHD and their role in CHD risk remains to be 
clarified. 

	 By design, GWAS must use stringent criteria to 
determine which results represent statistically significant 
effects, in order to reduce the number of false positive 
results declared. However, some variants with moderate 
risk effects may not reach this stringency level. Therefore, 
under the hypothesis that some truly associated genetic 
variants have not shown statistically significant evidence of 
association with CHD at the genome-wide level, I sought 
to perform an in depth evaluation of the role of genetic 
variation in the ESR1 gene in relation to CHD risk.
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2.2. HYPOTHESES

i)  The most widely studied variant in ESR1 (rs2234693) is 
not associated with CHD risk. The inconsistency between 
studies is explained by aspects related to their quality.

ii) Some genetic variants located in the ESR1 gene can 
modulate risk of CHD, but these variants have not been 
captured correctly in previous studies.

iii) The effects of putatively associated variants on CHD risk 
differ between men and women.

2.3. OBJECTIVES

i)  To use recently published guidelines on the reporting 
and interpretation of genetic association studies to 
evaluate the quality of ours and other published studies 
as a possible explanation for the discordance between 
their reported results.

ii) To expand previously published meta-analyses of 
association studies focussed on the role of the ESR1 
rs2234693 variant in CHD risk, including new data from 
our population and results from other recently published 
association studies.  

iii) To evaluate the effects on CHD risk of a broad range 
of both common and uncommon variation in a genomic 
region centred on ESR1.

iv) To search for differences between males and females in 
the effects of ESR1 variation on CHD risk.
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2.4. Article 1: 

Qualitative assessment of 

previous evidence and updated 
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coronary heart disease in men 

and women. Atherosclerosis 2009; 
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2.6. DISCUSSION

General overview  

In Part I of the doctoral thesis, I have i) provided an explanation 
for the inconsistency between the results of studies that 
assessed the association between the ESR1 rs2234693 
variant and CHD risk [Lluís-Ganella, 2009], and ii) I have also 
provided well-powered evidence to contest the hypothesis 
that common and uncommon genetic variants in the primary 
sequence of the ESR1 gene are associated with CHD [Lucas, 
2011]. In these two studies I have improved the quantity and 
quality of evidence regarding this question by increasing 
both the number of individuals (~5.3 times more individuals: 
from 16,706 to ~87,000) and the number of genetic variants 
(~460 times more genetic variants) analysed, with respect to 
previous studies. Therefore, I can now make a fairly conclusive 
statement regarding the role of primary variation in this gene 
in modulating CHD risk.

Implications of the use of a quality assessment framework  

In Lluís-Ganella et al. [2009], we performed a qualitative and 
quantitative evaluation of evidence regarding the roles of the 
rs2234693 variant in ESR1 in modulating CHD risk. Two meta-
analyses focussed on this question were published shortly 
before our paper [Shearman, 2006; Kjaergaard, 2007], with 
contradictory conclusions: Shearman et al. [2006] reported an 
association with MI of OR ~1.4 (P<0.0001) in more than 7,000 
males (in 5 cohorts from 4 countries), whereas Kjærgaard et 
al. [2007] reported a lack of association between this variant 
and CHD using both a cohort study design (9244 participants 
followed up for 23-25 years) and a case–control study design 
(2495 CHD cases vs. 4447 controls). In addition to expanding 
the sample size of the meta-analysis to include >32,000 
individuals, the use of a quality assessment framework to assess 
the quality of the previous studies and identify heterogeneity 
in their results was key to providing a solid justification for 
our negative conclusions. As reported by Haynes et al. [2009], 
the implementation of quality control checklists dramatically 
improved the quality and results of studies and, in our case, 
the use of these tools helped to explain the heterogeneity 
of the results observed in the studies that were included. 
Although these guidelines were not developed to evaluate 
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study quality a posteriori, they generally reflect the quality of 
the work presented. Other measures, such as the phenotype 
definition, study design and sample size, were also evaluated 
in our study, but none of these factors alone was capable of 
explaining the between-study heterogeneity as well as the 
quality score metric we designed and implemented. 

	 In addition, we must also consider the publication bias 
of negative studies, where studies with positive results are 
generally easier to publish than studies with negative results 
simply because the negative result can not be attributed with 
certainty to lack of a real effect or to a lack of statistical power, 
and this can clearly generate a bias in favour a positive report 
of association with disease.

Curtailing the reporting of spurious results through 
replication

In addition to recommendations on the conduct and reporting 
of genetic association studies in order to improve their 
reliability, evidence of replication of the reported results in at 
least one independent population is now highly valued in the 
research community. Specifically, this recommendation aims 
to address the widespread reporting of spurious results and/
or different effects in specific populations. For example, in a 
review published by Hirschhorn et al. [2002] they showed that 
from 166 putative associations evaluated three or more times 
for complex diseases, only 6 were consistently replicated. 
The majority of the studies included in the meta-analysis 
described in Article 1 [Lluís-Ganella, 2009] were not supported 
by evidence from replication cohorts; the only study that 
performed a replication found a negative result for association. 
By using data from multiple studies, the analyses reported in 
Article 2 [Lucas, 2011] represent a mutual replication of our 
results across several populations, and we believe that these 
results therefore represent a reliable statement on the true 
role in CHD risk of genetic variation in ESR1.

	 For complex diseases in general, the efforts being made 
to replicate the results of genetic studies are contributing to 
the improved reliability of the results reported in the genetic 
epidemiology literature, and a smaller number of false positive 
results are currently being published.
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No evidence of association between risk of CHD events and 
common & rare variants in ESR1 

In Lucas et al. [2011], we found no evidence of association 
between genetic variants in the ESR1 gene and CHD events, 
despite the fact that up to ~87,000 individuals were analysed. 
The effect sizes of associations between common variants and 
complex diseases are not expected to exceed those already 
discovered by GWAS (e.g. not bigger than those found between 
chromosome 9 variants and CHD risk), because these studies 
had high power to detect associations moderate effect sizes. 
In contrast, the expected effect sizes for rare variants range 
from weak (~1) to bigger effect sizes (>2), but because of the 
design of the current studies rare variants with moderate to 
large effects could still be missed. Using data for ~85,000 
individuals from the CARDIoGRAM consortium, our analysis 
had high power to discover weak associations between 
common variants and CHD, but lower power to find very 
subtle effects associated with rare variants. Only rare variants 
are expected to have large effect on risk of complex diseases 
because selective pressure acts mainly against variants with 
strong effects (which are more likely to express themselves 
before the end of reproductive life), preventing them from 
increasing in frequency.

No evidence of association with CHD events: regulatory 
regions

As far as we are aware, our study is the first to examine genetic 
variation in the regulatory regions of this gene in detail. By 
extending our association analysis to the 5’ regulatory region, 
we cover all the possible transcripts of this gene. However, if 
the effect of a genetic variant was in a promoter used in only 
few transcripts, and the transcripts were expressed at different 
stages of life, we would not have enough statistical power to 
declare a significant association. Considering this limitation, 
our study suggests that there are no variants conferring a 
different CHD risk in the regulatory regions of ESR1.

No evidence of association with CHD events: can other 
elements of the sex steroid hormone system be involved in 
CHD risk?

Our data suggest that common primary genetic variation 
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in the ESR1 gene, one of the main mediators of oestrogen 
response, does not explain the observed gender differences 
in CHD risk. As discussed in the introduction of Part I of 
this doctoral thesis, the sex steroid hormone system is a 
complex network of many molecules, and therefore, if this 
system is responsible for the observed gender differences 
in CHD incidence, these differences could be driven by any 
of a wide range of elements. Moreover, some molecules in 
this system can interact with ERα, and other receptors from 
the intracellular receptor superfamily can act as receptors for 
the oestrogen molecule. Domain-swap experiments suggest 
that many of the hormone-binding, transcription-activating, 
and DNA-binding domains in these receptors can function 
as interchangeable modules [Alberts, 2008; Bonduriansky, 
2009], and therefore elements not identified as part of the sex 
steroid hormone system could also be implicated in the effects 
of oestrogen on cell signalling, and could also compensate for 
minor  disruptions of in the main receptors.

Could primary genetic variation cause gender differences in 
CHD incidence?

Mendel’s First Law (equal segregation of traits in males 
and females) reflects the fact that autosomal loci are in 
linkage equilibrium with the sex determining locus on the 
Y-chromosome. This leads to the conclusion that observed 
differences in CHD risk between genders cannot be directly 
due to primary autosomal genetic variation. Therefore, the 
observed differences in CHD risk between sexes could be 
explained by primary genetic variation, via two mechanisms: 
i) primary genetic variation on the sex chromosomes, or ii) 
interactions between autosomal variants and some other 
factor that differs between males and females. A recent study 
that analysed the association between different lineages of the 
Y chromosome and CHD [Charchar, 2012] showed that men 
who inherit haplogroup I (one of the most common types of Y 
chromosome in Europe) from their fathers have a roughly 50% 
higher risk of CHD than men with from other haplogroups, 
independently of known classical cardiovascular risk factors. 
The authors also showed that this effect on risk of CHD is 
most likely mediated through immune response.
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Could other types of variation cause gender differences in 
CHD incidence?

Epigenetic variation, differences in protein expression and/
or function, lifestyle, environmental variation or any other 
factor that differs between males and females (e.g. emotional 
factors), could contribute to the observed differences in CHD 
incidence between males and females [Barrett-Connor, 1997]. 
Such sex differences could cause molecular changes that may 
persist through subsequent cell divisions [Chong, 2004] for 
the remainder of the cell’s life and may also last for multiple 
generations. It is possible that these molecular changes 
could be generated differently in each sex, or in genes that 
are differentially expressed between genders, therefore 
explaining CHD incidence differences.

Further research

The following areas of further research are a priority to 
determine the possible differences in cardiovascular disease 
incidence between sexes:

i)  Although much less effort has been invested in exploring 
the rest of the elements of the reproductive hormone 
system, it is essential to give conclusive evidence to all of 
the elements of this system. In addition to the strategies 
we have performed to explore the role of ESR1 in CHD, 
also other types of variation, such as epigenetic variation 
or protein expression levels, have to be explored on all the 
elements of this system.

ii) Recent evidence suggests that the human Y chromosome 
is associated with risk of coronary artery disease in men 
despite the small number of genes it harbours. Functional 
experiments, sequencing and tests for interaction between 
genetic variants on this chromosome and variants in 
other regions of the genome could help to understand the 
pathways that are relevant for CHD in males, which could 
guide efforts to better understand the gender differences.



106



3. PART II: Table of contents

Improvement of cardiovascular risk assessment using 
genetic information 

3.0. Abstract
3.1. Introduction

3.1.1. Cardiovascular risk factors, epidemiology and risk 
functions
- Cardiovascular prevention strategies
- Population interventions
- Screening methods
- History of risk functions
- The framingham risk function and its adaptations

3.1.2. Improving the precision of risk functions by adding 
new risk markers
- Risk classification
- Population distribution of CHD incidence and risk, and 
the limitations of risk functions

- Evaluating the value of new risk markers
- Box 4

3.1.3. Genetiv variants as novel biomarker of 
cardiovascular risk
- Use of genetic markers
- Computation, behaviour and inclusion of genetic risk 
scores in the risk functions

- Advantages and limitations of using genetic variants to 
improve risk functions

3.2. Hypothesis
3.3. Objectives
3.4. Article 3: Rev Esp Cardiol. 2010; 63(8):925-33.
3.5. Article 4: Atherosclerosis 2012. Accepted.
3.6. Discussion

- General overview
- Selecting genetic variants independent of cardiovascular 
risk factors

- Using the true causal variant
- Could genetic information be more powerful for risk 
estimation than other biomarkers?

- Missing heritability and rare variants
- Effect of the genetic risk score
- Target population of genetic risk assessment
- Further research

107

3

PART II



108

PART II

3.0. ABSTRACT

In Part II of this doctoral thesis, I evaluated the role of a 
genetic risk score, composed of genetic variants robustly 
shown to be associated with CHD independently of CVRFs, 
in modulating CHD risk. I also evaluated whether the 
capacity of the Framingham risk function to predict 10-
year CHD risk was improved by the addition of the genetic 
risk score. To achieve this goal, I have followed the first 
three stages of the American Heart Association’s “criteria 
for the evaluation of novel markers of cardiovascular risk” 
[Hlatky, 2009], which include i) an initial demonstration of 
association between the marker, in this case a genetic score, 
and increased risk of CHD (proof of concept), ii) validation 
of this relationship in prospective cohort studies, and iii) 
assessment of the incremental value of using this genetic 
risk score in combination with the classical cardiovascular 
screening tools to improve the estimation of 10-year CHD 
risk.

	 Our results provide an indication of the potential 
utility of genetic information in improving the efficiency of 
classical cardiovascular risk functions. They also suggest 
that these markers may be most informative in individuals 
with intermediate CHD risk, precisely the group in which 
most CHD events occur, and where there is greatest need 
for improved stratification of CHD risk.

3.1. INTRODUCTION

3.1.1. Cardiovascular risk factors, 
epidemiology and risk functions

Cardiovascular prevention strategies

One of the main goals of preventive medicine is to reduce 
the incidence of disease in a specific group of people 
[Evans, 1997], but the best strategy for doing this is not 
clear [Emberson, 2004]. In the case of CVD, this goal is of 
special importance for the following reasons: i) CVD is the 
major cause of premature death in Europe; ii) the process 
of atherosclerosis that underlies CVD develops insidiously 
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over many years and is usually advanced by the time 
symptoms occur; iii) death from CVD often occurs suddenly 
and before medical action can be taken; iv) the majority of 
CVD cases are strongly related to lifestyle and to modifiable 
physiological and biochemical factors; v) modification of a 
person’s risk factor profile has been shown to reduce CVD 
morbidity and mortality, particularly in high risk patients 
[Graham, 2007].

	 Three complementary strategies can be used for 
CVD prevention: i) population intervention, which is mainly 
based on the promotion of healthy lifestyles, improving 
eating habits and anti-smoking legislation; ii) screening 
methods, which are used to identify and intervene in high 
risk individuals; and iii) secondary prevention, which aim 
to diminish the total cardiovascular risk of patients with 
established cardiovascular organ damage or disease (not 
addressed in this doctoral thesis). 

Population interventions

The main goal of this type of intervention is to improve 
population-wide risk factor profiles (see Table 6), and is 
mostly achieved by developing public health policies and 
community interventions. While difficult to implement 
at the population level, some such interventions, such 
as public smoking bans [Haw, 2006] or salt reduction 
initiatives (e.g. www.food.gov.uk/multimedia/pdfs/
saltreductioninitiatives.pdf), aim to reduce exposure to 
some risk factor, with immediate consequences for health at 
the population level. Other strategies, such as those whose 
aim is to improve diet, encourage physical activity or reduce 
excess alcohol consumption, produce more subtle effects 
that may take some time to emerge [Craig, 2012]. In the 
case of CVD, this attempt to modify population-wide risk 
factor profiles responds to evidence suggesting that most 
CVD events are preventable [Stamler, 1999; Rosengren, 
2001] and their risk factors are modifiable [Pearson, 2002]. 
For example, data from the Nurses Health Study [Stampfer, 
2000] suggest that maintaining a desirable body weight, 
eating a healthy diet, exercising regularly, not smoking, and 
consuming a moderate amount of alcohol could produce an 
84% reduction in CHD risk in women.
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	 Therefore, the goal of this type of strategy would 
ideally be, for example, to cause a shift in the distribution of 
a cardiovascular risk factor (CVRF) in the general population 
towards a better profile, such as that reported by Grau et al. 
[2007] for LDL-cholesterol levels in the REGICOR cohorts in 
Girona, Catalonia, Spain (see Figure 13).

Screening methods

Since the first clinical symptom of CHD is often catastrophic 
(MI or sudden death), there is considerable interest in 
improving diagnosis in asymptomatic individuals. Although 
mass screening would be the ideal way to detect early 
stages of CVD, there is no evidence that this strategy would 
be a cost-effective way to prevent disease [Graham, 2007], 
so screening must be limited to a subset of the population. 
To do so, two main types of screening are performed: 
i) opportunistic screening or ii) high risk screening. In 
opportunistic screening, evaluation of CVRFs and estimation 

Preventive intervention Primary Goal

Smoking No smoking

BP control <140/90 mm Hg

Dietary intake Healthy food choices

Blood lipid management
LDL-C <115 mg/dL; total cholesterol <190mg/dL; blood glucose 
<110mg/dL

Physical activity 30 min of moderate physical activity a day

Weight management body mass index <25 kg/m2 and avoidance of central obesity

BP indicates blood pressure; LDL-C, low-density lipoprotein cholesterol.

Table 6. Goals for 
primary prevention of 

cardiovascular disease 
[Graham, 2007].
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of CVD risk is carried out in all individuals that come into 
contact with the health system for any cause (including 
work-related medical examinations). High risk screening 
is limited to individuals with an elevated probability of 
suffering a CVD event because they have a family history 
of early-onset CHD events or familial hypercholesterolemia, 
or because they present other risk factors, such as renal 
dysfunction. A summary of the screening strategies that 
can be implemented at various stages of life or of disease 
progression is shown in Figure 14. 

	 In both types of screening, risk functions are the 
most commonly used method for evaluating individual risk 
of having a CHD/CVD event, usually computed for a 10-
year time period [Wilson, 1998; Expert Panel on Detection, 
Evaluation, and Treatment of High Blood Cholesterol 
in Adults, 2001; Graham, 2007]. Risk functions are 
mathematical equations that estimate the probability of 
developing CHD/CVD using information about  CVRFs that 
are strongly and independently related to CHD and can be 
evaluated in simple office procedures and laboratory results 
[Anderson, 1991].

History of risk functions

An historical summary of the development of the various 
cardiovascular risk functions currently in use is presented 

Figure 14. Screening 
strategies for 
atherosclerosis.


 
































CVRF: cardiovascular risk factor; MRI: Magnetic resonance imaging; PET: positron emission tomography.
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in Figure 15. The first function was developed by the 
Framingham Heart Study [Truett, 1967] and adopted by 
the American Heart Association in 1973 in the form of a 
handbook [American Heart Association, 1973] containing 
(6-year) CHD risk tables based on the Framingham function 
[Gordon, 1971]. New CHD risk functions were published by 
the Framingham investigators in 1991 [Anderson, 1991] 
and 1998 [Wilson, 1998]. The Wilson function is widely used 
in clinical practice and has been successfully adapted to 
and calibrated for different populations [D’Agostino, 2001; 
Marrugat, 2003a; Liu, 2004]. The Framingham investigators 
have also developed new functions to estimate 10-year 
[D’Agostino, 2008] and lifetime [Lloyd-Jones, 2006] global 
cardiovascular risk, as well as risk of specific cardiovascular 
events, such as cerebrovascular disease [Seshadri, 2006], 
atrial fibrillation [Lloyd-Jones, 2004a], peripheral artery 
disease [Murabito, 1997], and others.

	 In parallel, a number of other risk functions have 
been developed and are in use in different clinical settings:

- The SCORE function [Conroy, 2003], which measures 10-
year risk of fatal CVD, is recommended by the European 
Society of Cardiology and other European Scientific 
Societies and has been calibrated for use in Spain [Sans, 
2007].

- The Reynolds functions measure cardiovascular risk 
separately in women [Ridker, 2007] and men [Ridker, 
2008].

- The PROCAM function uses a scoring system to calculate 
coronary risk in men [Assmann, 2002].

- The QRISK funcions have recently been developed in the 
UK to estimate 10-year [Hippisley-Cox, 2007] and lifetime 
[Hippisley-Cox, 2010] risk of cardiovascular disease.

The Framingham risk function and its adaptations

The Framingham risk function [Wilson, 1998] and its 
adaptations [D’Agostino, 2001; Marrugat, 2003a; Liu, 
2004] estimate individual 10-year risk of presenting a MI or 
coronary death within the following 10 years, and are based 
on the incidence of CHD in the population (1-S), individual 

CVRF profile, the population means the CVRFs ( pCVRF ), 

Figure 15. 
Historical summary 
of the development 

of cardiovascular 
risk functions and 
their adaptations, 

highlighting the 
predictor variables on 
which they are based.
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








 









 

  



  


  
 



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* The Townsend deprivation index is a simple, census-based index of material deprivation, which is calculated from 
a combination of four census variables: i) percentage of households without a car; ii) percentage of overcrowded 
households; iii) percentage of households not owner-occupied; and iv) percentage of persons unemployed. The 
specific variables used vary slightly between censuses [www.geog.soton.ac.uk].

and the magnitude of the effect of each risk factor on CHD 
risk (β

CVRF
) (see Equation 1). 

Equation 1. The 
Framingham coronary 
heart disease risk 
function [D’Agostino, 
2001].

 








∑ ⋅−∑ ⋅
==−=
P

p
PpCVRF

P

p
ippCVRF CVRFCVRF

11
,exp

i S1)CVRF|prob(event
ββ

Where: 
- prob(event|CVRF

i
): Individual probability of having a coronary 

event, given individual CVRF profile;

- S


: survival value for the population average.
- exp: exponential value (or anti-logarithm function).
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- β
CVRFp

: logarithm of the hazard ratios of each cardiovascular 
risk factor (see Table 7). 

- CVRF
p,i

: value of each cardiovascular risk factor for individual i.

-  pCVRF : population mean of each cardiovascular risk factor.

	 The adaptation and calibration of the risk function in 
different populations is based on substituting the Framingham 
CHD survival rate and risk factor prevalence for their values 
in the target population [D’Agostino, 2001]. This adaptation 
has been carried out and validated in different populations 
[D’Agostino, 2001; Liu, 2004], including Spain (the REGICOR 
adaptation to the Framingham risk function) [Marrugat, 2003a].

	 The application of this tool to clinical practice is 
simplified by the use of tables (see Figure 16) [Marrugat, 
2003b; Marrugat, 2011], such that, for example, a 70-year-old 
diabetic male who has never smoked and whose blood pressure 
is 135/87 mmHg and total cholesterol is 6 mmol/L would be 
classified as having a high risk of suffering a CHD event within 
the next 10 years, with an estimated probability of ~10%. 

3.1.2. Improving the precision of risk 
functions by adding new risk markers

Risk classification

Risk functions provide an estimate of individual probability 
of having a cardiovascular event, and this value can also be 
used to classify individuals into different risk categories. 

Variables β for Males β for Females Variables β for Males β for Females

Age (years) 0.0483 0.3377

T
o
ta

l 
ch

o
le

st
er

o
l 

(m
g
/d

l)

<160 -0.6595 -0.2614

Age2 (years) 0.0000 -0.0027 160 - <200 0.0000 0.0000

Diabetes 0.4284 0.5963 200 - <240 0.1769 0.2077

Smoking 0.5234 0.2925 240 - <280 0.5054 0.2439

H
D

L 
ch

o
le

st
er

o
l 

(m
g
/d

l)

<35 0.4974 0.8431 >=280 0.6571 0.5351

≥35; <45 0.2431 0.3780

B
lo

o
d
 p

re
ss

u
re

 
(m

m
H

g
) 

(S
B
P;

 D
B
P)

Optimal (<120; <80) -0.0023 -0.5336

≥45; <50 0.0000 0.1979 Normal (120-130; 80-85) 0.0000 0.0000

≥50; <60 -0.0511 0.0000 High (130-140; 85-90) 0.2832 -0.0677

≥60 -0.4866 -0.4295 HTN grade I (140-160; 90-100) 0.5217 0.2629

HTN grade II (>160; >100) 0.6186 0.4657

Table 7. Logarithm 
of the hazard ratios 
or β coefficients of 

CVRF used in the risk 
functions in this thesis. 
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These categories are used to define the intensity of 
cardiovascular risk intervention measures, which may 
range from lifestyle recommendations to drug prescription 
and periodic follow-up. The cut-points used to define risk 
categories vary depending on the population. In Spain, the 
cut points used to define categories of low, intermediate-
low, intermediate-high and very high CHD risk are 5%, 10% 
and 15%, whereas in USA these cut points are  10%, 15% and 
20%, respectively. 

Population distribution of CHD incidence and risk, and the 
limitations of risk functions	

The distribution of CHD risk as estimated by risk functions 
fits quite well with that of the observed incidence of CHD at 
the population level (calibration), in that a higher percentage 
of individuals who are estimated to have high risk go on to 
have an event than those who are estimated to have lower 
risk. However, one of the main problems of risk functions 
is their low sensitivity, which is a function of how the 
population is distributed between risk categories (Figure 
17). As an example, >80% of the REGICOR population is 
classified as having low or intermediate-low risk, but these 
groups account for 49% of the CHD events observed in the 
population (Figure 17).  

Total 
cholesterol
(mmol/L)

Very High

High

Moderate

Low SB
P

/D
B

P
 (

m
m

 H
g)

Diabetic male non-
smoker, aged 65-74.

DBP: diastolic blood pressure; SBP: Systolic blood pressure.

Figure 16. 
Implementation of the 
REGICOR adaptation to 
the Framingham risk 
function using coronary 
heart disease risk 
tables. 
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	 Therefore, risk functions quite accurately predict 
the number of events that will occur in each of the risk 
categories, but the majority of the CHD events ultimately 
occur in individuals who are not estimated to have a 
high enough risk to be subjected to intensive treatment, 
Therefore, efforts to improve the correct classification of 
these individuals into higher risk categories is a priority 
for research and public health, and one of the  possible 
strategies for achieving this improved sensitivity is the 
inclusion of new biomarkers in classical risk functions.

Evaluating the value of new risk markers

Recently, the American Heart Association (AHA) has 
published guidelines for the step-wise evaluation of new 
risk biomarkers and their subsequent application in clinical 
practice [Hlatky, 2009] (summarised in Table 8). The steps 
suggested by these guidelines require the use of different 
study designs (e.g. case-controls, cohorts, randomised 
trials), and evaluation is carried out using metrics that are 
specific to each stage. An important part of this process 
is that which evaluates the incremental value of the 
biomarker of interest in the predictive capacity of the risk 
function (Table 8, Step 3). To this end, various aspects of 
the function’s performance can be evaluated [Steyerberg, 
2011]: calibration (of how the expected risk adjusts to 
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Figure 17. Ten-year 
incidence of CHD in 

the REGICOR cohort, 
and distribution of the 

population into risk 
categories defined by 

the REGICOR adaptation 
to the Framingham 

risk function (n~3,800) 
[Marrugat, 2011]. 
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the observed incidence; Hosmer-Lemeshow, Brier Score), 
discrimination (between events and non-events; c-statistic, 
c-statistic improvement) and reclassification (among higher 
or lower risk categories; Net Reclassification Improvement, 
NRI and Integrated Discrimination Improvement, IDI) (see 
Box 4).

Steps Design Statistical Metric

1. Proof of concept: Do novel marker levels 
differ between subjects with and without the 
outcome?

Case-control OR

2. Prospective validation: Does the novel marker 
predict the development of future outcomes in 
a prospective cohort or nested case-cohort/
case-cohort study?

Case-cohort 

RR
Cohort

3. Incremental value: Does the novel marker 
add predictive information to established, 
standard risk markers?

Case-cohort Discrimination

Cohort
Calibration

Reclassification

4. Clinical utility: Does the novel risk marker 
change predicted risk sufficiently to change 
recommended therapy?

Case-cohort
Net Benefit 

Cohort

5. Clinical outcomes: Does use of the novel risk 
marker improve clinical outcomes, especially 
when tested in a randomised clinical trial?

Clinical trial RR

6. Cost-effectiveness: Does use of the marker 
improve clinical outcomes sufficiently to justify 
the additional costs of testing and treatment?

Cost-effectiveness 
analyses

Cost per QALY

OR: Odds Ratio; RR: Relative Risk; QALY: Quality-adjusted life year (which is a measure of disease burden, 
including both the quality and the quantity of life lived).

