TESI DOCTORAL

Valoració i entrenament del control neuromuscular per a la millora del rendiment esportiu

Azahara Fort Vanmeerhaeghe

Departament de Ciències de l’Activitat Física i l’Esport.

Dirigida pel Dr. Daniel Romero Rodríguez

Co-dirigida per la Dra. Myriam Guerra Balic
Als meus pares, Pepe i Martina.
ÍNDICE

<table>
<thead>
<tr>
<th>Capítol</th>
<th>Pàg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLISTA D'ESTUDIS</td>
<td>2</td>
</tr>
<tr>
<td>GLOSSARI</td>
<td>3</td>
</tr>
<tr>
<td>RESUM. RESUMEN. ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCCIÓ I ANTECEDENTS</td>
<td>11</td>
</tr>
<tr>
<td>EL SISTEMA SENSORIOMOTOR. ANATOMIA I FISIOLOGIA</td>
<td>11</td>
</tr>
<tr>
<td>EL CONTROL NEUROMUSCULAR EN LA PREVENCIÓ DE LESIONS</td>
<td>21</td>
</tr>
<tr>
<td>AVALUACIÓ DE LA RESPOSTA NEUROMUSCULAR</td>
<td>28</td>
</tr>
<tr>
<td>MÈTODES D'ENTRENAMENT PER A LA MILLORA DEL CONTROL DEL SISTEMA NEUROMUSCULAR</td>
<td>32</td>
</tr>
<tr>
<td>OBJECTIUS I HIPÒTESI</td>
<td>44</td>
</tr>
<tr>
<td>MÈTODE</td>
<td>45</td>
</tr>
<tr>
<td>MOSTRA</td>
<td>45</td>
</tr>
<tr>
<td>DISSENY</td>
<td>46</td>
</tr>
<tr>
<td>MÈTODES DE VALORACIÓ</td>
<td>47</td>
</tr>
<tr>
<td>MÈTODES D'ENTRENAMENT NEUROMUSCULAR</td>
<td>51</td>
</tr>
<tr>
<td>ANÀLISI ESTADÍSTICA</td>
<td>52</td>
</tr>
<tr>
<td>RESULTATS</td>
<td>55</td>
</tr>
<tr>
<td>DISCUSSIÓ</td>
<td>57</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>71</td>
</tr>
<tr>
<td>AGRAÏMENTS</td>
<td>72</td>
</tr>
<tr>
<td>BIBLIOGRAFIA</td>
<td>74</td>
</tr>
<tr>
<td>ESTUDIS (I-VI)</td>
<td>85</td>
</tr>
<tr>
<td>ESTUDI I</td>
<td>86</td>
</tr>
<tr>
<td>ESTUDI II</td>
<td>95</td>
</tr>
<tr>
<td>ESTUDI III</td>
<td>103</td>
</tr>
<tr>
<td>ESTUDI IV</td>
<td>111</td>
</tr>
<tr>
<td>ESTUDI V</td>
<td>119</td>
</tr>
<tr>
<td>ESTUDI VI</td>
<td>149</td>
</tr>
</tbody>
</table>

LLISTA D’ESTUDIS

En revisió.

Estudi VI. Fort A, Romero D, Bagur C, Guerra M, Costa L, Lloret M. Effects of whole body vibration training on explosive strength and postural control in athletes.

En revisió.
GLOSSARI

DEFINICIONS

Centre de pressions (CP): Punt de localització resultant de totes les forces de reacció del terra.

Control neuromuscular: Des de la perspectiva de l’estabilitat articular, ve definit com l’activació muscular precisa que possibilita el desenvolupament coordinat d’una acció.

Equilibri: sinònim d’estabilitat postural.

Estabilitat dinàmica: Sinònim d’estabilitat funcional.

Estabilitat postural: Capacitat per mantenir la posició del centre de gravetat del cos sobre la base de sustentació, és a dir, dins dels límits de l’estabilitat corporal. Sinònim d’equilibri.

Estabilometria: Tècnica no invasiva i fiable desenvolupada per valorar les pertorbacions de l’equilibri. Els seus sensors registren quantitativament la desviació del centre de pressions del cos en els diferents eixos de l’espai.

Propiocepció: Tipus de sensibilitat del sistema somatosensorial que té com a principal objectiu mantenir l’estabilitat dinàmica de l’articulació, fet que s’aconsegueix mitjançant la detecció de les variacions de pressió, tensió i longitud dels diferents teixits articulars i musculars. Es troba directament relacionada amb el control neuromuscular.

