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1
Introduction

Formal language theory, introduced by Noam Chomsky in the 1950s as a

tool for a description of natural languages [12, 13, 14], has also been widely

involved in modeling and investigating phenomena such as generative (pro-

duction) processes appearing in computer science, artificial intelligence and

other related fields. In formal language theory a model for a phenomenon is

usually constructed by representing it as a set of words, i.e., a language over

a certain alphabet, and defining a generative mechanism, i.e., a grammar

which identifies exactly the words of this set. With respect to the forms of

their rules, grammars and their languages are divided into four classes of

Chomsky hierarchy : recursively enumerable or type 0, context-sensitive

or type 1, context-free or type 2 and regular or type 3.

Context-free grammars are the most investigated type of Chomsky hi-

erarchy which, in addition, have good mathematical properties and are

extensively used in many applications of formal languages. However, they

cannot cover all aspects which occur in modeling of phenomena. On the

other hand, context-sensitive grammars, the next level in Chomsky hierar-

chy, are too powerful to be used in applications of formal languages, and

have bad features, for instance, for context-sensitive grammars, the empti-

ness problem is undecidable and the existing algorithms for the membership

problem, thus for the parsing, have exponential complexities. Moreover,

such concepts as a derivation tree, which is an important tool for the anal-
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ysis of context-free languages, cannot be transformed to context-sensitive

grammars. Therefore, it is of interest to consider “intermediate” gram-

mars which are more powerful than context-free grammars and have similar

properties. One type of such grammars, called grammars with regulated

rewriting (controlled or regulated grammars for short), is defined by con-

sidering grammars with some additional mechanisms which extract some

subset of the generated language in order to cover some aspects of modeled

phenomena. Due to the variety of investigated practical and theoretical

problems, different additional mechanisms to grammars can be considered.

Since Abraham [1] first defined matrix grammars in 1965, several grammars

with restrictions such as programmed, random context, valence grammars,

and etc., have been introduced (see [24]). However, the rapid developments

in present day technology, industry, medicine and other areas challenge to

deal with more and more new and complex problems, and to look for new

suitable tools for the modeling and investigation of these problems.

In our thesis we propose to use Petri nets as regulation mechanisms to

context-free grammars and define Petri net controlled grammars. This

idea can be justified with the following facts. On the one hand, control

by Petri nets extends possibilities to investigate concurrent control mech-

anisms in formal language theory. [48] can be considered as the first paper

in this direction where the regulation in matrix grammars is simulated by

Petri nets in order to solve some open problems in matrix languages. In [67]

it was also shown that the additional requirement in random context gram-

mars can be simulated by Petri nets. Control by Petri nets has also been

introduced and studied in automata theory [37, 38, 36, 57] and grammar

systems theory [9].

On the other hand, grammars controlled by Petri nets can be very ap-

propriate tools for modeling and analyzing phenomena in automated manu-

facturing systems and systems biology, where Petri nets are responsible for

the structure and communication in systems and grammars represent gen-
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erative processes. For instance, the following circumstance demonstrates

that biochemical processes – metabolic pathways – in living cells can be ac-

curately modeled and investigated using formal grammars with Petri nets.

One of the main goals of systems biology is to understand the pro-

cesses in a living cell. Living cells are composed of a number of compounds

(metabolites, enzymes, co-factors, ions, and etc.) and chemical reactions

that occur simultaneously. A complete understanding of the behavior of

these reactions is possible only through a complete analysis in both qual-

itative and quantitative terms. A qualitative analysis of the behavior of

these reactions constitutes the qualitative study of metabolic pathways. A

metabolic pathway is a series of chemical reactions occurring within a cell,

catalyzed by enzymes, resulting in either the formation of a metabolic prod-

uct to be used or stored by the cell, or the initiation of another metabolic

pathway (Figure 1.1 illustrates a metabolic pathway of the citric acid cycle).

Often metabolites participate in more than one metabolic pathway,

forming a complex network of reactions. Metabolic pathways may be of

two general types: catabolic and anabolic. Catabolic pathways involve

the breakdown or digestion of large, complex molecules. Anabolic path-

ways involve the synthesis of large molecules, generally by joining smaller

molecules together.

The important issues in a qualitative analysis of metabolic pathways are

the selection of appropriate descriptions for whole sets of pathways, and the

selection of operations that can be used to combine these sets and identify

qualitative properties and recurring pathway structures from them. The

descriptions of sets of pathways should limit the computational complexity

and make results easier to comprehend.

In order to represent and analyze metabolic pathways several meth-

ods such as ordinary differential equations [49], Boolean logic and state

machines [60], genetic grammars [51], rule based models [50], stochastic

parameterized grammars [69], and graph grammar based models [15], and

9
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Figure 1.1: Citric acid cycle
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various graphical models [63] including Kauffman binary networks [61],

signal flow graphs [83], bond graphs [98], different types of Petri net mod-

els [7, 11, 33, 52, 64] have been used. Among wide spectrum of models,

Petri nets offer a simple and intuitive representation of a metabolic path-

way structure where places represent biochemical entities, tokens in a place

indicate the presence of the corresponding entity, transitions represent re-

actions, the arc weights encode the stoichiometry of a reaction [64] (Figure

1.2 represents a simplified Petri net model of the citric acid cycle illustrated

in Figure 1.1). Occurrence sequences of transitions of a Petri net simulate

sequences of biochemical reactions in the corresponding metabolic pathway.

The analysis of complex networks of metabolic pathways involving a

tremendous amount of data such as metabolites, biochemical reactions and

their properties, enzymes, etc., requires the use of an automated informa-

tion processing, i.e., computers. The necessity of codifying all the informa-

tion in comprehensible manner for the computer processing motivates to

investigate easy computer-implementable and coherent symbolic methods

for the representation and analysis of metabolic pathways.

At this point the similarity between the application of a production rule

of a grammar and the firing of a transition of a Petri net [18], and on the

other hand, the similarity between the firing of a transition of a Petri net

and a biochemical reaction of a metabolic pathway prompts to consider

integrated models of grammars and Petri nets for metabolic pathways.

We propose the model for metabolic pathways using grammars and Petri

nets, which can be considered as an extended version of the Petri net based

model introduced in [64]. Symbols of a grammar represent compounds of

a biochemical reaction, and places labeled by symbols represent the status

of the corresponding compounds where tokens are separate instances of the

symbols, which shows the available amount of the corresponding substance.

Production rules represent biochemical reactions, and transitions labeled

by rules represent the status of the corresponding production rules. A tran-
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Figure 1.2: A simplified Petri net representation of citric acid cycle
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sition is labeled by a production rule such that its input places are labeled

by the symbols of the left-hand side of the rule and its output places are

labeled by the symbols of the right-hand side of the rule. A rule can be

applied if the transition labeled by this rule can be fired. Weights assigned

to arcs indicate numbers of occurrences of symbols erased and appeared

by the application of a rule when the transition labeled by this rule fires.

Then a metabolic pathway can be simulated by a derivation of the gram-

mar, where the sequence of production rules in the derivation are chosen

according to the occurrence sequence of transitions of the corresponding

Petri net. Thus, Petri nets can be considered as additional mechanisms to

grammars in order to choose production rules for derivations of grammars.

Though biochemical reactions are represented by production rules of

type 0 grammars in general case, we consider the simpler models investi-

gating catabolic pathways which consists of only decomposition reactions.

These types of biochemical reactions can be represented by context-free

rules, in which enzymes participated in reactions can be represented by

additional places.

The thesis introduces various variants of Petri net controlled grammars

using different types of Petri nets and investigates their computational and

closure properties. Thesis is organized as follows.

Chapter 2 starts by giving, as prerequisites, some basic concepts and

results from the areas formal languages and Petri nets: strings, grammars,

languages, Petri nets, Petri net languages and so on, which will be used in

our further investigations.

When we study the controls by extended context-free Petri nets (isomor-

phic Petri nets to context-free grammars enriched with additional compo-

nents), we can see that controls used in grammars with regulated rewriting

can be represented by some special subnets of these Petri nets, for instance,

the net consisting of disjoint chains corresponds to the regulation in vector

grammars while the net consisting of cycles with the single common place
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matches to the restriction in matrix grammars. If the subnet is required

to be composed of disjoint cycles, then we come to the definition of a new

type of regulated grammars: we introduce a new variant of matrix gram-

mars called semi-matrix grammars and investigate their generative power

and closure properties in Chapter 3. From the definitions of matrix and

vector grammars one can see that in a matrix grammar the shuffling of

matrices is not allowed while in a vector grammar matrices can be shuffled.

Semi-matrix grammars differ from the foregoing grammars by application

of matrices in derivations: the shuffling of matrices is allowed only for dif-

ferent matrices. Semi-matrix grammars complete the variations of matrix

grammars with respect to the start of a matrix.

The study of Petri net controlled grammars starts from Chapter 4.

A context-free grammar and its derivation process can be described by

a Petri net, called a context-free Petri net (a cf Petri net for short),

where places correspond to nonterminals, transitions are the counterpart

of the production rules, the tokens reflect the occurrences of symbols in

the sentential form, and there is a one-to-one correspondence between the

application of (sequence of) rules and the firing of (sequence of) transitions.

Therefore, the control of the derivations in a context-free grammar can be

implemented by adding some features to the associated Petri net.

Depending on what kind of elements (places, transitions or/and arcs)

to add and how to add them, various control mechanisms can be defined.

In our current research, as additional elements to a cf Petri net, we choose

places and arcs. As control, first, we consider a subnet consisting of new

places, transitions of the cf Petri net, and new arcs from/to these new places

to/from transitions of the net; it leads to define grammars controlled by k -

Petri nets, i.e., cf Petri nets with additional k places. Next we consider more

complex control mechanisms: we add new places and arcs in such a way that

a control subnet consists of chains or cycles, and correspondingly, we definez (, s)-Petri net controlled grammars. We investigate the computational

14
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power and closure properties of families of languages generated by extended

Petri net controlled grammars.

In Chapter 5 we consider a generalization of the Petri net controlled

grammars defined in the previous chapter: we associate an arbitrary place/

transition Petri net with a context-free grammar and require that the se-

quence of applied rules corresponds to an occurrence sequence of transitions

in the Petri net. On the other hand, this type of Petri net controlled gram-

mars is also a generalization of regularly controlled grammars, i.e., instead

of a finite automaton, a Petri net is associated with a context-free grammar.

With respect to different labeling strategies and different definitions of final

marking sets, we define various classes of Petri net controlled grammars.

Here we study the influence of the labeling functions and the effect of the

final markings on the generative power.

It is known that many decision problems in formal language theory are

equivalent to the reachability problem in Petri net theory, which has been

shown that it is decidable, however, it has exponential time complexity.

The result of this has been the definition of a number of structural sub-

classes of Petri nets with a smaller complexity and still adequate modeling

power. Thus, it is interesting to consider grammars controlled by such kind

of subclasses of Petri nets. In Chapter 6 we continue our study of arbitrary

Petri net controlled grammars by restricting Petri nets to their structural

subclasses, i.e., special Petri nets such as state machines, marked graphs,

and free-choice nets, and so on.

If in previous chapters we investigate Petri net controlled grammars

using static properties of Petri nets, in Chapter 7 we examine Petri net

controlled grammars with respect to dynamical properties of Petri nets.

Here we use (cf, extended cf, and arbitrary) Petri nets with place capacities.

We also investigate capacity-bounded grammars which are counterparts of

grammars controlled by Petri nets with place capacities.

15
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Finally, in Chapter 8 we draw some general conclusions and present

suggestions for further research.

The majority of the results of in the thesis has been published in sci-

entific journals and presented at conferences. Minor improvements of pre-

sentations and proofs have been performed in many places. Chapter 3 is

mainly based on the presentation at [99]. The results of Chapter 4 are

based on works presented at [27, 28, 100] and published [32]. Chapter 5 de-

scribes results presented at [26] and published in [31]. Chapter 6 is formed

by the presentation at [29] and the article published in [30]. Finally, the

results of Chapter 7 are published in [96, 97, 95].
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2
Preliminaries

In this chapter we recall some prerequisites, by giving basic notions and

notations of the theories formal languages, Petri nets and Petri net lan-

guages which are used in the thesis. The reader is referred to [53, 85, 24,

68, 82, 47, 74, 71] for further information.

2.1 Formal Languages

2.1.1 General Notations

Throughout the thesis we use the following general notations. ∈ denotes the

membership of an element to a set while the negation of set membership

is denoted by 6∈. The inclusion is denoted by ⊆ and the strict (proper)

inclusion is denoted by ⊂. The union, intersection, difference and cross

product of two sets are denoted by ∪, ∩, −, ×, respectively. ∅ denotes

the empty set. The set of positive (non-negative) integers is denoted by

N (N0). The set of integers is denoted by Z. The power set of a set X is

denoted by 2X, while the cardinality of a set X is denoted by |X|.

2.1.2 Strings, Languages and Operations

Let Σ be an alphabet which is a finite nonempty set of symbols. A string

(sometimes a word) over the alphabet Σ is a finite sequence of symbols
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2.1. FORMAL LANGUAGES

from Σ. The empty string is denoted by λ. The set of all strings over the

alphabet Σ is denoted by Σ∗. The set of nonempty strings over Σ is denoted

by Σ+, i.e., Σ+ = Σ∗− {λ}. A subset of Σ∗ is called a language. A language

L ∈ Σ∗ is λ-free if λ 6∈ L.

For two strings u and v, their concatenation is defined as the juxtapo-

sition uv. If w = w1w2, for some w1,w2 ∈ Σ∗, then w1 is called a prefix of

w and w2 is called a suffix of w. The sets of all prefixes and suffixes of a

string w are denoted by Pref(w) and Suf(w), respectively. If w = w1w2w3
for some strings w1,w2,w3 ∈ Σ∗, then w2 is called a substring of w. A

string v is called a scattered substring of a string u if there are strings

v1, v2, . . . , vn,u1,u2, . . . ,un+1 ∈ Σ∗, n > 1, such that v = v1v2 · · · vn and

u = u1v1u2v2 · · ·unvnun+1.
For a string w = a1a2 · · ·an, ai ∈ Σ, 1 6 i 6 n, the string an · · ·a2a1 is

called the mirror image of w and denoted by wR. For a language L ⊆ Σ∗,

its mirror image is defined as LR = {wR | w ∈ L}.

The length of a word w, denoted by |w|, is the number of occurrences

of symbols in w. The number of occurrences of a symbol a in a string w is

denoted by |w|a. For a subset ∆ of Σ, the number of occurrences of symbols

of ∆ in a string w ∈ Σ∗ is denoted by |w|∆.

Parikh vector associated with w ∈ Σ∗ with respect to the alphabet

Σ = {a1,a2, . . . ,ak} is defined by pΣ(w) = (|w|a1 , |w|a2 . . . , |w|ak
). For a

string w ∈ Σ∗, the set of all its permutations is defined byPerm(w) = {w ′ | pΣ(w
′) = pΣ(w)}.

For two languages L1, L2 ⊆ Σ∗ the operation shuffle is defined byShuf(L1, L2) = {u1v1u2v2 · · ·unvn | u1u2 · · ·un ∈ L1, v1v2 · · · vn ∈ L2,
ui, vi ∈ Σ∗, 1 6 i 6 n}
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2.1. FORMAL LANGUAGES

and for L ⊆ Σ∗, Shuf1(L) = L,Shufk(L) = Shuf(Shufk−1(L), L), k > 2,Shuf∗(L) = ⋃

k>1 Shufk(L).
Regarding languages as sets, the operations of union, intersection, dif-

ference for languages are defined in usual fashion. The concatenation of

two languages L1 and L2 is

L1L2 = {uv | u ∈ L1, v ∈ L2}.
For an integer n > 0 and a language L, Ln is defined by L0 = {λ},

Ln = Ln−1L, for n > 0. The Kleene closure of a language L, denoted by

L∗, is defined by

L∗ =
⋃

i>0 Li,
and its λ-free Kleene closure, denoted by L+, is defined by

L+ =
⋃

i>1 Li.
A language L over Σ is called regular if it can be constructed by a

finite number of applications of the operations union, concatenation and

Kleene closure from subsets of Σ ∪ {λ}. The family of all regular languages

is denoted by REG.

A mapping s : Σ∗ → 2∆∗

is called a substitution if s(λ) = {λ} and

s(uv) = s(u)s(v). s is said to be λ-free if λ 6∈ s(a) for all a ∈ Σ. A

substitution is called a homomorphism if |s(a)| = 1 for all a ∈ Σ (we write

s(a) = u instead of s(a) = {u}). A homomorphism h : Σ∗ → ∆∗ is called a

coding if h(a) ∈ ∆ for each a ∈ Σ and a week coding if h(a) ∈ ∆ ∪ {λ} for

each a ∈ Σ. For a homomorphism h : Σ∗ → ∆∗, the mapping h−1 : ∆∗ → 2Σ∗
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2.1. FORMAL LANGUAGES

defined by

h−1(u) = {v ∈ Σ∗ | h(v) = u}

is called an inverse homomorphism.

If L ⊆ (Σ{λ, c, c2, . . . , ck−1})∗ for some c 6∈ Σ and some constant k, and

if h is a homomorphism defined by h(a) = a for all a ∈ Σ and h(c) = λ,

then h is said to be k-restricted on L.

The left derivative of a language L ⊆ Σ∗ with respect to a string x ∈ Σ∗

is

∂lx(L) = {w ∈ Σ∗ | xw ∈ L}.
The right derivative of a language L ⊆ Σ∗ with respect to a string

x ∈ Σ∗ is

∂rx(L) = {w ∈ Σ∗ | wx ∈ L}.
Let o be a k-ary operation on languages and L be a family of lan-

guages. L is said to be closed under the operation o if for all languages

L1, L2, . . .Lk ∈ L, o(L1, L2, . . . , Lk) ∈ L. A language family is called an

abstract family of languages (abbreviated AFL) if and only if it is closed

under union, concatenation, λ-free Kleene closure, λ-free homomorphisms,

inverse homomorphisms and intersections with regular languages. A fam-

ily of languages closed under all AFL operations except concatenation and

λ-free Kleene closure is called a semi-AFL.

Theorem 2.1. If L is a family of languages closed under intersections with

regular sets, union with regular sets, substitution by λ-free regular sets and

restricted homomorphisms, then L is closed under inverse homomorphisms.

Theorem 2.2. A semi-AFL is closed under right and left derivatives.

Two languages L1 and L2 are called equal if L1 − {λ} = L2 − {λ}. Two

language families L1 and L2 are called equal if for each language L1 ∈ L1
there is a language L2 ∈ L2 which is equal to L1 and vice versa.
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2.1. FORMAL LANGUAGES

A finite automaton is a system A = (Q,Σ,q0, δ, F) where Q is a finite

non-empty set of states, Σ is the input alphabet, q0 ∈ Q is the initial

state, F ⊆ Q is the set of final states and δ : Q×Σ→ 2Q is the transition

function. Such an automaton recognizes a string w = a1a2 · · ·an ∈ Σ∗,

a1,a2, . . . ,an ∈ Σ, if and only if there are states q1,q2, . . . ,qn ∈ Q such

that q1 ∈ δ(q0,a1), qi+1 ∈ δ(qi,ai+1) for 1 6 i 6 n − 1 and qn ∈ F. The

set of all strings recognized by A is denoted by L(A).

Theorem 2.3. The family REG is exactly the family of languages recog-

nizable by finite automata.

2.1.3 Grammars

A phrase structure (Chomsky) grammar is a quadruple G = (V,Σ, S,R)
where V and Σ are two disjoint alphabets of nonterminal and terminal

symbols, respectively, S ∈ V is the start symbol and

R ⊆ (V ∪ Σ)∗V(V ∪ Σ)∗ × (V ∪ Σ)∗

is a finite set of (production) rules. Usually, a rule (u, v) ∈ R is written in

the form u→ v. A rule of the form u→ λ is called an erasing rule.

A phrase structure grammar G = (V,Σ, S,R) is called a GS grammar

(a phrase structure grammar due to Ginsburg and Spanier [42]) if

R ⊆ V+ × (V ∪ Σ)∗.
The families of languages generated by GS grammars and by phrase

structure grammars are denoted by GS and RE, respectively. It is well-

known that the family GS is equal to the family RE.

A string x ∈ (V∪Σ)∗ directly derives a string y ∈ (V∪Σ)∗ in G, written

as x⇒G y if and only if there is a rule u→ v ∈ R such that x = x1ux2 and

y = x1vx2 for some x1, x2 ∈ (V ∪ Σ)∗. If G is understood, we write x ⇒ y.
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2.1. FORMAL LANGUAGES

The reflexive and transitive closure of the relation ⇒ is denoted by ⇒∗. A

derivation using the sequence of rules π = r1r2 · · · rk, ri ∈ R, 1 6 i 6 k, is

denoted by π
=⇒ or

r1r2···rk
=====⇒.

A string w ∈ (V ∪ Σ)∗ such that S ⇒∗
G w is called a sentential form.

The language generated by G, denoted by L(G), is defined by

L(G) = {w ∈ Σ∗ | S⇒∗ w}.
Two grammars G1 and G2 are called equivalent if L(G1) = L(G2).
A phrase-structure grammar G = (V,Σ, S,R) is called� context-sensitive if each rule u → v ∈ R has u = u1Au2, v = u1xu2

for u1,u2 ∈ (V ∪ Σ)∗, A ∈ V and x ∈ (V ∪ Σ)+ (in context sensitive

grammars S → λ is allowed, provided that S does not appear in the

right-hand members of rules in R);� context-free if each rule u→ v ∈ R has u ∈ V;� linear if each rule u→ v ∈ R has u ∈ V and v ∈ Σ∗ ∪ Σ∗VΣ∗;� regular if each rule u→ v ∈ R has u ∈ V and v ∈ Σ ∪ ΣV.

The families of languages generated by context-sensitive, context-free

and linear grammars are denoted by CS, CF, LIN. Further we denote

the family of finite languages by FIN. The next strict inclusions, named

Chomsky hierarchy, hold

Theorem 2.4. FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.
2.1.4 Grammars with Regulated Writing

The idea of regulated rewriting consists of restricting the application of

the rules in a context-free grammar in order to avoid some derivations

and hence obtaining a subset of the context-free language generated in
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usual way. The computational power of some context-free grammars with

regulated rewriting turns out to be greater than the power of context-free

grammars. Various regulation mechanisms used in regulated grammars can

be classified into general types by their common features, for instance� control by prescribed sequences of production rules:

matrix grammars (Abraham [1], 1965) – the set of production rules

is divided into sequences (called matrices) and if the application of

a matrix is started, a second matrix can be started after finishing

the application of the first one. And the rules have to been applied

in the order given a matrix; vector grammars (Cremers and Mayer

[17],1973) – in which a new matrix can be started before finishing

those which have been started earlier; regularly controlled grammars

(Ginsburg and Spanier [42], 1968) – the sequence of production rules

applied in a derivation belong to a given regular language associated

with the grammar;� control by computed sequences of production rules:

programmed grammars (Rosenkrantz [89], 1969) – after applying

a production rule, the next production rule has to be chosen from

its success field; if the left hand side of the rule does not occur in

the sentential form, a rule from its failure field has to be chosen;

valence grammars (Pǎun [79], 1980) – where with each sentential

form an element of a monoid is associated, which is computed during

the derivation and derivations where the element associated with the

terminal word is the neutral element of the monoid are accepted;� control by context conditions:

where the applicability of a rule depends on the current sentential

form; with any rule some restrictions are associated for sentential

forms which have to be satisfied in order to apply the rule: random

context grammars (Cremers, Maurer and Mayer [16], 1973) – the
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restriction is the belonging to a regular language associated with the

rule; conditional grammars (Fris [41], 1968) – the restriction to spe-

cial regular sets; semi-conditional grammars (Kelemen [62], 1984) –

the restriction to words of length one in the permitting and forbidden

contexts; ordered grammars (Fris [41], 1968) – a production rule can

be applied if there is no greater applicable production rule;� control by partial parallelism:

Indian parallel grammars (Siromoney and Krithivasan [92], 1974) –

all occurrences of one letter are replaced (according to one rule); Rus-

sian parallel grammars (Levitina [65], 1972) – which combines the

context-free and Indian parallel feature; scattered context grammars

(Greibach and Hopcroft [45], 1969) – in which only a fixed number of

symbols can be replaced in a step but the symbols can be different;� control by memory:

indexed grammars (Aho [2], 1968) – the application of production

rules gives sentential forms where the nonterminal symbols are fol-

lowed by sequences of indexes (stack of special symbols), and indexes

can be erased only by rules contained in these indexes but erasing of

the indexes is done in reverse order of their appearance.

Further we recall the definitions of those regulated grammars which are

used in the proofs of some statements in this thesis.

A regularly controlled grammar is a quintuple G = (V,Σ, S,R,K)
where V,Σ, S,R are specified as in a context-free grammar and K is a reg-

ular set over R. The language generated by G consists of all words w ∈ Σ∗

such that there is a derivation S r1r2···rn
=====⇒ w where r1r2 · · · rn ∈ K.

A matrix grammar is a quadruple G = (V,Σ, S,M) where V,Σ, S are

defined as for a context-free grammar, M is a finite set of matrices which

are finite strings over a set R of context-free rules (or finite sequences of
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context-free rules). For m ∈M, we use both notations m = r1r2 · · · rs and

m : (r1, r2, . . . , rs). The language generated by the grammar G is

L(G) = {w ∈ Σ∗ | S
π
=⇒ w and π ∈M∗}.

A vector grammar is a quadruple G = (V,Σ, S,M) whose components

are defined as for a matrix grammar. The language generated by the gram-

mar G is defined by

L(G) = {w ∈ Σ∗ | S
π
=⇒ w and π ∈ Shuf∗(M)}.

A matrix (vector) grammar G is called without repetitions if for each

rule r ∈ R, |m1m2 · · ·mn|r = 1. For each matrix (vector) grammar, by

adding chain rules, we can construct an equivalent matrix grammar without

repetitions.

An additive valence grammar is a quintuple G = (V,Σ, S,R, v) where

V,Σ, S,R are defined as for a context-free grammar and v is a mapping from

R into Z. The language generated by G consists of all strings w ∈ Σ∗ such

that there is a derivation S r1r2···rn
=====⇒ w where

∑n
i=1 v(ri) = 0.

A positive valence grammar is a quintuple G = (V,Σ, S,R, v) whose

components are defined as for additive valence grammars. The language

generated by G consists of all strings w ∈ Σ∗ such that there is a derivation

S
r1r2···rn
=====⇒ w where

∑n

i=1 v(ri) = 0 and for any 1 6 j < n,
∑j

i=1 v(ri) > 0.
A programmed grammar (without appearance checking) is a sextu-

ple G = (V,Σ, S,R,D,σ) where V,Σ, S,R are defined as for a context-free

grammar, D is a finite set of labels for the rules of R such that D can

be also interpreted as a function which outputs a rule when being given

a label, σ is a function from D into the set of subsets D, i.e., 2D. For

(x, r1), (y, r2) ∈ (V∪Σ)∗×D and D(r1) = (α→ β) we write (x, r1) ⇒ (y, r2)
25
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if and only if

x = x1αx2,y = x1βx2 and r2 ∈ σ(r1).
The σ(r) is called the success field of r ∈ R. The language generated by G

is defined as

L(G) = {w ∈ Σ∗ | (S, r1) ⇒∗ (w, r2) for some r1, r2 ∈ D}.
The families of languages generated by regularly controlled, matrix,

vector, additive valence and positive valence grammars (with erasing rules)

are denoted by rC, MAT, VEC, Prog, aV, pV (rCλ, MATλ, VECλ, Progλ,aVλ, pVλ), respectively.

We use bracket notation L[λ] for a language family L in order to say

that a statement holds in both cases: with and without erasing rules.

Theorem 2.5. The following inclusions and equalities hold (for details, see

[24]):

(1) CF ⊂ aV = aVλ ⊂ MAT = rC = Prog = pV;
(2) MAT ⊆ VEC ⊂ CS;
(3) MAT ⊆ MATλ = rCλ = VECλ = Progλ = pVλ ⊂ RE.

2.2 Petri Nets

Petri nets, introduced by Carl Adam Petri [75] in 1962, provide a powerful

mathematical formalism for describing and analyzing the flow of informa-

tion and control in concurrent systems.

2.2.1 Basic Definitions

A Petri net (PN) is a construct N = (P, T , F,φ) where P and T are disjoint

finite sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is
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the set of directed arcs, φ : F→ N is a weight function.

A Petri net can be represented by a bipartite directed graph with the

node set P ∪ T where places are drawn as circles, transitions as boxes and

arcs as arrows. The arrow representing an arc (x,y) ∈ F is labeled with

φ(x,y); if φ(x,y) = 1, then the label is omitted.

An ordinary net (ON) is a Petri net N = (P, T , F,φ) where φ(x,y) = 1
for all (x,y) ∈ F. We omit φ from the definition of an ordinary net, i.e.,

N = (P, T , F).
A mapping µ : P → N0 is called a marking. For each place p ∈ P, µ(p)

gives the number of tokens in p. Graphically, tokens are drawn as small

solid dots inside circles. •x = {y | (y, x) ∈ F} and x• = {y | (x,y) ∈ F} are

called pre- and post-sets of x ∈ P ∪ T , respectively. For X ⊆ P ∪ T , define
•X =

⋃

x∈X
•x and X• =

⋃

x∈X x
•. For t ∈ T (p ∈ P), the elements of •t (•p)

are called input places (transitions) and the elements of t• (p•) are called

output places (transitions) of t (p).

A sequence of places and transitions ρ = x1x2 · · ·xn is called a path

if and only if no place or transition except x1 and xn appears more than

once, and xi+1 ∈ x•i for all 1 6 i 6 n − 1. We denote the sets of places,

transitions and arcs of a path ρ by Pρ, Tρ, Fρ, respectively. The sequence

of transitions in a path ρ is denoted by tr(ρ). Two paths ρ1, ρ2 are called

disjoint if Pρ1∩Pρ2 = ∅ and Tρ1∩Tρ2 = ∅. A path ρ is called a chain(cycle)

if x1, xn ∈ T and x1 6= xn (x1 = xn).

A transition t ∈ T is enabled by marking µ if and only if µ(p) > φ(p, t)
for all p ∈ •t. In this case t can occur (fire). Its occurrence transforms

the marking µ into the marking µ ′ defined for each place p ∈ P by µ ′(p) =

µ(p) − φ(p, t) + φ(t,p). We write µ t
−→ to denote that t may fire in

µ, and µ
t
−→ µ ′ to indicate that the firing of t in µ leads to µ ′. A

marking µ is called terminal if in which no transition is enabled. A finite

sequence t1t2 · · · tk, ti ∈ T , 1 6 i 6 k, is called an occurrence sequence

enabled at a marking µ and finished at a marking µ ′ if there are markings
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µ1,µ2, . . . ,µk−1 such that µ t1−→ µ1 t2−→ . . . tk−1
−−→ µk−1 tk−→ µ ′. In short this

sequence can be written as µ
t1t2···tk−−−−−→ µ ′ or µ ν

−→ µ ′ where ν = t1t2 · · · tk.

For each 1 6 i 6 k, marking µi is called reachable from marking µ. R(N,µ)
denotes the set of all reachable markings from a marking µ.

A marked Petri net is a system N = (P, T , F,φ, ι) where (P, T , F,φ) is a

Petri net, ι is the initial marking.

Example 2.1. Figure 2.1 depicts a Petri net N = (P, T , F,φ, ι) with P =

{p1,p2,p3,p4,p5} and T = {t1, t2, t3, t4, t5}. We can see that φ(t2,p3) =

φ(p3, t3) = 2. The initial marking ι is defined by ι(p1) = ι(p4) = 1 and

ι(p) = 0 for all P − {p1,p4}.
•

  
 !  "

•

 #
 $

! !! !" !#" "
Figure 2.1: A Petri net

A Petri net with final markings is a construct N = (P, T , F,φ, ι,M)

where (P, T , F,φ, ι) is a marked Petri net andM ⊆ R(N, ι) is set of markings

which are called final markings. If M = {µ}, then instead of {µ} we simply

write µ in the definition. An occurrence sequence ν of transitions is called

successful for M if it is enabled at the initial marking ι and finished at a

final marking τ of M. If M is understood from the context, we say that ν

is a successful occurrence sequence.

A Petri net N is said to be k-bounded if the number of tokens in each

place does not exceed a finite number k for any marking reachable from
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the initial marking ι, i.e., µ(p) 6 k for all p ∈ P and for all µ ∈ R(N, ι). A

Petri net N is said to be bounded if it is k-bounded for some k > 1.
A Petri net with place capacity is a system N = (P, T , F,φ, ι, κ) where

(P, T , F,φ, ι) is a marked Petri net and κ : P → N0 is a function assigning

to each place a number of maximal admissible tokens. A marking µ of the

net N is valid if µ(p) 6 κ(p), for each place p ∈ P. A transition t ∈ T is

enabled by a marking µ if additionally the successor marking is valid.

2.2.2 Special Petri Nets

It is known that many decision problems are equivalent to the reachability

problem [46], which has been shown to be decidable. However, it has

exponential space complexity [66], thus from a practical point of view,

Petri nets may be too powerful to be analyzed. The result of this has been

the definition of a number of subclasses of Petri nets in order to find a

subclass with a smaller complexity and still adequate modeling power for

practical purposes. These subclasses are defined by restrictions on their

structure intended to improve their analyzability.

We consider the following main structural subclasses of Petri nets.� A state machine (SM) is an ordinary Petri net such that each tran-

sition has exactly one input place and exactly one output place, i.e.,

|•t| = |t•| = 1 for all t ∈ T (Figure 2.2). This means that there can

not be concurrency but there can be conflict.

Figure 2.2: A state machine
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that |•t| 6 1 and |t•| 6 1 for all t ∈ T (Figure 2.3).

Figure 2.3: A generalized state machine� A marked graph (MG) is an ordinary Petri net such that each place

has exactly one input transition and exactly one output transition,

i.e., |•p| = |p•| = 1 for all p ∈ P (Figure 2.4). This means that there

can not be conflict but there can be concurrency.

Figure 2.4: A marked graph� A generalized marked graph (GMG) is an ordinary Petri net such

that |•p| 6 1 and |p•| 6 1 for all p ∈ P (Figure 2.5).