Table 8. Summary 
of the American Heart 
Association guidelines 
for evaluating the utility 
of new biomarkers 
[Hlatky, 2009], and 
the study designs and 
statistical metrics used 
in each step.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 4. Metrics used for the evaluation of novel biomarkers. Extracted from 
Steyerberg et al. [2011]. 

Evaluated 

Aspect  
Measure Characteristics 

Evaluation of predictions performed 

Discrimination 
AUC or c- 

statistic 

AUC or the c-statistic is a rank-ordered statistic, which is interpreted 

as the probability of correct classification of a pair of patients with 

and without the outcome 

Calibration 

Intercept and 

slope of a 

calibration 

model 

The intercept (a|b=1) reflects the level of calibration in general, or the 

difference between average prediction and average outcome  

The slope (b) reflects the average effect of predictors on the outcome 

Evaluation of classifications 

Classification Youden index 

Sum of sensitivity and specificity-1, which represents the maximum 

vertical distance between the ROC curve and the diagonal line, which 

represents randomness [Schisterman, 2005] 

Clinical 

usefulness 
NB and DCA 

Net fraction of true positives gained by making decisions based on 

predictions at a single threshold (NB) or over a range of thresholds 

(DCA) 

Evaluation of incremental value by a marker 

Increase in 

discrimination 
Delta AUC Increase in discrimination is usually a modest number 

Reclassification NRI 

Net fraction of reclassifications in the right direction obtained by 

making decisions based on predictions that take marker data into 

account, compared to decisions without the marker 

Clinical 

usefulness 

Difference in 

NB and DCA; 

Weighted NRI 

Net fraction of true positives gained by making decisions based on 

predictions that take marker data into account, compared to decisions 

without marker data at a single threshold (NB) or over a range of 

thresholds (DCA); this technique weights the results according to the 

consequences of the decisions taken (NB and weighted NRI). 

AUC, area under the ROC curve; DCA, decision curve analysis; NB, net benefit; NRI, net reclassification index; 

ROC, receiver operating characteristic. 

AUC or c-statistic: This measure is a numerical value representing the area under the Receiver 
Operator Curve (ROC), which is a plot of the sensitivity (computed as: TP / (TP + FN)) on the y-
axis for each of a series of values of 1-specificity (computed as: FP / (FP + TN) on the x-axis. In 
the case of CHD, the AUC of ~0.8 is obtained using the REGICOR risk function with classical 
cardiovascular risk factors only [Marrugat, 2011]. Some authors are concerned with the c-
statistic as the main discrimination metric when the goal in clinical practice is mainly to stratify 
individuals into risk categories in order to decide the intensity of preventive measures to apply, 
as is the case for cardiovascular prevention [Cook, 2007]. 
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Net Reclassification Improvement: (NRI) [Chambless, 2010; Pencina, 2011] This metric is 
used to compare two risk functions (e.g. functions with and without the factor being 
evaluated) in terms of how well they classify individuals into different risk categories. All 
individuals are classified using each functions (see figure), and then the NRI is computed by 
subtracting the number of individuals that are better classified (cases reclassified into higher 
risk categories and non-cases reclassified into lower risk categories; black arrows) minus the 
number of individuals that are more inappropriately classified (cases reclassified into lower risk 
categories and non-cases reclassified into higher risk categories; brown arrows). 
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Integrated Discrimination Improvement: (IDI) [Chambless, 2010] As for the NRI, the IDI is 
used to compare changes in risk when using two functions in the same individuals. The IDI 
considers the change in the estimated prediction probabilities as a continuous variable, and 
can be seen as continuous version of NRI with probability differences used instead of categories. 

Calibration: While Steyerberg et al. [2011] report the intercept and slope of their recalibration 
model as a means to assess the calibration of the risk function, we used a version of the 
Hosmer-Lemeshow test [D'Agostino, 2003]. This test assesses whether or not the observed 
event rates match expected event rates in subgroups of the population. The following figure 
shows an example of the calibration of two models, one of which is well calibrated (model 1), 
and the other poorly calibrated (model 2). 
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Chi-square = 3.00  ( df = 4 ), p-value = 0.557Chi-square = 3.00  ( df = 4 ), p-value = 0.557

Chi-square = 55.37  ( df = 4 ), p-value <0.001

Chi-square = 60.38  ( df = 4 ), p-value <0.001

Chi-square = 55.37  ( df = 4 ), p-value <0.001

Chi-square = 60.38  ( df = 4 ), p-value <0.001Chi-square = 55.37  ( df = 4 ), p-value <0.001Chi-square = 55.37  ( df = 4 ), p-value <0.001
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3.1.3. Genetic variants as novel biomarker of 
cardiovascular risk

Use of genetic markers

A multitude of biomarkers are currently being evaluated 
for their capacity to improve the predictive capacity of the 
cardiovascular risk functions, including genetic variants 
[Wang, 2011]. The most important disadvantage of using 
genetic variants information for risk assessment is the 
modest effects of individual variants on CHD, which range 
from an OR of 1.06 to 1.51 for known variants. To address 
this problem, the use of genetic risk scores (GRS) to capture 
the additive effects of multiple variants has been proposed, 
thereby summarising the information for all CHD-related 
genetic variation carried by an individual in a single value. 

Computation, behaviour and inclusion of genetic risk scores 
in the risk functions

GRSs are usually expressed as the number of alleles known 
to increase disease risk that are carried by an individual. 
For example, for risk alleles that are independent both 
within (Hardy-Weinberg equilibrium) and between (linkage 
equilibrium) variants, a GRS composed of a single SNP with 
MAF=0.5 would have a distribution of 0.25, 0.50 and 0.25 
in individuals with 0, 1 and 2 risk alleles; a GRS composed 
of 2 SNPs, each with MAF=0.5 would have a distribution 
of 0.0625 0.25 0.375 0.25 and 0.0625 for individuals 
with 0, 1, 2, 3 and 4 risk alleles, respectively (Figure 18a). 
In a large, randomly selected sample of individuals, this 
distribution begins to approach a normal distribution as we 
increase the number of independent genetic variants from 
which the score is composed (see Figure 18b-c). This holds 
true in any finite population, and for any number of genetic 
variants that comprise the GRS and with any distribution 
of risk allele frequencies. However, depending on the 
allele frequencies of the genetic variants in the score, the 
shape of the distribution varies. As the frequencies of the 
genetic variants increase, the distribution of the GRS in 
the population tends towards the right (carrying more risk 
alleles), and the opposite happens as the alleles tend to 
have rarer allele frequencies (Figure 18d). 
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	 While a GRS can be expressed as the integer number 
of risk alleles carried by an individual, it can also be weighted 
by the magnitudes of the effects of the individual variants 
on disease risk, thereby accounting for the differences in 
risk attributable to variants with stronger or more subtle 
effects on risk (see Equation 2).
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Furthermore, when a case-control design is used to compare the distributions of the 
allelic load of the individuals, if the variants are truly associated with the disease and 
are independent of each other the distribution observed in the cases group is going 
to be presented shifted (to the right) in relation to the control group, representing the 
excess in risk conferred by the genetic variants.

Figure 18. Different 
genetic risk score 
distributions according 
to different number 
of genetic variants 
included. Adapted form 
Plomin et al. [2009].

∑
=
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ii SNPGRS
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β

Where: 
- β

i
: effect size reported for variant i;

- SNP
i
={0,1,2}: the number of copies of SNP i; where a score 

contains SNPs that have been imputed, the estimate 
genotype of SNPi can be expressed as the dosage of the 
risk allele, taking a value within the range [0,2].

	 The value of the GRS computed for each individual 
can be included as a variable in the risk function in the 
same manner as all other risk variables (see Equation 3), 
where the deviation of each individual’s score (Equation 2) 
from the population mean of the score is multiplied by the 

Equation 2. Formula 
used for the generation 
of a genetic risk score, 
including weighting 
of individual variants 
where necessary.
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per-unit effect size of the score.

Where: 
- risk: individual probability of suffering a coronary event 

for a given CVRF profile and a given set of risk variant 
genotypes.

- CVRF
p,i

: value of individual i for cardiovascular risk factor p.
- β

CVRFp
: risk effect (logarithm of the hazard ratio) for 

cardiovascular risk factor p.

- pCVRF : population mean of cardiovascular risk factor p.
- GRS

i
: individual value of the genetic risk score.

- βGRS: log-hazard-ratios of the genetic risk score.

- GRS : population average value of the genetic risk score.

Advantages and limitations of using genetic variants to 
improve risk functions

The greatest advantage of the introduction of genetic 
information when compared to other biomarkers is that 
the values remain unchanged throughout life. Therefore, 
the information provided by a genetic test could be more 
representative of the lifetime exposure to the specific risk 
factor with which it is associated than a single laboratory 
measurement, which is maybe susceptible to greater 
measurement error and intra-individual variation. Another 
important advantage is that genotyping even hundreds 
of polymorphism is likely to be much cheaper and more 
replicable than for some CVRF measurements (for example 
HDL-cholesterol). 

	 Among the limitations of using genetic information 
as a marker of risk is the fact that the heritability currently 
explained by the genetic variants that are known to be 
associated with CHD is lower than 10%, and the fact that 
this type of biomarker could not be used to monitor changes 
during life or responses to treatments or interventions.

 ( ) ( ) ( )







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==−=
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Equation 3. Extension 
of the REGICOR 

adaptation to the 
Framingham risk 

function to include a 
genetic risk score.
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3.2. HYPOTHESES

i) A GRS composed of variants associated with CHD 
independently of CVRFs presents a distinct distribution 
in individuals with and without disease.

ii) That GRS is a predictor of future CHD/CVD events.

iii) The addition of this GRS in the classical cardiovascular 
function is able to improve the category in which 
individuals are classified.

3.3. OBJECTIVES

i) To assess, using a case-control study design, the 
magnitude of the association between CHD risk and a 
multi-locus genetic risk score composed of variants that 
are individually associated with CHD risk independently 
of CVRFs.

ii) To determine, using a population-based cohort design, 
the per-unit effect on risk of incident CVD and CHD of a 
multi-locus genetic risk score composed of variants that 
are individually associated with CHD risk independently 
of CVRFs.

iii) To assess whether the inclusion of this genetic risk score 
in the classical cardiovascular risk function improve its 
capacity to predict CVD and CHD events in populations 
with low and high CVD mortality.
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a b s t r a c t

Background: The American Heart Association has established criteria for the evaluation of novel markers
of cardiovascular risk. In accordance with these criteria, we assessed the association between a multi-
locus genetic risk score (GRS) and incident coronary heart disease (CHD), and evaluated whether this GRS
improves the predictive capacity of the Framingham risk function.
Methods and results: Using eight genetic variants associated with CHD but not with classical cardiovascular
risk factors (CVRFs), we generated a multi-locus GRS, and found it to be linearly associated with CHD in
two population based cohorts: The REGICOR Study (n = 2351) and The Framingham Heart Study (n = 3537)
(meta-analyzed HR [95%CI]: ∼1.13 [1.01–1.27], per unit). Inclusion of the GRS in the Framingham risk
function improved its discriminative capacity in the Framingham sample (c-statistic: 72.81 vs.72.37,
p = 0.042) but not in the REGICOR sample. According to both the net reclassification improvement (NRI)
index and the integrated discrimination index (IDI), the GRS improved re-classification among individuals
with intermediate coronary risk (meta-analysis NRI [95%CI]: 17.44 [8.04; 26.83]), but not overall.
Conclusions: A multi-locus GRS based on genetic variants unrelated to CVRFs was associated with a lin-
ear increase in risk of CHD events in two distinct populations. This GRS improves risk reclassification
particularly in the population at intermediate coronary risk. These results indicate the potential value
of the inclusion of genetic information in classical functions for risk assessment in the intermediate risk
population group.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The main goal of primary cardiovascular prevention is to reduce
the incidence of clinical events [1]. Generally, two strategies are

Abbreviations: AHA, American Heart Association; CHD, coronary heart disease;
CVD, Cardiovascular diseases; CVRFs, cardiovascular risk factors; DNA, deoxyribonu-
cleic Acid; GRS, genetic risk score; GWAS, genome-wide association studies; IDI,
integrated discrimination improvement; MI, myocardial infarction; NRI, Net reclas-
sification improvement; REGICOR, Registre Gironí del Cor.

∗ Corresponding author at: Cardiovascular Epidemiology and Genetics Research
Group, IMIM, Doctor Aiguader 88, 08003 Barcelona, Spain. Tel.: +34 933 160 800.

E-mail address: relosua@imim.es (R. Elosua).
1 These authors contributed equally to this work.

used: (i) population-wide interventions based on the promotion
of healthy lifestyles and public health policies; and (ii) targeting
of high risk individuals, in whom intensive strategies are imple-
mented to control cardiovascular risk factors. In clinical practice,
cardiovascular risk functions are used to identify the high risk
individuals by estimating the probability of presenting a coronary
(CHD) event, usually in the subsequent 10 years [2]. Although these
screening methods are well established and widely used, the major-
ity of the CHD events occur in individuals who are classified as
having low or intermediate risk [3]. Therefore, the improvement of
risk estimation, especially in the intermediate risk group, is a prior-
ity for research. In this regard, the identification of new biomarkers,
particularly those that provide information complementary to that
already provided by classical cardiovascular risk factors (CVRFs)

0021-9150/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.atherosclerosis.2012.03.024
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[4], has been the subject of intense research in recent years. To
that end, the American Heart Association (AHA) has proposed sev-
eral essential steps [5] for assessing the potential value of such
novel biomarkers in estimating risk: (i) initial demonstration of
association between marker and event risk (proof of concept), (ii)
validation of this relationship in prospective cohort studies, (iii)
assessment of the improvement of the predictive capacity of the
risk function due to the addition of the marker, (iv) assessment
of effects on patient management and outcomes, and, (v) cost-
effectiveness of population-wide implementation.

Genome-wide association studies (GWAS) have led to the iden-
tification of a series of genetic variants that are robustly associated
with CHD risk [6], although their individual effects on risk are gen-
erally quite small. Since these effects have also been observed to
be generally additive, overall genetic risk load, formulated as a
multi-locus genetic risk score (GRS), has been proposed [7,8] as
a potentially informative biomarker for improving the estimation
of coronary risk [1,9]. We have recently reported the results of a
large case-control study aimed at addressing the first step of the
AHA recommendations, in which we observed a robust association
between CHD risk and a GRS composed of variants associated with
CHD, but not with classical CVRFs [10].

Following on from our previous work, the aims of the current
study were to address steps 2 and 3 of the AHA recommendations
for the same GRS. First, we assessed the association between the
multi-locus GRS and incident CHD events in two prospective cohort
studies with low and high CHD mortality (AHA, step 2). Second, we
assessed whether the inclusion of this GRS improves the predictive
capacity of the Framingham risk function (AHA, step 3). In addition,
we evaluated the hypothesis that the improvement in predictive
capacity provided by the GRS is greater among individuals with
intermediate risk.

2. Methods

An extended description of the methods used is given in the
Supplementary methods. Supplementary materials section (Sx.x),
table (S.Tx), figure (S.Fx) and analysis (S.Ax) numbers are indicated
in parentheses throughout the manuscript.

2.1. Design

Two prospective population-based cohorts were analyzed in
this study. (i) The REGICOR (Registre Gironí del Cor) cohort
originally included 4778 individuals from two population-based
cross-sectional studies conducted in the province of Girona, in
north-eastern Spain, in 1995 and 2000 [11]. This population has
low CHD mortality [12]. (ii) The Framingham Heart Study orig-
inally included 5209 men and women recruited in 1948 [13]
and 5124 offspring of the original participants and their spouses
recruited in 1971 [14], from whom DNA was collected during the
1980s and 1990s [15]. This population has relatively high CHD
mortality. We obtained access to phenotype and genotype data
for the Framingham sample under the Framingham Share ini-
tiative via the Database of Genotypes and Phenotypes (dbGaP,
ncbi.nlm.nih.gov/dbgap; Project number 1534). To maximize the
number of participants included in the analysis for whom genetic
data was available, we set exams 15 and 5 as the baseline visits
for the Original Cohort (2632 individuals, 1977–1979) and the Off-
spring Cohort (3799 individuals, 1991–1995), respectively (S.F1).

For both cohorts we selected participants aged 35–74 years at
the time of the exams, who were free of cardiovascular disease
(CVD) at that time, and for whom DNA and complete follow-up
information was available.

2.2. Selection of genetic variants, genotyping and multi-locus risk
score generation

We selected 8 genetic variants associated with CHD but not
with CVRFs (blood pressure, total cholesterol, low density lipopro-
tein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol,
triglycerides, diabetes, smoking) and generated a multi-locus GRS
as previously described [10]. Briefly, the genetic variants were
selected from the catalog of GWA studies of the National Human
Genome Research Institute (NHGRI GWAS catalog [6], reviewed in
August 2010) using the following criteria: (a) the genetic variants
were associated with CHD (p ≤ 1 × 10−6); (b) when two or more
genetic variants were in linkage disequilibrium (r2 > 0.3) only one
was selected; (c) we excluded SNPs that were previously reported,
either in the literature or the NHGRI GWAS catalog, to be associated
with one or more CVRFs (see more detail of this process in S1.1 and
S.F2). The variants selected were: rs17465637 in MIA3; rs6725887
in WDR12; rs9818870 in MRAS; rs12526453 in PHACTR1; rs1333049
near CDKN2A/2B; rs1746048 near CXCL12; rs9982601 near SCL5A3.
We also included the rs10455872 variant in LPA, which has recently
been shown to be strongly associated with CHD risk independently
of CVRFs [16].

REGICOR samples were genotyped by Centro Nacional de Inves-
tigación Oncológica (CNIO, Madrid, Spain) using the Cardio inCode
chip (Ferrer inCode, Barcelona, Spain), which is based on Veracode
(Illumina, San Diego, USA) and KASPar (KBioscience, Hoddesdon,
United Kingdom) technologies. Genotype data for the Framingham
participants was obtained via dbGaP for genotyped (Affymetrix
500 K and 50 K chips) and imputed variants (HapMap CEU release
22, b36) (S1.3). Quality control criteria were applied both to indi-
viduals and selected SNPs (S1.4).

A multi-locus GRS was computed for each individual as the sum
of the number of risk alleles across all 8 variants [10], after weight-
ing each one by its estimated effect size in the CARDIoGRAM study
(S1.2) [17].

2.3. Follow-up and phenotype definition

All REGICOR participants were periodically contacted to ascer-
tain whether they had presented any CHD event up until the end
of 2009, and events were reviewed using hospital or primary care
records. Fatal events were identified from regional and national
mortality registers. After reviewing all medical records and physi-
cian notes, suspected CHD events were classified in committee
according to standardized criteria [18].

Among Framingham participants, a record was made of all
CHD events that occurred during follow-up until the end of 2007.
Suspected CHD events were reviewed by a panel of Framing-
ham physician investigators after reviewing all available medical
records and physician notes using standardized criteria [19].

CHD events included myocardial infarction (MI), angina, coro-
nary revascularization and death due to CHD (S2).

2.4. Estimation of ten-year cardiovascular risk

Coronary risk was estimated using the standard 10-year Fram-
ingham risk function [19] and the REGICOR function, which is an
adaptation of the former that has been validated and calibrated for
the Spanish population (S3 and S4) [9]. Both functions included age,
sex, systolic and diastolic blood pressure, total cholesterol level,
HDL cholesterol level, smoking status, diabetes status and the GRS,
where appropriate. Risk was computed using the following formula
(also see S4),

Risk = 1 − S
exp

(∑p

j=1
ˇF

j
·(Fj−F̄j)+ˇGRS ·(GRS−GRS)

)
X̄

,
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Table 1
Description of the phenotypic characteristics of the individuals included in the analysis from the REGICOR and from the Framingham Heart Study cohorts.

REGICOR Framingham

All None CHD p-Value All None CHD p-Value

N 2351 2190 107 – 3537 2863 429 –
Age (years)a 53.9 (11.2) 53.3 (11.1) 61.4 (9.40) <0.001 56.0 (9.3) 54.8 (9.2) 60.5 (7.8) <0.001
Gender (male)b 1123 (47.8) 1016 (46.4) 74 (69.2) <0.001 1540 (43.5) 1190 (41.6) 250 (58.3) <0.001
SBP (mmHg)a 132 (20.8) 131 (20.5) 147 (18.0) <0.001 127 (18.3) 125 (17.9) 134 (17.4) <0.001
DBP (mmHg)a 79.5 (10.4) 79.3 (10.3) 82.6 (10.7) 0.004 75.0 (9.8) 74.6 (9.8) 77.7 (9.6) <0.001
Hypertensionb 938 (40.1) 822 (37.7) 78 (72.9) <0.001 1121 (31.7) 802 (28.0) 214 (50.0) <0.001
Smokingb 511 (22.0) 476 (22.0) 27 (25.5) 0.469 713 (20.2) 531 (18.5) 111 (25.9) 0.002
Total cholesterol (mg/dL)a 225 (42.4) 224 (42.0) 233 (46.6) 0.103 210 (38.6) 207 (37.4) 224 (41.0) <0.001
LDL cholesterol (mg/dL)a 152 (37.9) 151 (37.7) 159 (39.6) 0.125 126 (34.0) 124 (33.3) 133 (35.7) 0.001
HDL cholesterol (mg/dL)a 51.7 (13.3) 52.1 (13.2) 44.8 (12.4) <0.001 51 (15.2) 52 (15.3) 46 (13.1) <0.001
Triglycerides (mg/dL)c 92 (70–127) 91 (69–125) 123 (90–170) <0.001 116 (83–172) 112 (80–164) 158 (104–217) <0.001
Cholesterol treatmentb 157 (6.7) 136 (6.2) 16 (15.0) 0.003 166 (4.7) 118 (4.1) 28 (6.5) 0.055
Diabetesb 316 (13.8) 280 (13.1) 29 (27.6) <0.001 226 (6.4) 138 (4.8) 60 (14.0) <0.001
Diabetes treatmentb 96 (4.11) 74 (3.4) 18 (16.8) <0.001 90 (2.5) 48 (1.7) 31 (7.2) <0.001
Body mass index (kg/m2)a 27.4 (4.47) 27.3 (4.46) 28.9 (4.47) 0.001 27.1 (4.8) 27.0 (4.8) 27.9 (4.4) <0.001
Obesity (BMI≥30 kg/m2)b 596 (25.6) 540 (24.9) 38 (35.8) 0.046 780 (22.1) 604 (21.2) 117 (27.3) 0.006
Family history of CHDb 272 (11.7) 301 (11.5) 19 (17.9) 0.150 551 (24.8) 478 (24.3) 55 (32.5) 0.016

CHD, individuals who presented a coronary event during the follow-up; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low density lipoprotein; HDL, high
density lipoprotein; BMI, body mass index.
“None”: all individuals except those who presented any cardiovascular event (CHD, stroke or peripheral arterial disease).

a Mean (standard deviation).
b n (proportion, %).
c Median (25th and 75th percentiles).

where (1 − S) is the probability of presenting a CHD event in the
next 10 years based on the incidence of CHD in the population, (Fj)
is the individual’s exposure to the various risk factors considered,
including the genetic risk factor (GRS), (F̄j, GRS) is the population
mean of those risk factors, and (ˇ) is the effect size of each risk
factor.

3. Statistical analysis

We used standard parametric and non-parametric methods to
compare the characteristics of different groups of individuals (S4).
We tested for association between incidence of coronary events
and individual genetic variants and the GRS using Cox proportional
hazards models, with adjustment for CVRFs (see formula above).
We accounted for family relatedness in the Framingham cohort by
adjusting for the first five genetic principal components [20]. Each
cohort was analyzed separately, and the estimates were pooled
using an inverse-variance weighted meta-analysis under a random
effects model [21].

We used three different statistics to assess the potential value
of including the GRS in risk prediction:

(a) the goodness-of-fit of the models was evaluated using a version
of the Hosmer–Lemeshow test [22];

(b) the discriminative capacity of the model was evaluated using
the concordance index (c-statistic) [23];

(c) reclassification improvement was calculated using the net
reclassification improvement (NRI) index [24] and the inte-
grated discrimination improvement (IDI) index [25].

For the assessment of reclassification improvement, we defined
four risk categories (low, intermediate-low, intermediate-high and
high) with cut-off points defined in each cohort, according to
current guidelines in each country (REGICOR: [0–5)%, [5–10)%,
[10–15)%, ≥15%; Framingham: [0–10)%, [10–15)%, [15–20)%, ≥20%,
respectively). Analyses that focused on individuals with intermedi-
ate risk included individuals from both the intermediate-low and
intermediate-high groups. We calculated the expected number of
events at 10-years in each risk category and in each cohort using
Kaplan–Meier estimates [26]. A bootstrapping method was used to

construct confidence intervals for IDI and NRI in order to account
for uncertainty in the Kaplan–Meier estimates, as suggested by
Steyerberg et al. [26].

For each SNP and for the GRS we computed our study’s power
to detect associations in each cohort and in the meta-analysis (S5).

All analyses were performed using the R statistical package (ver-
sion 2.11) [27].

4. Results

4.1. Sample selection and sample characteristics

The process of selection of individuals to include in our anal-
ysis is described in S.F1. From the REGICOR sample we included
2351 individuals, including 107 CHD events, with a mean follow-
up of 9.75 years. From the Framingham sample we included 3537
individuals, including 429 events, with a mean follow-up of 13.32
years. In the REGICOR sample, we observed no significant differ-
ence in the estimated 10-year coronary risk between individuals
who were included in the analysis compared to those who were
not included (S.T1). In the Framingham sample, many individuals
were excluded from our study due to the non-availability of genetic
data, with the result that those who were included presented a bet-
ter cardiovascular risk profile (S.T1) and a lower incidence of CHD
events than those who were not included (suggesting a survival
bias related to DNA availability; S.F3).

The characteristics of the participants from each cohort that
were included in our analyses, stratified by presence of CHD events
are shown in Table 1. The observed effects of each cardiovascular
risk factor on risk of having a CHD event were concordant with
those expected and are presented in S.T2.

4.2. Validation of the association between the GRS and risk of CHD

The results of the genotyping quality control process are shown
in S.T3, and those of the test for association between the genetic
variants included in the GRS and incidence of CHD events is shown
in S.T3 (also see S.T4 for power computations). Only the rs1333049
variant in CDKN2A/2B was nominally associated with CHD events
in the meta-analysis of both studies.
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Table 2
Description of the characteristics of the participants across quintiles of the genetic risk score in both cohorts.

