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CHAPTER 2

Theoretical Approach and
Computational Details

This chapter is an overview of the first-principles-based theoretical
chemistry of current use, without any attempt at rigour in the mathematical
description. After a short introduction, section 2.2 describes the elementary
topics and mathematical formulation of the well-known Hartree−Fock
approximation, the density functional theory and the role of the basis set.
Section 2.3 revisits the strong and weak points of both theories in a
comparative fashion. In section 2.4 we present the general characteristics of
the functionals used in the framework of calculations arising from first-
principles theories. It also contains computational details of this particular
study. Finally, in section 2.5, the reader shall meet a few important tools for
analysis in theoretical chemistry. The features derived from these tools are
studied in becoming chapters. 
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2.1. Introduction to Quantum Chemistry

After the birth of the Quantum Mechanics in the early 1900's, the
application of the new quantum concepts to the study of atomic and
molecular systems experienced a growing acceptance. Some semi-empirical
approximations were developed in a first stage, like the Hückel model for
calculating the orbital energies of organic molecules or, at a higher level, the
extended-Hückel method, both making use of empirical parameters. First-
principles quantum mechanical methods are, on the other hand, aimed at
solving the Schrödinger equation with neither an approximation nor
additional parameters. That is, to solve equation (1) ab initio:

HΨ = EΨ          (1)
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where H is the full time-independent electronic Hamiltonian. The first term
is the electronic kinetic energy, the second one is the electron-nucleus
coulombic attraction, and the third one accounts for the electron-electron
repulsion. Even though, theoreticians realised that the exact solution of (1)
is only attainable for monoelectronic systems, so only when Ψ describes the
motion of one electron (hydrogen-like systems). However, the interest on
monoelectronic systems amongst the scientific community is rare, and the
efforts to obtain accurate results for polyelectronic systems started soon.
Therefore, approximate methods were developed in order to obtain an
estimate for the energy of the system and other molecular magnitudes. In a
way, especially in a first stage of this new theory, the main problem was the
complicated way to find the solution to the equations arising from that
theory. The fundamentals for the modern methods of computation were
established during the 1930-50's. Since the decade of 1960's, with the
introduction of the primitive computing machines, the development of more
and more efficient algorithms for solving the equations involved in the
motion of electrons allowed to obtain the first relevant results. 

Many-body theories are those aimed at describing in a mathematical
way the motion (or the behaviour, in general) of more than two interacting
particles. Models of increasing complexity have been developed attempting
to reproduce as better as possible the features of molecules. In section 2.2
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we present a few basic aspects of the mathematical formulation used
throughout the text without any attempt at completeness or rigor. For this
purpose a vast literature is available.1-3 Only the most outstanding aspects of
the theory are discussed, those that are necessary for further understanding
of the performance of the model and the accuracy and meaning of the
results.

2.2. Fundamentals of Computational Chemistry

2.2.1. The Hartree-Fock approximation
 
The wavefunction-based ab initio methods were the preferred ones to be
used for solving the Schrödinger equation until the late 80's. The starting
point for all of them is the Hartree−Fock (HF) approximation. Let us
consider some of the basic ideas underlying this method. A simple
antisymmetric wavefunction, used to describe the ground state of an N-
electron system, is constructed with one-electron spin orbitals, χi (exact
solutions of (1)) to form a single determinant, also called Slater determinant,
represented as

0 1 2| NΨ χ χ ...χ= (3)

The variational principle can find the best wavefunction of this form,
simply forcing it to give the lowest possible energy

0 0 0E Ψ H Ψ=  (4)

Eo is the lowest expected value for the energy of the ground state taking
Ψo as the reference function. The flexibility in the wavefunction can be
introduced choosing the spin orbitals. Obviously, the better the
approximation to Ψo, the lower the energy. So, an improvement of the
wavefunction by means of better spin orbitals always leads to an energy
closer to the exact result. This is the basis of the variational principle and
has a great relevance, especially for more complex wavefunction-based
methods. So, if we minimise Eo with respect to the χi's we obtain the
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Hartree−Fock equation, thus determining the optimal spin orbitals. This is
again an eigenvalue problem of the form 