Figure 2.5: A generalized marked graph� A casual net (CN) is a generalized marked graph each subgraph of

which is not a a cycle (Figure 2.6).
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Figure 2.6: A casual net� A free-choice net (FC) is an ordinary Petri net such every arc is

either the only arc going from the place, or it is the only arc going to a

transition, i.e., that if p•1∩p•2 6= ∅ then |p•1 | = |p•2 | = 1 for all p1,p2 ∈ P
(Figure 2.7). This means that there can be both concurrency and

conflict but not the same time.

Figure 2.7: A free-choice net� An extended free-choice net (EFC) is an ordinary Petri net such that

if p•1 ∩ p•2 6= ∅ then p•1 = p•2 for all p1,p2 ∈ P (Figure 2.8).� An asymmetric choice net (AC) is an ordinary Petri net such that if

p•1 ∩p•2 6= ∅ then p•1 ⊆ p•2 or p•1 ⊇ p•2 for all p1,p2 ∈ P (Figure 2.9). In

asymmetric choice nets concurrency and conflict (in sum, confusion)

may occur but not asymmetrically.

The hierarchy of the introduced subclasses of Petri nets is shown in

Figure 2.10.
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Figure 2.8: An extended free-choice net

Figure 2.9: An asymmetric choice net
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Figure 2.10: The hierarchy of Petri net classes

2.2.3 Petri Net Languages

Petri nets, which are graphical and mathematical modeling tools applica-

ble to many discrete systems, have widely been used in the study of formal

languages. One of the fundamental approaches in this area is to consider

Petri nets as language generators. If the transitions in a Petri net are

labeled with a set of (not necessary distinct) symbols, a sequence of transi-

tion firing generates a string of symbols. The set of strings generated by all

possible firing sequences defines a language called a Petri net language.

Petri net languages have received a lot of attention since the late seventies

[55, 56, 58, 72, 74]. Comprehensive surveys on Petri net languages can be

found in the work of Jantzen [56] and Peterson [74].

A labeled Petri net is a net A = (P, T , F,φ, ι,M,Σ, ℓ) where N =

(P, T , F,φ, ι,M) is a Petri net with final markings, Σ is an alphabet and

ℓ : T → Σ ∪ {λ} is a labeling function. The labeling function ℓ is extended

to occurrence sequences in natural way, i.e., if σt ∈ T∗ is an occurrence
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sequence then ℓ(σt) = ℓ(σ)ℓ(t) and ℓ(λ) = λ . For an occurrence sequence

σ ∈ T∗, ℓ(σ) is called a label sequence.

In general, a language generated by a Petri net is a set of label sequences

corresponding to occurrence sequences of the Petri net. Several varieties of

Petri net languages result from the use of labeling policies and the definition

of the set of final markings.

Definition 2.1. A Petri net language generated by a labeled Petri net

A = (P, T , F,φ, ι,M,Σ, ℓ) is called� free (abbreviated by f) if a different label is associated to each tran-

sition, and no transition is labeled with the empty string;� λ-free (abbreviated by −λ) if no transition is labeled with the empty

string;� arbitrary (abbreviated λ) if no restriction posed on the labeling func-

tion ℓ.

Definition 2.2. A Petri net language generated by a labeled Petri net

A = (P, T , F,φ, ι,M,Σ, ℓ) is called� P-type if M is the set of all reachable markings from the initial mark-

ing ι, i.e., M = R(N, ι);� L-type if M ⊆ R(N, ι) is a finite set;� G-type if for a given set M0 ⊆ R(N, ι), each marking µ ∈M is greater

or equal to any marking M0;� T -type if M is the set of all terminal markings of N.

The Petri net in Figure 2.11 with a final marking set M = {(0, 0, 1, 0)}
results the following different types of Petri net languages:� P-type: {am | m > 0}∪{amcbn | m > n > 0}∪{amcbnd | m > n > 0};
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•  
 !

 "  #
!


#

$
Figure 2.11: A labeled Petri net� L-type: {amcbm | m > 0};� G-type: {amcbn | m > n > 0};� T -type: {amcbnd | m > n > 0}.Xy denotes the family of X-type of Petri net languages with y-labeling

policy where X ∈ {P, L,G, T } and y ∈ {f,−λ, λ}. Then, the relationship of

the families of Petri net languages is summarized in Figure 2.12 where an

arrow between two classes of languages indicates proper containment.

 λ  −λ  f

!λ !−λ !f

"λ "−λ "f

#λ #−λ #f

Figure 2.12: The relationship of the families of Petri net languages
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3
Semi-Matrix Grammars

3.1 Introduction

Although matrix grammars [1] is one of the earliest and well investigated

types of grammars with regulated rewriting, they still raise interesting ques-

tions, and find theoretical and practical applications. Various variants of

matrix grammars such as unordered matrix grammars, vector grammars,

simple matrix grammars, and etc., have also been introduced [17, 24, 23, 54,

77, 81, 90, 91]. The monograph [80] is entirely devoted to matrix grammars

and their variants and present most of the known results.

Matrix grammars and their varieties are closely related to Petri nets:

the restriction used in these grammars can be easily expressed in terms of

Petri nets. For instance, in [48], the reduction to the reachability prob-

lems of Petri nets helped to solve a number of open problems in regulated

rewriting systems, in particular, regularity of matrix languages over one let-

ter alphabet and the emptiness problem for the family of matrix languages.

The relationship between vector grammars and Petri nets was investigated

in [59].

It will be shown in the next chapter that grammars controlled by spe-

cific types of Petri nets generate the families of regulated languages such

as matrix and vector languages. In case of matrix and vector languages,

controls used in matrix and vector grammars correspond to disjoint chains,
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and cycles with the only common place in Petri nets, respectively. If we

consider Petri nets with disjoint cycles, then grammars controlled by this

type of Petri nets generate a new variant of matrix languages, called semi-

matrix languages. Thus, it is interesting to investigate the properties of

such kind of grammars. In the next section we give the formal definition of

semi-matrix grammars, and afterwards we investigate the closure properties

and generative capacities of the family of semi-matrix languages.

3.2 Definition and Examples

The shuffle of k (not necessarily different) strings w1,w2, . . . ,wk ∈ X∗

consists of all words u of the form u = u1,1u1,2 · · ·u1,k · · ·um,1um,2 · · ·um,k
with ui,j ∈ X∗ and u1,j · · ·um,j = wj, for 1 6 i 6 m, 1 6 j 6 k. The

semi-shuffle of k (not necessarily different) strings w1,w2, . . . ,wk ∈ X∗

is, informally spoken, the set of those words from the shuffle were only

pairwise different strings are interleaved. Formally, let {v1, v2, . . . , vt} be

the set of pairwise different strings in w1,w2, . . . ,wk where vj is contained

nj times. Then the semi-shuffle of w1,w2, . . . ,wk is defined as the shuffle

of vn11 , vn22 , . . . , vnt
t .

Definition 3.1. A semi-matrix grammar is a quadruple G = (V,Σ, S,M)

whose components are defined as for a matrix grammar. Its language L(G)

consists of all strings w ∈ Σ∗ such that there is a derivation S r1r2···rn
=====⇒ w

where r1r2 · · · rn is a semi-shuffle of some matrices mi1 ,mi2, . . . ,mik ∈M,

k > 1.
From the definitions of matrix and vector grammars one can see that in

a matrix grammar the shuffling of matrices is not allowed while in a vector

grammar matrices can be shuffled. Semi-matrix grammars differ from the

foregoing grammars by application of matrices in derivations: the shuffling

of matrices is allowed only for different matrices. Semi-matrix grammars
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3.2. DEFINITION AND EXAMPLES

complete the variations of matrix grammars with respect to the start of a

matrix.

The difference of the controls used in matrix, vector and semi-matrix

grammars can be seen in the following example.

Example 3.1. Let us consider a grammar G with the matrices

m0 : (S→ AB),
m1 : (A→ aA,B→ aB), m3 : (A→ a,B→ a),
m2 : (A→ bA,B→ bB), m4 : (A→ b,B→ b).� If G is a matrix grammar then L(G) = {ww | w ∈ {a,b}+}.� If G is a vector grammar then

L(G) = {wxw ′x | w ∈ {a,b}∗,w ′ ∈ Perm(w), x ∈ {a,b}}.� If G is a semi-matrix grammar then

L(G) = {w1{λ,ab,ba} · · ·x ·w1{λ,ab,ba} · · ·x |
w1, . . . ∈ {a,b}∗, x ∈ {a,b}}.

Each derivation of the grammar G begins by using the matrixm0. Then

for the further steps of the derivation there are four possible cases:

1. The matrices m1 and m2 are applied without shuffling: the matrices

m1 and m2 can be applied any times and in any order. We obtain a

string wAwB, w ∈ {a,b}∗.
2. The matrices m1 and m2 are applied with shuffling: the first rule of

m1, then the first rule of m2 or the first rule of m2, then the first rule

m1 can be applied and the application of the matrices m1 and m2
are finished in the following orders: the second rule of m1, then the
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3.2. DEFINITION AND EXAMPLES

second rule of m2 or the second rule of m2, then the second rule of

m1, respectively. We obtain a string

w{λ,ab,ba}Aw{λ,ab,ba}B,w ∈ {a,b}∗.
3. The previous cases can be repeated any times and in any order. We

obtain a string

w1{λ,ab,ba}w2{λ,ab,ba} · · ·Aw1{λ,ab,ba}w2{λ,ab,ba} · · ·B
where w1,w2, . . . ∈ {a,b}∗.

4. In order to terminate the derivation, m3 or m4 is used. Eventually,

we obtain a string

w1{λ,ab,ba}w2{λ,ab,ba} · · ·xw1{λ,ab,ba}w2{λ,ab,ba} · · ·x
where w1,w2, . . . ∈ {a,b}∗, x ∈ {a,b}.sMATλ(sMAT) denotes the family of languages generated by the semi-

matrix grammars (without erasing rules). The next statement follows im-

mediately from the definition.

Lemma 3.1. sMAT ⊆ sMATλ.

We define the following binary form for semi-matrix grammars which

will be used in the proofs of some statements in the next section.

Definition 3.2. A semi-matrix grammar G = (V,Σ, S,M) is said to be in

a binary form if for each rule A→ α in M, |α| 6 2.
Since each rule r : A → x1x2 · · ·xn, n > 3, xi ∈ V ∪ Σ, 1 6 i 6 n, in a

matrix m of M can be replaced by the sequence

A→ x1Bm,r,Bm,r → x2Bm,r, . . . ,Bm,r → xn−2Bm,r,Bm,r → xn−1xn
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of rules where Bm,r is a new nonterminal symbol with respect to the rule r

and the matrix m, one can construct an equivalent semi-matrix grammar

G ′ which is in the binary form, i.e.,

Lemma 3.2. For each semi-matrix language L there is a semi-matrix gram-

mar in the binary form which generates the language L.

3.3 Closure Properties

By using standard proofs, we show that many closure properties for matrix

grammars also hold for semi-matrix grammars.

Lemma 3.3. The families sMAT and sMATλ are closed under union and

concatenation.

Proof. Let G1 = (V1,Σ1, S1,M1) and G2 = (V2,Σ2, S2,M2) be semi-matrix

grammars (with or without erasing rules). We assume that V1 ∩ V2 = ∅.

We set

V = V1 ∪ V2 ∪ {S} and Σ = Σ1 ∪ Σ2
where S is a new nonterminal symbol.

We define the grammars G ′ = (V,Σ, S,M ′) and G ′′ = (V,Σ, S,M ′′)

where

M ′′ =M1 ∪M2 ∪ {(S→ S1), (S→ S2)}
and

M ′ =M1 ∪M2 ∪ {(S→ S1S2)}.
It is not difficult to see that

L(G ′) = L(G1) ∪ L(G2) and L(G ′′) = L(G1)L(G2).
Lemma 3.4. The families sMAT and sMATλ are closed mirror image.
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Proof. Let G = (V,Σ, S,M) be a semi-matrix grammar (with or without

erasing rules). Let M = {m1,m2, . . . ,mn} where

mi : (ri,1, ri,2, . . . , ri,k(i)) and ri,j : Ai,j → αi,j, 1 6 i 6 n, 1 6 j 6 k(i).
With each matrix mi, 1 6 i 6 n, we associate the matrix

mi : (ri,1, ri,2, . . . , ri,k(i)), 1 6 i 6 n,
where ri,1 : Ai,j → αi,j and αi,j, 1 6 i 6 n, 1 6 j 6 k(i), is the mirror image

of αi,j, i.e., αi,j = αR
i,j. Let M = {m1,m2, . . . ,mn}.

Clearly, L(G ′) = L(G)R for a semi-matrix grammar G ′ = (V,Σ, S,M).

Lemma 3.5. The families sMAT and sMATλ are closed under substitu-

tion by λ-free context-free languages. The family sMATλ is closed under

substitution by arbitrary context-free languages.

Proof. Let G = (V,Σ, S,M) be a semi-matrix grammar (with or without

erasing rules) and s : Σ∗ → 2∆∗

be a substitution where s(a) is a context-

free language for each a ∈ Σ. Let Ga = (Va,Σa, Sa,Ra) be a context-free

grammar where L(Ga) = s(a) for each a ∈ Σ. Without loss of generality

we can assume that Va∩Vb = ∅ for all a,b ∈ Σ with a 6= b and Va∩V = ∅

for all a ∈ Σ. Let φ : V ∪ Σ→ V ∪ {Sa | a ∈ Σ} is the bijection defined by

φ(x) =







x if x ∈ V,
Sx if x ∈ Σ.

Let M be the set of matrices obtained from M by replacing each rule

r : A→ α in M by A→ φ(α). We define a semi matrix grammar

G ′ = (V ∪
⋃

a∈Σ

Va,Σ ∪
⋃

a∈Σ

Σa, S,M ∪
⋃

a∈Σ

{(A→ α) | A→ α ∈ Ra}).
41

UNIVERSITAT ROVIRA I VIRGILI 
PETRI NET CONTROLLED GRAMMARS 
Sherzod Turaev 
ISBN:978-84-693-1536-1/DL:T-644-2010 



3.3. CLOSURE PROPERTIES

Obviously, L(G ′) = s(L(G)).

Lemma 3.6. The families sMAT and sMATλ are closed under intersection

by regular sets.

Proof. Let G = (V,Σ, S,M) be a semi-matrix grammar in the binary form

without erasing rules and A = (Q,Σ, δ,q0, F) be a finite automaton. We

set

V ′ = {(q1, x,q2) | q1,q2 ∈ Q, x ∈ V ∪ Σ}

and define the following sets of rules:� for each rule r : A→ xy, x,y ∈ V ∪ Σ in M

A(r) = {(q1,A,q2) → (q1, x,q)(q,y,q2) | q,q1,q2 ∈ Q};� for each rule r : A→ x, x ∈ V ∪ Σ in M

A(r) = {(q1,A,q2) → (q1, x,q2) | q1,q2 ∈ Q}.
Let A(M) be the set of all matrices obtained from M by replacing each

rule r by some rule of the set A(r). We also define the set of matrices

MΣ = {((q1,a,q2) → a) | q2 = δ(q1,a),q1,q2 ∈ Q,a ∈ Σ}.
For each q ∈ F we construct the semi-matrix grammar

Gq = (V ′,Σ, (q0, S,q),A(M)∪MΣ).
Then it is not difficult to see that L(G)∩L(A) =

⋃

q∈F L(Gq) which is again

a semi-matrix language.

Using the same arguments of the proof of Lemma 1.3.2 in [24], one can

show that
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Lemma 3.7. The families sMAT and sMATλ are closed under restricted

homomorphisms.

Since, from the previous lemmas, the families sMAT and sMATλ are

closed under union, intersections with regular sets, substitutions by regu-

lar sets and intersections with regular sets, they also closed under inverse

homomorphisms, by Theorem 2.1 in Chapter 2. Therefore, these families

are semi-AFLs.

Theorem 3.8. The families sMAT and sMATλ are semi-AFLs.

By Theorem 2.2 in Chapter 2, the next corollary is immediate

Corollary 3.9. The family sMAT and sMATλ are closed under right and

left derivatives.

3.4 Generative Capacity

First, we investigate the relationship of matrix-languages to matrix lan-

guages.

Lemma 3.10. sMAT[λ] ⊆ MAT[λ].

Proof. Let G = (V,Σ, S,M) be a semi-matrix grammar where

M = {m1,m2, . . . ,mn},mi : (ri,1, ri,2, . . . , ri,k(i)), 1 6 i 6 n.
We set

V ′ = V ∪ {S ′,D1,D2, . . . ,Dn}

∪ {Di,j | 1 6 i 6 n, 1 6 j 6 k(i)}

∪ {D ′
i,j | 1 6 i 6 n, 1 6 j 6 k(i) − 1}
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and Σ ′ = Σ ∪ {c} where

S ′,Di,Di,j,D ′
i,l, 1 6 i 6 n, 1 6 j 6 k(i), 1 6 l 6 k(i) − 1,

are new nonterminals and c is a new terminal. With each matrix mi,1 6 i 6 n, we associate the matrices

(Di → Di,1, ri,1,Di,1 → D ′
i,1)

(D ′
i,j → Di,j+1, ri,j+1,Di,j+1 → D ′

i,j+1), 1 6 j 6 k(i) − 2
(D ′

i,k(i)−1 → Di,k(i), ri,k(i),Di,k(i) → Di).
Further we add the matrices

(S ′ → SD1D2 · · ·Dn) and (Di → c), 1 6 i 6 n.
We define a matrix grammar G ′ = (V ′,Σ ′, S ′,M ′) where M ′ consists of

the above-defined matrices.

It is not difficult to see that L(G ′) = {wck | w ∈ L(G)}, i.e.,

L(G) = ∂rck(L(G
′)).

Since the family of matrix languages are closed under right derivative,

L(G) is also a matrix language.

Lemma 3.11. MAT[λ] ⊆ sMAT[λ].

Proof. Let G = (V,Σ, S,M) be a matrix grammar where

M = {m1,m2, . . . ,mn},mi : (ri,1, ri,2, . . . , ri,k(i)), 1 6 i 6 n.
We associate with each matrix mi, 1 6 i 6 n, the matrix

mi : (D→ D ′, ri,1, ri,2, . . . , ri,k(i),D ′ → D), 1 6 i 6 n. �

�

�

�3.1
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where D,D ′ are new nonterminals. Further we add the matrices

(S ′ → DS) and (D→ c)
�

�

�

�3.2

where c is a new terminal symbol.

Then it is easy to see that the grammar

G ′ = (V ∪ {S ′,D,D ′},Σ ∪ {c}, S ′,M ′)

where M ′ is the set of all matrices (3.1)-(3.2) generates the language

L(G ′) = {cw | w ∈ L(G)}, i.e., L(G) = ∂lc(L(G
′)).

By Corollary 3.9, L(G) is a semi-matrix language.

We summarize the results of the previous lemmas and Theorem 2.1.2

in [24] in the following theorem.

Theorem 3.12.MAT = sMAT ⊆ VEC ⊆ sMATλ = MATλ = VECλ.
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4
Extended cf Petri Net Controlled

Grammars

4.1 Introduction

Petri nets, which are graphical and mathematical modeling tools applicable

to many concurrent, asynchronous, distributed, parallel, nondeterministic

and stochastic systems, have widely been used in the study of formal lan-

guages. One of the fundamental approaches in this area is to consider Petri

nets as language generators. If the transitions in a Petri net are labeled

with a set of (not necessary distinct) symbols, a sequence of transition firing

generates a string of symbols. The set of strings generated by all possible

firing sequences defines a language called a Petri net language, which can

be used to model the flow of information and control of actions in a sys-

tem. With different kinds of labeling functions and different kinds of final

marking sets, various classes of Petri net languages were introduced and in-

vestigated by Hack [47] and Peterson [73]. The relationship between Petri

net languages and formal languages were thoroughly investigated by Peter-

son in [74]. It was shown that all regular languages are Petri net languages

and the family of Petri net languages are strictly included in the family of

context-sensitive languages but some Petri net languages are not context-

free and some context-free languages are not Petri net languages. It was
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also shown that the complement of a free Petri net language is context-free

[19].

Another approach to the investigation of formal languages was consid-

ered by Crespi-Reghizzi and Mandrioli [18]. They noticed the similarity

between the firing of a transition and application of a production rule in

a derivation in which places are nonterminals and tokens are separate in-

stances of the nonterminals. The major difference of this approach is the

lack of ordering information in the Petri net contained in the sentential

form of the derivation. To accommodate it, they defined the commutative

grammars, which are isomorphic to Petri nets. In addition, they considered

the relationship of Petri nets to matrix, scattered-context, nonterminal-

bounded, derivation-bounded, equal-matrix and Szilard languages in [20].

This idea was used in the following works. By extending the type of

Petri nets introduced in [18] with the places for the terminal symbols and

arcs for the control of nonterminal occurrences in sentential forms, Marek

and Češka showed that for every random-context grammar, an isomorphic

Petri net can be constructed, where each derivation of the grammar is sim-

ulated by some occurrence sequence of transitions of the Petri net, and

vice versa. In [59] the relationship between vector grammars and Petri

nets was investigated, partially, hybrid Petri nets were introduced and the

equality of the family of hybrid Petri net languages and the family of vec-

tor languages was shown. By reduction to Petri net reachability problems,

Hauschildt and Jantzen [48] could solve a number of open problems in

regulated rewriting systems, specifically, every matrix language without

appearance checking over one letter alphabet is regular and the finiteness

problem for the families of matrix and random context languages is decid-

able; In several papers [3, 4, 21, 34], Petri nets are used as minimization

techniques for context-free (graph) grammars. For instance, in [3] and [4],

algorithms to eliminate erasing and unit (chain) rules, algorithms to remove

useless rules using the Petri net concept are introduced.
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Petri nets have also been applied as control devices in grammar sys-

tems theory and automata theory. In [9], Beek and Kleijn demonstrated

that Petri nets may be used to control the derivations in grammar systems.

As a control mechanism they used a special type of a Petri net, called a

Generalized Individual Token Net Controller (GITNC), which is a labeled

Petri net with individual tokens – one for each component – which monitor

the progress of the components. The transitions of the GITNC are labeled

by vectors which describe a synchronous execution of components’ actions.

Such a vector label has one entry for each component: a nonempty en-

try represents an action to be executed by the corresponding component,

while an empty entry indicates that the component is not involved in the

synchronization. The occurrence of a transition implies a combined action

of those components whose tokens are used by the transition. A Petri net

grammar system was introduced as a system of grammars and a GITNC

which describes a concurrent protocol for rewriting in the participating

grammars. Each grammar of a PN grammar system has own sentential

form. The grammars collaborate by synchronizing their actions according

to the control exercised by the GITNC. A derivation in a PN grammar

system starts from the axioms of the grammars with the controller in an

initial marking. At each moment during the derivation rewritings are ap-

plied synchronously according to the labels of the transitions that occur.

When all components have derived a terminal string and the GITNC is in

one of its final markings, the derivation has been successful. The definition

of Petri net control mechanisms for grammar systems creates the possibility

for the study of concurrent rewriting protocols.

In [37, 38] concurrent Turing machines are introduced, where a Petri

net replaces a finite automaton as finite control therein each token in the

Petri net is associated with an individual tape head and tape heads can

only be distinguished if they are associated with tokens on different places

or have different positions on the tape. For the execution of a transition
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with multiple input tokens, thus involving more than one head, the heads

have to occupy the same position on the tape. Final marking and deadlock

acceptance conditions are investigated. In [38] it is shown that concurrent

Turing machines are equivalent to sequential Turing machines with respect

to the acceptable languages. The definition of the control by Petri nets in

Turing machines makes possible to use concurrency in automata theory,

which differentiates the concurrent model of a Turing machine from the

other kinds of its multi-head models. This model is also adopted to finite

automata [36, 57]: the tape heads corresponding to the tokens put into

the places of the post-condition of a transition point to the tape position

immediately to the right of the previous one, or – in the case of a λ-move

– to the same position.

Since a context-free grammar and its derivation process can also be

described by a Petri net, where places correspond to nonterminals, tran-

sitions are the counterpart of the production rules, and the tokens reflect

the occurrences of symbols in the sentential form, and there is a one-to-

one correspondence between the application of (sequence of) rules and the

firing of (sequence of) transitions, it is a very natural and very easy idea

to control the derivations in a context-free grammar by adding some fea-

tures to the associated Petri net. In the next section we introduce a Petri

net associated with a context-free grammar (i.e., a context-free Petri net)

and show that derivations of the grammar can be simulated by occurrence

sequences of the net. In Section 4.3 we construct Petri net control mecha-

nisms from cf Petri nets by adding new places, and define the corresponding

grammars, called k-Petri net controlled grammars. Furthermore, we in-

vestigate fundamental properties of the families of languages generated by

k-Petri net controlled grammars, in particular, we show that these families

form infinite hierarchy with respect to the numbers of additional places.

In section 4.4 we show that by adding some places and arcs which satisfy

special requirements, precisely, the new places with transitions of a cf Petri
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net form chains and cycles, one can generate families of vector, matrix and

semi-matrix languages. Thus the control by Petri nets can be considered

as a unifying approach to different types of control.

4.2 Context-Free Petri Nets

The construction of the following type of Petri nets is based on the idea

of using similarity between the firing of a transition and the application

of a production rule in a derivation in which places are nonterminals and

tokens are separate occurrences of nonterminals.

Definition 4.1. A context-free Petri net (in short, a cf Petri net) with

respect to a context-free grammar G = (V,Σ, S,R) is a septuple N =

(P, T , F,φ,β,γ, ι) where� (P, T , F,φ) is a Petri net;� labeling functions β : P → V and γ : T → R are bijections;� there is an arc from place p to transition t if and only if γ(t) = A→ α

and β(p) = A. The weight of the arc (p, t) is 1;� there is an arc from transition t to place p if and only if γ(t) = A→ α

and β(p) = x where |α|x > 0. The weight of the arc (t,p) is |α|x;� the initial marking ι is defined by ι(β−1(S)) = 1 and ι(p) = 0 for all

p ∈ P − {β−1(S)}.
Example 4.1. Let G1 be a context-free grammar with the rules:

r0 : S→ AB, r1 : A→ aAb, r2 : A→ ab, r3 : B→ cB, r4 : B→ c

(the other components of the grammar can be seen from these rules). Figure

4.1 illustrates a cf Petri net N with respect to G1. Obviously, L(G1) =

{anbncm | n,m > 1}.
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Figure 4.1: A cf Petri net N

The following proposition shows the similarity between terminal deriva-

tions in a context-free grammar and successful occurrences of transitions

in the corresponding cf Petri net.

Proposition 4.1. Let N = (P, T , F,φ, ι,β,γ) be the cf Petri net with re-

spect to a context-free grammar G = (V,Σ, S,R). Then S
r1r2···rn
=====⇒ w,

w ∈ Σ∗ is a derivation in G iff t1t2 · · · tn, ι t1t2···tn−−−−−→ µn, is an occur-

rence sequence of transitions in N such that γ(t1t2 · · · tn) = r1r2 · · · rn and

µn(p) = 0 for all p ∈ P.

Proof. Let S r1r2···rn
=====⇒ w,w ∈ Σ∗ be a derivation in the grammar G. By

induction on the number 1 6 k 6 n of derivation steps, we show that

t1t2 · · · tn with γ(t1t2 · · · tn) = r1r2 · · · rn is an occurrence sequence enabled

at ι and finished at the marking µn where µn(p) = 0 for all p ∈ P.

Let k = 1. S ⇒r1 w1, i.e., the sentential form w1 is obtained from

S by the application of a rule r1 : S → w1 ∈ R. Then the transition

t1 = γ−1(r1) also occurs as its input place β−1(S) has a token, i.e., by

definition, ι(β−1(S)) = 1. Let ι t1−→ µ1. Then for each A ∈ V, we have

µ1(p) = |w1|A where p = β−1(A).
Suppose S r1r2···rm

=====⇒ wm,wm ∈ (V ∪ Σ)∗, 1 6 m 6 k − 1 < n,

and t1t2 · · · tm be an occurrence sequence of transitions of N such that
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γ(t1t2 · · · tm) = r1r2 · · · rm. Consider case m = k. Then the transi-

tion tk = γ−1(rk), rk : A → α ∈ R, can fire since •tk = {β−1(A)} and

µk(β
−1(A)) = |wk|A > 0. If k = n, then µn(p) = 0 for all p ∈ P as

wn ∈ Σ∗, i.e., |wk|A = 0 for all A ∈ V.

Let ν = t1t2 · · · tn be an occurrence sequence of transitions of N enabled

at ι and finished at µn where µn(p) = 0 for all p ∈ P. By induction on the

number 1 6 k 6 n of occurrence steps we show that S r1r2···rn
=====⇒ w,w ∈ Σ∗,

is a derivation in G where r1r2 · · · rn = γ(t1t2 · · · tn).
For k = 1 we have ι t1−→ µ1. Then the rule r1 = γ−1(t1) : S → α ∈ R

can also be applied and S ⇒r1 w1 = α. By definition, for each A ∈ V,

|w1|A = µ1(β−1(A)).
We suppose that for 1 6 m 6 k − 1 < n, S r1r2···rm

=====⇒ wm ∈ (V ∪ Σ)∗ is

a derivation in G where r1r2 · · · rm = γ(t1t2 · · · tm). Then for each A ∈ V

and 1 6 i 6 m, |wi|A = µi(p) where A = β(p). If m = k, the rule

rk : A → α ∈ R, rk = γ(tk), can be applied since |wk|A > 0. For k = n,

µn(p) = 0 for all p ∈ P and consequently, |wn|A = µn(β
−1(A)) = 0 for all

A ∈ V, i.e., wn ∈ Σ∗.

4.3 k-Petri Net Controlled Grammars

4.3.1 Definitions and Examples

Now we define a k-Petri net, i.e., a cf Petri net with additional k places

and additional arcs from/to these places to/from transitions of the net, the

pre-sets and post-sets of the additional places are disjoint.

Definition 4.2. Let G = (V,Σ, S,R) be a context-free grammar with its

corresponding cf Petri net N = (P, T , F,φ,β,γ, ι). Let k be a positive

integer and let Q = {q1,q2, . . . ,qk} be a set of new places called counters.

A k-Petri net is a construct Nk = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ) where
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4.3. K-PETRI NET CONTROLLED GRAMMARS� E = {(t,qi) | t ∈ T i1 , 1 6 i 6 k} ∪ {(qi, t) | t ∈ T i2 , 1 6 i 6 k} such

that T i1 ⊂ T and T i2 ⊂ T , 1 6 i 6 k where T il ∩ T
j
l = ∅ for 1 6 l 6 2,

T i1 ∩ T j2 = ∅ for 1 6 i < j 6 k and T i1 = ∅ if and only if T i2 = ∅ for any1 6 i 6 k.� the weight function ϕ(x,y) is defined by ϕ(x,y) = φ(x,y) if (x,y) ∈ F
and ϕ(x,y) = 1 if (x,y) ∈ E,� the labeling function ζ : P ∪Q→ V ∪ {λ} is defined by ζ(p) = β(p) if

p ∈ P and ζ(p) = λ if p ∈ Q,� the initial marking µ0 is defined by µ0(β−1(S)) = 1 and µ0(p) = 0 for

all p ∈ P ∪Q− {β−1(S)},� τ is the final marking where τ(p) = 0 for all p ∈ P ∪Q.

Definition 4.3. A k-Petri net controlled grammar is a quintuple G =

(V,Σ, S,R,Nk) where V,Σ, S,R are defined as for a context-free grammar

and Nk is a k-PN with respect to the context-free grammar (V,Σ, S,R).
Definition 4.4. The language generated by a k-Petri net controlled gram-

mar G consists of all strings w ∈ Σ∗ such that there is a derivation

S
r1r2···rn
=====⇒ w where t1t2 · · · tn = γ−1(r1r2 · · · rn) ∈ T∗

is an occurrence sequence of the transitions of Nk enabled at the initial

marking ι and finished at the final marking τ.

(This definition uses the extended form of the transition labeling func-

tion γ : T∗ → R∗; this extension is done in the usual manner.)

We denote the family of languages generated by k-PN controlled gram-

mars (with erasing rules) by PNk (PNλ
k), k > 1.

We give two examples which will be used in the sequel.
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Figure 4.2: A 1-Petri net N1
Example 4.2. Figure 4.2 illustrates a 1-Petri net N1 which is constructed

from the cf Petri net N in Figure 4.1 adding a single counter place q. Let

G2 = (V,Σ, S,R,N1) be the 1-Petri net controlled grammar where V,Σ, S,R
are defined as for the grammar G1 in Example 4.1. It is not difficult to see

that L(G2) = {anbncn | n > 1}.
Example 4.3. Let G3 be a 2-PN controlled grammar with the production

rules:

r0 : S→ A1B1A2B2, r1 : A1 → a1A1b1, r2 : A1 → a1b1,
r3 : B1 → c1B1, r4 : B1 → c1, r5 : A2 → a2A2b2,
r6 : A2 → a2b2, r7 : B2 → c2B2, r8 : B2 → c2

and the corresponding 2-Petri net N2 is given in Figure 4.3. Then it is easy

to see that G3 generates the language

L(G3) = {an1 bn1 cn1 am2 bm2 cm2 | n,m > 1}.
Lemma 4.2. The language L ′ = {an1 bn1 cn1 am2 bm2 cm2 | n,m > 1} cannot be

generated by a 1-PN controlled grammar.

Proof. Suppose the contrary: there is a 1-Petri net controlled grammar
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Figure 4.3: A 2-Petri net N2
G = (V,Σ, S,R,N1) where Σ = {a1,b1, c1,a2,b2, c2} such that L(G) = L ′.

Let w = an1 bn1 cn1 am2 bm2 cm2 . Since the set V is finite, and if n and m

are chosen sufficiently large, every derivation S ⇒∗ w in G contains a

subderivation of the form D: A ⇒∗ xAy where A ∈ V and x,y ∈ Σ∗ with

xy 6= λ. As L ′ is infinite, there are words with enough large length obtained

by iterating such a derivation D arbitrarily many times. Suppose

S⇒∗ uAv⇒∗ uxAyv⇒∗ · · · ⇒∗ uxnAynv⇒∗ w ′ ∈ Σ∗
�

�

�

�4.1

is also a derivation in G. Then xn and yn are substrings of w ′. By the

structure of the words of L ′, x and y can be only powers of two symbols from

Σ ∪ {λ}. Therefore, in order to generate a word w = an1 bn1 cn1 am2 bm2 cm2 ∈ L ′

for large n and m, we need at least three subderivations of the form

D1 :A1 ⇒∗ x1A1y1, �

�

�

�4.2

D2 :A2 ⇒∗ x2A2y2, �

�

�

�4.3

D3 :A3 ⇒∗ x3A3y3 �

�

�

�4.4
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where x1, x2, x3,y1,y2,y3 are powers of the symbols from Σ, i.e.,

xi = α
ki

i and yi = β
li
i where αi,βi ∈ Σ and ki + li > 1, i = 1, 2, 3.