Variables Quintiles of genetic score

Q1 Q2 Q3 Q4 Q5 p-Value p-Trend

REGICOR
N 524 416 473 471 467
Age (years)a 54.1 (11.1) 52.9 (11.0) 54.6 (11.4) 54.2 (11.0) 53.6 (11.3) 0.170 0.998
Gender (men)b 243 (46.4) 205 (49.3) 217 (45.9) 234 (49.7) 224 (48.0) 0.705 0.581
Total cholesterol (mg/dL)a 221 (42.8) 225 (41.8) 227 (42.5) 228 (42.0) 225 (42.8) 0.072 0.049
HDL cholesterol (mg/dL)a 51.1 (12.9) 52.4 (13.5) 52.5 (13.4) 51.0 (13.0) 51.5 (13.4) 0.304 0.866
SBP (mmHg)a 132.0 (22.0) 131.0 (20.4) 132.0 (20.4) 134.0 (21.5) 132.0 (19.5) 0.278 0.749
DBP (mmHg)a 78.9 (10.2) 79.5 (10.8) 79.0 (10.2) 80.2 (10.6) 79.8 (10.0) 0.257 0.099
Diabetesb 62 (12.1) 71 (17.5) 66 (14.3) 61 (13.3) 56 (12.3) 0.137 0.590
Smokingb 107 (20.7) 87 (21.0) 98 (20.8) 107 (23.1) 112 (24.3) 0.577 0.128
Family history of CHDb 46 (8.88) 51 (12.4) 55 (11.6) 63 (13.5) 57 (12.4) 0.207 0.064
Estimated 10-year coronary riskc 3.2 (1.7–6.4) 3.2 (1.6–5.6) 3.4 (1.69–6.5) 3.5 (1.8–6.6) 3.1 (1.8–5.9) 0.196 0.607
Incidence of coronary eventsd 5.08 3.44 3.97 5.98 7.06 0.038 0.015
FRAMINGHAM
N 743 712 681 711 690
Age (years)a 56.6 (9.10) 56.1 (9.12) 55.6 (9.58) 56.1 (9.12) 55.6 (9.41) 0.172 0.060
Gender (men)b 351 (47.2) 321 (45.1) 305 (44.8) 299 (42.1) 264 (38.3) 0.008 <0.001
Total cholesterol (mg/dL)a 208 (37.1) 209 (37.6) 213 (39.0) 211 (39.3) 210 (39.8) 0.151 0.242
HDL cholesterol (mg/dL)a 50.5 (14.7) 50.2 (14.9) 51.1 (15.2) 52.0 (15.8) 51.3 (15.2) 0.151 0.048
SBP (mmHg)a 127 (18.4) 126 (17.0) 127 (18.8) 126 (18.2) 127 (18.9) 0.938 0.647
DBP (mmHg)a 75.2 (10.2) 75.1 (9.54) 74.8 (9.81) 75.0 (9.65) 74.7 (9.73) 0.872 0.329
Diabetesb 47 (6.33) 59 (8.29) 32 (4.70) 39 (5.49) 49 (7.10) 0.059 0.658
Smokingb 132 (17.8) 146 (20.5) 146 (21.4) 140 (19.7) 149 (21.6) 0.358 0.144
Family history of CHDb 113 (24.6) 112 (24.7) 105 (24.7) 109 (24.8) 112 (25.3) 0.999 0.763
Estimated 10-year coronary riskc 8.3 (4.7–14.4) 8.0 (4.8–13.9) 8.5 (4.4–14.7) 7.7 (4.1–13.7) 7.7 (4.2–13.9) 0.261 0.229
Incidence of coronary eventsd 5.39 6.60 7.62 7.50 8.42 0.361 0.054

HDL, high density lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure; CHD, coronary heart disease.
a Mean (standard deviation).
b n (proportion, %).
c Estimation of 10-year coronary risk based on the classical risk function without the GRS, mean (95% confidence interval).
d Number of cases/100 individuals in 10 years.

Clinical characteristics of the participants within each quintile
of the GRS are shown in Table 2. The GRS was not directly associated
with any of the classical CVRFs in either cohort, with the exception
of gender in Framingham (which we believe to be an artefact of the
survival bias among individuals for whom DNA was available). The
proportion of participants with a positive family history of CHD did
not change between quintiles of the GRS. We observed a general
increase in the incidence of coronary events from the bottom to
the top quintile of the GRS in both cohorts (Table 2).

For the GRS, we estimated that our study had 80% power to
detect a HR of 1.17, 1.09 and 1.18 per unit increase in REGICOR,
Framingham, and the meta-analysis, respectively (S.T4). Both the
models with and without the GRS were well calibrated in the
REGICOR sample, but not in the Framingham sample, where we
observed fewer events than expected, likely due to the survival
bias mentioned above (S.F4).

The GRS was linearly associated with incidence of CHD in
both cohorts (p = 0.001 in REGICOR and p = 0.016 in Framingham;

Table 3), and in the meta-analysis (HR = 1.13; 95% CI: 1.01–1.27)
(Table 3). This association remained statistically significant after
further adjustment for family history of CHD (HR = 1.17; 95% CI:
1.09–1.26). Participants in the top quintile of the GRS had 1.44
times greater risk of CHD, compared to those in the bottom quin-
tile (p-value for linear trend 0.002) (Table 3). In both cohorts the
distribution of the GRS was slightly shifted to the right in indi-
viduals who had had an event, compared to those who had not
(Fig. 1).

4.3. Improvement in predictive capacity: discrimination and
reclassification

The addition of the GRS to the basic risk function improved its
capacity to predict CHD in the Framingham cohort (c-statistic, 72.81
vs. 72.37, p-value = 0.042) but not in the REGICOR cohort (78.35 vs.
78.33, p-value = 0.806).

Table 3
Multivariate adjusted association between the genetic risk score and risk of coronary events as a continuous variable and between quintiles.

Genetic risk score REGICOR Framingham Meta-analysis

HR [95%CI]a p-Value HR [95%CI]a p-Value HR [95%CI]a P-Value

Continuous 1.21 [1.09–1.36] 0.001 1.07 [1.01–1.14] 0.016 1.13 [1.01–1.27] 0.038
Quintiles p-Trend 0.010 p-Trend 0.032 p-Trend 0.002
Q1 1 – 1 – 1 –
Q2 0.76 [0.37–1.53] 0.437 1.06 [0.78–1.45] 0.711 1.00 [0.76–1.34] 0.973
Q3 0.84 [0.45–1.58] 0.586 1.22 [0.90–1.66] 0.206 1.12 [0.83–1.52] 0.448
Q4 1.19 [0.67–2.12] 0.555 1.33 [0.99–1.80] 0.060 1.30 [1.00–1.69] 0.053
Q5 1.86 [1.08–3.20] 0.025 1.29 [0.95–1.75] 0.104 1.44 [1.04–2.01] 0.030

All models were adjusted for the sum of the products of the coefficient for each classical risk factor estimated in the Framingham original and calibrated risk functions and
the difference between the participant’s value and the population mean of that risk factor (see main text for formula). To account for family structure in the Framingham
cohort we also adjusted for the first five genetic principal components.

a HR [95%CI]: Hazard ratio [95% confidence interval].
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Fig. 1. Distribution of genetic risk score in REGICOR and Framingham participants according to the incidence of coronary events during the follow-up. The genetic risk score
is represented in the ordinal axis (X axis) and is computed as a cumulative sum of all the risk alleles that a person carries, weighted by the effect of each SNP, and theoretically
ranging from 0 to 16 copies. “No event”: All individuals except those who presented any cardiovascular event (CHD, stroke or peripheral arterial disease).

Fig. 2. Reclassification of individuals based on the 10-year predicted risk of coronary heart disease with and without the genetic risk score. Risk categories were defined using
national recommendations. In REGICOR the cut-off points were: low [0–5)%, intermediate-low [5–10)%, intermediate-high [10–15)%, and high ≥15% risk; in Framingham the
cut-off points were: low [0–10)%, intermediate-low [10–15)%, intermediate-high [15–20)% and high ≥20% risk. Light gray cells represent an improvement in reclassification
and dark gray cells represent the opposite.

We observed a general tendency for both measures of reclassi-
fication improvement, the NRI and IDI, to increase after addition of
the GRS to the basic risk function, although this improvement was
not statistically significant for either measure in the meta-analysis
of the two cohorts. However, reclassification improvement was
more marked in the group with intermediate risk, and was statis-
tically significant for both measures (NRI: 17.44, 95%CI 8.04;26.83;
IDI: 0.29, 95%CI 0.01;0.56). Reclassification data and NRI and IDI for
each cohort are shown in Fig. 2.

Results for a GRS constructed from 4 SNPs that had consis-
tent directions of effect in both cohorts, and for a GRS without
the CDKN2A/B variant were similar and are described in S.A2 and
S.A3.

5. Discussion

In accordance with the AHA statement regarding assessment
of the value of novel risk biomarkers [5], we have validated the
association between a multi-locus GRS and incidence of CHD events
in two prospective cohort studies, and have shown that this GRS
improves the capacity of the Framingham risk function to predict
CHD events, primarily among individuals with intermediate risk.

5.1. Validation of the association between the GRS and risk of CHD

In this study, we selected a series of genetic variants that have
been found to be robustly associated with CHD risk in multiple large
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independent samples and populations, but have not been reported
to be associated with CVRFs. Unsurprisingly, most of these variants
were not nominally associated with CHD incidence in either of the
cohorts in this study, mainly due to their sample size and the weak
risk effects of the variants. However, the relevance of these variants
for CHD risk is beyond doubt and has been validated in different
meta-analyses [17].

A GRS constructed using these variants was linearly associated
with incidence of CHD events in two cohorts with distinct back-
ground levels of 10-year coronary risk. The effect size of the GRS
was modest (∼13% increase in risk of CHD per unit), and was also
independent of familial history of CHD [4]. This effect size is smaller
than that reported in the initial discovery case-control studies [10],
which is likely due to these studies’ tendency to overestimate the
effect sizes of real associations. In fact, the effect size of our GRS
could even be slightly underestimated because of the fact that the
individuals included in the Framingham analysis have a more favor-
able cardiovascular risk profile than those who were excluded due
to non-availability of DNA samples, thereby introducing a survival
bias.

A recent study of the Framingham Heart Study investigators
using a GRS comprising 13 SNPs associated with CHD reports
the same results that we have obtained in this analysis, although
the group of SNPs is slightly different and the events of interest
include only myocardial infarction and coronary death [28]. We
also observed a similar difference in risk between the top and bot-
tom quintiles of the score (HR = 1.44) to that reported by Ripatti
et al. [8] (meta-analyzed HR = 1.66) for a similar GRS comprising 13
SNPs associated with CHD, but not explicitly independent of CVRFs.
However, this association has not been confirmed by other authors
[29]. A number of differences between the Women’s Health Study
(WHS) and the rest of studies may explain the observed discordant
results, but probably the most important is related to the different
sampling strategy used in the WHS which included young women
with relatively low baseline risk for CHD whereas the rest of stud-
ies are community- or population-based including men and women
that may have a higher baseline CHD risk.

5.2. Improvement in predictive capacity: discrimination and
reclassification

As has been observed for several other biomarkers [30], we
observed no marked improvement in the discriminative capacity
of the risk function, as measured by the c-statistic, which highlights
the challenge of risk prediction for complex traits [31]. However,
some authors have expressed concerned about the use of the c-
statistic as the main predictive metric, when the main goal in
clinical practice is to better estimate an individual’s risk category,
leading to more effective preventive treatment decisions [32]. To
address this problem metrics such as IDI and NRI have been pro-
posed that assess a risk function’s ability to re-classify individuals
who go on to have a coronary event and those who do not into
higher and lower risk categories, respectively [24].

In this study, we observed a general tendency for reclassifica-
tion to improve after addition of the GRS to the basic risk function
(Fig. 2), although, as has been observed in previous studies [8,33],
the numbers of cases correctly reclassified into higher risk cate-
gories was a modest fraction of the total number of cases, and also
some individuals were also incorrectly reclassified. This reclassifi-
cation improvement was not statistically significant overall.

5.3. Improved reclassification in individuals with intermediate
coronary risk using the GRS

From a clinical perspective, the low sensitivity of risk func-
tions is exemplified by the fact that a significant proportion of

CHD events occur in individuals with intermediate coronary risk
[3,34], so improving risk estimation in this group could have a
significant impact on the total burden of CHD, and on the effective-
ness of population-wide treatment strategies. We observed that the
GRS significantly improved the reclassification of individuals with
intermediate risk, above the level of improvement observed over-
all. Similarly, Ripatti et al. have recently reported a higher NRI in
individuals with intermediate CHD risk (9.7%) than that observed in
the population as a whole [8], although the improvement was less
marked than for the intermediate risk group in our study (17.44%).
Improvements in risk reclassification have also been observed in
other studies through the inclusion of single genetic variants or a
GRS in cardiovascular risk functions [8,28,33,35,36], with greater
improvement in the intermediate risk group, where this has been
assessed [8,33].

5.4. Strengths and limitations of the study

We highlight the following strengths in our study. First, we
included two cohorts, which allowed us to evaluate the robust-
ness of the effect size of the GRS, and to verify this effect size in
populations with distinct basal cardiovascular risks. Second, the
variants included in our score are likely to represent loci that are
truly relevant for CHD risk. The fact that most of these variants
individually were not significantly associated with CHD incidence,
but that the GRS was significantly associated and also generally
improved risk reclassification highlights the potential gain in infor-
mation afforded by using the GRS. Third, these variants are largely
independent of CVRFs, which is considered as an optimal strategy
[4]. Consequently, we found that the GRS constructed from these
variants was also independent of the CVRFs, and of the 10-year risk
estimation based only on those CVRFs [4]. This indicates that this
GRS provides complementary information to that already provided
by the classical risk function. Moreover, the GRS was also found to
be independent of family history of CHD [4].

Finally, and in accordance with European guidelines highlight-
ing the importance of assessing overall cardiovascular risk [1], we
have also extended our analysis to a broader definition of CVD
events, including coronary events, stroke and peripheral artery dis-
ease, and observed largely consistent results to those for coronary
events only (S.A1).

The main limitation of this study is the fact that the size of the
individual cohorts and the number of events observed is limited.
This is especially true in the REGICOR sample because of the low
incidence of disease in this population. Moreover, a number of addi-
tional markers that fulfill our selection criteria have been reported
since we performed our initial SNP selection in August 2010
(rs12936587, rs2505083, rs17114036 and rs11556924, reported
in refs [17,37]). However, adding these 4 SNPs to the 8-SNP GRS
and repeating the analyses in the Framingham cohort (genotype
data for these SNPs were not available in REGICOR), we obtained
similar results in terms of the strength of the per-unit and per-
quintile risk effects, and similar improvements in reclassification
(S.A4). These results are also consistent with those of a recent study
[28], which indicated that the addition of 16 recently discovered
SNPs to a 13-SNP GRS did not provide a significant improvement in
discrimination between individuals with and without CVD events.
Also, the findings in this study may be applicable only to European
Caucasians or their descendants. Finally, due to the survival bias
mentioned above, we have probably underestimated the true per
unit effect size of the GRS on risk of CHD in the Framingham study.

6. Conclusions

A multi-locus GRS based on genetic variants unrelated to CVRFs
was associated with a linear increase in risk of CHD events in two
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distinct populations. This GRS improves risk reclassification partic-
ularly in the population at intermediate coronary risk. These results
indicate the potential value of the inclusion of genetic information
in classical functions for risk assessment in the intermediate risk
population group.
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3.6. DISCUSSION

General overview  

In a case-control association study [Lluís-Ganella, 2010] and 
two prospective cohorts studies [Lluís-Ganella, 2011], I have 
established and validated the association between a multi-
locus GRS composed of genetic variants associated with 
CHD, but not with CVRFs, according to current evidence. 
Moreover, I have shown that this GRS improves the capacity 
of the Framingham risk function to predict CHD events, 
primarily among individuals with intermediate risk. This 
represents the accomplishment of the three first stages 
recommended by the AHA [Hlatky, 2009] for the evaluation 
of novel biomarkers for risk prediction.

Selecting genetic variants independent of cardiovascular 
risk factors

In our analyses we have selected genetic variants that 
are robustly associated with CHD but not with classical 
cardiovascular risk factors. This strategy is based on two 
main arguments:

i)	 The variants selected are expected to introduce additional 
information that is complementary to that provided by 
the classical cardiovascular risk factors already included 
in the risk functions. While the mechanisms through 
which these variants modulate CHD risk are unknown, 
an understanding of the specific functional mechanism 
underlying the association between a variant and disease 
is not necessary in order to use it as a risk marker. 

ii)	The use of independent variants is expected to reduce 
multicollinearity among variables of the model, as would 
be the case where variables representing genetic variants 
were correlated with those representing CVRFs. Although 
multicollinearity does not create bias, it results in large 
standard errors [Dohoo, 1997;Mendenhall, 2011]. 

We took steps to ensure lack of association between the 
variants in our GRS and classical cardiovascular risk factors 
both by reviewing the literature and testing for association 
in our data sets. 

145

Discussion



146

PART II

Using the true causal variant

As humans migrated out of Africa, they carried part but 
not all of the genetic variation that existed in the ancestral 
population. As a result, the haplotypes seen outside Africa 
tend to be subsets of the haplotypes observed in African 
populations [The International HapMap Consortium, 2007], 
and are relatively conserved in different populations 
(particularly within ethnicities). The fact that the variants 
used to construct the GRS in this thesis have been so robustly 
replicated (several in various ethnicities) indicates that the LD 
between them and the true functional variant/s is very high. 
However, we can’t be sure that our results will be applicable 
outwith the Caucasian population. In the case of variants that 
are characterised by highly conserved local LD patterns in the 
populations studied, it’s possible that the observed common 
variants simply capture the signal from rarer but stronger 
functional variants. In this case, the effect sizes of these 
rarer causal variants would be even higher, such that they 
may have even higher sensitivity and specificity for disease 
prediction. However, for the purposes of risk estimation, it 
is not necessary either to genotype the causal variant nor 
to understand the mechanism underlying the association in 
order to use this information provided by the genetic variant 
for risk assessment. An illustrative example of this fact is the 
use of sex/gender as one of the most powerful independent 
predictors of cardiovascular risk, despite the fact that the 
mechanism underlying this relationship is not completely 
understood; in this case, sex is simply used as a marker of 
risk.

Could genetic variation be more powerful for risk 
estimation than other biomarkers?

The genotyping of genetic variants is less susceptible to error 
than other laboratory/physician techniques for measuring 
other cardiovascular risk factors, minimising intra-individual 
variability in repeated measurements. Moreover, genotypes 
represent a constant lifetime exposure, in contrast to 
laboratory measurements, such as lipid levels or blood 
pressure, which capture only the current exposure. However, 
there is no evidence to support the hypothesis that genetic 
information provides a better estimate of risk than the current 
laboratory tests for CVRFs or other biomarkers. For Articles 
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3 and 4, we also evaluated whether the inclusion of SNPS 
associated with CVRFs on the basis of GWAS results [Hindorff, 
2009] would be better able to predict a cardiovascular event 
at 10 years instead of using the measured value of the CVRF 
itself (data not shown). These analyses showed that none of 
the scores composed of SNPs associated with CVRFs provided 
a better estimation of risk than the CVRF itself, which may 
have at least two possible explanations: i) the genetic variants 
discovered do not yet explain enough of the variability of the 
risk factors; ii) the environment is a stronger determinant 
for the variability of the CVRFs than genetic variability, and 
therefore genetic variability will not completely capture the 
variance of the CVRF.

Missing heritability and rare variants

There is increasing awareness of the fact that in addition to 
primary genetic variation, other types of heritable information, 
such as epigenetic variation, can be transmitted between 
generations [Bird, 2007; Bonduriansky, 2009], and therefore 
that previous heritability estimates may be incorrect [Maher, 
2008; Danchin, 2011; Zuk, 2012]. If this is true, the results 
of GWAS studies may explain even more of the true variance 
of complex traits that is currently recognized. Further, more 
causal variants are expected to exist, and to account for a 
significant part of the missing heritability [Zuk, 2012]. As 
a result of the technical characteristics of GWAS focused on 
complex diseases, we might expect that genetic variants yet 
to be discovered using this approach will be rarer and have 
stronger effects on risk. 

	 It is not yet clear what might be the potential 
advantages and disadvantages of using rare variants with 
stronger effects compared to using common variants with 
weaker effects in cardiovascular risk assessment, and this 
question warrants further research. However, in mathematical 
terms, one of the possible outcomes on the per-allele risk 
effects of the GRS could be the lost of linearity between the 
different score categories, as rarer variants with stronger 
effects would tend to be clustered among individuals who 
fall at the upper end of the score’s range (i.e. rare risk alleles 
are more likely to be observed among individuals with more 
risk alleles in general).  In Articles 3 and 4 of this thesis, 
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we observed a relatively linear increase in effect between 
categories of the score because the genetic variants included 
in the GRS are mostly common variants and the effect sizes 
are relatively similar. 

Effect of the genetic risk score

One of the strengths of the GRS in terms of its utility for 
risk assessment is that in many respects it behaves in a 
similar way to CVRFs in terms of the effect size (β

GRS
). For 

example, the per-allele increase in risk was not significantly 
different between the populations analysed, even though 
those populations have different basal cardiovascular risk 
[Marrugat, 2007; D’Agostino, 2008]. This is extremely 
convenient because fitting a risk function requires at least 
~7-8 events for each variable included in the model [Quentin, 
2004]. Therefore, if the effect sizes differed between 
populations, they would need to be re-calculated for each 
population in which the function was to be implemented, 
requiring large cohort studies (>130 events for each sex 
in the case of the Framingham risk function). Furthermore, 
the use of a GRS in the risk function instead of individual 
genetic variants allows the inclusion of genetic information 
for an unlimited number of risk variants, without affecting 
its mathematical properties.

Target population of genetic risk assessment

As discussed in Article 4, the population subgroup that 
may benefit most from the inclusion of genetic information 
cardiovascular risk functions is the intermediate risk group. 
Individuals with intermediate risk are an important target 
group for two main reasons. First, although this group 
accounts for ~60% of cardiovascular events at 10 years, the 
clinical interventions used are less aggressive than in the high 
risk group, and a distinct set of drugs and other treatments are 
used [World Health Organization, 2007]. Moreover, clinicians 
are often unclear about the type of treatment that needs to 
be prescribed to these individuals. Since this group accounts 
for ~30% of the total population, more aggressive measures 
to intervene in all members of this group would probably not 
be cost-effective, and may create an unacceptable burden of 
pharmacological side effects [Gerber, 2011]. Second, current 
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genetic evidence still explains only a fraction of the total 
variance of CHD risk, and therefore it would be unethical to 
intervene less aggressively in high risk individuals who are 
re-classified into lower risk groups on the basis of genetic 
information alone. On the other hand, this would be more 
acceptable in the intermediate risk group because a change 
in intervention strategy would be less likely to lead to under-
treatment.

Further research

The following areas of further research are a priority: 

i) It is widely accepted that GWAS have identified only a 
small fraction of the genetic variation that explains risk of 
complex diseases. It is essential that our field continues 
to search for new risk variants, and to further explore 
known loci and their mechanisms of action. Studies that 
evaluate the improvement of risk functions need to be 
continuously updated as new genetic information comes 
to light.

ii) The utility of genetic information in the clinical setting has 
not yet been addressed for most complex diseases. This 
can be approached in the following ways: 
- Evaluate whether the use of genetic information provides 

a sufficient change in predicted risk to change 
recommended therapy.

- Evaluation of whether the use of genetic information 
improves clinical outcomes.

- Assessment of the cost-effectiveness of implementing 
this technology in the population.

- Assessment of the effect of this information on adherence 
to drug treatments and healthy lifestyle patterns.

iii) The development of strategies to improve the education 
and training of health professionals and society in the 
utility of this type of biomarker is essential for its success 
in improving health and in minimising misinterpretation 
of genetic risks (determinism and false security).



150

PART II



4. CONCLUSIONS

i)	 The rs2234693 variant in the ESR1 gene is not associated 
with CHD risk. The inconsistency found between the results 
of previous studies that have addressed this question can 
be partly explained by aspects related to the quality of the 
study [Lluís-Ganella, 2009].

ii)	 The results of our well-powered study of variation throughout 
ESR1 does not support the hypothesis that CHD risk is 
modulated by either common or uncommon variants in the 
coding, noncoding, or flanking regions of the gene, either 
in the general population or in men and women separately 
[Lucas, 2011].

iii)	Our results suggest that a genetic risk score, based on the 
additive effects of the risk alleles at several genetic loci that 
are associated with CHD risk in a manner that is independent 
of CVRFs, is associated with an increased risk of CHD [Lluís-
Ganella, 2010].

iv)	This GRS has a similar linear effect on risk of CHD events 
in two populations with distinct basal cardiovascular risk 
[Lluís-Ganella, 2010; Lluís-Ganella, 2012].

v)	 The addition of this GRS to classical cardiovascular risk 
functions improves their capacity to predict CHD/CVD 
events, compared to the basic risk function, particularly 
among individuals with intermediate coronary risk [Lluís-
Ganella, 2012].
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6. GLOSSARY

Alkaptonuria: Is a disease with several symptoms, of which the 
most conspicuous is that the urine turns black when exposed 
to air. In 1898, an English doctor named Archibald Garrod 
showed that the substance responsible is homogentisic 
acid, which is excreted in abnormally large amounts into the 
urine of alkaptonuria patients. In 1902, early in the post-
Mendelian era, Garrod suggested, on the basis of pedigree 
patterns, that alkap-tonuria is inherited as a Mendelian 
recessive [Griffiths, 2000]. 

Complex disease: Complex diseases are common disorders 
that are believed to have many causes i.e. cancer, coronary 
heart disease, diabetes mellitus, hypertension, bipolar 
disorder or schizophrenia. (source: medical-dictionary.
thefreedictionary.com).

Coronary Heart Disease (CHD): A heart disease due to an 
abnormality of the arteries that supply blood and oxygen 
to the heart. (source: medical-dictionary.thefreedictionary.
com).

Genetic architecture: The differences observed between the 
individuals genomes (less than 0.1% of an individual’s 
sequence ~3x109 DNA base pairs [Human Genome Project, 
2011]) are those that provide a big part of the phenotypic 
differences between humans. Although there are many 
types of genetic variations described, the only ones that are 
evaluated in this thesis are those named single nucleotide 
polymorphisms.

Genome wide association study (GWAs): Is an examination of 
all or most of the genes (the genome) of different individuals 
of a particular species to see how much the genes vary from 
individual to individual.

Haplotype: Combination of alleles at adjacent locations on the 
chromosomes that are transmitted together. 

HapMap Project, The International: The International HapMap 
Project is an organization whose goal is to develop a haplotype 
map (HapMap) of the human genome, which will describe the 
common patterns of human genetic variation. The HapMap 
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is expected to be a key resource for researchers to find 
genetic variants affecting health, disease and responses to 
drugs and environmental factors. The information produced 
by the project is made freely available to researchers 
around the world. The International HapMap Project is a 
collaboration among researchers at academic centers, non-
profit biomedical research groups and private companies in 
Canada, China, Japan, Nigeria, the United Kingdom, and the 
United States. It officially started with a meeting on October 
27 to 29, 2002, and was expected to take about three years. 
It comprises two phases; the complete data obtained in 
Phase I were published on 27 October 2005. The analysis 
of the Phase II dataset was published in October 2007. 
The Phase III dataset was released in spring, 2009 (source: 
medical-dictionary.thefreedictionary.com).

Hardy-Weinberg Equilibrium (HWE): It states that both 
allele and genotype frequencies in a population remain 
constant (that is, they are in equilibrium) from generation 
to generation unless specific disturbing influences are 
introduced. Those disturbing influences include non-
random mating, mutations, selection, limited population 
size, random genetic drift, gene flow and meiotic drive. 

Human Genome Project (HGP): The Human Genome Project is 
an international scientific research project with a primary goal 
of determining the sequence of chemical base pairs which 
make up DNA and to identify and map the approximately 
20,000–25,000 genes of the human genome from both a 
physical and functional standpoint. The project began in 
1990 and was initially headed by Ari Patrinos, head of the 
Office of Biological and Environmental Research in the U.S. 
Department of Energy’s Office of Science. Francis Collins 
directed the National Institutes of Health National Human 
Genome Research Institute efforts. A working draft of the 
genome was announced in 2000 and a complete one in 2003, 
with further, more detailed analysis still being published. 
A parallel project was conducted outside of government 
by the Celera Corporation, which was formally launched in 
1998. Most of the government-sponsored sequencing was 
performed in universities and research centers from the 
United States, the United Kingdom, Japan, France, Germany, 
and China. The mapping of human genes is an important 
step in the development of medicines and other aspects of 
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health care (source: medical-dictionary.thefreedictionary.
com).

Incidence: Is the probability of developing a particular disease 
during a given period of time; the numerator is the number 
of new cases during the specified time period and the 
denominator is the population at risk during the period 
(source: medical-dictionary.thefreedictionary.com).