 ( ) ( )i i i if χ ε χ=x x (5)
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vHF is the two-electron term of the Fock operator, f(i). So, the vHF(i) is the
average potential experienced by the i-th electron due to the presence of the
other N−1 electrons. Jb is a local operator accounting for the classical
Coulomb repulsion that each electron experiences by the effect of the
remaining N−1 electrons, and Kb is the attractive exchange term. This one
has no simple classical interpretation because is concerned with the spin of
particles, and arises due to the antisymmetric nature of the determinantal
wavefunction. The exchange operator is non-local and is approximated as a
mean-field, averaged effect of the mutual interaction of the electrons of the
same spin. In terms of the spin orbitals, these contributions are written in the
form

( ) ( )1*
12 2(1) (1) 2 2 (1)b a b b aJ r dχ χ χ χ− =  ∫ x ,  Coulomb

( ) ( )1*
12 2(1) (1) 2 2 (1)b a b a bK r dχ χ χ χ− =  ∫ x ,  Exchange

It will be shown below the importance of these two expressions in the
evolution of computational chemistry.

Introduction of basis sets

In 1951, Roothaan4 introduced the use of a set of spatial basis functions to
solve the differential equations of the HF approximation. Thus, the
differential equations were converted into a set of algebraic equations that
could be solved by matrix techniques. A given basis set is formed by an
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ensemble of functions that describe the motion of the electrons in space. The
choice of the basis set is very important since it governs the correct
functioning of the machinery of calculation. Lots of basis sets are available
nowadays. They were developed with the aim of improving the behaviour of
electrons by stressing some characteristics. It is not the goal of this text to
discuss exhaustively those sets. It is worth showing the two types of
functions that are of most common use for computation. Their mathematical
differences are of much importance in the implementation for computation.
The Slater-type orbitals (STO) are defined, in general, as 

STO l m n rφ Nx y z e ζ−=

whereas Gaussian-type orbitals (GTO) are

2GTO l m n rφ Nx y z e ζ−=

x, y and z describe the angular part of the orbital, and the ζ factor, which
affects the exponential radial function, fixes how much contracted the
orbital is.

Figure 1.1. Comparison of a Slater function with ζ = 1.0, and a single Gaussian
function (α = 0.27095) for a 1s orbital.
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The only difference between STO’s and GTO’s is the dependence with
r of the exponential term. Even though, this has dramatic implications in the
treatment of data. GTO’s enable the efficient calculation of molecular multi-
center integrals by an analytical procedure. On the other hand, STO’s, which
are used in a few computational chemistry packages like ADF, MOPAC and
others, are more adequate for numerical integration since no efficient
analytical algorithms are known yet. Even though, and as a general rule, the
accuracy achieved by a single STO is similar to that of about three GTOs.
This fact arises from the behaviour of each type of orbital in the r → 0
region. STOs are advantageous from this point of view since they reproduce
very well the necessary conditions of electronic behaviour around a nucleus.
They are actually the exact solutions of the Schrödinger equation for the
hydrogen atom. Contrarily to wavefunction-based methods, where
Gaussian-type functions are commonplace (because of the advantages they
offer to the calculation of four-centre-two-electron integrals), there is no
need of combinations or contractions of functions to reproduce the cusp
behaviour at r → 0. See Figure 1.1 for comparison of Slater- and Gaussian-
type functions.

Another type of functions, not so extended amongst the theoretical
community but employed under certain circumstances in DFT calculations,
is the so-called plane-waves. They are sometimes used in periodic
calculations since they implicitly contain the features of periodic boundary
conditions.

Every basis set can be classified in terms of the quality. It depends on
the number of functions describing each atomic orbital. The simple rule is
“more is better”. But, recalling in the mathematical shape of GTO’s and
STO’s, with the angular and the radial parts, we can carefully choose the
shape of these orbitals. If we increase the number of functions by varying
the exponential factor ζ, we get simple- ζ, double- ζ, ...n ζ basis sets. This
factor governs how much diffuse is each function. The second characteristic
describes the angular part of the function. That is, the complexity of the
nodal structure of φi, and it is sometimes required for introducing some
additional electronic correlation. For a better description of the electronic
structure, φi's with different values of ζ and polarisation functions may be
used. Of course, the more extended the basis is, the more time-demanding
the calculation becomes, but the better the result is. Even though, with the
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fast evolution of hardware and mathematical algorithms implemented, large
basis sets are routinely used.