Sistema sensoriomotor: És el sistema que engloba els receptors perifèrics i les seves vies aferents, conjuntament amb els components centrals d’integració i processament i les vies motores implicades en el manteniment de l’homeòstasi articular durant els moviments corporals.

Sistema somatosensorial: Via aferent, sinònim de somatosensació, que engloba tota la informació mecanorreceptiva (propiocepció), termorreceptiva (tacte i temperatura) i dolorosa derivada de la perifèria.

Stiffness: També anomenada rigidesa muscular. Capacitat d’un múscul d’oposar-se a l’estirament. És una propietat contraria a la compliança (facilitat amb la que es pot estirar un múscul) i que influeix en l’emmagatzematge i utilització de l’energia elàstica.
ABREVIACIONS

CMJ: Salt vertical amb contramoviment.
DS: Desviació típica o desviació estàndard.
EV: Entrenament mitjançant vibracions mecàniques.
GV vs GP: Grup d’entrenament amb vibracions versus grup control passiu.
GV vs GSV: Grup d’entrenament amb vibracions versus grup que fa una mateixa intervenció sense vibració.
ICC: Índex de correlació intraclasse.
LCA: Lligament creuat anterior.
OTG: Òrgan tendinós de Golgi.
RTV: Reflex tònic vibratori.
SNC: Sistema nerviós central
TRAL: Teràpia reequilibradora de l’aparell locomotor.
UO: Equilibri unipodal amb ulls oberts.
UT: Equilibri unipodal amb ulls tancats.
VAS: Escala visual analògica.
VCS: Vibració de cos sencer, equivalent a WBV.
WBV: Whole body vibration.
Valoració i entrenament del control neuromuscular per a la millora del rendiment esportiu

El control neuromuscular ha estat descrit com un important factor per a l’èxit en el rendiment esportiu. De la mateixa manera, també s’ha identificat com a clau en la prevenció i readaptació de les lesions esportives. El principal objectiu d’aquesta tesi doctoral és avaluar l’eficàcia de diferents tipus d’entrenament neuromuscular en esportistes.

S’ha utilitzat una mostra de 81 esportistes sans entre els diferents estudis que s’hi presenten. Les diferents avaluacions realitzades han registrat els següents ítems: dolor (escala visual analògica), incidència de lesions esportives, estabilitat postural estàtica i dinàmica (estabilometria i salt unipodal) i força explosiva de l’extremitat inferior (salt amb contramoviment). Els dos mètodes d’entrenament neuromuscular utilitzats són l’anomenat TRAL (Teràpia Reequilibradora de l’Aparell Locomotor) i les VCS (vibracions de cos sencer).

La primera part d’aquesta tesi (Estudis I i II) va tenir l’objectiu de valorar l’eficàcia del mètode TRAL. Aquest va produir una reducció significant del dolor de turmell independentment del gènere registrat, mentre que en el cas del dolor de genoll només hi van haver diferències en les noies estudiades. Un dels altres efectes registrats importants a destacar va ser la reducció significant de l’àrea de desviació del centre de pressions en el cas de les noies, el que representa una millora de l’estabilitat postural. Aquesta dada també va ser positiva en una de les proves registrades en el grup de nois.

La segona part d’aquest treball (Estudi III) es va centrar en donar fiabilitat a una bateria de tests d’equilibri mesurats amb un estabilòmetre, tenint com a objectiu valorar l’estabilitat estàtica i dinàmica de l’extremitat inferior. Es va obtenir una correlació de bona a excel·lent en totes les variables de la millor amplitud promig en el test unipodal d’ulls oberts i tancats. Aquests resultats suggereixen una bona fiabilitat per a la distinció entre grups de subjectes. En el cas del test més dinàmic i proper a la realitat de l’esportista, el salt unipodal, la correlació va ser baixa.

Com a continuació d’aquesta segona part, l’estudi IV va comparar de forma transversal les diferències de l’estabilitat postural estàtica i dinàmica segons sexe i cama dominant. El test d’equilibri unipodal d’ulls oberts no va mostrar diferències significatives en la desviació del centre de pressions entre homes i dones. D’altra banda, el sexe femení va mostrar un major equilibri en els tests més dinàmics (UT i S) en comparació amb el sexe masculí. En relació a
les diferències entre cama dominant - no dominant, només es van trobar diferències significatives en les dones en la recepció del salt unipodal, mostrant-se un millor control quan la recepció s’efectuava amb la cama dominant.