Intervention study: Testing an hypothesized epidemiological 
cause-effect relationship by intervening in a population and 
modifying a supposed causal factor and measuring the effect 
of the change. (source: medical-dictionary.thefreedictionary.
com).

Linkage disequilibrium (LD): Is the non-random association of 
alleles at two or more loci.

Mendelian disease: Diseases in which the phenotypes are 
largely determined by the action, lack of action, of mutations 
at individual loci. Example of inheritance of a disease that 
followed a mendelian inheritance pattern. 
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In this figure a disease-free individual mates another 
individual affected of a disease with recessive inheritance 
(in which the presence of two copies of genetic variation is 
necessary to cause the disease. If only one copy is present, 
the disease is not expressed and the individual will only be 
carrier of the disease). All of the offspring (generation 2) 
will be carrying the disease without suffering it. If one of 
the individuals of the second generation mates with another 
individual carrier of the same disease, 50% of the offspring 
(generation 3) will be also carrier, 25% will be free of the 
disease and 25% will suffer the disease.

Observational studies: An observational study draws 
inferences about the possible effect of a treatment on 
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subjects, where the assignment of subjects into a treated 
group versus a control group is outside the control of the 
investigator. This is in contrast with controlled experiments, 
such as randomized controlled trials, where each subject is 
randomly assigned to a treated group or a control group 
before the start of the treatment.

One gene-one enzyme hypothesis: The one gene-one enzyme 
hypothesis is the idea that genes act through the production 
of enzymes, with each gene responsible for producing a 
single enzyme that in turn affects a single step in a metabolic 
pathway.

Penetrance: Penetrance in genetics is the proportion of 
individuals carrying a particular variation of a gene (allele or 
genotype) that also express an associated trait (phenotype).

Phenotype: Is an organism’s observable characteristics or 
traits: such as its morphology, development, biochemical 
or physiological properties, behaviour, and products of 
behaviour.

Single nucleotide polymorphisms (SNPs): SNPs are DNA 
sequence variants occurring when a nucleotide (A, T, C, 
or G) differs between members of a biological species. For 
example, two DNA fragments from different individuals, 
AAGCCTA to AAGCTTA, contain a difference in a single 
nucleotide, a SNP. In some cases, these genetic variations 
can cause diseases by modifying the proteins they code for, 
by modifying transcription binding sites, or by many other 
causes (known and unknown causes).

Tag SNPs: Are representative SNPs in a region of the 
genome with high linkage disequilibrium (the non-random 
association of alleles at two or more loci). It is possible to 
identify genetic variation without genotyping every SNP in a 
chromosomal region. Tag SNPs are useful in whole-genome 
SNP association studies in which hundreds of thousands of 
SNPs across the entire genome are genotyped.

GLOSSARY



7. APPENDICES

7.1. APPENDIX: Brief description of 
the cohorts and studies used in the 
present doctoral thesis

Registre Gironí del Cor (REGICOR) [Grau, 2007]: The 
REGICOR study is clinical and epidemiology project, 
both hospital and population based, conducted in the 
Girona area (Catalunya, Spain) which principal objective 
is to evaluate the magnitude of ischaemic heart disease 
and the associated risk factors at population scale, while 
also monitoring the utilisation of health care resources 
and the long-term prognosis for this disease and its risk 
factors. The area of reference is covered by a hospital 
network that includes Hospital Universitari de Girona Dr. 
Josep Trueta (reference hospital), Hospital de Figueres, 
Hospital de Palamós, Hospital Sant Jaume d’Olot, Hospital 
Santa Caterina de Girona, Hospital Comarcal de la Selva 
de Blanes, Clínica Girona and Clínica de l’Aliança. The 
REGICOR study contains data from three cross-sectional 
studies of cardiovascular risk factors, conducted in 1995 
(N=1,748), 2000 (N=3,058) and 2005 (N=6,500). This 
registry also contains information of all consecutive 
patients who had undergone a coronary event in the 
Hospital Universitari de Girona Dr. Josep Trueta from the 
year 1978. 

Framingham Heart Study (FHS) [Dawber, 1951; Dawber, 
1966]: The objective of the FHS was to identify the 
common factors or characteristics that contribute to 
CVD by following its development over a long period of 
time in a large group of participants who had not yet 
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developed overt symptoms of CVD or suffered a heart attack or stroke. The 
researchers recruited 5,209 men and women between the ages of 30 and 62 
from the town of Framingham, Massachusetts, and began the first round of 
extensive physical examinations and lifestyle interviews that they would later 
analyze for common patterns related to CVD development. Since 1948, the 
subjects have continued to return to the study every two years for a detailed 
medical history, physical examination, and laboratory tests, and in 1971, the 
Study enrolled a second generation - 5,124 of the original participants’ adult 
children and their spouses - to participate in similar examinations. In 1994, 
the need to establish a new study reflecting a more diverse community of 
Framingham was recognized, and the first Omni cohort of the Framingham 
Heart Study was enrolled. In April 2002 the Study entered a new phase, the 
enrolment of a third generation of participants, the grandchildren of the 
Original Cohort. In 2003, a second group of Omni participants was enrolled.

Coronary ARtery DIsease Genome-wide Replication And Meta-analysis 
(CARDIoGRAM) [The CARDIoGRAM Consortium, 2011]: The CARDIoGRAM 
consortium was formed with the purpose of identifying novel susceptibility 
loci for CAD and MI. Briefly, the CARDIoGRAM discovery analysis combined 
data from 14 published and unpublished primary GWA studies, in individuals 
of European ancestry, including >22 000 cases with CAD, MI, or both and 
>60 000 controls.	

Wellcome Trust Case-Control Consortium (WTCCC) [Wellcome Trust Case 
Control Consortium, 2007]: is a group of 50 research groups across the UK 
which was established in 2005. The WTCCC aims were to exploit progress in 
understanding of patterns of human genome sequence variation along with 
advances in high-throughput genotyping technologies, and to explore the 
utility, design and analyses of genome-wide association (GWA) studies. 
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Myocardial Infarction Genetics Consortium (MIGen) [Myocardial Infarction 
Genetics Consortium, 2009]: Is a collection of 2,967 cases of early onset 
myocardial infarction (in men ≤50 y old or women ≤60 y old) and 3,075 age- 
and sex-matched controls free of myocardial infarction from six international 
sites: Boston and Seattle in the United States, as well as Sweden, Finland, 
Spain and Italy.
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7.2. APPENDIX: Article 1: Supplementary material

Supplementary Materials & Methods
In order to assess current evidence in favour of an association between genetic variation in ESR1 and 
CHD, an extensive literature search was carried out, the resulting articles were then reviewed, association 
data was extracted and qualitative and quantitative analyses of this evidence were performed. The 
experimental procedures used are described in detail in the following sections.

1. Literature search
Three different approaches were used to identify articles containing information about the association 
between genetic variation in ESR1 and CHD.

1.1 Literature database search
Articles of interest were obtained from the PUBMED (ncbi.nlm.nih.gov/pubmed/) database using a 
structured (Boolean) search strategy (Supplementary Table 2), with search terms falling into three main 
categories: limits (e.g. date of publication between 1985 and December 2008, humans, etc.); medical 
search terms; and genetic search terms. The MeSH terms (Medical Subject Heading: National Library 
of Medicine’s controlled vocabulary thesaurus) database was used, which consists of sets of descriptors 
in a hierarchical structure that permits searching at various levels of specificity. 

1.2 Subject review articles
In order to identify articles that are generally considered to be important by experts in the subject area, 
and that may have been not captured by the Boolean search strategy, data was collected from recent 
relevant reviews. These review articles were obtained by searching both PubMed and The Cochrane 
Library (www.update-software.com/Clibplus/Clibplus.asp; Wiley InterScience) for reviews containing 
the terms “cardiovascular disease” and “estrogen receptor”. The bibliographies of these review articles 
were examined to identify additional articles relevant to the topic of study.

1.3 Retrospective/Prospective search
In order to identify other relevant articles that were not identified by the two previous strategies, a 
prospective and retrospective search was carried out for each article [Article N] that passed all steps 
of the review process described in Supplementary Table 3. For the retrospective search, the references 
in each Article N were reviewed to identify any other relevant articles that were cited by that Article N 
and that were not found by the other search strategies. For the prospective search, relevant articles that 
subsequently cited Article N were identified using the “Cited Reference Search” tool from the ISI Web 
of Knowledge database (www.isiwebofknowledge.com/).
Articles identified in this way were then subjected to the same three stage review process as articles 
identified by the other search strategies.

2. Article revision
In order to confirm the relevance of articles to our topic of interest, a common review protocol was 
applied to each one. Each article was reviewed by two blinded independent reviewers in three stages, as 
summarised in Supplementary Table 3.

3. Data Extraction and Analysis 
In order to assess the strength of the evidence reported to date on the association between genetic 
variation in ESR1 and risk of CHD, data was extracted from the articles collected above using a common 
data extraction protocol, and qualitative and quantitative analyses were performed.

3.1 Qualitative analysis
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The collection and analysis of data from these articles was carried out according to a) recently published 
guidelines (Venice Criteria) for classifying the quality and quantity of reported evidence for a particular 
association [1], and b) a report from the NCI-NHGRI Working Group on Replication in Association 
Studies which suggests minimum standards for the publication of genetic association studies [2].

3.1.1 Cumulative evidence analysis
Ioannidis et al. [1] proposed a classification system for assessing the credibility of cumulative evidence on 
a reported genetic association, based on three criteria: amount of evidence, replication, and protection 
from bias. This classification consists of a 3-letter (A, B or C) code to classify the type and quality of the 
evidence. The first letter relates to the amount of evidence in favour of a genetic association, depending 
on the cumulative sample size of the least common genetic group of interest. The second letter describes 
how well a reported association has been replicated (e.g. if it has been consistently replicated or not). The 
third letter describes the likelihood of an important bias in the association studies reported. With this 
classification it is possible to evaluate the robustness and credibility of a particular genetic association. 
We used this approach to evaluate the cumulative evidence of the association studies identified in our 
systematic literature search.

3.1.2 Individual study analysis
A questionnaire based on guidelines proposed by the NCI-NHGRI Working Group on Replication 
in Association Studies [2] was used to assess the quality of evidence provided by each article. Briefly, 
this questionnaire contained questions related to the following issues: study information; data 
issues; genotyping and quality control procedures; results; replication studies; genotyping data and 
specifications for deposition in standard databases; and points for reviewers and authors to consider 
regarding priority for publication. This questionnaire was applied by three independent reviewers (CL, 
GL, RE) to each of the articles identified above, with the general aim of evaluating how much of the 
information required by the guidelines was provided in these articles. After each reviewer had filled 
the questionnaire for each article, discrepancies were resolved in a second stage of revision. For each 
study/article, each question/condition was evaluated as 1 (Yes) where a given requirement was met and 
0 (No) otherwise.

3.2 Quantitative analysis: meta-analysis
An update of a previous meta-analysis [3] of association studies was performed for the most widely 
studied genetic variant in the ESR1 gene for which data was reported in the articles mentioned above.

4. Association analysis and meta-analysis of rs9340799 (XbaI) polymorphism in ESR1

4.1 Materials and methods
The rs9340799 variant was genotyped in the same sample as the rs2234693 variant (see Materials and 
Methods). TaqMan primers and probes are shown in Supplementary Table 1. Genotype frequencies in 
cases and controls were compared using a 1df χ2 test (two separate tests: common homozygotes (GG) 
versus heterozygotes (AG); common homozygotes (GG) versus rare homozygotes (AA)).
The same protocols for the literature search, article revision, data extraction, association analysis and 
meta-analysis were used for this variant as for the rs2234693 variant.

4.2 Results
No significant association was observed between rs9340799 and MI in the REGICOR study (AA vs. GG 
OR 1.13 (95%CI 0.78-1.64; p=0.507); AG vs. GG OR 1.26 (95%CI 0.86-1.85; p=0.208); Table 1). These 
results remained non-significant after stratifying the analysis by gender (data not shown). 
This genetic variant achieved a classification of ACB (weak evidence) under the criteria proposed by 
Ioannidis et al. [1].
Quality Scores for articles that studied the association between this variant and CHD are shown in 
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Supplementary Table 5.
The meta-analysis of rs9340799 association studies showed no association between this variant and 
CHD for both tests: AA vs. GG OR 1.03 (95%CI 0.81-1.32, p=0.808; range [0.993-1.082]; χ2=10.94 
(p=0.2049)) and AG vs. GG OR 1.02 (95%CI 0.88-1.17, p=0.829; range [0.978-1.034]; χ2=7.34 
(p=0.5005); Supplementary Fig 2). No significant between-study heterogeneity was observed for this 
variant.

5. Supplementary tables

Supplementary Table 1: Primers and probes used in the genotyping of the genetic variants in ESR1 
gene (rs2234693:PvuII and rs9340799:XbaI). 

SNP primers probes

rs2234693

forward TTCCCAGAGACCCTGAGTGT VIC CTCATCCCAACTCTAG-MGB

reverse
GCAGGAATATACAATTATTTCAGAAC-
CATTAGAGA

FAM CTCATCCCAACTCCAG-MGB

rs9340799 
forward TCTGTGTTGTCCATCAGTTCATCTG VIC ACAAAGCATAAAACAGCTG-MGB

reverse CTCAGGGTCTCTGGGAAACAG FAM ACAAAGCATAAAACGGCTG-MGB

Supplementary Table 2: Description of the Boolean search strategy and description of each one of 
the terms included.

Species: Humans[MeSH] AND 
Gene names: estrogen receptor AND 
Genetic terms: (“gene” OR “genes” OR “genetic” OR “genetics” OR “exon” OR “exons” OR “intron” OR “introns” 
OR “polymorphism” OR “polymorphisms” OR “single nucleotide polymorphism” OR “single nucleotide 
polymorphisms” OR “snp” OR “snps” OR “restriction fragment length polymorphism” OR “restriction fragment 
length polymorphisms” OR “rflp” OR “rflps” OR “allele” OR “alleles” OR “codon” OR “codons” OR “untranslated 
region” OR “untranslated regions” OR “microsatellite” OR “microsatellites” OR”mutation” OR “mutations” OR 
“mutant´” OR “mutants” OR “copy number variant”) AND 
Date: 1985:2008[DP] AND 
Medical terms: (“ischemic heart disease” [TIAB] OR “coronary heart disease” [TIAB] OR “acute coronary 
syndrome” [TIAB] OR “STEMI” [TIAB] OR NSTEMI [TIAB] OR “myocardial infarction” [TIAB] OR angina 
[TIAB] OR “angor pectoris” [TIAB] OR “angiography” [TIAB] OR “angioplasty” [TIAB] OR revascularization 
[TIAB] OR CAD [TIAB] OR “coronary artery disease” [TIAB])

Supplementary Table 3: Review protocol applied to articles identified by database searches.

Review 
Stage

Article 
Sections 
reviewed

Decisions ap-
plied Next step for discrepancies between reviewers

First Title Include, Exclude, 
Undecided

Just those articles evaluated as “exclude” by both reviewers 
were removed from the review process. All the rest were 
submitted to the rest of the revision process. 

Second Title & Ab-
stract

Include, Exclude, 
Undecided

Just those articles evaluated as “exclude” by both reviewers 
were removed from the review process. All the rest were 
submitted to the rest of the revision process.

Third Full article Include, Exclude Discussion to resolve discrepancies
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Supplementary Table 4: Quality score results, by study.
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Study information

1 A detailed description of  the study design and its implementation ● ● ● ● ● ● ● ● ● ● ● ●
2 The source of  cases and controls or cohort members, if  based on cohort design ● ● ● ● ● ● ● ● ● ● ● ●
3 Methods for ascertaining and validating affected or unaffected status and reproducibility of  classification ● ● ● ● ● ● ● ● ● ● ● ●
4 Participation rates for cases, controls or cohort members ● ● ● ● ●
5 Presentation of  case and control selection in a flow chart ● ● ●
6 Initial table comparing relevant characteristics of  cases and controls ● ● ● ● ● ● ● ● ● ●
7 Success rate for DNA acquisition ●
Data issues

8 Statement on availability of  results and data
9 Links to supplemental online resources and database accession numbers ● ●
Genotyping and quality control procedures

10 Sample tracking methods, such as barcoding, to ensure accuracy of  analysis
11 Description of  genotyping assays and protocols ● ● ● ● ● ● ● ● ● ● ●
12 Description of  genotyping calling algorithm
13 Genotype quality control design for samples ● ● ● ● ●
14 External control samples from standard accepted sets (such as HapMap)
15 Internal control samples ● ● ● ● ●
16 Assay and DNA quality metrics by locus, sample, plate or ‘batch’
17 Assay call rates ●
18 Average error rates estimated by internal duplicates or external samples ● ● ● ●
19 Assay reproducibility: concordance for performance of  extraction, aliquoting and assay reproducibility ● ● ●
20 Concordance with published or previously generated genotypes
21 Mendelian consistency checks if  related individuals are present 
22 Detection of  inconsistent or cryptic relatedness in study subjects
23 Evaluation of  deviations from Hardy–Weinberg proportions separately in cases and controls ● ● ● ● ● ● ● ● ● ● ● ●
24 Assessment of  population heterogeneity, including
25 Average or median value of  chi-square and full distribution
26 Q–Q plots of  chi-square analysis and Pvalues
27 Validation of  most critical results on an independent genotyping platform ● ●
Results

28 Analysis methods in sufficient detail to reconstruct the analytical approach ● ● ● ● ● ● ● ● ● ● ● ●
29 Description of  any pre-analysis weighting scheme for selecting variants for replication
30 Simple single-locus and multi-marker (haplotype) association analyses ● ● ● ●
31 Genetic models tested ● ● ● ● ● ● ● ● ● ● ● ●
32 Graphical display of  genotype clustering for assays of  high interest
33 Verification of  results at highly correlated loci
34 Discussion of  choice of  threshold for significance ● ● ● ● ● ● ● ● ●
35 Significance of  any known ‘positive controls’ 
36 Consistency of  results before and after application of  quality control filters

Replication studies

37 Description of  replication samples, including source, ascertainment and comparability to initial sample
38 Discussion of  choice of  threshold for significance
39 Summary of  replication and analysis attempts by authors ●
40 Summary of  all known replication attempts by others, including non-replications ● ● ● ● ● ●
Genotyping data and specifications for deposition in standard databases

41 Availability of  ‘raw’ genotype data in the technology and vendor format
42 Data extraction and processing protocols
43 Normalization, transformation and data selection procedures and parameters

43 
(total) Total number of  positive answers for each individual study 9 13 9 6 10 9 16 11 11 7 19 14 10
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Supplementary Table 5: Data extracted from association studies that reported an association between 

rs9340799 (XbaI) or rs2234693 (PvuII) in ESR1 gene and coronary heart disease.

cases controls Genotype cases N (%) Genotype controls  N (%)

Author PMID QS Outcome Gender Study design Number Number AA AG GG A G AA AG GG A G

rs
93

40
79

9 
(X

ba
I)

Matsubara [4] 9409287 9 coronary heart disease men & women case/control 75 89 51 (68) 22 (29) 2 (3) 124 (83) 26 (17) 60 (68) 25 (29) 4 (3) 145 (83) 33 (17)
Shearman [11] 14600184 11 myocardial infarction men & women cohort 58 1556 22 (38) 25 (43) 11 (19) 69 (59) 47 (41) 645 (38) 712 (43) 199 (19) 2002 (59) 1110 (41)
Koch [10] 16203927 16 myocardial infarction men & women case/control 3657 1211 1531 (42) 1658 (45) 468 (13) 4720 (65) 2594 (35) 498 (42) 556 (45) 157 (13) 1552 (65) 870 (35)
Mansur [7] 16099331 6 coronary heart disease men & women case/control 153 142 11 (7) 70 (46) 72 (47) 92 (30) 214 (70) 12 (7) 69 (46) 61 (47) 93 (30) 191 (70)
Almeida [6] 16612467 9 coronary heart disease men & women case/control 210 143 24 (11) 89 (42) 97 (46) 137 (33) 283 (67) 8 (11) 68 (42) 67 (46) 84 (33) 202 (67)
Alevizaki [5] 17389465 13 coronary heart disease women case/control 20 70 4 (20) 11 (55) 5 (25) 19 (48) 21 (53) 27 (20) 37 (55) 6 (25) 91 (48) 49 (53)
Yilmaz  [8] 18294052 10 coronary heart disease men & women case/control 168 99 4 (2) 116 (69) 48 (29) 124 (37) 212 (63) 1 (2) 64 (69) 34 (29) 66 (37) 132 (63)
Xu [9] 18582450 9 coronary heart disease men & women case/control 179 174 36 (20) 48 (27) 95 (53) 120 (34) 238 (66) 33 (20) 43 (27) 98 (53) 109 (34) 239 (66)
REGICOR Unpubl. 10 myocardial infarction men & women case/control 423 1269 175 (41) 202 (48) 46 (11) 552 (65) 294 (35) 544 (41) 563 (48) 162 (11) 1651 (65) 887 (35)

            Number Number TT CT CC T C TT CT CC T C

rs
22

34
69

3 
(P

vu
II

)

Matsubara [4] 9409287 9 coronary heart disease men & women case/control 87 94 27 (31) 47 (54) 13 (15) 101 (58) 73 (42) 34 (36) 46 (49) 14 (15) 114 (61) 74 (39)
Alevizaki [5] 17389465 13 coronary heart disease women case/control 87 70 25 (29) 45 (52) 17 (20) 95 (55) 79 (45) 32 (46) 31 (44) 7 (10) 95 (63) 55 (37)
Almeida [6] 16612467 9 coronary heart disease men & women case/control 210 143 72 (34) 96 (46) 42 (20) 240 (57) 180 (43) 54 (38) 72 (50) 17 (12) 180 (63) 106 (37)
Mansur [7] 16099331 6 coronary heart disease men & women case/control 153 142 51 (33) 85 (56) 17 (11) 187 (61) 119 (39) 47 (33) 69 (49) 26 (18) 163 (57) 121 (43)
Yilmaz  [8] 18294052 10 coronary heart disease men & women case/control 168 99 8 (5) 117 (70) 43 (26) 133 (40) 203 (60) 22 (22) 53 (54) 24 (24) 97 (49) 101 (51)
Xu [9] 18582450 9 coronary heart disease men & women case/control 210 174 92 (44) 88 (42) 30 (14) 272 (65) 148 (35) 82 (47) 78 (45) 14 (8) 242 (70) 106 (30)
Koch [10] 16203927 16 myocardial infarction men & women case/control 3587 1211 1074 (30) 1781 (50) 732 (20) 3929 (55) 3245 (45) 360 (30) 595 (49) 256 (21) 1315 (54) 1107 (46)
Shearman FHS [11,13] 16484614 11 myocardial infarction men cohort 154 721 37 (24) 71 (46) 46 (30) 145 (47) 163 (53) 236 (33) 363 (50) 122 (17) 835 (58) 607 (42)
Shearman Rot  [12,13] 16484614 11 myocardial infarction men cohort 303 1869 86 (28) 148 (49) 69 (23) 320 (53) 286 (47) 524 (28) 949 (51) 396 (21) 1997 (53) 1741 (47)
Shearman NPHS [13] 16484614 7 myocardial infarction men cohort 360 2349 88 (24) 189 (53) 83 (23) 365 (51) 355 (49) 702 (30) 1182 (50) 465 (20) 2586 (55) 2112 (45)
Shearman GCI-USA [13] 16484614 7 myocardial infarction men case/control 226 414 67 (30) 105 (46) 54 (24) 239 (53) 213 (47) 125 (30) 206 (50) 83 (20) 456 (55) 372 (45)
Shearman GCI-Poland [13] 16484614 7 myocardial infarction men case/control 235 441 75 (32) 102 (43) 58 (25) 252 (54) 218 (46) 141 (32) 209 (47) 91 (21) 491 (56) 391 (44)
Kjaergaard [3] 17309937 19 myocardial infarction men & women cohort 1137 8044 360 (32) 547 (48) 230 (20) 1267 (56) 1007 (44) 2352 (29) 4023 (50) 1669 (21) 8727 (54) 7361 (46)
Kjaergaard [3] 17309937 19 myocardial infarction men & women case/control 2495 4447 740 (30) 1268 (51) 487 (20) 2748 (55) 2242 (45) 1296 (29) 2237 (50) 914 (21) 4829 (54) 4065 (46)
Morgan [14] 17426274 14 myocardial infarction men & women case/control 805 656 239 (30) 421 (52) 145 (18) 899 (56) 711 (44) 187 (29) 326 (50) 143 (22) 700 (53) 612 (47)
REGICOR Unpubl. 10 myocardial infarction men & women case/control 423 1269 117 (28) 231 (55) 75 (18) 465 (55) 381 (45) 383 (30) 636 (50) 250 (20) 1402 (55) 1136 (45)

QS, Quality Score.
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Supplementary Table 5: Data extracted from association studies that reported an association between 

rs9340799 (XbaI) or rs2234693 (PvuII) in ESR1 gene and coronary heart disease.

cases controls Genotype cases N (%) Genotype controls  N (%)

Author PMID QS Outcome Gender Study design Number Number AA AG GG A G AA AG GG A G

rs
93

40
79

9 
(X

ba
I)

Matsubara [4] 9409287 9 coronary heart disease men & women case/control 75 89 51 (68) 22 (29) 2 (3) 124 (83) 26 (17) 60 (68) 25 (29) 4 (3) 145 (83) 33 (17)
Shearman [11] 14600184 11 myocardial infarction men & women cohort 58 1556 22 (38) 25 (43) 11 (19) 69 (59) 47 (41) 645 (38) 712 (43) 199 (19) 2002 (59) 1110 (41)
Koch [10] 16203927 16 myocardial infarction men & women case/control 3657 1211 1531 (42) 1658 (45) 468 (13) 4720 (65) 2594 (35) 498 (42) 556 (45) 157 (13) 1552 (65) 870 (35)
Mansur [7] 16099331 6 coronary heart disease men & women case/control 153 142 11 (7) 70 (46) 72 (47) 92 (30) 214 (70) 12 (7) 69 (46) 61 (47) 93 (30) 191 (70)
Almeida [6] 16612467 9 coronary heart disease men & women case/control 210 143 24 (11) 89 (42) 97 (46) 137 (33) 283 (67) 8 (11) 68 (42) 67 (46) 84 (33) 202 (67)
Alevizaki [5] 17389465 13 coronary heart disease women case/control 20 70 4 (20) 11 (55) 5 (25) 19 (48) 21 (53) 27 (20) 37 (55) 6 (25) 91 (48) 49 (53)
Yilmaz  [8] 18294052 10 coronary heart disease men & women case/control 168 99 4 (2) 116 (69) 48 (29) 124 (37) 212 (63) 1 (2) 64 (69) 34 (29) 66 (37) 132 (63)
Xu [9] 18582450 9 coronary heart disease men & women case/control 179 174 36 (20) 48 (27) 95 (53) 120 (34) 238 (66) 33 (20) 43 (27) 98 (53) 109 (34) 239 (66)
REGICOR Unpubl. 10 myocardial infarction men & women case/control 423 1269 175 (41) 202 (48) 46 (11) 552 (65) 294 (35) 544 (41) 563 (48) 162 (11) 1651 (65) 887 (35)

            Number Number TT CT CC T C TT CT CC T C

rs
22

34
69

3 
(P

vu
II

)

Matsubara [4] 9409287 9 coronary heart disease men & women case/control 87 94 27 (31) 47 (54) 13 (15) 101 (58) 73 (42) 34 (36) 46 (49) 14 (15) 114 (61) 74 (39)
Alevizaki [5] 17389465 13 coronary heart disease women case/control 87 70 25 (29) 45 (52) 17 (20) 95 (55) 79 (45) 32 (46) 31 (44) 7 (10) 95 (63) 55 (37)
Almeida [6] 16612467 9 coronary heart disease men & women case/control 210 143 72 (34) 96 (46) 42 (20) 240 (57) 180 (43) 54 (38) 72 (50) 17 (12) 180 (63) 106 (37)
Mansur [7] 16099331 6 coronary heart disease men & women case/control 153 142 51 (33) 85 (56) 17 (11) 187 (61) 119 (39) 47 (33) 69 (49) 26 (18) 163 (57) 121 (43)
Yilmaz  [8] 18294052 10 coronary heart disease men & women case/control 168 99 8 (5) 117 (70) 43 (26) 133 (40) 203 (60) 22 (22) 53 (54) 24 (24) 97 (49) 101 (51)
Xu [9] 18582450 9 coronary heart disease men & women case/control 210 174 92 (44) 88 (42) 30 (14) 272 (65) 148 (35) 82 (47) 78 (45) 14 (8) 242 (70) 106 (30)
Koch [10] 16203927 16 myocardial infarction men & women case/control 3587 1211 1074 (30) 1781 (50) 732 (20) 3929 (55) 3245 (45) 360 (30) 595 (49) 256 (21) 1315 (54) 1107 (46)
Shearman FHS [11,13] 16484614 11 myocardial infarction men cohort 154 721 37 (24) 71 (46) 46 (30) 145 (47) 163 (53) 236 (33) 363 (50) 122 (17) 835 (58) 607 (42)
Shearman Rot  [12,13] 16484614 11 myocardial infarction men cohort 303 1869 86 (28) 148 (49) 69 (23) 320 (53) 286 (47) 524 (28) 949 (51) 396 (21) 1997 (53) 1741 (47)
Shearman NPHS [13] 16484614 7 myocardial infarction men cohort 360 2349 88 (24) 189 (53) 83 (23) 365 (51) 355 (49) 702 (30) 1182 (50) 465 (20) 2586 (55) 2112 (45)
Shearman GCI-USA [13] 16484614 7 myocardial infarction men case/control 226 414 67 (30) 105 (46) 54 (24) 239 (53) 213 (47) 125 (30) 206 (50) 83 (20) 456 (55) 372 (45)
Shearman GCI-Poland [13] 16484614 7 myocardial infarction men case/control 235 441 75 (32) 102 (43) 58 (25) 252 (54) 218 (46) 141 (32) 209 (47) 91 (21) 491 (56) 391 (44)
Kjaergaard [3] 17309937 19 myocardial infarction men & women cohort 1137 8044 360 (32) 547 (48) 230 (20) 1267 (56) 1007 (44) 2352 (29) 4023 (50) 1669 (21) 8727 (54) 7361 (46)
Kjaergaard [3] 17309937 19 myocardial infarction men & women case/control 2495 4447 740 (30) 1268 (51) 487 (20) 2748 (55) 2242 (45) 1296 (29) 2237 (50) 914 (21) 4829 (54) 4065 (46)
Morgan [14] 17426274 14 myocardial infarction men & women case/control 805 656 239 (30) 421 (52) 145 (18) 899 (56) 711 (44) 187 (29) 326 (50) 143 (22) 700 (53) 612 (47)
REGICOR Unpubl. 10 myocardial infarction men & women case/control 423 1269 117 (28) 231 (55) 75 (18) 465 (55) 381 (45) 383 (30) 636 (50) 250 (20) 1402 (55) 1136 (45)

QS, Quality Score.
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Supplementary Table 6: Descriptive statistics for REGICOR participants included in the study 

stratified by sex. 

