Optimization and control of Fed-batch Fermentation
Processes by Using Artificial Neural Systems

Catalina Valencia Peroni

" ft

Departament D’Enginyeria Quimica
Escola Técnica Superior D’Enginyeria Quimica

Universitat Rovira I Virgili

The copyright of the preprints in the annex of this report belongs to the journals
where they will be published. Anyone wishing to reproduce partialy or totally
those preprints should ask permission to the copyright owner.

© 2002

Programa de doctorat: Enginyeria Quimica
Bienni: 1998-2000
Control of Fed-batch Fermentation Processes by Using Artificial Neural Systems
Memoria presentada per na Catalina Valencia Peroni per a optar al titol de Doctor en

Enginyeria Quimica

Certifiquem que la present memoria ha estat realitzada sota la nostra direccio i que tots els
resultats presentats i la seva analisi son fruit de la investigacid realitzada per I'esmentat
doctorant. Tarragona, Catalunya, Spain, Octubre 2002.

Francesc Giralt Prat Jaume Giralt Marcé
Catedratic Catedratic
Departament D’Enginyeria Quimica Departament D’Enginyeria Quimica

Universitat Rovira i Virgili Universitat Rovira i Virgili

Abstract

This work focuses on the application of neural networks in the areas of modelling,
identification, control and optimization of biothechnology processes, mainly fed-batch
bioreactors. The basic ideas and techniques of artificial neural networks are presented with
the notation familiar to control engineers. The applications of a variety of neural network
architectures in control and control schemes are first surveyed. Some especific fed-batch
bioreactor processes are mentioned to illustrate particular control cases to be examimined in
detail and solved. Especifically, a non-linear multivariable bioreactor control problem is used
as a case study for model based control techniques. An implementation of direct and inverse
process control models based on neural networks that considers biological, thermal and pH
effects for this multivariable fed-batch bioreactor is performed and tested. Multilayer
perceptrons and radial basis functions neural networks are considered to model this type of
non-linear multi-input multi-output (MIMO) dynamic process. The direct models are
successfully tested under steady state, dynamic process operation and when a acid
disturbance in the process causes a plant/model mismatch. The inverse process model is also
successfully tested at the set-point input with a random series of perturbations around the
plant operation state. The RBF architecture with goal 3.0 is the best architecture for the
direct model of this multivariable process while the best inverse model is based on a MLP 19-
11-7-1 trained including past information of the steady states of the process.

On the other hand, optimal control techniques that employ neural networks are studied to
optimize the production of invertase in a fed-batch bioreactor. The controlled addition of
substrates is used in this bioreactor process to increase productivity when end-product
inhibition or catabolite repression are present. Cloned invertase production in Saccharomyces
cerevisiae yeast is carried out in fed-batch mode of operation because the enzyme expression
is repressed at high glucose concentrations. An optimal glucose feed rate profile is needed to
achieve the highest fermentation profit. The controller has to find at each time step an
optimal control action that increments the fed-batch bioreactor profitability, even when a
disturbance or a set-point change arise. This optimal control action increases the productivity
and, within the same optimization process, finds the optimal fermentation ending time. This
double optimization is a novelty not met by previous optimization schemes published in the
literature. A neuro dynamic programming (NDP) approach coupled with MLP neural networks
or fuzzy ARTMAP systems is employed to accomplish these optimization objectives. Fuzzy
ARTMAP creates multidimensional category maps by incremental supervised learning. The
optimization method utilizes suboptimal control policies as a starting guess. The neural
networks are used to build a cost surface in the state space visited by the process. Bellman’s
iteration is used to improve the cost approximation. The cost surface obtained is implemented
into a control system. The controller is tested for different fermentation processes started

with different initial fermentation volumes. NDP outperforms other optimization methods
employed to find an optimal feeding profile. Besides, it can be used to optimize any
fermentation process (starting at different initial conditions) because the future costs (profits)
are characterized as a function of system states. The optimal control trajectories found by the
controller are similar to the best suboptimal policy for each initial volume. MLP-NDP
controllers yield the highest profits, but the manipulated variable trajectories are not smooth.
Fuzzy ARTMAP-NDP overcomes this limitation. The best fuzzy ARTMAP-NDP based control
system is also tested when an abrupt death of yeast cells occurs. In this case, the controller
performance is better than the performance of the fermentation using the best suboptimal
policy for the given initial volume.

The integration of control science with neural networks in a unified presentation and
identification key areas is a path to follow in future research. Artificial neural networks

techniques can be succesfully applied to control fed-batch bioreactors.

Resumen
Optimizacion y Control de Procesos de Fermentacion Fed-batch a

través de Sistemas Neuronales Artificiales

Los procesos de fermentacion son ampliamente utilizados en la industria quimica,
farmacéutica y alimentaria. La producciéon de comida para animales, yogures, quesos,
cerveza, colorantes para comida, fertilizantes, medicinas terapéuticas y penicilina, entre
otros, son algunos ejemplos de procesos biotecnoldgicos. En una busqueda rapida en
Internet, cerca de 113000 sitios fueron encontrados, todos ellos relacionados con productos
de procesos de fermentacion.

El campo de aplicacién de la bioingenieria abarca desde los procesos tradicionales de
fermentacidn de vinos hasta la industrializacién de no solo la produccién de cerveza, queso y
leche; sino también de nuevos productos biotecndlogicos como son los antibidticos, enzimas,
hormonas, vitaminas, azucares y &acidos organicos. Desde tiempos remotos los
microorganismos han sido utilizados por el hombre en la produccién de alimentos esenciales,
como el pan o el queso. El arte de hacer vino ha pasado de padre a hijo desde el antiguo
Egipto. Solo hasta finales del siglo XIX, gracias a los estudios del quimico y microbidlogo
Louis Pasteur, nacié la biotecnologia como ciencia. La definicién actual de biotecnologia,
segun la OCDE, es la aplicacion de la ciencia y la tecnologia tanto a organismos vivos como a
partes, productos y modelos de ellos, con el propésito de modificar tanto materia viva como
la no viva con el fin de producir conocimiento, bienes y servicios.

Un proceso de fermentacion es un proceso quimico en el cual se emplean microorganismos
para obtener un producto en particular, aprovechando la selectividad de los microorganismos
para producir un determinado compuesto. Los procesos de fermentacion son llevados a cabo
en un bioreactor. Un bioreactor es un recipiente en el cual microorganismos son cultivados de
manera controlada y/o materia prima es convertida o transformada debido a reacciones
bioldgicas.

En una fermentacion, es necesario un control adecuado de todas las variables de proceso,
debido a que cualquier cambio inesperado en el valor de alguna de ellas puede afectar el
desarrollo de los microorganismos y en consecuencia disminuir la productividad del
bioreactor. El principal objetivo de controlar un proceso de fermentacién es maximizar la
produccion de microorganismos u otros compuestos metabdlicos. Avances recientes en
ingenieria genética han aumentado la importancia del adecuado control de los procesos
biotecndlogicos. El uso de células de mamiferos o microorganismos en la produccién de
moléculas complejas requiere el analisis y control de todas las variables de proceso, tales
como temperatura, concentracién de oxigeno y pH.

El presente trabajo se centra en la aplicacion de redes neuronales artificiales en las dreas de
modelado, identificacion, control y optimizacion de procesos biotecnoldgicos, principalmente

en bioreactores del tipo fed-batch. Un bioreactor fed-batch se emplea cuando la produccion
de determinado compuesto de interés, es inhibida debido a la alta concentracién de
substrato. En un proceso fed-batch, la fermentacion empieza con un volumen, concentracion
de microorganismos y substrato determinados y, a medida que transcurre el proceso de
fermentacion, el substrato se afiade poco a poco, hasta que se consigue llenar el bioreactor.

En este trabajo las ideas y técnicas utilizadas por las redes neuronales artificiales son
presentadas con la notacion familiar para un ingeniero de control. Diferentes estructuras de
redes neuronales artificiales y su posible aplicacion a diferentes sistemas de control son
resumidas. También son presentados algunos procesos de fermentacion fed-batch. Dichos
procesos son empleados para ilustrar casos especificos de problemas control.
Especificamente, un modelo no lineal y multivariable de un bioreactor es empleado para
ilustrar las técnicas de control basadas en el modelo del proceso. Un modelo para la
produccidn de invertasa a través de la levadura Saccharomyces cerevisiae es empleado para
ilustrar las técnicas de optimizacién y control.

Dentro de las técnicas de control basadas en el modelo del proceso, se implementd un
modelo directo y uno inverso de la fermentacion multivariable antes mencionada. Ambos
modelos, basados en redes neuronales artificiales, consideran efectos bioldgicos, térmicos y
de pH. Multilayer perceptron y Radial Basis Function son las redes neuronales empleadas
para la construccion de los dos modelos. Para ilustrar la fiabilidad de estos modelos,
diferentes pruebas les fueron realizadas. El modelo directo del proceso de fermentacion,
basado en redes neuronales, fue probado en operacion en estado estacionario, en estado
dindmico y cuando una perturbacion en el acido causa que el pH del proceso sea diferente. El
modelo inverso del proceso de fermentacién fue probado haciendo cambios aleatorios en el
punto de referencia. Con la arquitectura Radial Basis Function se obtuvo el mejor modelo
directo. Para el modelo inverso del proceso de fermentacién, se encontrd que la mejor
arquitectura es la multilayer perceptron 11-7-1, entrenada con informacién de los estados
estacionarios del proceso.

Por otro lado, para la optimizacion de la produccién de invertasa es necesario encontrar el
perfil de alimentacion optimo, de manera que la productividad del bioreactor sea maxima y el
tiempo de fermentacion sea minimo. Este doble objetivo de optimizacién es una novedad y
no ha sido antes obtenido por otros esquemas de optimizacion previamente publicados. El
objeto del controlador debe ser hallar a cada instante de tiempo la accién optima de control,
es decir, cada vez encontrar cual es el flujo de alimentacién adecuado para cumplir el doble
objeto de la optimizacion. En este trabajo se utiliza la programacién dindmica neuronal (NDP)
con el fin de implementar dicho controlador. Esta técnica emplea redes multilayer perceptron
o fuzzy ARTMAP para realizar la optimizacion del proceso. NDP utiliza perfiles de alimentacion
subdptimas como suposicion inicial. A través de esta suposicidn, una red neuronal es

empleada para construir la superficie de costos en el espacio de los estados del proceso. Esta

superficie de costos se mejora a través de la iteracion de Bellman. Una vez obtenida una
buena aproximacion a la superficie de costos Optima, esta es implementada en un sistema de
control que hace uso también de la ecuacién de Bellman. El controlador es probado en
diferentes condiciones de operacion del proceso de fermentacion, especificamente cuando la
fermentacion comienza con diferentes voliumenes iniciales. Al comparar la metodologia
empleada se encontré que esta es mejor que otros métodos de optimizacion utilizados con el
mismo fin, debido a que la metodologia NDP puede ser usada en diferentes procesos de
fermentacidon sin necesidad de realizar una optimizacién on-line. Las trayectorias dptimas
encontradas por el controlador son similares a la trayectoria seguida por el mejor de los
perfiles subdptimos. Con multilayer perceptron- NDP se obtienen los mas altos rendimientos
pero la trayectoria de variable manipulada es muy abrupta. Con fuzzy ARTMAP-NDP no se
presenta este problema. El controlador que implementa fuzzy ARTMAP-NDP es probado
también cuando hay un cambio brusco en la concentracién de células. El 50% mueren. En
este caso el desempefio del controlador es mejor que el rendimiento de la fermentacion
cuando la mejor de los perfiles de alimentacion subdptimas es utilizado.

Por Ultimo se puede decir que la integracion de la ingenieria de control con las redes
neuronales es un fructifero camino a sequir por futuras lineas de investigacidon ya que las
redes neuronales artificiales pudieron ser empleadas con éxito en el control de bioreactores
fed-batch.

Publicaciones

Valencia C., Giralt J., Arenas A., Giralt F., Implementation of a non-linear multivariable
(MIMO) process control model of a fed-batch bioreactor with neural networks. Poster

Session: Topics in systems and process control, AIChE annual meeting Reno 2001.

Valencia C., Giralt J., Arenas A., Giralt F., Non-linear multivariable (MIMO) process control
model of a fed-batch bioreactor with neural networks. Submitted to Chemical Engineering
Science. 2002

Valencia C., Lee J.H., Kaisare N.S., Final time and productivity optimization of a fed-batch
bioreactor for invertase production. Presented at Control of Pharmaceutical and Biological

Processes Session 347, AIChE annual meeting, Indianapolis 2002.

Valencia C., Giralt J., Arenas A., Giralt F., Optimization of invertase production in a fed-batch
bioreactor using dynamic programming coupled with fuzzy ARTMAP, to be submitted to

Biotechnology and Bioengineering 2002

Resumen

Optimitzacid i Control dels Processos de Fermentacié Fed-batch a
través de Sistemes Neuronals Artificials

Els processos de fermentacié sén amplament utilitzats en I'indstria quimica, farmacéutica i
alimentaria. La produccié de menjar per a animals, iogurts, formatge, cervesa, colorants per
aliments, fertilitzants, medicines terapéutiques i penicil-lina entre altres, sén alguns exemples
de processos biotecnologics. En una recerca rapida a Internet, cerca de 113000 llocs van ser
trobats, tots ells relacionats amb productes de processos de fermentacid.

El camp d‘aplicacié de la bioenginyeria avarca des d'els tradicionals processos de fermentacio
de vi fins a lindustrialitzacié de no solament la produccié de cervesa, formatge i llet; sind
també de noves productes biotecnologics com sén els antibiotics, enzims, hormones,
vitamines, sucres i acids organics. Des de temps remots els microorganismes van ser utilitzats
per I'home en la produccié d'aliments basics, com el pa o el formatge. L'art de fer vi a passat
de pares a fills des d'l antic Egipte. Només fins a finals del segle XIX, gracies als estudis del
quimic i microbidleg Louis Pasteur, va naixer la biotecnologia com a ciéncia. La definicid
moderna de biotecnologia, segons la OCDE, és |'aplicaci de la ciéncia i la tecnologia tant als
organismes vius com a les seves parts, productes i models dells, amb el proposit de
modificar tant la matéria viva com la no viva amb I'objecte de produir coneixements, bens i
serveis.

Un procés de fermentacié és un procés quimic que fa servir microorganismes per a obtenir un
producte en particular, aprofitant la selectivitat dels microorganismes per a produir un
determinat compost. Els processos de fermentacid es realitzen en un bioreactor. Un
bioreactor és un vaixell on els microorganismes son cultivats de forma controlada i/o matéria
primera és convertida o transformada per reacciones biologiques.

En una fermentacid, es necessita un adequat control de totes les variables de procés, per tal
que qualsevol canvi inesperat en el valor d‘alguna de elles pot afectar el desenvolupament de
els microorganismes i en conseqiiéncia disminuir la productivitat del bioreactor. El principal
objectiu de controlar un procés de fermentacid, és maximitzar la produccid de
microorganismes o altres compostos metabolics. Recents avangos en enginyeria genética han
augmentat la importancia de l'adequat control dels processos biotecnoldgics. L'ls de cél-lules
de mamifers o microorganismes en la produccié de molécules complexes necessita de I'analisi

i el control de totes las variables de procés, tal com temperatura, concentracio d’oxigen i pH.

El present treball es centra en l'aplicacid de xarxes neuronals artificials en les arees de

modelat, identificacié, control i optimitzacié de processos biotecnologics, principalment en

bioreactors de tipus fed-batch. Un bioreactor fed-batch es fa servir quan la produccié d'un
determinat compost d'interés, és inhibida per I'alta concentracié de substrat. En un procés
fed-batch, la fermentaci6 comenga amb un volum, concentracid de microorganismes i
substrat determinats i a mida que transcorre el procés de fermentacid, el substracte s'agrega
poc a poc, fins que el bioreactor és ple.

En aquell treball les idees i técniques utilitzades per las xarxes neuronals artificials son
presentades amb la notaciéd familiar per a un enginyer de control. Diferents estructures de
xarxes neuronals artificials i la seva possible aplicacié a diferents sistemes de control van ser
resumides. També s'han presentat alguns processos de fermentacid fed-batch. Aquests
processos es fan servir per il-lustrar casos especifics de problemes de control. Especificament,
un model no lineal i multivariable d’un bioreactor es fa servir per il-lustrar les técniques de
control basades en el model del procés. Un model per a la produccié de invertasa a través del
llevat Saccharomyces cerevisiae es fa servir per il-lustrar les técniques d’optimitzacid i control.
Dins les técniques de control basades en el model del procés, es va a implementar un model
directe i un invers de la fermentaci6 multivariable. Els dos models, basats en xarxes
neuronals artificials, consideren efectes bioldgics, térmics i de pH. Multilayer perceptron i
Radial Basis Function son las xarxes neuronals que es van a fer servir per a la construccio
d’ambdds models. Per il-lustrar la fiabilitat d'aquests models, diferent proves van ser
realitzades. El model directe del processo de fermentacié, basat en xarxes neuronals, va ser
provat quan el procés opera en estat estacionari, en estat dinamic i quan una perturbacié en
I'acid causa que el pH del procés sigui un altre. EI model invers del procés de fermentacid
també va ser provat fent canvis aleatoris del punt de consigna. L'arquitectura Radial Basis
Function va a ser el millor model directe que es va a trobar. Pel model invers del procés de
fermentacid, es va a trobar que la millor arquitectura es la Multilayer Perceptron 11-7-1, que
va ser entrenada amb informacié dels estats estacionaris del procés.

Per una altre banda, per a l'optimitzacid de la produccié de invertasa es necessita trobar el
perfil d’alimentacié optim, de manera que la productivitat del bioreactor sigui maxima i el
temps de fermentacié sigui minim. Aquest doble objectiu de optimitzacid constitueix una
novetat i no ha estat obtingut per altres métodes d'optimitzacid préviament publicats.
L'objectiu del controlador és trobar a cada instant de temps l'accié optima de control, és dir,
cada vegada trobar quin és el flux d’alimentacié correcte per complir el doble objecte de
I'optimitzacid. Aquest treball va fer servir la programacié dinamic neuronal (NDP) amb
I'objectiu de implementar aquell controlador. Aquesta técnica fa servir xarxes multilayer
perceptron o fuzzy ARTMAP. Aquest meétode d'optimitzacid utilitza perfils d‘alimentacio
suboptimes com a suposicio inicial. A través della, una xarxa neuronal es utilitzada per
construir la superficie de costos en |'espai dels estats del procés. Aquesta superficie de costos
es millora a través de la iteracié de Bellman. Una vegada obtinguda una bona aproximacié a

la superficie de costos optima, aquesta es implementada en un sistema de control que fa Us

de I'equacié de Bellman. Aquest controlador és provat dins diferentes condiciones d’operacid
del procés de fermentacid, especificament quan la fermentacid comenca amb diferents
volums inicials. S'ha trobat que la metodologia emprada és millor que altres métodes de
optimitzacié ja que es pot utilitzar en altres processos de fermentacid sense la necessitat de
fer una optimitzacid on-line. Les trajectories optimes trobades pel controlador son similars a
la trajectoria seguida pel millor dels perfils suboptims. Amb Multilayer Perceptron- NDP s’han
obtingut els millores rendiments, perd la trajectoria de variable manipulada és forca abrupta.
Amb Fuzzy ARTMAP-NDP no es presenta aquest problema. El controlador que implementa
fuzzy ARTMAP-NDP és provat també quan es presenta un canvi brusc en la concentracié de
cél-lules. El 50% moren. En aquell cas el desenvolupament del controlador és millor que el

rendiment de la fermentacié quan el millor dels perfils d'alimentacié suboptimes es fan servir.

Per dltim es pot dir que la integracié de I'enginyeria de control amb les xarxes neuronals és
un cami a seguir per futures linees d'investigacid. Las xarxes neuronals artificials poden, amb

éxit, fer-se servir en el control de bioreactors fed-batch.

A los fisicos y matematicos por hacer del mundo un lugar mas entretenido

Acknowledgements

I would like to acknowledge my thesis advisors Francesc Giralt and Jaume Giralt Marcé for
their ideas and support and to the Spanish government for the scholarship that made
possible the realization of this work.

Someone said that each person is a brut diamond that is polished little by little by every one
that she or he meets. I agree with that thought and I would like to acknowledge all people
that have polished my mind during these four years. My thesis advisors and Alex Arenas.
Also, Prof. Venkat Venkatasubramanian from Purdue University that kindly accepted me in his
research group during the summer of 2000 and introduced me to MATLAB. To Prof. Jay H.
Lee from Georgia Institute of Technology that introduced me to optimal control and gently
accepted my visit to his research group during the fall of 2001.

To my teachers at the Rovira I Virgili University: Lourdes Vega, Josep Bonet, Allan Mackie,
Azael Fabregat, Ildelfonso Cuesta, Joan Herrero, Jim Keffer, Jordi Grifoll, Rene Bafares,
Srinivasa Murthy and Lidia Quinzani. The teachers I kindly had at UPC: Robert Grifio for his
robust control course, Joan Cabestany and Rene Alquezar for their introductions to neural
nets. To the teachers that accepted me at their courses at Gatech: Nader Sadegh for his
linear control course, Ashok Goel from Computer Science, Prof Hayes and his ultra-tech
classes of adaptive filters, and specially to Prof. Anton J. Kleywegt and his introduction to the
optimization world through the stochastic optimization course at the school of industrial and
systems engineering.

To the researches of the Fenomens de transport group that I did not mentioned before: Joan
Ferré, Robert Rallo and Dolors Puigjaner.

Also to the people from the Intelligent Process Systems Laboratory of Purdue University,
especially to Sourab Dash and to the people from ISSICL group at Georgia Institute of
Technology: Niket Kaisare, Jong Min Lee, Dr. Kangwook Lee, Yandog Pan, Andrew Dorsey
and Jaein Choi.

Because a person is composed by both mind and soul and one cannot develop without the
other, I would like also to mention the people that polish my soul, and my mind in some
degree.

Firstty my Tarragona friends: Vesselina P. Pashova, Gabriela Espinosa, Jorge Velasquez,
Eliana Arango. Camilo Zapata for his constant support. Pedro Zapata the best roommate I
ever had even with Paula’s story. My despatx partners Josep Maria Gasto, Roger Guimera,
Orlando Silva, Gabriela again and Paulo Louvo. Among them all the people who saw me cry
and laugh and helped me in the hardest times. Alejandro Gomez and his directions, and la
Encuesta de la semana y el espacio muestral that keep me up to date with Medellin news.

The Purdue crew: Erika Hernandez, Luis Roman, Gopal Natajaran and Daphne and the

people I met at Gatech: Helene Simone, Juan Pablo Hinestroza and Jennifer. Precaris: Susana
Figueroa, Carlos Nieto, Paula Pescador, Silvia Diez, Tanacis Aeftaxias, Angel Jimenez, Samira
Elboudamousi and our Morocco trip and the Arabic culture immersion. Mohammed Alshang,
Antonio Rodriguez, Israel Herrera, Josep Pamies, Zaid Alamber and his emails, Oliver
Contreras and Claudia Barba, Anton Davidoff, Leonardo Valencia, Edgar Soto, Nuria Suarez,
Felipe Osorio, Guillermo, Cathy and those who I forget now to mention. Among those, the
people at la penya who drank one vermouth or two with me and taught me the facts of life:
Alvarito Morato, Albert Manyes, Roger Guimera, Montse Meneses, Magdalena Paradowska,
Frank Dounabel and the rest of Erasmus Germans, among them Ralph Rosenbaum, Ralph
Hartanatan and Michael. Once in la penya how not to mention la comision permanente at e/
candj/and their constant reminder of what not to become.

Finally, and to close a chapter of my life, I would like to acknowledge Catalunya and the
Catalans and their castells, sardanes, Barga, correfocs, Sant Joan and Sant Jordi diades, for
let me grow a little more among them.

And last but not least I like to acknowledge my family for their constant support: Edilberto my
father y Maria Paola, Voqui y Esteban, Adriana, Nia, Pablo, Valen y los nuevos miembros. La

tita y los Peroni. De no ser por todos ellos este escrito nunca hubiera sido una realidad.

Cata

The proper and immediate object of science is the acquierement, or communication, of
truth...
Samuel Taylor Coleridge, Definitions of Poetry, 1811

Contents

LIST OF TABLES

LIST OF FIGURES

LIST OF FIGURES

NOTATION

CHAPTER 1: INTRODUCTION
1.1 Motivation
1.2 Background

1.3 Objectives and structure

CHAPTER 2 : FED-BATCH FERMENTATION PROCESSES
2.1 Description

2.2 Fed-batch fermentation models
2.2.1 Multivariable Model
2.2.2 Invertase production model
2.2.3 Penicillin production model
2.2.4 Other models

CHAPTER 3 : ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

1V

VIII

7
8
13
17
19

21

21

3.1.1 Where they come from? Its relation with biological neural systems 21

3.1.2 Mathematical modeling of biological neural systems: Atrtificial neural

networks

3.1.3 Neural network classification: types of artificial neural networks

23
24

3.2 Neural networks history : Major milestones in the development

of neural computation 27

3.2 Advantages and disadvantages of neural networks : when they

can be used 29
3.3 Some neural networks types 31
3.3.1 Multilayer Perceptron 33
3.3.2 Radial Basis Function 37
3.3.3 Self Organized Maps 39
3.3.4 Fuzzy Neural Networks 41
3.3.5 Fuzzy ARTMAP 47

3.4 Building a NN control model: multivariable fed-batch bioreactor

case study 51
3.4.1 Data acquisition and control models 52
3.4.2 Data pre-processing 54
3.4.3 Tuning the network architecture 57
3.4.4 Tuning the training algorithm 58

CHAPTER 4 : PROCESS CONTROL 61

4.1 Introduction 61

4.2 Objectives of process control 62

4.3 Non-linear vs. linear process control 63

4.4 Some structures for model based process control 63
4.4.1 Inverse model control 64
4.4.2 Internal model control 64
4.4.3 Model predictive control 67

4.5 Neural networks in process control 69
4.5.1 Neural networks in identification 72

4.5.2 Fault diagnosis and neural networks 75

4.6 Optimal control

4.6.1 Methods for optimal control used for fermentation processes :

invertase production case study
4.6.2 Dynamic programming and reinforcement learning
4.6.3 Neuro dynamic programming approach

4.6.4 Optimal control trough NDP: invertase production case study

CHAPTER 5 : RESULTS

5.1 Model based control
5.1.1 Direct model

5.1.2 Inverse model

5.2 Optimal control
5.2.1 MLP dynamic programming
5.2.2 Fuzzy ARTMAP dynamic programming

CHAPTER 6: CONCLUSIONS AND WORK PERSPECTIVES

7. BIBLIOGRAPHY

APPENDIX A

APPENDIX B

76

76
79
82
84

87

87
88
93

94
99
107

115

119

130

180

List of Tables

Table 1.1 Economic impact of biotechnology in the OCDE countries 1
Table 2.1 Initial values of the fermentation process, microorganism parameters and operation and
control variables values at the operation point used to simulate the multivariable fermentation
system 12
Table 2.2 Initial values of the fermentation process, the microorganism parameters and the values of
the operation and control variables at the operation point used to simulate the invertase
production fermentation process 16
Table 2.3 Initial values of the fermentation process, microorganism parameters and operation and
control variables constraints for penicillin biosynthesis 18
Table 3.1 Neural network classification scheme adapted from Sarle (1997) 25
Table 3.2 Fuzzy ARTMAP map field output based on which one of the fuzzy ART modules is active 50
Table 3.3 Disturbances applied to the substrate flow rate (input variable) in a multivariable fed-batch
bioreactor for process simulation 53
Table 3.4 Normalization limits for the NN input data in the multivariable bioreactor model 56
Table 5.1 Average relative errors of the direct model outputs with respect to the final process values
for steady state operation of the multivariable fed-batch bioreactor 89
Table 5.2 Average relative errors of the direct model outputs with respect to the process expected
values for a positive step in the manipulated variable of the multivariable fed-batch bioreactor 90
Table 5.3 Average relative errors of the direct model outputs with respect to the process expected
values for multiple random steps in the manipulated variable for the multivariable fed-batch
bioreactor 91
Table 5.4 Average relative errors of the direct model outputs with respect to the expected process
values for a steady state process operation with a pH perturbation of the multivariable fed-batch
bioreactor 92
Table 5.5 Average relative errors of the direct model outputs with respect to the expected process
values for a positive step in the manipulated variable with a pH perturbation of the multivariable
fed-batch bioreactor 92
Table 5.6 Ranking of controller performance for direct process models of the multivariable fed-batch
bioreactor 93
Table 5.7 Average relative errors of the inverse model output with respect to the expected process
value for random values in the set point for the multivariable fed-batch bioreactor 93
Table 5.8 Invertase production optimization results for an initial fermentation volume of 0.6 liters. The
profit depends on the productivity and the total fermentation time 102
Table 5.9 Profits obtained for unknown initial fermentation volumes Vo when the MLP-NDP controller is
used. Profit results are compared against results obtained by applying the best policy for the given
volume 105

Table 5.10 Best Fuzzy ARTMAP structures used into Bellman'’s iteration for the invertase production

optimization 107
Table 5.11 Invertase production optimization results for an initial fermentation volume of 0.6 liters.

The profit depends on the productivity and the total fermentation time 108
Table 5.12 Profits obtained for different initial fermentation volumes for invertase production 110

List of Figures

Figure 1.1
Figure 2.1
Figure 2.2

Figure 2.3

Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10
Figure 3.11
Figure 3.12

Figure 3.13

Summary of the control objectives and methodologies followed by the current work
Scheme of MIMO fermentation process

Bioreactor control model with 6 inputs ®" = {F, Fseam, Fa, Fo , Far , RPM} and 6 outputs
V=(x,s,p,T,pH,[0])

Schematic representation of fermentative and respiratory fluxes inside cloned
Saccharomyces cerevisiae cell. Pyruvate is the bifurcation point at which the cell decides
the fractions of glycolitic flux to be diverted toward fermentative and respiratory
metabolic pathways in invertase fermentation

Schematic drawing of a biological heuron

Ramon y Cajal drawing of the cerebellar cortex and neural tissue for a cat. From
Histologie du systeme nerveux del’'homme et des vertebres 1909

Upper picture: Hippocampus neurons with permission of Slice of Life project. Lower
picture: Pyramid neuron grown in culture. From Vision Concepts (© information in
www.4colorvision.com/citation.htm)

Schematic drawing of a typical artificial neuron. The output is a function of the inner
product of the input vector and the weight vector of the connections w

Scheme of multilayer perceptron architecture. The activation function of each neuron is
f(y) =1/(1+€”) where y is the inner product of the input vector and the weight

vector of the neuron input connections.

Scheme of a multilayer perceptron architecture showing the notation for neurons and
weights

Scheme of a Radial Basis Function network architecture. The activation function of each

2
RBF neuron is f(y) = exp(—”y—uj” GJ) where y is the input vector, ; is the

center of the RBF neuron and o; is a measure of its width

Example of a topological neighborhood N(t) in an hexagonal lattice of a SOM, where t;<
< ts

Fuzzy neural network architecture composed by a fuzzification layer, a fuzzy inference
layer and a defuzzification layer

Combination of fuzzy grid and fuzzy ellipsoid

Scheme followed to obtain the NN control models

Input-Output scheme for the neural network models of the multivariate bioreactor: (a)
Current direct process model with V={x, s, p, T, pH, [02]}; (b) literature inverse process
models; (¢) modified literature inverse models and current proposal

Influence of the normalization procedure when the 404 patterns of data from the
multivariable bioreactor used to train the neural model contain noise. Comparison
between predicted and expected outputs for three different normalization limits: (a)
SSE=6.88; (b) SSE=2.50; (c) SSE=1.65

Figure 3.14

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure
5.12.
Figure 5.13

Figure 5.14

vi

PCA of the multivariable bioreactor data (a) Process outputs; (b) neural network input
training data

Inverse model control scheme
Complete scheme of non-linear internal model control structure

Scheme for model based predictive control. The ith control action is based on the
prediction of future process outputs over a prediction horizon p. An optimal control action
trajectory is found and only the first control move is implemented

Direct process identification scheme. M learns the direct model of the plant P

Indirect process identification scheme. C learns the inverse model of the plant P

Test schemes for the obtained direct and inverse process models of the multivariable fed-
batch bioreactor. The models prediction error (deviation) is computed as shown: (a) Test
for direct process models (b) Test for the inverse process models

Different policies used for an invertase bioreactor with initial volume of 0.6 liters. (-)
Suboptimal policies given by eq. 5.1 with initial times of 3, 5 and 7 (- -) Optimal policy by
Chaudhuri and Modak (1998) (...) Optimal policy by Patkar et al. (1993)

Fermentation dynamics for a policy u(t,5,0.13) given by eq. 5.1. Cells, glucose and
invertase concentrations and fermentation volume are shown. Also shown is the
associated profit when A =0.3

Effect of initial conditions on the productivity of a fermentation process. Solid lines: initial
state (0.15, 5, 0.1, VO) where V0={0.2,0.4,0.6,0.8,1}. + lines: initial state (0.15, SO,
0.1,0.6) where S0={1,1.5,2,3}

Explored state space 9328 points of the invertase fermentation process by using the
suboptimal policies described by eq. 5.1

Optimum final time t;" of the invertase fermentation for each suboptimal policy u(t,t;,b)
and different initial volumes of the bioreactor. The final optimum fermentation time
depends on the value of the initial fermentation volume V, and on the policy parameters t;
and b

State space representation of the trajectories followed by the controlled fermentation
process for initial fermentation volumes of 0.4 (.), 0.6 (+), 0.8 (x). The controller is
implemented with the cost-to-go approximator obtained from the second Bellman
iteration. The new visited states and its associated cost-to-go are used into a new
approximator

Explored state space of the invertase fermentation process after policy iteration
procedure. The controlled process followed a different trajectory and visited new states

Optimal policy for an invertase fermentation process with an initial volume of 0.6. The
obtained NDP policy is compared against other optimization procedures results. (-) NDP
methodology (--) Chaudhuri et al. (1998), (—-) Patkar et al. (1993)

Fourier analysis of the control signal from the optimizer

Control policy obtained when the optimizer output is filtered during a fermentation
process with initial volume of 0.6 |. Upper figure. Control action average is over five
consecutive times. Lower picture, when the average is over six consecutive times

Optimal NDP policies for different invertase fermentation processes obtained with the
MLP-NDP controller

State space representation of the optimal trajectories followed by the invertase
fermentation process when MLP-NDP controller is used for different initial volumes: 0.5
(.), 0.6 (+),0.7 (x)

Optimal policy for invertase fermentation process with an initial volume of 0.6. The
obtained fuzzy ARTMAP-NDP policy is compared against other optimization results. (...)
Fuzzy ARTMAP methodology, (-) MLP-NDP methodology, (--) Chaudhuri and Modak
(1998), (--) Patkar et al. (1993)

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

State space representation of the optimal trajectories followed by the invertase
fermentation process under control with fuzzy ARTMAP-NDP, for different initial volumes:
0.4(x), 0.5(.), 0.6 (+), 0.7 ("), 0.8 (v)

Optimal policies for different invertase fermentation initial volumes obtained through the
control of the process by the fuzzy ARTMAP-NDP based controller

Invertase fermentation process behavior when an abrupt death of microorganisms occurs
at t= 9h. The evolution of the controlled process is shown in figure 5.14(a). The control
variable, glucose feed rate is shown in figure 5.14(b). The optimal policy is compared
against the best suboptimal policy for that given initial volume (0.4 I)

Optimal trajectory of a controlled abrupt microorganisms death. The invertase
fermentation process has an initial volume of 0.4 |. When fermentation time equals 9
hours, cells concentration decreases 50%. The controller senses this new bioreactor state
and finds both the optimal control action and the new optimal control policy

vii

Notation

G Kg/m? Acid concentration in the acid inlet stream
Cb Kg/m® Base concentration in the base inlet stream
Cpair J/kg K Heat capacity of air

CpR J/kg K Heat capacity of the bioreactor contents
Cps J/kg K Heat capacity of the subtract stream

E J/gmol Activation energy

fd 1/s Microorganism mortality rate

F m3/s Flow rate of the substract stream

Fa m%/s Flow rate of the acid stream

Fair Ka/s Flow rate of the air stream

Fb m3/s Flow rate of the base stream

Fsteam Ka/s Flow rate of the thermal fluid in the bioreactor jacket
H m3/kg Henry's constant

K, Acetic acid dissociation constant

K 1/s Microorganism death constant

Koz Kg/m?3 Oxygen Monod's constant

K Kg/m? Subtract Monod's constant

0, kg/m? Dissolved oxygen

OCR Kg/m®s Oxygen consumption rate

OTR Kg/m®s Oxygen Transfer Rate

p kg/m? Concentration of the bioreactor product
DPr kg/m? Concentration of the product inlet stream
R J/gmol K Ideal gas constant

RPM Bioreactor mixer revolutions per minute

S Kg/m® Concentration of the bioreactor subtract
St Kg/m® Concentration of the subtract inlet stream
t] Time

T K Bioreactor temperature

Tinair K Temperature of the air stream

Tins K Temperature of the inlet stream

Vr m? Bioreactor effective volume

Vv State vector. V=(x, s, p, T, pH, [02])

X Kg/m? Bioreactor microorganism (biomass) concentration
Xa Kg/m? Bioreactor acid concentration

Xb Kg/m® Bioreactor base concentration

viii

Xf
Yo2
Yp/x

AHy
AG,

Pr

Kg/m?

kg of m.o./kg of O,
kg of p./kg of m.o.
kg of m.o./kg of s
J/ kg de m.o.