First, we assume that (4.1) has exactly three subderivations of the form

(4.2)–(4.4). According to the production and consumption of tokens by the

subderivations (4.2)–(4.4) the following cases can occur:

Case 1. One of the derivations (4.2)–(4.4) does not produce and consume

any token. Without loss of generality we can assume that this derivation

is (4.2). If S ⇒∗ uA1v ⇒∗ uwv ∈ L ′, then for any k > 1 we apply (4.2) k

times and get a string which is not in L ′, i.e.,

S⇒∗ uA1v⇒∗ ux1A1y1v⇒∗ ux21A1y21v⇒∗ uxk1A1yk1 v⇒∗ uxk1wyk1 v 6∈ L ′

since (4.2) increases only the powers of at most two letters.

Case 2. One of the subderivations (4.2)–(4.4) produces tokens and another

one consumes tokens. Without loss of generality we assume that (4.2)

produces p > 1 tokens and (4.3) consumes q > 1 tokens.

Suppose

S⇒∗ u1A1u2A2u3 ⇒∗ u1w1u2w2u3 ∈ L ′.
Then the derivation

S⇒∗ u1A1u2A2u3
⇒∗ u1x1A1y1u2A2u3 ⇒∗ u1xk1A1yk1u2A2u3
⇒∗ u1xk1A1yk1u2x2A2y2u3 ⇒∗ u1xk1A1yk1u2xl2A2yl2u3
⇒∗ u1xk1w1yk1u2xl2w2yl2u3

where k, l > 1, is also in G. It can be done by choosing the numbers k, l
in such a way, that kp − lq = 0, thus we can choose k and l as k = q and

l = p and still get a string w ′ ∈ L ′. Now
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4.3. K-PETRI NET CONTROLLED GRAMMARS� if 1 6 |{α1,β1,α2,β2}∩ {ai,bi, ci}| 6 2, i = 1 or i = 2 then w ′ 6∈ L ′ as

the powers of at most two symbols are increased;� if {α1,β1,α2,β2} ∩ {ai,bi, ci} 6= ∅ for both i = 1 and i = 2 then1 6 |{α1,β1,α2,β2} ∩ {ai,bi, ci}| 6 2 for i = 1 or i = 2 and again

w ′ 6∈ L ′.

From the above it follows that {α1,β1,α2,β2} = {ai,bi, ci, λ} for i = 1
or i = 2. Without loss of generality we assume that i = 1. But from the

subderivation (4.4) (which produces or consumes tokens) it follows that

α3,β3 6∈ {a1,b1, c1} and at least one of them belongs to {a2,b2, c2}. Again

we get the contradiction since (4.4) can increase the powers of at most two

symbols from {a2,b2, c2}. If the derivation has the form

S⇒∗ u1A1u4 ⇒∗ u1u2A2u3u4 ⇒∗ u1u2wu3u4,
then one gets that {x1,y1, x2,y2} contains only two elements from Σ and a

contradiction follows as above.

Case 3. Two of the subderivations of (4.2)–(4.4) produce (consume) to-

kens and the other consumes (produces). Without loss of generality we

assume that (4.2) and (4.3) produces p1 and p2 tokens, respectively and

(4.4) consumes q tokens. If

S⇒∗ u1A1u2A2u3A3u4 ⇒∗ u1w1u2w2u3w3u4 ∈ L ′,
then the derivation

S⇒∗ u1A1u2A2u3A3u4
⇒∗ u1x1A1y1u2x2A2y2u3x3A3y3u4
⇒∗ u1xk11 A1yk11 u2xk22 A2yk22 u3xl3A3yl3u4
⇒∗ u1xk11 w1yk11 u2xk22 w2yk22 u3xl3w3yl3u4 = w ′

�

�

�

�4.5
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is also in G. By the definition of the final marking, we have k1p1 + k2p2 −
lq = 0. For instance, if we choose k1, k2, l as k1 = p2q, k2 = p1q and

l = 2p1p2, this equality holds. By structure of a derivation there are two

possibilities:

{α1,β1,α2,β2,α3,β3} = {a1,b1, c1,a2,b2, c2, λ} �

�

�

�4.6

or

{α1,β1,α2,β2,α3,β3} = {ai,bi, ci, λ} where i = 1 or i = 2. �

�

�

�4.7

Consider (4.6), here we only have the case α1 = a1, β1 = b1, α2 = c1,
β2 = a2, α3 = b2 and β3 = c2. It follows that the powers of all symbols

of w ′ are the same. But from (4.5), by continuing the derivation, we get a

string which is not in L ′:

S⇒∗ u1xk11 A1yk11 u2xk22 A2yk22 u3xl3A3yl3u4
⇒∗ u1xk11 w1yk11 u2xk22 w2yk22 u3xl3A3yl3u4
⇒∗ u1xk11 w1yk11 u2xk22 w2yk22 u3x2l3 A3y2l3 u4
⇒∗ u1xk11 w1yk11 u2x2k22 w2y2k22 u3x3l3 w3y3l3 u4 6∈ L ′

where the powers of four symbols are increased.

Now consider (4.7). Let i = 1. From Case 2, we can conclude that one

of the following three cases is possible:

(a) {α1,β1} = {a1,b1}, {α2,β2} = {λ}, {α3,β3} = {c1, λ},
(b) {α1,β1} = {λ}, {α2,β2} = {a1,b1}, {α3,β3} = {c1, λ},
(c) {α1,β1} = {a1, λ}, {α2,β2} = {b1, λ}, {α3,β3} = {c1, λ}.

Cases (a) and (b) are similar to Case 2. If we choose k1 = 3p2l,
k2 = 2p1l and q = 5p1p2 in case (c), we again get different powers for

symbols a1,b1, c1, i.e., w ′ 6∈ L ′.
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Next, we analyze the general case: let the derivation (4.1) have n > 4
subderivations of the form Di : Ai → xiAiyi where Ai ∈ V, xi = αli

i and

yi = β
l ′i
i , αi,βi ∈ Σ, li + l ′i > 1, 1 6 i 6 n. Without loss of generality we

can assume that for some 1 6 s 6 n − 1, the derivations Di, 1 6 i 6 s,

produce pi tokens and the derivations Dj, s+1 6 j 6 n, consume qj tokens.

If

S⇒∗ u1A1u2A2u3 · · ·unAnun+1
⇒∗ u1w1u2w2u3 · · ·unwnun+1 = w ∈ L ′, �

�

�

�4.8

then by assumption,

S⇒∗ u1A1u2A2u3 · · ·unAnun+1
⇒∗ u1x1A1y1u2x2A2y2u3 · · ·unxnAnynun+1
⇒∗ u1xk11 A1yk11 u2xk22 A2yk22 u3 · · ·unx

kn
n Any

kn
n un+1

⇒∗ u1xk11 w1yk11 u2xk22 w2yk22 u3 · · ·unx
kn
n wny

kn
n un+1 = w ′ ∈ L ′. �

�

�

�4.9

According to the definition of the final marking, we have

s∑

i=1 kipi − n∑

i=s+1 kiqi = 0.
and

{α1,β1,α2,β2, . . . ,αn,βn} = {a1,b1, c1,a2,b2, c2, λ}.
If for some 1 6 i 6 n, αi = c1 and βi = a2, then all symbols in w ′

have the same power. Then by continuing two subderivations one of which

produces tokens and the other consumes, one increases the powers of at

most four symbols, and get a string w ′′ 6∈ L ′.

Let, for some 2 6 i 6 n− 2,
{α1,β1,α2,β2, . . . ,αi,βi} = {a1,b1, c1, λ} �

�

�

�4.10
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and

{αi+1,βi+1,αi+2,βi+2, . . . ,αn,βn} = {a2,b2, c2, λ}. �

�

�

�4.11

It follows that at least one of the subderivations which generate symbols

in (4.10) (symbols in (4.11)) produces and another subderivation consumes

tokens, since symbols ai,bi, ci, i = 1, 2, have the same power. Then the

tokens produced by a subderivation Dj, for some 1 6 j 6 i, can be con-

sumed by a subderivation Dk, for some i + 1 6 k 6 n as the both group

of subderivations use the same counter, which result that the powers of at

most two symbols from a1,b1, c1 and a2,b2, c2 are increased, i.e., a string

w ′ 6∈ L ′ is generated. In all cases, we get contradiction to our assumption

L ′ = L(G).

4.3.2 Hierarchy Results

We start with a simple fact.

Lemma 4.3. CF ⊂ PN1.
Proof. It is clear that CF ⊆ PN1 if we take T1 = T2 = ∅. From Example

4.2 it follows that CF ⊂ PN1.
Now we present some relations to (positive) additive valence languages.

Lemma 4.4. PN[λ]1 ⊆ pV[λ].

Proof. Let G = (V,Σ, S,R,N1) be a 1-PN controlled grammar (with or

without erasing rules) where N1 = (P∪ {q}, T , F∪E,ϕ, ζ,γ,µ0, τ) is a corre-

sponding 1-Petri net with the counter q (with the notions of Definition 4.2).

We define a positive valence grammar G ′ = (V,Σ, S,R, v) where V,Σ, S,R
are defined as for the grammar G and for each r ∈ R, the mapping v is

defined by
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4.3. K-PETRI NET CONTROLLED GRAMMARS

v(r) =







1 if γ−1(r) ∈ •q,
−1 if γ−1(r) ∈ q•,0 otherwise.

Let S π
=⇒ w,w ∈ Σ∗, π = r1r2 · · · rk, be a derivation in G. Then ν =

t1t2 · · · tk = γ−1(r1r2 · · · rk) is an occurrence sequence of transitions of N1
enabled at the initial marking µ0 and finished at the final marking τ, i.e.,

µ0 t1−→ µ1 t2−→ · · ·
tk−→ µk = τ

By definition, if |ν|t > 0 for some t ∈ •q then there is a transition t ′ ∈ q•

such that |ν|t ′ > 0. Let

U1 = {t1,1, t1,2, . . . , t1,k1} ⊆ •q where |ν|t1,j > 0, 1 6 j 6 k1
and

U2 = {t2,1, t2,2, . . . , t2,k2} ⊆ q• where |ν|t2,j > 0, 1 6 j 6 k2.
Since µi(q) > 0 for each occurrence step 1 6 i 6 k, we have |ν|U1 > |ν|U2 ,
consequently, v(r1) + v(r2) + . . . + v(rj) > 0 for any 1 6 j < k and from

µ0(q) = τ(q) = 0, τ ∈M, it follows that

∑

t∈U1 |ν|t − ∑

t∈U2 |ν|t def
=

k∑

i=1 v(ri) = 0.
Hence, L(G) ⊆ L(G ′).

Let D : S
r1r2···rk
=====⇒ w ∈ Σ∗ be a derivation in G ′ where v(r1) + v(r2) +. . . + v(rk) = 0 and v(r1) + v(r2) + . . . + v(rj) > 0 for any 1 6 j < k. By

construction of G ′, D is also a derivation in (V,Σ, S,R).
According to the bijection γ : T → R, there is an occurrence sequence

ν = t1t2 · · · tk, µ t1−→ µ1 t2−→ · · ·
tk−→ µk, in N1 such that ν = γ−1(r1r2 · · · rk).
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4.3. K-PETRI NET CONTROLLED GRAMMARS

µ = µ0 since D starts from S, i.e., µ0(β−1(S)) = 1 and µ0(β−1(x)) = 0
for all x ∈ (V ∪ Σ) − {S} as well as µ0(q) = 0.

Since w ∈ Σ∗, we have µk(β
−1(x)) = 0 for all x ∈ V. From

∑j
i=1 v(ri) >0, it follows that µj(q) > 0 for any 1 6 j < k.

k∑

i=1 v(ri) def
=

∑

γ−1(r)∈ •q

v(r) +
∑

γ−1(r)∈q•

v(r) = 0
shows that µk(q) = 0. Therefore µk = τ. Consequently, L(G ′) ⊆ L(G).

Lemma 4.5. aV[λ] ⊂ PN[λ]2 .

Proof. Let G = (V,Σ, S,R, v) be an additive valence grammar (with or

without erasing rules). Without loss of generality we can assume that

v(r) ∈ {1, 0,−1} for each r ∈ R (Lemma 2.1.10 in [24]).

For each rule r : A→ α ∈ R, v(r) 6= 0 we add a nonterminal symbol Ar

and a pair of rules r ′ : A→ Ar, r ′′ : Ar → α and we set

V ′ =V ∪ {Ar | r : A→ α ∈ R, v(r) 6= 0},
R ′ =R ∪ {r ′ : A→ Ar, r ′′ : Ar → α | r : A→ α ∈ R, v(r) 6= 0}.

Let N = (P, T , F,φ,β,γ, ι) be a cf Petri net with respect to the context-

free grammar (V ′,Σ, S,R ′). We construct a 2-Petri net N2 = (P ∪Q, T , F∪
E,ϕ, ζ,γ,µ0, τ) where Q = {q,q ′} and E = F1 ∪ F2 with

F1 ={(t,q) | t = γ−1(r), r ∈ R and v(r) = 1}
∪ {(t ′,q ′) | t ′ = γ−1(r ′), r ∈ R and v(r) = −1},

F2 ={(q, t) | t = γ−1(r), r ∈ R and v(r) = −1}
∪ {(q ′, t ′) | t ′ = γ−1(r ′), r ∈ R and v(r) = 1}.

The rest components of N2 are defined the same as those in the defini-

tion. Consider the 2-PN controlled grammar G ′ = (V ′,Σ, S,R ′,N2).
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4.3. K-PETRI NET CONTROLLED GRAMMARS

Let D : S
π
=⇒ w,w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G ′. Then

σ = t1t2 · · · tn = γ−1(r1r2 · · · rn) is an occurrence sequence enabled at the

initial marking µ0 and finished at the final marking τ. By construction,

n∑

i=1 v(ri) = ∑

t∈ •q

|σ|t +
∑

t∈q ′•

|σ|t −
∑

t∈q•

|σ|t −
∑

t∈ •q ′

|σ|t = 0
since

∑

t∈ •q

|σ|t =
∑

t∈q•

|σ|t =

n∑

i=1 µi(q) and
∑

t∈ •q ′

|σ|t =
∑

t∈q ′•

|σ|t =

n∑

i=1 µi(q
′).

It follows that D is also a derivation in G.

Let D ′ : S
r1r2···rn
=====⇒ w,w ∈ Σ∗ be a derivation in G. For each 1 6 k 6 n,

(1) if
∑k

i=1 v(ri) > 0, then for the rule rk with v(rk) ∈ {1, 0,−1} in G

choose the rule rk in G ′;

(2) if
∑k

i=1 v(ri) < 0, then for the rule rk with v(rk) 6= 0 in G choose the

rules r ′k and r ′′k in G ′; if v(rk) = 0 then choose rk in G ′.

(3) if
∑k

i=1 v(ri) = 0, then for the rule rk with v(rk) ∈ {−1, 0} in G choose

the rule rk in G ′; if v(rk) = 1, then choose r ′k, r ′′k in G ′.

Therefore D ′ is also a derivation in G ′. The strict inclusion follows from

the fact that {an1 bn1 cn1 am2 bm2 cm2 | n,m > 1} ∈ PN2 cannot be generated by

an additive valence grammar (Example 2.1.7 in [24]).

The following lemma shows that, for any n > 1, an n-PN controlled

grammar generates a vector language.

Lemma 4.6. For n > 1, PN[λ]
n ⊆ VEC[λ].

Proof. Let G = (V,Σ, S,R,Nn) be an n-PN controlled grammar (with or

without erasing rules) where Nn = (P ∪ Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ). Let
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4.3. K-PETRI NET CONTROLLED GRAMMARS

Q = {q1,q2, . . . ,qn} and

•qk = {tk,1,1, tk,1,2, . . . , tk,1,s(k)}
where tk,1,i = γ−1(rk,1,i), rk,1,i : Ak,1,i → wk,1,i, 1 6 k 6 n, 1 6 i 6 s(k),

and

q•k = {tk,2,1, tk,2,2, . . . , tk,2,l(k)}
where tk,2,j = γ−1(rk,2,j), rk,2,j : Ak,2,j → wk,2,j, 1 6 k 6 n, 1 6 j 6 l(k).

Let

β(pk,1,i) = Ak,1,i, 1 6 k 6 n, 1 6 i 6 s(k)

and

β(pk,2,j) = Ak,2,j, 1 6 k 6 n, 1 6 j 6 l(k).
First, we construct a PN controlled grammar G ′ = (V ′,Σ, S,R ′,N ′) in

such a way that each counter place of N ′ has a single input transition and a

single output transition, and we show that the grammarsG and G ′ generate

the same language.

We set

V ′ = V ∪ {Bk,i,j,Ck,j,i | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

where Bk,i,j and Ck,j,i, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k), are new

nonterminals. R ′ consists of the following rules

R ′ = (R− {rk,1,i, rk,2,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)})

∪ {r ′k,1,i,j : Ak,1,i → Bk,i,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

∪ {r ′′k,1,i,j : Bk,i,j → wk,1,i | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

∪ {r ′k,2,j,i : Ak,2,j → Ck,j,i | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

∪ {r ′′k,2,j,i : Ck,j,i → wk,2,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}
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and N ′ = (P ′ ∪Q ′, T ′, F ′,ϕ ′, ζ ′,γ ′,µ ′0, τ ′) where the sets of places, transi-

tions and arcs

P ′ =P ∪ {pk,1,i,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

∪ {pk,2,j,i | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)},
Q ′ ={qk,i,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)},
T ′ =(T −

n
⋃

k=1(•qk ∪ q•k))

∪ {t ′k,1,i,j, t ′′k,1,i,j | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)}

∪ {t ′k,2,j,i, t ′′k,2,j,i | 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)},
F ′ = (F ∪ E−

n
⋃

k=1({(pk,1,i, tk,1,i), (tk,1,i,qk) | 1 6 i 6 s(k)}

∪ {(tk,1,i,p) | p = ζ−1(x), |wk,1,i|x > 0, 1 6 i 6 s(k)}

∪ {(qk, tk,2,j), (pk,2,j, tk,2,j) | 1 6 j 6 l(k)}

∪ {(tk,2,j,p) | p = ζ−1(x), |wk,2,j|x > 0, 1 6 j 6 l(k)}))

∪

n
⋃

k=1 s(k)
⋃

i=1 l(k)
⋃

j=1({(pk,1,i, t ′k,1,i,j), (t ′k,1,i,j,pk,1,i,j), (pk,1,i,j, t ′′k,1,i,j),
(t ′′k,1,i,j,qk,i,j)} ∪ {(t ′′k,1,i,j,p) | p = ζ−1(x), |wk,1,i|x > 0})

∪

n
⋃

k=1 l(k)
⋃

j=1 s(k)
⋃

i=1 ({(pk,2,j, t ′k,2,j,i), (t ′k,1,j,i,pk,2,j,i), (pk,2,j,i, t ′′k,2,j,i),
(t ′′k,2,j,i,qk,i,j)} ∪ {(t ′′k,2,j,i,p) | p = ζ−1(x), |wk,2,j|x > 0}).
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4.3. K-PETRI NET CONTROLLED GRAMMARS� The weight function is defined by

ϕ ′(x,y) =






ϕ(x,y) if (x,y) ∈ F,
ϕ(tk,1,i,p) if x = tk,1,i,j,y = p = ζ−1(x), |wk,1,i|x > 0,1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),
ϕ(tk,2,j,p) if x = tk,2,j,i,y = p = ζ−1(x), |wk,2,j|x > 0,1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),1 otherwise.� The labeling functions are defined by

ζ ′(p) =







ζ(p) if p ∈ P,
Bk,i,j if p = pk,1,i,j, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),
Ck,j,i if p = pk,2,j,i, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),
λ, if p = qk,i,j, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k)

and

γ ′(t) =







γ(t) if t ∈ T ,
r ′k,1,i,j if t = t ′k,1,i,j, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),
r ′′k,1,i,j if t = t ′′k,1,i,j, 1 6 k 6 n, 1 6 i 6 s(k), 1 6 j 6 l(k),
r ′k,2,j,i if t = t ′k,2,j,i, 1 6 k 6 n, 1 6 j 6 l(k), 1 6 i 6 s(k),
r ′′k,2,j,i if t = t ′′k,2,j,i, 1 6 k 6 n, 1 6 j 6 l(k), 1 6 i 6 s(k).� The initial marking is defined by µ ′0(ζ−1(S)) = 1 and µ ′0(p) = 0 for

all p ∈ P ′ ∪Q ′ − {ζ−1(S)}.� The final marking is defined by τ ′(p) = 0 for all p ∈ P ′ ∪Q ′.
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4.3. K-PETRI NET CONTROLLED GRAMMARS

By the construction of N ′, an occurrence sequence of the form

µ1 t ′
k,1,i,j

−−−→ µ2 σ ′

−→ µ3 t ′′
k,1,i,j

−−−→ µ4 σ ′′

−→ µ5 t ′′
k,2,j,i

−−−→ µ6 σ ′′′

−−→ µ7 t ′
k,2,j,i

−−−→ µ8 �

�

�

�4.12

where σ ′,σ ′′,σ ′′′ ∈ T ′∗ can be replaced by

µ1 t ′
k,1,i,j

−−−→ µ2 t ′′
k,1,i,j·σ ′

−−−−−→ µ4 σ ′′

−→ µ5 σ ′′′·t ′′
k,2,j,i

−−−−−−→ µ7 t ′
k,2,j,i

−−−→ µ8. �

�

�

�4.13

Then, it is clear that (4.13) can be replaced in Nn by

µ1 tk,1,i
−−−→ µ ′ σ ′·σ ′′·σ ′′′

−−−−−→ µ ′′ tk,2,j
−−−→ µ8.

Conversely, an occurrence sequence of the form

µ1 tk,1,i
−−−→ µ2 σ

−→ µ3 tk,2,j
−−−→ µ4

in Nn can be replaced in N ′ by

µ1 t ′
k,1,i,j

−−−→ µ ′
t ′′
k,1,i,j

−−−→ µ2 σ
−→ µ3 t ′

k,2,j,i
−−−→ µ ′′

t ′′
k,2,j,i

−−−→ µ4.
Correspondingly, without loss of generality we can change the order of the

application of rules of derivations in the grammars G and G ′. Therefore,

L(G) = L(G ′).

Now we show that the grammar G ′ generates a vector language. By the

construction of N ′, |•q| = |q•| = 1 for all q ∈ Q ′.

We associate with each pair of rules r1, r2 ∈ R ′ where r1 = γ ′(t1), t1 ∈ •q

and r2 = γ ′(t2), t2 ∈ q•, q ∈ Q ′, the matrix m = (r1, r2) and with each

rule r ∈ R ′− {r ′ = γ ′(t ′) | t ′ ∈ •Q ′∪Q ′•}, the matrixm = (r). We consider

a vector grammar G ′′ = (V ′,Σ, S,M) where M is the set of all matrices

constructed above.

Let S π
=⇒ w,w ∈ Σ∗, π = r1r2 · · · rn, is a derivation in G ′ where ι ν

−→ τ

with ν = t1t2 · · · tn = γ ′−1(π).
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4.3. K-PETRI NET CONTROLLED GRAMMARS

Let •q = {t} and q• = {t ′} for some q ∈ Q ′. If t in ν, i.e., |ν|t > 0 then

t ′ is also in ν and |t1t2 · · · tk|t > |t1t2 · · · tk|t ′ for each 1 6 k 6 n, moreover,

by the definition of the final marking, |ν|t = |ν|t ′ . By the bijection γ ′,

m = (r, r ′), r = γ ′(t), r ′ = γ ′(t ′) is in π and |r1r2 · · · rk|r > |r1r2 · · · rk|r ′ for

each 1 6 k 6 n as well as |π|r = |π|r ′. Hence, π ∈ Shuf∗(M).

Let S π
=⇒ w,w ∈ Σ∗, π = r1r2 · · · rn ∈ Shuf∗(M), be a derivation in

G ′′ then again by the bijection γ ′, ν = t1t2 · · · tn = γ−1(r1r2 · · · rn) is an

occurrence sequence of transitions of N ′: µ0 ν
−→ µn. Since the derivation

π starts from S (i.e., S is the only symbol at the starting sentential form),

µ0(β−1(S)) = 1 and µ0(p) = 0 for all p ∈ P − {β−1(S)}. It follows that

µ0 = µ ′0. On the other hand, from w ∈ Σ∗, it follows that µn(β
−1(x)) = 0

for all x ∈ V. From π ∈ Shuf∗(M), if the rules r, r ′ of a matrix m = (r, r ′)
in π then |r1r2 · · · rk|r > |r1r2 · · · rk|r ′ for each 1 6 k 6 n and |π|r = |π|r ′ .

By the bijection γ, |t1t2 · · · tk|t > |t1t2 · · · tk|t ′ for each 1 6 k 6 n where

t = γ−1(r), γ−1(r ′) and |ν|t = |ν|t ′ . It follows that µn(q) = 0 for all q ∈ Q ′.

Hence, µn = τ ′.

Theorem 4.7. For k > 1, PN[λ]

k ⊂ PN[λ]

k+1.
Proof. We first prove that PN[λ]1 ⊆ PN[λ]2 .

Let G = (V,Σ, S,R,N1) be a 1-PN controlled grammar (with or without

erasing rules) where N1 = (P ∪ {q}, T , F ∪ E,ϕ, ζ,γ,µ0, τ) 1-Petri net with

the counter place q. Let

•q = {t1,1, t1,2, . . . , t1,k1}, k1 > 1 and q• = {t2,1, t2,2, . . . , t2,k2}, k2 > 1
where ti,j = γ−1(ri,j), ri,j : Ai,j → wi,j, 1 6 i 6 2, 1 6 j 6 ki and by

definition •q ∩ q• = ∅. Let pi,j = ζ−1(Ai,j), 1 6 i 6 2, 1 6 j 6 ki.

We set

V ′ = V ∪ {Bi,j | 1 6 i 6 2, 1 6 j 6 ki}

where Bi,j, 1 6 i 6 2, 1 6 j 6 ki, are new nonterminal symbols, introduced
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4.3. K-PETRI NET CONTROLLED GRAMMARS

for each transition ti,j.
For each rule ri,j : Ai,j → wi,j, 1 6 i 6 2, 1 6 j 6 ki, we add the new

rules r ′i,j : Ai,j → Bi,j, r ′′i,j : Bi,j → wi,j. Let R ′ be the set of all rules of R

and all rules constructed above, i.e.,

R ′ = R∪{r ′1,j : A1,j → B1,j | γ−1(A1,j → w1,j) ∈ •q, 1 6 j 6 k1}
∪{r ′′1,j : B1,j → w1,j | γ−1(A1,j → w1,j) ∈ •q, 1 6 j 6 k1}
∪{r ′2,j : A2,j → B2,j | γ−1(A2,j → w2,j) ∈ q•, 1 6 j 6 k2}
∪{r ′′2,j : B2,j → w2,j | γ−1(A2,j → w2,j) ∈ q•, 1 6 j 6 k2}.

We construct a 2-PN controlled grammar G ′ = (V ′,Σ, S,R ′,N2) where

V ′ and R ′ are defined above and N2 = (P ′, T ′, F ′,ϕ ′, ζ ′,γ ′,µ ′0, τ ′) is con-

structed as follows:

P ′ = P∪{p ′
i,j | 1 6 i 6 2, 1 6 j 6 ki} ∪ {q,q ′},

T ′ = T∪{t ′i,j, t ′′i,j | 1 6 i 6 2, 1 6 j 6 ki},
F ′ = F∪

2
⋃

i=1 ki
⋃

j=1({(pi,j, t ′i,j), (t ′i,j,p ′
i,j), (p ′

i,j, t ′′i,j)}
∪ {(t ′′i,j,p) | p = ζ−1(x), |wi,j|x > 0})
∪ {(t ′′1,j,q ′) | 1 6 j 6 k1} ∪ {(q ′, t ′′2,j) | 1 6 j 6 k2}.

For the weight function we set

ϕ ′(x,y) = 





ϕ(x,y) if (x,y) ∈ F,
ϕ(ti,j,p) if x = t ′′i,j,y = p = ζ−1(x), |wi,j|x > 0,1 6 i 6 2, 1 6 j 6 ki,1 otherwise.

The initial and final markings are defined by µ ′0(ζ ′−1(S)) = 1, µ ′0(p) = 0
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4.3. K-PETRI NET CONTROLLED GRAMMARS

for all p ∈ P ′ − {ζ ′−1(S)} and τ ′(p) = 0 for all p ∈ P ′.

The inclusion L(G) ⊆ L(G ′) is obvious, which directly follows from the

construction of G ′.

Let S π
=⇒ w,w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G ′ with the

occurrence sequence ν = t1t2 · · · tn = ζ ′−1(π) of transitions of N2 enabled

at the initial marking µ ′0 and finished at the final marking τ ′. It is clear

that for some 1 6 i 6 2, 1 6 j 6 ki, if a rule r ′i,j : Ai,j → Bi,j in π,

i.e., |π|r ′
i,j > 0, then the rule r ′′i,j : Bi,j → wi,j is also in π, i.e., |π|r ′′

i,j > 0,
moreover, |π|r ′

i,j = |π|r ′′
i,j . Without loss of generality we can assume that a

rule r ′′i,j is the next to a rule r ′i,j in π (as to the nonterminal Bi,j only the rule

r ′′i,j is applicable and we can change the order in which the derivation π is

used). Then we can replace any derivation steps of the form x1Ai,jx2 ⇒r ′
i,j

x1Bi,jx2 ⇒r ′′
i,j x1wi,jx2 by x1Ai,jx2 ⇒ri,j x1wi,jx2.

Accordingly, the occurrence sequence t ′i,jt ′′i,j, µ t ′
i,j

−→ µ ′
t ′′
i,j

−→ µ ′′, is re-

placed by ti,j, µ ti,j
−→ µ ′′, where ti,j = γ ′−1(ri,j), t ′i,j = γ ′−1(r ′i,j) and

t ′′i,j = γ ′−1(r ′′i,j), 1 6 i 6 2, 1 6 j 6 ki. Clearly, L(G ′) ⊆ L(G).

Let us consider the general case k > 1. Let G = (V,Σ, S,R,Nk) be a

k-Petri net controlled grammar where Nk = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ)
is a k-Petri net with Q = {q1,q2, . . . ,qk}. We can repeat the arguments of

the proof for k = 1 considering qk instead of q and adding the new counter

place qk+1.
For k > 1, let the language Lk be defined by

Lk = {

k∏

i=1 ani

i b
ni

i c
ni

i | ni > 1, 1 6 i 6 k}.
Then we can show analogously to Example 4.3 and Lemma 4.2 that, for

k > 1,
Lk+1 ∈ PNk+1 and Lk+1 6∈ PNk.

Thus the inclusions are strict.
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4.3. K-PETRI NET CONTROLLED GRAMMARS

4.3.3 Closure Properties

We define the following binary form for k-PN controlled grammars, which

will be used in some of the next proofs.

Definition 4.5. A k-Petri net controlled grammar G = (V,Σ, S,R,Nk) is

said to be in a binary form if for each rule A → α ∈ R the length of α is

not greater than 2, i.e., |α| 6 2.
Lemma 4.8 (Binary Form). For each k-Petri net controlled grammar there

exists an equivalent k-Petri net controlled grammar in the binary form.

Proof. Let G = (V,Σ, S,R,Nk) be a k-Petri net controlled grammar with

Nk = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ).
We denote by R>2 the set of all rules of the form A → α ∈ R where

|α| > 2.
For each rule r = A→ x1x2 · · ·xn ∈ R>2, x1, x2, . . . , xn ∈ V ∪ Σ we set

Vr = {B1,B2, . . . ,Bn−2}
and

Rr = {A→ x1B1,B1 → x2B2, . . . ,Bn−2 → xn−1xn}
where Bi, 1 6 i 6 n− 2, are new nonterminal symbols, Vr ∩ Vr ′ = ∅ for all

r, r ′ ∈ R, r 6= r ′, and Vr ∩ V = ∅ for all r ∈ R. Let

V ′ = V ∪
⋃

r∈R>2 Vr and R ′ = (R ∪
⋃

r∈R>2 Rr) − R
>2.

We define the context-free grammar G ′ = (V ′,Σ, S,R ′) and construct a

k-Petri net N ′
k = (P ′, T ′, F ′,ϕ ′, ζ ′,γ ′,µ ′0, τ ′) with respect to G ′ such that

(1) for A→ α ∈ R, |α| 6 2,
γ−1(A→ α) ∈ •q ∪ q• iff γ ′−1(A→ α) ∈ •q ′ ∪ q ′•,
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4.3. K-PETRI NET CONTROLLED GRAMMARS

(2) for A→ α ∈ R, |α| > 2,
γ−1(A→ α) ∈ •q iff γ ′−1(Bn−2 → xn−1xn) ∈ •q ′, �

�

�

�4.14

γ−1(A→ α) ∈ q• iff γ ′−1(A→ x1B1) ∈ q ′•
�

�

�

�4.15

where α = x1x2 · · ·xn, xi ∈ V ∪ Σ, 1 6 i 6 n.

Let D : S
r1r2···rk
=====⇒ w,w ∈ Σ∗ be a derivation in the grammar G. Then

t1t2 · · · tk = γ−1(r1r2 · · · rk) is a successful occurrence sequence of transi-

tions in Nk. We construct a derivation D ′ in the grammar G ′ from D as

follows.

If for some 1 6 m 6 k, rm : A→ x1x2 · · ·xn ∈ R>2 then we replace the

derivation step

y1Ay2 rm
==⇒ y1x1x2 · · ·xny2

by the derivation steps

y1Ay2 r ′1
=⇒ y1x1B1y2 r ′2

=⇒ y1x1x2B2y2 r ′3
=⇒ · · ·

r ′
n−2

===⇒ y1x1x2 · · ·xny2
where r ′i ∈ Rrm , 1 6 i 6 n − 2. Correspondingly, µm

tm−→ µm+1 is replaced

by

µm

t ′1t ′2···t ′
n−2

−−−−−−→ µm+1
where t ′i = γ ′−1(r ′i), 1 6 i 6 n − 2. By (4.14)–(4.15), the number of

tokens produced and consumed by the transitions t ′1, t ′2, . . . , t ′n−2 and the

transition tm are the same. Then D ′ is a derivation in G ′, which generates

the same word as D does, i.e., L(G) ⊆ L(G ′).