WOMEN cases (n=105) controls (n=315) p-value †

Age (year) 67.02 ± 9.01 66.38 ± 8.46 0.511
Hypertension * 57 (54.3) 232 (73.7) 0.676
Diabetes * 23 (21.9) 71 (22.5) 0.174
Dyslipemia * 49 (46.7) 152 (48.3) 0.014

Smoking *
never smoker 59 (56.2) 293 (93.0)

<0.001current or ex-smoker <1 year 15 (14.3) 13 (4.1)
ex-smoker >1year 0 (0) 3 (1.0)

BMI (kg/m2) 27.50 ± 4.93 28.92 ± 4.94 0.055
SBP (mmHg) 111.45 ± 16.87 144.96 ± 21.08 <0.001
DBP (mmHg) 59.42 ± 10.29 80.53 ± 9.84 <0.001
Family history of MI * 14 (13.3) 36 (11.4) 0.014
Total cholesterol (mg/dl) 185.54 ± 39.05 232.31 ± 41.88 <0.001
HDL cholesterol (mg/dl) 53.42 ±  13.68 54.18 ± 13.13 0.712
rs2234693 (PvuII) TT 30 (28.6) 94 (29.8)

0.834CT 55 (52.4) 169 (53.7)
CC 20 (19.0) 52 (16.5)

 MAF 0.452 0.434  
rs9340799 (XbaI) AA 43 (41) 132 (42)

0.465AG 46 (44) 149 (47)
GG 16 (15) 34 (11)

 MAF 0.371 0.344

MEN cases (n=318) controls (n=954) p-value †

Age (year) 59.29 ± 11.15 58.85 ± 10.65 0.524
Hypertension * 140 (44.0) 561 (58.8) 0.002
Diabetes * 73 (22.9) 199 (20.8) 0.195
Dyslipemia * 169 (53.1) 407 (42.6) <0.001

Smoking *
never Stoker 49 (15.4) 326 (34.2)

<0.001current or ex-smoker <1 year 161 (50.6) 240 (25.2)
ex-smoker >1year 81 (25.5) 368 (38.6)

BMI (kg/m2) 27.75 ± 4.50 27.93 ± 3.78 0.519
SBP (mmHg) 109.94 ± 17.12 139.65 ± 20.05 <0.001
DBP (mmHg) 61.71 ± 10.75 82.18 ± 9.73 <0.001
Family history of MI * 46 (14.5) 98 (10.3) 0.001
Total cholesterol (mg/dl) 190.77 ± 43.51 224.69 ± 39.94 <0.001
HDL cholesterol (mg/dl) 41.93 ± 9.33 46.26 ± 11.17  <0.001
rs2234693 (PvuII) TT 87 (27.4) 289 (30.3)

0.131CT 176 (55.3) 467 (49.0)
CC 55 (17.3) 198 (20.8)

 MAF 0.450 0.452
rs9340799 (XbaI) AA 132 (42) 412 (43.2)

0.086AG 156 (49) 414 (43.4)
GG 30 (9) 128 (13.4)

 MAF 0.340 0.351

Results are expressed as mean ± SD for normally distributed variables or n (%) for categorical variables. 
MAF, minor allele frequency; SD, standard deviation. Both polymorphisms were in HWE.

* Self reported history or treatment

† To test differences between cases and controls, a Pearson χ2 test was performed for categorical variables 
and a Student t test for normally distributed variables.

6. Supplementary figures

Supplementary Fig. 1: Meta-analyses of association studies reporting association between rs2234693 
and CHD stratified by sex. None of the female populations has been previously included in previous 
meta-analyses. The different meta-analyses represent the association between just females and just 
males. Although the studies provided by Mansur et al. [7], Matsubara et al. [4], Morgan et al. [14] and 
Yilmaz et al. [8] had data for both men and women, we could not use it for the stratified analysis because 
the genotypes are provided for the global sample. The pooled OR is shown as a diamond (•), where the 
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width of the diamond corresponds to the 95%CI of the pooled OR. Data presented in a logarithmic scale.
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Supplementary Fig. 2: Meta-analysis of the genetic variant rs9340799 (XbaI) in ESR1 

gene in relation to CHD risk.  

 

The pooled OR is shown as a diamond ( ), where the width of the diamond 

corresponds to the 95%CI of the pooled OR. Data presented in a logarithmic scale. 

 

182

APPENDIX 2



References 

 

 [1]  Ioannidis JP, Boffetta P, Little J, et al. Assessment of cumulative evidence on 

genetic associations: interim guidelines. Int J Epidemiol 2007;37(1):120-3. 

 [2]  Chanock SJ, Manolio T, Boehnke M, et al. Replicating genotype-phenotype 

associations. Nature 2007;447:655-60. 

 [3]  Kjaergaard AD, Ellervik C, Tybjaerg-Hansen A, et al. Estrogen receptor alpha 

polymorphism and risk of cardiovascular disease, cancer, and hip fracture: cross-

sectional, cohort, and case-control studies and a meta-analysis. Circulation 

2007;115:861-71. 

 [4]  Matsubara Y, Murata M, Kawano K, et al. Genotype distribution of estrogen 

receptor polymorphisms in men and postmenopausal women from healthy and 

coronary populations and its relation to serum lipid levels.  Arterioscler Thromb 

Vasc Biol 1997;17:3006-12. 

 [5]  Alevizaki M, Saltiki K, Cimponeriu A, et al. Severity of cardiovascular disease in 

postmenopausal women: associations with common estrogen receptor alpha 

polymorphic variants.  Eur J Endocrinol 2007;156:489-96. 

 [6]  Almeida S, Hutz MH. Estrogen receptor 1 gene polymorphisms and coronary 

artery disease in the Brazilian population.  Braz J Med Biol Res 2006;39:447-54. 

 [7]  Mansur AP, Nogueira CC, Strunz CM, Aldrighi JM, Ramires JA. Genetic 

polymorphisms of estrogen receptors in patients with premature coronary artery 

disease.  Arch Med Res 2005;36:511-7. 

 [8]  Yilmaz A, Menevse S, Erkan AF, et al. The relationship of the ESR1 gene 

polymorphisms with the presence of coronary artery disease determined by 

coronary angiography.  Genet Test. 2007;11:367-71. 

 [9]  Xu H, Hou X, Wang N, et al. Gender-specific effect of estrogen receptor-1 gene 

polymorphisms in coronary artery disease and its angiographic severity in Chinese 

population.  Clin Chim Acta 2008;395:130-3. 

[10]  Koch W, Hoppmann P, Pfeufer A, Mueller JC, Schomig A, Kastrati A. No 

replication of association between estrogen receptor alpha gene polymorphisms 

and susceptibility to myocardial infarction in a large sample of patients of 

European descent.  Circulation 2005;112:2138-42. 

[11]  Shearman AM, Cupples LA, Demissie S, et al. Association between estrogen 

receptor alpha gene variation and cardiovascular disease.  JAMA 2003;290:2263-

70. 

[12]  Schuit SC, Oei HH, Witteman JC, et al. Estrogen receptor alpha gene 

polymorphisms and risk of myocardial infarction.  JAMA 2004;291:2969-77. 

[13]  Shearman AM, Cooper JA, Kotwinski PJ, et al. Estrogen receptor alpha gene 

variation is associated with risk of myocardial infarction in more than seven 

thousand men from five cohorts.  Circ Res 2006;98:590-2. 

[14]  Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported 

genetic risk factors for acute coronary syndrome in a large-scale replication study.  

JAMA 2007;297:1551-61. 

183

A
P
P
E
N

D
IC

E
S

Article 1 Supplementary material



7.3. APPENDIX: Article 2: Supplementary material

Post-genomic update on a classical candidate gene for coronary artery disease: 
ESR1

Gavin Lucas MSc, PhD*1; Carla Lluís-Ganella, MSc*1; Isaac Subirana, MSc2,1; 
Mariano Sentí, MD, PhD1,3; Christina Willenborg4,5; Muntaser Musameh MD, 
PhD6; CARDIoGRAM Consortium†; Stephen M Schwartz MD, PhD7,8; Christopher 
J O’Donnell MD MPH9,10; Olle Melander MD, PhD11; Veikko Salomaa MD, PhD12; 
Roberto Elosua, MD, PhD1,2.

* These authors contributed equally to this work
1	 Cardiovascular Epidemiology and Genetics, IMIM. Barcelona, Spain.
2	 Epidemiology and Public Health Network (CIBERESP), Barcelona, Spain.
3	 Pompeu Fabra University. Barcelona, Spain.
4	 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, 
Lübeck, Germany.
5	 Medizinische Klinik II, Universität zu Lübeck, Lübeck, Germany.
6	 Department of Cardiovascular Sciences, University of Leicester, United 
Kingdom.
7	 Cardiovascular Health Research Unit, Departments of Medicine and 
Epidemiology, University of Washington, Seattle, Washington, USA.
8	 Department of Epidemiology, University of Washington, Seattle, Washington, 
USA.
9	 National, Heart, Lung, and Blood Institute and Framingham Heart Study, 
Framingham, Massachusetts, USA.
10	 Cardiology Division, Massachusetts General Hospital, Harvard Medical 
School, Boston, Massachusetts, USA.
11	 Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, 
University Hospital Malmö, Lund University, Malmö, Sweden.
12	 National Institute for Health and Welfare, Helsinki, Finland.
† See Supplementary Appendix for a full list of contributors

184

APPENDIX 3



Table of Contents Page

Supplementary Methods

 a. CARDIoGRAM discovery analysis methods summary

 b. Test for interaction between SNP and gender

 c. Power calculations

S2

Supplementary Note

Preliminary age-stratified analysis to explore possible menopause-related ESR1 effects among 
women

S4

Supplementary Table 1

Chromosomal positions of coding and non-coding regions of ESR1

S5

Supplementary Table 2

Power computation

S6

Supplementary Figure 1

Summary of quality control and analysis procedures in the fine mapping.

S9

Supplementary Figure 2

CARDIoGRAM meta-analysis results for the top SNP in the region of interest.

S10

Supplementary Figure 3

CARDIoGRAM meta-analysis results for the SNP with the greatest difference in association 
between males and females (strongest interaction with gender).

S11

Supplementary Figure 4

Distribution of minor allele frequencies (MAF) for SNPs analyzed in this study.

S12

Supplementary References S13

Supplementary Appendix 1

Process of selection of participants from the Framingham study

S14

Supplementary Appendix 2

CARDIoGRAM Investigators

S15

185

Article 2 Supplementary material

A
P
P
E
N

D
IC

E
S



Supplementary Methods

a.	 CARDIoGRAM discovery analysis methods summary

Genotyping in individual discovery GWA studies was carried out on Affymetrix or Illumina platforms. 
Approximately 2.3 million imputed genotypes were generated using the MACH, IMPUTE, or BIMBAM 
imputation algorithms and the HapMap Phase II reference panel{International HapMap Consortium, 
2007 364 /id}). Each primary discovery GWAS performed a logistic regression analysis to test for 
association between genotyped and imputed SNPs and risk of MI/CAD under an additive disease 
model adjusted for age and sex and taking into account the uncertainty of imputed genotypes. In every 
study, the variance inflation factor λ was estimated from genotyped SNPs and also used for adjustment. 
Quality control of these data was performed centrally according to established criteria including a 
check of consistency of the given alleles across all studies, quality of the imputation, deviation from 
Hardy-Weinberg equilibrium in the controls, minor allele frequency, and call rate.

In the present study, a meta-analysis was performed separately for every SNP from every CARDIoGRAM 
study that passed the quality criteria. The default meta-analysis was a fixed effect model with inverse 
variance weighting and calculation of two homogeneity statistics: Cochran’s Q- and I² statistic. 
When there was no indication of heterogeneity for a SNP (P for Q > 0.01), the fixed effect model was 
maintained. When heterogeneity was present (P for Q < 0.01), a random effects model (DerSimonian-
Laird) was used for that SNP.

b.	 Test for interaction between SNP and gender

To formally test for interaction between each SNP and gender in the CARDIoGRAM and fine mapping 
analyses (data not shown for the latter), we performed the following steps:

i.	 Within each CARDIoGRAM study, we computed the beta for the SNP-gender interaction 
term as the absolute difference between the betas for females and males.

ii.	 Within each CARDIoGRAM study, we computed the standard error of the SNP-gender 
interaction term as square root of the sum of the squares of the standard errors of the β from 
the female and male analysis.

iii.	 We then used these betas and standard errors to perform fixed or random effects meta-
analyses according to the same protocol as that used for the un-stratified analysis.

c.	 Power Calculations

We performed a post-hoc calculation of our analyses’ power to detect significant associations. We 
allowed that power is determined by sample size, the proportion of cases and controls for the case-
control studies or the number of events for the cohort study, the effect of a variant on risk (e.g. OR), 
and the frequency of the minor allele (MAF) of the associated variant, the p-value threshold required 
to declare statistical significance, LD between correlated and causal variants, genotyping error, the 
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quality of imputation for imputed variants, between-study heterogeneity in the meta-analysis, and 
possibly other factors. Of these, MAF is the most important non-modifiable determinant of power, 
and so we estimated power for a series of representative sub-ranges of MAF. Rather than attempting to 
parameterize all of the other factors, we captured their effects by using the standard error (SE) from the 
meta-analysis of all three studies, which is inversely correlated with power. In these power calculations, 
the variant’s effect on disease risk was taken as the beta from the meta-analysis of all studies, and 
thus represented the odds ratios for the case-control studies and hazard ratio for cohort studies, where 
applicable; ORs and HRs are considered to be comparable because the prevalence of the phenotype 
in the cohort studies is relatively low. All power computations were based on an alpha value (Type I 
error rate) equivalent to the threshold required to declare a statistically significant association after 
adjustment for multiple testing (see main text). Within each analysis we performed the following steps:

i.	 For each SNP in the analysis, MAF was taken to be the mean MAF across all studies.

ii.	 SNPs were binned according to the following sub-ranges of MAF: (0,0.01], (0.01,0.02], (0.02,0.03], 
(0.03,0.04], (0.04,0.05], (0.05,0.06], (0.06,0.07], (0.07,0.08], (0.08,0.09], (0.09,0.1], (0.1,0.15], 
(0.15,0.2], (0.2,0.3], (0.3,0.4] and (0.4,0.5].

iii.	 For each sub-range of MAF the mean of the SE of all SNPs within that sub-range was computed, 
and used to compute and express the power of the analysis in the following two ways.

iv.	 The minimum effect size (beta) the analysis had high (~80%) or moderate (~50%) power to detect. 
The definitions of high and moderate power were selected arbitrarily to indicate where our analysis 
was well powered to detect risk effects (high power), but also to allow for the fact that, if multiple 
independent but more subtle effects were present, at least some proportion of these could also be 
detected (e.g. 50%, moderate power).

v.	 The power of the analysis to detect each of a series of effect sizes (betas, corresponding to the 
following odds ratios: 1.05, 1.1, 1.2, 1.3, 1.5, 1.7, 2, 2.5 and 3). These data were computed to help 
indicate the circumstances under which our study was unable to provide conclusive information, 
e.g. for rarer variants or for more subtle effect sizes.

The results of these power calculations are shown in Supplementary Table 2

Supplementary Note

Preliminary age-stratified analysis to explore possible menopause-related ESR1 effects among 
women

After age and gender, menopausal status among women appears to be one of the strongest determinants 
of CAD risk. We explored the possibility that the effect of genetic variation in ESR1 on CAD risk may 
vary among women according to menopausal status. Although this variable was not available for any of 

187

A
P
P
E
N

D
IC

E
S

Article 2 Supplementary material



the CARDIoGRAM studies or for the three studies included in the fine mapping analysis, we attempted 
to capture most of its variation using a proxy variable based on age (<50 years or ≥50 years{Palacios, 
2010 4274 /id}), and then tested for interaction between this proxy variable and genotype. This analysis 
was performed only for MIGen owing to the lack of age data for the WTCCC sample, and the low 
number of events in the Framingham study.

We observed no regionally significant interaction between this proxy variable and genotype for any 
variant in the region of interest (minimum p-value=0.0012 for rs11968025), although we note the 
limited sample size of this analysis (number of females aged <50 yrs and ≥50 yrs was 832 (of which 389 
were cases) and 582 (of which 274 were cases), respectively).

Supplementary Tables

Supplementary Table 1. Chromosomal locations of coding and non-coding exons in ESR1.

Exon 
Name* Coding† Start‡ Stop‡ Length (bp)

Position with respect to translation 
start site§ AA length

E2 - 151977808 151977899 91 -151240

F - 152011675 152011800 125 -117373

E1 - 152023011 152023141 130 -106037

T1 - 152112508 152112595 87 -16540

T2 - 152112697 152112848 151 -16351

D - 152125065 152125160 95 -3983

C - 152125748 152126956 1208 -3300

B - 152128494 152128645 151 -554

A - 152128816 152128978 162 -232

1 + 152128979|| 152129499 521 -70 151

2 + 152163732 152163922 190 34684 64

3 + 152201790 152201906 116 72742 39

4 + 152265308 152265643 335 136260 112

5 + 152332791 152332929 138 203743 46

6 + 152382126 152382259 133 253078 45

7 + 152415520 152415703 183 286472 61

8 + 152419867 152420102 235 290819 77

3’ UTR - 152420103 152424406 4303 291055

AA: Amino Acid; bp: base pairs. 152177055

* Name assigned by Koš et al.{Kos, 2001 199 /id} to non-coding exons, or sequentially for coding exons

† Non-coding, -; coding, +

‡ Position in GRCh37.p1 determined using information provided by Koš et al. for non-coding exons and 
the Exon 1 start point, and from the Ensembl exon report for the coding exons (ENSG00000091831; 
www.ensembl.org) otherwise.

§ Translation start codon begins at 152129048, 70bp downstream of the beginning of Exon 1
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|| Common splice acceptor site reported by Koš et al.

Supplementary Table 2. Power computation – see Supplementary Methods for details.

M
in

o
r A

llele F
req

u
en

cy ran
ge 

(0,0.01] 

(0.01,0.02] 

(0.02,0.03] 

(0.03,0.04] 

(0.04,0.05] 

(0.05,0.06] 

(0.06,0.07] 

(0.07,0.08] 

(0.08,0.09] 

(0.09,0.1] 

(0.1,0.15] 

(0.15,0.2] 

(0.2,0.3] 

(0.3,0.4] 

(0.4,0.5] 
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(n=86,995) 

N
u

m
b
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f SN

P
s 

0 
4 

13 
12 

3 
15 

12 
11 

13 
23 

60 
79 

106 
87 

97 

OR 

detectable  

h
igh

 p
o

w
er 

(0.8) 
-- 

1.329 
1.277 

1.220 
1.200 

1.283 
1.214 

1.203 
1.150 

1.150 
1.121 

1.103 
1.081 

1.074 
1.071 

m
o

d
erate 

p
o

w
er (0.5) 

-- 
1.263 

1.223 
1.178 

1.161 
1.227 

1.173 
1.164 

1.122 
1.121 

1.098 
1.084 

1.066 
1.060 

1.058 

Power 

(to detect OR) 

1.05 
-- 

0.001 
0.0017 

0.0034 
0.0047 

0.0028 
0.0055 

0.0086 
0.015 

0.025 
0.048 

0.07 
0.19 

0.27 
0.33 

1.1 
-- 

0.011 
0.023 

0.057 
0.085 

0.047 
0.100 

0.15 
0.28 

0.42 
0.62 

0.77 
0.96 

0.98 
0.98 

1.2 
-- 

0.2 
0.37 

0.67 
0.79 

0.39 
0.68 

0.71 
0.97 

0.89 
0.96 

0.99 
1 

1 
1 

1.3 
-- 

0.68 
0.87 

0.99 
1 

0.79 
0.98 

0.98 
1 

0.98 
1 

1 
1 

1 
1 

1.5 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1.7 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2.5 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

3 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 
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(n=30,615) 

N
u

m
b
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P
s 

0 
4 

1 
8 

1 
10 

8 
16 

10 
19 

65 
71 
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89 

96 

OR 

detectable  

h
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 p
o

w
er 

(0.8) 
-- 

1.577 
1.490 

1.400 
1.412 

1.472 
1.365 

1.292 
1.279 

1.222 
1.201 

1.184 
1.162 

1.13 
1.123 

m
o

d
erate 

p
o

w
er (0.5) 

-- 
1.454 

1.388 
1.318 

1.328 
1.374 

1.291 
1.235 

1.224 
1.18 

1.162 
1.149 

1.132 
1.106 

1.1 

Power 

(to detect OR) 

1.05 
-- 

0.00038 
0.00048 

0.0007 
0.00065 

0.00068 
0.0012 

0.0019 
0.0019 

0.0033 
0.0048 

0.0064 
0.015 

0.024 
0.03 

1.1 
-- 

0.0021 
0.0029 

0.0057 
0.0050 

0.0051 
0.014 

0.026 
0.026 

0.055 
0.087 

0.12 
0.28 

0.43 
0.5 

1.2 
-- 

0.027 
0.042 

0.098 
0.083 

0.1 
0.23 

0.39 
0.39 

0.66 
0.79 

0.89 
0.91 

0.99 
1 

1.3 
-- 

0.14 
0.22 

0.43 
0.39 

0.35 
0.58 

0.79 
0.84 

0.98 
0.99 

0.99 
0.97 

1 
1 

1.5 
-- 

0.63 
0.82 

0.96 
0.95 

0.77 
0.93 

0.99 
1 

1 
1 

1 
1 

1 
1 

1.7 
-- 

0.93 
0.99 

1 
1 

0.97 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2.5 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

3 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

CARDIoGRAM Males 

(n=32,069) 

N
u

m
b

er o
f SN

P
s 

0 
1 

7 
6 

3 
2 

3 
14 

14 
23 

68 
75 

100 
94 

97 

OR 

detectable  

h
igh

 p
o

w
er 

(0.8) 
-- 

1.488 
1.382 

1.304 
1.261 

1.226 
1.336 

1.352 
1.344 

1.202 
1.211 

1.152 
1.123 

1.101 
1.096 

m
o

d
erate 

p
o

w
er (0.5) 

-- 
1.387 

1.305 
1.244 

1.21 
1.182 

1.269 
1.281 

1.275 
1.164 

1.171 
1.123 

1.1 
1.082 

1.078 

Power 

(to detect OR) 

1.05 
-- 

0.00048 
0.0008 

0.0014 
0.0021 

0.0029 
0.0015 

0.0016 
0.0021 

0.0068 
0.0099 

0.017 
0.045 

0.072 
0.09 

1.1 
-- 

0.003 
0.0072 

0.016 
0.029 

0.047 
0.021 

0.024 
0.034 

0.13 
0.19 

0.32 
0.62 

0.79 
0.85 

1.2 
-- 

0.043 
0.13 

0.28 
0.45 

0.63 
0.29 

0.23 
0.29 

0.76 
0.75 

0.95 
0.96 

1 
1 

1.3 
-- 

0.22 
0.49 

0.77 
0.91 

0.99 
0.62 

0.56 
0.58 

0.94 
0.86 

0.97 
0.98 

1 
1 

1.5 
-- 

0.83 
0.97 

1 
1 

1 
0.98 

0.97 
0.96 

1 
0.98 

1 
1 

1 
1 

1.7 
-- 

0.99 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

2.5 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

3 
-- 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

Notes:

1.	Within each analysis, the number of SNPs whose mean SE was used to compute power is shown for each sub-
range of MAF.
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2.	‘OR detectable’ indicates the minimum risk effect detectable (expressed as the exponent of the beta from the 
meta-analysis) with high or moderate power. ‘Power’ indicates the study’s power to detect the effect sizes (odds 
ratios) shown.

3.	Effect sizes detectable or for which power is shown are expressed as the exponent of the absolute beta from 
the meta-analysis (i.e. the odds ratio computed with the lower risk group set as the reference group). Thus, in 
the CARDIoGRAM, Females, Males, and Fine Mapping analyses, these are the odds ratios associated for each 
additional copy of the risk allele; in the Gender*Genotype Interaction analysis these are the odds ratios for 
difference in risk between sexes.

4.	Power does not increase linearly with increase in MAF because these data are based on empirical SE values, 
which may be affected by other factors (e.g. imputation quality, between-study heterogeneity in the meta-
analysis, etc.) for SNPs in some sub-ranges of MAF compared to others.

5.	In the computation of power for given effect size, scenarios with high power (≥80%) are shaded dark grey, 
those with moderate power (≥50% and <80%) are shaded light grey, and those with power lower than 50% are 
unshaded.