The essence of the HF approximation is, thus, to replace the
complicated expression for the many-electron problem by a one-electron,
mean-field formulation of the electronic repulsion. Provided that the
averaged field for the i-th electron depends itself on all the spin orbitals, the
HF equation must be solved iteratively. Such a procedure is the Self-
Consistent-Field (SCF) method.5 This is a typical eigenvalue problem. The
procedure for solving it yields a set of eigenvalues with an associated set of
eigenvectors, which is the sequence of molecular orbitals. The HF method
determines the best single-determinant wave function. At this level of
theory, the improvement of the wavefunction is linked to the quality of the
basis set.

It is worth mentioning that the HF method itself does not properly
account for the Coulomb hole. It is associated to the repulsion that two
electrons experience for being charged particles.  This is the main failure of
this approximation since the motion of the electrons is then poorly
described. In fact, the HF wavefunction only incorporates the exchange
hole, which arises from the nature of fermions. It is also known as the Fermi
hole. Consequently, it gives too much importance to electron pairing and to
ionic structures. On average, two electrons are closer at the HF level than
they should be. 

One way to improve the pioneering but modestly accurate electronic
description introduced with the HF approximation is to enlarge the trial
wavefunction or to make it more flexible. This is possible by means of two
strategies. One is the perturbation method, and the other is the configuration
interaction (CI) method. They constitute the post-HF methods, which were
developed with the main goal of introducing electronic correlation. They
are, in general, very computationally demanding since the number of
variables to handle grows very fast as we enlarge Ψ. Most of the CI
techniques developed for introducing the correlation effects to get better
energies and wavefunctions use the brute force, in the sense that, in general,
they use larger (linear combination of N-electron Slater determinants) trial
functions. The CI methods make use of a multi-determinantal trial wave
function, which can be formulated as

0 0 0
1

i i
i

c cψ Φ Φ
=

= + ∑
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where Φo is a Slater determinant and the Φi terms represent other electronic
configurations, with an associated weight, ci, each. These terms in the above
expression are the expansion of the uncorrelated function. If no truncation
were made, we would obtain the exact solution Ψo within the chosen basis
set—the so-called Full Configuration Interaction (FCI) solution. In fact, the
application of CI techniques is restricted to small systems due the
extraordinary scaling with the molecular size. Furthermore, the convergence
of the correlation effects with the size of the trial function is slow.
Computational chemists apply some variants of such CI techniques daily,
but rarely to medium or large systems.

2.2.2. Density functional theory

Hohenberg-Kohn theorems and Kohn-Sham formulation

Let us now introduce an alternative way for describing the many-electron
problem. It is formulated introducing the electron correlation locally. This
idea constitutes the fundamental idea of Density Functional Theory (DFT).
This theory is based on the assumption that the ground state electronic
density, ρ0, contains all the information of the chemical system. Such a
method was built on the basis of the famous first Hohenberg−Kohn
theorem,6 which states that there is a one-to-one correspondence between an
external potential (the nuclear field) v(r), the particle density ρ(r) and the
ground state wavefunction, Ψ(r). This is, indeed, a consequence of the
variational principle. In addition, the energy of the ground state is a
functional of ρ(r),

[ ] [ ] [ ] [ ]E T V Wρ ρ ρ ρ= + +
with
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where T is the electronic kinetic energy, V is the electron-nucleus Coulomb
potential, and W is the electron-electron interaction energy. The latter term
can be split into two contributions, the classical electron-electron Coulomb



Chapter 2

29

repulsion and the exchange-correlation term, XC, for which the
mathematical nature as a functional of ρ is unknown 

[ ] [ ] [ ]
[ ] [ ] [ ]

Coul XC

XC X C

W W W
W W W

ρ ρ ρ
ρ ρ ρ
= +

= +

WXC contains all the terms remaining from the electron-electron
interactions not included in WCoul. The XC part is artificially decomposed
into exchange + correlation, although it has no much physical significance.
However the theoretical study of both effects seems to be easier in that way.
The second Hohenberg-Kohn theorem6 predicts that we can apply the
variational principle, at a fixed external potential, v, to the electronic density