La següent línia de treball es va iniciar amb l’estudi V, que va consistir en una revisió sistemàtica sobre els efectes de l’entrenament vibratori sobre el rendiment esportiu en persones físicament actives. Els resultats van mostrar una gran heterogeneïtat clínica i una baixa qualitat metodològica dels treballs analitzats fins la data cercada. Malgrat no poder extreure conclusions clares, existeix una tendència a la millora de la força explosiva. També podem establir un rang segur dels paràmetres d’aplicació de vibracions mecàniques sobre la població d’estudi. Aquest es troba entre 1,7-11mm d’amplitud i entre 20-44 Hz de freqüència, aplicant-se tant en exercicis estàtics com dinàmics i fins a un màxim de 18 minuts de durada per sessió.

Per últim, es va realitzar un assaig clínic controlat aleatori (Estudi VI) amb l’objectiu de valorar l’eficàcia de l’entrenament mitjançant vibracions de cos sencer sobre la força explosiva i el control postural en joves jugadores de bàsquet. Els resultats van mostrar un increment significatiu del salt amb contramoviment, del salt unipodal i de l’equilibri amb ulls tancats a les 8 i 15 setmanes d’entrenament en el grup experimental. És destacable el fet que no es trobessin diferències significatives entre els tests realitzats a les 8 i les 15 setmanes d’entrenament en cap de les variables. D’altra banda, el grup control no va experimentar canvis respecte les valoracions preintervenció. Amb aquests resultats podem afirmar que l’entrenament vibratori possibilita la millora dels paràmetres analitzats, repercutint favorablement en el rendiment esportiu i, també, de forma indirecta, en la prevenció de lesions en esportistes d’alt risc.

A forma de síntesi, els estudis d’aquesta tesi emfatitzen la importància del control neuromuscular sobre el rendiment i prevenció de lesions esportives. És necessari destacar la importància de continuar investigant sobre noves eines que mesurin els paràmetres associats al control neuromuscular, així com seguir estudiant l’eficàcia dels diferents mètodes d’entrenament neuromuscular per a la seva optimització.

Paraules clau: control neuromuscular, entrenament, rendiment esportiu, equilibri, propiocepció.
RESUMEN

Valoración y entrenamiento del control neuromuscular para la mejora del rendimiento deportivo

El control neuromuscular ha sido descrito como un importante factor para el éxito en el rendimiento deportivo. Del mismo modo, también se ha identificado como clave en la prevención y readaptación de las lesiones deportivas. El principal objetivo de esta tesis doctoral ha sido evaluar la eficacia de diferentes tipos de entrenamiento neuromuscular en deportistas.

Se ha utilizado una muestra de 81 deportistas sanos entre los diferentes estudios que se presentan. Las diferentes evaluaciones realizadas han registrado los siguientes ítems: dolor (escala visual analógica), incidencia de lesiones deportivas, estabilidad postural estática y dinámica (estabilometría y salto unipodal) y fuerza explosiva de la extremidad inferior (salto con contramovimiento). Los métodos de entrenamiento neuromuscular utilizados fueron el llamado TRAL (Terapia reequilibradora del Aparato Locomotor) y las VCE (vibraciones de cuerpo entero).

La primera parte de esta tesis (Estudios I y II) tuvo el objetivo de valorar la eficacia del método TRAL. Este produjo una reducción significativa del dolor de tobillo independientemente del género registrado, mientras que en el caso del dolor de rodilla sólo hubo diferencias en las chicas estudiadas. Otro de los efectos registrados importantes a destacar fue la reducción significativa del área de desviación del centro de presiones en el caso de las chicas, lo que representa una mejora de la estabilidad postural. Este dato también fue positivo en una de las pruebas de equilibrio registradas en el grupo de chicos.

La segunda parte de este trabajo (Estudio III) se centró en dar fiabilidad a una batería de tests de equilibrio medidos con un estabilómetro, teniendo como objetivo valorar la estabilidad estática y dinámica de la extremidad inferior. Se obtuvo una correlación de buena a excelente en todas las variables de la mejor amplitud media en el test unipodal de ojos abiertos y cerrados. Estos resultados sugieren una buena fiabilidad para la distinción entre grupos de sujetos. En el caso del test más dinámico y cercano a la realidad del deportista, el salto unipodal, la correlación fue baja.