Supplementary Figures

Supplementary Figure 1. Summary of quality control and analysis procedures in the fine mapping analysis.

Females: 6570/1270/5300; Males: 10540/4139/6401Gender-stratified analysis (n/cases/controls)

21251131
remove SNPs not present in all studies

(number of SNPs removed)

3053/406/2647
4315/1582/2733

≥0.95≥0.95≥0.95
prior subject-level QC

(sample call rate)

2103/201/1902
1614/263/1351

1414/663/751
4611/2294/2317

females (n/cases/controls)
males (n/cases/controls)

464/32531988/53802967/3075N (cases/controls)

10576149Number of SNPs passing QC

17121 subjects in totalmeta-analysis

association testing

1451Number of SNPs common to all studies

1663†1502†1582†Number of SNPs genotyped 
or imputed with high quality

814970891
post-imputation QC

(SNPs removed: IMPUTE2 INFO<0.5)

2477†2472†2473†Number of genotyped and imputed SNPs

Imputation

9;20;50;0
SNP level QC

(SNPs removed: ≤95% call rate;HWE p≤10-6)

11581149
Number of genotyped SNPs
in the region of interest

3717*73686042Sample size

cohortcase/controlcase/controlStudy design

FHSWTCCCMIGen<QC/analysis step>

Data 
availability

SNP 
QC

Imputation

Association
and meta-
analysis

* The publicly available dataset for the Framingham study contained genotype and phenotype data for 9,270 
individuals. In the current analysis, we included 3,717 individuals from the original and offspring cohorts for whom 
survival data were available for the follow-up periods beginning at visits 15 and 5 respectively. The sample selection 
and process used to filter these individuals is described in more detail in Lluís-Ganella et al. 2011 (submitted).
† For all three studies, all genotyped SNPs were also present in the 1kG reference panel. These values show the total 
number of SNPs, including genotyped SNPs, after imputation, post-imputation QC, and filtering to include SNPs 
common to all studies.

Supplementary Figure 2. CARDIoGRAM global meta-analysis results for the top SNP in the region of interest. 
Total sample size, number of cases, OR and 95% CI are shown for each contributing study, in addition to global 
sample sizes, OR, 95%CI, and p-values for association and heterogeneity. Note that only 12 of the 14 CARDIoGRAM 
studies are represented, as data for this variant was not available in the LURIC 1 and LURIC 2 samples.
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Supplementary Figure 3. Meta-analysis results for the CARDIoGRAM SNP with the greatest difference in 

association between males and females (strongest interaction with gender). Total sample size, number of cases, OR 

and 95% CI are shown for each contributing study, in addition to global sample sizes, OR, 95%CI, and p-values for 

association and heterogeneity. Note that only 11 of the 14 CARDIoGRAM studies are represented, as data for this 

variant was not available in the LURIC 1, LURIC 2 and CHARGE samples. 
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Supplementary Figure 4. Distribution of minor allele frequencies (MAF) for SNPs analyzed in this study. 

Data are shown as vertical bars whose widths are proportional to the ranges of MAF indicated on the x-axis, and 

whose heights correspond to the absolute number (left y-axis) of SNPs whose MAF falls within those ranges (MAF 

computed as the weighted mean in the MIGen, WTCCC and Framingham samples). 

The number of SNPs within the region of interest that were genotyped or imputed in (a) the CARDIoGRAM meta-

analysis (corresponding to the high-quality SNPs from the HapMapII reference panel) are indicated as white bars; (b) 

the number of additional SNPs imputed in the fine mapping analysis in this study are shown as light grey bars; the 

total the number of SNPs analyzed in the fine mapping analysis in this study (a plus b, corresponding to high-quality 

SNPs from the 1kG reference panel) are shown as dark grey bars. 

Within each sub-range of MAF, the vertical black lines and diamonds at the top of the graph represent the 

proportions of SNPs analyzed in the fine mapping analysis (1kG panel, see (c) above). The portion of the line above 

the diamond represents the percentage (right y-axis) of these SNPs that were included in the HapMapII panel, and 

the portion below the diamond represents those additional SNPs that were imputed in the present study. This graph 

shows that many additional SNPs with a broad range of MAFs were imputed in this study, but that the greatest gain 

of information was obtained for rarer SNPs. 

 

 

Supplementary References 

 

1. International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 

2007; 449:851-861. 

2. Palacios S, Henderson VW, Siseles N, Tan D, Villaseca P. Age of menopause and impact of climacteric symptoms 

by geographical region. Climacteric. 2010; 13:419-428. 

3. Kos M, Reid G, Denger S, Gannon F. Minireview: genomic organization of the human ERalpha gene promoter 

region. Mol Endocrinol. 2001; 15:2057-2063. 

 

193

A
P
P
E
N

D
IC

E
S

Article 2 Supplementary material



Supplementary Appendix 1. Process of selection of participants from the Framingham study (from Lluís-Ganella et 

al., submitted). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10,333 participants (Original + Offspring)

n=6,431

2,577 individuals who did not attend the V15 (Original)
1,325 individuals who did not attend the V5 (Offspring) 

2,894 individuals with missing genotypic or phenotypic data
or out of the inclusion criteria

n=3,537

429 CAD events
(210 MI- 205 Angina- 14 CAD death)

Mean follow-up: 13.32 years 

10,333 participants (Original + Offspring)

n=6,431

2,577 individuals who did not attend the V15 (Original)
1,325 individuals who did not attend the V5 (Offspring) 

2,894 individuals with missing genotypic or phenotypic data
or out of the inclusion criteria

n=3,537

429 CAD events
(210 MI- 205 Angina- 14 CAD death)

Mean follow-up: 13.32 years 
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Supplementary Appendix 2. CARDIoGRAM Investigators 

Executive Committee: Sekar Kathiresan1,2,3, Muredach P. Reilly4, Nilesh J. Samani5,6, Heribert Schunkert7 

Executive Secretary: Jeanette Erdmann7 

Steering Committee: Themistocles L. Assimes8, Eric Boerwinkle9, Jeanette Erdmann7, Alistair Hall10, Christian 

Hengstenberg11, Sekar Kathiresan1,2,3, Inke R. 

Konig12, Reijo Laaksonen13, Ruth McPherson14, Muredach P. Reilly4, Nilesh J. Samani5,6, Heribert Schunkert7, 

John R. Thompson15, Unnur Thorsteinsdottir16,17, 

Andreas Ziegler12 

 

ADVANCE: Devin Absher18, Themistocles L. Assimes8, Stephen Fortmann8, Alan Go27, Mark Hlatky8, Carlos 

Iribarren27, Joshua Knowles8, Richard Myers18, 

Thomas Quertermous8, Steven Sidney27, Neil Risch28, Hua Tang29 

CADomics: Stefan Blankenberg30, Tanja Zeller30, Arne Schillert12, Philipp Wild30, Andreas Ziegler12, Renate 

Schnabel30, Christoph Sinning30, Karl Lackner31, 

Laurence Tiret32, Viviane Nicaud32, Francois Cambien32, Christoph Bickel30, Hans J. Rupprecht30, Claire Perret32, 

Carole Proust32, Thomas Munzel30 

CHARGE: Maja Barbalic33, Joshua Bis34, Eric Boerwinkle9, Ida Yii-Der Chen35, L. Adrienne Cupples20,21, Abbas 

Dehghan36, Serkalem Demissie-Banjaw37,21, Aaron 

Folsom38, Nicole Glazer39, Vilmundur Gudnason40,41, Tamara Harris42, Susan Heckbert43, Daniel Levy21, 

Thomas Lumley44, Kristin Marciante45, Alanna 

Morrison46, Christopher J. O´Donnell47, Bruce M. Psaty48, Kenneth Rice49, Jerome I. Rotter35, David S. 

Siscovick50, Nicholas Smith43, Albert Smith40,41, Kent D. 

Taylor35, Cornelia van Duijn36, Kelly Volcik46, Jaqueline Whitteman36, Vasan Ramachandran51, Albert Hofman36, 

Andre Uitterlinden52,36 

deCODE: Solveig Gretarsdottir16, Jeffrey R. Gulcher16, Hilma Holm16, Augustine Kong16, Kari Stefansson16,17, 

Gudmundur Thorgeirsson53,17, Karl Andersen53,17, 

Gudmar Thorleifsson16, Unnur Thorsteinsdottir16,17 

GERMIFS I and II: Jeanette Erdmann7, Marcus Fischer11, Anika Grosshennig12,7, Christian Hengstenberg11, Inke 

R. Konig12, Wolfgang Lieb54, Patrick Linsel- 

Nitschke7, Michael Preuss12,7, Klaus Stark11, Stefan Schreiber55, H.-Erich Wichmann56,58,59, Andreas Ziegler12, 

Heribert Schunkert7 

GERMIFS III (KORA): Zouhair Aherrahrou7, Petra Bruse7, Angela Doering56, Jeanette Erdmann7, Christian 

Hengstenberg11, Thomas Illig56, Norman Klopp56, Inke 

R. Konig12, Patrick Linsel-Nitschke7, Christina Loley12,7, Anja Medack7, Christina Meisinger56, Thomas 

Meitinger57,60, Janja Nahrstedt12,7, Annette Peters56, 

Michael Preuss12,7, Klaus Stark11, Arnika K. Wagner7, H.-Erich Wichmann56,58,59, Christina Willenborg12,7, 

Andreas Ziegler12, Heribert Schunkert7 

LURIC/AtheroRemo: Bernhard O. Bohm61, Harald Dobnig62, Tanja B. Grammer63, Eran Halperin22, Michael M. 

Hoffmann64, Marcus Kleber65, Reijo Laaksonen13, 

Winfried Marz63,66,67, Andreas Meinitzer66, Bernhard R. Winkelmann68, Stefan Pilz62, Wilfried Renner66, Hubert 

Scharnagl66, Tatjana Stojakovic66, Andreas 

Tomaschitz62, Karl Winkler64 

MIGen: Benjamin F. Voight2,3,24, Kiran Musunuru1,2,3, Candace Guiducci3, Noel Burtt3, Stacey B. Gabriel3, David 

S. Siscovick50, Christopher J. O’Donnell47, 

Roberto Elosua69, Leena Peltonen49, Veikko Salomaa70, Stephen M. Schwartz50, Olle Melander26, David 

Altshuler71,3, Sekar Kathiresan1,2,3 

OHGS: Alexandre F. R. Stewart14, Li Chen19, Sonny Dandona14, George A. Wells25, Olga Jarinova14, Ruth 

McPherson14, Robert Roberts14 

PennCATH/MedStar: Muredach P. Reilly4, Mingyao Li23, Liming Qu23, Robert Wilensky4, William Matthai4, 

Hakon H. Hakonarson72, Joe Devaney73, Mary Susan 

Burnett73, Augusto D. Pichard73, Kenneth M. Kent73, Lowell Satler73, Joseph M. Lindsay73, Ron Waksman73, 
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SUPPLEMENTARY METHODS 

 

S1. Genetic variant selection, genotyping, quality controls and generation of the multi-locus risk 

score. 

S1.1. Genetic variant selection: SNP-selection was carried out as described previously [1]. Briefly, 

we searched the NHGRI GWAS catalog [2] (August, 2010) for the terms ‘Myocardial 

Infarction/Coronary disease (MI/CAD)’ and related phenotypes. This search returned 21 genetic 

variants.  Those variants that reported an association p-value >1x10-6 were excluded for the present 

analysis. In order to minimize redundant information in the genetic risk score (GRS), we computed 

the linkage equilibrium between variants using data from the HapMap CEU sample, and from those 

variants that presented high correlation (LD r2>0.3), one was randomly selected. We evaluated the 

evidence in the NHGRI GWAS catalogue for each of the 14 remaining variants, and excluded those 

that had been reported to be associated with classical cardiovascular risk factors (CVRF), such as 

total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, diabetes, hypertension and 

smoking. Moreover, we excluded 2 of the remaining SNPs because literature-based evidence strongly 

suggested an association between those loci and CVRF. From this list we also excluded variants that 

were not associated with MI/CAD in the CARDIoGRAM study [3]. We added the rs10455872 

variant in LPA because it has since been reported to be strongly association with MI/CAD [3,4]. See 

the flow chart of the selection process in S.F2. 

 

S1.2. Generation of multi-locus genetic risk score: The GRS was weighted by the estimated effect 

size reported for each variant in the CARDIoGRAM study [3] using the following formula:  
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∑
=

⋅=
8

1i
ii SNPGRS β  

Where:  

- βi is the estimated effect size reported for each variant in the CARDIoGRAM study; 

- SNPi is the number of copies of each individual SNP evaluated (can have values of 0, 1 or 2 

for genotyped SNPs and values ranging from 0 to 2 for imputed SNPs) 

 

S1.3. Genotyping and genotyping quality control: REGICOR participants’ DNA was obtained 

from buffy coat using standardized methods [5] (L’ARS services, Barcelona, Spain) and samples were 

genotyped by Centro Nacional de Investigación Oncológica (CNIO, Madrid, Spain) using the Cardio 

inCode chip (Ferrer inCode, Barcelona, Spain) based on Veracode (Illumina, San Diego, USA) and 

KASPar (KBioscience , Hoddesdon, United Kingdom) technologies. The overall percentage of 

agreement of the chip with reference technology is 99.9% and the analytical sensitivity and specificity 

are greater than 98.6%. For the Framingham participants, the genotypes for genotyped SNPs were 

obtained using the Affymetrix 500K and 50K chips, and for additional SNPs by imputation into the 

HapMapII CEU haplotype panel (build 36, release 22), using MACH version 1.00.15. 

 

S1.4. Quality control: Various quality control measures were applied at both participant and SNP 

levels to the data from both cohorts: Individuals with low call rates or sex mismatches were excluded 

before imputation in the Framingham cohort database. Moreover, high levels of missingness (p<10-9 

), highly significant departures from Hardy-Weinberg equilibrium (p<10-6), or Mendelian errors 
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(>100) were used to determine which SNPs to use for the imputation step, and were also applied as 

quality control criteria for the SNPs selected. 

 

S2. Follow-up and phenotype definition 

All REGICOR participants were periodically contacted by telephone or by mail to ascertain 

whether they had presented any cardiovascular event up until the end of 2009. Fatal events were 

identified from regional and national mortality registers. All the reported events were reviewed with 

hospital records or primary care records. An event committee classified the suspected cardiovascular 

(CVD) events after review of all medical records and physician notes using standardized criteria [6]. 

This study was approved by the local Ethics Committee and all participants gave written informed 

consent. 

All Framingham participants were analyzed for onset of cardiovascular events during follow-

up until the end of 2007. Repeated examinations and clinic visits were carried out approximately 

every 2 and 4 years, respectively. Suspected cardiovascular events were reviewed and adjudicated by a 

panel of three Framingham physician investigators after review of all available examination records, 

hospitalization records and physician notes using standardized criteria [7]. 

Methodology for laboratory determinations has been described elsewhere [7,8]. 

Myocardial infarction was defined on the basis of the classical WHO definition by the 

presence of 2 out of 3 clinical criteria: new diagnostic Q-waves on ECG, prolonged ischemic chest 

discomfort and elevation of serum biomarkers of myocardial necrosis. Angina was defined by the 
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presence of ischemic chest discomfort with signs of ischemia in the ECG. Coronary artery by-pass 

grafting or percutaneous coronary interventions were considered as revascularization procedures. 

CHD death was considered after reviewing the mortality register when the most likely cause of death 

was CHD and no other cause could be ascribed. 

Atherothrombotic stroke was defined as a non-embolic acute-onset focal neurological deficit 

of vascular origin that persisted for more than 24 hours or an ischemic infarction that was 

documented at autopsy. Peripheral artery disease was defined by the presence of symptoms of 

claudication and an objective diagnostic test such as a pathological ankle-brachial index (<0.9) or a 

pathological arteriography or revascularization procedure.  

 

S3. Ten-year cardiovascular risk estimation 

All cardiovascular risk factors required for the risk functions were measured using standard 

methods [9,10]. Participants were considered to be diabetic if they had been diagnosed with diabetes 

or treated with oral hypoglycemic agents or insulin or presented a glycemia higher or equal to 126 

mg/dL. Those who reported smoking ≥1 cigarette/day in the preceding year were considered 

smokers. All necessary baseline lipid and blood pressure measurements were collected and used to 

estimate the risk of each participant. 

S4. Statistical analysis 

To account for family structure in the Framingham cohort we also adjusted for the first five 

genetic principal components (computed using PLINK) [11] as covariates in the models [12,13].  
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All other analyses were performed using R version 2.11 (packages and functions indicated 

below by <package>::<function>).  

The proportional hazards assumption was tested using survival::cox.zph.  

The meta-analysis was computed using the rmeta::meta.DSL function [14]. 

We used three different statistics to assess the potential value of including the GRS in risk 

prediction: 

a) to assess the goodness-of-fit of the models we used a version of the Hosmer-Lemeshow test 

that takes right censoring of the data into account [15];   

b) to evaluate the improvement in the discriminative capacity of the model that included the 

genetic score with respect to a model without the score, we computed the concordance index (c-

statistic) using the Hmisc::rcorr.cens function [16];  

c) to assess the reclassification we calculated the net reclassification improvement (NRI) [17] 

and integrated discrimination improvement (IDI) [18] in the whole sample and in the subgroup of 

individuals considered to have intermediate coronary risk according to the classical risk function. To 

calculate the 10-year expected number of events in each risk category and in each cohort we used the 

Kaplan-Meier estimates as proposed by Steyerberg and Pencina [15,18]. A bootstrapping method 

was used to construct confidence intervals for IDI and NRI to take into account the uncertainty of 

the Kaplan-Meier estimates. 

The estimated risk for each individual was computed under the Proportional Hazards 

assumption (Cox Model) 
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ηexp1 XSRisk −= , 

where:  

a) XS is survival value for the population average. This value depends on gender and has been taken 

from Framingham equation [19] for the Framingham cohort, and from REGICOR calibrated 

equation [20] for the REGICOR cohort. 

b) exp : exponential value (or anti-logarithm function). 

c) η  is the linear predictor, i.e, the product of coefficients and factors, and differs for each cohort: 

a) For REGICOR ( ) ( )∑ =
−+−= p

j
G

jj
F
j GGFF

1
ββη   

b) For Framingham ( ) ( ) ( )∑∑ ==
−+−+−= 5

11 k kk
C
k

Gp

j jj
F
j CCGGFF βββη , 

where, 


F
jβ : log-hazard-ratios of each of the classical risk factors. These coefficients have not been 

estimated but taken from the Framingham equation [7]. 

 jF : individual value of each classical risk factor. 

 jF : population average value of each classical risk factor. This value has been taken from 

Framingham equation [7] for the Framingham cohort, and from REGICOR calibrated 

equation [20] for the REGICOR cohort. 


Gβ : log-hazard-ratios of genetic score, estimated from the data 

 G : individual value of genetic score 

 G : average value of genetic score in the sample  


C
kβ : log-hazard-ratios of each of the first five principal components, estimated from the data. 

 kC : individual value of each of the first five principal components. 

 kC : sample average value of each of the first five principal components. 

 

NOTE: In Framingham cohort, computation of goodness-of-fit (Hosmer-Lemeshow), discrimination 

(c index), NRI and IDI was performed after adjustment for the first five principal components, in 

order to allow for the familial nature of the data. 

S5. Power calculations 

We performed a post-hoc calculation of our analyses’ power to detect significant associations. In 

these power calculations, the variant's effect on disease risk was taken as the beta obtained from each 
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study. All power computations were based on an alpha value (Type I error rate) equivalent to 0.05. 

Within each analysis we performed the following steps: 

i. The minimum effect size (beta) the analysis had high (~80%) or moderate (~50%) power to 

detect. The definitions of high and moderate power were selected arbitrarily to indicate where our 

analysis was well powered to detect risk effects (high power), but also to allow for the fact that, if 

multiple independent but more subtle effects were present, at least some proportion of these could 

also be detected (e.g. 50%, moderate power). 

ii. The power of the analysis to detect each of a series of effect sizes (betas, corresponding to 

the following hazard ratios: 1.05, 1.09, 1.10, 1.12, 1.14, 1.18, 1.29 and 1.35). These data were 

computed to help indicate the circumstances under which our study was unable to provide 

conclusive information, e.g. for rarer variants or for more subtle effect sizes. These hazard ratios 

were in part selected because are the ones reported in the CARDIoGRAM study for the values we 

include in this analysis, and therefore we can observe the specific power that we have to achieve each 

reported HR. 

iii. These two computations described were also computed for the GRS and the risk of 

coronary or cardiovascular disease to evaluate the study power.  

The results of these power calculations are shown in S.T4. 
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SUPPLEMENTARY TABLES  

S.T1. Clinical characteristics of individuals included in the analysis or not, based on the availability 

of genetic information.  

 Not included  Included  P-value 

REGICOR    

Individuals 698 2,351 -- 

Age (years) * 54.6 (11.0) 53.9 (11.2) 0.128 

Gender (male) † 343 (49.1%) 1,123 (47.8%) 0.552 

Systolic Blood Pressure (mmHg) * 133 (21.0) 132 (20.8) 0.346 

Diastolic Blood Pressure (mmHg) * 79.1 (10.2) 79.5 (10.4) 0.414 

Hypertension † 274 (39.5%) 938 (40.1%) 0.843 

Smoking † 123 (18.1%) 511 (22.0%) 0.034 

Total cholesterol (mg/dL)* 223 (40.7) 225 (42.4) 0.357 

LDL cholesterol (mg/dL)* 152 (36.3) 152 (37.9) 0.886 

HDL cholesterol (mg/dL)* 50.2 (13.3) 51.7 (13.3) 0.017 

Triglycerides (mg/dL)‡ 95.0 (69.0-131) 92.0 (70.0-127) 0.523 

Cholesterol treatment † 48 (6.91%) 157 (6.71%) 0.926 

Diabetic status † 111 (17.2%) 316 (13.8%) 0.036 

Diabetes treatment † 35 (5.04%) 96 (4.11%) 0.337 

Body mass index (kg/m2)* 27.6 (4.24) 27.4 (4.47) 0.436 

Obesity (BMI≥30 kg/m2) † 177 (25.8%) 596 (25.6%) 0.962 

Estimated 10-y coronary risk § 3.7 (1.9-6.8) 3.3 (1.7-6.2) 0.061 
    

FRAMINGHAM    

Individuals 1,699 3,537 -- 

Age (years) * 65.8 (12.1) 56.0 (9.26) <0.001 

Gender (male) † 675 (39.7%) 1,540 (43.5%) 0.009 

Systolic Blood Pressure (mmHg) * 135 (19.9) 127 (18.3) <0.001 

Diastolic Blood Pressure (mmHg) * 75.3 (10.5) 75.0 (9.79) 0.249 

Hypertension † 861 (50.9%) 1,121 (31.7%) <0.001 

Smoking † 449 (26.5%) 713 (20.2%) <0.001 

Total cholesterol (mg/dL)* 222 (43.1) 210 (38.6) <0.001 

LDL cholesterol (mg/dL)* 125 (32.9) 125 (34.1) 0.911 

HDL cholesterol (mg/dL)* 50.2 (15.4) 51.0 (15.2) 0.087 

Triglycerides (mg/dL)‡ 120 (84.0-179) 116 (83.0-172) 0.224 

Cholesterol treatment † 55 (3.25%) 166 (4.69%) 0.015 

Diabetic status † 164 (10.1%) 226 (6.39%) <0.001 

Diabetes treatment † 72 (4.25%) 90 (2.54%) 0.001 

Body mass index (kg/m2)* 26.7 (4.77) 27.1 (4.78) 0.001 

Obesity (BMI≥30 kg/m2) † 332 (20.2%) 780 (22.1%) 0.126 

Estimated 10-y coronary risk § 12.3 (6.9-20.4) 7.79 (4.5-14.1) <0.001 

The 'not included' group includes individuals who were not between 35 and 74 years of age, who 

had had a previous event, or were missing values for classical risk factors or SNP.  

* mean (standard deviation); † n (proportion (%)); ‡ median (25 and 75 percentiles); § mean 

(95% confidence interval). 
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S.T2. Effects of classical risk factors on risk of a coronary event.  

 

 HR [95%CI] P-value 

REGICOR   

Age (10 years) 2.05 [1.69-2.49] <0.001     

Gender (men)  2.56 [1.69-3.85] <0.001     

Total cholesterol (10 mg/dL) 1.04 [1.00-1.09] 0.092      

HDL cholesterol (10 mg/dL) 0.60 [0.50-0.72] <0.001     

Systolic BP (10 mmHg) 1.38 [1.27-1.49] <0.001     

Diastolic BP (10 mmHg) 1.37 [1.15-1.64] 0.001      

Diabetes 2.55 [1.66-3.91] <0.001     

Smoker 1.21 [0.78-1.87] 0.392      

Family history of CVD* 1.58 [0.96-2.60] 0.068 

Estimated 10-y coronary risk† 1.15 [1.12-1.18] <0.001 
   

FRAMINGHAM   

Age (10 years) 1.60 [1.42-1.81] <0.001 

Gender (men)  2.22 [1.82-2.70] <0.001 

Total cholesterol (10 mg/dL) 1.07 [1.04-1.09] <0.001 

HDL cholesterol (10 mg/dL) 0.74 [0.69-0.80] <0.001 

Systolic BP (10 mmHg) 1.25 [1.19-1.31] <0.001 

Diastolic BP (10 mmHg) 1.33 [1.21-1.47] <0.001 

Diabetes 2.66 [2.02-3.49] <0.001 

Smoker 1.32 [1.07-1.65] 0.011 

Family history of CVD‡ 1.50 [1.09-2.07] 0.013 

Estimated 10-y coronary risk† 1.06 [1.05-1.06] <0.001 

 

* CVD: Cardiovascular disease. 

† Coronary risk was calculated using the original Framingham risk function for the Framingham 

cohort, and the calibrated function for the REGICOR cohort. 

‡ Only in the Offspring sample. 
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S.T4. Power calculations.  