Inverse inclusion can also be shown using the similar arguments.

Lemma 4.9 (Union). The family of languages PN[λ]

k , k > 1, is closed under

union.

Proof. Let G1 = (V1,Σ1, S1,R1,Nk,1) and G2 = (V2,Σ2, S2,R2,Nk,2) be two

k-PN controlled grammars with Nk,i = (Pi∪Qi, Ti, Fi∪Ei,ϕi, ζi,γi,µi, τi),
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4.3. K-PETRI NET CONTROLLED GRAMMARS

i = 1, 2 (with the notions of Definition 4.2). We assume (without loss of

generality) that V1 ∩ V2 = ∅. We construct the k-PN controlled grammar

G = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, S,R1 ∪ R2 ∪ {S→ S1, S→ S2},Nk)

where Nk = (P, T , F,ϕ, ζ,γ,µ0, τ) is defined by� the set of places: P = P1 ∪ P2 ∪Q1 ∪ {q} where q is a new place;� the set of transitions: T = T1 ∪T2∪ {t01, t02} where t01 and t02 are new

transitions;� the set of arcs:

F = F1 ∪ F2 ∪ E1 ∪ {(q, t0i), (t0i,p0i) | i = 1, 2}
∪ {(t,q1i) | (t,q2i) ∈ E2, 1 6 i 6 k}

∪ {(q1i, t) | (q2i, t) ∈ E2, 1 6 i 6 k}

where p0i are the places labeled by Si, i.e., ζi(p0i) = Si, i = 1, 2;� the weight function:

ϕ(x,y) = 





ϕi(x,y) if (x,y) ∈ Fi, i = 1, 2,1 otherwise;� the labeling function ζ is defined by

ζ(p) =







ζ1(p) if p ∈ P1 ∪Q1,
ζ2(p) if p ∈ P2
S if p = q;
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4.3. K-PETRI NET CONTROLLED GRAMMARS� the labeling function γ is defined by

γ(t) =







γi(t) if t ∈ Ti, i = 1, 2,
S→ Si if t = t0i, i = 1, 2;� the initial marking:

µ0(p) = 





1 if p = q,0 otherwise;� the final marking: τ(p) = 0 for all p ∈ P.

By the construction of Nk any occurrence of its transitions can start

by firing of t01 or t02 then transitions of T1 or transitions of T2 can occur,

correspondingly we start a derivation with the rule S→ S1 or S→ S2 then

we can use rules of R1 or R2.
A string w is in L(G) if and only if there is a derivation S ⇒ Si ⇒∗

w ∈ L(Gi), i = 1, 2. On the other hand, we can initialize any derivation

Si ⇒
∗ w ∈ L(Gi) with the rule S→ Si, i = 1, 2, i.e., w ∈ L(G).

Lemma 4.10 (Concatenation). The family of languages PNk, k > 1, is not

closed under concatenation.

Proof. Let Lk and L ′
k be two languages, with the same structure but

disjoint alphabets, given at the end of the proof of Theorem 4.7. Then

Lk, L ′
k ∈ PNk and Lk · L ′

k /∈ PNk.

The next lemma shows that the concatenation of two languages gener-

ated by k- and m-PN controlled grammars, k,m > 1, can be generated by

a (k +m)-PN controlled grammar.

Lemma 4.11. For L1 ∈ PN[λ]

k , k > 1 and L2 ∈ PN[λ]
m , m > 1,

L1 · L2 ∈ PN[λ]

k+m.
74

UNIVERSITAT ROVIRA I VIRGILI 
PETRI NET CONTROLLED GRAMMARS 
Sherzod Turaev 
ISBN:978-84-693-1536-1/DL:T-644-2010 



4.3. K-PETRI NET CONTROLLED GRAMMARS

Proof. Let G1 = (V1,Σ, S1,R1,Nk) where Nk = (P1, T1, F1,ϕ1, ζ1,γ1,µ1, τ1)
and G2 = (V2,Σ, S2,R2,Nm) where Nm = (P2, T2, F2,ϕ2, ζ2,γ2,µ2, τ2) be,

respectively, k-Petri net and m-Petri net controlled grammars such that

L(G1) = L1 and L(G2) = L2. Without loss of generality we assume that

V1 ∩ V2 = ∅. We set V = V1 ∪ V2 ∪ {S} where S is a new nonterminal and

R = R1 ∪ R2 ∪ {S→ S1S2}.
We define a (k + m)-PN controlled grammar G = (V,Σ, S,R,Nk+m)

with Nk+m = (P, T , F,ϕ, ζ,γ,µ0, τ) where� P = P1 ∪ P2 ∪ {p0} where p0 is a new place;� T = T1 ∪ T2 ∪ {t0} where t0 is a new transition;� F = F1 ∪ F2 ∪ {(p0, t0), (t0,p1), (t0,p2)} where ζi(pi) = Si, i = 1, 2;� the weight function ϕ is defined by

ϕ(x,y) = 





ϕi(x,y) if (x,y) ∈ Fi, i = 1, 2,1 otherwise;� the labeling function ζ is defined by

ζ(p) =







ζi(p) if p ∈ Pi, i = 1, 2,
S if p = p0;� the labeling function γ is defined by

γ(t) =







γi(t) if t ∈ Ti, i = 1, 2,
S→ S1S2 if t = t0;
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4.3. K-PETRI NET CONTROLLED GRAMMARS� the initial marking:

µ0(p) = 





1 if p = p0,0 otherwise;� the final marking: τ(p) = 0 for all p ∈ P.

It is not difficult to see that L(G) = L(G1)L(G2).
Lemma 4.12 (Substitution). The family of languages PNk, k > 1, is closed

under substitution by context-free languages.

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar with k-

Petri net Nk = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ). We consider a substitution

s : Σ∗ → 2∆∗

with s(a) ∈ CF for each a ∈ Σ. Let Ga = (Va,Σa, Sa,Ra) be

a context-free grammar for s(a), a ∈ Σ. We can assume that V ∩ Va = ∅

for any a ∈ Σ and Va ∩ Vb = ∅ for any a,b ∈ Σ, a 6= b.

Let Na = (Pa, Ta, Fa,φa,βa,γa, ιa) be a cf Petri net with respect to

the grammar Ga,a ∈ Σ. We define the k-PN controlled grammar

G ′ = (V ∪ Σ ∪
⋃

a∈Σ

Va,∆, S,R ′ ∪
⋃

a∈Σ

Ra,N ′
k)

where R ′ is the set of rules obtained by replacing each occurrence of a ∈ Σ

by Sa in R and N ′
k is defined by

N ′
k = (P ∪Q ∪ PΣ ∪

⋃

a∈Σ

Pa, T ∪ ⋃

a∈Σ

Ta, F ∪ FΣ ∪
⋃

a∈Σ

Fa,ϕ ′, ζ ′,γ ′,µ ′0, τ ′)
where� PΣ = {pa | a ∈ Σ} is the set of new places;� FΣ = {(t,pa) | γ(t) = A→ α, |α|a > 0,a ∈ Σ} is the set of new arcs;
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4.3. K-PETRI NET CONTROLLED GRAMMARS� the weight function ϕ ′ is defined by

ϕ ′(x,y) = 





ϕ(x,y) if (x,y) ∈ F,
φa(x,y) if (x,y) ∈ Fa,a ∈ Σ,
|α|a, if x = t,y = pa, (t,pa) ∈ FΣ,a ∈ Σ;� the labeling function ζ ′ is defined by

ζ ′(p) =







ζ(p) if p ∈ (P ∪Q),
βa(p) if p ∈ Pa,a ∈ Σ,
Sa if p = pa ∈ PΣ,a ∈ Σ;� the labeling function γ ′ is defined by

γ ′(t) =







γ(t) if t ∈ T ,
γa(t) if t ∈ Ta,a ∈ Σ;� the initial marking:

µ ′0(p) = 





1 if p = ζ ′−1(S),0 otherwise;� the final marking: τ ′(p) = 0 for all p ∈ P ′;

Obviously, L(G ′) ∈ PNk.

Lemma 4.13 (Mirror Image). The family of languages PNk, k > 1, is

closed under mirror image.

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar. Let

R− = {A→ xn · · ·x2x1 | A→ x1x2 · · ·xn ∈ R}.
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4.3. K-PETRI NET CONTROLLED GRAMMARS

The context-free grammar (V,Σ, S,R) and its reversal (V,Σ, S,R−) have

the same corresponding cf Petri net N = (P, T , F,φ,β,γ, ι) as N does not

preserve the order of the positions of the output places for each transi-

tion. Thus we can also use the k-Petri net Nk as a control mechanism for

the grammar (V,Σ, S,R−), i.e., we define G− = (V,Σ, S,R−,Nk). Clearly,

L(G−) ∈ PNk.

Lemma 4.14 (Intersection with Regular Languages). The family of lan-

guages PNk, k > 1, is closed under intersection with regular languages.

Proof. We use the arguments and notions of the proof of Lemma 1.3.5 in

[24]. Let G = (V,Σ, S,R,Nk) be a k-Petri net controlled grammar with a k-

Petri net Nk = (P∪Q, T , F∪E,ϕ, ζ,γ,µ0, τ) (with the notions of Definition

4.2). Without loss of generality we can assume that G is in a binary form.

Let A = (K,Σ, s0, δ,H) be a deterministic finite automaton. We set

V ′ = {[s, x, s ′] | s, s ′ ∈ K, x ∈ V ∪ Σ}.
For each rule r ∈ R we construct the set R(r) in the following way

1. If r = A→ x1x2, x1, x2 ∈ V ∪ Σ then

R(r) = {[s,A, s ′] → [s, x1, s ′][s ′, x2, s ′′] | s, s ′, s ′′ ∈ K}.
2. If r = A→ x, x ∈ V ∪ Σ then

R(r) = {[s,A, s ′] → [s, x, s ′] | s, s ′ ∈ K}.
Further we define the set of rules

RΣ = {[s,a, s ′] → a | s ′ = δ(s,a), s, s ′ ∈ K,a ∈ Σ}.
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4.3. K-PETRI NET CONTROLLED GRAMMARS

Let

R ′ =
⋃

r∈R

R(r) ∪ RΣ.
We define the context-free grammar Gs = (V ′,Σ, [s0, S, s],R ′) for each s ∈

H. Let Ns = (Ps, Ts, Fs,φs,βs,γs, ιs) be a cf Petri net with respect to the

grammar Gs where

Ps = {[s,p, s ′] | s, s ′ ∈ K,p ∈ P},
Ts = {[s, t, s ′] | s, s ′ ∈ K,p ∈ P},
Fs = {([s1, x, s2], [s ′1,y, s ′2]) | s1, s2, s ′1, s ′2 ∈ K, (x,y) ∈ F}.

The weight function φs is defined by φ([s1, x, s2], [s ′1,y, s ′2]) = φ(x,y)
where s1, s2, s ′1, s ′2 ∈ K, (x,y) ∈ F.

The functions βs : Ps → V ′ and γs : Ts → R ′ are bijections, and

ιs(β
−1
s ([s0, S, s])) = 1 and ιs(p) = 0 for all Ps − {β−1

s ([s0, S, s])}.
We set

F−Q = {((s, t, s ′),q) | s, s ′ ∈ K,q ∈ Q∧ t ∈ •q}

and

F+Q = {(q, (s, t, s ′)) | s, s ′ ∈ K,q ∈ Q∧ t ∈ q•}.
We construct the k-Petri net

Nk,s = (Ps ∪Q, Ts, Fs ∪ F−Q ∪ F+Q,ϕs, ζs,γs,µs, τs)
from Ns where� the weight function ϕs is defined by

ϕs([s1, x, s2], [s ′1,y, s ′2]) = ϕ(x,y), s1, s ′1, s2, s ′2 ∈ K and (x,y) ∈ F ∪ E,
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4.4. PETRI NETS WITH CHAINS AND CYCLES� the labeling function ζs is defined by

ζs([s1,p, s2]) = 





βs([s1,p, s2]) if [s1,p, s2] ∈ Ps,
λ if [s1,p, s2] ∈ Q,� the initial marking µs is defined by µs(β

−1
s ([s0, S, s])) = 1 and µs(p) =0 for all (Ps ∪Q) − {β−1

s ([s0, S, s])},� the final marking τs is defined by τs(p) = 0 for all p ∈ Ps ∪Q,

and define the k-PN controlled grammar G ′
s = (V ′,Σ, (s0, S, s),R ′,Nk,s).

Then one can see that L(G) ∩ L(A) =
⋃

s∈H L(G
′
s).

The results of the previous lemmas are summarized in the following

theorem

Theorem 4.15. The family of languages PNk, k > 1, is closed under union,

substitution, mirror image, intersection with regular languages and it is not

closed under concatenation.

4.4 Petri Nets with Chains and Cycles

We add new places and arcs, called control places and arcs, to a cf Petri

net such a way that the new places with their input and output transitions

compose chains or cycles.

4.4.1 Chain Control

Let P = {ρ1, ρ2, . . . , ρn} be a set of disjoint chains where each chain ρi =

(Pρi
, Tρi

, Fρi
) ∈ P, 1 6 i 6 n, is defined as

ρ = ti,1pi,1ti,2pi,2 · · ·pi,ki−1ti,ki
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4.4. PETRI NETS WITH CHAINS AND CYCLES

with the sets of places, transitions and arcs, respectively,

Pρ = {pi,1,pi,2, . . . ,pi,ki−1},
Tρ = {ti,1, ti,2, . . . , ti,ki

},
Fρ = {(ti,j,pi,j) | 1 6 j 6 ki − 1} ∪ {(pi,j, ti,j+1) | 1 6 i 6 ki − 1}.

Remark 4.1. If a chain ρ ∈ P consists of a single transitions, i.e., ρ = t, then

the sets of places and arcs of ρ is considered to be empty, i.e., Pρ = Fρ = ∅.

Let

PP =
⋃

ρ∈P

Pρ, TP =
⋃

ρ∈P

Tρ, FP =
⋃

ρ∈P

Fρ.
We consider a marked Petri net NP = (PP, TP, FP,φ, ι) where φ(x,y) = 1
for all (x,y) ∈ FP and ι(p) = 0 for all p ∈ PP.

Proposition 4.16. ν is an occurrence sequence of transitions ofNP enabled

at the initial marking ι and finished at the marking µ where µ(p) = 0
for all p ∈ PP iff ν is the shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρim) for some

ρi1 , ρi2, . . . , ρim ∈ P, m > 1.
Proof. Let ν be an occurrence sequence of transitions NP enabled at ι and

finished at µ where µ(p) = 0 for all p ∈ PP. We denote by νi ∈ T∗ρi
,1 6 i 6 n, the scattered substring of transitions of the chain ρi in ν. Since

transitions of different chains occur concurrently, ν is a shuffle of the strings

νi, 1 6 i 6 n.

By definition, any occurrence sequence of transitions of a chain ρi ∈ P,1 6 i 6 n, starts by firing of ti,1 ∈ Tρi
, and for each ν ′

i ∈ Pref(νi),
|ν ′

i|ti,1 > |ν ′
i|ti,2 > · · · > |ν ′

i|ti,ki .
Moreover,

|νi|ti,1 = |νi|ti,2 | = · · · = |νi|ti,ki .
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4.4. PETRI NETS WITH CHAINS AND CYCLES

Let νi,j, 1 6 j 6 |νi|ti,1 , be the sequence of j-th occurrence of the transitions

ti,1, ti,2, . . . , ti,ki
. Then, νi is a shuffle of the sequences νi,j.

Let ν = t1t2 · · · tm be a shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρis) for some

ρi1 , ρi2, . . . , ρis ∈ P, s > 1. By definition, any occurrence sequence of

transitions of NP can only start at the initial marking ι. Since for all1 6 j 6 s,

|ν|tij,1 = |ν|tij,2 | = · · · = |ν|tij,kij ,
µ(p) = 0 for all p ∈ PP where ι ν

−→ µ.

Definition 4.6. Let G = (V,Σ, S,R) be a context-free grammar with its

corresponding cf Petri net N = (P, T , F,φ,β,γ, ι). Let T1, T2, . . . , Tn be a

partition of T and P = {ρ1, ρ2, . . . , ρn} be the set of disjoint chains such

that Tρi
= Ti, 1 6 i 6 n, and

⋃

ρ∈P Pρ ∩ P = ∅.

An z -Petri net is a system Nz = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ) where� Q =
⋃

ρ∈P Pρ and E =
⋃

ρ∈P Fρ;� the weight function ϕ is defined by ϕ(x,y) = φ(x,y) if (x,y) ∈ F and

ϕ(x,y) = 1 if (x,y) ∈ E;� the labeling function ζ : P ∪Q→ V ∪ {λ} is defined by ζ(p) = β(p) if

p ∈ P and ζ(p) = λ if p ∈ Q;� the initial marking µ0 is defined by µ0(p) = ι(p) if p ∈ P and µ0(p) =0 if p ∈ Q;� τ is the final marking where τ(p) = 0 for all p ∈ P ∪Q.

Example 4.4. Figure 4.4 illustrates z -Petri net Nz with respect to the

context-free grammar G4 = ({S,A,B}, {a,b}, S,R) where R consists of

r0 : S→ AB,
r1 : A→ λ, r2 : B→ λ, r3 : A→ aA,
r4 : B→ aB, r5 : A→ bA, r6 : B→ bB.

82

UNIVERSITAT ROVIRA I VIRGILI 
PETRI NET CONTROLLED GRAMMARS 
Sherzod Turaev 
ISBN:978-84-693-1536-1/DL:T-644-2010 



4.4. PETRI NETS WITH CHAINS AND CYCLES

•

 ! "# #! #"## #$
#% #&
Figure 4.4: A z -Petri net Nz

4.4.2 Cyclic Control

Let P = {ρ1, ρ2, . . . , ρn} be a set of disjoint cycles where each cycle ρi =

(Pρi
, Tρi

, Fρi
) ∈ P, 1 6 i 6 n, is defined as

ρ = pi,1ti,1pi,2ti,2 · · ·pi,ki
ti,ki

pi,1
with the sets of places, transitions and arcs, respectively,

Pρi
= {pi,1,pi,2, . . . ,pi,ki

},
Tρi

= {ti,1, ti,2, . . . , ti,ki
},

Fρi
= {(ti,j,pi,j) | 1 6 j 6 ki} ∪ {(ti,j,pi,j+1) | 1 6 i 6 ki − 1} ∪ {(ti,ki

,pi,1)}.
Let

PP =
⋃

ρ∈P

Pρ, TP =
⋃

ρ∈P

Tρ, FP =
⋃

ρ∈P

Fρ.
We define a marked Petri net NP = (PP, TP, FP,φ, ι) where φ(x,y) = 1
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4.4. PETRI NETS WITH CHAINS AND CYCLES

for all (x,y) ∈ FP, and for each ρi ∈ P, 1 6 i 6 n, ι(pi,1) = 1 and ι(p) = 0
for all p ∈ Pρi

− {pi,1}.
Proposition 4.17. ν is an occurrence sequence of transitions ofNP enabled

and finished at the initial marking ι iff ν is the semi-shuffle of strings

tr(ρi1), tr(ρi2), . . . , tr(ρim) for some ρi1, ρi2, . . . , ρim ∈ P, m > 1.
Proof. Let ν = t1t2 · · · tn be an occurrence sequence of transitions of NP

enabled and finished at the initial marking ι. Let νi ∈ T∗ρi
, 1 6 i 6 n, be a

scattered substring of transitions of the cycle ρi in ν. Similarly to the case

of chains, transitions of different cycles can occur concurrently, thus ν is a

shuffle of substrings νi, 1 6 i 6 n.

By definition, if transition ti,1 ∈ Tρi
, 1 6 i 6 n, occurs, then in order to

return the token to place pi,1, transitions ti,2, ti,3, . . . , ti,ki
have to occur.

Moreover, transition ti,1 can occur again after transitions ti,2, ti,3, . . . , ti,ki

have occurred in the given order, i.e., the occurrence of tr(ρi), 1 6 i 6 n,

can start a second time after its started occurrence has finished. Therefore,

ν is a semi-shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρim) for some ρi1, ρi2, . . . , ρim ∈

P, m > 1.
Let ν = t1t2 · · · tn be a semi-shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρis) for

some ρi1 , ρi2, . . . , ρis ∈ P, s > 1. By definition, any occurrence sequence of

transitions of NP starts at the initial marking ι. On the other hand, any

occurrence sequence of transitions of a cycle ρi ∈ P, 1 6 i 6 n, in ν returns

a token to place pi,1, i.e., to the initial state. Therefore, ν is an occurrence

sequence enabled at and finished at the marking ι.

Definition 4.7. Let G = (V,Σ, S,R) be a context-free grammar with its

corresponding cf Petri net N = (P, T , F,φ,β,γ, ι). Let T1, T2, . . . , Tn be a

partition of T and P = {ρ1, ρ2, . . . , ρn} be the set of disjoint cycles such that

Tρi
= Ti, 1 6 i 6 n, and

⋃

ρ∈P Pρ ∩ P = ∅.

A -Petri net is a system N = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ) where
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4.4. PETRI NETS WITH CHAINS AND CYCLES� Q =
⋃

ρ∈P Pρ and E =
⋃

ρ∈P Fρ;� the weight function ϕ is defined by ϕ(x,y) = φ(x,y) if (x,y) ∈ F and

ϕ(x,y) = 1 if (x,y) ∈ E;� the labeling function ζ : P ∪Q→ V ∪ {λ} is defined by ζ(p) = β(p) if

p ∈ P and ζ(p) = λ if p ∈ Q;� the initial marking µ0 is defined by µ0(p) = ι(p) if p ∈ P, and

µ0(pi,1) = 1, µ0(pi,j) = 0 where pi,j ∈ Pi, 1 6 i 6 n, 2 6 j 6 ki;� τ is the final marking where τ(p) = 0 if p ∈ P, and τ(pi,1) = 1,
τ(pi,j) = 0 where pi,j ∈ Pi, 1 6 i 6 n, 2 6 j 6 ki.

Example 4.5. Figure 4.5 illustrates a -Petri net N with respect to the

context-free grammar given in Example 4.4.

•

 ! "
•

•

# #! #"## #$
#% #&
Figure 4.5: A -Petri net N
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4.4. PETRI NETS WITH CHAINS AND CYCLES

4.4.3 Supervised Cyclic Control

Let P = {ρ1, ρ2, . . . , ρn} be a set of cycles such that

Pρ1 ∩ Pρ2 ∩ · · ·Pρn
= {p0}

where each cycle ρi = (Pρi
, Tρi

, Fρi
) ∈ P, 1 6 i 6 n, is defined as

ρ = p0ti,1pi,1ti,2 · · ·pi,ki−1ti,ki
p0

with the sets of places, transitions and arcs, respectively,

Pρi
= {p0,pi,1,pi,2, . . . ,pi,ki−1},

Tρi
= {ti,1, ti,2, . . . , ti,ki

},
Fρi

= {(pi,j, ti,j+1) | 1 6 j 6 ki − 1} ∪ {(ti,j,pi,j) | 1 6 i 6 ki − 1}
∪ {(p0, ti,1)} ∪ {(ti,ki

,p0)}.
Let X ∈ {P, T , F} and XP =

⋃

ρ∈P Xρ. We define a marked Petri net

NP = (PP, TP, FP,φ, ι) where φ(x,y) = 1 for all (x,y) ∈ FP, and ι(p0) = 1
and ι(p) = 0 for all p ∈ Pρi

− {p0}.
By construction, each occurrence sequence of transitions of NP starts by

firing of the first transition ti,1 of some cycle ρi, 1 6 i 6 n, and transitions

of a second cycle can fire only after the single token has been returned to the

initial marking ι. It happens if we fire the rest transitions ti,2, ti,3, . . . , ti,ki

of ρi. It follows that

Proposition 4.18. ν is an occurrence sequence of transitions ofNP enabled

and finished at the initial marking ι iff ν is the concatenation of strings

tr(ρi1), tr(ρi2), . . . , tr(ρim) for some ρi1, ρi2, . . . , ρim ∈ P, m > 1.
Definition 4.8. Let G = (V,Σ, S,R) be a context-free grammar with its

corresponding cf Petri net N = (P, T , F,φ,β,γ, ι). Let T1, T2, . . . , Tn be
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4.4. PETRI NETS WITH CHAINS AND CYCLES

a partition of T . Let P = {ρ1, ρ2, . . . , ρn} be the set of cycles such that

Tρi
= Ti, 1 6 i 6 n, P1 ∩ P2 ∩ · · · ∩ Pn = {p0} and

⋃

ρ∈P Pρ ∩ P = ∅.

An s-Petri net is a system Ns = (P ∪Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ) where� Q =
⋃

ρ∈P Pρ,E =
⋃

ρ∈P Fρ;� the weight function ϕ is defined by ϕ(x,y) = φ(x,y) if (x,y) ∈ F and

ϕ(x,y) = 1 if (x,y) ∈ E;� the labeling function ζ : P ∪Q→ V ∪ {λ} is defined by ζ(p) = β(p) if

p ∈ P and ζ(p) = λ if p ∈ Q;� µ0 is the initial marking where µ0(p0) = 1 and µ0(p) = ι(p) if p ∈

(P ∪Q) − {p0};� τ is the final marking where τ(p0) = 1 and τ(p) = 0 if p ∈ (P ∪Q) −

{p0}.
Example 4.6. Figure 4.6 illustrates a s-Petri net Ns with respect to the

context-free grammar given in Example 4.4.

4.4.4 Grammars, Languages and Examples

Here we define grammars controlled by z (, s)-Petri nets introduced in

the previous subsection.

Definition 4.9. (i) An x -Petri net controlled grammar is a quintuple

G = (V,Σ, S,R,Nx) where V,Σ, S, and R are defined as for a context-free

grammar and Nx = (P ∪ Q, T , F ∪ E,ϕ, ζ,γ,µ0, τ) is a x -Petri net with

respect to the context-free grammar (V,Σ, S,R) where x ∈ {z , , s}.
(ii) The language generated by a x -Petri net controlled grammarG, denoted

by L(G), consists of all strings w ∈ Σ∗ such that there is a derivation

S
r1r2···rk
=====⇒ w ∈ Σ∗ and a successful occurrence sequence of transitions

ν = t1t2 · · · tk of Nx such that r1r2 · · · rk = γ(t1t2 · · · tk).
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4.4. PETRI NETS WITH CHAINS AND CYCLES

•

 ! "
•

# #! #"## #$
#% #&
Figure 4.6: An s-Petri net Ns

Example 4.7. Let G5 = (V,Σ, S,R,Nz) be a z -Petri net controlled grammar

where components V,Σ, S,R are defined as for the context-free grammar G4
in Example 4.4, and Nz is the z -Petri net depicted in Figure 4.4.

After transition t0 = ζ−1(S → AB) fires, transitions t1 = ζ−1(A → λ),

t2 = ζ−1(B→ λ), t3 = ζ−1(A → aA), and t4 = ζ−1(A → bA) are enabled.

Transitions t3 and (or) t5 can occur several times and in any order, and

the corresponding control places receive as many tokens as the numbers of

occurrences of these transitions. Then transitions t4 = ζ−1(B → aB) and

t5 = ζ−1(B→ bB) occur as many times as t1 and (or) t3 occur, respectively.

To go to the final marking, transition t1 and t2 occur. We can see that G5
generates a vector language

L(G5) = {wxw ′x | x ∈ {a,b},w ∈ {a,b}∗,w ′ ∈ Perm(w)}.
Example 4.8. We consider -PN controlled grammar G6 = (V,Σ, S,R,N)
where the components V,Σ, S,R are defined as for the grammar G4 in Ex-

ample 4.4 and the -Petri net N is illustrated in Figure 4.5 (the transitions
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4.4. PETRI NETS WITH CHAINS AND CYCLES

of N have the same labels as those of Nz ).
After transition t0 occurs transitions t1, t2, t3, t5 are enabled. Further

we have the following cases: (1) the sequence t3t4 or (and) t5t6 occurs many

times (in any order); (2) the sequence t3t5 or t5t3 occurs, then t4t6 or t6t4
occurs, respectively; (3) cases (1) and (2) repeat in any order; (4) to go to

a final marking the sequence t1t2 occurs. It is easy to see that G6 generates

a semi-matrix language

L(G6) = {w1{λ,ab,ba}w2{λ,ab,ba} · · ·w1{λ,ab,ba}w2{λ,ab,ba} · · · |
w1,w2, . . . ∈ {a,b}∗}.

Example 4.9. Let G7 = (V,Σ, S,R,Ns) be a s-Petri net controlled grammar

where components V,Σ, S,R are defined as for the context-free grammar

G4 in Example 4.4, and Ns is the s-Petri net depicted in Figure 4.6 (the

transitions of Ns have the same labels as those of Nz ).
The execution of Ns starts with the occurrence of t0, and transitions

t1, t2, t3, and t5 are enabled. If t1 occurs, then only t2 occurs. If t2 occurs,

then in order to reach the final marking, t1 has to occur. If t3 (t5) occurs

then only t4 (t6) occurs. We can see that G7 generates a matrix language

L(G7) = {ww | w ∈ {a,b}∗}.
We denote the families of languages generated by x -Petri net controlled

grammars (with erasing rules) by PNx , (PNλx ) where x ∈ {z , , s}.
Next we show that the introduced Petri net controlled grammars simu-

late some well-known regulated grammars.

Lemma 4.19. VEC[λ] = PN[λ]z , sMAT[λ] = PN[λ] , MAT[λ] = PN[λ]s
Proof. We give here a proof for the first equality. First, we show that the

inclusion VEC[λ] ⊆ PN[λ]z holds. Let G = (V,Σ, S,M) be a vector grammar
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4.4. PETRI NETS WITH CHAINS AND CYCLES

where

M = {m1,m2, . . . ,mn},mi = ri,1ri,2 · · · ri,n, 1 6 i 6 n.
Without loss of generality we can assume that G is a grammar with-

out repetition. Let R be the set of all rules of M. We construct a cf

Petri net N = (P, T , F,ϕ, ι,β,γ) with respect to the context-free grammar

(V,Σ, S,R).
For each matrix mi = ri,1ri,2 · · · ri,ki

∈M, 1 6 i 6 n, we define a chain

ρi = ti,1pi,1ti,2pi,2 · · · ti,ki−1pi,ki−1ti,ki
where Pρi

= {pi,1,pi,2, . . . ,pi,ki−1} is

a set of new places and Tρi
= {ti,1, ti,2, . . . , ti,ki

} ⊆ T such that γ(ti,j) = ri,j,1 6 i 6 n, 1 6 j 6 ki. Since G is without repetition, the sets Tρi
,1 6 i 6 n, are pairwise disjoint. It follows that P = {ρ1, ρ2, . . . , ρn} is the

set of disjoint chains. Therefore, we can construct the z -Petri net Nz =

(P∪Q, T , F∪E,ϕ, ζ,γ,µ0, τ) with respect to the grammar (V,Σ, S,R) (with

the notions of Definition 4.6), and define z -Petri net controlled grammar

G ′ = (V,Σ, S,R,Nz).
Let D : S

r1r2···rs
=====⇒ w ∈ Σ∗ be a derivation in the vector grammar G.

Then, by definition, r1r2 · · · rs is a shuffle of some matrices

mj1 ,mj2, . . . ,mjl ∈M, l > 1.
It follows thatD is also a derivation in the context-free grammar (V,Σ, S,R),
and by Proposition 4.1, ν = t1t2 · · · ts = γ−1(r1r2 · · · rs) is an occurrence

sequence of transitions of the cf Petri net N enabled at the initial marking

ι and finished at the marking µ(p) = 0 for all p ∈ P.

On the other hand, ν is a shuffle of tr(ρj1), tr(ρj2), . . . , tr(ρjl) since

γ(tr(ρi)) = mi, 1 6 i 6 n. By Proposition 4.16, µ0(p) = τ(p) = 0 for all

p ∈ Q. Therefore, D is also a derivation in G ′.

Let D ′ : S
r1r2···rs
=====⇒ w ∈ Σ∗ be a derivation in the z -Petri net controlled

grammar G ′. Then, ν = t1t2 · · · ts = γ−1(r1r2 · · · rs) is an occurrence se-
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4.4. PETRI NETS WITH CHAINS AND CYCLES

quence of transitions of Nz enabled at the initial marking ι and finished at

the final marking τ. By Proposition 4.16, the occurrence sequence ν is a

shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρis) for some ρi1 , ρi2, . . . , ρis ∈ P, s > 1, as

ι(p) = τ(p) = 0 for all p ∈ Q. On the other hand, by the definition of the

bijection γ, γ(tr(ρij)) = mij , 1 6 j 6 s. Therefore, r1r2 · · · rs is a shuffle of

the matrices mi1 ,mi2 , . . . ,mis . It follows that D ′ is also a derivation in G.

Next we show that PN[λ]z ⊆ VEC[λ] holds.

Let G = (V,Σ, S,R,Nz) be a z -Petri net controlled grammar where

Nz = (P ∪Q, T , F∪ E,ϕ, ζ,γ,µ0, τ). By definitions, the set T of transitions

is divided into disjoint subsets T1, T2, . . . , Tn such that

T =

n
⋃

i=1 Ti,Q =

n
⋃

i=1Pi,E =

n
⋃

i=1 Fi
and ρi = (Pi, Ti, Fi), 1 6 i 6 n, are disjoint chains. According to the

bijection γ, we can construct the set of matrices

M = {mi = γ(tr(ρi)) | 1 6 i 6 n},
and define the vector grammar G ′ = (V,Σ, S,M). For the remaining part

of the proof we can repeat the arguments of the first part of the proof.

The other equalities can be proven in the same manner using Proposi-

tions 4.17 and 4.18.

The results of Lemma 4.19, Theorem 2.1.2 in [24] and Theorem 3.12

can be summarized in the next theorem

Theorem 4.20.

(1) PNs = MAT ⊆ PNz = VEC ⊆ PNλz = PNλ = PNλs ,
(2) MAT ⊆ PN = sMAT ⊆ MATλ.
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5
Arbitrary Petri Net Controlled

Grammars

5.1 Introduction

In this chapter we consider a generalization of regularly controlled gram-

mars. Instead of a finite automaton we associate a Petri net with a context-

free grammar and require that the sequence of applied rules corresponds

to an occurrence sequence of the Petri net, i.e., to sequences of transitions

which can be fired in succession. However, one has to decide what type

of correspondence is used and what concept is taken as an equivalent of

acceptance. Since the sets of occurrence sequences form the language of

a Petri net, we choose the correspondence and the equivalent for accep-

tance according to the variations which are used in the theory of Petri net

languages.