J

kg of p./(kg of m.o min).

1/sK
J/kg
1/s

Kg/m?®

Inlet stream biomass concentration
Microorganism oxygen consumption
Product yield
Subtract yield

Heat generated by the microorganism

Gibbs's free energy

Microorganism non-growth production parameter
Maximum microorganism growth rate per K
Latent heat of thermal fluid

Microorganism growth rate

Density of bioreactor contents

Chapter 1: Introduction

1.1 Motivation

Fermentation processes are widely used in chemical, alimentary and pharmaceutical
industries. The production of animal feed and supplements, diary food (yogurts and cheese),
beer, food colorants, fertilizers, therapeutic drugs and penicillin are some examples of
biotechnological processes. Over 113000 sites related to fermentation products have been
found in a quick Internet search (www.google.com 28-02-2001). In recent years, the
implementation of biotechnological processes in the chemical and pharmaceutical industry
has grown and more knowledge and techniques have been acquired and developed (Williams,
2002). The economic impact of biotechnology on different industrial activities over the last
two decades in the OCDE (Organization for Economic Co-operation and Development)
countries is shown in Table 1.1. Its increasing economic importance is evident in the

agriculture and food industries.

Table 1.1 Economic impact of biotechnology in the OCDE countries

Year | Agriculture and | Pharmaceutical Chemical Energy Total

Food industries industries industries Industries (Millions of US$)
1980 37% 37% 12% 11% 5-20.000
1990 21% 29% 13% 37% 20-40.000
2000 48% 22% 12% 18% 45-200.000

The scope of bioengineering has grown from simple wine-bottle microbiology to the
industrialization of not only beer, wine, cheese and milk production, but also of newer
products — antibiotics, enzymes, steroidal hormones, vitamins, sugars and organic acids.
Since remote times, microbiological systems have been used to produce several basic
products. The art of making wine, beer and cheese has passed from father to son since
ancient Egypt. Also, yeast was needed in bread cooking since an earliest age. It was until the
French chemist and microbiologist Louis Pasteur (1822-1895) when the first fermentation
process was studied. French vintners, who found they were producing vinegar instead of
wine, requested the study of wine fermentation process. Pasteur found a microscopic plant
that he called yeast and since then, the art of making wine became a science and gave birth

to biotechnology.

Catalina Valencia Peroni

The actual definition of biotechnology is given by OCDE as "The application of Science and
Technology to living organisms as well as parts, products and models thereof, to alter living
or non-living materials for the production of knowledge, goods and services". Biotechnology
and bioengineering can be seen as the branches of chemical engineering specialized in the
study of the complete fermentation process. Fermentation is a chemical process that uses
microorganisms to obtain a particular product, taking advantage of the microorganism
selectivity for the specific product or for a reactant. The fermentation process is carried out in
a bioreactor or a system where a biological conversion is effected. The bioreactor is a
mechanical vessel in which a) organisms are cultivated in a controller manner and/or b)
materials are converted or transformed via specific reactions. Quite similar to conventional
chemical reactors, bioreactors differ in that they are specifically designed to influence
metabolic pathways. The accurate control of all variables in a fermentation process is needed
since any unexpected change could affect the microorganisms and consequently the
bioreactor productivity due to the fragility of biological systems.

Recent advances in genetic engineering have increased the importance of biotechnological
processes. The use of mammalian cells or microorganisms for the production of complex
molecules requires the analysis and control of many process variables, like temperature,
oxygen concentration, pH and mixer shear stress. The objective of controlling a fermentation
process is to maximize the output of microorganisms or other metabolic products while
keeping other outputs with a deleterious effect (such as ethanol, acetic acid or penicillin) at
low values.

A useful kind of biotechnological process is the fed-batch fermentation. Fed-batch
fermentation is used to prevent or reduce substrate-associated growth inhibition by
controlling nutrient supply. In a fed-batch fermentation process, fermentation starts with
some initial volume, concentration of microorganisms and substrate, and, as the process
evolves, the substrate is continuously feed into the fermenter. This process is distinctly non-
linear and multivariable, and its dynamics and reaction kinetics are not well known. Changes
in initial conditions, parameter variations, input saturation, external disturbances, and
unmodeled dynamics are all encountered in practice, making the control problem very
difficult. It is typical of complex processes where a small improvement in performance results
in substantial economic benefits.

The control of a fed-batch fermentation process is a problem with increased industrial
interest. With an effective control strategy the production of the desired product increases,
and the cost of further purification decreases remarkably. An effective control system should
be able to learn how to improve its performance and adapt itself to changes during a
cultivation process. Also errors in the online analysis should be identified and ignored by the
controlling algorithms, through a data reconciliation method. The aim of control engineers

should be to develop intelligent controllers with better performance, such as those based on

Introduction

neural networks or fuzzy logic, which allow predictive control of the fermentation (Ritzka et
al., 1997). On the other side, the objective of any control system is to influence the behavior
of a dynamic system. The later includes maintaining the outputs of systems at constant
values (regulation) or forcing them to follow prescribed time functions (tracking). The control
problem is to determine the control inputs to the process using all available data. Achieving
fast and accurate control even while assuring stability and robustness is the aim of all control
systems design.

The present work assumes that the behavior of a fed-batch fermentation process, as any
causal process, can be influenced through a control system if a reliable model of it is at hand.
A reliable model presents a balance between complexity and accuracy. It is assumed also that
this model can be built based on some mapping of the input-output fermentation process

historical data

1.2 Background

Lee et al. (1999) reviewed the advances in control of fed-batch fermentations. They
examined both simple exponential feeding and inferential methods with classical control
action and knowledge-based control systems. They concluded that the newer knowledge-
based control systems, e.g., those relying on fuzzy logic and neural networks concepts, are
receiving considerable research attention and hold promise for optimizing fed-batch
techniques for complex fermentation systems. Sargantis and Karim (1998) used a model-
based control for dissolved oxygen in B-lactamase production. They based his work on an
autoregressive with exogenous inputs (ARX) model and on an autoregressive moving average
with exogenous inputs model (ARMAX) to adaptively place system poles. A similar control
technique could be used in fed-batch fermentation if an accurate model of this process is
available. Tholodur and Ramirez (1996) studied a neural network-based scheme of parameter
function modeling used to model the non-linear dynamics of a yeast and bacterial fed-batch
bioreactors. They used the obtained models into dynamic programming optimization to
generate optimal feeding policies, although the lack of complete state information resulted in
suboptimal control policies. A way to use dynamic programming and overcome this problem is
used in the present work. It would be discussed in detail later in the process control chapter.

The adaptive control of a fed-batch fermentation plant was discussed by Boskovik and
Narendra (1995). In adaptive control, a filter is used to realize the controller components.
Neural networks can be viewed as non-linear adaptive filters. Thus, a neural network based
controller is a non-linear adaptive control system. These authors compared the performance
of linear, linear-adaptive non-linear and non-linear adaptive control methods, using simulation
studies. They found that neural networks are distinctly preferable if accuracy and robustness

are critical issues. Efe et al. (2001 a and b) designed a model reference control for a

Catalina Valencia Peroni

benchmark bioreactor problem (Agrawal et al. 1982). They used a neural network to model
the dynamics of the fermentation process in a control-affine process model. As a control-
affine model approximates the process, the inverse process model can be obtained by
algebraically inverting the process model. Thus, the desired process input could be easily
obtained at any time step. Efe et al. (2001 a and b) also showed that the obtained controller
is stable in the sense of bounded inputs/bounded outputs criterion as well as it is locally
stabilizing in the overall control system in the sense of Lyapunov. Later these authors (Efe
and Kaynak, 2001c) used the same bioreactor benchmark to test three neural network control
strategies: an inverse model of the plant used as a controller, a self-learning controller where
a neural network learns on-line the process inputs for a desired process trajectory, and
dynamical neural unit (recurrent nodes) based controller. They used engineering criteria to
conclude that the best controller is the one based on a dynamical neural unit layer.

Besides process control, neural networks have been used also in the biotechnology field in
the prediction of some bioreactor variables that are difficult to measure. Karim and Riviera
(1992) used a feedforward neural network for process state estimation of difficult measure
primary process variables, such as biomass, substrate and product concentrations in an
ethanol fermentation of Z mobilis. They concluded that the obtained model could be used for
diagnosis and control of the fermentation process. Linko and Zhu (1992) used a neural
network for real-time estimation and multi-step ahead prediction of enzyme activity and
biomass dry matter in fungal A. Niger glucoamylase fermentation. Tsaptinos and Leigh (1993)
discussed various issues to consider in feedforward neural network learning of fermentation
process dynamics. Glassey et al. (1994) also used neural networks as on-line estimators for
biomass, recombinant protein concentration and plasmid structural instability during the
production of some proteins expressed by constitutive, chemo and thermo-inducible vectors
in recombinant £. coli. They explored several feedforward neural network architectures using
genetic algorithms. Chemotaxis algorithm was used for network learning. They successfully
developed also dynamic neural networks and auto-associative neural networks as estimators.
Syu and Hu (1997) employed a time-delayed neural network to predict metabolic products of
the 2,3-butanediol fermentation by K. oxytoca over different fermentation batches. They
concluded that the success of his work could be further extended to other bioreactor
systems. Finally, van Can et al. (1999) used a neural network to build a gray box model of
the enzymatic conversion of penicillin G. In a gray box model some unknown parameters of a
first principle model are modeled with a neural network. They concluded that his
methodology could be used to considerably reduce the number of identification experiments
and it can be applied to a wide range of biochemical processes to obtain a model with reliable
frequency extrapolation properties to be used under dynamic conditions not present in the
identification experiments. An introduction to neural networks and to some of the more used

neural network architectures and types is presented in the third chapter.

Introduction

1.3 Objectives and structure

The objective of the current work is to study and solve, by using neural networks systems,
the control problem of a fed-batch fermentation process. Based on previous work in this field,
it can be assumed that a neural network fermentation model can be obtained in a manner
suitable for control. Identification and modeling are the first step in the search of a control
system. There are several model-based control schemes that can be used when a reliable
process model is available. These control systems will be discussed in detail in the process
control chapter. The specific objectives of the present work can be divided in two categories:
fed-batch bioreactor identification and modeling, and fed-batch bioreactor optimization. Both
categories deal with the control problem of a fermentation process but the objective of each
one of them is different. In fed-batch bioreactor identification and modeling the objective is
to find a suitable control model to be used in a control scheme. In the optimization of a fed-
batch bioreactor system, the objective is to find the optimal control action at each time step
of the fermentation process. The optimal control action is given by an objective function
based on the fermentation profitability. In both categories, neural networks systems are
employed due its non-linear approximation capability of mapping data-based functions. The

specific objectives of the present work can be stated as:

* Obtain a control model of a class of fed-batch bioreactor, that is, a non-linear multi
input-multi output (MIMO) dynamic process, using feedforward and Radial Basis
Function artificial neural networks. The model is applied to the fermentation of
glucose with Saccharomyces cerevisiae yeast to obtain ethanol.

e Study and compare the methodology and the resulting models obtained from the
different paths used to find a neural network process model for Saccharomyces
cerevisiae glucose fermentation system.

» Study different model-based control schemes for the above fermentation process.

* Solve the optimal control problem of cloned invertase expression in Saccharomyces
cerevisiae fermentation using neural network systems.

* Find an optimal control action that maximizes the productivity and minimizes the
invested time of cloned invertase expression in Saccharomyces cerevisiae
fermentation. To accomplish this goal neuro dynamic programming methodology
coupled with feedforward neural networks and fuzzy ARTMAP systems will be used.

» Compare the neural network-optimization methodology employed in the present work
with previous optimization methods used to solve the same fed-batch fermentation

optimization problem.

Catalina Valencia Peroni

« Develop an optimal controller able to find the optimal feeding profile even when
disturbances arise in the invertase fermentation process by Saccharomyces
cerevisiae.

« Explore and compare different possibilities of combine neural network systems into

control schemes for fed-batch bioreactor process.

In Figure 1.1 are summarized the control objectives and the methodologies used in the
current work.

In the next chapter fed-batch fermentation processes are treated in detail. Some
common structured models and their drawbacks for control systems are described. Also a
first principle multivariable model is proposed to generate data for simulation. Moreover,
some of these models are used in the simulation of the fermentation process control
studies. Chapter 3 is dedicated to neural networks. After an introduction, the advantages
and disadvantages of these algorithms are discussed. Then, some types of neural
networks are explained in detail and finally, several issues of a neural network model
construction are reviewed. Chapter 4 describes relevant aspects of process control. Its
objectives and the problems of non-linear control are discussed. Some structures of
model-based process control are described as well as the role of neural network systems
in process control and optimal control for fed-batch fermentation process. Chapter 5
presents the results of applying neural networks to different control schemes for a
Saccharomyces cerevisiae fed-batch fermentation process. Last chapter contains the
conclusions of the present work and the lines of future development.

Identification and modeling for control Optimization and control
Process Process

eNon-linear multivariable fed-batch bioreactor *Non-linear fed-batch bioreactor
«Production of ethanol by Saccharomyces «Invertase production in Saccharomyces
cerevisiae yeast cerevisiae yea st

«State variables: x, s, T, p, pH, O, *State variables: x, s, p, V N
eControlled variable: cells concentration x sControlled variable: bioreactor productivity
«Control variable: substrate feed rate F «Control variable: substrate feed rate F
Modeling Algorithms Cost function approximator
eMulti-Layer Perceptron neural network algorithms

*Radial Basis Function neural network *Multi-Layer Perceptron neural network

*Fuzzy ARTMAP neural systems

Techniques also employed

*Principal _com_ponent analysis Optimization technique

*Cross Validation Neuro-dynamic programming
Possible controller algorithms Controller algorithm)
eInverse model control Implementation of Bellman equation

eInternal model control

*Model predictive control

Figure 1.1 Summary of the control objectives and methodologies followed by the current work

Chapter 2 : Fed-batch fermentation processes

2.1 Description

Many industrially important fermentation processes involving production of antibiotics,
enzymes and organic acids are carried out in fed-batch mode of operation. In this mode of
action the substrate(s) is (are) added continuously in an otherwise batch operation. Fed-
batch bioreactors are particularly useful when, in a fermentation process, the growth and/or
metabolite production is inhibited at certain substrate or end product concentration or due a
catabolite repression. In those cases, the controlled addition of substrate is essential to
achieve maximum production of the desired product. Therefore, the fermentation process
productivity depends on the substrate feed rate profile.

Usually, the relevant process variables are substrate concentration, product concentration
and some measure of the microorganism cell concentration. Also, mixer shear stress, pH and
temperature are considered relevant because they should be maintained within certain limits.
Fermentation volume is considered as a process state, because it changes during the
fermentation until the vessel volume is reached. The common variable used for biomass
control is the substrate feed rate. Airflow rate and thermal fluid rate in the heat exchanger
can be used also as manipulated variables. The relations among all these variables could be
given by first principles, but often the growth rate of microorganisms and/or the metabolites
production mechanism is not well known. Thus, the resulting first principles model has

unknown and/or uncertain parameters.

2.2 Fed-batch fermentation models

Fermentation is one of the most widespread bioprocess. It has been widely studied but there
is not a unified way of modeling this kind of chemical process. To effectively control
fermentation it is necessary to represent the underlying dynamics with a suitable model that
effectively balances accuracy and complexity. As it was said before, the dynamics of this
biotechnological process is strongly non-linear and multivariable. In addition, fermentation
reactions are difficult to model. Often reaction mechanisms are unknown and kinetic
equations have to be postulated and experimentally verified. The application of first principle
non-linear models, with multi-input multi-output (MIMO) variables, often results in a complex
estimator/controller design that increases the on-line computational requirements of the
control system. Since detailed mechanistic models are too complex for direct use in many

Catalina Valencia Peroni

model-based control schemes, it is necessary to seek simpler approximations. Some of the
more used approximations for non-linear models are analyzed by Pearson (2000). Efficient
model strategies for biochemical processes are needed to obtain reliable mathematical
models of these processes over a limited period of time and with limited experimental effort.
This means that the bioprocess model should be based on easily obtainable knowledge.
Besides, the resulting models should have good interpolation capacities, i.e., that they should
be applicable under conditions that differ from the conditions of the identification
experiments. Neural networks have been used successfully to model several non-linear
multivariable systems, including bioreactors, (Karim and Riviera, 1992; Linko and Zhu, 1992;
Tsaptinos and Leigh, 1993; Glassey et al., 1994; Boskovik and Narendra, 1995; Syu and Hu,
1997; van Can et al.,, 1999, Efe et al.,2001a,b,c;) as it have been previously mentioned.
Some other examples of neural networks non-linear modeling are given in the process control
chapter.

The following fed-batch fermentation models are developed from first principles. They are
solved through simulation to obtain the historical data necessary to develop a neural network
control model. The following model parameters were obtained through experimental data
fitting. The multivariable model is used to obtain all dynamical data needed for neural
network learning about the bioreactor system for the fermentation process identification
procedure. While the invertase production model is used into the bioreactor optimization
procedure. Other models have been studied before and are presented here to compare

performances with the same techniques proposed in the current work.

2.2.1 Multivariable Model

The considered system is a perfectly mixed fed-batch bioreactor using Saccharomyces
cerevisiae yeast to produce mainly ethanol from glucose, witch is widely used in the brewing
industry. A bioreactor scheme is shown in Figure 2.1. In this kind of process, a substrate,
containing glucose and other metabolites necessary to the yeast, is added continuously to the

bioreactor and no output is removed

RPM

untii the reaction time is reached. F, Fa b
4)]

Independently, an airflow trough the

bioreactor is maintained in order to
supply the oxygen necessary for the Fsteam

microorganisms. The operation

temperature is maintained at the

desired value by adding or removing

heat to or from the reactor. Additionally,
the pH of the reaction mixture is Figure 2.1 Scheme of MIMO fermentation process

Fed-batch fermentation processes

regulated by adding the amount of acid or base needed. The control model of this process is
considered as a MIMO system with 6 inputs and 6 outputs. The inputs to the control system
are the flow rates of substrate, air, thermal fluid, acid and base solution, and the stirring RPM
of the mixer, which assures complete mixing and the uniform oxygen transfer from the air
phase. The outputs of the control model are the vessel bulk concentrations of cells X,
substrate (glucose) s, and product (mainly ethanol) p, the temperature T, pH and dissolved
oxygen concentration [O,]. The state vector (X, s, p, T, pH, [0,]) herein after is denoted V.

The bioreactor system is simulated with the equations and relations between the principal
output process variables and the input variables usually used to control. A process scheme is
given in Figure 2.2, The value of each output variable at time t depends on the values of the
input variables at time t and on all the values of the output variables at time t-1 derived

solving the model process. The

V(t)

microorganism, product and oM

' Fermentation >

subtract kinds, product and Process

subtract vyields, and other

operation parameters are set into V(t-1)

the above relations by means of —
. . . Figure 2.2 Bioreactor control model with 6 inputs
specific constants. This provides ®" = { F, Fseam, Fa, Fo, Fair , RPM}
the flexibility needed to emulate and 6 outputs

V=(x,s,p,T,pH,[O
different fermentation processes. (P PH, [C1)

2.2.1.1 Fermentation Mode/

The fermentation model considers the cells as a collection of discrete entities forming a whole
homogeneous unit with multicomponent description of cell-to-cell heterogeneity (structured
model of population). This model has the following characteristics:

The growth rate u of cells is a function of the subtract (s) and oxygen ([O,]) concentration
which are assumed to follow the Monod law, the fermentation temperature as an enzymatic
activity, and the pH, as described by:

-E/
S o [02] DTEeERT

= Of (pH 2.1
IJ KS+S K02+[02] l+e_AGd/RT (p)IJI ()
with
1 if 45<pH <9
f(pH) = 2.2
(PH) %) otherwise (22)

All variables and constants with its units are listed in the nomenclature section.
The Oxygen Transfer Rate (OTR) is given by the following empirical correlation between the
airflow, the bioreactor volume and the mixer RPM (Atkinson and Marituana, 1991).

Catalina Valencia Peroni

.2
OTR=5.717[10"° [(RPM ** EE\F/LQ (2.3)
R

The following equations, that describe the pH behavior, are similar to those proposed by Yeo
and Kwon (1999) for a CSTR where pH is a function only of the flow rates of the base and

acid streams,

_ _ X
X, +10 PH _1QPH-24 _W =0 (2.9)
+F +
& _F [C, - Fatrh+F X, (2.5)
dt Vg A

d—xbzimb——':aJ’FbJ’FD(b (2.6)
a Vi Vq
It is assumed that neither any product nor the substrate could change the pH value at
equilibrium.
The fermenter temperature depends on the flow rate of the thermal fluid stream Fgeam, ON
the bioreactor jacket, the microorganism generated heat and on the flows and temperatures
of all the inlet and outlet streams. In the present work, all heat contribution due to the
addition of acid and base streams are neglected because of their low and sporadic flow. The

heat balance is summarized by

AH C . [F, C.[F
To_ A+ e ey e T
dt CpRpRVR CpRpRVR CpRpRVR CpRpRVR
2.7)
2.2.1.2 Mass balances

The balance of the other species considered depends on the specific bioreactor used. A fed-
batch bioreactor is chosen because it is widely used in industry and its equations are exactly
the same as those for a continuous stirred tank (CST) bioreactor assuming that the reactor
volume change can be neglected when a subtract stream is added.

A balance for the biomass concentration yields

= P ix, -+ u(s[0,] pH.T) - 1, (T) k- xcbra ¥ Fo)
&tV Vi
(2.8)
with
(T -30315"
fm) = .
oM ="T7enee TN @9

10

Fed-batch fermentation processes

where £ in min represents the microorganism’s mortality as a function of temperature (K).
When the temperature is between 297.15 (24°C) and 310.15 (37°C), f is the inverse of the
average lifetime of the cells (4y).

The substrate concentration balance is given by

ds_F X E(F +F)
—=—10s, —s)—u(s,|0,|, pH,T)E -s[*2 2.10
T VRuf) - u(s,[0,] p)YS v (2.10)

x/

and the product concentration balance yields

dp _F Fo +F
d_f:V_E(pf —p)+/.1(S,[02], pH,T)wp/XD(+,BX—p[—$aV7b) (2.11)
s R

Finally, the dissolved oxygen is given by one of the following two equations depending on the
oxygen availability:

if OTR<OCR Then % = OTR-0OCR-[0,] W (2.12)
R

0.21
Otherwise [0,]= e (2.13)
Thus, liquid oxygen concentration at saturation level is calculated using Henry's law. The
Oxygen Consumption Rate (OCR) is given by
X
OCR = u(s,[0,], pH,T) e (2.14)
O,

Table 2.1 shows the values of the operation and control variables on the operation point, the

microorganism parameters used and the initial values of the system.

11

Catalina Valencia Peroni

Table 2.1 Initial values of the fermentation process, microorganism parameters and operation and

control variables values at the operation point used to simulate the multivariable fermentation system

Initial Values Variable Value Control Value
Variable
X 2.47 10 kg/m® F 8.3 10° mi/s
s 4.63 10-" kg/m® Feteam 0 ka/s
p 1.74 kg/m? F, 0 m¥/s
T 303.15K Fo 0 m¥/s
Xa 0.5 kg/m® Fair 1.67 10° kg/s
Xb 0.5 kg/m? RPM 85
0, 0.2 kg/m?
Microorganism Parameter Value Parameter Value
Parameters Kq 2.67 10°1/s y 7.17 103 1/(s°K)
Ks 2.5 10-2 kg/m® Yoz 1.46 kg cells/kg O,
Koz 1.3 10-2 kg/m* Yos 0.5 kg cells/kg s
E 19238.35 J/gmol Yox 0.35 kg p/kg cells
AGy 2093.4] Y, 2.38 10% J/kg cells
B 0 kg p/(kg cellses)
Operation Variable Value Variable Value
Variables PR 1000 kg/m’> X 0 kg/m*
Ka 1.978 10° St 10 kg/m?®
H 0.704 m*/kg P 0 kg/m?
A 519 J/kg Ca 0.001 kg/m?
Tis 303.59 K Gy 0.2 kg/m?
Tinair 298.15 K Cos 3.1531 10% (J/kg+K)
Ve 6103 m’ Coair 2.38846 10
(I/kg-K)
Cor 3.1531 10° (3/kg-K)

12

Fed-batch fermentation processes

2.2.2 Invertase production mode/

The system considered is a fed-batch fermentation of Saccharomyces cerevisiae containing
the plasmid pRB58. This plasmid contains the yeast SUC2 gene, which codes for the enzyme
invertase. The expression of SUC2 gene is repressed when the glucose concentration in the
medium is high. This characteristic allows the regulation of invertase production by
manipulating the glucose feed rate in a fed-batch mode of operation. An important feature of
the cell growth kinetics is the variation in the cell yield of glucose as a function of glucose
concentration in the medium. At high glucose levels, the less energy efficient fermentative
growth metabolism predominates and the cell yield is understandably low. A large part of the
consumed glucose is directed toward ethanol production. On the contrary, at low glucose
concentrations, the respiratory pathway becomes predominant. This shift from fermentative
to respiratory metabolism, characterized by a drastic increase in cell yield, must be
incorporated as an integral part of the cell growth model.
The experimental results needed to model development, including the kinetics of cell growth,
glucose utilization, ethanol formation, and invertase production in batch and fed-batch
fermentations, are described by Patkar and Seo (1992). Patkar et al. 1993 proposed a model
for invertase expression based on his experimental results. The fermentation model proposed
is a cybernetic model where the cells are viewed as optimal strategists involved in the
maximization of a performance index; say the specific cell growth rate. This goal-oriented
approach supposes that all the glucose is utilized for growth purposes and that the cell
maintenance requirements can
Glucose be neglected. Thus, the
objective of the multitude of

v reactions within the cell is to
E = Cell wall

maximize the cell growth rate.

Total Glucose .
Flux This

occurs when the

respiratory pathway
Fermentative Flux

dominates. Nevertheless this

Ethanol Pyruvate

respiratory pathway gets
saturated at glucose levels
Respiratory Flux lower than those required to

saturate the glucose uptake

TCA cycle rate. The saturated respiratory

Figure 2.3 Schematic representation of fermentative and respiratory flux is less than the saturated
fluxes inside cloned Saccharomyces cerevisiae cell. Pyruvate is the glucose uptake rate. The
bifurcation point at which the cell decides the fractions of glycolitic flux .

to be diverted toward fermentative and respiratory metabolic approach taken by this model,
pathways in invertase fermentation focuses on glucose fluxes

13

Catalina Valencia Peroni

inside the cell rather than glucose concentration. The complex metabolic pathways are
reduced to bare essentials considering only the respiratory (R;) and fermentative (Rf) fluxes.
A scheme of this metabolic pathway is shown in Figure 2.3. The glucose consumed by the cell
first enters the glycolitic chain. There is a bifurcation point at pyruvate. Using the
fermentative pathway, pyruvate can be converted to ethanol. Alternately, using the
respiratory pathway, more energy vield is obtained through its carboxylation to oxaloacetate
in the tricarboxilic-acid cycle. At low glucose concentrations, the respiratory pathway is not
saturated and all the pyruvate produced is carboxylated. As the glucose concentration
increases, the respiratory flux remains almost constant. Thus, increased glucose uptake rate
results in an increased fermentative flux leading to a higher ethanol production rate.

The control model of this fermentation process is considered to have four outputs and one
input. The input of the control system is the glucose feed rate (F). The outputs are the
biomass density (expressed as optical density), the glucose concentration (s), the specific
invertase activity (p) and volume (V). The state vector of this process is (x, s, p, V). The
fermentation process is simulated solving the model equations given below and the relations
between the output process variables and the input used to control.

2.2.2.1 Fermentation mode/

The above model framework can be written mathematically as follows. The specific growth
rate pu can be determined by assuming that the cell mass yield is constant for both the
respiratory and the fermentative fluxes:

H=RY, +R Y (2.15)
Simple Monod-type saturation forms are used to describe both the glucose uptake rate (R;)
and the respiratory flux (R,) as a function of the bioreactor substrate concentration (s). The

uptake rate must be large enough to sustain the respiratory flux. Otherwise, the respiratory

flux should be equal to the uptake flux rate,

_ ks
= 2.16
R K, +s ()
, ks
= = 2.17
R =minG=ro R) 2.17)

where k; is the maximum glucose uptake rate, k. is the maximum respiratory flux and K; and
K. are model parameters.

The fermentative flux is expressed as,

R =R -R (2.18)

14

Fed-batch fermentation processes

2.2.2.2 Mass balances

The overall mass balance for a fermentation process in fed-batch mode of operation, is given

by,
dv

— (2.19)
dt
since the fermentation volume (V), changes with time according to the substrate feed rate
(F).
A balance of the biomass concentration yields
d(xv
D = v = (RY, +R Y, v 2.20)
While the substrate concentration balance is given by
d(sv
(dt) =Fs. —RxV (2.21)

The process of regulating the gene SUC2 expression is very complex and only understood
partially. It is impossible to formulate a detailed mathematical model that takes into account
the complete interplay among genes. Even if the mechanisms were known, the number of
parameters in such a detailed, structured model, would be quite large. An empirical approach
is more suitable. Invertase production is derepressed at low glucose concentrations. Also, the
specific invertase activity responds almost instantaneously to changes in the extracellular
glucose concentration. So, it can be assumed that the rate of transcription of SUC2 gene is an
explicit function of the extracellular glucose concentration. On the basis of this assumption a
simple substrate inhibition type of expression is used to describe the invertase expression (p)

as a function of glucose concentration in the medium,

d(pxV) O kps O
= -k \V 2.22
dt +s+Ks? ¢ péx (2:22)

The yields and the kinetic parameters used in the above equations, the initial values of the
fermentation process and the operating conditions are shown in Table 2.2.

15

Catalina Valencia Peroni

Table 2.2 Initial values of the fermentation process, the microorganism parameters and the values of
the operation and control variables at the operation point used to simulate the invertase production

fermentation process

Initial Values Variable Value
X 0.150D
s 1,1.5,2,3, 5 kg/m?
P 100000 units/(OD*m?)
v 10° 0.2,0.4,0.50.6,0.7,0.8,0.9, 1 m?
F 107 0-0.75611 m/s
Microorganism Parameter Value
Parameters ke 1.25 g/(h*OD)
Kq 0.95 kg/m?
ke 0.55 g/(heOD)
K, 0.05 kg/m?®
Yy 600 OD/kg
kp 6.25 units/(l*OD*h)
K, 0.1 kg/m?
K; 2.0 m¥/kg
Kq 1.851/h
Yo 150 OD/kg
Operation Variables Variable Value
Sr 10 kg/m®
Vessel Volume 1.210%m?
Max. fermentation
time (h) 24h

16

Fed-batch fermentation processes

2.2.3 Penicillin production model

Penicillin production in a fed-batch bioreactor was studied by Cuthrell and Biegler (1989).
These authors tried to find the optimal feed-rate profile for the biosynthesis of penicillin. The
penicillin fed-batch bioreactor model was first proposed by Lim et al. (1986). This model has
been used by several authors, including Luus (1993a) and Banga et al. (1997), to test optimal
control techniques. Cuthrell and Biegler. (1989) based the solution of the optimal control
problem stated by this fed-batch fermentation in a successive quadratic programming and
orthogonal collocation on finite elements. Luus (1993a) used iterative dynamic programming
to find this optimal feed-rate profile. Finally Banga et al. (1993) presented a fast stochastic
dynamic optimization method to solve the same optimal control problem. He called his
method integrated controlled random search for dynamic systems.

The studied fermentation system is a bioreactor that contains biomass (x), substrate (s), and
product (p) at certain concentrations and has a volume (V). The control variable of this
process is the mass feed rate of substrate (F). The state variables are x, s, p and V, as

before. The overall fermentation process lead-time is between 72 to 200 h.

2.2.3.1 Fermentation model

The differential equations used to describe the penicillin biosynthesis are stated below. As
before, the fermentation process is carried out in a fed-batch mode of operation, and the
mass substrate feed rate determined the volume change with time,

av _F
—=— (2.23)
a s
where s; is the substrate density. A biomass balance results in
ax _ . xF (2.24)
dt s.V '
where p is @ Monod type growth rate of biomass given by
HOXS) = M (2.25)
1 max KS + S "
A substrate concentration mass balance yields
ds X X MSX s HF
OS__m_p_MX 5 S (2.26)
dt Yx/s Yp/x Km +S SF

where Yy and Yy are the substrate and product yields, respectively, and mg is a composite
constant for the Monod type microorganism maintenance term. The production rate of
penicillin (p) is given by:

S

S) = 2.27
p(s) pmapr+S(l+S/Km) (2.27)

17

Catalina Valencia Peroni

Finally, the penicillin mass balance considers a degradation constant rate

dp _
dt

__pX_Kdegr p-

pF

s.V

(2.28)

The vyields and the kinetic parameters used in the above equations, the initial values of the

fermentation process and the operating conditions are shown in Table 2.3.

Table 2.3 Initial values of the fermentation process, microorganism parameters and operation and

control variables constraints for penicillin biosynthesis

Initial Values Variable Value
X 1.5 kg/m?
s 0 kg/m?3
p 0 kg/m?
Vv 710°% m?
Microorganism Parameters Parameter Value
Himax 0.11 1/h
Ks 0.006 kg s/kg cells
Yys 0.47kg cells/kg s
Yox 1.2 kg p/kg s
Mg 0.029 kg s/ (kg
cellse h)
Pmax 0.0055 kg p/kg
cellseh)
K, 0.0001 kg/m?
Kin 0.1 kg/m®
Koeqr 0.0001 1/h
Operation variables and process Variable Value
constraints 5 500 kg e
X < 40 kg/m®
s < 100 or < 25 kg/m®
Vessel volume <110%m?
F <50 g/h

18

Fed-batch fermentation processes

2.2.4 Other models

A simple fermentation model was studied by Agrawal et al. (1982). He considered a pure
culture in a constant-volume continuous stirred tank reactor, which is fed with sterile nutrient

medium. The mass balances equations on cells (x) and limiting substrate (s) are

dx -Fx

—=——+ U(9)X 2.29
m v H(s) (2.29)
ds F(s: —9)

—=—-—F T +0(9)X 2.30
m v (s) (2.30)

where p is the specific growth rate, sg the feed substrate concentration, F the volumetric
feed flow rate, and V the bioreactor volume. The specific substrate consumption rate (o) is
given by

a(s) = u(s)/Y(s) (2.31)
where Y(s) is the substrate yield.
Agrawal et al. (1982) carried out studies about the stability and multiplicity of the possible
steady states assuming a linear variable yield coefficient with a Monod type growth model.
Also, he studied the stability of this system using a substrate inhibition model for the growth

rate and a linear variable yield coefficient. The substrate inhibition model is given by

U(s) = ks (2.32)
In dimensionless form and assuming a linear equation for substrate yield, equations (2.29)
and (2.30) using (2.31) and (2.32) can be written as

% =-C,w+C,(1-C,)e%"” (2.33)
%, - cwrc,a-cesr B (2.34)
dt 1+ B -C,

where w is the dilution rate F/ V and is used as a control parameter, C, is the dimensionless
cell mass and C; is the dimensionless substrate concentration defined as

(SF - S)

C, =
2 s,

(2.35)

In equations (2.33) and (2.34) B and y are the model parameters. This author found that
necessary and sufficient conditions for the existence of limit cycles are satisfied if
0.3<y<0.5and B<1/(4-1/y)-0.5 (2.36)
Through simulation it was found that if y=0.48, B=0.02 and the initial conditions are
C;=0.1207 and C,=0.881, the system reaches a stable steady state for w<0.8. The bioreactor
oscillates when 0.8<w<1.205 and there is a washout of the microorganisms in the bioreactor

when nw=1.205.