Como continuación de esta segunda parte, el estudio IV comparó de forma transversal las diferencias de la estabilidad postural estática y dinámica según sexo y pierna dominante. El test de equilibrio unipodal de ojos abiertos no mostró diferencias significativas en la desviación del centro de presiones entre hombres y mujeres. Por otro lado, el sexo femenino...
mostró un mayor equilibrio en los tests más dinámicos (UT y S) en comparación con el sexo masculino. En relación a las diferencias entre pierna dominante - no dominante, sólo se encontraron diferencias significativas en las mujeres en la recepción del salto unipodal, mostrándose un mejor control cuando la recepción se efectuaba con la pierna dominante.

La siguiente línea de trabajo se inició con el estudio V, que consistió en una revisión sistemática sobre los efectos del entrenamiento vibratorio sobre el rendimiento deportivo en personas físicamente activas. Los resultados mostraron una gran heterogeneidad clínica y una baja calidad metodológica de los trabajos analizados hasta la fecha buscada. A pesar de no poder extraer conclusiones claras, existe una tendencia a la mejora de la fuerza explosiva. También podemos establecer un rango seguro de los parámetros de aplicación de vibraciones mecánicas sobre la población de estudio. Este se encuentra entre 1,7-11mm de amplitud y entre 20-44 Hz de frecuencia, aplicándose tanto en ejercicios estáticos como dinámicos y hasta un máximo de 18 minutos de duración.

Por último, se realizó un ensayo clínico controlado aleatorio (Estudio VI) con el objetivo de valorar la eficacia del entrenamiento mediante vibraciones de cuerpo entero sobre la fuerza explosiva y el control postural en jóvenes jugadoras de baloncesto. Los resultados mostraron un incremento significativo del salto con contramovimiento, del salto unipodal y del equilibrio con ojos cerrados a las 8 y 15 semanas de entrenamiento en el grupo experimental. Es destacable el hecho de que no se encontraran diferencias significativas entre los tests realizados a las 8 y las 15 semanas de entrenamiento en ninguna de las variables. Por otra parte, el grupo control no experimentó cambios respecto a las valoraciones preintervención. Con estos resultados podemos afirmar que el entrenamiento vibratorio posibilita la mejora de los parámetros analizados, repercutiendo favorablemente en el rendimiento deportivo y, también, de forma indirecta, en la prevención de lesiones en deportistas de alto riesgo.

En forma de síntesis, los estudios de esta tesis enfatizan la importancia del control neuromuscular sobre el rendimiento y prevención de lesiones deportivas. Es necesario destacar la importancia de continuar investigando sobre nuevas herramientas que midan los parámetros asociados al control neuromuscular, así como seguir estudiando la eficacia de los diferentes métodos de entrenamiento neuromuscular para su optimización.

Palabras clave: control neuromuscular, entrenamiento, rendimiento deportivo, equilibrio, propiocepción
ABSTRACT

Neuromuscular control training and assessment to improve sports performance

Neuromuscular control is believed to be an important factor for success in athletic performance. Similarly, it has also been identified as a key to prevention and rehabilitation of sports injuries. The main objective of this thesis is to evaluate the effectiveness of different types of neuromuscular training in athletes.

A total of 81 healthy athletes were used for the purpose of the study. The evaluations performed have resulted in the following items: pain (visual analogue scale), incidence of sports injuries, static and dynamic postural stability (stabilometry and one-leg hop test) and explosive strength of the lower extremity (countermovement jump). Neuromuscular training methods used were TRAL (Locomotive rebalancing therapy) and WBV (whole body vibration).

The first part of this thesis (Studies I and II) aims to assess the efficacy of TRAL. The training period showed a significant reduction of ankle pain recorded regardless of gender, whereas in the case of knee pain only differences in the girls studied were found. Another important effect to highlight that contributes to an improvement of stability in body position in women is the significant reduction of movements of the centre of pressure, while there was only a significant reduction in one of the men tests.

The aim in the second part (Study III) is to assess the static and dynamic stability of the lower extremities focusing on battery of tests reliability measured with a stabilometer. Correlation obtained in single leg stance test of open and closed eyes was found in the range between good to excellent, in all variables of the best average amplitude. These results suggest a good reliability for the distinction between subject groups. Regarding a more dynamic and closer to athlete’s reality test, the one-leg hop test, poor correlation was obtained.