0[ ] [ ] [ ]vE Ψ T V W Ψ Eρ ρ ρ= + + ≥

Almost all the modern DF-based applications make use of the DFT
formulation of Kohn and Sham7 (KS). It was postulated the existence of an
auxiliary system of noninteracting electrons moving in an external and
unique potential vs(r). This potential has the property of having a
wavefunction associated yielding exactly the same density than the
interacting system. In addition, that wavefunction is a Slater determinant.
The exact energy may be written as

2 1
12

1 1'

1 1(1) (1,1') 1 ( ) ( ) (1,2) 1 2
2 2
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= − ∇ + Γ

Γ = + Γ

∫ ∫ ∫r r r +

Γ(1,2) is the correlated probability of finding two electrons at 1 and 2. It
is decomposed into the uncorrelated part, ρ(1)ρ(2), and the remainder that
accounts for the exchange and correlation parts of the correlated probability.

From this formulation we obtain the KS orbitals, in which the
optimisation of the density is a straightforward procedure since it is derived
after solving a set of one-electron equations. The problem at this point is
that the exact mathematical form connecting the energy and the total
electronic density is yet unknown. Hence, approximations should be
introduced in order to have an analytic expression to be evaluated. The
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primitive XC part of E[ρ] is the central battlefield for theoreticians that try
to improve the performance of the model.

Local Density Approximation

Let us discuss here the central model that gave birth to the DFT. It is the
simplistic but surprisingly good uniform electron gas approximation (or
homogeneous gas model) proposed in the middle 1920’s by Thomas and
Fermi.8 Such a model can be mathematically formulated as an energy
functional that accounts for the local value of ρ at each point in space
(regardless of any other one). For the homogeneous gas approximation, the
first analytic expression obtained for the electron correlation part was
reported in the early 80's by Vosko, Wilk and Nusair (VWN)9 which fitted
energy values obtained from Monte Carlo simulations by Ceperley and
Alder.10 The exchange part of this functional was approximated, in a simple
form, with the Xα method of Slater11

2
43
3

1
9 3[ ] )
8X 1E α ρ( r d r
πα ρ  = −  

  ∫
ur ur

 

where α is a semi-empirical adjustable parameter. The XC part of the energy
functional within the Local Density Approximation (LDA) consists in these
two parts

LDA X VWN
XC X CE E Eα= +

 We will see below that more complex functionals can be proposed.

Generalised Gradient Approximation

The modestly accurate results of the LDA applied to molecules forced the
search of more accurate expressions for describing the motion of electrons.
The central idea is to take into account not only the value of the electron
density at each point in space but also what is the value of its first
derivative. This constitutes the so-called non-local or generalised gradient
approximations, GGA. The gradient corrections are added to the local
definition of X and C, thus redefining the EXC and, in most of the cases,
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improving the performance of the model. In general, we have that gradient
corrections are functionals of the density and of its first derivative:

[ ] (NLDA
XCE f ρ, ρ)d rρ = ∇∫

r

The density gradient is typically included in the form
2

4
3

ρ

ρ

∇
.

The non-local term, NLDA, together with the LDA part of XC leads to
mathematical expressions for the corrected [ ]GGA

XCE ρ functionals 

[ ] [ ] [ ]GGA LDA NLDA
C C CE E Eρ ρ ρ= +  for correlation

[ ] [ ] [ ]GGA LDA NLDA
X X XE E Eρ ρ ρ= +  for exchange

All the efforts concerned with the development of DFT are aimed at
improving and testing the exchange and correlation corrections for the
NLDA part. There is an inherent problem beneath the current status of the
model. Provided that the exact form of E[ρ] is unknown (it is indeed what
we are looking for), we can not say much about the performance of the new
functionals until they are tested with chemical systems. So, there is no
systematic way to get better functionals and, a priori, a new formulation of
the EXC part is not better than a previous one. There are many XC
expressions in the literature.12 The functionals enjoying of a spread
acceptance nowadays are the Becke13 exchange functional and the Perdew14

and Perdew−Wang15 correlation functionals. There is a different class of
functionals, the so-called hybrid functionals, like the Lee−Yang−Parr16