Therefore as correspondence we choose a bijection (between transitions

and rules) or a coding (any transition is mapped to a rule) or a weak coding

(any transition is mapped to a rule or the empty word) which agree with

the classical three variants of Petri net languages (see e.g. [47, 93, 94]).

We consider two types of acceptance from the theory of Petri net lan-

guages: only those occurrence sequences belonging to the languages which

transform the initial marking into a marking from a given finite set of mark-
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5.2. GRAMMARS AND THEIR LANGUAGES

ings or all occurrence sequences are taken (independent of the obtained

marking). If we use only the occurrence sequence leading to a marking in

a given finite set of markings we say that the Petri net controlled grammar

is of t-type; if we consider all occurrence sequences, then the grammar is of

r-type. We add a further type which can be considered as a complement of

the t-type. Obviously, if we choose a finite set M of markings and require

that the marking obtained after the application of the occurrence sequence

is smaller than at least one marking of M (the order is componentwise),

then we can choose another finite set M ′ of markings and require that the

obtained marking belongs to M ′. The complementary approach requires

that the obtained marking is larger than at least one marking of the given

setM. The corresponding class of Petri net controlled grammars is called of

g-type. Therefore, we obtain nine classes of Petri net controlled grammars

since we have three different types of correspondence and three types of the

set of admitted occurrence sequences. These types of control are general-

izations of those types of control considered in the previous chapter, too,

where instead of arbitrary Petri nets only such Petri nets have been consid-

ered where the places and transitions correspond in a one-to-one manner

to nonterminals and rules, respectively.

In Section 5.2 we introduce the concept of control of derivations in

context-free grammars by arbitrary Petri nets. Section 5.3 contains the

results on the influence of the labeling function on the generative power.

In Section 5.4 we discuss the effect of different types of final markings on

the generative power.

5.2 Grammars and Their Languages

We now introduce the concept of control by an arbitrary Petri net.

Definition 5.1. An arbitrary Petri net controlled grammar is a tuple

G = (V,Σ, S,R,N,γ,M) where V,Σ, S,R are defined as for a context-free
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5.2. GRAMMARS AND THEIR LANGUAGES

grammar and N = (P, T , F,ϕ, ι) is a (marked) Petri net, γ : T → R ∪ {λ} is

a transition labeling function and M is a set of final markings.

Definition 5.2. The language generated by a Petri net controlled grammar

G, denoted by L(G), consists of all strings w ∈ Σ∗ such that there is a

derivation S
r1r2···rk
=====⇒ w ∈ Σ∗ and an occurrence sequence ν = t1t2 · · · ts

which is successful for M such that r1r2 · · · rk = γ(t1t2 · · · ts).
Definition 5.2 uses the extended form of the transition labeling function

γ : T∗ → R∗; this extension is done in the usual manner.

Obviously, if γ maps any transition to a rule, then k = s in Definition

5.2.

Example 5.1. Let G1 = ({S,A,B,C}, {a,b, c},S,R,Na,γ1,M1) be a Petri

net controlled grammar where R consists of

S→ ABC,
A→ aA, B→ bB, C→ cC,
A→ a, B→ b, C→ c

andNa is illustrated in Figure 5.1. IfM1 is the set of all reachable markings,

then G1 generates the language

L(G1) = {anbmck | n > m > k > 1}.
If M1 = {µ} with µ(p) = 0 for all p ∈ P, then it generates the language

L(G1) = {anbncn | n > 1}.
Different labeling strategies and different definitions of the set of final

markings result in various types of Petri net controlled grammars. We

consider the following types of Petri net controlled grammars.

Definition 5.3. A Petri net controlled grammar G = (V,Σ, S,R,N,γ,M)

is called
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5.2. GRAMMARS AND THEIR LANGUAGES

•

 → !"#
! → $! " → %" # → #

! → $ " → % # → 
Figure 5.1: A labeled Petri net Na� free (abbreviated by f) if a different label is associated to each tran-

sition, and no transition is labeled with the empty string;� λ-free (abbreviated by −λ) if no transition is labeled with the empty

string;� extended (abbreviated by λ) if no restriction is posed on the labeling

function γ.

Definition 5.4. A Petri net controlled grammar G = (V,Σ, S,R,N,γ,M)

is called� r-type if M is the set of all reachable markings from the initial mark-

ing ι, i.e., M = R(N, ι);� t-type if M ⊆ R(N, ι) is a finite set;� g-type if for a given finite set M0 ⊆ R(N, ι), M is the set of all

markings such that for every marking µ ∈ M there is a marking

µ ′ ∈M0 such that µ > µ ′.

We use the notation (x,y)-PN controlled grammar where x ∈ {f,−λ, λ}
shows the type of a labeling function and y ∈ {r, t, g} shows the type of a

set of final markings.

We denote by PN(x,y) and PNλ(x,y) the families of languages gen-

erated by (x,y)-PN controlled grammars without and with erasing rules,

respectively, where x ∈ {f,−λ, λ} and y ∈ {r, t, g}.
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

The following inclusions are obvious.

Lemma 5.1. For x ∈ {f,−λ, λ} and y ∈ {r, t, g}, PN(x,y) ⊆ PNλ(x,y).
5.3 The Effect of Labeling on the Computa-

tional Power

The following lemma follows immediately from the definition of the labeling

functions.

Lemma 5.2. For y ∈ {r, t, g},PN[λ](f,y) ⊆ PN[λ](−λ,y) ⊆ PN[λ](λ,y).
We now prove that the reverse inclusions also hold.

Lemma 5.3. For y ∈ {r, t, g}, PN[λ](−λ,y) ⊆ PN[λ](f,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (−λ,y)-PN controlled grammar

(with or without erasing rules) where y ∈ {r, t, g} and N = (P, T , F,ϕ, ι).
Let

R>1 ={r : A→ α ∈ R | |γ−1(r)| > 1},
T>1 ={t ∈ T | γ(t) = r, r ∈ R>1},
F>1 ={(p, t) ∈ F | t ∈ T>1} ∪ {(t,p) ∈ F | t ∈ T>1}.

For each rule r : A → α ∈ R>1, we define the set Vr = {At | γ(t) = r} of

new nonterminal symbols, and with the rule r, we associate the set

Rr = {A→ At,At → α | r : A→ α ∈ R>1 and γ(t) = r}

of new rules. Correspondingly, we set

Tr = {c1t, c2t | r : A→ α ∈ R>1 and γ(t) = r}
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

where c1t and c2t are new transitions labeled by the rules A → At and

At → α for each t with γ(t) = r, respectively. We define the following sets

of new places

Pr = {pt | r : A→ α ∈ R>1 and γ(t) = r}

and arcs

Fr ={(p, c1t) | c1t ∈ Tr and p ∈ •t} ∪ {c2t,p) | c2t ∈ Tr and p ∈ t•}

∪ {(c1t,pt), (pt, c2t) | c1t, c2t ∈ Tr and pt ∈ Pr}.
Let X⋄ =

⋃

r∈R>1 Xr where X ∈ {V,R,P, T , F}. We consider an (f,y)-Petri

net controlled grammar G ′ = (V ′,Σ, S,R ′,N ′,γ ′,M ′) where V ′ = V ∪ V⋄

and R ′ = (R−R>1)∪R⋄ and N ′ = (P ′, T ′, F ′,ϕ ′, ι ′) is a Petri net where the

set of places, transitions and arcs are defined by

P ′ = P ∪ P⋄, T ′ = (T − T>1) ∪ T⋄, F ′ = (F− F>1) ∪ F⋄;
the weight function ϕ ′ is defined by

ϕ ′(x,y) = 





ϕ(x,y) if (x,y) ∈ F,
ϕ(p, t) if x = p ∈ •t and y = c1t, t ∈ T>1,
ϕ(t,p) if x = c2t and p ∈ t•, t ∈ T>1,1 otherwise;

the initial marking ι ′ is defined by

ι ′(p) =







ι(p) if p ∈ P,0, if p ∈ P⋄;
the bijection γ ′ is defined by γ ′(t) = γ(t) if t ∈ T−Tλ and for all c1t, c2t ∈ Tr,
r ∈ R>1, γ ′(c1t) = A→ At and γ ′(c2t) = At → α;
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

for each τ ′ ∈M ′,

τ ′(p) =







τ(p) if p ∈ P,0, if p ∈ P⋄.
Let

S
r1···rj
====⇒ wj

r
=⇒ w ′

j

rj+1···rk
=====⇒ wk ∈ Σ∗

be a derivation in G where r : A → α ∈ R>1. Then the rule r : A → α

can be replaced by the pair A → At, At → α for some t ∈ T>1 in one-

to-one correspondence with the transition t of N where γ(t) = r, by the

transitions c1t and c2t of N ′, and vice versa. Hence L(G) = L(G ′).

Lemma 5.4. For y ∈ {r, t, g}, PN(λ,y) ⊆ PN(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-Petri net controlled gram-

mar with N = (P, T , F, ι). Let

Tλ ={t ∈ T | γ(t) = λ},
Fλ ={(p, t) | p ∈ P and t ∈ Tλ} ∪ {(t,p) | t ∈ Tλ and p ∈ P}.

We define the i-adjacency set of t ∈ T byAdji(t) = {t ′′ | t ′′ ∈ (Adj1(t ′)) for some t ′ ∈ Adji−1(t) ∩ Tλ} for i > 2
where Adj1(t) = (t•)• and the complete adjacency set byAdj∗(t) = ⋃

i>1Adji(t).
A transition t ′ ∈ Adj∗(t) is called an adjacent transition of t. Adj+(t)
denotes the set of non λ adjacent transitions of t ∈ T , i.e.,Adj+(t) = Adj∗(t) − Tλ.
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

Let Tλ = {t1, t2, . . . , tn}. For each ti ∈ Tλ, 1 6 i 6 n, we define the set

of new transitions

T(ti) = {[t]i | t ∈ Adj+(ti)}.
We introduce the set R(ti) of new rules with respect to each ti ∈ Tλ,1 6 i 6 n,

R(ti) = {A→ A | A→ α = γ(t) ∈ R and t ∈ Adj+(ti)}.
Further, we define a (−λ,y)-Petri net controlled grammar

G ′ = (V,Σ, S,R ′,N ′,γ ′,M ′)

where R ′ = R ∪
⋃

ti∈Tλ
R(ti) and N ′ = (P, T ′, F ′, ι) where

T ′ = (T − Tλ)∪
⋃

ti∈Tλ

T(ti),
F ′ = (F− Fλ)∪

⋃

ti∈Tλ

{(p, [t]i) | p ∈ •ti and [t]i ∈ T(ti)}

∪
⋃

ti∈Tλ

{([t]i,p) | [t]i ∈ T(ti) and p ∈ t•i }.
The weight function ϕ ′ is defined by� ϕ ′(x,y) = ϕ(x,y) if (x,y) ∈ F− Fλ,� ϕ ′(p, [t]i) = ϕ(p, ti) if p ∈ •ti and [t]i ∈ T(ti), ti ∈ Tλ,� ϕ ′([t]i,p) = ϕ(ti,p) if p ∈ t•i and [t]i ∈ T(ti), ti ∈ Tλ.

The labeling function γ ′ : T ′ → R ′ is defined by� γ ′(t) = γ(t) for all t ∈ T ,� γ ′([t]i) = A→ A ∈ R(ti) where [t]i ∈ T(ti), ti ∈ Tλ and t ∈ Adj+(ti)
with γ(t) = A→ α ∈ R.
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

Let S r1r2···rn
=====⇒ wn ∈ Σ∗ be a derivation in G. Then

t ′11 · · · t ′1k(1)t1t ′21 · · · t ′2k(2)t2 · · · tnt ′n+11 · · · t ′n+1k(n+1) �

�

�

�5.1

is a successful occurrence sequence in N where γ(ti) = ri, 1 6 i 6 n and

t ′ij ∈ Tλ for all 1 6 i 6 n + 1, 1 6 j 6 k(i) such that ti ∈ Adj+(t ′ij) for all1 6 i 6 n, 1 6 j 6 k(i).

Each λ-transition t ′ij, 1 6 i 6 n, 1 6 j 6 k(i) in (5.1) can be replaced

by the transition t ′′ij in N ′, 1 6 i 6 n, 1 6 j 6 k(i) with the label Ai → Ai

where Ai is the left side of the rule ri, γ(ri) = ti, 1 6 i 6 n. Then

t ′′11 · · · t ′′1k(1)t1t ′′21 · · · t ′′2k(2)t2 · · · t ′′n1 · · · t ′′nk(n)tn
�

�

�

�5.2

is a successful occurrence sequence in N ′ and correspondingly

S
σ1r1σ2r2···σnrn
==========⇒ wn ∈ Σ∗

is a derivation in G ′ where σi = r ′′i1r ′′i2 · · · r ′′ik(i), γ ′(r ′′ij) = t ′′ij, 1 6 i 6 n,1 6 j 6 k(i). Using the same idea, we can show the inverse inclusion.

It is easy to see that the proof of Lemma 5.4 holds for grammars with

erasing rules, too. We present another proof in the following lemma since

its construction has a smaller increase of the number of places, transitions

and edges.

Lemma 5.5. For y ∈ {r, t, g}, PNλ(λ,y) ⊆ PNλ(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-PN controlled grammar

where y ∈ {r, t, g} and N = (P, T , F,ϕ, ι). Let Tλ be the set of all λ-

transitions of T . We construct the (−λ,y)-Petri net controlled grammar

G ′ = (V ′,Σ, S ′,R ′,N ′,γ ′,M ′) as follows.

We set V ′ = V ∪ {S ′,X} where S ′ and X are new symbols and

R ′ = R ∪ {S ′ → SX,X→ X,X→ λ}
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5.3. THE EFFECT OF LABELING ON THE COMPUTATIONAL POWER

and construct N ′ = (P ′, T ′, F ′,ϕ ′, ι ′) where� the sets of places, transitions and arcs of N ′ are defined by

P ′ = P ∪ {p ′,p ′′},
T ′ = T ∪ {t ′, t ′′},
F ′ = F ∪ {(p ′, t ′), (t ′,p ′′), (p ′′, t ′′)},� the weight function is defined by

ϕ ′(x,y) = 





ϕ(x,y) if (x,y) ∈ F,1 otherwise,� the initial marking is defined by ι ′(p) = ι(p) for all p ∈ P and ι ′(p ′) =1, ι ′(p ′′) = 0,� for every τ ′ ∈M ′, τ ′(p) = τ(p) for all p ∈ P and τ ′(p ′) = τ ′(p ′′) = 0,� and the total function γ ′ : T ′ → R ′ is defined by γ ′(t) = γ(t) if

t ∈ T − Tλ, γ ′(t) = X → X if t ∈ Tλ, γ ′(t ′) = S ′ → SX, and

γ ′(t ′′) = X→ λ.

Let D : S
r1r2···rk
=====⇒ wk ∈ Σ∗ be a derivation in G with an occurrence

sequence ν = ν1t1ν2t2 · · ·νktkνk+1 in N enabled at the initial marking ι

and finishing at a marking µk ∈M where γ(ti) = ri for all for all 1 6 i 6 k

and νi ∈ T∗λ for all 1 6 i 6 k + 1.
We construct a derivation D ′ in G ′ from the derivation D as follows.

We initialize the derivation D with the rule S ′ → SX. For any λ-transition

t in the occurrence sequence ν we apply the rule X→ X and terminate the

derivation with the rule X→ λ:

S ′ ⇒ SX

|ν1|
︷ ︸︸ ︷

X→ X ·r1
=======⇒ w1X |ν2 |

︷ ︸︸ ︷

X→ X ·r2
=======⇒ · · ·

|νk |
︷ ︸︸ ︷

X→ X ·rk
=======⇒ wkX

X→λ
===⇒ wk ∈ Σ∗
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

and t ′ν1t1ν2t2 · · ·νktkνk+1t ′′ is a successful occurrence sequence in N ′

where µ(p ′) = µ(p ′′) = 0 for any µ ∈M ′.

On the other hand, for each derivation

S ′ ⇒ SX
r1···rj
====⇒ wjX

X→λ
===⇒ wj

rj+1···rm
=====⇒ wm ∈ Σ∗

in G ′ by removing the first step, (j+1)-th step and the nonterminal symbol

X from the derivation, we get a derivation in G where the corresponding

occurrence in N ′ sequence is obtained by removing the transitions t ′, t ′′

and changing the labels X→ X of transitions to λ.

The following theorem is a combination of the lemmas given above.

Theorem 5.6. For y ∈ {r, t, g},PN[λ](f,y) = PN[λ](−λ,y) = PN[λ](λ,y).
5.4 The Effect of Final Markings on the Gen-

erative Power

We start with a lemma which shows that the use of final markings increases

the generative power.

Lemma 5.7. PN[λ](λ, r) ⊆ PN[λ](λ, t).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ, r)-PN controlled grammar

(with or without erasing rules) where N = (P, T , F,ϕ, ι). We set

Tp = {tp | p ∈ P} and Fp = {(p, tp) | p ∈ P}

where tp and (p, tp) for all p ∈ P are new transitions and arcs, respectively.

We construct a (λ, t)-PN controlled grammar G ′ = (V,Σ, S,R,N ′,γ ′,M0)
with the Petri net N ′ = (P, T ∪ Tp, F ∪ Fp,ϕ ′, ι) where
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER� the weight function ϕ ′ is defined by ϕ ′(x,y) = ϕ(x,y) if (x,y) ∈ F
and ϕ ′(x,y) = 1 if (x,y) ∈ Fp,� the labeling function γ ′ is defined by γ ′(t) = γ(t) if t ∈ T and

γ ′(t) = λ if t ∈ Tp,� the set M0 of final markings is defined by M0 = {(0, 0, . . . , 0)}.
Let S

r1r2···rk
=====⇒ wk ∈ Σ∗ be a derivation in G where ν = t1t2 · · · ts,

γ(ν) = r1r2 · · · rk, is an occurrence sequence in N enabled at ι and finished

at some µs ∈ M. We continue the occurrence sequence ν by firing the

transition tp µs(p) times, for each place p ∈ P, and after
∑

p∈P µs(p) steps

we get the marking µ ′ where µ ′(p) = 0 for all p ∈ P. Thus L(G) ⊆ L(G ′).

Moreover, it is easy to see that an earlier use of a transition tp either

leads to a blocking of the derivation (since an input place p of a transition

t has not enough tokens and therefore, the corresponding rule γ(t) cannot

be applied) or it has no influence on the derivation, i.e., the use of tp can

be shifted after the finishing of the derivation. Therefore L(G) = L(G ′)

holds.

Corollary 5.8. PN[λ](λ, r) ⊆ PN[λ](λ, g).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ, r)-PN controlled grammar

(with or without erasing rules) where N = (P, T , F,ϕ, ι). We construct a

(λ, g)-PN controlled grammar G ′′ = (V,Σ, S,R,N ′,γ ′,M ′) where V, Σ, S,

R, N ′ and γ ′ are defined as for the grammar G ′ in the proof of Lemma 5.7.

If we defineM ′ as the set of any marking µ ∈ R(N ′, ι) which is greater than

or equal to µ ′ = (0, 0, . . . , 0), then the inclusion follows immediately.

Lemma 5.9. PN[λ](λ, g) ⊆ PN[λ](λ, t).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ, g)-PN controlled grammar

(with or without erasing rules) where N = (P, T , F,ϕ, ι) and M is the set

of all markings such that for every marking µ ∈ M there is a marking µ ′
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

of a given finite set M0 ⊆ R(N, ι) such that µ > µ ′. Let p0 be a new place.

We define the following sets of new transitions and arcs.

TM0 = {tµ | µ ∈M0},
TP = {tp | p ∈ P}

are the sets of new transitions and

F−M0 = {(p, tµ) | µ ∈M0 and p ∈ P where µ(p) 6= 0},
F+M0 = {(tµ,p0) | µ ∈M0},
FP = {(p, tp) | p ∈ P}

are the sets of new arcs. We construct the Petri net

N ′ = (P ∪ {p0}, T ∪ TM0 ∪ TP, F ∪ F−M0 ∪ F+M0 ∪ FP,ϕ ′, ι ′)
where� the weight function ϕ ′ is defined by ϕ ′(x,y) = ϕ(x,y) for all (x,y) ∈

F, ϕ ′(p, tµ) = µ(p) for each (p, tµ) ∈ F−M0 , and ϕ ′(tµ,p0) = 1 for each

(tµ,p0) ∈ F+M0 ;� the initial marking ι ′ is defined by ι ′(p) = ι(p) for all p ∈ P and

ι ′(p0) = 0.
We define a (λ, t)-PN controlled grammar G ′ = (V,Σ, S,R,N ′,γ ′,M ′)

where� γ ′(t) = γ(t) if t ∈ T and γ ′(t) = λ otherwise;� M ′ = {µ ′} where µ ′(p) = 0 for all p ∈ P and µ ′(p0) = 1.
Let D : S

π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G, then there is

an occurrence sequence ν = t1t2 · · · ts such that ι ν
−→ µ where γ(ν) = π and
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

µ ∈ M. By definition, there is a marking µ ′ ∈ M0 such that µ > µ ′. It

follows that the transition t ′µ can occur and the place p0 receives a token,

and the rest tokens in places of P can be removed by firing transitions tp.

It is not difficult to see that D is also a derivation in G ′.

If D ′ : S
π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn, is a derivation in G ′ with a

successful occurrence sequence ν = t1t2 · · · ts where γ ′(π) = ν, then ι ′ ν
−→ µ ′

where µ ′(p) = 0 for all p ∈ P and µ ′(p0) = 1. Since µ ′(p0) = 1, |ν|tµ = 1
for some µ ∈M0. Without loss of generality we can assume that ν = ν ′ ·ν ′′

where ν ′ contains only transitions of T and ν ′′ contains only transitions of

TP and the transition tµ. Then, γ ′(ν ′) = π, γ ′(ν ′′) = λ and ι ′ ν ′

−→ µ ′′ where

µ ′′ > µ. It follows that D ′ is also a derivation in G.

Lemma 5.10. PN[λ](λ, g) ⊆ PN[λ](λ, r).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ, g)-Petri net controlled gram-

mar where N = (P, T , F,ϕ, ι) and M is the set of all markings such that

for every marking µ ∈ M there is a marking µ ′ in a given finite set

M0 ⊆ R(N, ι) such that µ > µ ′.

We set Σ = {a | a ∈ Σ} where a, a ∈ Σ, is a new nonterminal symbol

and define a bijection φ : V ∪ Σ→ V ∪ Σ as

φ(x) =







x if x ∈ V,
x if x ∈ Σ

Let

R = {A→ φ(α) | A→ α ∈ R} and RΣ = {a→ a | a ∈ Σ}.
We define a (λ, r)-Petri net controlled grammar

G ′ = (V ∪ Σ,Σ, S,R ∪ RΣ,N ′,γ ′,M ′)
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

where N ′ = (P ′, T ′, F ′,ϕ ′, ι ′) and

P ′ = P ∪ {p ′,p ′′}, T ′ = T ∪ TM0 ∪ TΣ and F ′ = F ∪ FM0 ∪ FΣ ∪ Fp ′ ∪ Fp ′′

where p ′,p ′′ are new places,

TM0 = {tµ | µ ∈M0} and TΣ = {ta | a ∈ Σ}

are sets of new transitions,

FM0 = {(p, tµ) | p ∈ P and tµ ∈ TM0},
Fp ′ = {(p ′, tµ) | tµ ∈ TM0}, and Fp ′′ = {(tµ,p ′′) | tµ ∈ TM0},
FΣ = {(p ′′, ta), (ta,p ′′) | ta ∈ TΣ}

are sets of new arcs.� The weight function ϕ ′ is defined by ϕ ′(x,y) = ϕ(x,y) if (x,y) ∈ F,
ϕ ′(p, tµ) = µ(p) if µ ∈M0 and ϕ ′(x,y) = 1 if (x,y) ∈ Fp ′ ∪ Fp ′′ ∪ FΣ.� The initial marking ι ′ is defined by ι ′(p) = ι(p) if p ∈ P and ι ′(p ′) =1, ι ′(p ′′) = 0.� The bijection γ ′ is defined by γ ′(t) = A→ φ(α) if t ∈ T and γ(t) =

A→ α, γ ′(t) = λ if t ∈ TM0 , and γ ′(ta) = a→ a for all a ∈ Σ.� For each τ ′ ∈M ′, τ ′(p ′) = 0 and τ ′(p ′′) = 1.
Let D : S

r1r2···rn
=====⇒ w ∈ Σ∗ be a derivation in G and ν = t1t2 · · · tm,

ι
ν
−→ µm, is a successful occurrence sequence of transitions of N where

γ(ν) = r1r2 · · · rn. By definition, µm > µ for some µ ∈M0.
Let w = ai1ai2 · · ·aik , ai1 ,ai2, . . . ,aik ∈ Σ, k > 1. We construct a

derivation D ′ in G ′ with respect to D as follows:

D ′ : S
r1r2···rn
=====⇒ w

rai1 rai2 ···raik
=========⇒ w
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

where ri ∈ R, 1 6 i 6 n and r : A → φ(α) for each r : A → α ∈ R,

w = ai1ai2 · · ·aik, and raij
: aij → aij , 1 6 j 6 k. One can easily see that

ν ′ = ν · tµ · tai1tai2 · · · taik
is a successful occurrence sequence of transitions

of N ′ and γ ′(ν ′) = r1r2 · · · rn · rai1 rai2 · · · raik
. Therefore, L(G) ⊆ L(G ′).

Let S π
=⇒ w ∈ Σ∗ be a derivation in G ′. Then, π ∈ (R ∪ RΣ)

∗ and the

corresponding successful occurrence of sequence ν of transitions of N ′ is of

the form ν = ν ′ · tµ ·ν ′′ for some ν ′,ν ′′ ∈ (T ∪ TΣ)
∗ and for some tµ ∈ TM0 .

Without loss of generality we can change of the order of application of

rules in π such that π = π ′ · π ′′ where π ′ ∈ R
∗

and π ′′ ∈ R∗
Σ. Correspond-

ingly, for ν we have ν = ν ′ · tµ · ν ′′ where γ ′(ν ′) = π ′ and γ ′(ν ′′) = π ′′. It

follows that S r1r2···rn
=====⇒ w is a derivation in G where r1r2 · · · rn corresponds

to π ′ = r1r2 · · · rn and γ(t1t2 · · · tm) = r1r2 · · · rn where γ ′(t1t2 · · · tm) = π ′.

Hence, t1t2 · · · tm is a successful occurrence sequence for M. It follows that

L(G ′) ⊆ L(G).

In the remaining part we discuss the relation between Petri net con-

trolled languages and matrix languages.

Lemma 5.11. For x ∈ {f,−λ, λ} and y ∈ {r, t, g},PNλ(x,y) ⊆ MATλ.
Proof. Let G = (V,Σ, S,R,N,γ,M ′) be an (x,y)-Petri net controlled gram-

mar with N = (P, T , F,ϕ, ι) where x ∈ {f,−λ, λ} and y ∈ {r, t, g}. Let

P = {p1,p2, . . . ,pn}.
We set V ′ = V ∪ P ∪ {S ′,B} where P = {p | p ∈ P} is a set of new

nonterminal symbols and S ′,B are new nonterminal symbols. Let for t ∈ T ,

•t = {pi1 ,pi2, . . . ,pik}
and

t• = {pj1,pj2, . . . ,pjm}.
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

We associate the following sequences of rules with each transition t ∈ T

σi1 : pi1 → λ,pi1 → λ, . . . ,pi1 → λ
︸ ︷︷ ︸

ϕ(pi1 ,t) �

�

�

�5.3

σi2 : pi2 → λ,pi2 → λ, . . . ,pi2 → λ
︸ ︷︷ ︸

ϕ(pi2 ,t) �

�

�

�5.4

· · ·

σik : pik → λ,pik → λ, . . . ,pik → λ
︸ ︷︷ ︸

ϕ(pik
,t) �

�

�

�5.5

σB : B→ Bp
ϕ(t,pj1)
j1 p

ϕ(t,pj2)
j2 · · ·p

ϕ(t,pjm)

jm

�

�

�

�5.6

and define the matrix

mr = (σi1 ,σi2, . . . ,σik,σB, r) �

�

�

�5.7

where r = A→ α = γ(t) ∈ R. Furthermore, we add the starting matrix

m0 = (S ′ → SB ·
∏

p∈P

p|ι(p)|)
�

�

�

�5.8

According to types of the sets of final markings we consider three cases

of erasing rules:

Case y = t. For each τ ∈M ′,

mτ,λ = (B→ λ,p1 → λ, . . . ,p1 → λ
︸ ︷︷ ︸

τ(p1) , . . . ,pn → λ, . . . ,pn → λ
︸ ︷︷ ︸

τ(pn)

). �

�

�

�5.9

Case y = r.

mp,λ = (p→ λ) for each p ∈ P and mB,λ = (B→ λ)
�

�

�

�5.10

Case y = g. Here we consider matrices (5.9) together with matrices
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

(5.10).

We consider the matrix grammar G ′ = (V ′,Σ, S ′,M) where M consists

of all matrices of (5.7)-(5.8) and matrices (5.9) (Case y = t), matrices (5.10)

(Case y = r) or matrices (5.9)-(5.10) (Case y = g).

Let D : S
r1r2···rn
=====⇒ w ∈ Σ∗ be a derivation in G. Then ν = t1t2 · · · ts

where γ(ν) = r1r2 · · · rn is an occurrence sequence of transitions of N en-

abled at the initial marking ι.

We construct the derivation D ′ in G ′ which simulates the derivation D.

The derivation D ′ starts with S ′ ⇒ SB ·
∏

p∈P p
|ι(p)| applying the matrix

(5.8), then for each pair of a transition t in ν and the corresponding rule

r = γ(t), we choose a matrix of the form (5.7). When the terminal string

w ∈ Σ∗ is generated, in order to erase the remaining symbols from P and

the symbol B we use matrices of the form (5.9), (5.10) or (5.9) and (5.10)

depending on y ∈ {r, t, g}.
Let D ′ : S ′ m0

=⇒ SB ·
∏

p∈P p
|ι(p)|

mi1mi2 ···min
=========⇒ wn = w ∈ Σ∗ be a

derivation inG ′. Since V∩P = ∅, we can write a derivationD ′′ : S
rj1rj2 ···rjk
=======⇒

wjk = w ∈ Σ∗ where rji is the rule of the non-erasing matrixmrji
, 1 6 i 6 k

in D ′ and we omit those steps in D ′ in which erasing matrices are used.

The application of a matrixmr of the form (5.7) in D ′ shows that there

are at least ϕ(pi1 , t) pieces of pi1 , etc., and at least ϕ(pik, t) pieces of pik
in the sentential form, i.e., the input places pi1,pi2,pik of t have at least

ϕ(pi1 , t), ϕ(pi2, t), . . ., ϕ(pik , t) tokens, respectively. Thus, the transition

t, γ(t) = r is enabled in N. We can construct the successful occurrence

sequence ι
tj1tj2 ···tjk−−−−−−→ µk where γ(tji) = rji , 1 6 i 6 k. Hence, D ′′ is a

derivation in G. Thus L(G ′) ⊆ L(G).

Now let E : S
rj1rj2 ···rjk
=======⇒ wjk = w ∈ Σ∗ be a derivation in G. Then

we also have the derivation E ′ : S ′ m0
==⇒ SB

mj1mj2 ···mjk
========⇒ w ′

jk
B in G ′ where

w ′
jk

differs from wjk only in letters p with p ∈ P. These letters and B

can be erased with matrices (5.9), (5.10) or (5.9) and (5.10) depending on
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

y ∈ {r, t, g}. Thus L(G) ⊆ L(G ′).

Lemma 5.12. MAT[λ] ⊆ PN[λ](−λ, r).
Proof. Let G = (V,Σ, S,M) be a matrix grammar (with or without erasing

rules) and

M = {m1,m2, . . . ,mn} where mi = (ri,1, ri,2, . . . , ri,k(i)), 1 6 i 6 n.
Without loss of generality we can assume that G is without repetitions.

Let R = {ri,j | 1 6 i 6 n, 1 6 j 6 k(i)}.

We set Σ = {a | a ∈ Σ} where, for a ∈ Σ, a is a new nonterminal symbol.

We define the bijection ψ : V ∪ Σ→ V ∪ Σ by

ψ(x) =







x if x ∈ V,
x if x ∈ Σ,

and for each rule r = A → x1x2 · · ·xl ∈ R, we introduce the new rule

r = A→ ψ(x1)ψ(x2) · · ·ψ(xl).
Let

M = {m1,m2, . . . ,mn} where mi = (ri1, ri,2, . . . , ri,k(i)), 1 6 i 6 n,
MΣ = {(a→ a) | a ∈ Σ}.
We construct the matrix grammar G ′ = (V ∪ Σ,Σ, S,M ∪MΣ). Obvi-

ously, L(G) = L(G ′).

We define a (−λ, r)-Petri net controlled grammar

G ′′ = (V ∪ Σ,Σ, S,R ′,N,γ,M ′)

where R ′ = R∪ {a→ a | a ∈ Σ} and N = (P, T , F,ϕ, ι) is a control Petri net
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

where the sets of places, transitions and arcs are respectively defined by

P ={p0} ∪ {pi,j | 1 6 i 6 n, 1 6 j 6 k(i) − 1},
T ={ta | a ∈ Σ} ∪ {ti,j | 1 6 i 6 n, 1 6 j 6 k(i)},
F ={(p0, ta), (ta,p0) | a ∈ Σ} ∪ {(p0, ti,1), (ti,k(i),p0) | 1 6 i 6 n}

∪ {(ti,j,pi,j) | 1 6 i 6 n, 1 6 j 6 k(i) − 1}
∪ {(pi,k(i)−1, ti,k(i)) | 1 6 i 6 n}.

The weight function is defined by ϕ(x,y) = 1 for all (x,y) ∈ F, and the

initial marking is defined by ι(p0) = 1, and ι(p) = 0 for all P ′ − {p0}. The

labeling function γ : T → R ′ is defined by γ(ta) = a→ a for all a ∈ Σ and

γ(ti,j) = ri,j, 1 6 i 6 n, 1 6 j 6 k(i).