      

Minimum HR detectable with 

high or moderate power 
Power to detect a specific HR 

  SNP se 0.8 0.5 1.05 1.09 1.10 1.12 1.14 1.18 1.29 1.35 

R
E

G
IC

O
R

 

rs17465637 0.150 1.52 1.34 0.062 0.089 0.098 0.118 0.141 0.198 0.399 0.519 

rs6725887 0.190 1.70 1.45 0.058 0.074 0.079 0.092 0.106 0.141 0.268 0.352 

rs9818870 0.207 1.79 1.50 0.056 0.070 0.075 0.085 0.097 0.126 0.233 0.305 

rs12526453 0.148 1.51 1.34 0.063 0.090 0.099 0.119 0.143 0.201 0.405 0.527 

rs1333049 0.138 1.47 1.31 0.064 0.095 0.106 0.130 0.157 0.223 0.452 0.582 

rs1746048 0.202 1.76 1.49 0.057 0.071 0.076 0.087 0.100 0.130 0.243 0.318 

rs9982601 0.194 1.72 1.46 0.057 0.073 0.078 0.090 0.104 0.136 0.259 0.339 

rs10455872 0.190 1.70 1.45 0.058 0.074 0.079 0.091 0.106 0.140 0.267 0.351 

F
ra

m
in

gh
am

 

rs17465637 0.073 1.23 1.15 0.103 0.221 0.259 0.345 0.438 0.625 0.939 0.985 

rs6725887 0.099 1.32 1.21 0.078 0.141 0.162 0.209 0.264 0.389 0.732 0.860 

rs9818870 0.091 1.29 1.19 0.084 0.158 0.183 0.239 0.303 0.446 0.801 0.911 

rs12526453 0.073 1.23 1.15 0.102 0.217 0.255 0.339 0.431 0.616 0.934 0.983 

rs1333049 0.069 1.21 1.14 0.109 0.239 0.282 0.375 0.476 0.669 0.958 0.992 

rs1746048 0.102 1.33 1.22 0.076 0.134 0.154 0.198 0.249 0.366 0.701 0.834 

rs9982601 0.094 1.30 1.20 0.081 0.150 0.172 0.225 0.284 0.418 0.769 0.888 

rs10455872 0.182 1.66 1.43 0.058 0.076 0.082 0.096 0.111 0.149 0.288 0.379 

M
et

a-
an

al
ys

is
 

rs17465637 0.066 1.20 1.14 0.114 0.254 0.300 0.400 0.505 0.702 0.969 0.995 

rs6725887 0.089 1.28 1.19 0.085 0.162 0.187 0.245 0.311 0.457 0.813 0.919 

rs9818870 0.081 1.26 1.17 0.092 0.186 0.217 0.286 0.364 0.531 0.880 0.959 

rs12526453 0.093 1.30 1.20 0.082 0.152 0.175 0.229 0.289 0.426 0.779 0.895 

rs1333049 0.062 1.19 1.13 0.123 0.283 0.335 0.445 0.558 0.758 0.984 0.998 

rs1746048 0.092 1.29 1.20 0.083 0.155 0.179 0.234 0.297 0.437 0.791 0.904 

rs9982601 0.086 1.27 1.18 0.087 0.170 0.198 0.260 0.330 0.484 0.840 0.936 

rs10455872 0.363 2.77 2.04 0.052 0.056 0.058 0.061 0.065 0.074 0.108 0.131 

 

 
  

Minimum HR detectable with 

high or moderate power 
Power to detect a specific HR 

 GRS se 0.8 0.5 1.05 1.10 1.15 1.20 1.25 1.30 1.40 1.50 

R
E

G
IC

O
R

 Linear 0.056 1.17 1.12 0.139 0.393 0.697 0.898 0.977 0.996 1.000 1.000 

Q2 0.362 2.76 2.03 0.052 0.058 0.067 0.080 0.095 0.112 0.153 0.201 

Q3 0.320 2.45 1.87 0.053 0.060 0.072 0.088 0.107 0.130 0.183 0.244 

Q4 0.294 2.28 1.78 0.053 0.062 0.076 0.095 0.118 0.145 0.209 0.281 

Q5 0.277 2.17 1.72 0.054 0.064 0.080 0.101 0.127 0.157 0.229 0.310 

F
ra

m
in

gh
am

 Linear 0.031 1.09 1.06 0.352 0.870 0.995 1.000 1.000 1.000 1.000 1.000 

Q2 0.158 1.56 1.36 0.061 0.093 0.143 0.211 0.292 0.382 0.566 0.727 

Q3 0.156 1.55 1.36 0.061 0.094 0.146 0.215 0.298 0.390 0.577 0.738 

Q4 0.153 1.53 1.35 0.062 0.096 0.150 0.223 0.310 0.405 0.597 0.758 

Q5 0.156 1.55 1.36 0.061 0.094 0.146 0.216 0.299 0.391 0.579 0.739 

M
et

a-
an

al
ys

is
 Linear 0.058 1.18 1.12 0.133 0.371 0.667 0.877 0.968 0.994 1.000 1.000 

Q2 0.145 1.50 1.33 0.063 0.101 0.162 0.243 0.338 0.442 0.643 0.800 

Q3 0.154 1.54 1.35 0.062 0.095 0.148 0.219 0.304 0.398 0.587 0.748 

Q4 0.134 1.45 1.30 0.065 0.110 0.181 0.275 0.385 0.500 0.710 0.857 

Q5 0.168 1.60 1.39 0.060 0.088 0.132 0.192 0.264 0.345 0.517 0.674 

GRS: Genetic risk score; Se: Standard error; 'HR detectable' indicates the minimum risk effect 

detectable (expressed as the exponent of the beta from the meta-analysis) with high or moderate 

power. 'Power' indicates the study's power to detect the effects sizes (hazard ratios) shown. In the 

computation of power for given effect size, scenarios with high power (≥80%) are shaded dark grey, 
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those with moderate power (≥50% and <80%) are shaded light grey, and those with power lower 

than 50% are unshaded. 

 

 

SUPPLEMENTARY FIGURES  

S.F1. Process of sample inclusion. 

 

 

 

 

 

 

 

 

 

CHD: coronary heart disease; CVD: Cardiovascular disease; n: number of individuals; Origi: 

individuals from the Framingham Original cohort; Offspr: individuals from the Framingham 

Offspring cohort.  

The values for the 10-year follow up in both cohorts have been estimated by Kaplan-Meyer (in 

REGICOR extending the results from 9.75 years of follow up to 10 years and in Framingham 

censoring the events from 13.32 to 10 years).  

In the REGICOR cohort, the events estimated by Kaplan-Meyer were lower than in the observed 

sample at a median of 9.75 years because some of the observed events occur at a later stage (>10 years 

of follow up), and therefore the estimation obtained considers those individuals as event-free. By 

contrast, some individuals with a follow up <10 years who have not presented an event are 

considered as event by the estimator. By the same principle, a reduction of ~41% and ~52% of CHD 

and CVD events from the Framingham cohort can be due to the high number of individuals with 

unavailability of genetic data (although they were eligible for the present study).  

  

4,778 participants

n=3,049

764 (age <35 / >74); 634 refused Follow Up; 
65 Previous CVD; 266 Lost Follow Up

698 without DNA or Missing  ≥ 1SNP

n=2,351

107 CHD events
(40 MI- 37 Angina- 30 CHD death)

54 additional CVD events
(36 Stroke- 13 PAD- 13 CVD death)

~103 CHD events

~44 additional 
CVD events

Mean follow-up: 9.75 years

Mean follow-up: 10 years 
(estimated by K-M)

4,778 participants

n=3,049

764 (age <35 / >74); 634 refused Follow Up; 
65 Previous CVD; 266 Lost Follow Up

698 without DNA or Missing  ≥ 1SNP

n=2,351

107 CHD events
(40 MI- 37 Angina- 30 CHD death)

54 additional CVD events
(36 Stroke- 13 PAD- 13 CVD death)

~103 CHD events

~44 additional 
CVD events

Mean follow-up: 9.75 years

Mean follow-up: 10 years 
(estimated by K-M)

10,333 participants (Origi. + Offspr.)

n=6,431

2,577 individuals who did not attend the V15 (Original)
1,325 individuals who did not attend the V5 (Offspring) 

2,894 individuals with missing genotypic or phenotypic data
or out of the inclusion criteria

n=3,537

~254 CHD events

245 additional CVD events
(162 Stroke- 63 PAD- 20 CVD death)

429 CHD events
(210 MI- 205 Angina- 14 CHD death)

~ 118 additional CVD events

Mean follow-up: 10 years 
(estimated by K-M)

Mean follow-up: 13.32 years 

10,333 participants (Origi. + Offspr.)

n=6,431

2,577 individuals who did not attend the V15 (Original)
1,325 individuals who did not attend the V5 (Offspring) 

2,894 individuals with missing genotypic or phenotypic data
or out of the inclusion criteria

n=3,537

~254 CHD events

245 additional CVD events
(162 Stroke- 63 PAD- 20 CVD death)

429 CHD events
(210 MI- 205 Angina- 14 CHD death)

~ 118 additional CVD events

Mean follow-up: 10 years 
(estimated by K-M)

Mean follow-up: 13.32 years 

REGICOR cohort Framingham cohort a) b)

211

A
P
P
E
N

D
IC

E
S

Article 4 Supplementary material



S15

S.F2. Process of SNP selection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.F3. Kaplan-Meier curves for those individuals who were included in the analysis or not, based on 

the availability of phenotypic or genotypic information from the Framingham Heart Study.  
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NHGRI GWAS Catalog
(2204 Genetic variants)

[August 2010]

21 SNPs

Inclusion/exclusion criteria
Selected phenotypes: 

- "Coronary Artery Disease"
- "Coronary Disease"
- "Myocardial Infarction"
- “Early onset Myocardial Infarction" 

8 SNPs selected:

3 SNPs excluded:
-rs17672135 (p= 2x10-6)
-rs8055236 (p= 6x10-6)
-rs688034 (p= 4x10-6)

Variants with a p-value >1 x 10-06 in the discovery study

18 SNPs
4 SNPs excluded
-rs10757278 (in LD with rs1333049)
-rs4977574 (in LD with rs1333049)
-rs501120 (in LD with rs1746048) 
-rs646776 (in LD with rs599839)

SNPs already captured by another included SNP (LD redundancy: 
r2>0.3). One SNPs per locus was randomly selected

3 SNPs excluded
-rs599839 (Total cholesterol/LDL)
-rs11206510 (LDL cholesterol)
-rs2943634 (Type 2 Diabetes/hypertension)

14 SNPs
Associated with other CVRF

2 SNPs excluded
-rs2259816 (MODY3 Diabetes)
-rs1122608 (LDL cholesterol)

11 SNPs
Although no evidence with association with CVRFs was present in the 
NHGRI GWAS Catalog, some SNPs were removed due to historical 
knowledge of association of the genes and CVRFs.

rs10455872 (LPA) included

2 SNPs excluded
-rs6922269 (MTHFD1L)
-rs17228212 (SMAD3)

9 SNPs
SNPs removed due to lack of association with CHD in the CARDIoGRAM 
study.

This SNP was included because it was associated with a CVRF NOT 
included in the classical risk functions used in the study.

G160930108LPA6rs10455872
T34520998SCL5A321rs9982601
T44095830CXCL1210rs1746048
G22115503CDKN2A/2B9rs1333049
G13035530PHACTR16rs12526453
T139604812MRAS3rs9818870
C203454130WDR122rs6725887
A220890152MIA31rs17465637

Minor AllelePositionGeneChromosomeSNP

G160930108LPA6rs10455872
T34520998SCL5A321rs9982601
T44095830CXCL1210rs1746048
G22115503CDKN2A/2B9rs1333049
G13035530PHACTR16rs12526453
T139604812MRAS3rs9818870
C203454130WDR122rs6725887
A220890152MIA31rs17465637

Minor AllelePositionGeneChromosomeSNP
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S.F4. Analysis of the goodness-of-fit of the models with and without the genetic risk score, for 

coronary heart disease events both in REGICOR (a) and Framingham (b) cohorts using the Hosmer-

Lemeshow test.  
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Chi-square = 55.37  ( df = 4 ), p-value <0.001Framinghan risk function + genetic risk score

Chi-square = 60.38  ( df = 4 ), p-value <0.001Framinghan risk function

Chi-square = 55.37  ( df = 4 ), p-value <0.001Framinghan risk function + genetic risk score

Chi-square = 60.38  ( df = 4 ), p-value <0.001Framinghan risk function

Chi-square = 3.00  ( df = 4 ), p-value = 0.557REGICOR risk function + genetic risk score

Chi-square = 4.20  ( df = 4 ), p-value = 0.383REGICOR risk function

Chi-square = 3.00  ( df = 4 ), p-value = 0.557REGICOR risk function + genetic risk score

Chi-square = 4.20  ( df = 4 ), p-value = 0.383REGICOR risk function
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SUPPLEMENTARY ANALYSES  

Supplementary Analysis 1 

Predictive capacity of a coronary risk function improved by including a 

genetic score – extension of main analysis to CVD 

1. INTRODUCTION 

In 1994 the European Atherosclerosis Society and the European Society of Hypertension published a 

set of recommendations for CHD prevention [21]. The main reason for separating CHD and total 

cardiovascular risk (CVD), which are similar but distinct outcomes, was an attempt to simplify the 

estimation of CVD risk. However, by 2003 the Third Joint Task Force Guidelines proposed a change 

from CHD to CVD prevention, to reflect the fact that atherosclerosis may affect any part of the 

vascular tree [22,23], and because some of the clinical manifestations of CVD are thought to share a 

common etio-pathogenesis with CHD.  

Although a population based strategy is critical to reducing the overall incidence of CVD [23], 

primary prevention in high risk groups is also widely implemented and an improvement of the risk 

functions for a significant reduction of incidence of the disease is warranted.  

The aims of the current analyses were also to address steps 2 and 3 of the AHA recommendations for 

the same GRS. First, we assessed the association between the multi-locus GRS and incident CVD 

events in two prospective cohort studies with low and high CVD mortality (AHA, step 2). Second, 

we assessed whether the inclusion of this GRS improves the predictive capacity of the Framingham 

risk function (AHA, step 3). In addition, we evaluated the hypothesis that the improvement in 

predictive capacity provided by the GRS is greater among individuals with intermediate risk. 

 

2. METHODS 

Follow-up and phenotype definition 

All REGICOR participants were periodically contacted to ascertain whether they had presented any 

CVD event up until the end of 2009, and events were reviewed using hospital or primary care 

records. Fatal events were identified from regional and national mortality registers. After reviewing 

all medical records and physician notes, suspected CVD events were classified in committee 

according to standardized criteria [6].  
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Among Framingham participants, a record was made of all CHD events that occurred during follow-

up until the end of 2007. Suspected cardiovascular events were reviewed by a panel of Framingham 

physician investigators after reviewing all available medical records and physician notes using 

standardized criteria [7]. 

CVD events included myocardial infarction (MI), angina, coronary revascularization and death due 

to CHD, plus atherothrombotic stroke and peripheral artery disease. 

 

3. RESULTS 

Sample selection and sample characteristics 

The number of participants included was 2,351 from the REGICOR cohort and 3,537 from the 

Framingham cohort, and the number of observed CVD events was 161 in a mean follow-up of 9.75 

years, and 674 in a mean follow-up of 13.32 years, respectively (S.F2).  

 

As observed for CHD, in the Framingham sample, there was a difference in survival rates 

between individuals who had DNA sample available and those who did not and those included 

presented a better cardiovascular risk profile (S.T1) and a lower incidence of CVD events than those 

not included (S.A1.Figure 1) 

 

S.A1.Figure 1. Kaplan-Meier curves for those individuals who were included in the analysis or not, based 

on the availability of phenotypic or genotypic information from the Framingham Heart Study. 
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The characteristics of the participants included in the present analyses stratified by cohort, and 

by the presence/absence of CVD events are shown in S.A1.Table 1. The effect of each cardiovascular 

risk factor on risk of CVD (hazard ratio) is presented in S.A1.Table 2.  

S.A1.Table 1. Description of the phenotypic characteristics of the individuals included in the analysis 

from the REGICOR and from the Framingham Heart Study cohorts.  

 

  All None CVD p-value 

REGICOR 

N 2,351 2,19 161 - 

Age (years)a 53.9 (11.2) 53.3 (11.1) 61.5 (9.52) <0.001 

Gender (male)b 1123 (47.8) 1,016 (46.4) 72 (66.5) <0.001 

SBP (mmHg)a 132 (20.8) 131 (20.5) 147 (20.1) <0.001 

DBP (mmHg)a 79.5 (10.4) 79.3 (10.3) 82.4 (11.5) 0.001 

Hypertensionb 938 (40.1) 822 (37.7) 116 (72.0) <0.001 

Smokingb 511 (22.0) 476 (22.0) 35 (21.9) 0.947 

Total cholesterol (mg/dL)a 225 (42.4) 224 (42.0) 235 (47.3) 0.011 

LDL cholesterol (mg/dL)a 152 (37.9) 151 (37.7) 161 (40.6) 0.011 

HDL cholesterol (mg/dL)a 51.7 (13.3) 52.1 (13.2) 46.4 (12.4) <0.001 

Triglycerides (mg/dL)c 92 (70-127) 91 (69-125) 116 (82-164) <0.001 

Cholesterol treatmentb 157 (6.7) 136 (6.2) 21 (13.2) 0.001 

Diabetesb 316 (13.8) 280 (13.1) 36 (22.9) 0.001 

Diabetes treatmentb 96 (4.11) 74 (3.4) 22 (13.7) <0.001 

Body mass index (kg/m2)a 27.4 (4.47) 27.3 (4.46) 28.8 (4.28) <0.001 

Obesity (BMI≥30 kg/m2)b 596 (25.6) 540 (24.9) 56 (35.2) 0.005 

Family history of CHDb 272 (11.7) 301 (11.5) 29 (18.1) 0.012 

Framingham  

N 3,537 2,863 674 - 

Age (years)a 56.0 (9.3) 54.8 (9.2) 61.2 (7.4) <0.001 

Gender (male)b 1,540 (43.5) 1,190 (41.6) 350 (51.9) <0.001 

SBP (mmHg)a 127 (18.3) 125 (17.9) 134 (18.0) <0.001 

DBP (mmHg)a 75.0 (9.8) 74.6 (9.8) 76.6 (9.7) <0.001 

Hypertensionb 1121 (31.7) 802 (28.0) 319 (47.5) <0.001 

Smokingb 713 (20.2) 531 (18.5) 182 (27.0) <0.001 

Total cholesterol (mg/dL)a 210 (38.6) 207 (37.4) 226 (39.3) <0.001 

LDL cholesterol (mg/dL)a 126 (34.0) 124 (33.3) 135 (37.3) <0.001 

HDL cholesterol (mg/dL)a 51 (15.2) 52 (15.3) 47 (14.1) <0.001 

Triglycerides (mg/dL)c 116 (83-172) 112 (80-164) 157 (107-217) <0.001 

Cholesterol treatmentb 166 (4.7) 118 (4.1) 48 (7.1) 0.001 

Diabetesb 226 (6.4) 138 (4.8) 88 (13.1) <0.001 

Diabetes treatmentb 90 (2.5) 48 (1.7) 42 (6.2) <0.001 

Body mass index (kg/m2)a 27.1 (4.8) 27.0 (4.8) 27.8 (4.5) <0.001 

Obesity (BMI≥30 kg/m2)b 780 (22.1) 604 (21.2) 176 (26.2) 0.005 

Family history of CHDb 551 (24.8) 478 (24.3) 73 (29.2) 0.089 

CVD: individuals who presented a cardiovascular event (includes those with a coronary event); SBP: 

systolic blood pressure; DBP: diastolic blood pressure; LDL: low density lipoprotein; HDL: high density 

lipoprotein; BMI: body mass index; CI: confidence interval. 
a mean (standard deviation); b n (proportion, %); c median (25 and 75 percentiles); d mean (95% 

confidence interval). 
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S.A1.Table 2. Effects (hazard ratio) of classical risk factors on risk of cardiovascular events.  

 

 HR [95%CI] P-value 

REGICOR   

Age (10 years) 2.11 [1.79-2.47] <0.001      

Gender (men)  2.27 [1.64-3.23] <0.001      

Total cholesterol (10 mg/dL) 1.05 [1.01-1.09] 0.033       

HDL cholesterol (10 mg/dL) 0.69 [0.60-0.79] <0.001      

Systolic BP (10 mmHg) 1.37 [1.29-1.46] <0.001      

Diastolic BP (10 mmHg) 1.37 [1.18-1.58] <0.001      

Diabetes 2.02 [1.39-2.93] <0.001      

Smoker 0.99 [0.68-1.44] 0.957       

Family history of CVDa 1.59 [1.06-2.37] 0.024 

Estimated 10-y CVD riskb 1.14 [1.12-1.16] <0.001 
   

FRAMINGHAM   

Age (10 years) 1.78 [1.61-1.96] <0.001 

Gender (men)  1.75 [1.52-2.04] <0.001 

Total cholesterol (10 mg/dL) 1.07 [1.05-1.09] <0.001 

HDL cholesterol (10 mg/dL) 0.79 [0.75-0.84] <0.001 

Systolic BP (10 mmHg) 1.24 [1.19-1.28] <0.001 

Diastolic BP (10 mmHg) 1.19 [1.10-1.29] <0.001 

Diabetes 2.53 [2.02-3.16] <0.001 

Smoker 1.42 [1.20-1.68] <0.001 

Family history of CVDc 1.29 [0.98-1.69] 0.067 

Estimated 10-y CVD riskb 1.06 [1.05-1.06] <0.001 
a CVD: Cardiovascular disease. b Coronary risk was calculated using the original Framingham risk function for 

the Framingham cohort, and the calibrated function for the REGICOR cohort; c Only in the Offspring sample. 

 

Validation of the association between the GRS and risk of CVD 

The results of the test for association between the genetic variants included in the GRS and incidence 

of CVD events is shown in S.A1.Table 3. The variants nominally associated with CVD events were 

rs1333049 in CDKN2A/2B and rs10455872 in LPA.  The minimum hazard ratio (HR) we were able to 

detect with 80% power for each individual variant ranged from 1.36 to 1.64, in REGICOR, from 1.17 

to 1.48 in Framingham, and from 1.15 to 1.74 in the meta-analysis (S.A1.Table 4). 

S.A1.Table 3. Characteristics of the genetic variants included in the multi-locus genetic risk score, 

magnitude of the association for coronary events in both cohorts and meta-analyses results of the observed 

effect sizes.  

SNP 
REGICOR  FRAMINGHAM  Meta-analysis 

HR[95%CI] p-value  HR[95%CI] p-value  HR[95%CI] p-value 

rs17465637 1.03 [0.80-1.31] 0.420  0.99 [0.88-1.11] 0.825  1.00 [0.90-1.11] 0.957 

rs6725887 1.30 [0.98-1.74] 0.037  1.07 [0.92-1.25] 0.402  1.13 [0.95-1.35] 0.158 

rs9818870 0.99 [0.71-1.39] 0.478  1.13 [0.98-1.30] 0.097  1.11 [0.97-1.26] 0.124 

rs12526453 1.02 [0.82-1.29] 0.418  0.95 [0.85-1.07] 0.394  0.96 [0.87-1.07] 0.483 

rs1333049 1.12 [0.90-1.39] 0.161  1.23 [1.10-1.37] <0.001  1.21 [1.09-1.33] <0.001 

rs1746048 1.30 [0.92-1.84] 0.070  0.93 [0.80-1.09] 0.375  1.06 [0.77-1.46] 0.725 

rs9982601 1.06 [0.77-1.46] 0.357  1.15 [0.98-1.33] 0.083  1.13 [0.99-1.30] 0.076 

rs10455872 1.85 [1.33-2.57] <0.001  1.25 [0.95-1.64] 0.113  1.50 [1.02-2.21] 0.037 
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MAF: Minor allele frequency obtained from CEU samples from HapMap; Weight (OR): weight assigned 

to each genetic variant; HR [95%CI]: Hazard ratio [95% confidence interval].  

 

S.A1.Table 4. Power calculations for cardiovascular disease.  

Individual SNPs 

      

Minimum HR detectable 

with high or moderate power 
Power to detect a specific HR 

  SNP se 0.8 0.5 1.05 1.09 1.10 1.12 1.14 1.18 1.29 1.35 

R
E

G
IC

O
R

 

rs17465637 0.126 1.42 1.28 0.067 0.105 0.118 0.147 0.181 0.260 0.526 0.665 

rs6725887 0.146 1.51 1.33 0.063 0.091 0.100 0.121 0.146 0.204 0.413 0.536 

rs9818870 0.171 1.62 1.40 0.059 0.079 0.086 0.101 0.119 0.162 0.318 0.417 

rs12526453 0.116 1.38 1.25 0.071 0.116 0.131 0.165 0.205 0.299 0.596 0.738 

rs1333049 0.111 1.36 1.24 0.072 0.122 0.138 0.176 0.219 0.320 0.632 0.772 

rs1746048 0.177 1.64 1.41 0.059 0.078 0.084 0.098 0.115 0.155 0.302 0.396 

rs9982601 0.163 1.58 1.38 0.060 0.083 0.090 0.107 0.126 0.174 0.345 0.452 

rs10455872 0.168 1.60 1.39 0.060 0.081 0.088 0.104 0.122 0.166 0.329 0.431 

F
ra

m
in

gh
am

 

rs17465637 0.059 1.18 1.12 0.131 0.307 0.363 0.481 0.600 0.798 0.990 0.999 

rs6725887 0.078 1.24 1.17 0.096 0.197 0.230 0.305 0.388 0.562 0.903 0.970 

rs9818870 0.072 1.22 1.15 0.104 0.223 0.262 0.349 0.444 0.632 0.942 0.986 

rs12526453 0.059 1.18 1.12 0.132 0.312 0.368 0.488 0.607 0.805 0.991 0.999 

rs1333049 0.056 1.17 1.12 0.140 0.337 0.398 0.526 0.648 0.840 0.995 1.000 

rs1746048 0.079 1.25 1.17 0.095 0.194 0.227 0.301 0.382 0.555 0.897 0.967 

rs9982601 0.078 1.24 1.17 0.096 0.198 0.231 0.307 0.391 0.565 0.905 0.971 

rs10455872 0.139 1.48 1.31 0.064 0.095 0.105 0.129 0.156 0.221 0.448 0.577 

M
et

a-
an

al
ys

is
 

rs17465637 0.054 1.16 1.11 0.149 0.364 0.429 0.563 0.688 0.872 0.997 1.000 

rs6725887 0.090 1.29 1.19 0.085 0.161 0.186 0.244 0.309 0.455 0.811 0.917 

rs9818870 0.067 1.21 1.14 0.113 0.252 0.298 0.397 0.502 0.699 0.968 0.994 

rs12526453 0.053 1.16 1.11 0.152 0.372 0.439 0.574 0.699 0.880 0.998 1.000 

rs1333049 0.051 1.15 1.11 0.161 0.397 0.467 0.607 0.733 0.903 0.999 1.000 

rs1746048 0.163 1.58 1.38 0.060 0.083 0.090 0.107 0.126 0.174 0.345 0.452 

rs9982601 0.069 1.22 1.15 0.108 0.236 0.279 0.371 0.470 0.663 0.956 0.991 

rs10455872 0.197 1.74 1.47 0.057 0.072 0.077 0.089 0.102 0.134 0.252 0.331 

GRS 

 
  

Minimum HR detectable with 

high or moderate power 
Power to detect a specific HR 

 GRS se 0.8 0.5 1.05 1.10 1.15 1.20 1.25 1.30 1.40 1.50 

R
E

G
IC

O
R

 Linear 0.046 1.14 1.09 0.185 0.543 0.858 0.977 0.998 1.000 1.000 1.000 

Q2 0.272 2.14 1.70 0.054 0.064 0.081 0.103 0.130 0.161 0.235 0.319 

Q3 0.261 2.08 1.67 0.054 0.065 0.083 0.107 0.137 0.171 0.252 0.342 

Q4 0.244 1.98 1.61 0.055 0.068 0.089 0.116 0.150 0.190 0.282 0.384 

Q5 0.237 1.94 1.59 0.055 0.069 0.091 0.120 0.156 0.197 0.294 0.400 

F
ra

m
in

gh
am

 Linear 0.023 1.07 1.05 0.549 0.983 1.000 1.000 1.000 1.000 1.000 1.000 

Q2 0.127 1.43 1.28 0.067 0.117 0.196 0.300 0.419 0.542 0.754 0.891 

Q3 0.124 1.42 1.28 0.068 0.120 0.203 0.311 0.435 0.560 0.773 0.904 

Q4 0.123 1.41 1.27 0.068 0.121 0.205 0.315 0.439 0.566 0.778 0.907 

Q5 0.122 1.40 1.27 0.069 0.123 0.210 0.323 0.451 0.579 0.791 0.916 

M
et

a-
an

al
ys

is
 Linear 0.028 1.08 1.06 0.424 0.932 0.999 1.000 1.000 1.000 1.000 1.000 

Q2 0.114 1.37 1.25 0.071 0.134 0.234 0.361 0.502 0.637 0.842 0.946 

Q3 0.113 1.37 1.25 0.072 0.134 0.234 0.363 0.504 0.639 0.844 0.947 

Q4 0.110 1.36 1.24 0.073 0.139 0.246 0.381 0.527 0.665 0.864 0.958 

Q5 0.108 1.35 1.24 0.074 0.143 0.253 0.392 0.541 0.679 0.875 0.963 
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Se: Standard error; 'HR detectable' indicates the minimum risk effect detectable (expressed as the 

exponent of the beta from the meta-analysis) with high or moderate power. 'Power' indicates the study's 

power to detect the effects sizes (hazard ratios) shown. In the computation of power for given effect size, 

scenarios with high power (≥80%) are shaded dark grey, those with moderate power (≥50% and <80%) are 

shaded light grey, and those with power lower than 50% are unshaded. 