(LYP) for correlation that combined with the Becke's three-parameter
method (B3),17 led to the popular B3LYP exchange-correlation functional.
They were introduced with the aim of including the exact exchange energy
as a contribution from the correct HF exchange. This latter mathematical
approach have proven to be accurate for many systems, although somewhat
more time demanding than non-hybrid XC functionals like the BP or the
BP86. This is so since the calculation of the two-electron integrals in the HF
exchange (the bottleneck of quantum chemistry) is avoided. 
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2.3. DFT vs. HF Methods

Compared to the HF-based methods, the DFT is conceptually more difficult
to be improved. The way to account for the correlation effects in the
framework of the DFT does not pass through enlarging the trial
wavefunction. It is the unknown Hamiltonian that is improved, indeed. As
we pointed out before, no systematic procedure is known to date to improve
the performance of the model. Luckily, better functionals do not imply more
expensive calculations (with the exception of those that include a part of the
HF exchange). Thus, new pure (non-hybrid) functionals can be tested
regardless of how much time-consuming they are. After more than fifteen
years of work concerning the mathematical expression of E[ρ], some
conclusions about the performance and current status of the DFT-based
methods arise. Here we divide the discussion in three main points:
molecular energies, accuracy of the geometries and electronic properties
(molecular orbitals structure).

Total Molecular Energies. Care must be taken when we analyse the
molecular energies with different functionals. Provided that the variational
principle is not applicable in the framework of the DFT (the exact functional
connecting E and ρ is unknown), it is impossible to know a priori whether a
GGA method will give a lower (better) energy than the LDA. Thus, a
simpler functional does not imply a worse energy, there is not such a direct
connection in DFT energies. Even though, the use of the same functional for
the study of relative values of binding energies is, in the context of the
accuracy of the functional, perfectly applicable. In this compilation, it is a
constant way to evaluate chemical problems to compare pairs of energies to
elucidate relative stabilities.

Molecular Geometries. Not much experience has been achieved yet in
the calculation of large transition-metal-based clusters compared to the
smaller metal-ligand or organic compounds. For these cases, compared to
experimental data, LDA and GGA geometries proved to be in better
agreement than HF ones. The latter method, in general, overestimates the
Metal−Ligand (M−L) distance, which is an effect of the inherent
deficiencies in the treatment of electron correlation. On the other hand,
equilibrium geometries computed by the LDA tend to be underestimate
bond distances. Nevertheless, LDA deviations have been reported smaller
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than HF ones. For large systems like polyoxometalates, with many heavy
atoms, the performance of the DFT can be considered excellent.
Experimental geometries are very well reproduced with medium-size basis
sets and GGA functionals, so at low cost. With the BP86 exchange-
correlation functionals, some elongation of the LDA-computed bond
distances is achieved, thus reducing the average deviation in M−L distances.
The inclusion of some exact exchange (HF exchange) in the energy
functional (say, by means of the B3LYP) can improve the equilibrium
geometries although at a major computational cost. 

Electronic Properties. Most of the present work deals with the analysis
of electronic properties in terms of molecular orbital energies. The
conventionally accepted idea in which electrons are disposed in a well-
defined sequence of energetic levels facilitates the rationalisation of plenty
of the features of molecular systems. The original idea (or we might say,
perhaps, the main goal) of the DFT gets rid off electrons as the basic unit of
the machinery. Instead, it makes use of an electron gas. Even though, the
current formalism in use (the Kohn−Sham approach) forced the
implementation, in density functional-based methods, of molecular orbitals
containing the electrons, the KS orbitals. They are trivially connected to the
density via

2
,( ) i KS

i
ρ r φ= ∑

After recent reports in favour of the physical significance of the KS
orbitals, their use in the context of the density functional scheme is
welcome,18-22 and their application for rationalising chemical phenomena is
justified. The molecular orbital theory has been routinely used as a tool for
the analysis of the electronic structure.