Let

S = w0 mi1
==⇒ w1 mi2

==⇒ · · ·
mil
==⇒ wl = w ∈ Σ∗

�

�

�

�5.11

be a derivation in G ′, where mij , 1 6 j 6 l is an element of M or MΣ, and

wj−1 mij
==⇒ wj : wj−1 rij,1rij2···rij,k(ij)

==========⇒ wj or wj−1 a→a
===⇒ wj

for some a ∈ Σ. Then by definition of the function γ, µj−1 νj
−→ µj where νj =

tij,1tij,2 · · · tij,k(ij) or νj = ta and µj = ι for all 1 6 j 6 l. Hence, according

to (5.11), we can construct the successful occurrence sequence ι
ν1ν2···νl−−−−−→ ι

of transitions of N. Therefore, S
π1π2···πl
======⇒ wl ∈ Σ

∗ is a derivation in G ′′,

where, for each 1 6 j 6 l, πj = rij,1rij,2 · · · rij,k(ij) or πj = a → a for some

a ∈ Σ.

Let D : S
r1r2···rl
=====⇒ w ∈ Σ∗ be a derivation in G ′′ where ν = t1t2 · · · tl,

γ(ti) = ri, 1 6 i 6 l, is a successful occurrence sequence of transitions of

N.

If ti,1 with 1 6 i 6 l starts in ν, then in the next steps ti,2, ti,3, . . . , ti,k(i)
can only fire in this order. Another tj,1, 1 6 j 6 l or ta for some a ∈ Σ

can fire after ti,k(i) occurs. By definition of γ, the corresponding label
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5.4. THE EFFECT OF FINAL MARKINGS ON THE GENERATIVE POWER

rules ri,1, ri,2, . . . , ri,k(i) are the elements of one matrix mi ∈ M, i.e.,

mi = (ri,1, ri,2, . . . , ri,k(i)). Thus the application of matrices of G ′ can

be simulated by occurrence sequence of transitions of N. It follows that D

is also a derivation in G ′.

Now we summarize our results in the following theorem.

Theorem 5.13. For x ∈ {f,−λ, λ} and y ∈ {r, t, g},MAT ⊆ PN(x, r) = PN(x, g) ⊆ PN(x, t) ⊆ PNλ(x,y) = MATλ.
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6
Grammars Controlled by Special

Petri Nets

6.1 Introduction

In the previous chapter we investigated arbitrary Petri net controlled gram-

mars in dependence on the type of labeling functions and on the definitions

of final markings, and showed that Petri net controlled grammars have the

same power as some other regulating mechanisms such as matrices, finite

automata. If we consider these matrices and finite automata in terms of

control mechanisms, special types of matrices and special regular languages

are widely investigated in literature, for instance, as control, simple matri-

ces ([54]) or some subclasses of regular languages ([22, 25]) are considered.

Thus, it is also natural to investigate grammars controlled by some special

classes of Petri nets. We consider (generalized) state machines, (general-

ized) marked graphs, causal nets, (extended) free-choice nets, asymmetric

choice nets and ordinary nets. Similarly to the general case we also investi-

gate the effects of labeling policies and final markings to the computational

power, and prove that the family of languages generated by (arbitrary) Petri

net controlled grammars coincide with the family of languages generated

by grammars controlled by free-choice nets.
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6.2. GRAMMARS AND THEIR LANGUAGES

6.2 Grammars and Their Languages

Let G = (V,Σ, S,R,N,γ,M) be an arbitrary Petri net controlled grammar

where V and Σ are sets of nonterminal and terminal symbols, respectively,

S is the start symbol, R is set of context-free rules, N = (P, T , F, ι) is a Petri

net, γ : T → R ∪ {λ} is a transition labeling function and M is a set of final

markings.

The grammar G is called a (generalized) state machine, (generalized)

marked graph, causal net, (extended) free-choice net, asymmetric choice

net or ordinary net controlled grammar if the net N is a (generalized) state

machine, (generalized) marked graph, causal net, (extended) free-choice

net, asymmetric choice net or ordinary net, respectively. We also use the

common name a special Petri net (in short, sPN) when we refer to each

special class.

We also use a notation an (x,y)-(generalized) state machine, ((gener-

alized) marked graph, causal net, (extended) free-choice net, asymmetric

choice net and ordinary net) controlled grammar where x ∈ {f,−λ, λ} shows

the type of a labeling function γ and y ∈ {r, t, g} shows the type of a set of

final markings (for details, see Chapter 5).

We denote the families of languages generated by grammars controlled

by state machines, generalized state machines, marked graphs, general-

ize marked graphs, causal nets, free-choice nets, extended free-choice nets,

asymmetric nets, ordinary nets and Petri netsSM[λ](x,y), GSM[λ](x,y), MG[λ](x,y), GMG[λ](x,y), CN[λ](x,y),FC[λ](x,y), EFC[λ](x,y), AC[λ](x,y), ON[λ](x,y), PN[λ](x,y)
where x ∈ {f,−λ, λ} and y ∈ {r, t, g}.

The inclusion X(x,y) ⊆ Xλ(x,y) immediately follows from the defini-

tion where
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6.2. GRAMMARS AND THEIR LANGUAGES� X ∈ {SM,GSM,MG,GMG,CN, FC, EFC,AC,ON},� x ∈ {f,−λ, λ} and y ∈ {r, t, g}.
Example 6.1. Let G1 = ({S,A,B}, {a,b}, S,R,Nsm,γ1,M1) be a SM con-

trolled grammar where R consists of

S→ AB,
A→ aA, A→ bA, A→ λ,
B→ aB, B→ bB, B→ λ,

the Petri net Nsm illustrated in Figure 6.1 is a labeled state machine and

M1 = {µ} where µ(p0) = 1 and µ(p) = 0 for all p ∈ P − {p0}, then

L(G1) = {ww | w ∈ {a,b}∗} ∈ SMλ(λ, t).

•

p  → !" ! → #! " → #"
! → $! " → $"! →λ " →λ

λ

λ

Figure 6.1: A labeled state machine Nsm
Example 6.2. Let G2 = ({S,A,B}, {a,b}, S,R,Nmg,γ2,M2) be a MG con-

trolled grammar where R is as for the grammarG1 in Example 6.1, a labeled
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6.3. RESULTS: LABELING STRATEGIES

marked graph Nmg is illustrated in Figure 6.2 andM1 = {µ} where µ(p) = 0
for all p ∈ P. Then

L(G2) = {ww ′ | w ∈ {a,b}∗ and w ′ ∈ Perm(w)} ∈ MGλ(λ, t).
λ

 → !"!→ #! "→ #"!→ $! "→ $"!→λ "→λ

Figure 6.2: A labeled marked graph Nmg
6.3 Results: Labeling Strategies

In this section we investigate the effect of the labeling of transitions on the

generative capacities of the introduced families of languages.

From the definition, the next statement follows immediately.

Lemma 6.1. For X ∈ {SM,GSM,MG,GMG,CN, FC, EFC,AC,ON} and

y ∈ {r, t, g}, X[λ](f,y) ⊆ X[λ](−λ,y) ⊆ X[λ](λ,y).
Further, we show that the reverse inclusions also hold.

For each sPN, one can easily construct a net of the same type in which

the transitions have different labels, by “splitting" each transition into two,

i.e., by replacing a transition t with label A→ α by new transitions t ′, t ′′

with labels A → A ′, A ′ → α, respectively, where t ′ receives all incoming
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6.3. RESULTS: LABELING STRATEGIES

arcs of t and t ′′ receives all outgoing arcs of t, and a new place pt from

transition t ′ and to transition t ′′.

Lemma 6.2. For X ∈ {SM,GSM,MG,GMG,CN, FC, EFC,AC,ON} and

y ∈ {r, t, g}, X[λ](−λ,y) ⊆ X[λ](f,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (−λ,y)-sPN controlled grammar

(with or without erasing rules) where y ∈ {r, t, g} and N = (P, T , F, ι). We

construct a new sPNN ′ by replacing each transition t ∈ T with labelA→ α

by two new transitions lt, l ′t with labels A → At, At → α, respectively,

and
•lt =

•t, (l ′t)• = t•, l•t = {pt} =
•l ′t,

where At, t ∈ T , is a new nonterminal symbol and pt, t ∈ T , is a new place.

Formally, N ′ = (P ′, T ′, F ′, ι ′) where P ′ = P ∪ Pt, T ′ = {lt, l ′t | t ∈ T } and

F ′ ={(p, lt) | p ∈ •t, t ∈ T } ∪ {(l ′t,p) | p ∈ t•, t ∈ T }
∪ {(lt,pt), (pt, l ′t) | t ∈ T }.

The initial marking ι ′ is defined by ι ′(p) = ι(p) if p ∈ P and ι ′(p) = 0
if p ∈ Pt. We should mention that this kind of replacement of transitions

of an sPN preserve its structural property.

Let G ′ = (V ′,Σ, S,R ′,N ′,γ ′,M ′) be an (f,y)-sPN controlled grammar

where V ′ = V ∪ Vt with Vt = {At | t ∈ T } and

R ′ = {A→ At,At → α | A ∈ R and t ∈ T }.
The labeling function γ ′ is defined by γ ′(lt) = A → At and γ ′(l ′t) =

At → α for all lt, l ′t ∈ T ′ where γ(t) = A→ α ∈ R.

For each τ ′ ∈M ′, τ ′(p) = τ(p) if p ∈ P and τ ′(p) = 0 if p ∈ Pt.
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In a derivation S r1r2···rn
=====⇒ w ∈ Σ∗ of G, we replace each rule ri : Ai →

αi by the pair rti : Ai → Ati , r
′
ti

: Ati → αi, 1 6 i 6 n, and the

occurrence sequence of transitions ν = t1t2 · · · tn where γ(ν) = r1r2 · · · rn
by the occurrence sequence lt1l ′t1lt2l ′t2 · · · ltnl ′tn in the grammar G ′. It is

difficult to see that S
rt1r ′

t1rt2r ′
t2 ···rtnr ′

tn
=============⇒ w is a derivation in G ′ where

lt1l ′t1lt2l ′t2 · · · ltnl ′tn with

γ ′(lt1l ′t1lt2l ′t2 · · · ltnl ′tn) = rt1r ′t1rt2r ′t2 · · · rtnr ′tn
is a successful occurrence sequence in N ′. Thus, w ∈ L(G ′).

By construction of N ′, if a transition lt for some t ∈ T in a successful

occurrence sequence of transitions σ then l ′t is also in σ, similarly, if A→ At

in D : S
π
=⇒ w ∈ Σ∗ then At → α is also in D. Without loss of generality

we can assume that π = · · · (A → At)(At → α) · · · and σ = · · · ltl
′
t · · · (If

π = · · · (A → At)π
′(At → α) · · · for some π ′ ∈ R ′∗ and σ = · · · ltσ

′l ′t · · ·

for some σ ′ ∈ T ′∗ where γ ′(σ ′) = π ′, then we can change the order of

the application of rules and the firing of transitions so that D ′ : S
π ′′

==⇒

w ∈ Σ∗ where π ′′ = · · · (A → At)(At → α)π ′ · · · with γ ′(π ′′) = σ ′′,

σ ′′ = · · · ltl
′
tσ

′ · · · ). We replace each (A → At)(At → α) by A → α and

ltl
′
t by t. Thus, w ∈ L(G).

For each (λ,y)-sPN controlled grammar, if we label each λ-transition

with X → X, start each derivation with S ′ → SX and erase X with rule

X → λ at the end of the derivation, then we get the same derivation in a

(−λ,y)-sPN controlled grammar, i.e.,

Lemma 6.3. For X ∈ {SM,GSM,MG,GMG,CN, FC, EFC,AC,ON} and

y ∈ {r, t, g}, Xλ(λ,y) ⊆ Xλ(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-sPN controlled grammar

where y ∈ {r, t, g} and N = (P, T , F, ι). Let Tλ = {t ∈ T | γ(t) = λ}.
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A (−λ,y)-sPN controlled grammarG ′ = (V ′,Σ, S ′,R ′,N ′,γ ′,M ′) is con-

structed as follows. We set V ′ = V ∪ {S ′,X} and

R ′ = R ∪ {S ′ → SX,X→ X,X→ λ}

where S ′ and X are new nonterminals. N ′ = (P ∪ P ′, T ∪ T ′, F ∪ F ′, ι ′) is an

sPN where� P ′ = {p ′,p ′′}, T ′ = {t ′, t ′′}, F ′ = {(p ′, t ′), (t ′,p ′), (p ′′, t ′′), (t ′′,p ′′)} are

the sets of new places, transitions and arcs, respectively,� ι ′(p) = ι(p) for all p ∈ P and ι ′(p ′) = ι ′(p ′′) = 1.
The total function γ ′ : T ′ → R ′ is defined by

γ ′(t) =







γ(t) if t ∈ T − Tλ

X→ X if t ∈ Tλ

S ′ → SX if t = t ′

X→ λ if t = t ′′.
For each τ ′ ∈M ′, τ ′(p) = τ(p) for all p ∈ P and τ ′(p ′) = τ ′(p ′′) = 1.
Let D : S

r1r2···rk
=====⇒ wk ∈ Σ∗ be a derivation in G where ν = ν1t1 · · ·νktk,

γ(ti) = ri and γ(νi) = λ for all 1 6 i 6 k is an occurrence sequence in N

enabled at the initial marking ι and finishing at a marking µ ∈M.

We construct a derivation D ′ in G ′ from the derivation D as follows.

We initialize the derivation D with the rule S ′ → SX. For any λ-transition

t in the occurrence sequence ν we apply the rule X→ X and terminate the

derivation with the rule X→ λ:

S ′ ⇒ SX

|ν1|
︷ ︸︸ ︷

X→ X ·r1
=======⇒ w1X |ν2 |

︷ ︸︸ ︷

X→ X ·r2
=======⇒ · · ·

|νk |
︷ ︸︸ ︷

X→ X ·rk
=======⇒ wkX

X→λ
===⇒ wk ∈ Σ∗

and t ′ν1t1ν2t2 · · ·νktkt ′′, t ′, t ′′ ∈ T ′, is a successful occurrence sequence in
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N ′.

On the other hand, for each derivation

S ′ ⇒ SX
r1···rj
====⇒ wjX

X→λ
===⇒ wj

rj+1···rm
=====⇒ wm ∈ Σ∗

in G ′ by removing the first step, (j+1)-th step and the nonterminal symbol

X from the derivation, we get a derivation in G where the corresponding

occurrence sequence inN is obtained by removing the transitions t ′, t ′′ ∈ T ′

and changing the labels X→ X to λ.

Lemma 6.4. For y ∈ {r, t, g} and X ∈ {SM,GSM}, X(λ,y) ⊆ X(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-state machine controlled

grammar where y ∈ {r, t, g} and N = (P, T , F, ι). Let Tλ ⊆ T be the set of

all λ-transitions of N and Fλ ⊆ F be the set of all incoming and outgoing

arcs of the λ-transitions, i.e., Fλ = {(p, t), (t,p) | p ∈ P and t ∈ Tλ}.

We construct a new state machine N ′ without λ-transitions by removing

each λ-transition tλ ∈ Tλ with the incoming and outgoing arcs, and adding

a new transition t ′ for each adjacent transition t ∈ Adj(tλ)+, and the new

arcs from the input place of tλ to t ′ and from t ′ to the output place of t.

For each t ∈ Adj+(tλ), tλ ∈ Tλ, we introduce a new “copy" transition

ct which has the same label as t. Let

Tc(tλ) = {ct | t ∈ Adj+(tλ)} and Tc =
⋃

tλ∈Tλ

Tc(tλ).
Let N ′ = (P, T ′, F ′, ι) be a state machine where T ′ = (T − Tλ) ∪ Tc, and

F ′ = (F− Fλ) ∪ {(p, ct) | p ∈ •tλ and ct ∈ Tc(tλ), tλ ∈ Tλ}

∪ {(ct,p) | ct ∈ Tc(tλ) and p ∈ (Adj+(tλ))•, tλ ∈ Tλ}.
We define a (−λ,y)-SM controlled grammar G ′ = (V,Σ, S,R,N ′,γ ′,M)

where V,Σ, S,R are as for the grammar G, and γ ′(t) = γ(t) if t ∈ T and
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γ ′(ct) = γ(t) if ct ∈ Tc and ct is the copy of t ∈ Adj+(tλ) for all tλ ∈ Tλ.

Let S π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn, be a derivation in G. Then there

is an occurrence sequence σ = σλ1 t1σλ2 t2 · · ·σλntnσλn+1 which is successful

for M where σλi = tλ,i,1tλ,i,2 · · · tλ,i,k(i) ∈ T∗, 1 6 j 6 k(i), and γ(σλi ) =

λ, 1 6 i 6 n + 1. Without loss of generality we can assume that ti ∈Adj+(tλ,i,j), 1 6 j 6 k(i), for each σλi ∈ T+, 1 6 i 6 n. Then each

sequence tλ,i,1tλ,i,2 · · · tλ,i,k(i)ti, k(i) > 1, is replaced by cti ∈ Tc(tλ,i,1)
where ti ∈ Adjk(i)(tλ,i,1), and we get the occurrence sequence σ ′ in N ′

and r1r2 · · · rn = γ ′(σ ′) since cti and ti have the same label. Therefore,

L(G) ⊆ L(G ′).

The inverse case can be shown by backtracking the arguments in this

paragraph.

Lemma 6.5. For x ∈ {f,−λ, λ} and y ∈ {r, t, g},GMG[λ](x,y) ⊆ MG[λ](x,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be an (x,y)-GMG controlled gram-

mar (with or without erasing rules) where N = (P, T , F, ι) is a generalized

marked graph. Let

P−
∅
= {p ∈ P | •p = ∅} and P+

∅
= {p ∈ P | p• = ∅}.

Without loss of generality we can assume that P−
∅
∩ P+

∅
= ∅ (if place p ∈ P

is isolated, i.e., |•p| = |p•| = 0, it can be eliminated since isolated places do

not effect any derivation of the grammar).

Let

Q− = {qp | p ∈ P−
∅
} and Q+ = {qp | p ∈ P+

∅
}

be the sets of new places,

T− = {tp | p ∈ P−
∅
} and T+ = {tp | p ∈ P+

∅
}
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be the sets of new transitions and

F− = {(tp,qp), (qp, tp), (tp,p) | p ∈ P−
∅
}

and

F+ = {(p, tp), (tp,qp), (qp, tp) | p ∈ P+
∅
}

be the sets of new arcs.

We construct a marked graph

N ′ = (P ∪Q− ∪Q+, T ∪ T− ∪ T+, F ∪ F− ∪ F+, ι ′)
where ι ′(p) = ι(p) if p ∈ P and ι ′(p) = 0 if p ∈ Q− ∪Q+.

We set V ′ = V ∪ {B} and R ′ = R∪ {B→ B} where B is a new nonterminal

symbol, and define a MG controlled grammar G ′ = (V ′,Σ, S,R ′,N ′,γ ′,M ′)

where the labeling function γ ′ is defined by γ ′(t) = γ(t) if t ∈ T and

γ ′(t) = B→ B if t ∈ T− ∪ T+. For each τ ′ ∈M ′, τ ′(p) = τ(p) if p ∈ P and

τ ′(p) = 0 if p ∈ Q− ∪Q+.

By construction of N ′, any transition t ∈ T− ∪ T+ never occurs and the

production rule B→ B is never applied in any derivation of G ′. Thus it is

not difficult to see that L(G) = L(G ′).

Lemma 6.6. For y ∈ {r, t, g} and X ∈ {MG,CN}, X(λ,y) ⊆ X(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-MG controlled grammar

where N = (P, T , F, ι) is a marked graph. Let Tλ = {t | γ(t) = λ} andAdj+(Tλ) = {t | t ∈ Adj+(tλ) for some tλ ∈ Tλ}.
We assume that for each t ∈ Tλ, t is not a transition of some cycle ρ

where ι(p) = 0 for all p ∈ Pρ or (t•)• = ∅ (in the former case, the transition

t and its incoming and outgoing arcs can be removed without effecting any

firing of transitions since t never occurs; in the latter case, the transition
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t, its outgoing arcs and the places of t• can be removed as the firing of t

does not effect any derivation of the grammar G).

Before proving the lemma, we introduce some necessary notions. Tran-

sitions tλ, t ′λ ∈ Tλ are called neighbors if tλ ∈ Adj∗(t ′λ) or t ′λ ∈ Adj∗(tλ).
A subset T ′

λ ⊆ Tλ is called a neighborhood set if all transitions of T ′
λ are

pairwise neighbors. A neighborhood set T ′
λ ⊆ Tλ is maximal if for any

tλ ∈ Tλ − T ′
λ there is a transition t ′λ ∈ T ′

λ such that tλ and t ′λ are not

neighbors. Let Nbr(Tλ) be the set of all maximal neighborhood subsets

of Tλ. Let Tλ(t) denote a maximal neighborhood subset of Tλ such that

t ∈ Adj+(tλ) for all tλ ∈ Tλ(t).

We construct a generalized marked graph N ′ without λ-transitions by� removing

– all transitions of Tλ,

– all places of •tλ for each tλ ∈ Tλ,

– all incoming and outgoing arcs of each place p ∈• tλ, tλ ∈ Tλ, let

Fλ = {(p, t), (t,p) | p ∈ •Tλ},
– all incoming arcs of each place p ∈ •t ∩ T•λ where t ∈ Adj+(Tλ),

let

FA = {(t,p) | p ∈ •(Adj+(Tλ)) ∩ T•λ},� adding

– a new transition [t]λ for each tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ), t ∈ T ,
let

[T ]λ =
⋃

t∈T

⋃

Tλ(t)∈Nbr(Tλ)

{[t]λ | tλ ∈ Tλ(t)},
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– a new place p[t]λ for each p ∈ •tλ, tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ),
t ∈ T , let

[P]λ =
⋃

t∈T

⋃

Tλ(t)∈Nbr(Tλ)

⋃

tλ∈Tλ

{p[t]λ | p ∈ •tλ},
– for each p ∈ •tλ, tλ ∈ Tλ(t), Tλ(t) ∈ Nbr(Tλ), t ∈ T , add new

arcs (t ′,p[t]λ) where t ′ ∈ •p and t ′ 6∈ Tλ, ([t ′]λ,p[t]λ) where

t ′λ ∈ Tλ ∩ •p, (p[t]λ, [t]λ), let

[F]λ =
⋃

t∈T

⋃

Tλ(t)∈Nbr(Tλ)

⋃

tλ∈Tλ

({(t ′,p[t]λ) | t ′ ∈ •p, t ′ 6∈ Tλ,p ∈ •tλ}

∪{([t ′]λ,p[t]λ) | t ′λ ∈ Tλ ∩ •p,p ∈ •tλ}

∪{(p[t]λ, [t]λ) | p ∈ •tλ}),
and for each p ∈ •t, t ∈ Adj+(Tλ), add a new arc ([t]λ,p) where

tλ ∈ •p ∩ Tλ, let

[F]A =
⋃

t∈Adj+(Tλ)

{([t]λ,p) | p ∈ •t, tλ ∈ •p ∩ Tλ}.
Formally, N ′ = (P ′, T ′, F ′, ι ′) is a generalized marked graph where

P ′ =(P −• Tλ) ∪ [P]λ,
T ′ =(T − Tλ) ∪ [T ]λ,
F ′ =(F− (Fλ ∪ FA)) ∪ [F]λ ∪ [F]A,

and the initial marking ι ′ is defined by ι ′(p) = ι(p) for all p ∈ P −• Tλ

and ι ′(p[t]λ) = ι(p) for all p[t]λ ∈ [P]λ where p ∈ •tλ.

We define a generalized marked graph G ′ = (V,Σ, S,R ′,N ′,γ ′,M ′)

where� V,Σ, S are defined as for G, R ′ = R ∪ {A→ A | A→ α ∈ R} and N ′ is
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constructed above;� the labeling function γ ′ is defined by γ ′(t) = γ(t) if t ∈ T − Tλ and

γ ′([t]λ) = A→ A if [t]λ ∈ Tλ(t
′) where t ′ = γ−1(A→ α) ∈ Adj+(tλ);� for each final marking τ ′ ∈M ′ (if M ′ is a finite set of final markings),

τ ′(p) = τ(p) if p ∈ P and τ ′(p[t]λ) = τ(p) for all p[t]λ ∈ [P]λ where

p ∈ •tλ.

Let

S
π
=⇒ w ∈ Σ∗, π = r1r2 · · · rn �

�

�

�6.1

be a derivation in G. Then there is a successful occurrence sequence of

transitions σ = t1t2 · · · tm, m > n > 1, such that γ(σ) = π. Let

ι
t1−→ µ1 t2−→ µ2 t3−→ · · ·

tm−→ µm

�

�

�

�6.2

We construct a successful occurrence sequence σ ′ of transitions of N ′

on the base of (6.2) as follows: all transitions in (6.2) which are from

T − Tλ also remain in σ ′. If in order to fire a transition t ∈ Adj+(Tλ)
which is in (6.2), some transitions tλ,i1, tλ,i2, . . . , tλ,il ∈ Tλ(t), l > 1, where

tλ,ij+1 ∈ Adj1(tλ,ij), 2 6 j 6 l − 1, and t ∈ Adj1(tλ,il) are to be fired

then tλ,i1, tλ,i2, . . . , tλ,il are replaced by transitions [t]λ,i1, [t]λ,i2, . . . , [t]λ,il,
otherwise, i.e., if the firing of a transition tλ ∈ Tλ does not effect the firing of

t ∈ Adj+(tλ), it is removed. Correspondingly, a derivation in the grammar

G ′ is constructed from (6.1) by adding a rule A → A for each [t ′]λ where

γ(t) = A→ α and t ∈ Adj+(t ′λ). It is clear that the result of the derivation

does not change. Therefore, L(G) ⊆ L(G ′).

The inverse case can be easily shown: each [t ′]λ with γ(t) = A → α

and t ∈ Adj+(t ′λ), is replaced by tλ and its label A→ A is removed in the

derivation and the same string is generated.
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Lemma 6.7. For X ∈ {EFC,AC,ON} and y ∈ {r, t, g},X(λ,y) ⊆ X(−λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a (λ,y)-extended free-choice (asym-

metric choice, ordinary) net controlled grammar with N = (P, T , F, ι). Let

Tλ = {t ∈ T | γ(t) = λ} and Fλ = {(p, tλ), (tλ,p) | p ∈ P and tλ ∈ Tλ}.
For each tλ ∈ Tλ, we define the set of new transitions

T(tλ) = {[t] | t ∈ Adj+(tλ)}.
We introduce the set R(tλ) of new rules with respect to each tλ ∈ Tλ

R(tλ) = {A→ A | A→ α = γ(t) ∈ R and t ∈ Adj+(tλ)}.
We define a (−λ,y)-extended free-choice (asymmetric-choice, ordinary)

net controlled grammar G ′ = (V,Σ, S,R ′,N ′,γ ′,M ′) where

R ′ = R ∪
⋃

t∈Tλ

R(t)

and N ′ = (P, T ′, F ′, ι) where

T ′ = (T − Tλ)∪
⋃

tλ∈Tλ

T(tλ),
F ′ = (F− Fλ)∪

⋃

tλ∈Tλ

{(p, [t]) | p ∈ •tλ and [t] ∈ T(tλ)}

∪
⋃

tλ∈Tλ

{([t],p) | [t] ∈ T(tλ) and p ∈ t•λ}.
This method of the addition of new arcs preserves the structural prop-

erties of an extended free-choice, asymmetric choice and ordinary nets.

The function γ ′ : T ′ → R ′ is defined by γ ′(t) = γ(t) for all t ∈ T
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and γ ′([t]) = A → A ∈ R(tλ) where [t] ∈ T(tλ) and t ∈ Adj+(tλ) where

γ(t) = A→ α ∈ R.

Let S r1r2···rn
=====⇒ wn ∈ Σ∗ be a derivation in G. Then

t ′1,1 · · · t ′1,k(1)t1t ′2,1 · · · t ′2,k(2)t2 · · · tnt ′n+1,1 · · · t ′n+1,k(n+1) �

�

�

�6.3

is a successful occurrence sequence in N where γ(ti) = ri, 1 6 i 6 n and

t ′i,j ∈ Tλ for all 1 6 i 6 n+ 1, 1 6 j 6 k(i) such that ti ∈ Adj+(t ′i,j) for all1 6 i 6 n, 1 6 j 6 k(i).

Each λ-transition t ′i,j, 1 6 i 6 n, 1 6 j 6 k(i) in (6.3) can be replaced

by the transition t ′′i,j in N ′, 1 6 i 6 n, 1 6 j 6 k(i) with the label Ai → Ai

where Ai is the left side of the rule ri = γ−1(ti), 1 6 i 6 n. Then

t ′′1,1 · · · t ′′1,k(1)t1t ′′2,1 · · · t ′′2,k(2)t2 · · · t ′′n,1 · · · t ′′n,k(n)tn
�

�

�

�6.4

is a successful occurrence sequence in N ′ and correspondingly

S
σ1r1σ2r2···σnrn
==========⇒ wn ∈ Σ∗

is a derivation in G ′ where

σi = r
′′
i,1r ′′i,2 · · · r ′′i,k(i), r ′′i,j = γ ′−1(t ′′i,j), 1 6 i 6 n, 1 6 j 6 k(i).

Using the same idea, we can show the inverse inclusion.

Lemma 6.8. For y ∈ {r, t, g}, PN[λ](λ,y) ⊆ FC[λ](λ,y).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a Petri net controlled grammar

(with or without erasing rules) where N = (P, T , F,ϕ, ι). For each arc

(p, t) ∈ F, we introduce new places pi[p, t], new transitions ti[p, t] and

new arcs (p, ti[p, t]), (ti[p, t],pi[p, t]), (pi[p, t], t) whose weights are 1’s,1 6 i 6 ϕ(p, t), and for each arc (t,p) ∈ F, we introduce new places

pj[t,p], new transitions tj[t,p] and new arcs (t,pj[t,p]), (pj[t,p], tj[t,p]),
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(tj[t,p],p) whose weights are 1’s, 1 6 j 6 ϕ(t,p). Let

PF ={pi[p, t] | (p, t) ∈ F, 1 6 i 6 ϕ(p, t)}
∪ {pj[t,p] | (t,p) ∈ F, 1 6 j 6 ϕ(t,p)},

TF ={ti[p, t] | (p, t) ∈ F, 1 6 i 6 ϕ(p, t)}
∪ {tj[t,p] | (t,p) ∈ F, 1 6 j 6 ϕ(t,p)},

F ′ ={(p, ti[p, t]), (ti[p, t],pi[p, t]) | (p, t) ∈ F, 1 6 i 6 ϕ(p, t)}
∪ {(pi[p, t], t) | (p, t) ∈ F, 1 6 i 6 ϕ(p, t)}
∪ {(t,pj[t,p]), (pj[t,p], tj[t,p]) | (t,p) ∈ F, 1 6 j 6 ϕ(t,p)}
∪ {(tj[t,p],p) | (t,p) ∈ F, 1 6 j 6 ϕ(t,p)}.

We construct a net N ′ = (P∪PF, T ∪TF, F ′, ι ′) where the initial marking

ι ′ is defined by ι ′(p) = ι(p) for all p ∈ P and ι ′(p) = 0 for all p ∈ PF.

Let •t = {p1,p2, . . . ,pk} for a transition t ∈ T in N. Then for this

transition in N ′ we have •t =
⋃k

i=1{pj[pi, t] | 1 6 j 6 ϕ(pi, t)} and

(pj[pi, t])• = {t} for all 1 6 i 6 k and 1 6 j 6 ϕ(pi, t). It follows that

N ′ is a free-choice net.

We define an FC controlled grammar G ′ = (V,Σ, S,R,N ′,γ ′,M ′) where

the components V,Σ, S,R are defined as for the grammar G, the free-choice

net N ′ is constructed above. We set γ ′(t) = γ(t) if t ∈ T and γ ′(t) = λ if

t ∈ TF; for each τ ′ ∈M ′, τ ′(p) = τ(p) if p ∈ P, and for p ∈ PF, τ ′(p) = 0 if

y ∈ {g, t}, otherwise 0 6 τ ′(p) 6 τ ′(p ′) where p ′ ∈ •(•p).

Let D : S
r1r2···rm
=====⇒ w ∈ Σ∗ be a derivation in G. Then there is a

successful occurrence sequence of transitions ν = t1t2 · · · tn for M in N

such that γ(ν) = r1r2 · · · rm. We replace ν by ν ′ = ν1t1ν2 · · ·νntn in N ′

where for all 1 6 i 6 n, νi ∈ Perm(•(•ti)) where

•(•ti) = {tj[pil, ti] | 1 6 j 6 ϕ(pil , ti), 1 6 i 6 n, 1 6 l 6 s}.
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In order to fire each ti, 1 6 i 6 n, in N ′, we need to fire all transitions

of •(•ti) at least once, therefore, ν ′ is successful for M ′ and r1r2 · · · rm =

γ ′(ν ′), i.e., D is a derivation in G ′.

Let t1t2 · · · tn be a successful occurrence sequence for M ′. By construc-

tion, each occurrence of ti, 1 6 i 6 n, needs at least one occurrence of

all transitions of •(•ti). Without loss of generality we can assume that

ν = νλ1σλ1 t1νλ2 · · ·σλntnνλn+1 where

σλi =

s∏

l=1 ϕ(pil
,ti)

∏

j=1 tj[pil , ti], 1 6 i 6 n,
and νλi ∈ T∗F , 1 6 i 6 n+ 1.

We replace
∏s

l=1∏ϕ(pil
,ti)

j=1 tj[pil, ti]ti by ti, 1 6 i 6 n, and erase νλi ,1 6 i 6 n + 1. The obtained occurrence sequence ν ′ = t1t2 · · · tn is

successful for M in N. Then a derivation S r1r2···rn
=====⇒ w ∈ Σ∗ in G ′ where

r1r2 · · · rn = γ ′(ν) is also a derivation in G and r1r2 · · · rn = γ ′(ν ′).

The immediate consequence of this lemma is

Corollary 6.9. For X ∈ {EFC,AC,ON} and y ∈ {r, g, t},X[λ](λ,y) ⊆ FC[λ](λ,y).
Lemma 6.10. For y ∈ {r, t, g}, FC(λ,y) ⊆ FC(−λ,y).
Proof. The proof is based on the following idea: for a FC controlled gram-

mar G, L(G) ∈ FC(λ,y), we construct an equivalent EFC controlled gram-

mar G ′, L(G ′) ∈ EFC(−λ,y) (with an extended free-choice net N ′ without

λ-transitions), according to Lemma 6.4, next we again transform the gram-

mar G ′ into an equivalent FC controlled grammar G ′′, L(G ′′) ∈ FC(−λ,y),
which is equivalent to G.