19

Catalina Valencia Peroni

The above system has been studied extensively (see for example Narendra, 1995) because it
is difficult to control for several reasons. The uncontrolled equations are highly non-linear and
exhibit limit cycles. Optimal behavior occurs in or near an unstable region. Besides, the
problem exhibits multiplicity since two different values of the control parameter- dilution rate-
can lead to the same desired set point in cell mass yield.

Another fermentation process of current research interest is the ethanol production from
cellulose. Ethanol can be used as the basis for fuels since cellulose is an abundant renewable
resource. Philippidis et al. (1993, 1997) studied the continuous production of ethanol from
cellulose using Saccharomyces cerevisiae yeast. He proposed a detailed model of the
simultaneous saccharification and fermentation process. Current efforts are focused on the
reduction of the overall production cost to make ethanol a non oil-based competitive fuel. The
production cost could be lowered with an effective process control strategy. This research

topic is still open.

20

Chapter 3 : Artificial Neural Networks

3.1 Introduction

3.1.1 Where they come from? Its relation with biological neural systems

An artificial neural network (NN) is a mathematical algorithm built in such a way that it tries
to emulate the human brain. These mathematical models of the brain have been studied
extensively with the hope of achieving human-like performance, especially in the fields of
speech and image recognition, perception and motor control (Quantrille and Liu, 1991; Hertz
and Krogh, 1993; Bishop, 1995; Randall et al. 2000) A human being can discern a whisper on
a noisy room, a face in a dimly lit alley and a hidden agenda in a political statement. Tasks of
lesser complexity will take days on a huge conventional computer. Most impressive of all, the
brain learns -without any explicit instruction- to create the internal representations that make
these skills possible. Also, the brain is very efficient in energy consumption. It has been
calculated that 107® J/s are needed per brain operation, while 10° J/s are needed in a
computer operation. However, the human brain is relatively slow. Brain events take
milliseconds against the nanoseconds of any event on a silicon chip. Although, the supremacy
of the human brain over the silicon chip is believed to lay in its dense interconnection of
simple computational units connected in a parallel way.

The human brain contains about 10! nerve cells, named neurons, interconnected via the so-
called synapses. About 1000 synapses of various types are connected to a single neuron. To
take advantage of this high interconnection and parallelism, artificial neural networks
algorithms have been thought. A schematic drawing of a typical brain neuron is shown in
Figure 3.1. The body cell called soma is surrounded by dendrites. These structures are tree-
like networks of nerve fiber. Extending from the cell body is a single long fiber called the

axon, which

eventually arborizes
. Soma (Body cell)
intro strands and
substrands. At the
ends of these are
the transmitting

ends of the synaptic

. . Dendrites
Jjunctions or

synapses to other

neurons. The Figure 3.1 Schematic drawing of a biological neuron

Catalina Valencia Peroni

receiving ends of these junctions on other cells can be found both on the dendrites and on
the cell bodies themselves. The axon of a typical neuron makes a few thousand synapses
with other neurons. The neurons transmit signals by propagating an electrical impulse along
the entire length of the cell in the form of a change in potential of cell's membrane. The
effect is to raise or lower the electrical potential inside the body of the receiving cell. If this
potential reaches a threshold, a pulse of fixed strength and duration is sent to the axon. It is
said that the cell has fired and the pulse branches out through the axonal arborization to the
synaptic junctions to other cells. An impulse triggers a release of neurotransmitters, specific
signaling substances, which refuse to bind to the receptors on the adjacent neuron. The
synaptic strength of the junctions is supposed to be modified when knowledge is stored in
the brain. The first studies about the neural system were carried out by the Spanish scientist
Ramon y Cajal during the last decades of nineteenth century and the beginning of twentieth.
One of his drawings is shown in Figure 3.2. It is amazing the similarity of his illustration with

the modern microscopy pictures, shown in Figure 3.3.

Figure 3.2 Ramon y Cajal drawing of the cerebellar
cortex and neural tissue for a cat. From Histologie
au systeme nerveux del’homme et des vertebres 1909

Figure 3.3 Upper picture:
Hippocampus neurons with
permission of Slice of Life project.
Lower picture: Pyramid neuron
grown in culture. From Vision
Concepts (© information in
www.4colorvision.com/citation.htm)

22

Artificial neural networks

3.1.2 Mathematical modeling of biological neural systems: Artificial neural
networks

Similarly to the brain, an artificial neural network consists of a number of interconnected
artificial neurons as processing units. These neurons also process information by their
dynamic response to external inputs, but in comparison to the brain an artificial neural
network model is, however, relatively simpler. The neural network model is composed of
many non-linear parallel computational units connected via connection weights that are
typically adapted during operation to improve performance. One computational unit, called
neuron, performs a part of the overall network computation. Several of these neurons
constitute a neural network (Hertz and Krogh, 1993; Bishop, 1995)

A schematic drawing of a typical artificial neuron is shown in Figure 3.4. The model neuron
computes a weighted sum of its j inputs form another units, and outputs according to a

threshold or activation function /£ Mathematically, this can be written as:

output = f(z w;input; —0) (3.1)
J

where 0 is an adjustable constant term called bias or threshold. The activation function 7 can
be a step function (neuron is active or inactive) but commonly it is an s-shaped or sigmoidal
function. It is normally wanted that the activation function saturate at both extremes of the
input range. Any function with this feature will fit but it is desirable to be a differentiable
function because the gradient of fis used in common neural network learning algorithms.
Also, this function is chosen in a way that does not saturate in the range of the weighted sum
of inputs. The output of the activation function is usually within the interval (-1,1) or (0,1).
There has been a recent resurgence in the field of artificial neural nets caused by new
topologies and algorithms, analog VLSI implementation techniques, and the assumption that
massive parallelism is essential for high computational performance. Besides parallelism,
another distinctive characteristic of neural networks is that the output of the network is the
state of the entire network and not the result of only a single processing unit. This
characteristic, and the fact that memory allocation in a neural network is not physically
addressable, makes an artificial neural network model a very robust model in the sense that a
loose of few neurons does not disrupt the entire network performance. Another similarity of
artificial neural networks with the human brain

is in its way of learning. Children learn to
i h by trial and A I"'F"-'tmf:
recognize shapes by trial and error. A common - Z
toy given to toddlers consists of different solid /2/7 Output
shapes that can be inserted in a box only 3

through correspondingly shaped holes. As the Figure 3.4 Schematic drawing of a typical
. . artificial neuron. The output is a function of
child learns about shapes by repeatedly trying t0 the inner product of the input vector and

fit the solid shapes into the holes, a neural theweight vector of the connections w

23

Catalina Valencia Peroni

network uses a set of examples into a trial and error algorithm to learn its task. These
examples are called patterns and the set of patterns is called training or learning set. The
learning process involved is called training. To train a neural network means to adaptatively
adjust the values of the connection weights in order to improve performance. Training stops
when the specific task is learnt or a given performance criterion is achieved. Usually to
accomplish this, the network has to be feed several times with the entire training set. Each

time the entire training set is feed to the neural network is called an gpoch.

3.1.3 Neural network classification: types of artificial neural networks

Mathematically, neural networks can be seen as universal approximators of computable
functions (Cybenko, 1989; Hornik et a., 1989). It means that in principle, neural networks
can estimate any computable function, i.e., they can do everything a normal digital computer
can do. Artificial neural networks commonly used in the modeling and identification fields are
deterministic algorithms. However neural networks can also be stochastic. Stochastic
networks, such as the Boltzmann Machine, are used mostly in pattern recognition (Widrow
and Lehr, 1990). There are several types of neural networks, but they can be divided by its
learning method into supervised learning or unsupervised learning (Sarle, 1997). In
supervised learning, the correct network results (target values or desired outputs) are known
and are presented to the neural network during training so that the neural network can
adjust its weights while matching its outputs to the target values. After training, the neural
network performance is tested by presenting to it only input values and seeing how close it
comes to predict the correct target values. In unsupervised learning, the neural network is
not provided with the correct results during training. Supervised neural networks usually
perform regression. Unsupervised neural network in contrast usually perform some kind of
data compression, such as dimensionality reduction or clustering.

On the other hand, neural networks can also be divided by their network topology. Two
major kinds of network topology are feedforward and recurrent neural networks. In a
feedforward neural network, the connections between units do not form cycles; this is called
straight-through connection. They usually produce a response to an input quickly. Most of
them can be trained using a wide variety of efficient conventional optimization methods. In a
feedback or recurrent neural network, there are cycles in the connections. Usually each time
an input is presented, the neural network must iterate for a potentially long time before it
produces a response. This kind of networks is usually more difficult to train than feedforward
neural network but they can be successfully implemented to model dynamic systems that
feedforward neural networks cannot model.

Neural networks also differ in the type of data they accept. Two major kinds of data are
categorical and quantitative. By categorical variables is understood those variables that take

only a countable number of possible values. There are usually several or more cases falling

24

Artificial neural networks

into each category. Categorical variables have symbolic values such as “white” or “gray” that
must be encoded into numbers before feeding them to the network. Both supervised and
unsupervised learning with categorical outputs are called classification. Quantitative variables
are numerical measurements of some attribute, such as temperature. The measurements
must be made in such a way that at least some arithmetic relations among the
measurements reflect analogous relations among the attributes of the objects that are
measured. Supervised learning with quantitative target values is called regression. Some
variables can be treated as either categorical or quantitative, such as number of children or
any binary variable. Most regression algorithms can also be used for supervised classification
by encoding categorical target values as 0/1 binary variables and using those binary variables
as target values for the regression algorithm. The outputs of the network are probabilities
and, in this case, any of the most common training methods can be used.

Finally a useful scheme for neural network classification was presented by Sarle (1997) and it
is reproduced in Table 3.1. Also, this scheme presents a resume of the relevant works in the
neural networks field. The following sections contain detailed references to some of those
works. For further information refer to Sarle (1997).

Table 3.1 Neural network classification scheme adapted from Sarle (1997)

1. Supervised learning algorithms
A. Feedforward neural networks
= Linear
» Hebbian - Hebb (1949), Fausett (1994)
= Perceptron - Rosenblatt (1958), Minsky and Papert
(1969/1988), Fausett (1994)
= Adaline - Widrow and Hoff (1960), Fausett (1994)
= Higher Order - Bishop (1995)
Functional Link - Pao (1989)
. MLP Multilayer perceptron - Bishop (1995), Reed and Marks (1999),
Fausett (1994)
= Backprop - Rumelhart, Hinton, and Williams (1986)
= (Cascade Correlation - Fahlman and Lebiere (1990), Fausett
(1994)
= Quickprop - Fahlman (1989)
= RPROP - Riedmiller and Braun (1993)
= RBF networks - Bishop (1995), Moody and Darken (1989), Orr (1996)
= OLS: Orthogonal Least Squares - Chen, Cowan and Grant
(1991)
= CMAC: Cerebellar Model Articulation Controller - Albus (1975), Brown
and Harris (1994)
= (lassification only
» LVQ: Learning Vector Quantization - Kohonen (1988),
Fausett (1994)
= PNN: Probabilistic Neural Network - Specht (1990), Masters
(1993), Hand (1982), Fausett (1994)
= Regression only
» GNN: General Regression Neural Network - Specht (1991),
Nadaraya (1964), Watson (1964)

25

Catalina Valencia Peroni

B. Recurrent neural networks - Hertz, Krogh, and Palmer (1991), Medsker and
Jain (2000)
= BAM: Bidirectional Associative Memory - Kosko (1992), Fausett
(1994)
= Boltzmann Machine - Ackley et al. (1985), Fausett (1994)
= Recurrent time series
= Backpropagation through time - Werbos (1990)
Elman - Elman (1990)
FIR: Finite Impulse Response - Wan (1990)
Jordan - Jordan (1986)
Real-time recurrent network - Williams and Zipser (1989)
Recurrent backpropagation - Pineda (1989), Fausett (1994)
TDNN: Time Delay NN - Lang, Waibel and Hinton (1990)

C. Competitive

= ARTMAP - Carpenter, Grossberg and Reynolds (1991)

= Fuzzy ARTMAP - Carpenter, Grossberg, Markuzon, Reynolds and
Rosen (1992), Kasuba (1993)

= Gaussian ARTMAP - Williamson (1995)

» Counterpropagation - Hecht-Nielsen (1987; 1988; 1990), Fausett
(1994)

= Neocognitron - Fukushima, Miyake, and Ito (1983), Fukushima,
(1988), Fausett (1994)

2. Unsupervised learning algorithms - Hertz, Krogh, and Palmer (1991)
A. Competitive
= Vector Quantization
» Grossberg - Grossberg (1976)
= Kohonen - Kohonen (1984)
= Conscience - Desieno (1988)
= Self-Organizing Map
= Kohonen - Kohonen (1995), Fausett (1994)
= GTM: - Bishop, Svensén and Williams (1997)
= Local Linear - Mulier and Cherkassky (1995)
= Adaptive resonance theory
= ART 1 - Carpenter and Grossberg (1987a), Moore (1988),
Fausett (1994)
ART 2 - Carpenter and Grossberg (1987b), Fausett (1994)
ART 2-A - Carpenter, Grossberg and Rosen (1991a)
ART 3 - Carpenter and Grossberg (1990)
Fuzzy ART - Carpenter, Grossberg and Rosen (1991b)
= DCL: Differential Competitive Learning - Kosko (1992)
B. Dimension Reduction - Diamantaras and Kung (1996)
= Hebbian - Hebb (1949), Fausett (1994)
= QOja - Oja (1989)
= Sanger - Sanger (1989)
= Differential Hebbian - Kosko (1992)
C. Auto-association
= Linear auto-associator - Anderson et al. (1977), Fausett (1994)
= BSB: Brain State in a Box - Anderson et al. (1977), Fausett (1994)
» Hopfield - Hopfield (1982), Fausett (1994)
3. Nonlearning
A. Hopfield - Hertz, Krogh, and Palmer (1991)
B. Various networks for optimization - Cichocki and Unbehauen (1993)

26

Artificial neural networks

3.2 Neural networks history : Major milestones in the development of neural
computation

The first formal model of a neural network was proposed by McCulloch and Pitts in 1943. In
this model the neuron computes a weighted sum of its inputs from other units, and outputs a
one or a zero according whether this sum is above or below a certain threshold. Though
simple, a McCulloch-Pitts neuron is computationally a powerful device. They demonstrated
that a synchronous assembly of such neurons is capable in principle of universal computation
for suitably chosen weights. This means that it can perform any computation that an ordinary
digital computer can, though not necessarily so rapid or conveniently. Few years later, in
1949, Hebb postulated in his Organization of Behavior the learning scheme. An assembly of
neurons can learn by strengthening the connections between two neurons whenever they
were both simultaneously exited. Almost a decade later, in 1958, Rosenblatt developed his
Perceptron. i.e., a simple formalized model of a biological neuron based on the McCulloch-
Pitts neurons and Hebb’s postulate. The perceptron consist of sensory units connected to a
single layer of McCulloch-Pitts neurons. Perceptrons are networks in which the units are
organized into layers with feed-forward connections between one layer and the next.
Rosenblatt focused his work on the problem of how to find appropriate weights values for
particular computational tasks. Rosenblatt perceptron is very similar to a network called
adaline, proposed by Hoff (1960) and Widrow (1962).

For the simplest case of perceptrons without any intermediate layers, Rosenblatt was able to
probe a theorem that states that the training of a perceptron to classify patterns into linearly
separable classes converges in a limited number of steps. He probed the convergence of a
learning algorithm, a way to change the weights iteratively so that a desired computation can
be performed. Many people expressed a great deal of enthusiasm and hope that such
machines could be a basis for artificial intelligence.

However in 1969, Minsky and Papert thoroughly analyzed perceptrons and proved
mathematically that a perceptron could not implement the XOR function or any non-linearly
separable problem. They recognized that the extension of perceptrons with hidden units
would probably overcome this limitation. Although, Rosenblatt had also studied network
structures with more layers of units, there was no learning algorithm known which could
determine the weights necessary to implement the given calculation. Minsky and Papert
(1969) doubted that one of such algorithm could be found. They stated that training of
intermediate units was probably unsolvable. They thought that it was more profitable to
explore other approaches to artificial intelligence. The impact of Minsky and Papert research
was destructive to the just born neural network field. The interest in neural networks
disappeared in the following decades. Most of the computer science community left the

neural network paradigm for almost 20 years.

27

Catalina Valencia Peroni

Still, there were a nhumber of people who continued to develop neural networks theory in the
1970’s. A major theme was associative content-addressable memory, in which different input
patterns become associated with another if sufficiently similar. During these years, Grossberg
(Carpenter and Grossberg, 1991) developed his Adaptive Resonance Theory (ART), a number
of novel hypotheses about the underlying principles governing biological neural systems.
These ideas served as the basis for later work by Carpenter and Grossberg involving three
classes of ART architectures. These structures were the first self-organizing neural
implementations of pattern clustering algorithms. Other important theory on self-organizing
systems was pioneered by Kohonen in 1982 with his work on feature maps. In the same
year, Hopfield demonstrated formal analogy between a net of neuron-like elements with
symmetric connections and a spin glass. Hopfield was able to add some physical insight by
introducing an energy function, and by emphasizing the notion of memories as dynamically
stable attractors. He demonstrated that a net could be trained as an associative memory
using an early rule for synaptic weight modification proposed by Hebb. Hopfield introduced
outer product rules as well as equivalent approaches to train a class of recurrent networks,
now called Hopfield models. Other significant models of the 1980’s include probabilistic ones
such as Hinton, Sejnowski and Ackley’s Boltzmann Machine (Hinton et al., 1984; Hinton and
Sejnowski, 1986), which, to over simplify, is a Hopfield model that settles into solutions by a
simulated annealing process governed by Boltzmann statistics. The Boltzmann Machine is
trained by a clever two-phase Hebbian-based technique.

But perhaps the most influential development of this decade, takes up the old thread of
Rosenblatt’s perceptrons where it was cut by the work of Minsky and Papert. Almost
simultaneously various people developed a learning algorithm that adjusts well the weights of
the connections of the successive layers of a multiplayer perceptron. Known as
backpropagation it appears to be first discovered by Werbos in 1974. He first published this
algorithm in his doctoral dissertation. Unfortunately, Werbo’s work remained almost unknown
in the scientific community. The backpropagation algorithm was largely ignored for years
after its development, probably because its usefulness was not fully appreciated. In the early
1980’s Rumelhart at the University of California and Parker at Stanford University,
independently rediscovered this algorithm. Rumelhart, Hinton and Williams (1986)
popularized the algorithm by demonstrating that it could teach the hidden units to produce
interesting representations of complex input patterns (Rumelhart et al. 1986). They finally
succeeded in making backpropagation algorithm widely known, largely as a result of the clear
framework within which they presented their ideas. The backpropagation algorithm is a
learning algorithm for perceptron networks with hidden units based on Widrow and Hoff
learning. It is the most widely used learning algorithm. It is most useful in situations in which
the relation between input and output is non-linear and training data are abundant. It should

be noted however, that in the field of variational calculus the idea of backpropagation error

28

Artificial neural networks

through non-linear systems existed centuries before Werbos first thought to apply this
concept to neural networks. In the past four decades, these methods have been used widely
in the field of optimal control, as discussed by le Cun (1988).

In the last decade, neural networks have been widely applied in the field of pattern
recognition (Bishop, 1995) and its relation with statistical models has been studied (Sarle,
1994). The business and management community have been also interested in neural
networks, mostly for market price movement and lending risk predictions (Business Week,
1992). The scientific community entered a new era of neural networks applications (Hinton,
1992). In the chemical engineering field neural networks began to be interesting for
industries (Bhagat, 1990, from Exxon Research and Engineering Co., Chitra, 1993 from
Hercules Inc., and Hellstrom and Brinsley, 1993 from Westinghouse Electric Corporation, for
example). A useful summary of the fundamental developments in feedforward artificial neural
networks can be found in Widrow and Lehr (1990).

3.2 Advantages and disadvantages of neural networks : when they can be used

The neural network field has developed so quickly that neural networks were seen as the
major step towards artificial intelligence. It was thought that neural network algorithms were
able to do anything. In theory, they are universal approximators of any continuous function
(Cybenko, 1989; Hornik,1989). It means that a parameterization of any given function could
be found through a suitable neural network. The main objection to this statement is that
there is no clear methodology to follow. It is not clear how to find this suitable neural
network. It depends on the type of problem to be solved. Sometimes it is almost unfeasible
to fit a neural network. Some times the network is required to be too big and training takes a
lot of time, sometimes the appropriate connection weights for the specific problem are not
found. These are the main reasons why it is especially important to be clear about what
neural networks can and cannot do.

The main advantages of neural network algorithms are that they collective do problem
solving, they auto learn input/output characteristics of the specific problem, they are robust
to noise and easy to implement in hardware and they are available in a wide range of
software packages. Practical applications of neural networks most often employ supervised
learning. For supervised learning, training data that include both the input and the desired
result (the target value) have to be provided. After successful training, the network computes
an output value that approximates the desired result when presented with input data.
However, for training to be successful, sufficient training data and relatively long
computational time are needed for training. Each forward and backward pass is
computationally complex. Usually error derivatives have to be calculated for each training
data input and each connection weight has to be updated several times. Besides, it is not
guaranteed to actually find a global optimum and the training algorithm may not converge.

29

Catalina Valencia Peroni

Moreover, in many applications, such as image and text processing, considerable effort is
needed to select an appropriate input-output data set and to code the data as numerical
values.

In practice, neural networks are especially useful for classification and function
approximation/mapping problems which are tolerant of some imprecision, and almost as
important as this, have lots of training data available but to which hard and fast rules (such
as those that might be used in an expert system) cannot easily be applied. Almost any finite-
dimensional vector function on a compact set can be approximated with an arbitrary precision
by feedforward neural network if enough data and enough computing resources are
available, although, it is stil open the question about the network
generalization/extrapolation capabilities.

To be somewhat more precise, Sarle (1997) found that feedforward networks with a single
hidden layer and trained by least-squares are statistically consistent estimators of arbitrary
square-integrable regression functions under certain practically-satisfiable assumptions
regarding sampling, target noise, number of hidden units, size of weights, and form of
hidden-unit activation function (see also White, 1990). Such networks can also be trained as
statistically consistent estimators of derivatives of regression functions (White and Gallant,
1992) and quantiles of the conditional noise distribution (White, 1992). Feedforward networks
with a single hidden layer using threshold or sigmoid activation functions are universally
consistent estimators of binary classifications (Faragd and Lugosi, 1993; Lugosi and Zeger
1995; Devroye et al., 1996) under similar assumptions. Note that these results are stronger
than the universal approximation theorems (Cybenko, 1989 and Hornik, 1989) that merely
show the existence of weights for arbitrarily accurate approximations, without demonstrating
that such weights can be obtained by learning.

Unfortunately, the above consistency results depend on one impractical assumption: that the
networks are trained by an error minimization technique that comes arbitrarily close to the
global minimum. Such minimization is computationally intractable except in small or simple
problems. In practice, however, good results can be obtained without attempting a full-blown
global optimization, e.g., using multiple random weight initializations is usually sufficient.

For example, a function that a typical neural net cannot learn is Y=1/X on the open interval
(0,1). An open interval is not a compact set. With any bounded output activation function,
the error will get arbitrarily large as the input approaches zero. Of course, you could make
the output activation function a reciprocal function and easily get a perfect fit, but neural
networks are most often used in situations where you do not have enough prior knowledge to
set the activation function in such a clever way. There are also many other important
problems that are so difficult that a neural network will be unable to learn without

memorizing the entire training set. This is the case when predicting random or pseudo-

30

Artificial neural networks

random numbers, factoring large integers, determining whether a large integer is prime or
composite, decrypting anything encrypted by a good algorithm and so on.

Feedforward neural networks are restricted to finite-dimensional input and output spaces.
Recurrent neural networks can in theory process arbitrarily long strings of numbers or
symbols, but they are more difficult to train. Neural networks are, at least today, difficult to
apply successfully to problems that concern manipulation of symbols and rules, but research
on this topic continues. Bibliography about this topic can be found in Sarle (1997).

Finally, it is important to understand that there are no methods for training neural networks
that can magically create information that is not contained in the training data. Neural
networks can extract only the information contained into the data set. They are black box
representations of input/output data, although there are some techniques to interpret the
network connection weights, as exposed by Chitra (1993).

As for simulating human consciousness and emotion, that's still in the realm of science fiction.
Consciousness is still one of the world's great mysteries. Neural networks may be useful for
modeling some aspects of or prerequisites for consciousness, such as perception and
cognition, but they provide no insight into the question: “Why is all this brain processing
accompanied by an experienced inner life? ®

The advantages and disadvantages of neural networks can be summarized as suggested by

Venkatasubramanian 2000.

Advantages:
» Collective problem solving
» Auto learning of Input/Output characteristics
» Robust to noise
« Pattern recognition
e Easy to implement
* Availability of software
Disadvantages:
< Often require thousands, ten of thousands of iterations to learn the data
* Not guaranteed to actually find the global optimum
e May not converge
» Each forward and backward pass is computationally complex
» Questionable generalization/extrapolation

« Black-box character

3.3 Some neural networks types

As it was said in the previous section, for solving a given problem, a neural network

architecture should be chosen on the basis of the characteristics of the problem. The

31

Catalina Valencia Peroni

architecture of an artificial neural network is defined by the network structure; its
components or neurons and the relations or connections between them. There are many
alternative architectures of neural networks, but the feedforward layered backpropagation
network of interconnected neurons is the most widely one applied in modeling a wide range
of non-linear relation ships and has been claimed to be especially suitable for chemical
processes (Linko and Zhu, 1992). Feedforward layered networks are also called Multilayer
perceptrons (MLP). A matter of current research is to find MLP optimal network architecture
for a specific problem. To overcome this optimization problem, genetic algorithms have been
used (Glassey et al., 1994) but in many cases, the improvement over an experienced worker
carrying out trial and error procedures was small. Besides, soft computing, including decision
trees and genetic programming are methodologies of current research in the development of
optimal network architectures for control problems (Kawaji, 2002; Hinchliffe and Willis, 2002;
Mirea and Marcu, 2002).

Another common network architecture is the Radial Basis Function (RBF) network. This
network structure is similar to a feedforward neural network, but the response of the neuron
to a given input is based on the distance between the input vector and a vector of
parameters that describes the position of the neuron activity in the input space. Instead of
using an inner product, usually a Euclidian distance is employed. Also, feedforward neural
networks can be seen as a “static” network architecture because, for the neural networks
used in this work, a fixed number of neurons and then connections between them are needed
a priori, before training. On the other hand the RBF network architecture is built in a more
dynamic manner. Both architectures are described in more detail below.

One more network architecture of interest is the Kohonen’s Self Organized Maps. These maps
are useful clustering algorithms and, by the characteristics of the bioreactor control problem
treated in the present work, they are not used here and in consequence they will be
explained briefly. Nevertheless, this algorithm has great potential in the development of
further work. A self-organized map is a non-linear projection of the probability density
function of the high dimensional input space into a 2 or 3-dimensional map.

As it was said before, another content-addressable neural algorithm is based in Grossberg’s
Adaptive Resonance Theory (ART). Fuzzy ART map systems learn to classify inputs by a
fuzzy set of features. This characteristic makes this algorithm adequate for the current
optimization and control problem. Fuzzy logic has been also included into several neural
network algorithms to empower their capabilities. One example is Fuzzy ARTMAP but there
are several networks that include fuzzy logic characteristics. The fuzzy ARTAMP system, and
another systems based on fuzzy logic are described bellow. It is worth mentioning that a
good and condensed summary of the characteristics of some of the mentioned architectures
is found in Lippmann (1987). He explains Hopfield networks, Grossberg classifier, and

perceptrons. Hertz and Krogh (1993) in his book on neural computation explores the relation

32

Artificial neural networks

between statistical mechanics and neural networks. Another, now classical, book on neural
networks is Bishop (1995), with a good introduction to pattern recognition through both
statistical and neural networks methodologies.

3.3.1 Multilayer Perceptron

The basic features of a MLP network architecture are the input, hidden and output layers,
each with a pre-specified number of neurons interconnected with a number of adjustable
parameters called weights. A general scheme of a MLP is shown in Figure 3.5. To build a MLP
network the number of neurons and layers, and the neuron processing activation function
should be specified a priori. The number of neurons in the input and output layers is
determined by the number of input and output variables involved in the problem to be
solved, while the number of hidden layers and the corresponding number of neurons are
related to the converging performance of the output error function during the training
process, and to the network complexity, that increases the training time. The objective of
training the network is to adjust the interconnection weights so that the application of a set
of inputs produces the desired set of outputs. The optimal number of neurons in the hidden
layers is usually determined by trial and error. Generally speaking, too few hidden neurons
would limit the ability of the network to model the process, while too many could cause the
solutions (weights) of the training process to yield local minima instead of a global one during
the optimization problem, over fitting the neural network model.

Each neuron or processing unit (i) calculates the projection (inner product) between its input
vector and the vector of the weights associated with each input connection (initially random)
and (ii) uses the result of this product to compute the neuron output by means of a transfer
function, also called

threshold or activation

—_

function. The typical shape
of this transfer function is a
sigmoid, with a range fixed
to the interval (-1,1) or
(0,1). Training is necessary

to determine the weight

[B ' S 3 IR W U LN

vectors that will reproduce

the relationships between

input and output. As it was 13 Cukput layer
said before, only until 1986, Input laver

when the backpropagation

Hidden laver

Figure 3.5 Scheme of a multilayer perceptron architecture. The
algorithm was rediscovered, activation function of each neuron is f (y) =1/(1+€™”) where

a method to determine the Y is the inner product of the input vector and the weight vector of
the neuron input connections

33

Catalina Valencia Peroni

weight vectors of each neuron was developed. This algorithm minimizes the error of the
network predictions. Usually the error is defined as the quadratic difference between the
network output and its target value. A measure of the entropy or a Minkowsky error function
could be used as well. Any statistical way to measure the error will suffice. Anyway, it is
necessary target data to calculate the network prediction error and to train the network. This
is the reason why the backpropagation algorithm is called a supervised learning algorithm.
There is a need of a set of pairs of input-output data do teach the network. Backpropagation
updates each weight connection of each neuron based on the gradient of the error surface E,
Wy (t+D) = w, () -7 (3.2
ow,
in the space defined by the connection weights w; from the jth neuron to the neuron i. The
learning time step is denoted by t and the learning rate by n.
The gradient descendent algorithm can be very slow if n is small, and can oscillate widely if n
is too large. The problem essentially arises in the error surface valleys with sharp sides but a
shallow slope along the valley floor. An adaptive learning parameter has been used to solve
this problem in which n increment is defined by the increment or decrement of error. The
backpropagation algorithm computes the error derivatives using the chain rule for the
derivatives of the parameters on the hidden layers.
Let us assume the error measure or cost function as

p

1
E :EZ(Yjt -Y,)? (3.3)
]:

where p is the number of patterns of the training set, Y

is the network output and Y' is the desired output or

target. The update rule for the weights of the last layer

is Figure 3.6 Scheme of a multilayer
perceptron architecture showing the
notation for neurons and weights

W (t+1) = w, (1) -1 i(vg V)V,

(3.49)
where V; is the output of the hidden neuron j per pattern, and f’ is the first derivate of the
transfer or activation function of the j neuron. The overall input to neuron i for each pattern

is
h = Z WiJ-Vj (3.5)
]
See Figure 3.6 for index notation. Equation (3.4) can be written as
MEEETICR LA (6)
=

with the error signal & given by

34

Artificial neural networks

5 =(Y'-Y)f'(h) (3.7)
For the connection weights wy of the preceding neuron the update rule is obtained using the
chain rule
oE P JE 0V,
w, (t+D)=w, () -n—=w,(t) - =
KD =W O =0 =05 o

= w, (1) —ni(Y,i V) ()W, £(h, Ve,

(3.8)
= w, (1) - UZ w; f'(hy,)
=w () -n) o,V
3 MZI Ju Yk
In the above equations (3.8) &; is defined by
o = fl(hj)zvvijai (3.9)

Note that equation (3.8) has the same form as equation (3.6) but with a different definition
of d.In general, the backpropagation update rule has always the above form. Also equation
(3.9) is the definition of o for all hidden layers. o is determined in terms of the &'s of the units
that it feeds. The coefficients are just the forward connection weights, but here they are
errors propagating backwards instead of signals propagating forward; this justifies the name
error back-propagation algorithm. Although equations (3.6) and (3.8) are written as sums
over all patterns in the training set, they are usually used incrementally. One pattern is
presented at the input and then all weights are updated before the next pattern is
considered. This decreases the cost function at each step. If the patterns are chosen in a
random order, it also makes the path through weight space stochastic, allowing wider
exploration of the cost surface. The alternative batch mode (taking 3.6 and 3.8 literally and
only updating the weights after all patterns have been presented) requires additional local
storage for each connection. Besides, the incremental approach seems superior in most
cases, especially for very regular or redundant training sets.
The training algorithm can be described as follows:
1. Initialise the connection weights of each neuron to small random values. Usually in
the interval (-1,1).
2. Choose an input-output pair so Vy = input pattern. For a network of 3 layers, Vo=V
(See Figure 3.6). Apply the input pattern to the input layer of the network and
propagate the signal forwards though the network using

h, = ZijVk (3.10)

and

35

Catalina Valencia Peroni

V= f(h) (3.11)

Proceed, until Y=V, of the last layer is calculated

3. Compute each delta value for the output layer i using equation (3.7)

4. Compute each delta value for the preceding layers by propagating the error

backwards, using equation (3.9), until a delta has been calculated for every neuron.
5. Update the connection weights, using:
w; (t+1) = w; () —noV, (3.12)

6. Go back to step 2 and repeat for next pattern.
This training algorithm stops when the overall prediction error (usually a quadratic error)
stabilizes or reaches a defined threshold. The above algorithm is extremely slow and many
variations have been suggested to accelerate it. Other goals have included avoidance of local
minima and improvement of generalization ability. For further details refer to Hertz and Krogh
(1993). One modification of Backpropagation is called Backpropagation with variable step
size. It was proposed by Magoulas et al., in 1997. Another training method was proposed by
Elsimary et al. in 1993. His training method describes how to build a MLP network to be fault
tolerant against weight perturbation. His results are useful especially in hardware
implementation of neural networks.
One more option is to include a momentum term to avoid oscillation. The idea is to give each
connection some inertia or momentum, so that it tends to change in the direction of the
average downhill “force” that it feels, instead of oscillating wildly every little kick. This scheme

is implemented by giving a contribution from the previous time step to each weight change
oE
w(t +1) = w(t) —na— +a(w(t) —w(t -1)) (3.13)
W

The momentum term a must be between 0 and 1; a value of 0.9 is often chosen. A small
value of a makes equation (3.13) become equation (3.4).