 Chemists are being familiarised with the discussion of properties
related with the Highest Occupied Molecular Orbital (HOMO) and the
Lowest Unoccupied Molecular Orbital (LUMO) and their spatial shape. The
linked value HOMO-LUMO (H-L) gap, the energetic separation between
both orbitals, is an indicator of the stability of the cluster. Comparison of H-
L gaps in various systems is a good guess for advancing the electronic
affinity of each one. Must we warn the reader that, in highly charged
clusters like those discussed in chapters 4-8, the energy of the molecular
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orbitals can be dramatically shifted to unrealistic levels. The fact that the
HOMO (or some occupied orbitals) appears at positive energies is a signal
of failure of both the DFT and the HF approximation. This energy upshift is
indicative of instability and is reflected in the total binding energy, being
less negative than it should be. In chapter 7, a way to arrange this error is
used to equalise HOMO energies in several clusters, thus giving somewhat
comparable orbital energy values and electron transfer energies.

To resume this section, we schematise several considerations
concerning the general features, failures and advantages of the HF and the
DFT methods.23

DFT weak points:

► The DFT energy is not variational with vXC. The HF method was
formulated within the framework of an exact Hamiltonian, so the
variational principle is applicable. The only way to improve the
performance of the DFT is formulating better XC potentials. However,
there is no systematic procedure to do that. In wavefunction-based
methods, the trial function is enlarged to improve the results. The better
the function, the closer we are to the exact result (more correlation
energy is included).

► The complex electronic configurations (those that are clearly multi-
determinantal) are troublesome. The mono-determinantal nature of the
DFT formalism can not handle them within the framework of the current
KS implementation. Post-HF techniques are the tool to be used in such
cases.

► Highly negatively charged molecules display artificially upshifted
occupied molecular orbitals. In general, HOMO-LUMO gaps are smaller
at the DFT level than in the HF approximation.

DFT strong points:

► In principle, the DFT formulation only deals with ρ, which depends on 3
variables irrespective of the size of the system. In wavefunction-based
methods, like the HF, Ψ is a function of 3N variables.

► Gradient-corrected density functionals applied to POMs far surpass HF
in accuracy. The electronic correlation is introduced at low cost, whereas
including correlation to the HF method is highly expensive.
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► DFT is cheaper than HF at similar performance.
► The shape, symmetry and energetic sequence of the KS orbitals coincide

with those obtained at the HF level. 
► In principle, DFT can include all the electronic correlation, whereas HF

can not.
► The total electronic density is an observable. The wavefunction Ψ is not.
► Nowadays, it is the method to be used in large systems, like POMs. DFT

geometries are proven to be very good. Even with medium-quality basis
sets, the experimental geometries are well reproduced. Only double-
bonded metal-oxygen distances in POMs are modestly calculated.

Resuming, before the decade of the 80's, the conventional ab initio
methods were the only way to include correlation effects in quantum
calculations. The Density Functional Theory (DFT) represents an alternative
way for introducing the electronic correlation effects for solving the
electronic Schrödinger equation. In the last fifteen years, the application of
the DFT-based methods was popularised amongst the computational
chemists since they permit the calculation of systems of medium and large
size with low computational cost. Furthermore, the accuracy reached is
generally comparable to the expensive post-Hartree−Fock methods. For the
large systems studied here, the DFT is the optimal tool to achieve a good
accuracy in the results with modest computational demands.

2.4. Computational Details

The density-functional

In order to achieve a general consistency of the work for further comparison
of the results, the same computational accuracy was kept to obtain the
results presented here. With this policy we can avoid artificial differences
due to mere aspects of the calculation. Where a different computational
level or method is applied, the motivation for doing that and a detailed
explanation are highlighted.

The DFT calculations presented in this thesis were carried out with the
ADF package of programs24 (versions 2.3, 1999 and 2000). The local
density approximation (LDA) characterised by the homogeneous electron
gas exchange (the Xα method11) together with the Vosko−Wilk−Nusair9
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(VWN) parameterisation for correlation were used. The gradient-corrected
Becke13 and Perdew14 functionals (BP86 XC functional) for exchange and
correlation are included, respectively. All these features are resumed in this
chapter above.