Continuing in the second part, study IV compares differences between static and dynamic position stability, by sex and leg dominance. The one leg stance with open eyes test showed no significant difference in the deviation of center of pressure between men and women. Moreover, females showed more balance in higher dynamics tests (UT and S) compared with males. The differences regarding dominant - non dominant leg, were found only in girls in receiving one leg jump, showing a better control where the reception took place with the dominant leg.
The next topic begins with study V, which consists of a systematic review on the effects of vibration training in physically active people. The results demonstrate a high clinical heterogeneity and low methodological quality of previous studies performed prior to the date of our study. Even if we cannot provide a specific result, there is a tendency to improve explosive strength. Also, we can certainly establish a safe range of parameters for vibration training to be applied on a physically active population. This range goes from 1.7-11mm amplitude, 20-44 Hz frequency, both in static and dynamic exercises, and up to 18 minutes working with vibration.

In the last topic, we conduct a randomized controlled trial (Study VI) aimed to assess the effectiveness of whole body vibration training on explosive strength and postural control in young basketball players. The results showed a significant increase in countermovement jump, one-leg hop test and balance with closed eyes at 8 and 15 weeks of training with the experimental group. It is noteworthy that no significant differences were found between tests performed at 8 and 15 weeks of training in any of the variables. Moreover, the control group experienced no changes from pre-intervention assessments. Based on these results we can state that vibration training enables the improvement of the analyzed parameters, impacting positively on athletic performance, and indirectly prevents injuries in high-risk athletes.

In conclusion, this thesis emphasizes the importance of neuromuscular control on sports performance and prevention of injuries. It is necessary to stress the importance of continuing the research on new tools to measure parameters associated with neuromuscular control, and further studying the effectiveness of different methods of neuromuscular training for its optimization.

Keywords: neuromuscular control, training, sports performance, balance, proprioception.
INTRODUCCIÓ I ANTECEDENTS

Un estil de vida actiu és important per als diferents grups d’edat. Les raons per les quals practicar activitat física són moltes, com poden ser plaer, relaxació, competició, socialització, manteniment, i millora del benestar i la salut. L’activitat física regular redueix el risc de mort prematura i de patir malalties coronàries, hipertensió, càncer de colon, obesitat i diabetis mellitus. Malgrat això, la participació en esports també comporta un risc de sofrir lesions, les quals poden, en molts casos, inhabilitar per a la pràctica esportiva (1). De forma particular, algunes lesions esportives severes com les ruptures de lligament creuat anterior (ACL) o esquinços de turmell, s’associen sovintment a un augment de la morbiditat (per exemple, artrosi prematura de genoll) i discapacitat a llarg termini (2-4).

Per a la prevenció de lesions esportives rep especial importància en el camp de l’activitat física i l’esport el correcte funcionament del control neuromuscular de l’articulació. Aquest ha estat descrit com un important factor per a l’èxit en el rendiment esportiu i encara més en la prevenció i readaptació de les lesions esportives (5-7). La lesió del teixit articular ve lligada a una alteració dels mecanoreceptors, fet que causarà una disminució de les aferències que proteguin l’articulació. Aquest fet pot alterar el control neuromuscular normal i com a conseqüència produir una disminució en l’estabilitat de l’articulació (6).

El propòsit d’aquesta introducció és descriure conceptes bàsics relacionats amb les bases fisiològiques i anatòmiques del control neuromuscular per al manteniment de l’estabilitat funcional de l’articulació, així com els mètodes per a la millora i valoració d’aquest complex sistema.

A continuació, es descriurà en primer lloc la base anatòmica i fisiològica del sistema sensoriomotor. En segon lloc, es desenvoluparà un apartat on es relaciona el control neuromuscular amb la prevenció de lesions esportives. Seguidament, es treballaran els mètodes existents per a la valoració del sistema de control neuromuscular i, per últim, es farà una descripció dels mètodes de millora del control neuromuscular.

EL SISTEMA SENSORIOMOTOR. ANATOMIA I FISIOLOGIA.

El terme anomenat sistema sensoriomotor es presenta com la combinació del procés neurosensorial i neuromuscular, el qual ha estat mal anomenat i simplificat freqüentment amb
Figura 1. El sistema sensoriomotor (Adaptada de Riemann i Lephart, 2002) (9)