Let G = (V,Σ, S,R,N,γ,M) be a free-choice net controlled grammar
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6.3. RESULTS: LABELING STRATEGIES

with N = (P, T , F, ι). Let

Tλ = {t ∈ T | γ ′(t) = λ} and T(tλ) = {[t] | t ∈ Adj+(tλ)},
tλ ∈ Tλ, be the set of new transitions. By Lemma 6.4, we define an EFC

net controlled grammar G ′ = (V,Σ, S,R ′,N ′,γ ′,M ′) (with the notions of

the proof of the lemma), which is equivalent to the grammar G, where

N ′ = (P, T ′, F ′, ι).
By construction of N ′, for all t ∈ T − Tλ, p•1 ∩ p•2 ∩ · · · ∩ p•k = {t} where

•t = {p1,p2, . . . ,pk} (the property of “free-choiceness"). On the other hand,

for each transition tλ ∈ Tλ, all transitions of T(tλ) have the same set of

input places, i.e., for all t1, t2 ∈ T(tλ), •t1 = •t2 (the property of “extended

free-choiceness").

Let

F−λ =
⋃

tλ∈Tλ

{(p, t) ∈ F ′ | t ∈ T(tλ)}.
For each t ∈ T(tλ), tλ ∈ Tλ, we replace each incoming arc (p, t) by a new

place p[p, t], a new transition t[p, t] and new arcs (p, t[p, t]), (t[p, t],p[p, t]),
(p[p, t], t). Let

PP×T =
⋃

tλ∈Tλ

⋃

t∈T(tλ)

{p[p, t] | (p, t) ∈ F ′},
TP×T =

⋃

tλ∈Tλ

⋃

t∈T(tλ)

{t[p, t] | (p, t) ∈ F ′},
FP×T =

⋃

tλ∈Tλ

⋃

t∈T(tλ)

{(p, t[p, t]), (t[p, t],p[p, t]), (p[p, t], t) | (p, t) ∈ F ′}.
We construct a net N ′′ = (P ′′, T ′′, F ′′, ι ′′) where

P ′′ = P ∪ PP×T , T ′′ = T ′ ∪ TP×T , F ′′ = (F− F−λ ) ∪ FP×T ,
and the initial marking is defined by ι ′′(p) = ι(p) for all p ∈ P and ι ′′(p) = 0
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for all p ∈ PP×T .

If •t = {p1,p2, . . . ,pk} for a transition t ∈ T(tλ) in N ′ then for this

transition in N ′′ we get •t = {p[p1, t],p[p2, t], . . . ,p[pk, t]} and

(p[p1, t])• ∩ (p[p2, t])• ∩ · · · ∩ (p[pk, t])• = {t}.
It follows that N ′′ is a free-choice net.

We define a FC controlled grammar G ′′ = (V,Σ, S,R ′,N ′′,γ ′′,M ′′)

where V,Σ, S,R ′ are defined as for G ′ and the net N ′′ is constructed above.

The labeling function γ ′′ is defined by γ ′′(t) = γ ′(t) for all t ∈ T ′ and

for t[p, t] ∈ TP×T , γ ′′(t[p, t]) = γ ′(t), t ∈ T(tλ) (the label of each t ∈ T(tλ)

is a chain rule of he form A→ A, see the proof of Lemma 6.4).

For each τ ′′ ∈ M ′′, τ ′′(p) = τ ′(p) if p ∈ P and for p[p, t] ∈ PP×T ,

τ ′′(p[p, t]) = 0 if y ∈ {g, t}, and if y = r then 0 6 τ ′′(p[p, t]) 6 τ ′′(p) where

p ∈ •(•p[p, t]).
Further we can repeat the arguments of the proof of Lemma 6.4.

From the presented lemmas above, we can conclude that the labeling

strategies of transitions of special Petri nets do not effect on the generative

powers of the families of languages generated by grammars controlled by

these nets.

Theorem 6.11. For X ∈ {SM,GSM,MG,GMG,CN, FC, EFC,AC,ON},
and y ∈ {r, t, g}, X[λ](f,y) = X[λ](−λ,y) = X[λ](λ,y).
6.4 Results: Final Markings

In this section, we give some characterizations of the classes of languages

generated by sPN controlled grammars by other classes of regulated lan-

guages.
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From the structural properties of special Petri nets and Lemmas 6.5,

6.8, the next statement follows immediately

Theorem 6.12. For X ∈ {FC,EFC,AC,ON} and x ∈ {f,−λ, λ}, y ∈ {r, g, t},SM(x,y) ⊆ GSM(x,y) ⊆ X(x,y) ⊆ Xλ(x,y),CN(x,y) ⊆ MG(x,y) = GMG(x,y) ⊆ X(x,y) ⊆ Xλ(x,y).
Lemma 6.13. SM[λ](λ, r) ⊆ SM[λ](λ, t).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a state machine controlled grammar

(with or without erasing rules) where N = (P, T , F, ι).
Since the firing of a transition in a state machine moves one token

from the input place to the output place, the number of tokens in the net

remains the same in any firing of a transition. It follows that the set M of

all reachable markings is finite, i.e.,

|M| 6

(

n+ k − 1
k− 1 )

where n =
∑

p∈P ι(p) and k = |P| (
(

n+k−1
k−1 )

is the number of solutions in

non-negative integers to the equation x1 + x2 + · · ·+ xk = n, see [44]).

From Lemma 6.13 the next statements follow

Corollary 6.14. SM[λ](λ, r) ⊆ SM[λ](λ, g) and SM[λ](λ, g) ⊆ SM[λ](λ, t).
Proof. 1. If a finite set of final marking is defined as the set of all reachable

markings, Lemma 6.13 also holds for “g”-case.

2. Let G = (V,Σ, S,R,N,γ,M) be a state machine controlled grammar

(with or without erasing rules) where N = (P, T , F, ι).
Let M = {τ | τ(p) > τ ′(p) for all p ∈ P and for some τ ′ ∈ M ′} where

M ′ = {τ ′1, τ ′2, . . . , τ ′k} is a finite set of final markings.

132

UNIVERSITAT ROVIRA I VIRGILI 
PETRI NET CONTROLLED GRAMMARS 
Sherzod Turaev 
ISBN:978-84-693-1536-1/DL:T-644-2010 



6.4. RESULTS: FINAL MARKINGS

Since
∑

p∈P

τ(p) =
∑

p∈P

ι(p)

for each marking τ ∈ M, τ(p) 6
∑

p∈P ι(p) for all p ∈ P. We define a set

of final markings as

M ′′ = {τ | τ ′(p) 6 τ(p) 6 K for all p ∈ P and for some τ ′ ∈M ′}

where K =
∑

p∈P ι(p).

Lemma 6.15. SM[λ](λ, t) ⊆ SM[λ](λ, r).
Proof. Let G = (V,Σ, S,R,N,γ,M) be a state machine controlled grammar

where N = (P, T , F, ι) and M = {τ1, τ2, . . . , τk}. The proof of the lemma

consists of the following steps.

Step I. First, we construct |M| “copies" of the grammar G.

For each τi ∈ M, 1 6 i 6 k, we define a state machine controlled

grammar Gi = (Vi,Σ, Si,Ri,Ni,γi,Mi) where� the context-free components Vi and Ri are defined by

Vi = {ψi(A) | A ∈ V} and Ri = {ψi(A) → ψ(α) | A→ α ∈ R}

where ψi : V ∪ Σ → Vi ∪ Σ, 1 6 i 6 k, are bijections and ψ(a) = a

for all a ∈ Σ;� the sets of places, transitions and arcs of Ni = (Pi, Ti, Fi, ιi) are,

respectively, defined by

Pi ={φi(p) | p ∈ P},
Ti ={φi(t) | t ∈ T },
Fi ={(φi(x),φi(y)) | (x,y) ∈ F}
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6.4. RESULTS: FINAL MARKINGS

where φi : P ∪ T → Pi ∪ Ti, 1 6 i 6 k, are bijections;� the initial marking ιi is defined by ιi(φi(p)) = ι(p) for all p ∈ P;� the labeling function γi is defined by γi(φi(t)) = ψi(A) → α ∈ Ri if

γ(t) = A→ α ∈ R and γi(φi(t)) = λ if γ(t) = λ;� the set of final markings Mi = {µi} where µi(φi(p)) = τi(p), τi ∈M.

Step II. In order not to generate strings of the language of a grammar

Gi, 1 6 i 6 k, before reaching the final marking µi, we change each

terminal symbol a ∈ Σ to new nonterminal symbols �a, and add new

places, transitions and arcs to Ni such a way that the nonterminal

symbols �a are changed back to a if and only if the final marking is

reached.

Let {p1,p2, . . . ,pn} ⊆ Pi where µi(pl) > 0, 1 6 l 6 n, and let kl =

µi(pl), 1 6 l 6 n. We introduce the following sets of new places, transitions

and arcs:

Pi ={ql,j | 1 6 l 6 n, 1 6 j 6 kl},
T i ={t ′l,j | 1 6 l 6 n, 1 6 j 6 kl}

∪
⋃

a∈Σ

{tl,j,a | 1 6 l 6 n, 1 6 j 6 kl,a ∈ Σ},
Fi ={(pl, t ′l,j), (t ′l,j,ql,j) | 1 6 l 6 n, 1 6 j 6 kl}

∪
⋃

a∈Σ

{(ql,j, tl,j,a), (tl,j,a,ql,j) | 1 6 l 6 n, 1 6 j 6 kl}.
We construct a state machine N ′

i = (P ′
i, T ′

i , F ′i, ι ′i) where

P ′
i = Pi ∪ Pi, T ′

i = Ti ∪ T i, F ′i = Fi ∪ Fi
and ι ′i(p) = ιi(p) for all p ∈ Pi and ι ′i(p) = 0 for all p ∈ Pi.
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A state machine controlled grammar G ′
i = (V ′

i ,Σ, Si,R ′
i,N ′

i,γ ′
i,M ′

i) is

defined as follows:� V ′
i = Vi ∪

⋃

a∈Σ Vl,j,a where Vl,j,a = {al,j | 1 6 l 6 n, 1 6 j 6 kl} is

the set of new nonterminal symbols;� Let �Ri = {A → ϕi(α) | A → α ∈ Ri} where the weight function

ϕi : Vi ∪ Σ → Vi ∪ {a1,1 | a ∈ Σ} is bijection, defined by ϕ(x) = x if

x ∈ Vi and ϕ(x) = x1,1 if x ∈ Σ. We set for each a ∈ Σ,

Ri,a ={al,j → al,j+1 | 1 6 l 6 n, 1 6 j 6 kl − 1}
∪ {al,kl

→ al+1,1 | 1 6 l 6 n− 2}
∪ {an,kn

→ a}

and define R ′
i =

�Ri ∪
⋃

a∈Σ Ri,a;� the labeling function γ ′ is defined by

– γ ′
i(t) = A→ ϕi(α) ∈ �Ri if t ∈ Ti and γi(t) = A→ α ∈ Ri,

– γ ′
i(t

′
l,j) = λ for 1 6 l 6 n, 1 6 j 6 kl,

– γ ′
i(tl,j,a) = al,j → al,j+1 for 1 6 l 6 n, 1 6 j 6 kl − 1,

– γ ′
i(tl,kl,a) = al,kl

→ al+1,1 for 1 6 l 6 n− 2,
– γ ′

i(tn,kn,a) = an,kn
→ a;� the set of final markings M ′

i = {µ ′
i} where µ ′

i(p) = 0 for all p ∈ Pi

and µ ′
i(p) = 1 for all p ∈ Pi.

One can generate strings of the form w1,1 ∈ {a1,1 | a ∈ Σ}∗ under control

of “Ni-part" of the net N ′
i. In order to change nonterminal symbols of

{a1,1 | a ∈ Σ} to terminal symbols of Σ,
∑

p∈Pi
µ ′
i(p) =

∑

p∈Pi
ι ′i(p) number

of tokens, i.e., all tokens have to been moved from the places of Pi to the

places of Pi.
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Step III. We define such a state machine controlled grammar G ′′ that

the language generated by this grammar is the union of languages gen-

erated by the grammars G ′
i, 1 6 i 6 k, constructed in Step II.

We define a SM controlled grammar G ′′ = (V ′′,Σ, S ′′,R ′′,N ′′,γ ′′,M ′′)

where� the context-free components V ′′ and R ′′ are defined by

V ′′ =

k
⋃

i=1V ′
i ∪ {S ′′}

where S ′′ is a new nonterminal symbol and

R ′′ =

k
⋃

i=1R ′
i ∪ {S ′′ → Si | 1 6 i 6 k};

� the state machine N ′′ = (P ′′, T ′′, F ′′, ι ′′) is defined by

P ′′ =

k
⋃

i=1P ′
i ∪ {p ′} ∪ {p ′

i | 1 6 i 6 k},
T ′′ =

k
⋃

i=1 T ′
i ∪ {t ′i | 1 6 i 6 k},

F ′′ =

k
⋃

i=1 F ′i ∪ {(p ′, t ′i), (t ′i,p ′
i) | 1 6 i 6 k},

and the initial marking ι ′′(p) = ι ′i(p) if p ∈ P ′
i and ι ′′(p ′) = 1,

ι ′′(p ′
i) = 0, 1 6 i 6 k;� the labeling function γ ′′ is defined by γ ′′(t) = γ ′

i(t) if t ∈ T ′
i and

γ ′′(t ′i) = S
′′ → Si, 1 6 i 6 k;� for each final marking τ ′′ ∈M ′′, τ ′′(p) = τ ′i(p) if p ∈ P ′

i, ι
′′(p ′) = 0,

and ι ′′(p ′
j) = 1 for some 1 6 j 6 k and ι ′′(p ′

i) = 0 for all 1 6 i 6= j 6 k;
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It is not difficult to see that after one of the rules of {S ′′ → Si | 1 6 i 6 k}

is applied, rules of only one of the grammars G ′
i, 1 6 i 6 k, can be used

in a derivation of G ′′, i.e., a string w is in L(G ′′) iff there is a derivation

S ′′ ⇒ Si ⇒
∗ w ∈ L(G ′

i), 1 6 i 6 k. On the other hand, we can initialize

any derivation Si ⇒∗ w ∈ L(G ′
i) with the rule S ′′ → Si, 1 6 i 6 k, i.e.,

w ∈ L(G ′′).

Lemma 6.16. MAT[λ] ⊆ SM[λ](f, t).
Proof. Let G = (V,Σ, S,M) be a matrix grammar (with or without erasing

rules) and

M = {m1,m2, . . . ,mn} where mi = ri,1ri,2 · · · ri,k(i), 1 6 i 6 n.
Without loss of generality we can assume that G is without repetitions.

Let R = {ri,j | 1 6 i 6 n, 1 6 j 6 k(i)}. We define an (f, t)-SM controlled

grammar G ′ = (V,Σ, S,R,N,γ, {µ}) where the sets of places, transitions

and arcs of the a SM N = (P, T , F, ι) are defined by

P ={p0} ∪ {pi,j | 1 6 i 6 n, 1 6 j 6 k(i) − 1},
T ={ti,j | 1 6 i 6 n, 1 6 j 6 k(i)},
F ={(p0, ti,1), (ti,k(i),p0) | 1 6 i 6 n} ∪ {(pi,k(i)−1, ti,k(i)) | 1 6 i 6 n}

∪ {(ti,j,pi,j) | 1 6 i 6 n, 1 6 j 6 k(i) − 1}.
The initial marking is defined by ι(p0) = 1, and ι(p) = 0 for all P− {p0}.
The bijection γ : T → R is defined by

γ(ti,j) = ri,j, 1 6 i 6 n, 1 6 j 6 k(i)

and the final marking µ is the same as the initial marking ι.

Let

S = w0 mi1
==⇒ w1 mi2

==⇒ · · ·
mil
==⇒ wl = w ∈ Σ∗
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be a derivation in G, where mij ∈M, 1 6 j 6 l, and

wj−1 mij
==⇒ wj : wj−1 rij,1rij,2···rij,k(ij)

==========⇒ wj.
By the definition of γ, γ−1(mij) = σj where σj = tij,1tij,2 · · · tij,k(ij) for all1 6 j 6 l. Then the occurrence sequence of transitions ι

σ1σ2···σl−−−−−→ ι is a

successful for {µ}. Therefore, S
mi1mi2 ···mil
========⇒ wl ∈ Σ

∗ is a derivation in G ′.

The inverse inclusion can also be shown using the same arguments.

Lemma 6.17. For y ∈ {r, g, t}, SM[λ](λ,y) ⊆ rC[λ].
Proof. Let G = (V,Σ, S,R,N,γ,M) be a SM controlled grammar (with or

without erasing rules) whereN = (P, T , F, ι). We construct a (deterministic)

finite automaton A whose states are the markings of the netN (since the set

of all reachable markings of a state machine is finite, it can be considered

as a set of states) and there is an arc from state µ to state µ ′ with label t

iff marking µ ′ is obtained from marking µ by firing transition t. The initial

marking is considered as the initial state and the set of final markings M

as a set of final states.

Formally, A = (M ′, T , ι, δ,M) whereM ′ is the set of all reachable mark-

ings of the net N and the state-transition function δ : M ′ × T → M ′

is defined by δ(µ, t) = µ ′ iff µ
t
−→ µ ′. It is not difficult to see that

σ = t1t2 · · · tn ∈ L(A) iff σ is a successful occurrence sequence of tran-

sitions of N. Let K = {γ(σ) | σ ∈ L(A)}. Therefore, L(G) = L(G ′) where

G ′ = (V,Σ, S,R,K) is a regularly controlled grammar.

From Theorem 6.11 and Lemmas 6.16, 6.17, we have

Corollary 6.18. For x ∈ {f,−λ, λ} and y ∈ {r, g, t}, MAT[λ] = SM[λ](x,y).
Lemma 6.19. VEC[λ] ⊆ MG[λ](f, t) ∩ CN[λ](f, t) ∩GSM[λ](f, t).
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Proof. Let G = (V,Σ, S,M) be a vector grammar (with or without erasing

rules) where

M = {m1,m2, . . . ,mn} with mi = ri,1ri,2 · · · ri,ki
, 1 6 i 6 n.

Without loss of generality we can assume that G is without repetition. Let

R be the set of all rules of M, i.e., R = {ri,j | 1 6 i 6 n, 1 6 j 6 ki}.

We define an (f, t)-ON controlled grammar G ′ = (V,Σ, S,R,N,γ,M)

with N = (P, T , F, ι) where� the sets of places, transitions and arcs are, respectively,

P ={pi,j | 1 6 i 6 n, 1 6 j 6 ki − 1},
T ={ti,j | 1 6 i 6 n, 1 6 j 6 ki},
F ={(ti,j,pi,j) | 1 6 i 6 n, 1 6 j 6 ki − 1}

∪ {(pi,j, ti,j+1) | 1 6 i 6 n, 1 6 j 6 ki − 1};� the initial marking is defined by ι(p) = 0 for all p ∈ P;� the labeling function γ : T → R is a bijection defined by γ(ti,j) = ri,j,1 6 i 6 n, 1 6 j 6 ki, and the set of final markings M = {µ} where

µ = ι.

By construction, N satisfies the structural properties of a marked graph,

a casual net and generalized state machine, which consists of disjoint paths

ρi = ti,1pi,1ti,2pi,2 · · ·pi,ki−1ti,ki
where γ(tr(ρi)) = mi, 1 6 i 6 n, and

the firing of the transitions of a path ρi simulates the application of the

rules of the matrix mi. Moreover, a derivation S
r1r2···rl
=====⇒ w ∈ Σ∗ in

the context-free grammar (V,Σ, S,R) is a derivation in G if r1r2 · · · rl is a

shuffle of some matrices mi1 ,mi2, . . . ,mik ∈ M, and a derivation in G ′ if

t1t2 · · · tl = γ−1(r1r2 · · · rl) is a shuffle of tr(ρi1), tr(ρi2), . . . , tr(ρik) where
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γ(tr(ρij)) = mij , 1 6 j 6 k. Thus, it is easy to see that each derivation in

G can be simulated by a derivation in G ′ and vise versa.

Lemma 6.20. sMAT[λ] ⊆ SM[λ](f, t) ∩MG[λ](f, t).
Proof. For each semi-matrix grammar we construct an (f, t)-ordinary net

controlled grammar where the net consists of disjoint cycles which corre-

spond to the matrices of the semi-matrix grammar and the firing of the

transitions of a cycle in the net simulates the application of the rules of the

corresponding matrix in each derivation in the grammar.

LetG = (V,Σ, S,M) be a semi-matrix grammar (with or without erasing

rules) where

M = {m1,m2, . . . ,mn},mi = ri,1ri,2 · · · ri,ki
, 1 6 i 6 n.

Without loss of generality we can assume that G is without repetition. Let

R be the set of all rules of M, i.e., R = {ri,j | 1 6 i 6 n, 1 6 j 6 ki}.

We define an (f, t)-ON controlled grammar G ′ = (V,Σ, S,R,N,γ,M)

with N = (P, T , F, ι) where� the sets of places, transitions and arcs are, respectively,

P ={pi,j | 1 6 i 6 n, 1 6 j 6 ki},
T ={ti,j | 1 6 i 6 n, 1 6 j 6 ki},
F ={(ti,j,pi,j) | 1 6 i 6 n, 1 6 j 6 ki} ∪ {(pi,ki

, ti,1) | 1 6 i 6 n};� the initial marking is ι(pi,ki
) = 1, 1 6 i 6 n, and ι(p) = 0 for all

p ∈ P − {pi,ki
| 1 6 i 6 n};� the labeling function γ : T → R is a bijection where γ(ti,j) = ri,j,1 6 i 6 n, 1 6 j 6 ki;� a set of final markings is M = {µ} where µ = ι.
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By construction, N is a state machine and also a marked graph which

consists of disjoint cycles ρi = pi,1ti,1pi,2ti,2 · · ·pi,ki
ti,ki

pi,1 and γ(tr(ρi)) =

mi, 1 6 i 6 n. Using the same arguments of the proof of Lemma 6.19, one

can easily show that L(G) = L(G ′).

Now we summarize our results in the following theorem.

Theorem 6.21. The relations in Figure 6.3 hold where x ∈ {f,−λ, λ},
y ∈ {r, g, t}, X ∈ {FC, EFC, AC, ON}, Y ∈ {SM, GSM, FC, EFC, AC, ON}
and Z ∈ {MG,GMG,CN}; the lines (arrow) denote (proper) inclusions of

the lower families into the upper families.
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6.4. RESULTS: FINAL MARKINGS

 !
 "(x# r) $%(x#y) = %&' = (%&'  "(x#g)

 "(x# t))$%(x# r) )$%(x# t)
* )$%(x#g)

%)(x#g) = )%)(x#g)

%)(x# r) = )%)(x# r) %)(x# t) = )%)(x# t)+"(x# r) = ,(x# r) +"(x#g) = ,(x#g)

+"(x# t) = ,(x# t)
%&'λ = +"λ(x#y) = -λ(x#y) = .λ(x# t)

Figure 6.3: The hierarchy of language families generated by Petri net con-
trolled grammars
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7
Capacity-Bounded Grammars

7.1 Introduction

The close relationship between Petri nets and language theory has been

extensively studied for a long time [18, 24]. Results from the theory of

Petri nets have been applied successfully to provide elegant solutions to

complicated problems from language theory [35, 48].

A context-free grammar can be associated with a context-free (commu-

nication-free) Petri net, whose places and transitions, correspond to the

nonterminals and the rules of the grammar, respectively, and whose arcs

and weights reflect the change in the number of nonterminals when applying

a rule. In Chapter 4 we used extended cf Petri nets, i.e., cf Petri nets

enriched by additional components (places and arcs) in order to define

regulation mechanisms for context-free grammars. Moreover, we considered

generalizations of these types of control mechanisms in Chapter 5, where

instead of extended cf Petri nets we used arbitrary (place/transition) Petri

nets whose transitions correspond to production rules. In this chapter

we continue the research in this direction by restricting to (context-free,

extended or arbitrary) Petri nets with place capacities.

Quite obviously, a context-free Petri net with place capacity regulates

the defining grammar by permitting only those derivations where the num-

ber of each nonterminal in each sentential form is bounded by its capac-
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7.2. CAPACITY-BOUNDED GRAMMARS

ity. Similar mechanisms have been introduced and investigated by sev-

eral authors. Grammar with finite index (the index of a grammar is the

maximal number of nonterminals simultaneously appearing in its complete

derivations (considering the most economical derivations for each string))

were first considered by Brainerd [10]. Nonterminal-bounded grammars

(a grammar a nonterminal-bounded if the total number of nonterminals in

every sentential form does not exceed an upper bound) were introduced by

Altman and Banerji in [5, 6, 8]. A “weak” variant of nonterminal-bounded

grammars (only the complete derivations are required to be bounded) were

defined by Moriya [70]. Ginsburg and Spanier introduced derivation-

bounded languages in [43] (all strings which have complete derivation in a

grammar G consisting of sentential forms each of which does not contain

more than k nonterminals collected in the set Lk(G))). There it was shown

that grammars regulated in this way generate the family of context-free

languages of finite index, even if arbitrary nonterminal strings are allowed

as left-hand sides of production rules. Finite index restrictions to regulated

grammars have also been investigated [40, 39, 76, 78, 84, 86, 87, 88]. There

it was shown that the families of most regulated languages are collapse.

In this chapter we show that capacity-bounded context-free grammars

have a larger generative power than context-free grammars of finite in-

dex while the family of languages generated by capacity-bounded phrase

structure grammars (due to Ginsburg and Spanier) and several families of

languages generated by grammars controlled by extended cf Petri nets with

place capacities coincide with the family of matrix languages of finite index.

7.2 Capacity-Bounded Grammars

We will now introduce capacity-bounded grammars and show some rela-

tions to similar concepts known from the literature.

Definition 7.1. A capacity-bounded grammar is a tuple G = (V,Σ, S,R, κ)
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7.2. CAPACITY-BOUNDED GRAMMARS

where G ′ = (V,Σ, S,R) is a grammar and κ : V → N is a capacity function.

The derivation relation ⇒G is defined as α ⇒G β iff α ⇒G ′ β and |α|A 6

κ(A) and |β|A 6 κ(A), for all A ∈ V. The language of G is defined as

L(G) = {w ∈ Σ∗ | S⇒∗
G w}.

The families of languages generated by capacity-bounded GS grammars

and by context-free capacity-bounded grammars are denoted by GSb andCFb, respectively. The capacity function mapping each nonterminal to 1
is denoted by 1. The notions of finite index and bounded capacities can be

extended to matrix, vector and semi-matrix grammars. The corresponding

language families are denoted byMAT[λ]�n , VEC[λ]�n , sMAT[λ]�n , MAT[λ]b , VEC[λ]b , sMAT[λ]b .
Capacity-bounded grammars are very similar to derivation-bounded

grammars, which were studied in [43]. A derivation-bounded grammar

is a quintuple G = (V,Σ, S,R, k) where G ′ = (V,Σ, S,R) is a grammar and

k ∈ N is a bound on the number of allowed nonterminals. The language of

G contains all words w ∈ L(G ′) that have a derivation S ⇒∗ w such that

|β|V 6 k, for each sentential form β of the derivation.

Other related concepts are nonterminal-bounded grammars and gram-

mars of finite index. A context-free grammar G = (V,Σ, S,R) is nonter-

minal-bounded if |β|V 6 k for some fixed k ∈ N and all sentential forms β

derivable in G. The index of a derivation in G is the maximal number of

nonterminal symbols in its sentential forms. G is of finite index if every

word in L(G) has a derivation of index at most k for some fixed k ∈ N. The

family of context-free languages of finite index is denoted by CF�n .
Note that there is a subtle difference between the first two and the last

two concepts. While context-free nonterminal-bounded and finite index

grammars are just context-free grammars with a certain structural property

(and generate context-free languages by definition), capacity-bounded and
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7.2. CAPACITY-BOUNDED GRAMMARS

derivation-bounded grammars are special cases of regulated rewriting (and

could therefore generate non-context-free languages). However, it has been

shown that the family of derivation bounded languages is equal to CF�n ,

even if arbitrary grammars due to Ginsburg and Spanier are permitted [43].

We will now give two examples of capacity-bounded grammars generating

non-context-free languages.

Example 7.1. Let G = ({S,A,B,C}, {a,b, x,y},S,R, 1) be the capacity-

bounded context-free grammar where R consists of

r0 : S→ AC, r1 : A→ aBb, r2 : B→ aCb, r3 : C→ aAb,
r4 : A→ xC, r5 : C→ xB, r6 : B→ xA, r7 : A→ y.

A derivation in G proceeds as follows. After the first step S ⇒ AC

the sentential form contains two nonterminals from {A,B,C}. As long as

the terminating rule r7 is not applied, the capacity bound requires that

one of the nonterminals must be rewritten by a word containing the third

nonterminal symbol. For instance, in the sentential form AC, one must

either replace A by aBb or C by xB. In this way the subderivations of the

two nonterminals are coupled.

We consider only the generation of terminal words from

M = a+x3yb+a+x2yb+.
Words from M can be generated exactly by the derivations of the form

S
r0
=⇒ AC

r1
=⇒ aBbC

r3
=⇒ aBbaAb

r2
=⇒ a2Cb2aAb r1

=⇒ a2Cb2a2Bb2
r3
=⇒ a3Ab3a2Bb2 r2

=⇒ a3Ab3a3Cb3
c
=⇒ a3nAb3na3nCb3n, c = (r1r3r2r1r3r2)n−1,n > 1
c
=⇒ a3nx3yb3na3nx2yb3n, c ∈ {r5r4r6r5r7r4r7, r5r4r6r7r5r4r7}.

The intersection of L(G) with the regular set M is not context-free. Hence,
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7.2. CAPACITY-BOUNDED GRAMMARS

L(G) is a non-context-free language.

Example 7.2. Let G = ({S,A,B,C,D,E, F}, {a,b, c},S,R, 1) be the capacity-

bounded grammar where R consists of the rules:

r1 : S→ ABCD, r2 : AB→ aEFb, r3 : CD→ cAD, r4 : EF→ EC,
r5 : EF→ FC, r6 : AD→ FD, r7 : AD→ ED, r8 : EC→ AB,
r9 : FD→ CD, r10 : FC→ AF, r11 : AF→ λ, r12 : ED→ λ.
The possible derivations are exactly those of the form

S
r1
=⇒ ABCD
(r2r3r4r6r8r9)n
=========⇒ anABbncnCD
r2r3
==⇒ an+1EFbn+1cn+1AD
r5r7
==⇒ an+1FCbn+1cn+1ED
r10r11r12
=====⇒ anbncn

(in the last phase, the sequences r10r12r11 and r12r10r11 could also be applied

with the same result). Therefore,

L(G) = {anbncn | n > 1}.
The above examples show that capacity-bounded grammars – in con-

trast to derivation bounded grammars – can generate non-context-free lan-

guages. Moreover, any context-free language generated by a grammar of G

of finite index is also generated by the capacity-bounded grammar (G, κ)
where κ is capacity function constantly k.

The generative power of capacity-bounded grammars will be studied in

detail in the following two sections. In the end of this section we show an

important technical result: one can restrict to grammars with capacities

bounded by 1. Let CF1b and GS1b be the language families generated by

context-free and arbitrary grammars with capacity function 1.
Lemma 7.1. CFb = CF1b and GSb = GS1b.
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7.2. CAPACITY-BOUNDED GRAMMARS

Proof. Let G = (V,Σ, S,R, κ) be a capacity-bounded phrase structure

grammar. We construct the capacity-bounded grammar G ′ = (V ′,Σ, (S, 1),
R ′, 1) with capacity function 1 and

V ′ = {(A, i) | A ∈ V, 1 6 i 6 κ(A)},
R ′ = {α ′ → β ′ | h(α ′) → h(β ′) ∈ R}

where h : (V ′∪Σ)∗ → (V∪Σ)∗ is the letter-to-letter homomorphism defined

by h(a) = a, for a ∈ Σ, and h((A, i)) = A, for A ∈ V, 1 6 i 6 κ(A).

To show L(G ′) ⊆ L(G) we will prove by induction on the number n

of derivation steps that (S, 1) ⇒∗
G ′ γ ′ implies S ⇒∗

G h(γ
′). The induction

basis n = 0 is clear as h((S, 1)) = S. Now suppose that the statement

has been shown for n and that γ ′ is derivable in G ′ in n + 1 steps. Then

there are words α ′,β ′,γ ′1,γ ′2 such that γ ′ = γ ′1β ′γ ′2, α ′ → β ′ ∈ R ′ and

γ ′1α ′γ ′2 is derivable in G ′ in n steps. By induction hypothesis, h(γ ′1α ′γ ′2)
is derivable in G. Moreover, h(α ′) → h(β ′) is in R and applying this rule

to h(γ ′1)h(α)h(γ ′2) yields h(γ ′1)h(β ′)h(γ ′2) = h(γ ′). Finally, |γ ′|(A,i) 6 1
holds for all A ∈ V, 1 6 i 6 κ(A). Consequently |h(γ ′)|A 6 κ(A), for all

A ∈ V, and h(γ ′) is derivable in G.

To show L(G) ⊆ L(G ′) we will prove by induction on the number n of

derivation steps that S⇒∗
G γ implies (S, 1) ⇒∗

G ′ γ ′, for some γ ′ ∈ h−1(γ).
Again, the induction basis n = 0 is trivial. Now suppose that the statement

is true for n and that γ is derivable in n + 1 steps in G. Then there are

α,β,γ1,γ2 such that γ = γ1βγ2, α → β ∈ R and γ1αγ2 is derivable in

n steps in G. By induction hypothesis, some word from h−1(γ1αγ2) is

derivable in G ′ and it has the form γ ′1α ′γ ′2 with h(γ ′1) = γ1, h(α ′) = α,

h(γ ′2) = γ2, as h is letter-to-letter. Since γ ′1α ′γ ′2 is derivable in G ′ and γ =

γ1βγ2 is derivable in G, we have |γ ′1γ ′2|(A,i) 6 1 and |β|A 6 κ(A) − |γ1γ2|A,

for all A ∈ V, 1 6 i 6 κ(A). For a word ζ ′ ∈ (V ′ ∪ Σ)∗ and A ∈ V, define
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7.3. THE POWER OF CAPACITY-BOUNDED GS GRAMMARS

the set FreeA(ζ
′) = {i | 1 6 i 6 κ(A) and |ζ ′|(A,i) = 0}.