 

The characteristics of the participants within each quintile of the GRS are shown in S.A1.Table 5. 

The GRS was not associated with classical CVRFs but was associated with gender in Framingham. 

 

S.A1.Table 5. Description of the characteristics of the participants across quintiles of the genetic risk score 

in both cohorts.  

 Quintiles of genetic score   

Variables Q1 Q2 Q3 Q4 Q5 p-value p-trend 

REGICOR        

N 524 416 473 471 467   

Age (years)a 54.1 (11.1) 52.9 (11.0) 54.6 (11.4) 54.2 (11.0) 53.6 (11.3) 0.170 0.998 

Gender (men)b 243 (46.4) 205 (49.3) 217 (45.9) 234 (49.7) 224 (48.0) 0.705 0.581 

Total cholesterol (mg/dL)a 221 (42.8) 225 (41.8) 227 (42.5) 228 (42.0) 225 (42.8) 0.072 0.049 

HDL cholesterol (mg/dL)a 51.1 (12.9) 52.4 (13.5) 52.5 (13.4) 51.0 (13.0) 51.5 (13.4) 0.304 0.866 

SBP (mmHg)a 132.0 (22.0) 131.0 (20.4) 132.0 (20.4) 134.0 (21.5) 132.0 (19.5) 0.278 0.749 

DBP (mmHg)a 78.9 (10.2) 79.5 (10.8) 79.0 (10.2) 80.2 (10.6) 79.8 (10.0) 0.257 0.099 

Diabetesb 62 (12.1) 71 (17.5) 66 (14.3) 61 (13.3) 56 (12.3) 0.137 0.590 

Smokingb 107 (20.7) 87 (21.0) 98 (20.8) 107 (23.1) 112 (24.3) 0.577 0.128 

Family history of CHDb 46 (8.88) 51 (12.4) 55 (11.6) 63 (13.5) 57 (12.4) 0.207 0.064 

Incidence of CVD eventsc 6.46 6.10 5.72 8.42 8.35 0.200 0.028 

        

FRAMINGHAM        

N 743 712 681 711 690   

Age (years)a 56.6 (9.10) 56.1 (9.12) 55.6 (9.58) 56.1 (9.12) 55.6 (9.41) 0.172 0.060 

Gender (men)b 351 (47.2) 321 (45.1) 305 (44.8) 299 (42.1) 264 (38.3) 0.008 <0.001 

Total cholesterol (mg/dL)a 208 (37.1) 209 (37.6) 213 (39.0) 211 (39.3) 210 (39.8) 0.151 0.242 

HDL cholesterol (mg/dL)a 50.5 (14.7) 50.2 (14.9) 51.1 (15.2) 52.0 (15.8) 51.3 (15.2) 0.151 0.048 

SBP (mmHg)a 127 (18.4) 126 (17.0) 127 (18.8) 126 (18.2) 127 (18.9) 0.938 0.647 

DBP (mmHg)a 75.2 (10.2) 75.1 (9.54) 74.8 (9.81) 75.0 (9.65) 74.7 (9.73) 0.872 0.329 

Diabetesb 47 (6.33) 59 (8.29) 32 (4.70) 39 (5.49) 49 (7.10) 0.059 0.658 

Smokingb 132 (17.8) 146 (20.5) 146 (21.4) 140 (19.7) 149 (21.6) 0.358 0.144 

Family history of CHDb 113 (24.6) 112 (24.7) 105 (24.7) 109 (24.8) 112 (25.3) 0.999 0.763 

Incidence of CVD eventsc 8.36 8.99 11.5 10.7 12.8 0.013 0.001 

 

HDL: high density lipoprotein; SBP: systolic blood pressure; DBP: diastolic blood pressure; CHD: 

coronary heart disease; CVD: cardiovascular disease. 
a mean (standard deviation); b n (proportion, %); c number of cases/100 individuals in 10 years. 

 

For the GRS, we estimated that our study had 80% power to detect a HR of 1.14, 1.07 and 1.08 

per unit increase in REGICOR, Framingham, and the meta-analysis, respectively (S.A1.Table 4). The 

GRS was linearly associated with incidence of CHD in both cohorts (p=0.002 in REGICOR and 

p<0.001 in Framingham; S.A1.Table 6), and in the meta-analysis, with a ~11% increase in risk of 
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having a CVD event per unit of the GRS (p<0.001; S.A1.Table 6). This association remained 

statistically significant after further adjustment for family history of CHD (HR=1.15; 95% CI: 1.08-

1.22). Participants in the top quintile of the GRS had 1.54 times greater risk of CHD, compared to 

those in the bottom quintile (p-value for linear trend <0.001) (S.A1.Table 6)). In both cohorts the 

distribution of the GRS was slightly shifted to the right in individuals who had had an event, 

compared to those who had not (S.A1.Figure 2).  

 

S.A1.Table 6. Multivariate adjusted association between risk of cardiovascular events and the genetic risk 

score, or quintiles thereof, in both cohorts and meta-analyses results of the observed effect sizes. 

 

Genetic risk 

score 

 REGICOR  Framingham  Meta-analysis 

 HR [95%CI]a P-value  HR [95%CI]a P-value  HR [95%CI]a P-value 

Linear  1.16 [1.06-1.27] 0.002  1.09 [1.04-1.14] <0.001  1.11 [1.05-1.17] <0.001 

          

Quintiles  P-trend 0.018  P-trend <0.001  P-trend <0.001 

Q1  1 ---  1 ---  1 --- 

Q2  1.09 [0.64-1.86] 0.749  1.01 [0.79-1.30] 0.916  1.02 [0.82-1.28] 0.838 

Q3  1.00 [0.60-1.67] 0.993  1.20 [0.94-1.53] 0.143  1.16 [0.93-1.45] 0.185 

Q4  1.32 [0.82-2.13] 0.255  1.25 [0.98-1.59] 0.075  1.26 [1.02-1.57] 0.033 

Q5  1.72 [1.08-2.74] 0.023   1.50 [1.18-1.90] 0.001   1.54 [1.25-1.91] <0.001 

 

All models were adjusted for the sum of the products of the coefficient for each classical risk factor 

estimated in the Framingham original and calibrated risk functions and the difference between the 

participant’s value and the population mean of that risk factor (see main text for formula). To account for 

family structure in the Framingham cohort we also adjusted for the first five genetic principal components.  
a HR [95%CI]: Hazard ratio [95% confidence interval]. 

 

S.A1.Figure 2. Density distribution of genetic risk score in REGICOR and Framingham participants 

according to the incidence of cardiovascular events during the follow-up. The GRS is represented on the x-

axis and is computed as a cumulative sum of all the risk alleles that a person carries, weighted by the effect of 

each SNP. 
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Improvement in predictive capacity: discrimination and reclassification  

The addition of the GRS to the basic risk function improved its capacity to predict CVD in the 

Framingham cohort (c-statistic, 73.18 vs. 72.65, p-value=0.005) but not in the REGICOR cohort 

(76.09 vs. 76.10, p-value=0.621). 

We observed a general tendency for both measures of reclassification improvement, the NRI and 

IDI, to increase after addition of the GRS to the basic risk function, although this improvement was 

not statistically significant for IDI index in the meta-analysis of the two cohorts. Overall, the NRI 

index in the meta-analysis was 3.67, 95%CI 0.04-7.31. However, reclassification improvement was 

more marked in the group with intermediate risk, and was statistically significant for both measures 

(NRI: 13.52, 95%CI 5.47-21.57; IDI: 0.29, 95%CI 0.06-0.52). Raw reclassification data and NRI and 

IDI for each cohort are shown in S.A1.Figure3. 

 

S.A1.Figure 3. Reclassification of individuals based on the predicted 10-year risk of cardiovascular heart 

disease with and without the genetic risk score. Four risk categories (low, intermediate-low, intermediate-high 

and high), with cut-off points defined in each cohort, were defined according to current guidelines in each 

country (REGICOR: [0-5)%, [5-10)%, [10-15)%, ≥15%; Framingham: [0-10)%, [10-15)%, [15-20)%, ≥20%, 

respectively). Light grey cells represent an improvement in reclassification and dark grey cells represent the 

opposite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 
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2974110High risk381810High risk

34180610Moderate risk2080300Intermediate-high risk

27036783Moderate risk24638379Intermediate-low risk

00761953Low risk00771428Low risk

Non-casesNon-cases

1321100High risk25500High risk

93850Moderate risk41550Intermediate-high risk

013528Moderate risk012352Intermediate-low risk

001292Low risk00542Low risk

CasesCases

High riskIntermediate-
high risk

Intermediate-low 
riskLow riskClassical risk factorsHigh riskIntermediate-

high risk
Intermediate-low 

riskLow riskClassical risk factors

Classical risk factors + Genetic ScoreClassical risk factors + Genetic Score

Framingham REGICOR

2974110High risk381810High risk

34180610Moderate risk2080300Intermediate-high risk

27036783Moderate risk24638379Intermediate-low risk

00761953Low risk00771428Low risk

Non-casesNon-cases

1321100High risk25500High risk

93850Moderate risk41550Intermediate-high risk

013528Moderate risk012352Intermediate-low risk

001292Low risk00542Low risk

CasesCases

High riskIntermediate-
high risk

Intermediate-low 
riskLow riskClassical risk factorsHigh riskIntermediate-

high risk
Intermediate-low 

riskLow riskClassical risk factors

Classical risk factors + Genetic ScoreClassical risk factors + Genetic Score

Framingham REGICOR

C
ar

di
ov

as
cu

la
r e

ve
nt

s

0.29 [0.06;0.52]0.48 [-0.07;1.03]0.26 [-0.07;0.45]0.24 [0.05;0.43]0.39 [-0.12;0.90]0.81 [0.34;1.29]Cardiovascular eventIDI

13.52 [5.47;21.57]3.67 [0.04;7.31]11.25 [1.61;20.89]3.15 [-0.89;7.20]18.76 [4.12;33.41]5.89 [-2.44;14.21]Cardiovascular eventNRI

Intermediate riskAllIntermediate riskAllIntermediate riskAll

Meta-analysisFraminghamREGICOR

0.29 [0.06;0.52]0.48 [-0.07;1.03]0.26 [-0.07;0.45]0.24 [0.05;0.43]0.39 [-0.12;0.90]0.81 [0.34;1.29]Cardiovascular eventIDI

13.52 [5.47;21.57]3.67 [0.04;7.31]11.25 [1.61;20.89]3.15 [-0.89;7.20]18.76 [4.12;33.41]5.89 [-2.44;14.21]Cardiovascular eventNRI

Intermediate riskAllIntermediate riskAllIntermediate riskAll

Meta-analysisFraminghamREGICOR
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multi-locus GRS and incidence of CVD events in two prospective cohort studies, and have shown 

that this GRS improves the capacity of the Framingham risk function to predict CVD events. In 

addition, we have also observed greater improvement in risk reclassification among individuals with 

intermediate risk. 

 

Prospective validation of the association between a novel multi-locus genetic risk score and CHD 

events 

As in the case of CHD, the GRS is linearly and directly associated with the incidence of CVD events 

in two cohorts with different basal 10-year coronary risks with a ~11% increased risk per unit of the 

GRS. The association GRS results were similar in both populations and independent of familial 

history of CHD. As observed for CHD events, this result is mainly driven by the effect size in the 

Framingham cohort and we believe that the effect size per unit of the GRS could be slightly 

underestimated.  

The 1.54-times increased risk observed for CVD is also very similar to the 1.44-times risk increase in 

CHD between the extreme quintiles of the GRS.  

 

Incremental value of the genetic risk score for CHD risk prediction 

The inclusion of the GRS improved the classification of the individuals in the different risk 

categories, especially in those individuals with intermediate risk.  

The discriminative capacity of the classical risk function was improved by inclusion of the GRS in 

the Framingham cohort but not the REGICOR. 

  

Risk estimation including information for the GRS in risk functions in individuals with 

intermediate risk 

We observed that the GRS improved the classification of individuals mainly in the intermediate risk 

group. The results of the NRI for CVD events observed in our study was 13.52%.  
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Supplementary Analysis 2 

Four SNP analysis. 
 

1. METHODS 

We sought to evaluate the reclassification of individuals based on the 10-year predicted risk of 

coronary heart disease, with and without the genetic risk score (GRS), using a GRS composed of the 

4 SNPs (rs6725887 [WDR12], rs9982601 [SCL5A3], rs1333049 [CDKN2A/2B], rs10455872 [LPA]) 

that presented consistent effects in the direction of the association in the two cohorts and in the 

meta-analysis (see table 2 in the main article). 

 

2. RESULTS 

S.A2.Table 1. Comparison of the Net Reclassification Index (NRI) results for the analyses using the 4-SNP 

and 8-SNP scores for the entire sample and separately for the intermediate risk group. 

 

 NRI results obtained using 4-SNP GRS  NRI results obtained using 8-SNP GRS 

 Cardiovascular event  Coronary event  Cardiovascular event  Coronary event 

All events        

REGICOR 5.35 [-3.57;14.27]  5.54 [-7.78;18.86]  5.89 [-2.44;14.21]  12.17 [1.99;22.34] 

Framingham  2.28 [-2.54;7.11]  3.75 [-1.45;8.95]  3.15 [-0.89;7.20]  11.25 [1.61;20.89] 

Meta-analysis 2.97 [-1.27;7.22]  3.99 [-0.86;8.83]  3.67 [0.04;7.31]  13.52 [5.47;21.57] 

        

Intermediate risk        

REGICOR 21.36 [5.05;39.91]  17.71 [-4.49;39.91]  18.76 [4.12;33.41]  24.76 [7.62;41.91] 

Framingham  15.10 [4.72;25.47]  18.04 [6.23;29.85]  2.56 [-2.89;8.01]  14.30 [3.08;25.51] 

Meta-analysis 16.77 [7.76;25.78]  17.97 [7.54;28.39]  6.37 [-2.85;15.58]  17.44 [8.04;26.83] 

  

Columns 3 and 4 show the NRI results for the 8-SNP GRS from Figure 2 in the main manuscript. 

Cell shaded in yellow indicate the results for the score that provided the greatest improvement in 

reclassification. 
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S.A2.Figure 1. Reclassification of individuals based on the predicted 10-year risk of coronary heart disease 

with and without the genetic risk score. Four risk categories (low, intermediate-low, intermediate-high and 

high), with cut-off points defined in each cohort, were defined according to current guidelines in each country 

(REGICOR: [0-5)%, [5-10)%, [10-15)%, ≥15%; Framingham: [0-10)%, [10-15)%, [15-20)%, ≥20%, 

respectively). Light grey cells represent an improvement in reclassification and dark grey cells represent the 

opposite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. DISCUSSION 

The results obtained for the NRI using only the 4 SNPs that presented the same direction of effect 

both in the REGICOR and Framingham studies, showed that although the SNPs were selected on the 

basis on the results they have in both cohorts, we still gain more information from the full set of 

SNPs independent from CVRFs. 
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Supplementary Analysis 3  

Predictive capacity analysis without CDKN2A-2B variant 

 

1. INTRODUCTION 

Genetic variants in the chromosomal region 9p21.3, specifically between the genes CDKN2A and 

CDKN2B, have been identified by GWAS studies as being associated with several complex diseases, 

including Abdominal aortic aneurysm, Breast cancer, Coronary heart disease, Glioma, Intracranial 

aneurysm, Melanoma, Myocardial infarction and Type 2 diabetes (NHGRI GWAS catalog, accessed 

in 17th November 2011). Although some variants in this region are known to be associated with T2D, 

we included in our GRS a variant from chromosomal region 9p21 that is known to be associated with 

MI/CHD risk independently of T2D risk [25].  

In the present analysis we evaluated the sensitivity of our analysis to the inclusion of this variant, not 

only to avoid the possibility of including a variant that could have some undetected association with 

T2D, but also because this variant has the largest effect on risk (OR=1.29, according to the 

CARDIoGRAM study). Our aim was to evaluate if the results in the main analyses are mainly driven 

variant. 

 

2. RESULTS 

S.A3.Table 1. Description of the characteristics of the participants across genetic risk score quintiles in both 

cohorts.  

 Quintiles of genetic score   

Variables Q1 Q2 Q3 Q4 Q5 p-value p-trend 

REGICOR        

N 511 439 502 438 461   

Age (years)a 54.7 (11.2) 52.5 (11.1) 53.6 (11.2) 53.5 (11.2) 55.1 (11.1) 0.005 0.343 

Gender (men)b 247 (48.3) 207 (47.2) 231 (46.0) 204 (46.6) 234 (50.8) 0.617 0.577 

TC (mg/dL)a 223 (41.8) 224 (40.6) 226 (43.4) 227 (44.9) 226 (41.6) 0.608 0.135 

HDLc (mg/dL)a 50.8 (12.6) 52.9 (13.4) 52.5 (13.8) 51.1 (13.2) 51.2 (13.2) 0.058 0.695 

SBP (mmHg)a 133 (21.9) 132 (21.4) 130 (20.2) 132 (20.3) 134 (20.0) 0.139 0.753 

DBP (mmHg)a 79.3 (10.5) 80.0 (10.5) 78.9 (10.4) 79.0 (10.2) 80.3 (10.2) 0.151 0.444 

Diabetesb 73 (14.7) 61 (14.3) 61 (12.3) 67 (15.8) 54 (11.9) 0.404 0.400 

Smokingb 102 (20.2) 98 (22.4) 106 (21.4) 93 (21.6) 112 (24.4) 0.621 0.202 

CHD Family hist b 55 (10.8) 39 (9.01) 53 (10.7) 68 (15.7) 57 (12.5) 0.028 0.038 

Estimated 10-y coronary riskc 3.6 (1.9-6.6) 3.1 (1.4-5.5) 3.1 (1.7-5.9) 3.2 (1.6-6.5) 3.6 (1.9-6.3) 0.015 0.299 

Incidence of CVD eventsd 6.23 5.98 5.94 6.82 10.3 0.004 0.004 

Incidence of coronary eventsd 4.43 3.93 3.84 4.95 7.95 0.004 0.002 
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FRAMINGHAM        

N 743 712 681 711 690   

Age (years)a 56.3 (9.18) 56.4 (9.12) 55.6 (9.44) 56.0 (9.32) 55.7 (9.27) 0.389 0.145 

Gender (men)b 371 (50.2) 299 (42.2) 316 (46.2) 282 (41.0) 272 (37.9) <0.001 <0.001 

TC (mg/dL)a 209 (37.5) 211 (37.7) 209 (38.5) 209 (38.6) 213 (40.4) 0.158 0.233 

HDLc (mg/dL)a 50.4 (14.5) 51.0 (14.8) 50.9 (15.7) 51.1 (15.4) 51.8 (15.4) 0.532 0.103 

SBP (mmHg)a 126 (17.4) 127 (18.3) 127 (19.2) 126 (17.9) 127 (18.6) 0.785 0.941 

DBP (mmHg)a 75.0 (9.61) 75.3 (9.70) 75.5 (10.3) 74.6 (9.82) 74.4 (9.55) 0.230 0.131 

Diabetesb 48 (6.50) 53 (7.49) 40 (5.85) 39 (5.67) 46 (6.41) 0.668 0.499 

Smokingb 135 (18.3) 140 (19.8) 138 (20.2) 135 (19.6) 165 (23.0) 0.250 0.048 

CHD Family hist b 113 (24.6) 112 (24.7) 105 (24.7) 109 (24.8) 112 (25.3) 0.999 0.763 

Estimated 10-y coronary riskc 8.6 (4.7-14.5) 8.1 (4.6-14.1) 8.1 (4.4-14.3) 7.5 (4.5-13.3) 7.8 (4.1-14.1) 0.342 0.041 

Incidence of CVD eventsd 10.40 11.10 10.70 8.06 12.50 0.200 0.369 

Incidence of coronary eventsd 7.20 7.38 7.34 5.43 8.72 0.210 0.672 

HDLc: high density lipoprotein cholesterol; SBP: systolic blood pressure; DBP: diastolic blood pressure; CHD: 

coronary heart disease; CVD: cardiovascular disease; TC: Total cholesterol; CHD Family hist: CHD Family 

history. 
a mean (standard deviation); b n (proportion, %); c mean (95% confidence interval); d number of cases/100 

individuals in 10 years. 

 

S.A3.Table 2. Multivariate adjusted association of the genetic risk score with cardiovascular and coronary 

events as a linear variable and across quintiles in both cohorts and meta-analyses results of the observed effect 

sizes. 

 Genetic 

risk score 

 REGICOR  Framingham  Meta-analysis 

  HR [95%CI]a P-value  HR [95%CI]a P-value  HR [95%CI]a P-value 

C
a

rd
io

v
a

sc
u

la
r 

e
v

e
n

ts
 Linear  1.21 [1.08-1.35] 0.001  1.05 [0.99-1.12] 0.099  1.12 [0.97-1.28] 0.113 

          

Quintiles  P-trend 0.0050  P-trend 0.452  P-trend 0.235 

Q1  1 ---  1 ---  1 --- 

Q2  1.02 [0.60-1.73] 0.944  0.92 [0.73-1.17] 0.515  0.94 [0.75-1.16] 0.546 

Q3  0.86 [0.50-1.45] 0.566  1.03 [0.81-1.31] 0.801  1.00 [0.80-1.24] 0.993 

Q4  1.19 [0.73-1.94] 0.487  0.87 [0.68-1.12] 0.278  0.95 [0.72-1.24] 0.685 

Q5  1.87 [1.19-2.91] 0.006   1.13 [0.89-1.42] 0.316   1.40 [0.86-2.28] 0.177 

C
o

ro
n

a
ry

 e
v

e
n

ts
 

Linear  1.26 [1.10-1.43] 0.001  1.05 [0.97-1.13] 0.247  1.14 [0.95-1.36] 0.147 

          

Quintiles  P-trend 0.0024  P-trend 0.781  P-trend 0.318 

Q1  1 ---  1 ---  1 --- 

Q2  0.88 [0.44-1.77] 0.718  0.98 [0.73-1.31] 0.874  0.96 [0.74-1.26] 0.792 

Q3  0.90 [0.47-1.74] 0.760  1.00 [0.74;1.35] 0.995  0.98 [0.75-1.29] 0.895 

Q4  1.36 [0.75-2.48] 0.311  0.80 [0.59-1.11] 0.179  0.98 [0.59-1.62] 0.935 

Q5  2.10 [1.21-3.64] 0.008   1.13 [0.85-1.51] 0.412   1.47 [0.81-2.68] 0.208 

All models were adjusted for the sum of the products of the coefficient for each classical risk factor estimated 

in the Framingham original and calibrated risk functions and the difference between the participant’s value 

and the population mean of that risk factor (see main text for formula). To account for family structure in the 

Framingham cohort we also adjusted for the first five genetic principal components. a HR [95%CI]: Hazard 

ratio [95% confidence interval]. 

Cell shaded in yellow indicate the results for the score that provided a more significant association between 

the GRS and risk of CVD or CHD events. 
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S.A3.Table 3. Comparison of the Net Reclassification Index (NRI) results for the 7-SNP score (GRS of the 

main analysis without the variant of Chromosome 9: CDKN2A-2B) and 8-SNP score analyses, for the entire 

sample and separately for the intermediate risk group. 

 NRI results obtained with 7 SNPs GRS  NRI results obtained with 8 SNPs GRS 

 Cardiovascular event  Coronary event  Cardiovascular event  Coronary event 

All individuals        

REGICOR 6.76 [-1.60;15.11]  11.02 [-0.78;22.82]  5.89 [-2.44;14.21]  12.17 [1.99;22.34] 

Framingham  3.15 [-1.02;7.32]  2.56 [-2.89;8.01]  3.15 [-0.89;7.20]  11.25 [1.61;20.89] 

Meta-analysis 3.87 [0.14;7.60]  5.10 [-2.50;12.71]  3.67 [0.04;7.31]  13.52 [5.47;21.57] 

        

Intermediate risk        

REGICOR 21.80 [6.82;36.79]  21.91 [2.25;41.56]  18.76 [4.12;33.41]  24.76 [7.62;41.91] 

Framingham  11.25 [1.60;20.90]  14.30 [3.82;24.77]  2.56 [-2.89;8.01]  14.30 [3.08;25.51] 

Meta-analysis 14.90 [5.07;27.74]  15.98 [6.74;25.23]  6.37 [-2.85;15.58]  17.44 [8.04;26.83] 

 The two columns presented for NRI results obtained with a GRS composed of 8 SNPs are the ones presented 

in the main document.  

Cell shaded in yellow indicate the results for the score that provided the greatest improvement in 

reclassification. 

 

3. DISCUSSION 

The results shown in S.A3.Table 2 and S.A3.Table 3 suggest that, although the results do not change 

markedly after excluding the variant on 9p21, it is mainly in the Framingham Heart study that this 

variant evaluated has a greater effect on the GRS, and in some cases it can drive the meta-analyses to 

a significant result.  This is consistent with the effect sizes observed for the individual SNPs in each 

cohort, because this variant presents a HR lower than the average in the REGICOR study, and the 

opposite scenario for both the Framingham and meta-analysis (see table 2 in the main article).  
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Supplementary Analysis 4  

Predictive capacity analysis with a 12-SNP based GRS in the 

Framingham cohort 

 

1. METHODS 

We sought to evaluate the reclassification of individuals based on the 10-year predicted risk of 

coronary heart disease, with and without the genetic risk score (GRS), using a GRS composed of the 

12 SNPs (rs17465637 [MIA3]; rs6725887 [WDR12]; rs9818870 [MRAS]; rs12526453 [PHACTR1]; 

rs1333049 [CDKN2A/2B]; rs1746048 [CXCL12]; rs9982601 [SCL5A3]; rs10455872 [LPA];) 

representing the addition of 4 additional SNPs obtained from refs [3,26]. 

 

2. RESULTS 

S.A4.Table 1. Multivariate adjusted association between the genetic risk score and risk of coronary events as a 

continuous variable and between quintiles. 

 

 Coronary event  Cardiovascular event  

Genetic risk score HR (95% CI) p-value HR (95% CI) p-value 

Continuous 1.06 (1.01-1.11) 0.013 1.08 (1.04-1.12) <0.001 

     

Quintiles p-trend 0.017 p-trend <0.001 

Q1 1 -- 1 -- 

Q2 1.08 (0.80-1.46) 0.628 1.08 (0.84-1.39) 0.531 

Q3 1.05 (0.78-1.43) 0.737 1.17 (0.91-1.50) 0.221 

Q4 1.28 (0.95-1.71) 0.104 1.33 (1.05-1.70) 0.020 

Q5 1.36 (1.02-1.81) 0.039 1.52 (1.20-1.93) 0.001 

 

S.A4.Table 2. Reclassification of individuals based on the 10-year predicted risk of coronary heart disease with 

and without the genetic risk score. Risk categories were defined using national recommendations. Cut-off 

points: low [0-10)%, intermediate-low [10-15)%, intermediate-high [15-20)% and high =20% risk. 

 

  ALL Intermediate risk 

NRI 
Coronary event 0.91 [-4.38;6.21] 7.80 [-1.76;17.36] 

Cardiovascular event 1.30 [-3.16;5.76] 10.55 [0.40;20.70] 

    

IDI 
Coronary event 0.22 [0.04; 0.41] 0.22 [-0.06; 0.49] 

Cardiovascular event 0.27 [0.09; 0.46] 0.25 [-0.03; 0.54] 
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