Other and faster algorithms have been proposed for MLP training, instead of steepest
descendent algorithm. For example, quasi-Newton and conjugate gradient optimization
methods. Those algorithms and others used to train neural networks are implemented in
MATLAB's Neural Network Toolbox. One faster learning algorithm is the Levenberg-Marquardt
method. It is used when the cost function to be minimized is the sum of squared errors. For
further details on all mentioned algorithms refer to Demuth and Beale (1998).

Another issue to be addressed is how many hidden neurons are needed in a MLP. Huang and
Huang (1991) answer this question. His results are useful for pattern recognition and
classification problems. They mathematically proved that a MLP with m-hidden neurons is
capable of realizing arbitrary functions defined on an (m+1) element set.

36

Artificial neural networks

3.3.2 Radial Basis Function

RBF networks share the basic architecture of MLPs, as shown in Figure 3.7, but use radial
basis functions (such as equation (3.14)) in the hidden layer (RBF layer) and a linear transfer
function in the output layer. The RBF units have a receptive field around their centre, p;, for
which the output of the neuron is maximal. Otherwise, the output tails off in a Gaussian form
as the distance between the input and this centre increases. The width of the Gaussian bell is

given by o; . The output of the RBF units is usually defined as

H ||input —uj”zE

ouput = ex _— 3.14
p! Pﬁ' 2 E (3.14)

A RBF network is built when the input space is mapped to the output space through these
Gaussian functions. This mapping produces a clustering of the input space into the different
RBFs that form the network-hidden layer. The centre of each Gaussian function is not
necessary a datum of the pattern set. The response of the RBF layer propagates throughout
the output layer via some connections (weights) that are determined during the training
process. Training consists both in the adaptation of centres and functions of the RBF layer to
the input space and the determination of weights to the output layer. The number of neurons
in the hidden layer, RBF units, depends on the complexity of the function to be mapped. Also,

instead of gj, a covariance matrix Z; could be used for the RBF units
1, .
ouput :exp%——(lnput—uj)Tz _(|nput—uj)E (3.15)
02 . U

In this way, a large number of
adjustable parameters are
available in a RBF network. If

—_

equation (3.15) is used,
d(d+3)/2 adjustable parameters
are in a single neuron, where d
is the dimension of the input
vector. In RBF units following
equation (3.14), d+1

[SRS TR w S 3 [N S 'L R LN

parameters can be adjusted.

While MPL neurons define hyper 19 ¥ oukpuk layer

Hidden laver

planes in the output space, RBF Inputlayer

neurons define hyper spheres or

Figure 3.7 Scheme of Radial Basis Function network architecture.

hyper ellipsoids in that space. The activation function of each RBF neuron

is

2
Another difference is that a MLP f(y) = exp(— ||y -u]" o j) where y is the input vector, p; is the

network is a distributed center of the RBF neuron and g; is a measure of its width.

37

Catalina Valencia Peroni

representation of the input space. For a given input, several neurons contribute to the output
calculation. In RBF networks, for a given input, only a couple of neurons will transmit an
active signal. It is said that RBF networks are a local representation of the input space.
Supervised learning can be used to train a RBF network. This network has the advantage
over a MLP network, that a small quantity of target data is needed. The centres of the bell
function can be chosen randomly from the training set through a backward selection or
through a forward selection. Commonly, the width of the bell is twice the average distance
between centres of adjacent neurons. The linear neurons connection weights are linear
solution of the network-desired performance. A backward selection starts with a number of
hidden units equal to the number of patterns in the training set. Then, neurons are removed
one-by-one and each time the prediction error in a validation set is checked. The process
continues until a certain threshold error is reached.

In forward selection, neurons are created one at a time. At each iteration, the input vector is
used to create a RBF neuron. The error of the new network is checked, and if low enough,
the training stops. Otherwise a new neuron is added. This procedure is repeated until the
error goal is met, or the maximum number of neurons is reached. The described procedure is
also coded in MATLAB’s Neural Network toolbox. It can also be found in other software
packages.

Clustering methods can also be used to find the centres of RBF neurons. For instance, k-
means is a clustering algorithm where the squared distance between the chosen centres

and the input patterns x of the training set S is minimized,

minﬁgj

In this equation (3.16) k is the number of clusters (RBF hidden neurons), and
1 n

=—3 x
Nj r

n 2
X '“i” E (3.16)

U (3.17)
for N; patterns x, with centre in
This algorithm can be described as follows:

1. The input patterns set is randomly partitioned

2. u is calculated through equation (3.17) and the closest centre to each pattern is

chosen to evaluate distance

2
n
X '“i”

k
3. Regroup input X, to minimize Z ;
T=1n

4. Go to step 2 and repeat the sequence until a desired minimum is obtained
Finally, the widths of each RBF neuron, or its covariance matrix, are calculated from the

variance of each cluster.

38

Artificial neural networks

Learning Vector Quantization is another useful clustering algorithm. It is an especial case of

Self-Organized Maps and it will be explained in detail in next section.

3.3.3 Self Organized Maps

A self-organized map (SOM) is an artificial neural network where the nodes become
specifically tuned to various input signal patterns or classes of patterns by means of an
unsupervised learning process. In the basic version, only a cell or local group of cells at a
time response to the current input. The location of the response tends to become ordered as
if some meaningful coordinate system for different input features was being created over the
network. The spatial location or coordinates of a cell in the network correspond to a particular
domain of input signal patterns. The learning results achieved by this kind of map seem very
natural, at least indicating that the adaptive processes themselves at work in the map may be
similar to those encountered in the brain. There may be therefore sufficient justification for
calling these maps “neural networks” in the same sense of the multilayer perceptron and RBF
networks.

A SOM defines a mapping from the input data space R" onto a regular m-dimensional array of
nodes. With every node i, a parametric reference vector m; O R" is associated. An input vector
X OR"is compared with each m; in any metric and the best match is defined as the winner
and the input is thus mapped onto this location. In practical applications, the smallest of the
inner products or of the Euclidean distances is used to define the best-matching node,
identified by the subscript ¢

¢ = argmin|x —m| (3.18)

SOM is a non-linear projection of the probability density function of the high-dimensional
input data onto a n-dimensional display. Usually n=2,)
Mty
N,:':tzz'
to find the m; vectors such as the responses of the ‘ M ik

so the map is a two dimensional lattice. It is necessary

map for a set of inputs x are ordered spatially. In this
case, to find appropriate values for m; is called
learning. This learning principle assumes that the
internal representations of information in the brain are
generally organized spatially. Different regions in the
brain are dedicated to specific tasks. Eigi;:\%ofﬁi ngalg‘:(lz')e ir?f a(-:\ tr?ep)‘(’;‘;%iﬁg:
It is crucial to the formation of ordered maps that the Ilattice of a SOM, where t;< t,< t3

cells or nodes being trained are not affected

independently of each other, but as topologically related subsets. In the learning process,
defining a neighborhood N. around the node c enforces lateral interaction between nodes. At

each learning step, all the nodes within N. are updated, whereas nodes outside this region

39

Catalina Valencia Peroni

are left intact. The width of N. can be time-variable: wide at the beginning and shrinking
monotonically with time. An example of this is shown in Figure 3.8. The learning process
requires to:
1. Present an input x
2. Find the winner node c using equation (3.18), and
3. Update m; at each learning time-step t according to:
m,(t+1) =m,(t) +a(t)[x-m ()] if 0N, (3.19)
If the node j is not inside the neighborhood then its parametric reference vector my is not
updated. The function ais a scalar-valued adaptation gain which is initially equal to 1 but
decreases monotonically with t afterwards. It is related to a similar gain used in the stochastic
approximation processes. At the end of the learning process, o should attain small values of
the order of or less than 0.01.
An alternative to defining the neighborhood is to define a kernel function h(t)
m; (t+1) = m; (1) + hy (O[x —m; ()] (3.20)
This equation becomes equation (3.19) when hg=a if i € N. and h,=0 elsewhere. This kind of
kernel function is nicknamed bubble, because it is related to certain activity bubbles in
laterally connected neural networks. Another widely applied neighborhood kernel can be
written in terms of the Gaussian function, because a biological lateral interaction often has
the shape of a bell curve. Denoting the coordinates of the nodes c and i by the vectors r. and

r;, respectively, a proper form for hg might be

_ Ir.-r"H
hy —CY(t)EXpE_Z(72 O o (3.21)

where o is a suitable decreasing function of time. Its exact form is not crucial and it can be
linear. Some practical hints for the construction of this kind of map are (Kohonen, 1990):

a) Since learning is a stochastic process, the final statistical accuracy of the mapping
depends of the number of learning steps, which must be reasonably large. A rule of
thumb is that the number of steps must be at least 500 times the number of network
units.

b) If the neighborhood N. is too small, the map will not be ordered globally. A wide
starting N.=N(0), shrinking with time afterwards is advisable. The initial radius of N.
can even be more than half the diameter of the network. During the first 1000 steps
the radius of N, can shrink linearly. During the fine adjustment phase, N, can still
contain the nearest neighbors of the node c.

¢) Normalization of the inputs x is not necessary, but it may improve numerical
accuracy because the resulting reference vectors tend to have the same dynamic

40

Artificial neural networks

range. A process that normalizes the reference vectors at each step can be found in

Kohonen (1990)
If a SOM is to be used as a pattern classifier in which the nodes or their responses are
grouped into subsets, then the problem becomes a decision process and a fine tuning of the
map by learning Vector Quantization (LQV) is required. This fine-tuning clustering algorithm is
used to determine the labels of the codebook vectors. The idea of LQV is to pull codebook
vectors away from the decision surfaces to demarcate the class borders more accurately, like
a Bayes classifier. The update rule for m; can be found in Kohonen (1990). To comply better
LVQ classification algorithm with Bayes classifier, LVQ2 is proposed. In LQV2, a symmetric
window around the discrimination surface between two classes is defined. A correction to the
reference vector of a given class is made only if the input x falls into the window on the
wrong side of the discrimination surface. The optimal width of the window must be
determined experimentally. This algorithm ought to be applied for a relatively short time only
because, first, the distance between the reference vectors of two neighbors classes decreases
monotonically. Second, if the tuning of the map is continued, it may lead to another
asymptotic equilibrium of the reference vectors that is no longer the optimal. Further details
are given elsewhere (Kohonen, 1990). To overcome the above limitations an improved
algorithm LVQ3 was proposed. The main difference with LQV2 is the inclusion on the
updating rule, of a parameter e¢when the input x and the reference vectors of two
consecutive nodes belongs to the same class.
It should be noted that a software package with all the above algorithms is freely available
for any anonymous ftp user at the Internet site cochlea.hut.fi (130.233.168.48). It was
developed by Kohonen and his coworkers at the Helsinki University of Technology. It can be
used in MATLAB and it is supposed to compile in various machines without any specific
modifications needed on the code, because all programs have been written in ANSI C.
Current research in the field consists of modifications to the Kohonen self-organizing maps.
For example, one self-organizing neural network for non-linear mapping of data sets is called
Curvilinear Component Analysis (Demartines and Herault, 1997). In this algorithm the output
is not a fixed lattice but a continuous space able to take the shape of the submainfold. As it
was said before, SOMs are most useful for pattern recognition and classification, and because
the bioreactor control problem stated deals with a regression problem, SOM algorithm is not
employed in the present work. This useful tool can be employed in the control-affine model of
the fermentation (Aoyama et al., 1996) to map the possible steady states of the bioreactor

process.

3.3.4 Fuzzy Neural Networks

There are many successful applications of neural networks to non-linear model-based process

control. However a potential disadvantage of the input-output modeling scheme is that

41

Catalina Valencia Peroni

resulting models are complete black-box models. Hence, fuzzy logic is introduced to clarify
the inner structure of such a model, i.e. to facilitate the inclusion of a priori knowledge of
chemical process modeling, both analytical and qualitative (e.g. a linguistic statement). Fuzzy
logic has been used before in control (up to 100 papers were presented at the 15th IFAC
world congress in 2002), but there are very few applications of fuzzy logic control to chemical
engineering, because of its highly complex nature. Therefore, a more promising application of
fuzzy logic in chemical engineering seems to be a fuzzy logic model-based control scheme.

An introduction to fuzzy logic theory can be found in Tsoukalas and Uhrig (1997). The main
contributor to this theory was Zadeh in 1965. In fuzzy logic, a fuzzy set is defined by a
membership function that describes the degree of membership of a given element to the set.
The membership function has values in the interval [0,1], where 0 means that the element
does not belong to the set and 1 means that it totally does so. As opposite to a fuzzy set, in a
crisp set, the membership function only has two values, 1 or 0, since the element belongs or
not to the set. Also, in fuzzy logic several operations between fuzzy sets, such as "and", "or",
"min" and "max", are defined. Similarly to a fuzzy set, a fuzzy variable is represented by a
convex and normal membership function. Linguistic variables, such as high, medium and low,
can be translated into fuzzy variables. Linguistic variables are essentially aggregations or
categories of crisp variables. They can be represented by fuzzy variables, through an
adequate membership function, usually bell shaped. Another fuzzy logic component relevant
to process control are fuzzy logic rules. Fuzzy logic rules are if/then rules, based on expert
knowledge, used to manipulate fuzzy variables. Fuzzy logic rules, as any other logic
conjunction, have two parts, antecedent and consequent.

There are two types of control schemes based on fuzzy logic: the fuzzy logic control and the
fuzzy-model based control. In the fuzzy logic control, fuzzy logic is used directly as a
controller. Fuzzy logic provides an algorithm that can convert the linguistic control strategy
based on expert knowledge into an automatic control strategy. In the fuzzy-model based
control, @ model-based controller is constructed based on a fuzzy logic model of the process
dynamics. A significant problem in the design of a fuzzy logic model is the determination of
the proper membership function and the fuzzy logic rules. The fuzzy logic model can be
structured with a fuzzy neural network scheme that implements the traditional fuzzy logic
system with learning ability. As it was said before, the more promising application of fuzzy
logic in chemical engineering seems to be a fuzzy logic model-based control scheme.

3.3.4.1 Description

The general structure of any fuzzy logic model is composed by a fuzzifier, a fuzzy inference
engine with rule bases and a defuzzifier. A scheme is shown at the bottom of Figure 3.9.
There are a variety of fuzzy neural network schemes, distinguished by the type of inference,

membership function and defuzzification function. A fuzzifier performs the function of

42

Artificial neural networks

fuzzification, which converts
input data from an observed
input space into proper
linguistic values of fuzzy sets inputs
through predefined input
functions. The fuzzy inference
matches the output of the Cutput
fuzzifier with the fuzzy logic

rules and performs the Elilli_I':';L?tEal

appropriate reasoning. The
decision-making operator

simulates human decision- ‘
. i I Fuzzy inferenceo ok
making based on a set of '”p”ts"l'z"'zz"ﬁﬂl"engme Defuzzication HHPUES

linguistic description rules,

. . Figure 3.9 Fuzzy neural network architecture composed by a
which in turn are based on fification layer, a fuzzy inference layer and a defuzzification

expert knowledge and the laver

inference rule in fuzzy logic. Finally, the defuzzifier performs the function of defuzzification to
yield a crisp output through predefined output membership functions. The output of the
inference process on the decision-making operator is a fuzzy set, specifying a possible
distribution of the control action. In online control a crisp signal is required. That signal is
usually decided to be the center of gravity of the fuzzy resulting membership function.

The fuzzy network scheme presented here is a simple version of a fuzzy logic system in which
the consequent parts of fuzzy rules are constants. However, it is distinguished by a unique
partition of the input space, which is suitable for the kind of modeling in which only a partial
qualitative knowledge of a modeled process is available (Aoyama et al. 1995a). The input
space is partitioned by both fuzzy grids and hyper-ellipsoidal regions that represent the
inference rules, as illustrated in Figure 3.10. The number of hyper-ellipsoidal regions is
determined independently of the input space dimension. Fuzzy grids are used only to include
a priori knowledge. In the grid, shaded strips express the condition part of rules, and the
cross areas of strips express the rules. The combination of a fuzzy grid and ellipsoid for a

three variable (X;, X;, and X3) input space is shown

in this figure.
N Vg
x; —_— The discussed fuzzy neural network has three layers.
G——___ As it was said before, the input dimensions are
><lna g divided in two categories: grid and ellipsoidal. The
3

network structure is shown in Figure 3.9. The

Figure 3.10 Combination of fuzzy grid

S function of the nodes of each layer is defined as
and fuzzy ellipsoid

follows:

43

Catalina Valencia Peroni

44

1. First layer or fuzzification layer. There are two kinds of nodes. One kind takes the
grid inputs and the other kind takes the ellipsoidal input regions. Each node in this
layer represents the condition part of rules and the node output is equal to the

degree of match for each condition. The node output of each grid node j is

—1]9)2
Uy =exp§#% (3.22)
o

where UY is the node output, U? is one grid input and p and o are, respectively, the
center and the width (or variance) of the bell shaped function of the node.

Ellipsoidal nodes take all ellipsoidal inputs as input. Thus, the output of ellipsoidal

n o —ye 2
U? = Uex%% (3.23)

where US is the node output, U is the ith input of the ellipsoidal dimension and p

nodejis

and o; are, respectively, the center and the width (or variance) of the bell shaped
function of the ith input. The total number of ellipsoidal dimensional inputs is denoted

by n.

2. Second layer of fuzzy inference engine. The fuzzy inference is carried out by
arithmetic multiplication. Each node in this layer corresponds to a rule and the node
output is equal to the firing strength of each rule. The number of nodes in this layer
is equal to the number of rules. The inputs to all nodes can be from both dimensions:
grid inputs and ellipsoidal inputs. Thus the output of the j node of this layer is

defined as
Uj = I] UigXUie (3.24)

where U; is the node output, U9 is the ith grid dimensional input and U is the ith
ellipsoidal dimensional input. The parameter n depends on the fuzzy rule. Commonly
if/fthen rules have only two variables in the antecedent part, so n is equal to 1.
Arithmetic multiplication can be replaced by "and" or "or" operations, but the training
method employed here requires that U;(U%,U%) be a derivable function. For example
an if/then rule of the type "IF U% and U® THEN U;" can be written mathematically, as
the output of the jth node:

U, =minU°,U°) (3.25)

Artificial neural networks

3. Layer 3 or defuzzification layer. The nodes in this layer transmit the decision signal
Y out of the network. The number of nodes is equal to the output dimension. The

center of gravity of the defuzzification method is simulated through
|

KU

== (3.26)

2"

where | are the | centers of the membership functions.
A priori knowledge can be included as constraints imposed on the network parameters p and
o , in the fuzzy inference rules and in the way network connections are made. The following

section describes how non-set parameters are found through a learning process.

3.3.4.2 Learning Algorithm

The learning rules for the fuzzy neural network are based on the backpropagation-type
gradient descendent method, which calculates the error (E) rates recursively from the output
backwards to the input nodes. The goal is to minimize the squared difference of the network
output Y and the desired output Y..
Assuming that w is the adjustable parameter (1 or o), the update rule is:

w(t+1) =w(t) —n %E (3.27)

ow

Where n is the learning rate. As in MLP the learning rate value depends on the problem
characteristics. Any method used to adaptively update n in a MLP can be used also for this
kind of network.
Therefore it is necessary to find the error derivative for each parameter of each layer.

« Third layer. In this layer the update rule for each parameter is equal to

U.
it +D) =y (0 =n(Y =Y)—— (3.28)

2"

The error to be backpropagated from this layer to the preceding one is

9E HJJZUJ —ZHJUJ

—=(Y-Y) | (3.29)
an (ZU])Z

« Second layer. There is no parameter to adjust, so only the error signals must be

calculated. In the case of an arithmetic multiplication rule of one grid dimensional input
and one ellipsoidal dimensional input, the backpropagated signal to a grid node of first

layer is

45

Catalina Valencia Peroni

HaE
aU 5 Z (3.30)

where m is the number of connections of the grid node of the first layer to the second
layer. The error derivative is stated above, in equation (3.29). Similarly, the

backpropagated signal to an ellipsoidal node of first layer is

ZHa—EU g (3.31)

6Ue

« First layer. As before, the error derivatives are obtained from the backpropagated signal
from second layer, stated above in equations (3.30) and (3.31). The adaptive rule of the

center of a grid node can be derived using

- ¢} - AYA .
6_E =- OE 2(u 2U) ex ——(IJ UZ) - (3.32)
ou ouU ? o o C
The adaptive rule for the width of a grid node is
oE oE 2 u? -U9%)2 L[
- Chs -) ex -V - P (a3
9o ou’ 9 o o C
The adaptive rule of the center of the ellipsoidal nodes can be derived using
2(u; —U7?) n —U®)?L
OE _ aEe (1 :) ox (K .) (3.34)
aul ouU. o, -
and for the width of the ellipsoidal node
2 UL
0E _ 0E 2(M; - (.U.) - (3.35)
00, U ; o’ B

The above scheme was used by Aoyama et al. (1995b) in a control-affine approach for non-
linear process control. In 1999 he presented several control schemes for fuzzy neural
networks for a CST reactor and a pH neutralization process.

The main drawbacks of the fuzzy neural networks made it very difficult to use fuzzy neural
network modeling for high dimensional cases. The problem with the dimensionality of these
networks is mainly because the number of hidden nodes (fuzzy rules) increases exponentially
with the input dimension. This problem arises from the fact that the input space is partitioned
by a fuzzy grid of if/then rules. Usually the number of fuzzy rules is equal to the number of
hidden nodes for most fuzzy neural network schemes. Therefore, the exponential growth in
the number of rules leads to an exponential growth in the number of hidden neurons and
tuning parameters. It slows down the training of fuzzy neural networks to the point that
process modeling is unrealistic. This problem could be solved if the input space is partitioned

with ellipsoidal regions instead of a fuzzy grid.

46

Artificial neural networks

Another drawback of fuzzy neural networks is related to training data. In fuzzy networks the
input space is divided into cells, the number of which is equal to the number of basis
functions. To obtain an accurate model, each cell has to contain at least one training datum.
Thus, in high dimensional processes, a lot of data are needed for proper training. The
number of necessary training data increases with input dimension. If a limited number of
data are available, then increasing the dimensionality of the input space rapidly leads to the
point where the data become very sparse leading to poor performance. High dimensional
process are also problematic for the fuzzy "and" operation. The multivariable fuzzy neural
network basis functions are constructed by the tensor product of the fuzzification operators
connected by this operation. This way of construction of a multivariable function is
computationally expensive; the cost is roughly proportional to the dimension. These
drawbacks are especially problematic for chemical process modeling because they often
involve models of high dimensions. This is a motivation for preprocessing the data to reduce
the dimensionality. One useful method is principal component analysis. Another possible
remedy is to abandon the fuzzy grid altogether as proposed by Sugeno and Yasukawa
(1993).

Fuzzy logic has been included into several neural networks algorithms. Another kind of fuzzy
neural networks was studied by Feuring (1996a and b). The fuzzy neural networks he studied
used fuzzy variables as inputs and outputs, and, also, the connection weights were fuzzy
numbers. Feuring (1996a) describes several aspects of these networks, while Feuring (1996b)
proposes several training algorithms. Also, stability analysis of controllers that used a special
kind of fuzzy neural network was studied by the same author in 1999. He developed
conditions on the training set in order to find a stable controller. Another more industrial
oriented work was developed by Moreno et al. (2001). He compared neural and fuzzy logic
techniques for a classification/decision engine included in an automatic coin recognizer.
Another example of a neural network algorithm that employs in some degree fuzzy logic is

the fuzzy ARTMAP system, explained in the next section.

3.3.5 Fuzzy ARTMAP

ARTMAP is a class of neural network architecture that performs incremental supervised
learning of recognition categories and multidimensional maps in response to input vectors
presented in arbitrary order. It was proposed by Carpenter in 1992. This system uses two
adaptive resonance theory (ART) modules linked by an associative learning network and an
internal controller that ensures autonomous system operation in real time. A fuzzy ARTMAP
utilizes fuzzy operations instead of crisp operations to classify inputs by a fuzzy set of
features. It could also classify analog patterns that are not necessarily interpreted as a fuzzy
set. The main difference with other neural networks architectures is that it learns each input

47

Catalina Valencia Peroni

as it is received on-line, rather than performing an off-line optimization of a performance
criterion function. Another important fact is that a fuzzy ARTMAP neural network architecture
does not require of the previous definition of number of neurons or connections between
them. The main drawback of this function approximation is that, as any other neural network
system (Nahas et al., 1992), it has bad extrapolation capacities.

Both fuzzy ART modules of the fuzzy ARTMAP system work in the same way. Each one of the
ART modules has a weight or parameter vector wj; associated with each category j, where
j=1,2.N and N is the total number of categories. This weight vector has as many
components as the input vector and initially all of them are set to 1. The ART module
dynamics are determined by three parameters: a choice parameter a>0, a learning rate
parameter B O[0,1] and a vigilance parameter p 0O[0,1]. For a given input vector I the

category choice is made based on the choice function T; defined as

I Dw||
T()="— (3.36)
o +|w|
The fuzzy AND operator [lis defined by
(p), =min(p,,q;) (3.37)
and the norm |[[is defined by
M
p|= leil (3.38)

for any M- dimensional vectors p and q.
The chosen category] is the smallest index j where T; is maximal. It is said that resonance

occurs if
I Ow,|

>p (3.39)

and then the weights are updated according to

w,"™ = B Ow,™) + (1L B)w, ™ (3.40)
If resonance does not occur a new category is chosen: the next smaller index j, where T; is
maximum, is selected.
The search for a category continues until a resound category is found. If there are not
resounding categories among all T; maximum values then a new category node wj is created.

This new category node is located at the point described by the input vector I:

w;=1 (3.41)
To avoid proliferation of categories, the inputs should be normalized, i.e., for some y>0
M
|||:Z|Ii|sy (3.42)

48

Artificial neural networks

Complement coding is one way to ensure that the above equation holds, as it will be
explained below. In complement coding a complement vector of the input vector is
concatenated to it. The complement vector of a, a€ represents the off-response. Each one of

its components a; € is defined as:

a =1-a (3.43)
Thus the complement coded input I is
I= (a, a%)=(ay,---, am, 315 an°) (3.44)
With this new input, it can be proved that
=M™ (3.45)

Therefore, complement coding is a way to avoid proliferation of categories.

A few relevant things about ART dynamics are:

« If more than one category is a fuzzy subset choice, the small but positive parameter a
breaks the tie by choosing the category index that maximizes |wj| among the fuzzy
subset choices.

« ltissaid that fast learning occurs when B=1. When this happens w;"*)= I.

« If O<p<l and complement coding, fast learning and constant vigilance are used, the
number of categories is bounded, even if the number of exemplars in the training set is
unbounded.

The proof of the above items and more information about ART dynamics can be found in the

paper written by Carpenter et al. (1992). This paper also provides a geometric interpretation

of a fuzzy ART module.

Fuzzy ARTMAP uses two fuzzy ART modules linked by an associative learning module and an

internal controller that ensures autonomous operation of the network. One of the fuzzy ART

modules is used to classify the input patterns into categories. This module will be used to
classify the state space of the process into regions. It is called fuzzy ART, module. The
second fuzzy ART module, called fuzzy ARTjg, is used to classify the desired network outputs
into categories. In the present work, fuzzy ARTgz module will be used to classify the cost
space of a dynamic optimization problem into regions. The network input-output map is done
through an inter-ART module, called map field, which links fuzzy ART, with fuzzy ARTg. There
is a set of weight vectors w,-ah or parameters associated to each node category of fuzzy ART,
module. Each weight vector links a node of fuzzy ART, output to the map field. Initially all
components of the weight vector are set to 1. The map field is used to form predictive
associations between categories of both fuzzy modules and to realize the match-tracking rule,
whereby the vigilance parameter of fuzzy ART, increases in response to a predictive
mismatch at fuzzy ARTs. Match tracking reorganizes category structure so the predictive error

is not repeated on subsequent presentations of the input. This is done in the following way. If

49

Catalina Valencia Peroni

node J of the fuzzy ART, is chosen, then its weight vector w,?® activates the map field. If
node K is active in fuzzy ARTg then the node K in the map field is activated in the 1-to-1
pathways between the fuzzy ARTg module and the map field. If both fuzzy ART modules are
active then the map field becomes active only if fuzzy ART, predicts the same category as
fuzzy ARTg via the weight vector wy?P. The output of the map field x®® depends on which one

of the fuzzy ART modules is active, as illustrate in Table 3.2.

Table 3.2 Fuzzy ARTMAP map field output based on which one of the fuzzy ART modules is active

Fuzzy ART, Fuzzy ARTg Map field output x*®

Active Active w;® [Fuzzy ART; output
Active Inactive w;
Inactive Active Fuzzy ARTjg output
Inactive Inactive 0

The output x®° is used by the internal controller, when both fuzzy ART modules are active, to
check the match between them in a similar manner than the one used for a single fuzzy ART
module. At each input presentation the ART, vigilance parameter equals a base line vigilance
value. The map field has also a vigilance parameter p,,. It is said that resonance occurs in the
map field if

Xab

‘w"jb 0OFuzzy ART, output‘
= =N (3.46)

|Fuzzy ART, outpu| - |Fuzzy ART, outpu|

If resonance occurs in the map field then the connection between both fuzzy modules is
learned
wy"= x* (3.47)

If resonance does not occur then the vigilance parameter of the fuzzy ART, module is

increased until it is slightly larger than‘A Ow$§ |A|_l, where A is the input vector to fuzzy

ART, in complement coding form and wy® is the weight vector of fuzzy ART, of the winner
category 1. If the resonance parameter of fuzzy ART, is increased, fuzzy ART, search leads
either to activation of another category node that satisfies both resonance criteria (fuzzy
ART, and map field), or, if such node does not exist, to the shutdown of the fuzzy ART,
module for the remainder of the input presentation.

Once all the input patterns are classified in the ART, module and all the network desired
outputs are classified in the ART; module, and both modules are linked through the map
field, the neural network can be used as a predictor as proposed by Giralt et al. (2000). For a
given input vector the output category from module fuzzy ART, is calculated using the choice

function. Next, through the map field, the corresponding fuzzy ARTg category is found. Then,

50

Artificial neural networks

the predicted output value is found in the weight vector of fuzzy ARTy associated with that
category.

Carpenter implemented in 1995 a fuzzy ARTMAP system in a probability estimation
procedure, suitable for pattern recognition problems. In her work fuzzy ARTMAP was allowed
to operate either as a classifier or as probability estimator. Fuzzy ARTMAP systems have been
employed successfully in the prediction of physical properties of organic compounds
(Espinosa et al. 2001, 2002) and in the recognition of turbulence structures (Giralt et al.,
2000). Those systems will be used in the present work to develop a cost map to solve the

optimal control problem for a fed-batch bioreactor.

3.4 Building a NN control model: multivariable fed-batch bioreactor case study

The conventional approach to process control model development based on a fundamental
knowledge of the system is very often inefficient and unfeasible from an industrial viewpoint.
Structured models usually demand the specification of a significant nhumber of parameters
thus requiring extensive, time-consuming research to be performed. Moreover, these
parameters have to be updated relatively often depending on the process characteristics. An
alternative approach to model specification are neural networks algorithms.

After the selection of the NN architecture for the specific problem it is necessary to follow a
certain methodology to build the final model. The current methodology includes four main
steps: (i) Obtain raw data from the process variables, (ii) pre-process the raw data so that
the relevant variables are considered, i.e., ensuring that no process information is loosed, and
normalize process data to make it suitable for neural-processing, (iii) tune the network
architecture, and (iv) tune the training algorithm and train the network. Finally, the designed
NN model should be tested. In the current study the tests consider performance and
suitability for control purposes.

A general scheme of the methodology proposed to build the current NN control models is
presented in Figure 3.11. Each box represents a coherent phase to be completed entirely and
the arrows establish the sequence in the methodology. Note that some alternatives in this
scheme for MLP have been previously proposed to obtain a NN fermentation model
(Tsaptinos and Leigh, 1993). In the following four subsections the main steps that conform

the current methodology are presented and discussed.

51

Catalina Valencia Peroni

Process

Data Acquisition

Y
uswea.)
-aid eyeqg

Y
QNI HYIIY

—

Backpropagation
Cross Validation

NN models

DUl

Figure 3.11 Scheme followed to obtain the NN control models

3.4.1 Data acquisition and control models

A sufficiently large and diverse set of inputs and desired outputs is needed to train a NN by a
supervised training algorithm. The acquisition of this experimental data is the first challenge
that should be confronted, since it is crucial to determine how to perturb the process
operating conditions to generate a wide diversity of behaviours (therefore, patterns for
training) for all relevant variables. There are a large number of previous studies related to
linear model input sequence perturbation. There is also a MATLAB toolbox created by Ljung
(1987) for linear system identification. However, there is not a systematic approach for non-
linear models (Ljung, 1987). Ljung (1989) discusses the system identification problem in a
noise free environment. Pearson et al. (1997) consider the selection of input sequences for
non-linear model identification. Lin and Jang (1998) have a similar objective. They presented
a systematic approach for data set design in order to train the neural network or any other
black box model. Their approach is based on information theory. Information entropy was

52

Artificial neural networks

derived to identify the mutual positions among data points in all feasible regions. Information
enthalpy was derived to obtain a system’s dynamic non-linearity. The placements of the new
data were designed on the basis of a compromise between the information entropy and
information enthalpy- the information free energy.

In the present study, a control model for the multivariable fed-batch bioreactor is developed.
The substrate flow rate F has been chosen for this problem as a perturbation variable
because of its direct influence on five of the six process output variables. This variable is
perturbed by a positive step (increment of the flow rate), a positive and a negative
(decrement of the flow rate) step, and finally by a random multiple sequence of positive and

negative steps, around the five different steady states given in Table 3.3.

Table 3.3 Disturbances applied to the substrate flow rate (input variable) in a multivariable fed-batch

bioreactor for process simulation

F value needed to reach the perturbed steady
Name Disturbance state (10° m%/s)

Positive Step | 5, 6.6, 10, 11.6

Positive and

I 5, 6.6, 8.3, 10, 11.6
i

Multiple Step _—dy 5,6.6,8.3, 10, 11.6

Negative Step

The patterns produced by multiple random steps were selected as raw material for the
oncoming steps of the control model development, because of the wide rage of training data
obtained. The training data set consisted of 3445 training patterns that contained information
about the dynamics of 5 different process steady states near the process operation state
point. The time span of the training patterns was only 5 process time simulation units,
because of the relative slowness of the fermentation process studied.

The different input-output variables selected for the direct model of the multivariable
bioreactor are represented in Figure 3.12(a). The configuration proposed includes input
information of nineteen variables: Six variables in V at three time instants (historical data)
and the inlet flow rate F(t). The six outputs are V(t+1). Different alternatives exist for the
inverse model.

Figure 3.12(b) shows the inverse MLP-based models proposed by Aoyama and
Venkatasubramanian (1995c) and by Hussain and Kershenbaum (2000), which perform well
for step changes between steady state operations. The original MLP inverse model of Aoyama

53

Catalina Valencia Peroni

and Venkatasubramanian (1995c) had an input layer with four neurons and the output is the
dilution rate F(t-1)/VR, while that of Hussain and Kershenbaum (2000) used six inputs and the
output was the thermal fluid flow rate u(t) into the jacket of the bioreactor. The dimension of
the input variables in these two inverse models has to be increased to eighteen and nineteen,
respectively, to adequately respond to the random step changes that occur in many practical
situations where the model has an actuator role inside the controller. Figure 3.12(c) shows
the modifications of these two literature schemes considered here and a current new
structure with an input dimension of nineteen, which replaces the first component of V(t+1)
by its following steady state value, using known information about the process steady states.

This new state vector is denoted V.