The cardinality of FreeA(γ
′1γ ′2) is equal to κ(A)− |γ1γ2|A and hence at least

|β|A. Consequently, there is a word β ′ ∈ h−1(β) such that |β ′|(A,i) = 0,
if i /∈ FreeA(γ

′1γ ′2), and |β ′|(A,i) 6 1 if i ∈ FreeA(γ
′1γ ′2). This implies

|γ ′1β ′γ ′2|(A,i) 6 1, for all A ∈ V, 1 6 i 6 κ(A). By definition of G ′, the rule

α ′ → β ′ is in R ′, its application on γ ′1α ′γ ′2 yields γ ′ = γ ′1β ′γ ′2 ∈ h−1(γ).
As |γ ′|(A,i) 6 1, for all A ∈ V, 1 6 i 6 A, γ ′ is derivable in G ′.

7.3 The Power of Capacity-Bounded GS Gram-

mars

It will be shown in this section that capacity-bounded GS grammars gen-

erate exactly the family of matrix languages of finite index. This is in

contrast to derivation bounded grammars which generate only context-free

languages of finite index [43].

Lemma 7.2. GSb ⊆ MAT�n .
Proof. Consider some language L ∈ GSb and let G = (V,Σ, S,R, 1) be a

capacity-bounded GS grammar such that L = L(G). A word α ∈ (V ∪ Σ)∗

can be uniquely decomposed as

α = x1β1x2β2 · · ·xnβnxn+1
where x1, xn+1 ∈ Σ∗, x2, . . . , xn ∈ Σ+,β1, . . . ,βn ∈ V+. The subwords βi

are referred to as the maximal nonterminal blocks of α. Note that the

length of a maximal block in any sentential form of a derivation in G is

bounded by |V |. We will first construct a capacity-bounded grammar G ′

with L(G ′) = L such that all words of L can be derived in G ′ by rewriting
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a maximal nonterminal block in every step. Let G ′ = (V,Σ, S,R ′, 1) where

R ′ = {α1αα2 → α1βα2 | α→ β ∈ R,α1,α2 ∈ V∗,
|α1αα2|A 6 1, for all A ∈ V}.

The inclusion L(G) ⊆ L(G ′) is obvious since R ⊆ R ′. On the other hand,

any derivation step in G ′ can be written as

γ1α1αα2γ2 ⇒G ′ γ1α1βα2γ2, where α→ β ∈ R,
implying that the same step can be performed in G as

γ1α1αα2γ2 ⇒G,1 γ1α1βα2γ2.
Thus L(G ′) ⊆ L(G) holds as well. Moreover, any derivation step in G,

γ1α1αα2γ2 ⇒G,1 γ1α1βα2γ2,
α1αα2 being a maximal nonterminal block, can be performed in G ′ replac-

ing the maximal nonterminal block α1αα2 by α1βα2.
In the second step we construct a context-free matrix grammar H which

simulates exactly those derivations in G ′ that replace a maximal nontermi-

nal block in each step. We introduce two alphabets

[V] = {[α] | α ∈ V+, |α|A 6 1, for all A ∈ V} and V = {A | A ∈ V}.
The symbols of [V] are used to encode each maximal nonterminal block as

single symbols, while V is a disjoint copy of V. Any word

α = x1β1x2β2 · · ·xnβnxn+1, x1, xn+1 ∈ Σ∗, x2, . . . , xn ∈ Σ+,β1, . . .βn ∈ V+

such that |α|A 6 1, for all A ∈ V, can be represented by the word [α] =

x1[β1]x2[β2] · · ·xn[βn]xn+1, where the maximal nonterminal blocks in α
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are replaced by the corresponding symbols from [V]. The desired matrix

grammar is obtained as H = (VH,Σ, S ′,M), with VH = [V] ∪ V ∪ V ∪ {S ′}

and the set of matrices defined as follows. For any rule r = α → β in R ′,

M contains the matrix mr consisting of the rules� [α] → [β] (note that α ∈ [V], but β ∈ ([V] ∪ Σ)∗),� A→ A, for all A ∈ V such that |α|A = 1 and |β|A = 0,� A→ A, for all A ∈ V such that |α|A = 0 and |β|A = 1.
(The order of the rules in mr is arbitrary). Additionally, M contains the

starting and the terminating matrices

(S ′ → [S]SA1 · · ·Am) and (S→ λ,A1 → λ, . . . ,Am → λ),
where V = {S,A1, . . . ,Am}. Intuitively, H generates sentential forms of the

shape [β]γ where [β] ∈ ([V] ∪ Σ)∗ encodes a sentential form β derivable

in G ′ and γ ∈ (V ∪ V) counts the nonterminal symbols in β as follows:

|γ|A + |γ|A = 1 and |γ|A = |β|A. Formally, it can be shown by induction

that a sentential form over VH ∪ Σ can be generated after applying k > 1
matrices (except for the terminating) iff it has the form [β]γ where� β ∈ (V ∪ Σ)∗ can be derived in G ′ in k− 1 steps,� γ ∈ {S, S}{A1,A1} · · · {Am,Am} and |γ|A = 1 iff |β|A = 1.
Lemma 7.3. MAT�n ⊆ GSb.
Proof. We will simulate a step of a programmed grammar of finite in-

dex (including the information of the next rule to apply) by a series of

steps of a capacity-bounded GS grammar. Let G = (V,Σ, S,R,σ) be a pro-

grammed grammar of finite index k. The rules of G are given as R = {A1 →
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α1, . . . ,Ar → αr} and labeled by the symbols Lab = {l1, . . . , lr}. The suc-

cess field function σ can thus be seen as a function σ : {1, . . . , r} → 2{1,...,r}.
Moreover, define the words ρi = l1 · · · li−1li+1 · · · lr. To construct the equiv-

alent capacity-bounded GS grammar G = (V ′,Σ, S ′,R ′, κ) we define the

nonterminal set

V ′ = V ∪ Lab ∪ {S ′,C,D,X1,X2, Y, [, ]}
and the capacity function κ : V ′ → N given by

κ(A ′) =







1, for A ′ ∈ Lab ∪ {X1,X2, Y}
k + 1, otherwise.

Let h : V∗ → (V ′)∗ be the homomorphism defined by

h(x) =







x, if x ∈ Σ

[xC], otherwise.
The set of rules in G ′ is constructed as follows. For each rule li : Ai → αi,1 6 i 6 r, and any 1 6 j 6 k, R ′ contains the rules

[AiC] → [liX1Y],
[liX1Y] → [liX2Y],
[liX2Y] → h(αi)[C],
[ρiD

jX2] → [ρiC
j],

[ρiC
j] → [ρiD

jX1],
[ρiD

jX1] → [ρmD
j+1−|αi|VX2], for m ∈ σ(i).

Moreover, R ′ contains the rules

S ′ → [SC][ρiD
kX2], [ρiDk+1X2] → λ, 1 6 i 6 r, and [C] → λ.
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Consider a sentential form of the shape h(β)[ρiDjX2] such that |h(β)|C+

j = k + 1. It can be read as follows: The original programmed grammar

G has derived the sentential form β with a number of C nonterminals

and will apply the rule labeled li in the next step. Indeed, if any rule is

applicable, then it is [AiC] → [liX1Y] and h(β) has the factorization h(β) =

h(β1)[AiC]h(β2). (The application of a rule [AjC] → [ljX1Y] with j 6= i

would introduce a second symbol lj; the application of [ρiDjX2] → [ρiC
j]

would generate a total count of k + 1 C’s; the left-hand sides of the other

rules do not appear in the sentential form.) The next seven steps are also

forced, thus giving the following sequence of derivation steps in G ′:

h(β1)[AiC]h(β2)[ρiDjX2] ⇒ h(β1)[liX1Y]h(β2)[ρiDjX2],
h(β1)[liX1Y]h(β2)[ρiDjX2] ⇒ h(β1)[liX1Y]h(β2)[ρiCj],
h(β1)[liX1Y]h(β2)[ρiCj] ⇒ h(β1)[liX2Y]h(β2)[ρiCj],
h(β1)[liX2Y]h(β2)[ρiCj] ⇒ h(β1)[liX2Y]h(β2)[ρiDjX1],

h(β1)[liX2Y]h(β2)[ρiDjX1] ⇒ h(β1)h(αi)[C]h(β2)[ρiDjX1],
h(β1)h(αi)[C]h(β2)[ρiDjX1] ⇒ h(β1)h(αi) h(β2)[ρiDjX1],
h(β1)h(αi)h(β2)[ρiDjX1] ⇒ h(β1)h(αi)h(β2)[ρmDj+1−|αi|VX2],

where m ∈ σ(i).
Consequently, every sentential form reachable after seven steps from

h(β) [ρiD
jX2] with |β|V + j = k + 1 has the form h(β ′)[ρmD

j ′X2] with

|β ′|V + j ′ = k + 1, where β ′ is directly derived in G using the rule labeled

li and m ∈ σ(i). Conversely, any sentential form of the above form can be

derived in G ′ using the seven steps from above.

The sentential forms reachable after the first step in G ′ are exactly those

of the form [S][ρiD
kX2], 1 6 i 6 r. We can conclude by induction that the

sentential forms derivable in G ′ in (7n + 1) steps are exactly those of the

forms h(β)[ρiDjX2] with |β|V + j = k + 1 such that β is derivable in G in
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7.4. CAPACITY-BOUNDED CONTEXT-FREE GRAMMARS

n steps and the rule ρi is applicable. Moreover, the only way to generate

a terminal word w in G ′ is to generate a sentential form w[ρiD
k+1X2] in7n+ 1 steps and then to apply the terminating rule [ρiD

k+1X2] → λ. This

is by the above arguments if and only if w is derivable in G, and thus

L(G ′) = L(G).

7.4 Capacity-Bounded Context-Free Grammars

In this section, we investigate capacity-bounded context-free grammars. It

turns out that they are strictly between context-free languages of finite

index and matrix languages of finite index. Closure properties of capacity-

bounded languages with respect to AFL operations are shortly discussed

at the end of the section.

As a first result we show that the family of context-free languages with

finite index is properly included in CFb.
Lemma 7.4. CF�n ⊂ CFb.
Proof. Any context-free language generated by a grammar G of index k

is also generated by the capacity-bounded grammar (G, κ) where κ is the

capacity function constantly k. The properness of the inclusion follows

from Example 7.1.

An upper bound for CFb is given by the inclusion CFb ⊆ GSb =MAT�n . We can prove the properness of the inclusion by presenting a

language from MAT�n \ CFb. In order to show that a language is not inCFb, we can make use of the following “replacement lemma”.

Theorem 7.5. For any infinite language L ∈ CFb, there are a constant n

and a finite set L of infinite languages from CFb such that, for every word

z ∈ L with |z| > n, there are a decomposition z = uvw, |v| 6 n, and a

language L ′ ∈ L such that uv ′w ∈ L, for all v ′ ∈ L ′.
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7.4. CAPACITY-BOUNDED CONTEXT-FREE GRAMMARS

Proof. Consider a capacity-bounded cf grammar G = (V,Σ, S,R, 1) such

that L = L(G). For A ∈ V, let GA = (V,Σ,R,A, 1) and LA = L(GA).

The following holds for any derivation in G involving A: If αAβ⇒∗
G uvw,

where α,β ∈ (V ∪ Σ)∗, u, v,w ∈ Σ∗ and v is the yield of A, then v ∈ LA.

The nonterminal set V can be decomposed as V = Vinf ∪ V�n , where

Vinf = {A ∈ V | LA is infinite},
V�n = {A ∈ V | LA is finite}.

We choose L = {LA | A ∈ Vinf } and n = r ·max{|w| | w ∈
⋃

A∈V�n LA},
where r is the longest length of a right side in a rule of R. For a derivation of

z ∈ L with |z| > n, consider the last sentential form with a symbol from V�n .

Let this symbol be A and the sentential form be α1Aα2. All nonterminals in

α1α2 are from V�n , and none of them generates a subword containing A in

the further derivation process. We get thus another derivation of z in G by

postponing the rewriting of A until all other nonterminals have vanished by

applying on them the derivation sequence of the original derivation. This

new derivation has the form

S⇒∗
G α1Aα2 ⇒∗

G uAw⇒∗
G uvw = z.

The length of v can be estimated by |v| 6 n, as A is in the first step

replaced by a word over (Σ ∪ V�n) of length at most r. Finally, note that

uAw⇒∗
G uv

′w holds for all v ′ ∈ LA. Hence, any word uv ′w with v ′ ∈ LA

can be derived in G.

Corollary 7.6. L = {anbncn | n > 1} /∈ CFb.
Proof. Suppose, for contradiction, that L ∈ CFb and that n and L are the

constant and the set of infinite languages from Theorem 7.5 with respect

to L.

Consider the word z = an+1bn+1cn+1 ∈ L. By Theorem 7.5, there
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are a decomposition z = uvw, |v| 6 n, and a language L ′ ∈ L such that

uv ′w ∈ L, for all v ′ ∈ L ′. For the decomposition, there are two cases:

u ∈ anb+ or w ∈ b+cn. We discuss only the first case; the other is similar

to the first one. Consider any v ′ ∈ L ′ with |v ′| > |v|. If |v ′|a > 0 then

uv ′w is in a+b+{a,b, c}∗a{a,b, c}∗ and thus not in L. If |v ′|a = 0 then

|uv ′w| > |uvw| = 3n+ 3 and |uv ′w|a = n+ 1, and hence uv ′w /∈ L.

The results can be summarized as follows:

Theorem 7.7. CF�n ⊂ CFb ⊂ GSb = MAT�n .
As regards closure properties, we remark that the constructions showing

the closure of CF under homomorphisms, union, concatenation and Kleene

closure can be easily extended to the case of capacity-bounded languages.

Theorem 7.8. CFb is closed under homomorphisms, union, concatenation

and Kleene closure.

Proof. Let G1 = (V1,Σ1, S1,R1, 1) and G2 = (V2,Σ2, S2,R2, 1) be capacity

bounded grammars with V1 ∩ V2 = ∅, and let h : Σ∗1 → ∆∗ be a homomor-

phism. Let G3,G4,G5,G6 be the capacity-bounded context-free grammars

defined as

G3 = (V1,∆, S1,R3, 1), with R3 = {A→ g(β) | A→ β ∈ R1}
where g : (Σ1 ∪ V1)∗ → (∆ ∪ V1)∗ is the homomorphism

defined by g(A) = A, for A ∈ V1, g(a) = h(a), for a ∈ Σ1;
G4 = (V1 ∪ V2 ∪ {S4},Σ1 ∪ Σ2, S4,R4) with

R4 = R1 ∪ R2 ∪ {S4 → S1, S4 → S2};
G5 = (V1 ∪ V2 ∪ {S5},Σ1 ∪ Σ2, S5,R5) with R5 = R1 ∪ R2 ∪ {S4 → S1S2};
G6 = (V1 ∪ {S6},Σ1, S6,R6) with R6 = R1 ∪ {S6 → S1S6, S6 → λ}.
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Then, L(G3) = h(L(G1)), L(G4) = L(G1) ∪ L(G2), L(G5) = L(G1)L(G2),
L(G6) = L(G1)∗. We will give a correctness proof only for the last equation.

To show L(G6) ⊆ L(G1)∗, one proves by induction on the number n

of derivation steps that any sentential form derivable in G6 has the shape

β1β2 · · ·βk or β1β2 · · ·βkS6 where k > 0 and βi, 1 6 i 6 k is derivable

in G1. Clearly, the statement is true for n = 0 as the word S6 is of the

claimed form. Now suppose that the statement holds for n. The only

possible shapes of sentential forms derivable in n+ 1 steps are

β1β2 · · ·βk (S6 → λ applied on β1β2 · · ·βkS6);
β1β2 · · ·βkS1S6 S6 → S1S6 applied on β1β2 · · ·βkS6);
β1 · · ·βi−1β ′

iβi+1 · · ·βk (a rule from R1 applied on substring βi

of β1β2 · · ·βk);

β1 · · ·βi−1β ′
iβi+1 · · ·βkS6 (a rule from R1 applied on substring βi

of β1β2 · · ·βkS6).
In the first two cases it is obvious that the sentential forms have the

claimed shape. For the other cases, note that |β1 · · ·βi−1β ′
iβi+1 · · ·βk|A 6 1

has to hold for all A ∈ V1 which implies |β ′
i|A 6 1, for all A ∈ V1, and thus

βi ⇒G1 β ′
i.

Conversely, any word w = w1w2 · · ·wk with wi ∈ L1, for 1 6 i 6 k, can

be obtained in G6 by the derivation

S6 ⇒ S1S6 ⇒∗ w1S6 ⇒ w1S1S6 ⇒∗ w1w2S6 ⇒∗ w1w2 · · ·wkS6
⇒ w1w2 · · ·wk

where the subwords wi are derived from S1 as in G1.
Regarding intersection with regular sets and inverse homomorphisms,

we can show non-closure properties.

Theorem 7.9. CFb is neither closed under intersection with regular sets

nor under inverse homomorphisms.
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Proof. Let L ∈ CFb be the language generated by the capacity-bounded

grammar from Example 7.1. As discussed in the example, the intersection

of L with the regular set M given there is

L1 = {a3nx3yb3na3nx2yb3n | n > 1}.
Moreover, let g : {a,b, c,d}∗ → {a,b, x,y} be the homomorphism defined

by g(a) = a, g(b) = b, g(c) = x3y, g(d) = x2y. It is easy to see that

g−1(L) = L2 = {a3ncb3na3ndb3n | n > 1}. With the help of Theorem 7.5 it

can be shown that L1, L2 /∈ CFb.
7.5 Control by Petri Nets with Place Capacities

Control by Petri nets can in a natural way be adapted to Petri nets with

place capacities. A context-free grammar is controlled by its context-free

Petri net with place capacity by only allowing derivations that correspond

to valid firing sequences respecting the capacity bounds. The (trivial)

proof for the equivalence between context-free grammars and grammars

controlled by cf Petri nets can be immediately transferred to context-free

grammars and Petri nets with capacities:

Theorem 7.10. Grammars controlled by context-free Petri nets with place

capacity functions generate the family of capacity-bounded context-free

languages.

Let us now turn to grammars controlled by extended cf Petri nets with

capacities. Since an extended cf Petri net Nx , x ∈ {z , , s}, has two kinds

of places, i.e. places labeled by nonterminal symbols and control places,

it is interesting to consider two types of place capacities in the Petri net:

first, we demand that only the places labeled by nonterminal symbols are

with capacities (weak capacity), and second, all places of the net are with

capacities (strong capacity).
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An x -Petri net Nx = (P∪Q, T , F∪E,ϕ, ζ,γ,µ0, τ) is with weak capacity

if the corresponding cf Petri net (P, T , F,φ, ι) is with place capacity, and

strong capacity if the Petri net (P∪Q, T , F∪E,ϕ,µ0) is with place capacity.

A grammar controlled by an x -Petri net with weak (strong) capacity is anx -Petri net controlled grammar G = (V,Σ, S,R,Nx) where Nx is with weak

(strong) place capacity. We denote the families of languages generated by

grammars (with erasing rules) controlled by x -Petri nets with weak and

strong place capacities by wPNx , sPNx (wPNλx , sPNλx ), respectively,

where x ∈ {z , , s}.
With the similar manner, we also define grammars controlled by arbi-

trary Petri nets with place capacities. Let G = (V,Σ, S,R,N,γ,M) be an

arbitrary Petri net controlled grammar. G is called a grammar controlled

by an arbitrary Petri net with place capacity if N is a Petri net with place

capacity. The families of languages generated by grammars controlled by

arbitrary Petri nets with place capacities (with erasing rules) is denoted byPNb(x,y) (PNλb(x,y)) where x ∈ {f,−λ, λ} and y ∈ {r, t, g}.
Before deriving results on the generative power of grammars controlled

by extended Petri nets with capacities, we will first study the generative

power of capacity-bounded matrix and vector grammars, which are closely

related to these Petri net grammars.

Theorem 7.11. MAT�n = VEC[λ]b = MAT[λ]b = sMAT[λ]b .

Proof. We give the proof of MAT�n = VECλb. The other equalities can be

shown in an analogous way. Since MAT�n = VEC�n = VECλ�n , it suffices

to prove VEC�n ⊆ VECλb and VECλb ⊆ VECλ�n . The first inclusion is

obvious because any vector grammar of finite index k is equivalent to the

same vector grammar with capacity function constantly k.

To show VECλb ⊆ VECλ�n , consider a capacity-bounded vector grammar

G = ({A0,A1, . . . ,Am},Σ,A0,M, 1). (The proof that it suffices to consider

the capacity function 1 is like for usual grammars.) To construct an equiv-
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alent vector grammar of finite index, we introduce the new nonterminal

symbols Bi,B ′
i, 0 6 i 6 m, C,C ′. For any rule r : A → α, we define the

matrix µ(r) = (C → C ′, s0, s1, . . . , sm, r,C ′ → C) such that si = Bi → B ′
i

if A = Ai and |α|A = 0, si = B ′
i → Bi if A 6= Ai and |α|Ai

= 1, and si is

empty, otherwise.

Now we can construct G ′ = (V ′,Σ, S ′,M ′) where

V ′ = V ∪ {Bi,B ′
i | 0 6 i 6 m} ∪ {S ′,C,C ′}

and M ′ contains� for any matrix m = (r1, . . . , rk), the matrix m ′ = (µ(r1), . . . ,µ(rk)),� the start matrix (S ′ → A0B0B ′1 · · ·B ′
mC),� the terminating matrix (C→ λ,B ′0 → λ,B ′1 → λ, . . . ,B ′

m → λ).

The construction of G ′ allows only derivation sequences where complete

submatrices µ(r) are applied: when the sequence µ(r) has been started,

there is no symbol C before µ(r) is finished, and no other submatrix

can be started. It is easy to see that G ′ can generate after applying

complete submatrices exactly those words βγC such that β ∈ (V ∪ Σ)∗,

γ ∈ {B0,B ′0}{B1,B ′1} · · · {Bm,B ′
m} such that β can be derived in G and

|γ|Bi
= 1 iff |β|Ai

= 1. Moreover, G ′ is of index 2|V | + 1.
By constructions similar to those in Theorem 4.20 and Theorem 7.11,

we can show with respect to weak capacities:

Theorem 7.12. For x ∈ {z , , s}, MAT�n = wPN[λ]x .

Proof. We give only the proof for x = z . The other equations can be shown

using analogous arguments. By Theorem 7.11 it is sufficient to show the

inclusions VEC�n ⊆ wPNz and wPNλz ⊆ VECλb.
As regards the first inclusion, let L be a vector language of finite index

(with or without erasing rules), and let ind(L) = k, k > 1. Then, there is
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a vector grammar G = (V,Σ, S,M) such that L = L(G) and ind(G) 6 k.

Without loss of generality we assume that G is without repetitions. Let

R be the set of the rules of M. By Lemma 4.19, we can construct a z -

Petri net controlled grammar G ′ = (V,Σ, S,R,Nz), Nz = (P ∪ Q, T , F ∪
E,ϕ, ζ,γ,µ0, τ), which is equivalent to the grammar G. By definition, for

every sentential form w ∈ (V ∪ Σ)∗ in the grammar G, |w|V 6 k. It

follows that |w|A 6 k for all A ∈ V. By bijection ζ : P ∪ Q → V ∪ {λ}

we have µ(p) = µ(ζ−1(A)) 6 k for all p ∈ P and µ ∈ R(Nz ,µ0), i.e.

the corresponding cf Petri net (P, T , F,φ,β,γ, ι) is with k-place capacity.

Therefore G ′ is with weak place capacity.

On the other hand, the construction of an equivalent vector grammar

for a z -Petri net controlled grammar, can be extended to the case of weak

capacities just by assigning the capacities of the corresponding places to

the nonterminal symbols of the grammar.

As regards strong capacities, there is no difference between weak and

strong capacities for grammars controlled by - and s-Petri nets because

the number of tokens in every circle is limited by 1. This yields:

Corollary 7.13. For x ∈ {, s}, MAT�n = sPN[λ]x .

The only families not characterized yet are sPN[λ]z . We conjecture that

they are also equal to MAT�n .
The next statement indicates that the language generated by a grammar

controlled by an arbitrary Petri net with place capacity iff it is generated

by a matrix grammar.

Theorem 7.14. For x ∈ {f,−λ, λ} and y ∈ {r, t, g},PNb(x,y) = MAT ⊆ PNλb(x,y) = MATλ.
Proof. First, we show that the inclusion PNλb(x,y) ⊆ MATλ holds for all

x ∈ {f,−λ, λ} and y ∈ {r, t, g}.
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Let G = (V,Σ, S,R,N,γ,M) be a grammar controlled by Petri net N =

(P, T , F,ϕ, ι) with place capacity. Since the net N is with place capacity, the

set of all reachable markings, i.e., R(N, ι) is finite. Thus, we can construct

a finite automaton A whose states are the markings of the net N and there

is an arc from state µ to state µ ′ with label t iff marking µ ′ is obtained

from marking µ by firing transition t. The initial marking is considered as

the initial state and the set of final markings M as a set of final states.

Formally, A = (M ′, T , ι, δ,M) where M ′ = R(N, ι) and the state-

transition function δ :M ′×T →M ′ is defined as δ(µ, t) = µ ′ iff µ t
−→ µ ′. It

follows that σ = t1t2 · · · tn ∈ L(A) iff σ is a successful occurrence sequence

of transitions of N. Let K = {γ(σ) | σ ∈ L(A)}. Then, it is not difficult to

see that L(G) = L(G ′) where G ′ = (V,Σ, S,R,K) is a regularly controlled

grammar. Therefore, for all x ∈ {f,−λ, λ} and y ∈ {r, t, g}, we havePNλb(x,y) ⊆ MATλ. �

�

�

�7.1

Next, we show that the inverse inclusion also holds. By direct observa-

tion, we can see that Theorem 5.6 in Chapter 5 also holds for the grammars

controlled by Petri nets with place capacities, i.e., for y ∈ {r, t, g},PN[λ]b (f,y) = PN[λ]b (−λ,y) = PN[λ]b (λ,y). �

�

�

�7.2

Lemma 5.12 in Chapter 5 also maintains for PN[λ]b (−λ, r):MAT[λ] ⊆ PN[λ]b (−λ, r). �

�

�

�7.3

Lemma 6.13 and Corollary 6.14 in Chapter 6 also hold for grammars con-

trolled by Petri nets with place capacities as each place of a Petri net with

place capacity has at most the upper bound, the set of reachable markings
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is finite. Thus, PN[λ]b (λ, r) ⊆ PN[λ]b (λ, g) ⊆ PN[λ]b (λ, t) �

�

�

�7.4

From (7.1)-(7.3), we getMAT[λ] ⊆ PN[λ]b (λ, r) ⊆ PN[λ]b (λ, g) ⊆ PN[λ]b (λ, t) �

�

�

�7.5

From (7.1) and (7.5) it follows that MAT[λ] = PN[λ]b (x,y).
We summarize our results in the following theorem.

Theorem 7.15. The relations in Figure 7.1 hold where x ∈ {f,−λ, λ},
y ∈ {r, g, t}, i ∈ {z , , s} and j ∈ {, s}; the lines (arrows) denote (proper)

inclusions of the lower families into the upper families.
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CF�nCFb = CF1bMAT�n =MAT[λ]b = sMAT[λ]b = V[λ]b = GSb = GS1b = wPN[λ]i = sPN[λ]j
MAT = PNb(x,y)MATλ = PNλb(x,y)

Figure 7.1: The hierarchy of language families generated by grammars with
bounded capacities
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8
Conclusions and Further Research

The thesis dealt with a new type of grammars with regulated rewriting;

it introduced Petri net controlled grammars, and studied their computa-

tional and closure properties. It also concerned the close related topics:

semi-matrix and capacity-bounded grammars. Though the theme of regu-

lated grammars is one of the classic topics in formal language theory, a Petri

net controlled grammar is still interesting subject for the investigation for

many reasons. On the one hand, this type of grammars can successfully be

used in modeling new problems emerging in manufacturing systems, sys-

tems biology and other areas, about which we spoke in Introduction. On

the other hand, the graphically illustrability, the ability to represent both

a grammar and its control in one structure, and the possibility to unify dif-

ferent regulated rewritings make this formalization attractive for the study.

Moreover, control by Petri nets introduces the concept of concurrency in

regulated rewriting systems.

In Chapter 3 we introduced semi-matrix grammars and contented our

research only those properties of these grammars which were used in proofs

of some statements in the next chapters. We investigated the closure prop-

erties of families of semi-matrix languages, and established the relationship

to the families of matrix and vector languages. There still remain a lot of

themes for the separate investigation, for instance, decision problems for
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semi-matrix grammars and computational, closure properties of unordered

semi-matrix grammars. But the most interesting question, in our opin-

ion, is to investigate the relationship of the families of matrix languages

and vector languages. Since by structure of control, semi-matrix grammars

are “between” matrix and vector grammars, they may establish the final

connection matrix languages to vector languages.

In Chapter 4 we defined several concepts of control by Petri nets, by

transforming a context-free grammar into an isomorphic Petri net called a

cf Petri net, and enriching it by additional components (places and arcs).

First, we defined k-Petri net controlled grammars, i.e., grammars controlled

by cf Petri nets with k additional places in Section 4.3. We study the

generative power and closure properties of the family of languages generated

by k-Petri net controlled grammars. The main contribution of this section

is the fact that the families of languages generated by k-Petri net controlled

grammars form infinite hierarchy with respect to the number of additional

places. In Section 4.4 we showed that some well-known grammars with

regulated rewritings can be simulated by extended cf Petri net controlled

grammars.

There are various related problems that deserve further investigation.

1. The study of the decision power of this families of languages remains

untouched. k-Petri net controlled grammars at most generate vector

languages, it suggests that we may prove the decidability for many

problems.

2. Our primary investigations reveals that the matrix grammars, vector

grammars, semi-matrix grammars, random context grammars [67],

and other grammars can be simulated by Petri net controlled gram-

mars. This motivates us to study the unified theory of grammars

with regulated rewritings in future.

3. In the section we investigated the hierarchy problem with respect
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to the number of additional places. It is also interesting to study

this problem with regards to the fixed number of additional arcs. LetPN(n,m1,m2) denote the family of languages generated by grammars

controlled by (n,m1,m2)-Petri nets where n is the number of addi-

tional places, m1 is the number additional incoming arcs to additional

places, and m2 is the number of additional outgoing arcs from addi-

tional places. For instance, the families PN(1, 2, 1) and PN(1, 1, 2) are

incomparable as it is not difficult to see that

{ak1bk2ck3 | k1 + k2 = k3} ∈ PN(1, 2, 1) − PN(1, 1, 2)
while

{ak ′1bk ′2ck ′3 | k ′1 = k ′2 + k ′3} ∈ PN(1, 1, 2) − PN(1, 2, 1).
4. In the investigated grammars, the control in extended cf Petri nets

are restricted to some specific subnets: places, chains or cycles. One

may ask what family of languages is generated if arbitrary subnet is

considered? The study of this topic may be interesting at least for the

reason to complete the variations of extended cf Petri net controlled

grammars.

In Chapter 5 we defined arbitrary Petri net controlled grammars which

are generalizations both regularly controlled grammars and extended cf

Petri net controlled grammars. In the former case, instead of a finite au-

tomaton, a Petri net is associated with a context-free grammar and required

that the sequence of applied rules corresponds to an occurrence sequence

of the Petri net. In the latter case, instead of two bijections, only one

transition labeling function is considered. We studied nine families of lan-

guages generated by arbitrary Petri net controlled grammar resulted from

the different labeling policies and the different definitions of final marking
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sets, and showed that the labeling does not effect the generative capacity.

It is also shown that the introduced families between the families MAT andMATλ. Thus it gives hope that one can solve the problem of strictness of

the inclusion MAT ⊆ MATλ using Petri net controlled grammars.

In Chapter 6 we continued our study of arbitrary Petri net controlled

grammars by restricting Petri nets to structural subclasses, i.e., special

Petri nets such as state machines, marked graphs, free-choice nets, and

many others. The observation showed that the labeling policy in special

Petri nets does not also effect on computational power. On the other hand,

we obtained some interesting results: first, it was demonstrated that the

families of matrix languages and languages generated by state machine

controlled grammars have the same generative power; second, the family of

languages generated by (arbitrary) Petri net controlled grammars coincide

with the family of languages generated by grammars controlled by free-

choice nets. But there still remain several questions to investigate such as

the generative capacity and other mathematical properties of the families

of languages generated by generalized state machine, (generalized) marked

graph, casual net controlled grammars; the relationship of the family of

vector languages to the family of languages generated by marked graph

controlled grammars.

In Chapter 7 we concentrated our attention to study the behavior of

Petri net controlled grammars under dynamical changes of Petri nets,

namely we considered cf, extended cf and arbitrary Petri nets with place

capacities, and investigated generative power and closure properties corre-

sponding families of languages. We also defined capacity-bounded gram-

mars as counterparts of grammars controlled by cf Petri nets with place

capacities. As the main results in this chapter we mark out that capacity-

bounded context-free grammars have a larger generative power than con-

text-free grammars of finite index while the family of languages generated

by capacity-bounded GS grammars (due to phrase structure Ginsburg and
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Spanier) and several families of languages generated by grammars con-

trolled by extended cf Petri nets with place capacities coincide with the

family of matrix languages of finite index.

In our further investigations we would like to consider grammars con-

trolled by k-Petri nets with places capacities. There is also another very

interesting direction for the study. If we notice the definitions of derivation-

bounded [43] or nonterminal-bounded grammars [5, 6, 8] only nonterminal

strings are allowed as left-hand sides of production rules. Here, an inter-

esting question is emerged, what kind of languages can be generated if

we derestrict this condition, i.e., allow any string in the left-hand side of

the rules? Let us consider the grammar G = ({S,A,B,C,D}, {a,b, c},S,R)
where R consists of

S→ abc, S→ aAbc, aA→ aaB,
Bb→ bbC, Cb→ bC, Cc→ Dcc,
Cc→ cc, bD→ Db, aD→ aA.

It is not difficult to see that the grammar G generates non-context-free

grammar {anbncn | n > 1} where in each sentential form there is only

one nonterminal symbol. Thus, it may be an interesting topic for fur-

ther study to investigate derivation-bounded, nonterminal-bounded and

capacity-bounded grammars with arbitrary phrase structure production

rules.
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