One way to simplify the computation when heavy atoms are involved
passes through discarding some electrons of each atom from first-principles
calculations. They are the lowest-lying, internal and most inert ones, or core
electrons. They can be considered frozen or, otherwise, they can be treated
by means of effective core potentials. The energy and orbital sequence of
such electrons can be computed in a previous stage of the procedure. In the
process of searching the total electron density of the system (orΨ), they do
not account for bonding more than in the extent in which they affect the
energy of the valence electrons. (Quasi)relativistic corrections are applied to
core electrons since their kinetic energy is much larger than that of the
valence shells. They were introduced alongside the Pauli formalism with
corrected core potentials. The quasirelativistic frozen core shells were
generated with the auxiliary program DIRAC,24 included in the ADF
package.

The choice of the basis set and the functional utilised in this work has
its fundament in the good balance between accuracy and time. Taking the
reference of the previous works published by authors concerned with similar
systems,25-26 STO basis sets of triple-ζ + polarisation quality were used to
describe the valence electrons of all the atoms. The electrons treated as
frozen core shells are listed in Table 2.1.

Table 2.1. Complete list of the elements appearing in the calculations of chapters
4−8, together with their respective core electrons, classified as p- or d-elements.

p-series transition-metals
element core electrons element core electrons

O 1s Ti, V 1s−2sp
Al, Si, P 1s−2s Nb, Mo 1s−3spd

Ga, Ge, As 1s−2sp W 1s−4spd

All the electrons included in the core are described by means of a single
Slater-type orbital each.27-28 
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2.5. Tools for Analysis 

It was discussed before the importance of the total electronic density, ρ, in
the DFT formulation. In principle, all the molecular properties can be
extracted from this unique function. Here we briefly point out some
outstanding properties derived from ρ that reveal characteristics of the
molecular system.

Atomic charge analysis

Although the atomic charge is not an observable magnitude, its values can
indicate a tendency if they are properly taken into account in relative terms.
There is no experimental chance to measure the charge of an atom in a
molecule. Even though, such an analysis can easily link the quantum
chemical calculations with concepts like bonding and valence, but a
qualitative level. Amongst many other methods for obtaining the atomic
charge, the Mulliken population analysis29 is a standard method to have a
guess to this magnitude. The net charge of an atom is calculated as follows:

( )
( )A A µµ

µ A
q Z= − ∑ PS

where ZA is the nuclear charge, P is the electron density in matrix form and
S represents the overlap matrix between atomic orbitals. Their elements are
constructed by

*( )
N

α α
µν µa νa

a
P C C= ∑

*
1(1) (1)µν µ vS drφ φ= ∫

respectively. (PS)µµ can be interpreted as the number of electrons associated
to the atomic orbital φµ. This partition of the charge is strongly dependent on
the basis set, in addition to other serious deficiencies of the method. So, the
meaning of absolute values of atomic charge does not make sense. Only for
comparing purposes atomic charges might be computed, and some parts of
this work make use of this. In a particular case, another method is applied
(see chapter 4) for the calculation of atomic charges. It is the CHelpG
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method,30 in which atomic charges are calculated to reproduce the same
electrostatic potential generated by the electronic density and nuclear
distributions in the molecule.

If an unrestricted calculation have been carried out, the spatial parts for
α and β electrons are treated separately. For a further population analysis,
both sets combined adequately hold information of spin polarisation. Apart
of the total electric charge attributed to a single atom in a molecule, we can
have a guess of the spin polarisation in case of unpaired electrons by means
of the same Mulliken population analysis. This will provide the excess of α
vs. β electrons in each atom and, consequently, in different regions of the
molecule. The mathematical procedure is equivalent to that of the closed-
shell restricted case, although two density matrices shall be constructed, one
for each set of electrons. 