()

Vit—» — Vit 1) V.o — F1)
322’;; ™ current direct model Vity—» Current inverse model
2™ V(1) —w|
Fitr—m Fit-1)—»]
A=V o+ 1)- V 35 .
® (©1) © » Modified inverse F©
Vo ’ model
AX X)X (1) g Fie-1)/Ve V(ED—m soyama a.(1995)
XED—> [nyerse model
St-1)=—— povama A, (1995)
peD Ve — ey
Td)Set_point V(ti—| Modified c;nl\.'erse
T Leroes i .U Vi) ‘mode
CH) TO—> [verse model Fi-1) _" Hussain M.A (2000}
Cie-1) T(-1)—m Hussain M.A.(2000)
Ut 1—

Figure 3.12 Input-Output scheme for the neural network models of the multivariate bioreactor: (a) Current
direct process model with V={x, s, p, T, pH, [02]}; (b) literature inverse process models; (c) modified
literature inverse models and current proposal

3.4.2 Data pre-processing

Although neural networks have been used in the rectification of inaccurate and inconsistent
plant data (Himmelblau and Karjala 1996), input data has to be adjusted to the requirements
of the neural network. Data is generally normalized between their maximum and its minimum
values. This is especially useful when the data is noisy because the input space of one
variable can be shrunk to minimize its error contribution to the total Sum of Squared Errors
(SSE) during the learning phase. To illustrate this effect, Figure 3.13 summarizes the
performance of a MLP network for a fed-batch bioreactor process control model built with
three different normalization limits. The training process was stopped when the SSE

stabilized. Note that the SSE increases as the normalization limits are closer to the maximum

54

Artificial neural networks

and the minimum values of the noisy pattern. In particular, the pH data input space was
contracted and a lower total SSE was reached. The normalization limits should be carefully
chosen because if the normalization limits are smaller (in the case of the minimum) and/or
larger (in the case of the maximum) than the data limits of the test set, the predictive
capabilities of the NN are substantially reduced. Neural network models tend to give good
interpolation results between learned patterns but have poor and unrealiable extrapolation
capabilities (Nahas et al. 1992).

For the multivariable fed-batch bioreactor the global bounds of the process given in Table 3.4
are used as the normalization limits since they are the physical limits imposed by the
microorganism on the process variables. This ensures that at any time, even for large process
disturbances, the NN input noise will not be magnified by the normalization process because

the NN input data will always be within the normalization limits.

&

L4 = o
w5

= pH

1} 1

Figure 3.13 Influence of the normalization procedure when the 404 patterns of data from the
multivariable bioreactor used to train the neural model contain noise. Comparison between predicted
and expected outputs for three different normalization limits: (a) SSE=6.88; (b) SSE=2.50; (c)
SSE=1.65.

55

Catalina Valencia Peroni

Table 3.4 Normalization limits for the NN input data in the multivariable bioreactor model

Pattern Minimum Maximum
x.10° s.10° p T pH 0, |xl10' s.10* p T pH 0,

Positive Step 1.51 024 0.08 303.14 0 0.03 | 3.70 766 054 303.15 14 0.298

Positive and
1.39 0 0.13 303.14 916 O 3.65 6.52 0.246 303.15 9.20 0.298
Negative Step

Multiple Steps ~ 5.15 0 0 273.15 0 0 472 6.5 1.75 323.15 14 0.298

Besides normalization, Principal Component Analysis (PCA) is another useful method for data
treatment (Aoyama A., 1999). Finding the principal components of the matrix given by the
NN inputs values provides a way for reducing the dimension of these inputs, which implies a
reduction in training time and in network complexity. PCA is also used to reduce noise in the
data. However, the principal drawback of this method for control purposes is that a principal
components analyzer has to be installed inside the controller, just before the input to the NN
model, increasing the controller complexity and decreasing the controller time response. In
the present study this issue is minimimal because fermentation is a slow process and does
not require a fast controller response.

The PCA results for the raw data (with and without noise) and for the normalized data of the
multivariable fed-batch bioreactor are plotted in Figure 3.14. Three principal components are
needed to describe the 90% of the raw data information from six variables without noise. In
the presence of noise, there is no dimensional reduction since no smaller descriptive
subsystem than the original system of six variables system can be found. A greater variable
reduction was achieved for the normalized dataset. From 19 variables, only 10 principal
components are enough to describe 99% of the process behaviour captured by this training
data.

56

Artificial neural networks

o

) PCA of the process outputs training data

-

100

o D
o O
1 1

---#-- Process Data

I
-
|

%% Variance
cumulative

]
=]
1

—=— [Noisy Process Data

o

1 2 3 4 5 3]
Component

E

PCA of the ANN inputs training data
Y80

240
320
D T T T T T T T T T T T T T T T T T T

i 3 5 7 9 11 13 15 17 19
Component

% VYariance

Figure 3.14 PCA of the multivariable bioreactor data (a) Process outputs; (b) neural network input
training data

3.4.3 Tuning the network architecture

The number of hidden layers and neurons in each of these layers has to be specified prior to
training the MLP network. Theoretically, two hidden layers are enough to represent any
function, with arbitrary accuracy being obtainable (Cybenko, 1988). It has also been proved
that only one hidden layer is enough to approximate any continuous function (Cybenko,
1989; Hornik, 1989). Although the utility of these results depends in how many hidden
neurons are necessary, and this is not known in general. A MLP neural network can be seen
as a linear combination of localized bumps that are each non-zero in the domain of a function
to be represented (Hertz and Krogh, 1993). The bump approach may not be the best for any
particular problem, but it is only intended as an existence proof. To represent any function in
N dimensions, 2N-hidden neurons are needed in the first hidden layer. Those two neurons
per dimension, together output a peak anywhere that is desired, but also some secondary
peaks and valleys. All but the highest peak can be suppressed by another neuron in the
second hidden layer with an appropriate threshold. Thus one hidden neuron in the second

hidden layer is needed for each bump. A linear output layer then sums the bumps to produce

57

Catalina Valencia Peroni

the desired function, in a manner similar to Fourier analysis or Green’s function
representation.

There are also several approaches to construct or modify the architecture to suit a particular
task, proceeding incrementally, which modify mostly the training algorithm (Hertz and Krogh,
1993). Two ways to reach as few units as possible can be found: start with too many and
take some away or start with too few and add some more. The first procedure may cause
each connection to decay to zero, so that connections disappear unless reinforced during the
learning process. However, rather than starting with too large a network and perform some
pruning it is more appealing to start with a small network and gradually grow one of the
appropriate size. Through this way, cascade-correlation algorithm builds a hierarchy of hidden
units. The tiling algorithm creates multilayer architectures, starting from the input layer and
going to the output layer, each successive layer has fewer neurons than the previous one, so
the output layer has only one neuron. However, this kind of approach seems unlikely to be
practical for applications requiring large networks, where training requires massive CPU and
memory allocation power.

In practice, different network configurations should be chosen and tested by a trial and error
procedure. Some of the best ones are chosen in this work for comparison purposes. Note that
the computational time required to extend the search in the space of possible architectures is
prohibitive. For instance to train a 19-18-12-6 backpropagation architecture with 3445
training patterns, in a Sun Enterprise 450 computer with a UltraSPARC-II 400Mhz processor,
requires a CPU time of 119” minutes for each epoch. Since 3000 epochs are needed to
stabilize the SSE, a total of 2.7 days would be needed to train this single network.

RBF networks can be seen also through “the bump approach” as networks of units that
themselves have a localized bump-like response, each becoming activated only for inputs in
some small region. Thus, only one hidden layer of such units is needed to represent any
reasonable function. In practice, for the RBF architecture, different RBF networks should be
built by adding neurons one by one until several goal SSE values are reached. The criteria
used to choose the best RBF network architecture is the SSE of the test, e.g., the architecture

that yields the minimum average test SSE is selected.

3.4.4 Tuning the training algorithm

The training algorithm is closely related to the NN architecture. Usually the NN architecture
defines the major characteristics of its training method. A training method is the solution of
an optimization problem. To train @ MLP or RBF means to find the set of NN connection
weights that give a desired NN behavior. As an optimization problem, it can be solved by
different optimization methods, resulting on different ways of training. In a fuzzy ARTMAP
means to find the appropriate center of each class, which is done automatically by means of

the vigilance parameter as it was previously presented in section 3.3.5.

58

Artificial neural networks

The backpropagation learning algorithm with a momentum term (Hertz J., 1993) is used to
train the MLP models of the multivariable bioreactor. An online training is performed, i.e. the
NN connection weights are actualized each time an input pattern is presented to the network.
Some of the MLPs obtained have been trained using Cross Validation. This technique divides
the training set used in the backpropagation algorithm in two parts: a validation set
(composed by 689 patterns picked up from the process operation point in our case) and a
training set (with the remaining process data of 2756 patterns). Each time all the training set
had been presented to the NN the SSE of the validation set is calculated. The MLP is trained
until the SSE of the validation set increases over five consecutive time steps. This allows
choosing the best architecture given the performance over the validation set.

The drawback of the cross validation technique is that it fits very well the process dynamics
surface around the operation point given by the validation set, but it does not model the
surroundings very well. Thus, the model obtained with such a technique, while useful for
steady processes degenerates when the operation point changes. Similar problems are
observed when a linear control technique is used on a non-linear process.

The search of the optimal RBF architecture is implicit in the training steps. The control of this
optimization process is fixed in the training process fixing the SSE goal to be achieved.
However, a minimum SSE goal in the training set is not always optimal in the generalization
stage because of overtraining (Bishop, 1995). Then a trial and error process is necessary to

fit well the test data sets.

59

Chapter 4 : Process Control

Process control: the hidden technology that you use every day
IFAC B02
Controls will be the physics of the 2F" century
Larry Ho
(From J. Doyle workshop in Complexity)
4.1 Introduction

When in 1781 James Watt invented the centrifuge force regulator for its steam machine,
feedback automatic control and the entire cybernetic field was born. Since that time, with the
second industrial revolution, control systems are an integral part of modern society.
Numerous applications ranging from simple home appliances to sophisticated aerospace
systems use feedback control one way or another. Control systems are not limited to “man-
made” technologies. Biological species cannot function and survive without feedback control.
e.g. regulating temperature, hormones, heart rate, motor control, etc. Biological systems are
the typical example of highly optimized tolerance (HOT) systems. HOT systems are robust to
uncertainties that are common, or that the system was designed for, or has evolved to
handle; yet fragile otherwise. Another HOT system is a turbulent fluid. Control of non-linear
distributed process systems like fluid flows, size-distribution of particles and material
microstructure is one mayor research challenge in process control (Chistofides, 2001). Based
on some of the obtained results on complex systems, new control methodologies have slowly
emerged and been implemented in industry. The most common control scheme in industry is
the model predictive control, but model free adaptive control, based on neural networks has
been of recent insurgence (Control Engineering Europe, 2001). It is believed that advance
process control delivers lasting benefits when built on a solid -mathematical- foundation
(Control Engineering, 2001a).

The objective of control systems is to regulate or track a system output by adjusting its input
subject to physical limitations. A dynamic system is a causal system in which its outputs
depend on its previous inputs and its initial states values. From this definition three types of
variables can be differentiated: (a) Input variables or those influences that originate outside
the system and are not affected by what happens in the system; (b) output variables or a
subset or a functional combination of state variables, which one is interested to monitor or
regulate. (c) states or the minimum set of system variables necessary to describe completely
the dynamical system states at any given time. Kalman filter can be used to determine the
states of a dynamical system. Dynamical systems can be autonomous (time invariant) or not

Catalina Valencia Peroni

autonomous, linear or non-linear or a combination of both. In time invariant systems model
parameters do not change as time passes. While in time variant dynamical systems model
parameters are usually a function of time. Linear systems are dynamical systems that can be
expressed as

X =Ax+Bu

y =Cx+Du 1)

where x are the states of the system, u are the system inputs, y are the system outputs and
A, B, C and D are matrices that describe the dynamical behavior of the process. In linear
autonomous systems A, B, C and D are constant, while in linear time variant systems, those
matrices are functions of time.

The complexity of a controller system increases if the process to be controlled presents non-
linear time variant dynamics or if a multivariable system is to be controlled. Zafiriou (1987a)
presented a digital controller design for multivariable systems with structural closed-loop
performance specifications. Quantitative criteria are provided for comparing different designs
and evaluating trade-offs. The robust control of a multivariable experimental four-tank
system was explored by Vadigepalli et al. (2001). Traditional control methods like inverse
model control, H., (a robust control method for controller synthesis), and Proportional Integral

(PI); are compared.

4.2 Objectives of process control

The objective of any control system is to influence the behavior of a dynamic system. The
control problem is to determine the control inputs to the process using all available data. The
quality of a controller should be judged by the following criteria (Garcia and Morari, 1982):

1. Regulatory behavior. The output variable is to be kept at its set point despite
unmeasured disturbances affecting the process.

2. Servo behavior. Changes in the set point should be tracked fast and smoothly.

4. Robustness. Stability and acceptable control performance should be maintained in the
face of structural and parametric changes in the underlying process model. A
controller should be designable with a minimum of information about the process.
Closed-loop stability of the entire system in the absence of plant variations is
desirable, but this almost never is an issue because the majority of chemical
processes are open-loop stable. Sometimes a trade-off situation is imagined between
stability and control quality, but with the proper dynamic compensator any gain is
possible for any system.

5. Ability to deal with constraint on the inputs and states. Almost always the major
economic return from process control arises from the optimization of the operating

conditions. Optimal operating points often lie at the intersection of constraints.

62

Process control

Therefore the ability of the regulatory controller to deal with constraints on both the
inputs and the states is very important.
6. Controller complexity is an important issue. The control structure and the effects of
the tuning parameters should be transparent to the operator.
The response of the controller to specific disturbances is of secondary importance. A filter
inserted in the completed control system can correct any undesirable features to the
maximum possible extent. The set point tracking vs. disturbance rejection problem for stable
and unstable processes have been discussed by Zafiriou E (1987b).

4.3 Non-linear vs. linear process control

All physical systems are non-linear. Often the linear models employed to design control
systems design are only very poor approximation of the real behavior. While it is generally
feasible to deal with mild non-linearities just by using detuned linear controllers, in the
presence of strong non-linearities non-linear controllers can offer distinct advantages. Until
recently, chemical processes have traditionally been controlled by using linear systems
analysis and design tools based on linear models. A major reason for the widespread use of
linear control systems is the availability if analytical solutions and rigorous stability and
performance proofs. If a linear control system is used, linear input-output models are
sufficient for the control (Hussain et al., 1995a and b). However, this leads to poor control if
the chemical process is highly non-linear.

To improve the control of linear processes through non-linear controllers, a partition of the
state space is usually employed and linear controllers are designed for each region of the
partition. Recent progress in non-linear control theory and advances in computer technology
now allow non-linear control strategy based on non-linear models to be successfully
implemented for chemical processes. The design of open-loop non-linear controllers is a well-
established practice. When variational methods have been used, virtually every conceivable
problem has been tackled. On the other hand, internal model structure is particularly well
suited for the design of feedback controllers. Most of the non-linear feedback control
literature concentrates in stability analysis. In the next section some feedback control
schemes suitable for non-linear models will be presented.

4.4 Some structures for model based process control

Many high-level control schemes successfully applied as process controls in chemical plants,
are model based. A process model is required to build the controller and find an adequate
control action at each time step. There are two kinds of modeling schemes in chemical
process systems engineering. A traditional approach to modeling is to develop a model from
first principles and estimate the values of model parameters from process data. However, this

63

Catalina Valencia Peroni

procedure is often difficult and costly because the dynamics of chemical process system may
not be well understood or is too complex to model. An alternative approach is to identify the
model nonparametrically from input-output data. Neural networks are especially suited for
that purpose. In the following sections, some of the most common model based controllers
will be explained in detail. The involved models can be of any kind, including first principles
and neural network models, but neural networks were successfully applied in the those

control schemes to solve many process control problems.

4.4.1 Inverse model control

Direct inverse control 4 4
utilizes an inverse system l +
. Yo + & r +
model. The inverse model == Flmw C L w p L

is simply cascaded with

the controlled system in

order that the composed

system results in an Figure 4.1 Inverse model control scheme

identity mapping between

derised response and the plant outputs. In Figure 4.1 a scheme of an inverse feedback
controller is shown. Direct inverse control is common in robotics applications. Clearly this
approach relies heavily on the fidelity of the inverse model used as controller. For general
purposes, serious questions arise regarding the robutsness of direct inverse control. This lack
of robutness can be attributed primarly to the absence of feedback. This problem can be
overcomed to some extend by using an inverse model into a feedback control loop. In this
case, the diference between the reference signal and the plant output constitutes the inverse
controller input. The inverse controller can be obtained from an inverse model developed with
neural networks, as discussed later in section 4.5.1.2. The complete inverse model control
scheme has a filter F before the inverse model of the plant. The primary reason for including
this filter is to introduce robustness in the overall control system structure in the face of
modeling errors, by appropriately reducing the loop gain. Usually a simple exponential filter

gives satisfactory results.

4.4.2 Internal model control

In this scheme of control the controller is implemented simply as the inverse of the process
model but a direct process model is also implemented within the feedbackloop. Internal

model control has been throughly examined and shown to yield transparency to robutness

64

Process control

and stability analysis. An unifying review of the internal model control (IMC) scheme was
presented by Garcia and Morari (1982). Moreover, IMC extends readily to non-linear systems
control (Economou et al.,1986). In IMC, a system model is placed in parallel with the real
system and model output is used for feedback purposes. This feedback signal is then
processed by a control block as shown in Figure 4.2 . In the figure, P is the plant, the system
to be controlled. M is a direct model of the plant, its inputs are plant inputs and its outputs
are plant outputs, and C is the inverse of M. The properties of IMC dictate that this part of
the controller should be related to the system inverse. These properties are:

1. Stability. The closed-loop system is input-output stable if the direct model used
mimics exactly the plant response M=P. It should be noted that the implementation
of IMC is limited to open-loop stable systems and systems wich do not exhibit
multiple output steady states.

2. Perfect control. If the closed-loop system is input-output stable, then the control will
be perfect (perfect tracking) if the invese model used in the control scheme mimics
exactly the dynamics of the inverse of the direct model C=M,

3. Zero offset. If stability and perfect control are obtainable in steady state operation,
then offset free control is attained for asymptotically constant inputs.

IMC transforms a control problem of a non-linear system in a feedforward control problem,
which can be solved even for non-linear systems. But, on the other hand, IMC preserves all
the important characteristics of feedback control, in particular the suppression of unmeasured
plant disturbances. Also, the complete IMC structure has a filter F before the inverse model of
the plant. Again, the primary reason for including this filter is to introduce robustness in the
IMC structure in the face of modeling errors, by appropriately reducing the loop gain. Zafirou
(1987c¢) used the structured singular value approach to quatify the concept of robust
performance and to design the IMC filter. In the same year Marino-Galarraga et al. (1987)
used a relative disturbance gain to evaluate the dynamic performance of multiloop control
systems, among them IMC. These authors propose a IMC design which makes use of the
interaction effects between the variables for a given disturbance.

The theoretical aspects of IMC are sumarized by Zafiriou (1986). IMC was used by the same

author to synthetise

multivariable discrete l‘j d
+
controllers. An extension V. o+ & v u + y
5 F L C [-
to open-loop unestable .

plants is added in his
1990’s paper (Zafiriou and ¥rm
Morari, 1990). Gawthrop
et al.(1995), compared
and linked IMC with the

Figure 4.2 Complete scheme of non-linear internal model control structure

65

Catalina Valencia Peroni

self tunning Emulator-based Control. Hu and Rangaiah (1999a) proposed an adaptive IMC for
non-linear coupled multivariable processes. They stated that adaptive control of non-linear
systems not decoupleable by static-state feedback is not easy or obvious. They developed a
non-linear IMC controller for multivariable processes based on input-output linearization.
These authors (Hu and Rangaiah 1999b) used this methodology for the control of pH.

Internal model control has been implemented also using neural network models. Nahas et al.
(1992) proposed a non-linear IMC controller for singular input singular output (SISO)
systems. Their approach was restricted to processes with stable inverses. They used neural
networks to identify the process from input-output data. The control action was based on the
inversion of the neural network model. The conjugate gradient algorithm was used to train
the neural network and a first order filter was used into the IMC scheme. He succesfuly
tested his control scheme on a CSTR to control the effluent concentration and pH. One year
later, Hunt and Sbarbaro (1993) showed that adaptive inverse control is a further member of
the class of controllers with IMC structure. They described the relation between both control
methods, and using neural networks as non-linear adaptive filters, they implemented a non-
linear analogue of inverse control. They used neural networks to realise both the direct
process model and the inverse model of the process for the IMC control scheme. Aoyama et
al. (1995¢) used an IMC framework to control a bioreactor process. They proposed a hybrid
model of the process to find an inverse model, instead of training a neural network with
inverse process data. The hybrid model used the MLP neural network for both the process
model and the inverse process model, so the controller exactly inverts the steady-state gain
of the process model and offset is eliminated when the IMC structure is used to control.
Hybrid modeling of a process trough neural networks is discussed later in section 4.5.1.3.
Aoyama et al. desmostrated that his approach is superior to the PI controller, to an IMC
based on neural networks models and comparable to an exact IMC based on first principles. A
year later Hussain et al. (1996) performed a discrete time analysis of IMC strategies based on
neural networks. Guidelines for Lyapunov stability analysis for neural network based
controllers were provided in his work. Brown et al. (1997) proposed an IMC structure using
local model networks. These networks represent a non-linear dynamical system by a set of
locally valid submodels across the operating range. Local model networks are similar to RBF
but the basis functions are commonly chosen to be normalised gaussian functions. The main
property of such local model networks is that the inverse model of the process can be derived
analitically, thus the IMC offset is eliminated. They used a pH neutralization process to test
this control approach. They concluded that significantly improved performance in terms of
setpoint tracking and disturbance rejection compared with linear model was observed. A
practical application of IMC was develped by Hussain et al. (2000). They implemented an IMC

using MLP neural networks for a partially simulated exothermic reactor. They showed the

66

Process control

capability of neural-network based controllers and pointed out the differences between

simulation studies and on-line experimental tests.

4.4.3 Model predictive control

Model predictive control algorithms have reference trajectary
/ﬂ__..::—x,_,,.-— process tajectary

handling some of the difficult control Lau
cantrol action

been recognized as effective tools for

problems in the chemical industry. It

T T T T T 1
il . i+p

appeared in industry almost 20 years ago as presert time b Hime

an effective way to deal with multivariable) o
Figure 4.3 Scheme for model based predictive
constrained control problems. The model control. The ith control action is based on the

dicti | sch deri fi prediction of future process outputs over a
predictive control scheme derives some of it prediction horizon p. An optimal control action

industrial appeal from its ability to handle trajectory is found and only the first control move
is implemented.

input-output constraints and time delay non-

minimum behavior. Model predictive control (MPC) is an open loop control design procedure
based on obtaining plant measurements and predicting future outputs by means of a model
of the process. This is done at each sampling time. The predictions are used to compute m
control moves by minimizing an objective function defined over a prediction horizon. The
objective function is based on a sum of the squares of the differences between model

predicted outputs, y, and a desired output variable, r, trajectory over a prediction horizon p

@= iri (h=y)*+ Z/\i (Au,)? (4.2)

The traditional MPC optimization stated above penalizes deviation of future model predictions
y; from set-points r; while minimizing future control moves Au;. Variables p and c represent
the prediction and control horizons, respectively, and I'; and A; denote the error penalty and
move suppression factors at ith instant. Then the MPC control law is stated as the first

component of

u = arg(ming) (4.3)

where the minimization is done over the set of all possible control actions. Although more
than one optimal control input is computed, only the first computed control move is
implemented. At the next sampling time, new measurements are obtained from the plant and
the optimization problem is solved again. Both the control horizon and the prediction horizon
move or recede ahead by one step as time moves ahead one-step. This is the reason why
MPC is also sometimes referred to as Receding Horizon Control or Moving Horizon Control.

The purpose of taking new measurements at each time step is to compensate for

67

Catalina Valencia Peroni

unmeasured disturbances and for model inaccuracy, both of which cause the system output
to be different form the one predicted by the model.

The use of model predictive control in the process industries was pioneered in petroleum
refining. Up to 2001, more than 1000 applications covering all major processes were
published in this industry. In late 1980's MPC was incorporated in the controller system of
chemical plants. Today MPC is applied for the control of complex processes, like cryogenic air
separation, condensation polymers, terephthalic acids manufacture and so on. Since 1979,
the refining plants in the USA are running at full capacity, as a consequence of environmental
restrictions placed severe cost restraints to build new refineries. As a result, MPC benefits are
generally determined based on increasing production capacity of higher value materials.
However energy savings can be much more critical in determining the total benefit and thus
the feasibility of applying MPC to chemical plants (Segura and Meziou, 2001). MPC has been
used also to control a steam turbine of a thermal plant (Pedret et al., 2000) and to regulate
the cell biomass exit concentration of a continuous-flow bioreactor (Parker and Doyle III
2001). Morari and Lee (1999) presented a unifying review of MPC over last 15 years.
Multivariable system identification, performance monitoring and diagnostics, non-linear state
estimation and batch system control are the research areas concerning the improvement of
MPC performance. Morari and Lee (1999) stated that what limits the performance and
applicability of MPC are not the deficiencies of the control algorithm, but difficulties in
modeling, sensing, state estimation, fault diagnosis/detection, etc.

The advent of high-speed computers has made the application of non-linear model-based
predictive control for online control a reality. As a result, a significant number of new control
algorithms have been proposed based on non-linear programming techniques. There is a
MATLAB toolbox created by Morari and Ricker useful to solve model predictive control
optimization/simulation problems. The potential disadvantage of MPC is that it involves online
optimization. It is especially problematic for the non-linear model predictive control because
there are no guarantees of global optima. Some of these aspects are discussed in detail in
Morari’s paper. Another drawback of this control method is MPC's inability to take into
account the evolution of uncertainty in the optimal control calculation. To address these
issues Lee and Lee (2001) proposed a neuro dynamic programming method for MPC, in
which the cost-to-go function of dynamic programming can be used to reduce a long horizon
problem to an equivalent short horizon problem, thereby lowering the on-line computational
load. This method will be explained in detail in section 4.6.3. Another computationally
efficient approach for non-linear MPC is presented by Bhartiya and Whiteley (2001). He uses
a RBF model to made non-linear predictions across a m-step horizon without using future
unknown process measurements. The resulting MPC formulation using the RBF model
provides analytical expressions for the gradient and the Hessian of the controller’s objective

function in terms of RBF network parameters. Loquasto III and Seborg (2001) also used

68

Process control

neural networks into a MPC system to detect significant degradation in performance and cope

with changes in process behavior.

4.5 Neural networks in process control

The objective of control is to influence the behavior of dynamical systems. A large part of
control theory deals with linear systems and powerful methods for designing controllers for
them. In fact, most of the controllers used in modern industry belong to this class. However,
as applications become more complex, the difficulties encountered in designing controls arise.
Those difficulties, such as poor modeling, multiple subsystems, high noise levels and complex
information patterns, can be broadly classified under three headings: complexity, non-
linearity and uncertainty. Neural networks are capable of coping with all three categories
(Narendra, 1996). Numerous dynamical systems have been identified and controlled through
neural networks (Narendra and Parthasarathy, 1990; Narendra and Mukhopadhyay, 1992;
Narendra 1995; Hussain et al., 1995b; Jagannathan and Lewis, 1996a, Mukhopadhyay and
Narendra, 1999; Magni and Kershenbaum, 2000). For example, MLP neural networks have
been used for moisture content control in fluidized bed granulation (Watano et al., 1997), for
the long-term predictive control in thermal power plants (Prassad et al., 1998) and for the
control of pH in a neutralization process (Yeo and Kwon, 1999).

From a systems theoretical point of view, a neural network can be considered as a
conveniently parameterized class of non-linear map. Since they can approximate non-linear
maps to any desired degree of accuracy, they can also be used to identify and control non-
linear dynamical systems (Mukhopadhyay and Narendra, 1992; Lightbody and Irwin, 1997).
They can approximate arbitrary functions from one finite dimensional space to another with
any desired degree of accuracy (if given enough training data). Polynomials, trigonometric
series, splines and orthogonal functions share the same properties, but neural networks, in
view of their architecture, are more fault tolerant and less sensitive to noise and they are
more easily implementable in hardware because of the parameterization used. Besides, as
the dimensionality of the input space increases, multilayer perceptrons are preferable to
approximation schemes in which the adjustable parameters arise linearly. Both, multilayer
perceptron and RBF neural networks require substantially fewer parameters for a desired
degree of accuracy (Narendra, 1996). If a task can be done equally well using conventional
control methods or neural networks, then there are several advantages to using the latter.
Intel, among others, has produced a neural net chip, which has more effective throughput
than all of the Crays of the world put together (Werbos, 1991). Implicit in the use of neural
networks to approximate a non-linear plant is the thought that an input-output model can
exactly represent the plant. Underneath the apparent complexity of neural networks based
controllers (required by specific applications) there are really only five generic designs now

used to build neural networks to directly control actuators or effectors of some kind.

69

Catalina Valencia Peroni

70

1. Supervised control

In supervised control a neural network learns the mapping from sensor inputs to desired
actions, by adapting a training set of examples of what it should have done. Thus one
can “clone” a human expert. Commonly, fuzzy rules are used to accomplish this task. This
method can also be used to copy a slow but accurate computer control. The main
challenge of this way of control is to build up an accurate and sufficient database of

sensor inputs and desired actions.

2. Direct inverse control

In direct inverse control, a neural net learns the inverse dynamics of the system, so it can
make the system to follow a desired trajectory. This controller structure is used in the
present work to solve the bioreactor control problem. This approach cannot be used in

applications where the mapping input-output of the plant is not invertible.

3. Neural adaptive control

In neural adaptive control, linear mappings used in standard adaptive control designs are
replaced by neural networks resulting in greater robustness and ability to handle non-
linearity. In general, adaptive control deals with the problem of controlling the output of
a plant in the presence of parametric or structural uncertainty. In conventional adaptive
control theory, to make the problem analytically tractable, the plant is assumed to be
linear with unknown parameters. A suitable controller structure is chosen and the
parameters of the controller are adjusted using an adaptive law, so that the output of the
plant follows the output of the reference model asymptotically. Two design approaches
have been proposed for the adaptive controller. The indirect approach estimates the
parameters of the plant to be controlled and the control parameters are directly adjusted
based on these estimates. In the direct approach, the control parameters are directly
adjusted based on the observed output error. In neural adaptive control, the indirect
approach is preferable (Narendra, 1992) but an input-output structure of the plant has to
be assumed. There are two approaches also for parameter adaptation: gradient methods
and stability methods. Gradient methods are effective from the viewpoint of performance;
most of the neural adaptive controllers are built using gradient methods, but the stability
of such algorithms cannot be demonstrated theoretically. In the other hand, stability
algorithms are designed to assure the overall stability of the system from the outset. At
the present time, such stable adaptive laws can be generated only for a restrictive class
of systems. RBF networks, in which the outputs are linearly dependent on their
parameters, are ideally suited for generating stable identification algorithms and stable

controllers if the difference equations that represent the plant behavior are linear in the

Process control

control inputs. It could be said that internal model control implemented with neural

networks follows the adaptive control design approach.

4. Backpropagation of utility

This method adapts an optimal controller essentially by solving a calculus of variations
problem. It maximizes profit. As a calculus of variations, this method requires a model of
the system to be controlled, which may be itself a neural network. Backpropagation of
utility (or cost) involves information flow backwards in time. It can be used to adapt
parameters or weights of a controller or action network or to adapt a schedule of control
actions over future time. Usually backpropagation through time algorithm is employed. It
maximizes some measure of utility or performance over time, but cannot efficiently
account for noise and cannot provide real time learning for very large problems. Model

predictive control with neural networks follows this approach.

5. Adaptive critic methods
These methods approximate optimal control over time in noisy, non-linear environments.
The underlying idea is to approximate the Bellman equation of dynamic programming.
They are the only design approach that shows serious promise of duplicating critical
aspects of human intelligence: the ability to cope with large numbers of variables in
parallel, in real-time, in a noisy non-linear environment (Werbos, 1992). Dynamic
programming is the only exact and efficient method for finding an optimal strategy of
action over time in a noisy, non-linear environment, but the cost of running true dynamic
programming is proportional to the number of possible states in the plant or environment
and that number in turn grows exponentially with the numbers of variables in the
environment. Therefore approximate methods are needed even with many small-scale
problems. One of these methods is used in the present work to solve the optimal control
problem of the invertase production in a fed-batch bioreactor. Thus adaptive critic or
neuro dynamic programming will be explained in detail in the section 4.6.2. The key
theorem states that the strategy of action that maximizes utility in the short term will also
maximize the sum over all future times. Adaptive critic designs can be defined more
precise as designs that include a critic network, i.e., a network whose output is an
approximation of the utility or cost function, or to its derivatives. The inputs to the
network are the values of the state variables (the complete plant description at time t)
only, or the states and the vector of actions. In the latter case, is called action dependent
method.

Hunt (1992) presented a survey of neural network theory for control. Different controller

schemes are summarized in his paper. In the following sections a more recent review of

neural networks applications in process control will be presented. A review of neural networks

71

Catalina Valencia Peroni

applications in chemical process control is presented by Hussain (1999). His review shows the
MPL neural network as the most popular network for such process control applications and
also shows the lack of current successful online applications.

4.5.1 Neural networks in identification

Traditional methods for system identification of complex systems from finite data have been
not completely effective addressing the question of identification in the context of uncertainty
in the model class/parameterization (Venkatesh and Dahleh, 2001). This issue can be
addressed through neural networks. As it was said before in the introduction chapter,
biotechnology has used neural networks to estimate difficult measure process variables.
Besides, companies like Owens Corning Glass and General Mill had implemented soft sensors
in their control systems. Those soft sensors have been developed applying neural networks
techniques in the inferential calculation of process variables. For example General Mills
applying soft-sensor software from Aspen Technology, reduced run cycles, lowered energy
usage, reduced product waste and improved product consistency and quality (Control
Engineering 2001b). Another example from industry is the use of a neural network into an
Early Warning System to predict the reliability of the products. In this system, the MLP neural
network interprets the results of failure rates. It was implemented in United Technologies
Carrier. An increase in productivity was obtained by at least eight times in terms of process
time (Moon et al., 1998). Moreover, recurrent neural networks have been used for phase and
quadrature detection in an electrical system (Kamwa et al., 1996). On the other hand, from
the theoretical point of view, identification of dynamical systems using neural networks has
been also explored by Jagannathan and Lewis (1996b). They presented a rigorous proof of
identification error convergence. They showed how to train a neural network to obtain
bounded error in the identification of four different non-linear dynamical models. Besides,
fuzzy logic has been included in neural network models to make them easier to interpret.
Zhang and Morris (1999) presented a recurrent neuro-fuzzy network to build long-term
prediction models for non-linear processes. In their work, fuzzy logic was used to define
process-operating regions. Also, neural nets have been used in conjunction with partial least
square method for non-linear dynamical modeling (Qin and McAvoy, 1996). Partial least
squares is used as a dimension reduction tool to remove colinearity and the MLP neural
networks are trained to capture the non-linearity in the projected latent space. Another
method for non-linear model reduction, inspired by the concept of subspace identification was
proposed by Lee et al. (1999). Also, Li and Wang (2001) through a principal component
analysis and clustered fuzzy diagraphs identified the process temporal behavior.

Identification of a dynamical process can be done through neural networks in two ways: a
direct or forward modeling and an inverse modeling. Both identification schemes are

explained in the next two sections.

72

Process control

4.5.1.1 Direct process identification

In direct modeling the neural network is placed in

parallel with the system and the error between the i g
system and network outputs (the prediction error) Yy, ¥
is used as the network-training signal. See Figure " 4'6
4.4. This learning structure is the classical

Learning
Algorithrm

Figure 4.4 Direct process identification
scheme. M learns the direct model of the

of the learner (the NN). The dynamic nature of the PlantP

supervised learning problem where the teacher
(the system) provides target values (system

outputs) directly in the output coordinate system

systems under study can be introduced into the network itself. This can be done either using
recurrent networks or by introducing dynamic behavior into the neurons. Those approaches
increment the complexity of the modeling problem. A straightforward approach is to augment
the network input with signals corresponding to past inputs and outputs. This approach is

used in the present work to find a control model for the multivariable fed-batch bioreactor.

4.5.1.2 Indirect process identification

Inverse models of dynamical

P ! >
systems play a crucial role in a
range of control structures. »
However, obtaining these models
raises several important issues. Learning
. Algorithrm
For inverse model development a ¥

synthetic signal is introduced to
. Figure 4.5 Indirect process identification scheme. C learns
the system. See Figure 4.5. The the inverse model of the plant P

system output is then used as

input to the network. The network output is compared with the synthetic signal u (the system
input) and this error is used to train the network. This method attempts to produce the
inverse of the plant over the entire state space, but it can be very difficult to use it alone to
provide adequate performance. A second approach to inverse modeling, which aims to
overcome these problems, is known as specialized inverse learning (Psaltis et al., 1988). This
learning scheme trains the neural network controller to operate properly in the regions of
specialization only. The neural network may be trained online. In this approach, the network

inverse model precedes the system and receives as input a reference signal, which spans the

73

Catalina Valencia Peroni

desired operational output space of the controlled system (command signal of the system). In
this case the error signal for the training algorithm is the difference between the training
signal and the system output. The tracking error is propagated backwards to the plant using
the partial derivatives of the plant at its operating point. Then, the network weights can be
updated. The specialized learning approach is computationally complex, and the system
derivatives should be easily known. In the present work, the first approach is used to build an
inverse control model for the multivariable fed-batch bioreactor. A theoretical framework to
inverse modeling of non-linear dynamical systems can be found in Cabrera and Narendra
(1999). They state conditions for the existence of non-linear inverse controllers for the

regulation and tracking of such systems.

4.5.1.3 Hybrid neural network modeling

One major disadvantage of the previous input-output neural network modeling scheme is that
the resulting models are complete black-box models. In chemical process modeling, an
accurate first-principles model is rarely available, however, one often has some knowledge of
the process behavior, which can be expressed as a mathematical model, or qualitative
knowledge. Although this model is not complete, it does explain some behavior. However, in
an approach that uses neural networks exclusively for modeling such a priori knowledge is
not included. If the known knowledge is combined with neural network for parameter
identification, such as the input-output mapping of those aspects of the process that cannot
be modeled mathematically are modeled using the neural networks, then the resulting
models become gray-box models. One way to integrate neural networks with a first-principle
model is to put the NN parallel to a first principle model and train the NN to model
discrepancies between the real process dynamics and the first-principle model. Sometimes
this way of modeling results in no directly measurable neural network inputs or outputs, so
the training complexity increases. Another approach that integrates a mathematical model
with neural networks is the control-affine neural network model (Aoyama et al. 1996). Many
chemical processes can be described by this procedure with a non-linear model in which the
manipulated input u appears linearly in the output dynamic equations. A control-affine NN
model scheme uses two neural networks. With this modeling scheme the process is
approximated by

Ay(k) = £, (y,u,x)(u(k) = gy, (y,u,x)) (4.4)

where Ay(k) is an increment of the controlled output at time k, u(k) is a scalar manipulated
input at time k, the vector y contains present and past values of the controlled output, the

vector u contains past values of the manipulated input, and x is a vector of present and past

74

Process control

values of the state variables. The non-linear functions f,, and g,, implemented by the neural
networks. This approach has several advantages. Because each neural network model only a
portion of the non-linear process, the requisite size of the NN is reduced and the training
becomes easier. A specific model structure is imposed leading to the possibility for greater
model insight and facilitating an analytical model inversion procedure. The control law is
Lk =YK
fon (Y21, X)

where Ay(k) becomes YsemointY(K) When perfect tracking is accomplished. Note that to train

+ 9, (Y, U, X) (4.5)

f.n and gn., two kinds of training sets are required: steady state data and transient data.
Steady state data is used to train g,, since it captures the steady state gain of the process.
These data consist in process data at various steady-state values of the process inputs.
Transient data is used to train f;,,. These data are obtained by forcing the control input u with
a perturbation signal superimposed upon its nominal operation value. The magnitude of the
perturbations is determined to make the response of the controlled output cover the expected
range of operation. Once g,, is properly trained, using transient data at each measured data
point, the following quantity can be calculated

W
R T SN OATE (o)

and then f,, can be trained.

4.5.2 Fault diagnosis and neural networks

An overview of the challenges of the industrial applications of fault diagnosis systems was
carried out by Dash and Venkatasubramanian (2000). Multiscale analysis and dynamic PCA
have been used for fault diagnosis (Luo, 1999). Also, neural networks have been employed to
solve fault detection problems. Fault diagnosis is an essential ingredient property of an
intelligent control system. Vaidyanathan and Venkatasubramanian, in 1992a used a MLP
network to represent and diagnose a CSTR dynamic process. Trend data is the network input
and the malfunction of six process variables is the network output. They tried several
schemes of input the trend data and two ways of defining a fault function for the network
output. They found that a moving average input scheme performs better. In the same year
Vaidyanathan and Venkatasubramanian (1992b) studied the impact of hidden units and input
units on fault space structure, specifically the effect of hidden units on the discrimination of
decision regions of a non-linearly separable problem. They explained neural network structure
using analytical geometry. Following the same thought, Kavuri and Venkatasubramanian
(1993) proposed a neural network that, instead of computing the inner product between the
input vector and the weight vector, computes an ellipsoidal function of the neuron inputs.
This type of neurons is especially suitable for classification problems. This ellipsoidal function

incorporates the notion of distance into networks, overcomes unnecessary extrapolation of

75

Catalina Valencia Peroni

the network to regions in measurement space where no training patterns are available and it
avoids arbitrary determination of the number of hidden nodes in classification problems. They
stated that the inner product defines a hyper plane in the classification space, thus the space
is divided in two unbounded regions, while the ellipsoidal function defines a hyper ellipsoid
region that encloses a decision region. They used the mentioned scheme for fault diagnosis
of a reactor-distillation column system, where fault and normal operation regions were
classified. They compared their classifier with distance-based methods such as RBF networks
and k-means clustering, that worked well when the patterns were available in large numbers
and the classes were presented in nearly equal proportions. A more extend comparison of
neural network classes for fault diagnosis was performed by Keyvan and Durg (1996). They
compare all ART paradigms, MLP, Cascade Correlation and RCE networks for fault diagnosis
in nuclear reactor systems. Another industrial work was done by Bissessur et al. (2000) where
a wavelet neural network was used for fault detection in hot steel rolling. Through this

method the manufacture performance of a hot rolling mill was enhanced.

4.6 Optimal control

Optimal control formulates the control problem as an optimization problem. In optimal
control, the objective is to find an optimal control action that minimizes a cost or maximizes a
profit function. This profit function can be written in terms of a desired or reference
trajectory. Optimal control can be achieved by using any optimization method. MPC is an
example of an optimal controller.

A common problem in optimal control is that the objective function and/or constrains of the
optimization problem are usually non-linear. Extensive comparisons between optimal control
and conventional control can be summarized as follows (Garcia and Morari, 1982). Optimal
control yields improved servo and regulator behavior but the crucial robustness issue cannot
be addressed directly. Weighting matrices and/or noise models have to be varied in a
roundabout obscure fashion in the hope of achieving some robustness, which then has to be
checked through simulation. It should be added that all model based methods and
conventional controllers are equally incapable of handling constraints. Only in MPC and neuro
dynamic programming, output constrains can be addressed. A review of the methods for
optimal control can be summarized mostly as a review of optimization methods (e.g.,
Bertsekas and Tsitsiklis, 1989). Thus, the optimal control of a fermentation processes will be

emphasized in the following sections.

4.6.1 Methods for optimal control used for fermentation processes :@ invertase
production case study

Optimization of fed-batch fermenters can substantially increase the profitability of these

processes. Cuthrell and Biegler (1989) based the solution of the optimal control problem of a

76

Process control

fed-batch penicillin reactor in a successive quadratic programming and orthogonal allocation
on finite elements. Luus (1993a) used iterative dynamic programming to find the optimal feed
rate profile for the same bioreactor process and Banga et al. (1997) presented a fast
stochastic dynamic optimization method to solve the same optimal control problem. They
called their method integrated controlled random search for dynamic systems.

Ethanol production also has been studied. Fed-batch fermentation of Saccharomyces
cerevisiae has been optimized by several authors. Modak and Lim (1987) provided the
restrictions on the initial conditions, the fermentation kinetics and the objective function,
needed for realization of the feedback optimization of ethanol and lysine fermentations. Luus
(1993b) with a penalty function approach, used iterative dynamic programming to solve this
ethanol production optimization problem. Wang and Cheng (1999) solved the simultaneous
optimization of feeding rate and operation parameters for ethanol production using an
evolutionary algorithm called hybrid differential evolution. Pushpavanam et al. (1999) solved
both ethanol and lysine production optimal control problems stated by Modak and Lim
(1987). They used sequential dynamic programming. Jayaraman et al. (2001) using the ant
algorithm maximized the productivity of ethanol in a fed-batch process. He also used the
same algorithm to maximize the profitability of the fed-batch production of an induced
foreign protein by recombinant bacteria. The profit was stated in terms of the sales value of
the protein product and the cost of the inducer.

The fed-batch ethanol fermentation through Zymomous mobilis also has been studied and
optimized. Chiou and Wang (1999) used a kind of evolutionary algorithm, called hybrid
differential evolution, to solve this fed-batch optimization problem. Previously, iterative
dynamic programming was used by Wang and Chiou (1997) to solve the same problem and
Chiou and Wang (1999) also used this optimal solution obtained by iterative dynamic
programming, as starting point of a sequential dynamic programming method. They found
their evolutionary algorithm to be superior.

The in vitro growth of hybridoma cells and the production of monoclonal antibodies by these
cell lines were studied by Iyer et al. (1999). The fed-batch fermentation was optimized offline
using the heuristic random optimizer procedure, and optimized online using a one step
application of Newton’s method, per control interval, in a technique called IMPOL. The same
hybridoma reactor was optimized by Roubos et al. (1999) using an evolutionary program,
based on real-code genetic algorithm to calculate the optimal control action. He used also this
method to find optimal control policies for the Tholodur and Ramirez (1993) bioreactor. Dhir
et al. (2000) maximized the cell mass and monoclonal antibody production of the same fed-
batch hybridoma cell culture. They used fuzzy logic techniques for the adjustment of the
dynamic parameters of the model and a heuristic random optimizer (HRO) to optimize the

feed rates of glucose and glutamine.

77

Catalina Valencia Peroni

The degradation of phenol has been studied by Cruickshank et al. (2000) in a two-phase
partitioning fed-batch bioreactor. The maximal phenol consumption in a fixed time interval
was achieved using iterative dynamic programming. Further bibliography on the optimization
of fed-batch reactors can be found in Harting et al. (1995). They present a comparison of
optimization methods for fed-batch reactors. Optimal operation of batch processes was
studied by Srinivasan et al. (2001). Direct and variational optimization approaches are
discussed specifically for batch processes. Optimal control a fed-batch fermenter is usually
based on a nominal process model. Parameters uncertainties are not taken into account.
Usually the results obtained with nominal model parameters can be quite sensitive to the
uncertainty in the parameter values. Zafiriou and Zhu (1989) presented a methodology to
find the optimal feed rate profile for a fed-batch fermentation process in the presence of
plant-model mismatch. They used batch to batch information to gradually reach the optimum.
Kuhlmann et al. (1998) presented a method for obtaining robust optimal control profiles in
the presence of uncertainty in the model parameters.

Other biotechnological systems that have been optimized are the metabolic pathways of
biochemical elements inside the cell. For example, the rates of ethanol and glycerol and the
carbohydrate production in Saccharomyces cerevisiae yeast were optimized by Torres et al.
(1997). His indirect linear optimization lead to profiles of enzyme activities that are
compatible with the physiology of the cells. Later, Rodriguez-Acosta et al. (1999) optimized
the same biotechnological process using a non-linear optimization technique based on a
stochastic multi-start search algorithm. They found qualitative agreement between the
profiles they obtained and the profiles reported by Torres et al. (1997). Another example is
the work done by Cameron et al. (1998). He studied different pathways for the conversion of
sugars to propadeniol. Linear optimization studies indicated that, under aerobic conditions,
propadeniol yields approach the theoretical maximum values.

In this work we are going to focus on the optimization of fed-batch bioreactors where the
substrate(s) is added continuously in an otherwise batch operation mode. It is necessary to
determine the optimal substrate feed rate profile in order to achieve the maximum
fermentation profit. Neuro dynamic Programming (NDP) is an optimization method that can
be used to overcome the limitations of previous optimization methods presented and
discussed before (Patkar et al.,, 1993; Chaudhuri and Modak, 1998) for cloned invertase
production in Saccharomyces cerevisiae yeast in a fed-batch fermentation process. The goal
is to find the optimal control action at any time during the fermentation process. An optimal
control action in this case should be the one that maximizes the productivity and, at the same
time, minimizes the total fermentation time. To accomplish this goal a neuro dynamic
programming methodology coupled with MLP or with fuzzy ARTMAP is used. This NDP

method is employed in conjunction with fuzzy ARTMAP neural networks to improve its

78

Process control

performance. The aim is to find an optimal feeding profile 1t that could adapt itself when a

disturbance arises. Mathematically this objective could be written as

7T = argmax{ productivity — A (ffinal time } (4.7)

where u belongs to the set of all possible values of the manipulated variable, in this case the
substrate feed rate, and, A is a positive constant that penalizes the invested time in the
fermentation process. The main constraint of this optimization is the total bioreactor volume,
which is assumed to have a maximum value. This optimal control problem is solved using
NDP. Dynamic programming and NDP are introduced in the following sections. Next, it is
explained how NDP methodology is applied to solve the optimal control problem of the

invertase fermentation process stated in equation (4.7).

4.6.2 Dynamic programming and reinforcement learning

Dynamic programming is an approach to model dynamic decision problems, to analyze the
structural properties of these problems and to solve them. Dynamic programming is a
sequential decision making procedure under uncertainty. It could be used for control and
optimization of stochastic problems. The advantage of using dynamic programming over
other gradient-based methods is that penalty functions do not have to be continuously
differentiable. Using dynamic programming, constraints on both state and manipulated
variables are handled easily without increasing the computational burden. It can handle
heavily constrained optimization problems as well as singular optimal control problems. In
this method, the process is modeled as a chain of consecutive transitions from one state to
another.

We have a dynamical system whose evolution is influenced or controlled by our decisions or
control actions. The way each transition is made depends on the control or decision variable.
The decision made at any given time can, in general, depend on the state of the system.
Each action has an associated cost or reward. The objective is to maximize or minimize the
total incurred cost, obtained from the transitions needed to reach the final desired process
state from the initial state. The set of all the decisions made is called a policy. So, an optimal
cost has an associated optimal policy. The dynamic programming goal is to select a decision
making rule, also called feedback policy, which optimizes a certain performance criterion.
Using this approach control and optimization problems can be solved, in principle, with the
classical methods of dynamic programming. In practice, however, the applicability of this
method to many important problems is limited by the enormous size of the underlying state
spaces, and the complexity of the iterative algorithm involved. This is the so-called Bellman's
"curse of dimensionality". Neuro dynamic programming, or "Reinforcement Learning", which

is the term used in the Artificial Intelligence literature, uses neural network and other

79

Catalina Valencia Peroni

approximation architectures to overcome the bottlenecks to the applicability of dynamic
programming. This NDP methodology allows systems to learn about their behavior through
simulation, and to improve their performance through iterative reinforcement. There are two
ways to attain reinforcement. In one approach, called value function approximation,
simulation is used to tune the parameters of a "value function" that quantifies the relative
desirability of different states in the state space. In mathematical terms, the objective is to
compute an approximate solution to Bellman's equation, which is then used to construct
near-optimal policies. This approach was studied by Tsitsiklis (Bertsekas and Tsitsiklis, 1996).
Another approach, called optimization in policy space, involves the tuning of policy
parameters in a direction of improvement.

Some of the research in NDP is theoretical in nature, aiming at understanding the
convergence and degree of suboptimality of different algorithms, while some involves the
application of this methodology to specific problem domains. A survey of NPD methodologies

is given in the following section.

4.6.2.1 NDP Methodologies

« Policy space and actor-critic algorithms
Instead of tuning the parameters of a value function, or tune directly the parameters of a
policy, a parametrically described class of policies can be assumed. A class of methods
that can be interpreted in terms of estimated Q-factors was studied by Marbach and
Tsitsiklis 2001. Such methods may suffer from large variance and slow convergence. This
can be partially mitigated by certain variants, e.g., by introducing a discount factor
(Marbach and Tsitsiklis, 2002). Even better, learning in policy space and value function
approximation can be combined. This is what actor-critic methods do. It turns out that
once a policy parameterization is fixed, it prescribes a natural set of "features" to be used
in value function approximation, and one obtains algorithms with provable convergence
properties (Konda and Tsitsiklis, 2001). Policy learning in actor-critic algorithms takes
place at a slower rate than value function approximation. Thus, the convergence analysis
of actor-critic algorithms relies on the convergence of certain two-time scale stochastic

approximation algorithms (Konda and Tsitsiklis, 2002).

» Average cost temporal difference learning
Temporal difference methods can be applied to average cost problems. The convergence
and approximation error guarantees are essentially the same as for discounted problems.
Thus, there is no need to use discounted formulations as a proxy for undiscounted ones
(Tsitsiklis and van Roy, 1999a). The properties of average and discounted criterion
temporal difference methods are compared in more detail by Tsitsiklis and van Roy
(2002a)

80

Process control

Convergence of methods based on value function learning
The convergence of a method that uses a lookup table representation of the value
function, simulation using a greedy policy, and plain "Monte-Carlo" (averaging) for

learning the value function can be found in Tsitsiklis (2002b)

Optimal stopping problems is the only known class of problems for which convergence is
guaranteed for methods like Q-learning, with arbitrary linearly parameterized value

function approximators, and without a restriction to a fixed policy (Tsitsiklis, 1999b)

Temporal difference methods, for the single policy case, and with linearly parameterized
function approximators, are guaranteed to converge. The approximation error obtained in
the limit is not too far from the best possible approximation error under the particular
approximation architecture (Tsitsiklis and van Roy, 1997). Convergence results and
approximation error bounds for Q-learning type methods for certain special types of
function approximation, e.g., state aggregation was found by Tsitsiklis, 1996. Q-learning
and the temporal difference methods (with a lookup table representation) are viewed as
stochastic approximation methods for solving Bellman's equation. Their convergence is
established by first developing a stochastic approximation theory for the case where the
iteration mapping is a contraction with respect to a weighted maximum norm. (Tsitsiklis,
1994)

Rollout algorithms

Starting with a good heuristic and carrying out what is essentially single policy iteration,
in the dynamic programming sense, provides a systematic method for improving the
performance of a heuristic, and has great promise in practical settings (Bertsekas and
Tsitsiklis 1996).

4.6.2.2 Applications

Neuro dynamic programming has been used to solve several optimization problems of

different fields. Since 1999 neuro dynamic programming has been proposed in finances to

price complex American options (van Roy and Tsitsiklis 2001 and Tsitsiklis and van Roy

1999¢). It has been used also for inventory management (Van Roy et al., 1996). In

communication networks NDP has been used for control and routing (Marbach et al. 2000).

Card et al., 1997 used a cascade neural network and the policy-iteration algorithm to provide

suggested set points for a plasma etch process.

81

Catalina Valencia Peroni

Since NDP is able to deal with complex optimization problems, it is believed in this work that
it could be successfully used to optimize a non-linear fed-batch bioreactor. The next section
explains in detail the NDP procedure. Then, a description of how NDP is used to solve the

invertase fed-batch optimization problem is stated.

4.6.3 Neuro dynamic programming approach

In dynamic programming the objective function of the cost optimization has two parts. One
of them is the cost incurred in the transition from the actual state to the next state. The other
part is a term called cost-to-go. The cost-to-go is the optimal cost incurred from the next
state to the final state. The cost-to-go is a measure of the desirability of the next state.
Mathematically, the optimal cost for a given state xx of a deterministic problem can be written

through Bellman’s equation as

3706) = Minlg %, Xy) + 3" (%)

) (4.8)
= minfg(Xyer,) + 3" (F (6, 0)]

where x..1 is the next state, g(x, Xk+1,U) iS the cost associated to the transition from the
actual process state x, to the next process state x.1, and f(x,, u) is a function of the process
dynamics.

To solve this minimization problem, different costs incurred in the transitions associated to all
possible control actions should be explored. Also in order to find the optimal policy for a given
initial state, one has to calculate an associated cost-to-go for each of all the states of the
state space of the process. As it was said before, in the case of problems with very large
number of states, this task is computationally extremely demanding. In addition, the number
of states to be explored increases as the dimension of the state vector increases. The solution
to this curse of dimensionality is to use suboptimal methods that approximate the cost-to-go
of each state to a parametric function, like neural networks. Thus, the above equation can be

written as

. . O - O
J(x)= mulng(xk’xkﬂ’u) + ‘](Xk+1!r)%
(4.9)

= mingia(xk,xwu) +3(f (xk,u),r)E
u
where r is a vector of parameters and J is a map of the state space to the optimal cost-to-go

of each state. One can use any parametric function for this mapping but artificial neural

networks have been seen as universal function approximation (Cybenko, 1989), and could be

82

Process control

applied to feature extraction. This suboptimal dynamic programming method, which uses a

neural network, is called neuro dynamic programming.

In order to find j through a NN, data of the states and its associated optimal cost-to-go are
needed to train the network. There are no readily training pairs, so one has to evaluate u
policies through simulation and calculate an approximate value for the cost-to-go and then
improve it. This improvement is called value iteration and it is done through Bellman
equation. The value iteration algorithm can developed with the following procedure (Lee and
Lee, 2001):

1. Use a suboptimal policy into a process simulation of the closed-loop system to generate

cost-to-go vs. state data.
2. Fit a NN to approximate a parametric function of the states to the cost-to-go. This gives

an approximate function of the cost-to-go for the relevant region of the state space. This

first map is denoted J % in this work.
3. To improve the approximation (due to the use of a suboptimal control law), use the
Bellman iteration to find the best cost-to-go map,

3.1. With the current estimate J'(f(x,,u),r,) calculate J'** for the given

sample of states x by solving
i+1 . U N L
I (X) = min[g (X, Xpuq, U) + 3 (F (X ,u), 1) (4.10)
“ 0O C
3.2. Fit an improved cost-to-go approximation to the new x vs. J "1 data so that
IM(x) = 3"(F(x,u),r,,) 03" (4.11)
J i+l(xk) -J' (%)

3.3 Repeat until ZkN:1 IN <&, where ¢ is a small number

and where the order of € depends on the order of the cost-to-go.

The main premise here is that not all points in the state space are relevant for control and
one can obtain the most relevant sample points by performing closed-loop simulations. This
method is less computationally demanding, even for very large dimensional systems, because
the operating region of the state space that the closed-loop system visits may be relatively
low in dimension. Also, the fist iteration starts with a very good approximation of the cost-to-
go due to the use of a suboptimal (but good) policy. The on-line implementation of this
controller involves the converged cost-to-go function. The value of the control variable is

found solving at each sample time

83

Catalina Valencia Peroni

. .0 - O
J (%) :mum%(xkaﬂ’u)+J(Xk+1:r)%
(4.12)

= muinglg(xk,xkﬂ,u) + j(f (Xk,U)ar)E

The described procedure can also be improved with the so called “policy iteration” method.
This method constitutes an upper loop iteration where the closed-loop simulation of the
process with the new control law defined in the above equation yields a new more relevant
set of states and more accurate cost-to-go data for them. This procedure is used to solve the
optimal control of invertase fermentation in a fed-batch bioreactor. How it is done is

described in the following section.

4.6.4 Optimal control trough NDP: invertase production case study

The fed-batch fermentation process considered here consists of the production of invertase
by recombinant yeast cell using glucose as substrate. Patkar and Seo (1992) reported the
fermentation kinetics of invertase production in fed-batch cultures. They reported also
experimental data for cell density (expressed as optical density OD), glucose (G)
concentration and specific invertase activity (I) obtained with six different glucose-feeding
strategies in a 1.2 liters bioreactor. The number of state variables of the process is 4: OD, G,
I and the bioreactor volume (V). The state space of the system is considered to be of fourth

order. The productivity of this fermentation process at a certain point in time t is given by

Productivity(t)= I(t)e OD(t)eV(t) (4.13)
Thus, the optimization problem consists in maximizing the profitability given by
maxl (t;)* OD(t,)*V(t,) - AT, } (4.14)
u

where t; is the fermentation ending time. The optimization of invertase production can be

seen also as the minimization of the overall cost of production
min{A O, - I (t,) OD(t,) V(t,)} (4.15)
u

The main constraint of the above optimization problem, is the maximum bioreactor volume
V(t;)<1.2 liters (4.16)
Thus, the objective of the optimal control of this process is to find an optimal feeding profile

misuch as

7T=al’ngLin{A [ﬂf_l(tf).OD(tf).V(tf)} (4.17)

To solve this problem, a neuro dynamic approach is used. For the invertase production

optimization the cost-to-go function can be expressed as

I () =muin§\At+j(f(x,u),r)E (4.18)

84

Process control

where J" is the optimal cost-to-go, x=(0D, G, I, V) is the state of the fermentation process, u
is the substrate feed rate, A is stated as above and At the time step or the expended time

between two consecutive states. Note that the transition cost given by the term AAt is only a

function of time and that J is the state space-cost-to-go map to be performed by a MLP or a
fuzzy ARTMAP neural system. The weight vectors associated to MLP or to the fuzzy ART
modules is given by the set of parameters r. Finally f(x,u) is a multidimensional function that
describes the dynamics of fermentation process. This function is the model of cloned
invertase fermentation as described in the fed-batch fermentation chapter. With the NDP

approach, the optimal feeding profile can be written as

n:argmina\ At+j(f(x,u),r)E (4.19)

To solve this equation, the state space- cost-to-go map j is needed. Once it is obtained
through a NN, the above equation can be implemented on-line into a controller. In this way,
the optimal policy found Tt could adapt itself in case of disturbances.

The invertase production optimization problem modeled this way is a deterministic, finite
horizon NDP problem, where the overall sum of the transition costs is minimized. The
described methodology is used to find an optimal controller for invertase production in a fed-
batch bioreactor. The results of this procedure using two kinds of neural network systems are

presented in next chapter.

85

Chapter 5 : Results

The results presented at this chapter can be divided into two parts. First the results obtained
with a model-based control of fed-batch multivariable fermentation process are presented.
Secondly, are presented the results obtained when an optimal controller of an invertase
fermentation on a fed-batch bioreactor is implemented. The corresponding manuscripts of
two publications are respectively attached in appendix A and B.

5.1 Model based control

To build a suitable control model, the multivariable fed-batch bioreactor was simulated and
process data was obtained as described in section 3.4. Using these data several MLP and RBF
neural network models were obtained and tested following the steps shown in Figure 3.11,
for both the direct and the inverse control models schemes depicted in Figure 3.12. The
results obtained with the testing schemes illustrated in Figure 5.1 for the direct (a) and

inverse (b) models are presented below.

(@ F® Vv
—r—»{ Process >
*V(t) V(t-1) V(t-2) | |V(t+1)

D NN Deviation
=

model

(b) Set point X
=
F(t) VO V(1) | INN —»
——» Process » Model
—»

F(t-1)

Deviation = F{t) - F(t)

Figure 5.1 Test schemes for the obtained direct and inverse process models of the multivariable fed-
batch bioreactor. The models prediction error (deviation) is computed as shown: (a) Test for direct
process models (b) Test for the inverse process models

Catalina Valencia Peroni

5.1.1 Direct model/

The direct model of the process must be highly reliable because its predictive task inside the
controller and its repercussions in the controller performance are critical. It should track the
process behaviour, following exactly the same routes as those for the simulated process, and
yield exactly the same process outputs from the same inputs. Thus, the direct model must
accurately represent the process operation at the steady state point and the transient
behaviour of the process until a new steady state is reached when the set point changes.

The performance of the direct model of the process was checked for (a) the steady state
process operation, (b) the transient process operation and (c) a plant/model mismatch
caused by a process, as indicated in Table 3.3. The performance of the control model was
measured in terms of the average deviation between the NN model outputs and the values

expected in a simulated "infinite" (10,000 time steps) process.

(a) Steadly State Performance

The steady state process operation studied was x=0.2475 kg/m?, p=1.7499 kg/m> and a
constant F = 8.3-10° m>/s. The direct model test results in terms of the individual deviations
for each variable and the average ones for the steady state operation are presented in Table
5.1. The average deviations shown in this table indicate that the RBF models are superior in
performance than the MLP models. The best model is a RBF neural network with goal 3.0,
followed closely by another with goal 3.1. The pH values in the bioreactor are almost kept
constant and equal to the initial value of 9.15. The largest deviations observed in this and
following tables are caused by variations in the substrate flow since the acid and base flow
rates F, and F, were kept equal to zero in all experiments.

88

Results

Table 5.1 Average relative errors of the direct model outputs with respect to the final process values

for steady state operation of the multivariable fed-batch bioreactor

NN X s p T pH 0, Average deviation
RBF goal 3.0 0.06 0.25 0.00 0.00 0.57 0.00 0.15
RBF goal 3.1 0.13 0.29 0.00 0.00 0.60 0.00 0.17
RBF goal 4.0 0.60 0.20 0.00 0.00 0.63 0.00 0.24
RBF goal 2.75 0.08 1.01 0.00 0.00 0.51 0.00 0.27
RBF goal 3.5 0.65 0.36 0.00 0.00 0.63 0.00 0.27
RBF goal 3.4 0.65 0.36 0.00 0.00 0.63 0.00 0.27
RBF goal 3.2 0.06 1.63 0.00 0.00 0.62 0.00 0.39
RBF goal 3.3 0.06 1.63 0.00 0.00 0.62 0.00 0.39
RBF goal 2.0 0.03 2.26 0.00 0.00 0.03 0.00 0.39
MLP 19-18-12-6 1.75 0.69 0.04 0.01 0.56 0.00 0.51
RBF goal 0.8 0.00 3.51 0.00 0.00 0.00 0.00 0.59
RBF goal 2.5 0.04 4.84 0.00 0.00 0.19 0.00 0.85
MLP 19-10-5-6 5.84 0.78 0.01 0.01 0.61 0.02 1.21
MLP 19-5-6 3.77 3.61 0.00 0.00 0.63 0.00 1.34
RBF goal 1.0 0.01 8.40 0.00 0.00 0.01 0.00 1.40
MLP 19-18-12-6+PCA 5.30 6.71 0.01 0.00 0.44 0.02 2.08
MLP 19-18-12-6+CV 0.75 18.71 0.02 0.00 1.12 0.06 3.44

(b) Transient process operation

(b.1.) The first transient case analysed was caused by a positive step change of 10% in the

substrate flow rate (F), which is the control variable. The test results are shown in Table 5.2.

To simulate correctly the time response of the process, a simultaneous increment in the

stirrer rpm was also implemented to increase the amount of dissolved oxygen. This combined

action was absolutely necessary to reach a new steady state operation. In this case the best

NN architectures for the direct process model are also based on RBFs and again the best

model in terms of average deviations is the architecture with goal 3.0. As in the steady state

operation, the pH is usually the variable with the highest deviations.

89

Catalina Valencia Peroni

Table 5.2 Average relative errors of the direct model outputs with respect to the process expected
values for a positive step in the manipulated variable of the multivariable fed-batch bioreactor

NN X S p T pH 0O, Average deviation
RBF goal 3.0 0.03 035 0.00 0.00 0.59 0.00 0.16
RBF goal 3.1 0.10 0.26 0.00 0.00 0.65 0.00 0.17
RBF goal 2.0 0.03 1.10 0.00 0.00 0.03 0.00 0.19
RBF goal 4.0 042 044 0.00 0.00 0.67 0.00 0.26
RBF goal 3.5 041 0.83 0.00 0.00 0.67 0.00 0.32
RBF goal 3.4 041 0.83 0.00 0.00 0.67 0.00 0.32
RBF goal 0.8 0.01 2.02 0.00 0.00 0.00 0.00 0.34
RBF goal 2.75 0.09 141 0.00 0.00 0.55 0.00 0.34
RBF goal 3.2 0.10 159 0.00 0.00 0.66 0.00 0.39
RBF goal 3.3 0.10 159 0.00 0.00 0.66 0.00 0.39
MLP 19-18-12-6 096 151 0.04 0.03 0.68 0.00 0.54
MLP 19-10-5-6 456 057 0.01 0.01 074 0.02 0.98
RBF goal 2.5 0.05 6.13 0.00 0.00 0.18 0.00 1.06
RBF goal 1.0 001 644 0.00 0.00 0.01 0.00 1.08
MLP 19-5-6 198 466 0.01 0.00 0.63 0.00 1.21
MLP 19-18-12-6+PCA 6.58 647 0.01 0.00 049 0.02 2.26
MLP 19-18-12-6+CV 337 1232 0.05 0.19 045 0.05 2.74

(b.2.) The transient of the direct model was also studied for the case of multiple random
steps in F. These steps were between +/- 10% of F at the operation point, and occurred at
randomly distributed instants within 50 to 200 process time steps. The results obtained are
shown in Table 5.3. In this case the best NN architecture for the direct model are the RBF
models with goals 2.75 and 3.0, followed closely by the MLP 19-18-12-6.

20

Results

Table 5.3 Average relative errors of the direct model outputs with respect to the process expected
values for multiple random steps in the manipulated variable for the multivariable fed-batch bioreactor

NN X S p T pH 0, Average deviation
RBF goal 2.75 0.11 1.90 0.00 0.00 0.57 0.00 0.43
RBF goal 3.0 0.07 2.31 0.00 0.00 0.62 0.00 0.50
MLP 19-18-12-6 1.10 1.35 0.04 0.02 0.66 0.00 0.53
RBF goal 3.2 0.27 2.79 0.00 0.00 0.67 0.00 0.62
RBF goal 3.3 0.27 2.79 0.00 0.00 0.67 0.00 0.62
RBF goal 3.1 0.19 2.98 0.00 0.00 0.66 0.00 0.64
RBF goal 4.0 0.90 2.37 0.00 0.00 0.67 0.00 0.66
RBF goal 3.5 0.88 2.82 0.00 0.00 0.66 0.00 0.73
RBF goal 3.4 0.88 2.82 0.00 0.00 0.66 0.00 0.73
RBF goal 2.0 0.08 5.01 0.00 0.00 0.04 0.00 0.85
RBF goal 2.5 0.08 5.15 0.00 0.00 0.18 0.00 0.90
MLP 19-10-5-6 3.97 3.20 0.01 0.02 0.76 0.02 1.33
MLP 19-5-6 2.59 5.17 0.01 0.01 0.61 0.00 1.40
RBF goal 0.8 0.04 11.59 0.00 0.00 0.01 0.00 1.94
MLP 19-18-12-6+PCA 6.82 7.63 0.01 0.00 0.50 0.02 2.50
MLP 19-18-12-6+CV 3.63 11.92 0.05 0.18 0.75 0.06 2.76
RBF goal 1.0 0.05 22.70 0.00 0.00 0.01 0.00 3.79

(¢) Unexpected disturbance

The direct model of the process should be robust against unknown disturbances. It was
tested for unknown disturbances in the pH. The disturbances, hypothetically caused by an
uncertainty in the value of the constant of dissociation of the acid, were such that measured
pH was lower than the pH used for training the NN models. The process operation steady
state point and the transient process response to a positive step in F during the pH
disturbance tests are shown in Tables 5.4 and 5.5, respectively. In the steady state process
operation test (Table 5.4), the MLP 19-5-6 architecture is the best model. This NN model is

also the best to perform in the transient process test results summarized in Table 5.5.