Decomposition of the energy

In many cases, especially when some units take part in a complex molecule,
special phenomena can be studied. This is the case of, say, adsorption,
encapsulation or coordination. These three cases show at least two
fragments: adsorbate + substrate, host + guest or metal + ligand. For the
study of these systems, theoreticians can artificially split the molecule in
order to compute the energy of the fragments separately. Afterwards, their
mutual interaction is computed. Then, a general expression for the total
energy is in terms of the energy of the fragments is
 

1
( ) ( )

N

i
E molecule E i FIE

=

= +∑

where E(i) is the energy of the i-th isolated (and thus distorted) and FIE is
the energy of interaction between the fragments. The decomposition of the
FIE, which accounts for the stabilisation of the whole system when the
fragments are united adopting the geometry of the real cluster, can be
carried out by means of several strategies. The Constrained Space Orbital
Variation (CSOV) method, developed by Bagus,31 performs a
decomposition of the fragments interaction in various contributions in terms
of a given orbital interaction scheme.32 
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Another decomposition method of the FIE is that formulated by
Morokuma33 and later adapted by Ziegler et al. in their Transition State
method.34 According to this formulation

FIE = SR + OI

Here, SR is the steric repulsion, consisting of two components: the classical
electrostatic interaction between the N unperturbed charge distributions of
the interacting fragments, and the so-called exchange or Pauli repulsion.
This latter term accounts for the 4-electron destabilising interactions
between occupied orbitals in the fragments. The orbital interaction (OI) term
recover the energy variation due to charge transfer between fragments as
well as the mutual electronic density polarisation of each fragment as an
effect of the presence of the other. With this scheme one can study how
fragments affect each other and what is the nature of this interaction, the
magnitude of the charge transfer, etc.

In chapter 1 we introduced the clathrate concept associated to a family
of POMs as special feature of this set of molecules. For further analysis of
clathrate-like frameworks, the interaction between the fragments (say, the
cage and the internal ion) is highly valuable. We will see in chapter 4 how
the application of this scheme of decomposition can contribute to unravel
highly interesting problems concerning the relative stability of a set of
molecules.

Deformation density maps

Somehow related to the previous point there are the Deformation Density
Maps,35 DDM in brief. It is a tool for qualitative analysis. The fundamentals
of this method lie in the deformation of two electronic densities upon
interaction. The calculation of, say, two isolated fragments leads to ρ1 and
ρ2, whereas the whole cluster provides ρsuper. Obviously, the sum of the
densities of the isolates fragments does not equal ρsuper, the density of the
supersystem. The difference between them is the deformation density, 

super 1 2( )ρ ρ ρ ρ∆ = − +

The magnitude of change, ∆ρ,36 is induced by the mutual polarisation +
charge transfer. With DDM we can detect regions of charge accumulation or
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charge depletion after interaction. We shall see in chapter 3 how the analysis
of a DDM provides information related to the magnitude of the charge
accumulation depending on the variation of one fragment. 

Molecular electrostatic potential
 
For the study of fundamental aspects of the molecular structure and the
reactivity, the interpretation of molecular electrostatic potentials (MESP) is
of much importance. The electrostatic potential is defined as the energy
experienced by a positive unitary charge put in position r in space under the
effect of an electric field. The electrostatic potential (EP) is defined at each
point of space with

3

1

( ')( ) '
'

N
A

A A

Z ρV d r
=

= −
− −∑ ∫

rr
r R r r

where r is a spatial position. The charge distribution of a molecule is
composed of the positively charged nuclei and the negative charge density
of electrons. Thus, the first term of the sum corresponds to the nuclear
contribution (positive charges, ZA) and the second one to the effect of the
negative electronic distribution that is integrated over all space since ρ(r’) is
formally a continuous function. The values of V(r) provide information
about the electro- or nucleophilicity of the different regions of a molecule.37

Provided that we can calculate the value of V(r) at any point of space, a
good way to represent this function in a friendly way is to plot it over a 3-
dimensional isodensity surface of the molecule, thus giving a 4-dimensional
coloured plot.

The major utilisation of MESP in the present work is concerned with
the study of the basicity in Keggin clusters. This is, in some sense, the
analysis of an electrophilic attack of an incoming H+ to form an O−H bond
in a cluster. For this purpose, an atomic charge analysis is sometimes
proposed but from the discussion carried out before in this section, the latter
tool is not as reliable as the MESP function. The reader shall notice in next
chapters that the atomic charges of individual nucleophilic centres have
shown no correspondence with their respective basicities. This is so for two
reasons: the basicity is a property much more complicated than the simple
study of the (artificial) atomic charges and, second, the calculation of atomic
charges is inherently erroneous. 
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