91

Catalina Valencia Peroni

Table 5.4 Average relative errors of the direct model outputs with respect to the expected process
values for a steady state process operation with a pH perturbation of the multivariable fed-batch

bioreactor
NN X S p T pH 0, Average deviation

MLP 19-5-6 17.59 15.20 0.02 0.05 29.64 0.01 10.42
MLP 19-18-2-6 29.26 36.32 0.02 0.92 2.70 0.04 11.54
MLP 19-18-12-6+CV 10.64 71.92 0.01 1.01 1.87 0.08 14.26
RBF goal 3.0 13.54 57.12 0.01 0.01 24.51 0.01 15.87
RBF goal 3.1 0.21 65.48 0.01 0.01 33.02 0.01 16.46
MLP 19-18-12-64+PCA 79.26 98.03 31.48 1.28 1.16 66.11 46.22

Table 5.5 Average relative errors of the direct model outputs with respect to the expected process
values for a positive step in the manipulated variable with a pH perturbation of the multivariable fed-

batch bioreactor

NN X S p T pH 0, Average deviation
MLP 19-5-6 12.95 32.12 0.01 0.05 29.48 0.00 12.43
MLP 19-18-12-6 53.59 11.41 0.01 9.76 2990 0.00 17.44
MLP 19-18-12-6+CV 11.27 91.80 0.00 043 221 0.07 17.63
RBF goal 3.0 22.07 100.12 0.01 0.00 21.43 0.00 23.94
MLP 19-18-12-6+PCA 82.26 97.06 3147 127 121 66.12 46.56

Once the best NN models have been found it would be convenient to establish a consensus
about which one of the obtained and tested direct models could be considered the most
suitable one for the control system. The idea is to rank the NN models based on different
aspects of the control system performance. Three requirements related to performance are
considered here.

The direct model should perform well (i.e. have a low average of deviation) in regulatory
control. It should also perform well in a servo control and it should be accurate enough to
ensure the robustness of the controller against plant/model mismatches. Weights of 60%,
30% and 10% have been heuristically assigned to these 3 controller characteristics,
respectively. When this criterion is used to rank the test results of the direct process model
the best NN direct model is the RBF with goal 3, as shown in Table 5.6, followed very closely
by MLP 19-5-6 and the rest of MLP models. Obviously, different criteria and weights could
have been selected, as is usually the case in the fields of synthesis and design of chemical

engineering processes (Biegler et al., 1997).

92

Results

Table 5.6 Ranking of controller performance for direct process models of the multivariable fed-batch

bioreactor
NN / Importance in Servo control Regulatory control Robustness Rank
controller performance 60% 30% 10%
SS Multiple Positive Step pH disturb. pH disturb. SS
Step Positive Step
RBF goal 3.0 0.15 0.50 0.16 23.94 15.87 2.50
MLP 19-5-6 1.34 1.40 1.21 12.43 10.42 2.56
MLP 19-18-12-6 0.51 0.53 0.54 17.44 17.35 2.71
MLP 19-18-12-6+CV 347 2.76 2.74 17.63 15.72 4.79
MLP 19-18-12-6+PCA 2.08 2.50 2.26 46.56 46.22 7.95

5.1.2 Inverse model

A similar analysis has been carried out for the inverse process model. The performance of this
inverse model has to be very robust in front of changes in the set point since it will have an
actuator role inside the controller in the vast majority of control schemes considered in
practice. For this reason, the current and the modifications of the previous MLP-based inverse
process models proposed by Hussain and Kershenbaum (2000) and Aoyama and
Venkatasubramanian (1995) given in Figure 3.12(c) were tested with random step variations
around the process operational state at the set point input to the NN model.

The tests results for the current and modified previous inverse models are shown in Table
5.7. The best inverse model of the three in Figure 3.12(c) is the current scheme with a MLP
19-11-7-1 architecture, followed by the MLP model of Aoyama and Venkatasubramanian
(1995) and by the current scheme with a RBF goal 1.0 architecture in terms of average
deviations. Current models are faster when tracking the set point and are more stable than

both modified previous models.

Table 5.7 Average relative errors of the inverse model output with respect to the expected process

value for random values in the set point for the multivariable fed-batch bioreactor

NN Random set point
Current MLP 19-11-7-1 1.16
MLP Aoyama & Venkatasubramanian (1995) 1.31
Current RBF goal 1.0 1.46
MLP Hussain & Kershenbaum (2000) 1.66
Current MLP 19-11-7-1+CV 2.06

93

Catalina Valencia Peroni

5.2 Optimal control

The optimal control problem of invertase production in a fed-batch bioreactor is solved using
neuro dynamic programming approach, presented in section 4.5. The objective of the
optimization procedure of the fed-batch bioreactor, stated in equation (4.17), is to find the
optimal feeding profile tdefined in equation (4.17).
The first step on any the NDP optimization is to obtain a sub-optimal cost-to-go value for
each possible state of the problem. To obtain a sub-optimal cost-to-go value for each possible
state of the fermentation, the invertase fermentation process was simulated using Patkar’s
model (1993) with 36 different suboptimal feeding policies and three different initial
fermentation volumes. The simulation initial volumes were 0.4, 0.6, 0.8 liters. The suboptimal
policies were chosen in a way that they have the same shape of the optimal policies found by
both Patkar (1993) and Chaudhuri (1998). Those policies can be described in the following
manner. When the fermentation starts, there is no feeding rate until time t. Then, the
feeding flow rate increases potentially until the bioreactor volume is reached. Then
fermentation continues until the system arrives to the maximum profitability value, i.e., the
optimum final time (i) for a given process trajectory. The behavior of the feed rate flow can
be expressed mathematically by
go if t<t,

u(t,t,b) = %) . e s \22 . (5.1)

02* A+b*(t—-t)"°) otherwise

where b is a parameter used to control the growth rate of the feed rate flow. The values of b
and t; used to generate different suboptimal policies were: b=[0.05,0.07,0.10,0.13] and
t=[1,2,3,4,5,6,7,8,9]. Figure 5.2 shows the different policies for an initial volume of 0.6 liters,
obtained with initial times of 3, 5 and 7 h: u(t,3,b), u(t,5,b), u(t,7,b). Also shown are the
optimal policies obtained by Patkar (1993) and Chaudhuri (1998). For a given initial time, the
differences on the policies drawn in this figure are the values of b.
The response of the key states of the fermentation process (x, s, p, V) and its associated
profit curve when the suboptimal policy u(t,5,0.13) is used, is shown in Figure 5.3. The profit
is given by:

profit =1 (t;)* OD(t,)*V(t;) - A [, (5.2)

94

Results

0.25
- Suboptirmal policies
-- Chaudhuri et al (19938)
...Patkar et al (1993}
0ZfF
=015}
@
= %
z /
fuk}
e 01r _
/x /
A
0.05] /!'
i !
|:| 1 I| | |
0 2 12 14 16

Time (h)

Figure 5.2 Different policies used for an invertase bioreactor with initial volume of 0.6
liters. (—) Suboptimal policies given by eq. 5.1 with initial times of 3, 5 and 7 (- -)

Optimal policy by Chaudhuri and Modak (1998) (...) Optimal policy by Patkar et al.
(1993)

Biareactor dynamics for the policy uit, 5, 0.13)

—- Optical Density ’

— Glucose (gh i
4L ---- Invertase (units/ml-00) . i
............. VD|UmE |:|:| . -
—-- Profit Rl
_E 1 1 1 1 1 1 1 1
o 2 4 B g 10 12 14 16 18
Time (h)

Figure 5.3 Fermentation dynamics for a policy u(t,5,0.13) given by eq. 5.1. Cells, glucose
and invertase concentrations and fermentation volume are shown. Also shown is the
associated profit when A =0.3

95

Catalina Valencia Peroni

The main constraint of this process is the total bioreactor volume, which has a maximum
value of 1.2 liters. So the flow rate of substrate follows the given policy until the maximum
volume is reached. At that time, the feed flow stops and the fermentation continue until the
higher productivity is found. A larger fermentation process is shown in Figure 5.3. In that
fermentation, the microorganisms consume all the amount of glucose available in the
fermentor and the invertase production decreases. Because time goes on, the profit gets
lower and lower.

The effect of different fermentation initial conditions on the productivity is shown in Figure
5.4. For a given initial volume, at time 7.4 h the feed rate starts at 0.18 I/h. It remains
constant until the maximum value is reached. The fermentation continues until the maximum
profit value is attained. The initial state for each line is different, but the operation conditions
are the same for all processes. It could be seen in this figure that the maximum values for
the profit are obtained when different initial fermentation volumes are used. This is the
reason why three different initial volumes where chosen as different initial conditions.

A total of 9328 state points where generated through 108 simulations of the invertase
fermentation using the 36 suboptimal policies generated with equation (5.1) and the three
different initial fermentation volumes. The explored state space is shown in Figure 5.5. In this
Figure each drawing represents a projection on a 2-dimensional space of the state points of

the 4-dimensional state space. For a 4 dimensional space, a total of six 2D representations

are needed.
45 | | | | | I
5, 1
+ 5,3
41 :
+ 5,158
i — v, 06
351 | o
] — v, 02
— v, 08
Vo1
3 _ o
Yo 0.3
| vV, 09
._ [x]
7 i
g 251 / |
T |
II__ |
S /
g 2r / ++ |
5
N
15+ . |
| e, o
tgq o
e
| i
i +H-= _FFF'—
; -
1d— s +‘H'
054 |
i sa st et AT
U | | |
D 2 8 10 5 o

time
Figure 5.4 Effect of initial conditions on the productivity of a fermentation process. Solid lines: initial
state (0.15, 5, 0.1, V,) where V(={0.2,0.4,0.6,0.8,1}. + lines: initial state (0.15, Sy, 0.1,0.6) where
So={1,1.5,2,3}

9

Results

Explored state space of the fermentation process

| {units/rml-00)

| {units/rnl-007)

i

- .
0s 1 15
G (g/l) G (o) | (units/ml-OD)

Figure 5.5 Explored state space 9328 points of the invertase fermentation process by using the
suboptimal policies described by eq. 5.1

Once the state data are obtained with several suboptimal policies, a suboptimal cost-to-go
should be calculated for each state point. Each policy has final an optimal final time t;" as is
shown in Figure 5.6. With those optimum final times, for each of the visited states in a given
process trajectory, a cost-to-go value can be computed according to

J0%) =Ae(tf -ty)- 1t)e OD(te)oV(tf ") (5.2)

where ty is the time of the process associated to the given state x,

97

Catalina Valencia Peroni

20—

ot
-4 -h
12 __

104

B b
0.14

Figure 5.6 Optimum final time t" of the invertase fermentation for each suboptimal policy u(t,t,b) and
different initial volumes of the bioreactor. The final optimum fermentation time depends on the value
of the initial fermentation volume V, and on the policy parameters t; and b

The next step in NDP is to fit a function approximator to the state-cost-to-go obtained. Two
neural network architectures have been chosen for this purpose. Also, a hyper cubic region of
the state space of the problem is chosen. This region has its limits in the hyper planes given
by the maximum and minimum values of each of the state variables. Those minimum and
maximum are found in the set of all the states obtained through the use of all the suboptimal
policies into the simulation of the fermentation process.

MLP have been widely used to fit non-linear functions of dynamic process (Hussein, 1999).
This kind of NN is used here to fit the cost-to-go surface in the state space hyper cubic
region. The MLP architecture has 4 inputs (4 process state variables) and 1 output (cost-to-

go value). The training fitting criteria is the sum of squared errors (SSE). The best structure

found has 2 hidden layers, each with 17 and 5 nodes. This NN is J ° A fuzzy ARTMAP neural
system is also used to fit the cost-to-go surface in the state space hyper cubic region. The

fuzzy ARTMAP architecture also has 4 inputs (4 process state variables) and 1 output (cost-

to-go value). This NN is called J° in the application of fuzzy ARTMAP to the procedure of
fitting improvement. Fuzzy ARTMAP is a powerful classifier that should perform better as a
function approximator than MLP, since it will provide better input-output association over the
considered state space. To build a fuzzy ARTMAP, the obtained state- cost-to-go data are

preprocessed (nhormalization and complement coding) prior to their presentation to the fuzzy

98

Results

ART, and fuzzy ARTgz modules during the training of the network. Fast learning is used in
both fuzzy modules. The baseline of the vigilance parameter for fuzzy ART, is pa=0.9. The
vigilance parameter for fuzzy ARTg and the map field are both set to 0.999999. The set of
input-output data is presented randomly to both fuzzy ART modules. The training process
evolves according to the set of fuzzy rules applied in the classification of input and output
patterns in each fuzzy ART module until stability of classes is reached. In this case fuzzy ART,
found 746 categories among 9328 state points and fuzzy ARTg classified the corresponding
cost-to-go values in 1042 categories. The fuzzy ARTMAP was tested in the same states-cost-

to go data set and an average absolute prediction error of 0.0437 was found.

Given this first approximation of the cost-to-go an improvement of the surface captured by
the NN is made through Bellman iteration,

,) - L
J"™(x) = min %\-AHJ'(f(x,u),r)[(5.3)
UCLOUmax] [C

where Uy is the maximum value between (1.2-V\)/At and 0.2722 I/h, Vi is the actual
fermentation volume, and At is the time step between states. This time step is constant an
equal to 0.1 h. The transition cost from one state to the next is only a function of time. That
cost is the main difference in each cost-to-go value associated to two consecutive states of
one process trajectory. After each Bellman’s iteration is completed a new NN should be fitted
using the new value of the cost-to-go for each state. Again two neural network schemes are
used in the present work to do this mapping: MLP and fuzzy ARTMAP. The following sections
describe how this is done and what are the results obtained for each case. When cost-to-go
approximator has been obtained and the state space- cost-to-go map is completed a NN a
controller can be implemented online with equation (4.19).

In this way, the optimal policy found could adapt itself in case of disturbances. Let's

proceed with the results obtained when MLP or fuzzy ARTMAP are used to approximate

j(f(x,u),r).

5.2.1 MLP dynamic programming

The fitting of cost-to-go with MLP is carried out in three iterations, as described in section
4.6.3. The termination condition of the iteration procedure described in that section is
€=0.202. The best NN architecture found for each iteration step are 4-17-5-1, 4-17-5-1 and

4-13-5-1. The converging criteria (¥ py | (X,) = 3" (%,)|/ N) at each step are: 0.5927,

0.2171 and 0.2020.

99

Catalina Valencia Peroni

The last cost-to-go approximator (the third NN) is implemented online into a controller
resulting in a new feeding policy for the fermentation process described in section 2.2.2, and
in new visited states. The trajectories followed by the fermentation process under control and
the new visited states are plotted in Figure 5.7. Those new states and their associated cost-
to-go value are included in the set of data to be fitted by a new NN (in total 9600 states).
The complete set of states is shown in Figure 5.8. This Figure is similar to Figure 5.5. For
these data the best NN structure found is 4-17-5-1. Only one Bellman iteration step is needed
to find the new state-cost-to-go approximator. For this iteration the converging criteria is
0.194.

State space trajectories of the new states

§ 'ﬂ—'—'—'— T -ﬁ'_
A 5] 12
A 5 : 1 s—l;“m/
= 3 % .lll. {1 - 1 E
= Yo £ 1 o CosH
© 2 xxx"xx -I:- - E ¢ -: /
1 |= o0& /f' 0.6 E
: Li
0 B — 0.4t
1 34 1 2 3 4 1 2 3 4
x (OD) x (0D} % (OD)

[{unitsdml-O00
~
et
)
i
Mﬁﬁ
i

L
0.5 g, 1 0B & 0B
g - H
: : 0.4 : - 0.4 : : :
I 2 4 0 2 4 08 1 15
G (gl G (gl | {units/ml-OD)

Figure 5.7. State space representation of the trajectories followed by the controlled fermentation
process for initial fermentation volumes of 0.4 (.), 0.6 (+), 0.8 (x). The controller is implemented
with the cost-to-go approximator obtained from the second Bellman iteration. The new visited
states and its associated cost-to-go are used into a new approximator.

100

Results

State space frajectories for new visited states

G g/

[{units/ml-O0)

=
i

[{unitsfml-O07)

=
in

05 1 15
G (gl G (g/l) | (units/ml-OD)

Figure 5.8 Explored state space of the invertase fermentation process after policy iteration procedure. The
controlled process followed a different trajectory and visited new states.

Optimal controller performance

Once the value iteration procedure is over, the final cost-to-go approximator (fourth NN) can
be implemented online into a controller resulting in a hew feeding policy for the fermentation
process. This NN is implemented into a controller system with the on-line implementation of
the Bellman equation. The performance of the obtained optimal controller is assessed in one
known and in unknown fermentation processes (a) For known process, the fermentation
starts with an initial volume of 0.6 liters which is the initial state of one of the process
trajectories used in the training of the cost-to-go approximator (b) Unknown fermentation
processes correspond to different initial fermentation volumes not seen before by the cost-to-
go approximator.

(a) Known process performance
The fermentation is again simulated, starting with an initial volume of 0.6 liters. The results of

the simulation are shown in Table 5.8. Those results are compared with the prediction of
different optimization methods. Although invertase fermentation productivity is higher when

101

Catalina Valencia Peroni

the Patkar et al. (1993) optimization method is used, the best profit is found when the
current MLP- NDP method is employed to obtain the best feeding strategy. Fermentation time
is lower in this case, making the MLP-NDP obtained policy more profitable.

Table 5.8 Invertase production optimization results for an initial fermentation volume of 0.6 liters. The

profit depends on the productivity and the total fermentation time

POLICY GIVEN BY PROFIT PRODUCTIVITY FINAL TIME (H)
Patkar et al. 1993 3.70 7.30 12

Chaudhuri and Modak 1998 3.50 7.10 12

Best suboptimal policy 3.72 7.23 11.7

MLP-NDP 3.80 7.25 11.5

The optimal policy determined for an initial volume of 0.6 | is shown in Figure 5.9. The figure
also shows the optimal policies attained with previous optimization procedures. It is clear that
although NDP policy vields the best fermentation results, the trajectory of the manipulated
variable (feed rate) is not smooth. This could be a problem for the design of actuators like
valves. To overcome this problem the simplest solution would be to filter the manipulated
variable signal from the controller. The control action signal is studied through a Fourier

analysis in order to find its characteristic frequency. Once knowing that frequency a suitable

— MDF
- - Chaudhuri et al (1558)
025t --- Patkar et al. (1993)
02r ;’J: |
3 s
w015+ . |
E; |
- i
0.1 ! |
!
i
]
0.05) |
.*
D 1 1 | :l . |
0 2 4 o 12 14 16

Tirme (h)

Figure 5.9 Optimal policy for a fermentation process with an initial volume of 0.6. The obtained
NDP policy is compared against other optimization procedures results. (-) NDP methodology (--)
Chaudhuri et al. (1998), (--) Patkar et al. (1993)

102

Results

filter can be designed. The results of Fourier analysis are shown in Figure 5.10. It can be
seen that there is no characteristic frequency to work with. A filter must be desighed to
obtain a smoother control action signal. An average of the optimizer output is proposed. Thus
the control action is equal to the average of five or six consecutive optimizer results. The
control policy obtained is shown in Figure 5.11. The control action is smooth and suitable for
practical controller implementation but, as expected, a lower profit is obtained. For an initial
volume of 0.6 | the profit obtained when the average is over five consecutives times is 3.1224
and when the average is over six consecutive times is 3.1222. So, this approach should be
improved. Below in this work a fuzzy ARTMAP architecture as clustering algorithm is used to

perform the filtering.

0.045 T T . T

0.04 .

0.035 .

0.03 { .

D | | |
a 50 100 140 200 250

k

Figure 5.10 Fourier analysis of the control signal from the optimizer

103

Catalina Valencia Peroni

I:I"Il T T T T T

03k by s toes 4

0.2 .

Feed rate (I/h)

Feed rate (I/h)

_D'] | | | | |
0 2 4 B g 10 12

Tirme (h)

Figure 5.11 Control policy obtained when the optimizer output is filtered during a
fermentation process with initial volume of 0.6 I. Upper figure. Control action average is
over five consecutive times. Lower picture, when the average is over six consecutive
times

(b) Unknown process performance

Another advantage of NDP optimization procedure over the Patkar et al. (1993), Chaudhuri
and Modak (1998) methodologies and other optimization methods, is that a NDP controller
can be built and used in different fermentation processes. To test the MLP-NDP controller
developed here, its performance is evaluated again for different initial volumes of
fermentation process. Note that for the optimization procedures reported in literature, this
means solving additional optimal control problems. The resulting dynamic optimization is a
non-linear programming problem, which is very demanding computationally. For the MLP-
NDP controller, changing volumes only means to change the fermentation initial state since
future costs are a function of the system state.

The results of these unknown fermentation simulations are summarized in Table 5.9. Note
that the initial fermentation volumes are different from those used to obtain cost-to-go vs.
state data, i.e., the system has to visit new state space points. Since Patkar et al. (1993) and
Chaudhuri and Modak (1998) do no report data for these cases, the MLP-NDP profits are
compared with those profits obtained when the best of the 36 suboptimal policies for the

given fermentation process is applied. It should be noted that there is a different best policy

104

Results

for each initial volume. This is the reason why the “suboptimal” policy profit for the
fermentation with initial volume of 0.7 liters is higher that the profit obtained with MLP-NDP,
Also the obtained profits are compared with the results obtained when Patkar et al. (1993)

optimal policy is employed in each different fermentation process.

Table 5.9 Profits obtained for unknown initial fermentation volumes Vo when the MLP-NDP controller is
used. Profit results are compared against results obtained by applying the best policy for the given

volume

Vo Profit obtained Profit obtained with the best Profit obtained when Patkar
() through NDP method suboptimal policy for the given volume et al. (1993) policy is used

0.4 4.36 4.28 2.89
0.5 4.06 3.95 3.74
0.7 3.52 3.58 3.58
0.8 3.10 3.33 3.42

Figure 5.12 shows the optimal policies obtained for both initial volumes. Note that all policies
have similar shape. The state space representation of the optimal trajectories for the

fermentation process are presented in Figure 5.13 for the initial volumes 0.5, 0.6 and 0.7 .

105

Catalina Valencia Peroni

[{unitsfml-O0)

=
i

Feed rate (/)

-0.05
a

0.3

MDF Optimal feed rate profiles

0.25

0.2

0.15

0.1

0.05

R

Tirne (h)

Figure 5.12. Optimal NDP policies for different fermentation processes obtained with the

MLP-NDP controller

G (g

1.4

State space optimal trajectories

Glgfl)

= [units/ml-00) _,
— im

i

Gigfl)

| \-"'D=|:|.5
a—lf- + \-"D=|:I.E
" . VD:D.._"'
0.5 1 1.5

[{units/ml-O0)

Figure 5.13 State space representation of the optimal trajectories followed by the fermentation
process when MLP-NDP controller is used for different initial volumes: 0.5 (.), 0.6 (+), 0.7 (x).

106

Results

5.2.2 Fuzzy ARTMAP dynamic programming

Fuzzy ARTMAP systems are powerful classifiers and predictors (Espinosa et al. 2001, 2002;
Giralt et al. 2000) and thus should be better function approximators than the MLP. Fuzzy
ARTMAP fits the cost-to-go of the invertase fermentation in four iterations for a termination
condition €=0.2172 of the Bellman iteration procedure. The best NN architectures found in
each iteration step are summarized in Table 5.10. Fast learning is used for both fuzzy

modules. The input-output data are always randomly presented.

Table 5.10 Best Fuzzy ARTMAP structures used into Bellman's iteration for the invertase production

optimization
Name Fuzzy ART, Fuzzy ARTg Map field Categories found Average
baseline vigilance vigilance vigilance absolute
f-ART, f-ARTjg
parameter parameter parameter training error
\]~1 0.9 0.999999 0.999999 536 142 0.0340
> 0.999 0.999999999 0.999999999 625 115 0.0292
J
" 0.99999 0.999999999 0.999999999 3396 115 0.0143
J

9328

The converging criteria (3 1227 (x) — J' (X)|/ N) of Bellman’s iteration at each of the four

steps are 4.1141, 0.2291, 0.2272 and 0.2172.

Optimal controller performance

The improved cost-to-go approximator (fourth trained fuzzy ARTMAP network) is
implemented into a controller system formed by an on-line implementation of Bellman
equation (equation 4.19). The performance of the obtained optimal controller is checked in 3
different cases: (a) For known process, the fermentation process starts with an initial volume
of 0.6 liters, i.e., the initial state of one process trajectory used in the training of the cost-to-
go approximator; (b) for unknown fermentation process different initial fermentation volumes
are used as initial states not seen before by the approximator; (c) for unexpected
disturbances, an abrupt death of microorganisms is imposed, causing a change in cell

concentration.

107

Catalina Valencia Peroni

(a) Known process performance

The fermentation process described in section 2.2.2 is simulated, starting with an initial
volume of 0.6 liters. The profit results are shown in Table 5.11. Also there is a comparison
with the results of previous optimization methods. The best profit for this nominal initial
volume is obtained with the MLP-NDP method. With Fuzzy ARTMAP-NDP the profit coincides
with the one obtained with the best suboptimal policy. In both cases the NDP methodology
improves previous optimization methods. As it will be seen below, although MLP-NDP
controller gives better profit than fuzzy ARTMAP controller, in an real implementation of a
NDP controller on a real fermentation process, it is more desirable to use fuzzy ARTMAP
methodology due the characteristics of the policy obtained.

Table 5.11 Invertase production optimization results for an initial fermentation volume of 0.6 liters.

The profit depends on the productivity and the total fermentation time

POLICY GIVEN BY PROFIT PRODUCTIVITY FINAL TIME (H)
Patkar et al., 1993 3.70 7.30 12

Chaudhuri and Modak, 1998 3.50 7.10 12

Best suboptimal policy 3.72 7.23 11.7

MLP-NDP 3.80 7.25 11.5

Fuzzy ARTMAP-NDP 3.72 7.23 11.7

The optimal policy for this fermentation obtained using the fuzzy ARTMAP-NDP controller is
plotted in Figure 5.14. Note that the fuzzy ARTMAP-NDP policy is smooth with a progressive
increase of the feed rate of glucose. This feed rate profile is better than the one obtained
using the MLP-NDP controller (See Figure 5.9), although the profit of the former is a little
lower as indicated in Table 5.11. The feed rate profile obtained with fuzzy ARTMAP-NDP
controller is more convenient for a real control implementation than the one obtained using
the MLP-NDP controller, even though the profit of the latter is a little higher. The fuzzy
ARTMAP-NDP policy in Figure 5.14 shows a trend similar to the Patkar et al. (1993) policy
shown in Figure 5.9. The fuzzy ARTMAP-NDP controller has several advantages over MLP-
NDP. The smooth policy of the fuzzy ARTMAP-NDP controller is desirable because:
« The actuators energy consumption and their wearing out are lower;
« In a real implementation abrupt changes in feed rate are not feasible. There is always a
lag time between valve states.
« If an abrupt change in feed rate of glucose could be effected in a real fermentation
process, it would result in local gradients of concentration over the entire bioreactor,

which in turn would result in regions of the bioreactor with a glucose concentration

108

Results

higher than the concentration needed only for cell growth. This would increase then
ethanol production, and, thus, the enzyme production would be inhibited. This would
cause a lower enzyme production and a lower profit than the values expected from the
simulation of the same process.

- - Chaudhuri et al (1993)
--- Patkar et al. (1933)
— MNDP
T Fuzzy ARTMAP NOP
ozt |
£ -
& 015} : |
E :
= 1
@ 1
01F | |
i
i
!
005k |
1 T
. : ; o 12 14 1B

Figure 5.14 Optimal policy for invertase fermentation process with an initial volume of 0.6. The
obtained fuzzy ARTMAP-NDP policy is compared against other optimization results. (...) Fuzzy
ARTMAP methodology, (-) MLP-NDP methodology, (--) Chaudhuri and Modak (1998), (---)
Patkar et al. (1993)

(b) Unknown process performance

The fuzzy ARTMAP-NDP controller was also tested also for different fermentation process with
different initial volumes. The results of those simulations are shown in Table 5.12. Note again
that the initial fermentation volumes 0.5 and 0.7 | are different from those used to obtain
cost-to-go vs. state data. Comparing the profits obtained with the results obtained using the
MLP-NDP controller (Table 5.9) it can be said that the fuzzy ARTMAP-NDP controller performs
slightly worse in the case of the fermentation with initial volume of 0.5 liters and slightly
better in the case of the fermentation with initial volume of 0.7 liters.

109

Catalina Valencia Peroni

Table 5.12 Profits obtained for different initial fermentation volumes for invertase production

Vo Profit obtained through Profit obtained with the best suboptimal
Fuzzy ARTMAP-NDP method policy for a given volume

0.4 4.28 4.28

0.5 4.01 3.95

0.7 3.58 3.58

0.8 3.33 3.33

The small difference between both the profit obtained with fuzzy ARTMAP and the best profit
obtained with the best suboptimal policy for a given initial volume, resides in the classification
characteristics of the fuzzy ARTMAP. The control system searches for the best trajectory
based on the built in map of the cost-to-go. The prediction of a cost-to-go value for a given
state is done in a way that the state is classified into a category that is linked with a given
value of the cost-to-go. That link and the resulting cost-to-go value is built and obtained
based on previous information of the states vs. cost-to-go regions. The fuzzy ARTMAP only
performs an interpolation of the previously seen states cost-to-go data.

The trajectories followed by the fermentation process under control are plotted in Figure
5.15. The obtained optimal policies for all initial volumes are shown in Figure 5.16. It should
be noted that in all cases the policy attained with the fuzzy ARTMAP controller follows a
smooth increase in the feed rate of glucose. This behavior is superior to that of the MLP-NDP
controller, and to any of the previous optimization procedures. As a result, and for practical
purposes, the fuzzy ARTMAP-NDP optimal controller is preferred over the MLP-NDP controller,
and to any of the previous optimization procedures, which would require additional

optimization calculations for each different initial condition.

110

Results

State space optimal trajectories

_ 1.2
15 z?g,
] ai X
0 s 1
& E =
en = Ed =08
c 7
05 0.6
- 0.4
203 4
% (0D
1.4 17
15]
8 1
= =
= 113 >
m
£ 0.8
05 06,
- - 0.4 4 - -
0 2 4 05 1 15

Glgfl)

Glal)

[{units/ml-0O00)

Figure 5.15 State space representation of the optimal trajectories followed by the invertase
fermentation process under control with fuzzy ARTMAP-NDP, for different initial volumes: 0.4(x),

0.5(.), 0.6 (+),0.7 ("), 0.8 (v)

Optimal policies for different fermentation initial valumes

025 .

02F —_

015 aaw

0.1

Glucose Feed rate u (I7h)

0.05 - fl

— W =04

(=]

Time (h)

Figure 5.16 Optimal policies for different fermentation initial volumes obtained through the control
of the process by the fuzzy ARTMAP-NDP based controller

111

Catalina Valencia Peroni

() Unexpected disturbance performance

To better illustrate the effectiveness of the proposed methodology, the fuzzy ARTMAP-NDP
controller performance is tested against an unknown disturbance. An abrupt change in the
cell concentration is imposed in the middle of the fermentation, as shown in Figure 5.17(a).
The fermentation process starts with an initial volume of 0.4 liters. After nine hours of
fermentation have passed, the value of cells concentration is decreased by 50%. The
controller senses this change of state the optimal control action is found, and a new optimal
and smooth process trajectory is followed as shown in Figure 5.17(b). Figure 5.17 (b) shows
the optimal policy found by the controller in this case. The best suboptimal policy for a
fermentation with initial volume of 0.4 | it is also depicted in this figure. This best suboptimal
policy was found previously in a normal process operation. The profit value obtained using
the best suboptimal policy for that given initial volume when this disturbance arises is 1.88,
while, the profit value obtained with the fuzzy ARTMAP-NDP controller process in the case of
this disturbance is 2.18. Clearly fuzzy ARTMAP-NDP controller deals successfully with
unexpected disturbances. This property can be attributed to the feedback action implicitly
implemented in equation (4.19); the actual process state is needed to decide the optimal
control action to follow. The controller optimal trajectory in the state space is plotted in
Figure 5.18. The trajectory followed by the process in this fermentation is completely

different to the process trajectories used as starting guess for the NDP procedure (See Figure

5.5) Controlled fermentation behavior in case of abrupt cells death
A 5 . . by 025 . .
—— Caontrolled process policy
45 --- Best suboptimal policy
4 nz2r
3.5 =
2 3 o 0157
o i
13 =
= 25
2 2
. 3 01}
5
15 o
1 005+
0.5
0 : . 0
0] 10 15 1]

Figure 5.17 Invertase fermentation process behavior when an abrupt death of microorganisms

occurs at t= 9h. The evolution of the controlled process is shown in figure 5.14(a). The control

variable, glucose feed rate is shown in figure 5.14(b). The optimal policy is compared against the
112 best suboptimal policy for that given initial volume (0.4 1)

Results

[{unitsfml-O0)

i

=

=
o

State space aptimal trajectory in an controlled abrupt cells death

I:(,unitsfml-OD)

i

Glgfl)

1.5

——

0.4

Glg/l)

1.2

0.4

0.5 1 1.5
[{units/ml-000

Figure 5.18 Optimal trajectory of a controlled abrupt microorganisms death. The invertase
fermentation process has an initial volume of 0.4 I. When fermentation time equals 9 hours,
cells concentration decreases 50%. The controller senses this new bioreactor state and finds

both the optimal control action and the new optimal control policy

113

Chapter 6: Conclusions and work perspectives

A non-linear multivariable (MIMO) process control model based on multi layer perceptrons
(MLP) and radial basis functions (RBF) neural networks has been developed for a fed-batch
bioreactor. It has been found that previous knowledge of the operation process, an adequate
implementation of neural network architectures to establish input-output relationships, and
the processing of information and how it is presented to the network are critical issues to
develop reliable direct and inverse neural models for control purposes.

Two fermentation processes were studied in detail. A non-linear multivariable bioreactor
control problem was used as a case study for model based control techniques. The control
model of this process was considered as MIMO system with 6 inputs and 6 outputs. The
inputs to the control system were the five flow rates of substrate, air, thermal fluid, acid and
base concentrations, and the stirring RPM of the mixer. The six outputs were the vessel bulk
concentrations of cells, substrate and products, the temperature, pH and dissolved oxygen
concentration.

The best performance of the direct model for steady state process operations as well as for
positive step perturbations in the manipulated variable was obtained with the RBF
architecture with goal 3.0. If the steps in the manipulated variable are random, the RBF
architecture with goal 2.75 performed slightly better. When an unexpected pH disturbance
occurred, the best neural model was the MLP 19-5-6 both for the steady state process
operation and for a positive step in the manipulated variable. The RBF architecture with goal
3.0 was the best ranked for any operation mode in the current control problem based on a
global engineering criterion for performance. The best inverse model was a MLP 19-11-7-1
with training including past information of the steady states of the process. This inverse
model improved the performance of previous schemes proposed in the literature when tested

for random step changes in the set point.

The other fermentation process studied was the cloned invertase production in
Saccharomyces cerevisiae yeast. Optimal control techniques that employ neural networks
were used to optimize the production of invertase in a fed-batch mode of operation. This
process has four state variables, namely cells, glucose and invertase concentrations and the
fermentation volume. In this second fermentation process, the glucose feed rate is used as a
control variable. The main constraint of the optimization process involved is the fixed
bioreactor volume. NDP was used to obtain different optimal feeding policies for different
initial conditions of invertase fermentation. The proposed optimization procedure includes
prior knowledge of a suboptimal feeding strategy, which was used as a starting guess to the

Catalina Valencia Peroni

simulation. On the visited state space of the fermentation a MLP neural network is used as
state-cost-to-go approximator. Bellman equation is used to improve the cost surface. This
procedure was compared against other optimization methods used for the same fermentation
process. Also, it was implemented inside a feedback controller. The improved cost-to-go
function approximator was used on-line to choose the optimal control action. This procedure
has the advantage of been able to find different optimal policies for different fermentation
processes, compared to literature methodologies that have to solve the optimization problem
for each initial condition. The results attained with MLP-NDP controller improve previous
literature optimization methodologies. A fuzzy ARTMAP-NDP system was also examined and
tested for the optimization and control of cloned invertase expression in Saccharomyces
cerevisige yeast. The control system was built using a dynamic programming approach. Cost-
to-go for a given state was found using fuzzy ARTMAP neural network modified to effect
prediction capabilities. This control system also can perform an on-line optimization of the
process and take into account possible process disturbances. It was found that the cost-to-go
approximator is crucial for the controller performance. The ability of a fuzzy ARTMAP system
to perform incremental classification is a key issue to attain a consistently smooth feed rate
manipulation. The output variable, feed rate profile, has to be manipulated in a smooth way
to minimize energy loses in the actuator and to implement a stable control action. It was
shown that fuzzy ARTMAP-NDP controller is robust to an unknown disturbance, when 50% of
cells died suddenly. The proposed fuzzy ARTMAP-NDP control methodology outperforms MLP-
NDP and other optimization methods reported previously in the literature for the same

fermentation process.

Some of the most relevant neural network algorithms used in process control have been
discussed. Also several controller schemes have been reviewed. The flexibility of the neural
networks-based controllers and their success suggest that they should be applicable to a wide
range of process control problems. Further work could be focused on the implementation of
control schemes to the multivariable fed-batch bioreactor process. IMC and MPC can be easily
implemented with the neural network-based control models obtained in the present work.
The hybrid controller could also be implemented with the use of a RBF or SOM models for
process operating at steady state. Fuzzy neural networks could be used to build an inverse
model applicable to a wider range of fermentation operation conditions and Kohonen maps
could be applied to switch between different intelligent controllers and to fault diagnosis of
the bioreactor process.

On the other hand, NDP has proved to be an appropriate optimization method. For processes
such as the production of the penicillin, NDP methodology similar to the one applied for the
invertase production could be implemented. Note that the optimization algorithm employed to

solve Bellman's equation, was sensitive to initial values of the glucose feed rate due to the

116

Results

high non-linear characteristics of the fermentation problem. To overcome this difficulty a
cost-to-go function that depends on both system states and control variable could be
considered.

Further work should include a better representation of the cost-to-go approximator that is not
limited to the explored state space region, in the present case a hypercube.

An additional aspect to study is the robustness of the obtained controller due to uncertainties
in the bioreactor model parameters. This is a key issue in the actual implementation of the
described control strategy.

Finally the experimental implementation of all controller schemes and procedures proposed
here could provide the necessary information to improve current control systems or to
propose new and better algorithms.

117

7. Bibliography

Agrawal P., Lee C., Lim H.C., Ramkrishna D., Theoretical Investigations of Dynamic Behavior
of Isothermal Continuous Stirred Tank Biological Reactors, Chemical Engineering Science, Vol
37 Num 3 p. 453-462 1982

Aoyama A. Doyle III F.J., Venkatasubramanian V., Control-affine neural network approach for
non-minimum phase non-linear process control, J. Process Control Vol 6 Num 1 p 17-26 1996

Aoyama A., Doyle III F.J., Venkatasubramanian V., A fuzzy neural network approach for non-
linear process control, Engineering Applications of Artificial Intelligence, Vol 8 Num 5 p.483-
498 1995a

Aoyama A., Doyle III F.J.,, Venkatasubramanian V., Control-affine fuzzy neural network
approach for non-linear process control, Journal of Process Control Vol 5 Num 6 p. 375-386
1995b

Aoyama A., Doyle III F.J., Venkatasubramanian V., Fuzzy neural network systems techniques
and their applications to non-linear chemical process control systems, chapter 18 of Fuzzy
theory systems: techniques and applications Vol 2 Edited by Leondes C.T., Academic Press
ISBN 0-12-443872-5 1999

Aoyama, A., & Venkatasubramanian, V. Internal Model Control Framework Using Neural
Networks for the Modeling and Control of a Bioreactor. Eng. Appl. Artif. Intell, 8, 689-701
1995c

Atkinson B., Marituana F., Biochemical Engineering and Biotechnology Handbook, 2™ edition,
Mexico 1991

Banga J.R.,, Alonso A.A., Singh R.P., Stochastic dynamic optimization of batch and
semicontinuous bioprocesses, Biotechnology Progress Vol 13 p. 326-335 1997

Bertsekas D.P., Tsitsiklis J.N., Parallel and distributed computation. Numerical methods.
Prentice Hall Englewood cliffs, NJ ISBN 0-13-648700-9 1989

Bertsekas D.P., Tsitsiklis J.N., Neuro Dynamic Programming. Athena Scientific. Belmont MA
1996

Bertsekas D. P., J. N. Tsitsiklis, C. Wu, Rollout Algorithms for Combinatorial Optimization,
Journal of Heuristics, Vol 3, p. 245-262, 1997 *

Bhagat P. An introduction to neural nets, Chemical Engineering Progress p.55-60 August 1990

Bhartiya S., Whiteley J.R., Factorized approach to non-linear MPC using a Radial Basis
Function model, AIChE journal Vol 47 Num 2 p. 358-368 February 2001

Biegler, L., Grossmann, LE., Sirola, J., & Westerberg, A. Systematic Methods of Chemical
Process Design, Prentice Hall. 1997

Bishop C.M., Neural networks for pattern recognition, Clarendon press, Oxford 1995.
Bissessur Y., Martin E.B., Morris A.J., Kitson P., Fault detection in hot steel rolling using

neural networks and multivariable statistics, IEE Proceedings-Control Theory Applications Vol
147 Num 6 November 2000

Catalina Valencia Peroni

Boskovic 1.D., Narendra K. S., Comparison of Linear, Non-linear and Neural-network Based
Adaptive Controllers for a Class of Fed-batch Fermentation Processes, Automatica, Vol 31
Num 6 p. 817-840. 1995

Brown M.D., Lightbody G., Irwin G.W., Non-linear internal model control using local model
networks, IEE Proc-Control theory Appl. Vol 144 Num 6 November 1997

Business Week, The new rocket science: welcome to the future of finance, Special Report
Business Week p. 131-140 November2, 1992

Cabrera J.B.D., Narendra K.S., Issues in the application of neural networks for tracking based
on inverse control, IEEE Transactions on automatic control Vol 44 Num 11 p. 2007- 2027
November 1999

Cameron D.C., Altaras N.E., Hoffman M.L., Shaw A.J., Metabolic engineering of propadeniol
pathways, Biotechnology progress 14 p. 116-125 1998

Card J.P., Sniderman D.L., Klimasauskas C., Dynamic neural control for a plasma etch
process, IEEE Transactions on neural networks Vol 8 Num 4 p. 883-901 July 1997

Carpenter G.A., Grossberg S., Pattern recognition by self-organizing neural networks,
Cambridge MA:MIT Press, 1991

Carpenter G.A., Grossberg S. Markuzon N., Reynolds J.H., Rosen D., Fuzzy ARTMAP: a neural
network architecture for incremental supervised learning of analog multidimensional maps,
IEEE Transactions on neural networks Vol 3 Num 5 p. 698-713 September 1992

Carpenter G.A., Grossberg S., Reynolds J.H., A fuzzy ARTMAP nonparametric probability
estimator for no stationary pattern recognition problems, IEEE Transactions on neural
networks Vol 6 Num 6 p. 1330-1336 1995

Chiou J., Wang F., Hybrid method of evolutionary algorithms for static and dynamic
optimization problems with application to a fed-batch fermentation process, Computers and
chemical engineering 23 p. 1277-1291 1999

Chistofides P.D., Control of non-linear distributed process systems: Recent developments and
challenges, AIChE Journal, Vol 47 Num 3 p. 514-518 March 2001

Chitra S.P., Use neural networks for problem solving, Chemical Engineering Progress p. 44-52
April 19993

Chaudhuri B., Modak J.M., Optimization of fed-batch bioreactor using neural network model,
Bioprocess Engineering 19 p. 71-79 1998

Control Engineering, Merging Mom’s Perceptive power with technology creates startling
results, Control Engineering April 2001

Control Engineering, Model free adaptive control, Control Engineering Europe February/March
2001

Control Engineering, Push the limits, Control Engineering February 2001
Cruickshank S.M., Daugulis A.J., McLellan P.J., Dynamic modeling and optimal fed-batch

feeding strategies for a two-phase partitioning bioreactor, Biotechnology and bioengineering
Vol 67 Num 2 p.224-233 January 2000

120

Bibliography

Cuthrell J.E., Biegler L.T., Simultaneous optimization and solution methods for batch reactor
control profiles, Computers and Chemical Engineering Vol 12 Num V2 p. 49-62.1989

Cybenko G. Continuous valued neural networks with two hidden layers are sufficient.
Technical Report, Department of Computer Science, Tufts University, Medford, MA, 1988 *

Cybenko, G. Approximation by Superposition of Sigmoidal Function. Mathematics of Control
Signals & Systems, 2, 303-314. 1989 *

Dash S., Venkatasubramanian V., Challenges in the industrial applications of fault diagnosis
systems, Laboratory for intelligent process systems, school of chemical engineering, Purdue
University. venkat@ecn.purdue.edu 2000

Demartines P., Herault J., Curvilinear Component Analysis: A self-organizing neural network
for non-linear mapping of data sets, IEEE Transactions on neural networks Vol 8 Num 1
p.148-154 January 1997

Demuth H., Beale M., Neural network toolbox for use with MATLAB®. User’s guide Version 3.
The MathWorks Inc. July 1998

Dhir S., Morrow K.J., Russell Rhinehart R., Dynamic optimization of hybridoma growth in a
fed-batch bioreactor, Biotechnology and bioengineering Vol67 Num 2 p.197-205 January 2000

Economou C.G., Morari M., Palsson B.O., Internal model control 5. Extension to non-linear
systems, Ind. Eng. Chem. Process Des. Dev. 25, p. 403-411 1986

Efe M.O., Abadoglu E., Analysis and Design of a Neural Network Assisted Non-linear
Controller for a Bioreactor, a F. Giralt!!! Bogazini University Turkey!!

Efe M.O., Kaynak O., Abadoglu E., Neural Network Assisted Non-linear Controller for a
Bioreactor, b F. Giralt!!! Bogazini University Turkey!!

Efe M.0O., Kaynak O., Identification and Control of a Non-linear Bioreactor Plant Using
Classical and Dynamical Neural Networks c F. Giralt!!! Bogazini University Turkey!!

Elsimary H. Mashali S., Shahhen S., A method for training feed forward neural network to be
fault tolerant, IEEE 0-7803-1363-1/93 1993

Espinosa, G., Yaffe, D., Cohen, Y., Arenas, A., & Giralt, F., A Fuzzy ARTMAP Based
Quantitative Structure-Property Relationships (QSPRs) for Predicting Physical Properties of
Organic Compounds, Industrial and Chemical Engineering Research Num 40 p.2757 — 2766
2001*

Espinosa, G., Arenas, A., and F. Giralt, An integrated SOM-fuzzy ARTMAP neural system for
the evaluation of toxicity, Journal of Chemical Information and Computer Sciences, Vol 42
Num 2 p. 343-359 2002

Feuring T. Fuzzy neural networks are overlapping, IEEE International conference on Fuzzy
Systems p. 1154-1150 1996a

Feuring T. Learning in fuzzy neural networks, IEEE International conference on neural
networks p. 1061-1066 1996b

Feuring T., Buckley 1.J., Lippe W., Tenhagen A., Stability analysis of neural net controllers
using fuzzy neural networks, Fuzzy sets and systems Num 101 p. 303-313 1999

121

Catalina Valencia Peroni

Garcia C.E., Morari M., Internal model control 1. A unifying review and some new results, Ind.
Eng. Chem. Process Des. Dev., 21 p.308-323 1982

*Gawthrop P.J., Jones R.W., Sbarbaro D.G., Emulator-based control and internal model
control: complementary approaches to robust control design, Submitted to Automatica, 15
May 1995 p.gawthrop@eng.gla.ac.uk

Giralt, F., Arenas, A., Ferre-Gine, J., & Rallo, R., The Simulation and Interpretation of
Turbulence with a Cognitive Neural System. Physics of Fluids, Vol 12 Num 7 p. 1826 - 1835.
2000*

Glassey J., Montague G.A., Ward A.C., Kara B.V., Enhanced Supervision of Recombinant E.
Coli Fermentations via Artificial Neural Networks, Vol 29 p.387-398. 1994

Hartig F., Keil F.J., Luus R., Comparison of optimization methods for fed-batch reactor. Hung.
J. Ind. Chem. 23 p. 141-148 1995hh

Hellstrom B., Brinsley J., Characterization of network responses to known, unknown, and
ambiguous inputs, 0-7803-0928-6/93 IEEE 1993

Hertz, J.; Krogh, A., Palmer, R.G. Introduction to the theory of neural computation. Vol. 1.
Santa Fe Institute. 7th edition Addisson & Wesley. Redwood City CA. 1993

Himmelblau D.M., Karjala T.W., Rectification of data in a dynamic process using artificial
neural networks, Computers and Chemical Engineering Vol 20 Num 6/7 p 805-812 1996

Hinchliffe M., Willis M., Dynamic modeling using genetic programming, Proceedings of the
15™ IFAC World Congress, Barcelona Spain. July 21-26, 2002

Hinton G.E., Sejnowski T.J., Ackley D.H., Boltzmann machines: Constraint satisfaction
networks that learn, Tech Rep.] CMU-CS-84-119 Carnegie-Mellon University Dept. Computer
Science, 1984

Hinton G.E., Sejnowski T.J., Learning and relearning in Boltzmann machines, Chapter 7 of
Parallel and distributed processing Vol 1 Edited by Rumelhart D.E., McClelland J.L. Cambridge
MA MIT Press 1986

Hinton G.E., How neural networks learn from experience, Scientific American p. 145-151
September 1992

Hornik, K., Stinchcombe, M., & White, H. Universal Approximation of an Unknown Mapping
and its Derivatives Using Multilayer Feedforward Networks. Neural Networks, 3, 551-560 1989
b3

Hu Q. Rangaiah G.P., Adaptive internal model control of non-linear processes, Chemical

Engineering Science 54 p. 1205-1220 1999a

Hu Q. Rangaiah G.P., Strategies for enhancing non-linear internal model control of pH
processes, Journal of chemical engineering of Japan, Vol 32 Num 1 p. 59-68 1999b

Huang S., Huang Y., Bounds on the number of hidden neurons in multilayer perceptrons,
IEEE Transactions on neural networks Vol 2 Num 1 January 1991

Hunt K.J., Sbarbaro D., Zbikowski R., Gawthrop P.J., Neural networks fir control systems-a
survey, Automatica Vol 28 Num 6 p.1083-1112 1992

122

Bibliography

Hunt K.J., Sbarbaro D., Adaptive filtering and neural networks for realization of internal model
control, Intelligent Systems Engineering, Summer 1993

Hussain M. A., Allwright J.C., Kershenbaum L.S., Adaptive Feedback Linearising Control with
Linearised Models and Neural Networks, Instn. Chem. Eng. ICHEME - Advances in Process
Control 4, p 195-202 1995 a

Hussain M.A., Kershenbaum L.S., Allwright J.C., Nonlinear control with linearised models and
neural networks, Atrtificial neural networks, 26-28 June 1995 Conference Publication N 409
IEE 1995b

Hussain M.A., Allwright J.C., Kershenbaum L.S., Discrete time analysis of internal model
control strategies based on neural networks, The 1996 IchemE Research event/ Second
European conference for young researchers. 1996

Hussain M.A., Review of the applications of neural networks in chemical process control-
simulation and online implementation, Artificial intelligence in Engineering Vol 13 p. 55-68
1999

Hussain, M. A., Kershenbaum, L.S. Implementation of an Inverse-Model-Based Control
Strategy Using Neural Networks on Partially Simulated Exothermic Reactor. Chemical
Engineering Research & Design Trans. of IChemE, 78, 299-311 2000

Iyer M.S., Wiesner T.F., Russell Rhinehart R., Dynamic reoptimzation of a fed-batch
fermentor, Biotechnology and bioengineering Vol 63 Num 1 p. 9-21 April 1999

Jagannathan S., Lewis F.L., Discrete-time net controller for a class of nonlinear dynamical
system, IEEE Transactions on automatic control Vol 41 Num 11 p.1693-1700 November
1996a

Jagannathan S., Lewis F.L., Identification of non-linear dynamical systems using multilayered
neural networks, Automatica Vol 32 Num 12 p. 1707-1712 1996b

Jayaraman V.K., Kulkarni B.D., Gupta K., Rajesh J., Kusumaker H.S., Dynamic optimization of
fed-batch bioreactors using the ant algorithm, Biotechnology progress 17 p. 81-88 2001

Kamwa I., Grondin R., Sood V. K., Gagnon C., Nguyen V.T., Mereb J., Recurrent neural
networks for phasor detection and adaptive identification in power system control and
protection, IEEE Transactions on instrumentation and measurement Vol 45 Num 2 p. 657-663
April 1996

Karim M.N., Riviera S.L., Artificial Neural Networks in Bioprocess State Estimation, Advances
in Biochemical Engineering, Vol 46 p. 1-33. 1992

Kavury S.N., Venkatasubramanian V., Representing bounded fault classes using neural
networks with ellipsoidal activation functions, Computers and Chemical Engineering Vol 17
Num 2 p. 139-163 February 1993

Kawaji S., Hybrid soft computing approaches to identification of non-linear systems,
Proceedings of the 15™ IFAC World Congress, Barcelona Spain. July 21-26, 2002

Keyvan S., Durg A., Evaluation of the performance of various artificial neural networks to the
signal fault diagnosis in nuclear reactor systems, 0-7803-2566-4/96 IEEE 1996

Kohonen T. The self-organizing map, Proceedings of the IEEE Vol 78 Num 9 September 1990

123

Catalina Valencia Peroni

Konda V. R., Tsitsiklis J. N., Actor Critic Algorithms, submitted to the SIAM Journal on Control
and Optimization, February 2001 *

Konda V. R., Tsitsiklis J. N, Linear stochastic approximation driven by slowly varying Markov
chains, submitted to Systems and Control Letters, June 2002 *

Kuhlimann Ch., Bogle I.D.L., Chalabi Z.S., Robust operation of fed-batch fermenters,
Bioprocess Engineering 19 p. 53-59 1998

le Cun Y., A theoretical frame-work for back-propagation, Proc. 1988 Connectionist models
summer school, Touretzky D., Hinton G., Sejnowski T. Eds. June 17-26 p. 21-28 San Mateo
CA, Morgan Kaufmann 1988

Lee J., Lee S., Park S., Middelberg A. P.J., Control of Fed-batch Fermentations,
Biotechnology Advances 17 p. 29-48. 1999

Lee J.H., Pan Y., Sung S., A numerical projection based approach to non-linear model
reduction and identification, Proceedings of the 1999 American Control Conference, 3, p.
1568-1572 1999

Lee J.M, Lee J].H., Neuro-dynamic programming method for MPC, School of Chemical
Engineering, Georgia Institute of Technology, Atlanta GA 30332 USA, 2001

Li R.F., Wang X.Z., Qualitative/quantitative simulation of process temporal behavior using
clustered fuzzy diagraphs, AIChE journal, Vol 47 Num 4 p. 906-920 April 2001

Lightbody G., Irwin G.W., Nonlinear control structures based on embedded neural system
models, IEEE Transactions on neural networks Vol 8 Num 3 p. 553-567 May 1997

Lim H.C, Tayeb Y.L., Modak J.M., Bonte P., Computational algorithms for optimal feed rates
for a class of fed-batch fermentation: Numerical results for penicillin and cell mass
production, Biotechnology and bioengineering Vol 28 p. 1408-1420.1986

Lin J., Jang S., Nonlinear dynamic artificial neural network modeling using an information
theory based experimental design approach, Ind. Eng. Chem. Res. 37 p. 3640-3651 1998

Linko P., Zhu Y., Neural Network Modeling for Real-time Variable Estimation and Prediction in
the Control of Glucoamylase Fermentation, Process Biochemistry, Vol 27 p. 275-283. 1992

Lippmann R.P., An introduction to computing with neural nets, IEEE ASSP magazine p.4-22
April 1987

Ljung L., System identification in a noise free environment, IFAC Adaptive systems in control
and signal processing, Identification, Glasgow UK 1989

Ljung, L. System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ. 1987

Loquasto III F., Seborg D.E., Monitoring model predictive control systems: a novel neural
network approach, AIChE 2001 Annual meeting Reno NV, 2001

Luo R., Misra M., Himmelblau D.M., Sensor fault detection via multiscale analysis and
dynamic PCA, Ind.Eng. Chem. Res., 38 p.1489-1495 1999

Luus R., Optimization of fed-batch fermentors by iterative dynamic programming,
Biotechnology and Bioengineering Vol 41 p. 599-602 1993a

124

Bibliography

Luus R. Application of dynamic programming to differential-algebraic process systems,
Computers and chemical engineering Vol 17 Num 4 p. 373-377 1993b

Magni A., Kershenbaum L.S., The use of committees of neural networks in process
identification and control, Technical report Center for process systems engineering, Imperial
College London, England. L.kershenbaum@ic.ac.uk 2000

Magoulas G.D., Vrahatis M. N., Androulakis G., Effective Backpropagation training with
variable stepsize, Neural Networks Vol 16 Num 1 p. 69-82 1997

Marbach P., Mihatsch O., Tsitsiklis, J. N. Call Admission Control and Routing in Integrated
Service Networks Using Neuro dynamic Programming, IEEE Journal on Selected Areas in
Communications, Vol 18, Num 2, p. 197-208, February 2000

Marbach P., Tsitsiklis J.N., Simulation-based optimization of Markov reward processes, IEEE
Transactions on Automatic Control, Vol 46, Num 2, p. 191-209, February 2001 *

Marbach P., Tsitsiklis J.N., Approximate gradient methods in policy-space optimization of
Markov reward process, Journal of Discrete Event Dynamical Systems, April 2002,
(preliminary version: "Simulation-based optimization of Markov reward processes:
implementation issues," in Proceedings of the 38th IEEE Conference on Decision and Control,
December 1999, pp. 1769-1774.), 2002 *

Marino-Galarraga Maria, McAvoy T.J., Marlin T.E., Short-cut operability analysis. Part III-
short-cut methodology for the assessment of process control designs, Research report
chemical process systems engineering laboratory, University of Maryland, SRC-TR-87-66.
1987

Mirea L., Marcu T., System identification using functional link neural networks with dynamic
structure, Proceedings of the 15" IFAC World Congress, Barcelona Spain. July 21-26, 2002

Modak J.M., Lim H.C., Feedback optimization of fed-batch fermentation, Biotechnology and
bioengineering Vol XXX p. 528-540 1987

Moon Y.B., Divers C.K., Kim H. AEWS: an integrated knowledge-based system with neural
networks for reliability prediction, Computers in industry Vol 35 p.101-108 1998

Morari M., Lee J.H., Model predictive control: past, present and future, Computers and
chemical engineering, 23 p. 667-682 1999

Moreno J.M., Madrenas J., Cabestany J., Commercial Coin Recognizers using neural and fuzzy
techniques, chapter 3 of Practical Applications of computational intelligence techniques Edited
by Jain L. and De Wilde P., Kluwer Academic Publishers 2001

Mukhopadhayay S., Narendra K.S., Disturbance rejection in nonlinear systems using neural
networks, Proceedings of the 31% conference on decision and control Tucson Arizona p. 2696-
2701 December 1992

Mukhopadhayay S., Narendra K.S., Two problems in decentralized adaptive control using
neural networks, Proceedings of the 1999 IEEE International symposium on intelligent
control/intelligent systems and semiotics, Cambridge MA p. 167-172 September 15-171999

Nahas, E.P, Henson, M.A., & Seborg, D.E. Non-linear Internal Model Control Strategy for
Neural Network Models. Computers Chem. Eng., 16, 1039-1057 1992

Narendra K.S., Parthasaraty K., Identification and control of dynamical systems using neural
networks, IEE Transactions on neural networks Vol 1 Num 1 p. 4-27 March 1990

125

Catalina Valencia Peroni

Narendra K.S., Mukhopadhyay S., Neural networks in control systems, Proceedings of the 31%
Conference on decision and control Tucson Arizona p. 1-6 December 1992

Narendra K.S., Adaptive Control Using Neural Networks, chapter 5 of Neural Networks for
Control, Edited by Werbos P.J., Miller III T., Sutton R.S., MIT press, Cambridge MA 1995

Narendra K.S., Neural networks for control: Theory and practice, Proceedings of the IEEE Vol
84 Num 10 p. 1385-1406 October 1996

Narendra K.S., Adaptive control of dynamical systems using neural networks. Chapter 5 of
Handbook of Intelligent Control. Neural, fuzzy and adaptive approaches. Edited by White
D.A., Sofge D.A., Multiscience Press Inc. ISBN 0-442-30857-4 1992

Parker R.S., Doyle III F.J., Optimal control of a continuous bioreactor using an empirical non-
linear model, Ind.Eng. Chem. Res. Vol 40 p. 1939-1951 2001

Patkar, A.; Seo, J., Fermentation kinetics of recombinant yeast in batch and fed-batch
cultures, Biotechnology and Bioengineering. Vol 40 p. 103-109. 1992

Patkar, A.; Seo, J., Lim H. C., Modeling and optimization of cloned invertase expression in
Saccharomyces cerevisiae, Biotechnology and Bioengineering Vol 41 p. 1066-1074. 1993

Pearson R. K., Categories of Non-linear Dynamic Models 1, chapter 29 in System Theory:
Modeling Analysis and Control pp. 391-403. T.E. Djaferis and 1.C. Schick editors 2000

*Pearson R.K., Menold P.H., Allgower F., Practically-motivated input sequences for non-linear
model identification, technical research report Institut fur Automatik ETH, Zurich, 1997

Pedret C., Poncet A., Stadler K., Toller A., Glattfelder A.H., Bemporad A., Morari M., Model-
varying predictive control of a non-linear system, Technical report (AUT 00-07) Automatic
Control Laboratory ETH, Zurich Switzerland 2000

Philippidis G.P., Hatzis C., Biochemical Engineering Analysis of Critical Process Factors in the
Biomass-to-Ethanol Technology, Biotechnology Progress 13 p. 222-231. 1997

Philippidis G.P., Smith T.K., Wyman C.E., Study of the Enzymatic Hydrolysis of Cellulose for
the Production of Fuel Ethanol by the Simultaneous Saccharification and Fermentation
Process, Biotechnology and Bioengineering, Vol 41 p. 846-853. 1993

Prasad G., Swidenbank E., Hogg B.W., A neural net model-based multivariable long-range
predictive control strategy applied in thermal power plant control, IEEE Transactions on
Energy Conversion, Vol 13 Num 2 p. 176-182 June 1998

Psaltis D., Sideris A., Yamamura A.A., A multilayered neural network controller, IEE Control
systems magazine p. 17-21 April 1988

Pushpavanam S., Rao S., Khan I., Optimization of a biochemical fed-batch reactor using
sequential quadratic programming, Ind. Eng. Chem. Res. 38 p. 1198-2004 1999

Qin S.J., McAvoy T.J., Non-linear FIR modeling via neural net PLS approach, Computers and
chemical engineering, Vol 20 Num 2 p. 147-159 1996

Quantrille T.E., Liu Y., Artificial Intelligence in Chemical Engineering, Academic press, San
Diego USA (1991).

126

Bibliography

Randall M.J., Winfield A.F.T., Pipe A.G., Stable on-line neural control of systems with closed
kinematic chains, IEE Proc. Control Theory Applications Vol 46 Num 6 p.619-632 November
2000

Ritza A., Sosnitza P., Ulber R., Scheper T., Fermentation Monitoring and Process Control,
Current Opinion in Biotechnology, Vol 8, Num 2 p. 160-164. 1997

Rodriguez-Acosta F., Regalado C.M., Torres N., Non-linear optimization of biotechnological
processes by stochastic algorithms: Application to the maximization of the production rate of
ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae, Journal of Biotechnology
68 p. 15-28 1999

Roubos J.A., van Straten G., van Boxtel A.J.B., An evolutionary strategy for fed-batch
bioreactor optimization; concepts and performance, Journal of biotechnology 67 p. 173-187
1999

Rumelhart D.E., Hinton G.E., Williams R.J., Learning Internal representations by error
propagation in Parallel distributed processing: Explorations in the microstructures of
cognition, Voll Edited by Rumelhart D.E., McClelland J.L., MIT Press Cambridge MA, p.318-
362 1986

Sargantanis 1., Karim M.N., Adaptive Pole Placement Control Algorithm for DO-control in (-
Lactamase Production. Biotechnology and Bioengineering, Vol 60 Num 1 p. 1-9. October 1998

Sarle W.A., Neural networks and statistical models, Proceedings of the 9™ annual SAS users
group International Conference. April, 1994

Sarle, W.S., ed, Neural Network FAQ, part 1 of 7: Introduction, periodic posting to the Usenet
newsgroup comp.ai.neural-nets, URL: ftp://ftp.sas.com/pub/neural/FAQ.html 1997

Segura C.J., Meziou A.Z.,, Quantifying the benefits of model predictive control in the
petrochemical process industries, Technical Session 277. AIChE 2001 Annual Meeting Reno
November 4-9 2001

Srinivasan B., Palanki S., Bonvin D., Optimal operation of batch processes with multiple inputs
and constraints, Session: Quantifying the benefits of advanced control, AIChE Annual
meeting, Nov 7, 2001

Sugeno M. Yasukawa T., A fuzzy-logic based approach to qualitative modeling, IEEE
Transactions on Fuzzy Systems 1 p. 7-31 1993 *

Syu M. Hou C., Neural Network Dynamic Identification of 2,3-butanediol Fermentation by
Klebsiella oxytoca, Process Control and Quality, Vol 10 p. 299-311. 1997

Tholodur A., Ramirez W.F., Optimization of Fed-batch Bioreactors Using Neural Network
Parameter Function Models, Biotechnology Progress, Vol 12, Num 3 p. 302-309. 1996

Torres N.V., Voit E.O., Glez-Alcon C., Rodriguez F., An indirect optimization method for
biochemical systems: Description of method and application to the maximization of the rate
of ethanol, glycerol, and carbohydrate production on Saccharomyces cerevisiae,
Biotechnology and bioengineering Vol 55 Num. 5 p.758-772 September 1997

Tsaptinos D., Leigh J.R., A step-by-step approach for the construction of a fermentation

process estimator, Proceedings of the world congress on neural networks, Vol 1, p. 216-219.
1993

127

Catalina Valencia Peroni

Tsitsiklis J. N., Asynchronous Stochastic Approximation and Q-learning, Machine Learning, 16,
p. 185-202 1994 *

Tsitsiklis J. N., B. Van Roy, An analysis of temporal-difference learning with function
approximation, IEEE Transactions on Automatic Control, Vol 42, Num 5, p. 674-690 May 1997
%

Tsitsiklis J. N., B. Van Roy, Average cost temporal-difference learning, Automatica, Vol 35,
Num 11, p. 1799-1808, November 1999a*

Tsitsiklis J. N., B. Van Roy, Feature-Based Methods for Large Scale Dynamic Programming,
Machine Learning, Vol 22, p. 59-94 1996 *

Tsitsiklis J. N., B. Van Roy, On average versus discounted reward temporal-difference
learning, Machine Learning, Vol. 49, No. 2, pp. 179-191, November 2002a*

Tsitsiklis J. N., B. Van Roy, Optimal stopping of Markov processes: Hilbert space theory,
approximation algorithms and an application to pricing financial derivatives, IEEE
Transactions on Automatic Control, Vol 44, Num. 10, p. 1840-1851 October 1999b *

Tsitsiklis J. N., On the convergence of optimistic policy iteration, Journal of Machine Learning
Research, Vol 3, p. 59-72 July 2002b*

Tsitsiklis J.N., Van Roy B., Optimal stopping of Markov processes: Hilbert space theory,
approximation algorithms, and application to pricing financial derivatives, IEEE Transactions
on Automatic Control; Vol 44, Num 10, p. 1840-1851 October 1999c*

Tsoukalas L., Uhrig R., Fuzzy and Neural Approaches in Engineering. John Wiley & Sons. ISBN
0-471-16003-2. 1997

Vadigepalli R., Gatzke E.P., Doyle III F.J., Robust control of a multivariable experimental four-
tank system, Ind. Eng. Chem. Res. 40 p.1916-1927 2001

Vaidyanathan R., Venkatasubramanian V., Representing and diagnosing dynamic process
data using neural networks, Engineering Applications of Artificial Intelligence Vol 5 Num 1
p.11-21 1992a

Vaidyanathan R., Venkatasubramanian V., On the nature of fault space classification structure
developed by neural networks, Engineering Applications of Artificial Intelligence Vol 5 Num 4
p.289-297 1992b

van Can H.J.L., te Braake H.A.B., Bijman A., Hellinga C., Luyben K.Ch.A.M, Heijnen J.J., An
Efficien Model Development Strategy for Bioprocess Based on Neural Networks in Macroscopic
Balances: Part II, Biotechnology and Bioengineering, Vol 62, Num 6, p.666-680. March 20,
1999

van Roy B., Bertsekas D. P., Lee Y., Tsitsiklis J. N., A Neuro dynamic Programming Approach
to Retailer Inventory Management, November 1996

van Roy B., Tsitsiklis J. N., Regression methods for pricing complex American-style options,
IEEE Trans. on Neural Networks, Vol 12, Num 4, p. 694-703 July 2001 *

Venkatasubramanian V. Artificial neural networks : an introduction. Class notes. Laboratory of

Intelligent Process Systems, School of Chemical Engineering, Purdue University, West
Laffayette IN. 2000

128

Bibliography

Venkatesh S., Dahleh M., On system identification of complex systems from finite data, IEEE
Transactions on automatic control, Vol 46 Num 2 p. 235-257 February 2001

Wang F.S., Chiou J.P. Optimal control and optimal time location problems of differential-
algebraic systems by differential evolution, Industrial & Engineering Chemistry Research, 36
p. 5348-5357 1997

Wang F.S. Cheng W., Simultaneous optimization of feeding rate and operation parameters for
fed-batch fermentation processes, Biotechnology progress 15 p. 949-952 1999

Watano S., Takashima H., Miyanami K., Control of moisture content in fluidized bed
granulation by neural network, Journal of chemical engineering of Japan Vol 30 Num 2 p.
223-229 1997

Werbos P.J., Overview of neural networks for control, IEEE Control Systems p. 40-41 January
1991

Werbos P.J., Neurocontrol and supervised learning: an overview and evaluation. Chapter 3 of
Handbook of intelligent control. Neural, fuzzy and adaptive approaches. Edited by White D.A.,
Sofge D.A., Multiscience Press Inc. ISBN 0-442-308574 1992

Widrow B., Lehr M., 30 years of adaptive neural networks: Perceptron, Madalilne, and
Backpropagation, Proceedings of the IEEE Vol 78 Num 9 p. 1415-1442 September 1990

Williams, J.A., Keys to Bioreactor Selection, Chemical Engineering Progress, March 2002

Yeo Y., Kwon T., A Neural PID Controller for the pH Neutralization Process, Ind. Eng. Chem.
Res. 38 p. 978-987. 1999

Zadeh L.A. Fuzzy sets, Information and Control Vol 8 p. 338-353 1965*

Zafiriou E., Morari M., Digital controller design for multivariable systems with structural
closed-loop performance specifications, Technical Research report University of Maryland,
SCR TR 87-145 1987a

Zafiriou E., Morari M., Set point tracking vs. disturbance rejection for stable and unstable
processes, Technical Research report University of Maryland, SCR TR 87-142 1987b

Zafiriou E., Morari M., Design of the IMC filter by using the structured singular value
approach, Technical research report, Systems research center, University of Maryland, SRC
TR 87-141 1987¢

Zafiriou E., Recent advances in the use of the internal model control structure for the
synthesis of robust multivariable controllers, Presented at the Shell workshop on process
control, Dec 15-18 1986. Technical research report, University of Maryland, TR-87-147.1987

Zafiriou E., Zhu J.M., Optimal feed rate profile determination for fed-batch fermentations in
the presence of model-plant mismatch, Technical research report, University of Maryland, TR-
89-48 1989

Zafiriou E., Morari M., Internal model control: robust digital controller synthesis for
multivariable open-loop stable or unstable processes, Technical research report, University of
Maryland, TR-90-48 Submitted to International Journal of Control 1990

Zhang J., Morris A.J., Recurrent neuro-fuzzy networks for non-linear process modeling, IEEE
Transactions on neural networks Vol 10 Num 2 March 1999

129

Appendix A

Non-linear multivariable (MIMO) process control model of a fed-batch bioreactor with neural
networks

Appendix B

Optimization of invertase production in a fed-batch bioreactor using dynamic programming
coupled with fuzzy ARTMAP