El sistema sensoriomotor incorpora tots els components aferents, el procés d'integració i processament central i les respostes eferents, amb l'objectiu de mantenir l'estabilitat funcional de l'articulació. Encara que el sistema visual i vestibular contribueixen, els mecanoreceptors perifèrics són els més importants des de la perspectiva de l'entrenament esportiu. Els mecanoreceptors es troben a diferents parts del cos incloent la pell, les articulacions, els lligaments, els tendons i els músculs. Les vies aferents (líines de punts) transmeten entrades a 3 nivells de control motor i s'associen a àrees com el cerebel. L'activació de les neurones motores pot donar-se en resposta directa a l'entrada sensorial perifèrica (reflexes) o bé descendint des de centres superiors (moviment automàtic i voluntari). Aquestes dues vies poden ser modulades o regulades per les àrees associades (líines verdes). Des de cadascun dels nivells de control motor (líines continues negres) les vies eferents convergeixen amb les motoneurones γ i α situades a les arrels ventrals de la medul·la espinal. L'activació de les fibres musculars intra i extrafusals provocaran nous estímuls per a ser presentats als mecanoreceptors perifèrics.

el terme de propriocepció. Una de les obres més representatives en l’àmbit que ens ocupa és l’escrita per Scott Lephart, titulada “Proprioception and Neuromuscular Control in Joint Stability” a l’any 2000, i en la qual s’explica com es va adoptar el terme sistema sensoriomotor per a poder descriure els següents components: receptors perifèrics, integració i processament central i resposta motora. Tots ells estan implicats en el manteniment de l’homeòstasi articular durant els moviments corporals (estabilitat funcional de l’articulació) (6) (Figura 1).
Tradicionalment es considerava l’estabilitat articular en funció de les estructures lligamentoses. Actualment sabem que l’estabilitat articular és considerada com la funció sinèrgica en la que els ossos, articulacions, càpsules, lligaments, músculs, tendons, receptors sensorials i vies neurals espinals i corticals actuen en harmonia per garantir l’homeòstasi articular. L’estabilitat articular depèn d’estructures viscoelàstiques passives (lligaments) i d’òrgans viscoelàstics actius (músculs) (8). Els efectes de protecció de l’esmentat component passiu es deu a la posada en tensió d’aquestes estructures així com a la configuració geomètrica i cinemàtica de l’articulació a través del seu rang de moviment. D’altra banda, el component actiu pot exercir el seu rol protector tant de manera passiva (to muscular de repòs) com de forma activa (acció muscular reflexa o voluntària). Les respostes dinàmiques de la musculatura es poden donar en qualsevol punt del rang de moviment segons la variació de paràmetres com la velocitat articular, càrrega externa, gravetat i dolor, entre d’altres (8).

Segons l’explicat fins aquest punt, és important, doncs, diferenciar entre els tres nivells que participen en l’estabilitat dinàmica de l’articulació: procés neurosensorial, procés d’integració i processament central i resposta neuromuscular.

PROCÉS NEUROSENSORIAL

El sistema nerviós central (SNC) obté la informació necessària per a controlar els moviments del nostre cos des de tres subsistemes: el sistema somatosensorial, el sistema vestibular i el sistema visual (5;6). Des del punt de vista de l’activitat física i l’esport, malgrat que les aferències vestibulars i visuals contribueixen a la integració i descodificació de la informació per part del SNC, els mecanoreceptors perifèrics que formen part del sistema somatosensorial són els més importants a tenir en compte en l’entrenament, la prevenció i la readaptació a la competició esportiva.

Sistema somatosensorial

El terme somatosensorial (o somatosensació) engloba tota la informació mecanoreceptiva (propiocepció), termoreceptiva (tacte i temperatura), dolorosa, lumínica i química derivada de la perifèria (10). Aquest sistema conté receptors cutànis, ossis, musculars, tendinosos i articulares. Entre els estímulos que més ens interessen, trobem els de tacte, pressió, dolor i posició i moviment articular. Els receptors que detecten la sensació de posició, moviment i tensió són els habitualment denominats propioceptors (6), i per tant és important no confondre el terme somatosensorial amb el de propriocepció, ja que aquest últim és un subcomponent del primer.
Sistema propioceptiu

Charles Scott Sherrington va definir per primer cop la propriocepció a l’any 1906 com la sensació de posició i moviment de les extremitats (6). Aquest neuròleg es referia al sistema proprioceptiu com la informació aferent que arriba des dels proprioceptors localitzats a les articulacions, tendons i músculs i que contribueix a la consciència de les sensacions musculars, de la postura segmentària (estabilitat articular) i de la postura global (equilibri postural) (6).

La definició de propriocepció ha creat i crea encara molta controvèrsia en la comunitat científica. De fet, és segurament el terme que més confusió crea dins del sistema sensoriomotor. S’ha utilitzat incorrectament com a sinònim de kinestèsia, somatosensació, equilibri, coordinació i sentit de la posició articular (6;9).

Actualment es defineix propriocepció com la capacitat d’una articulació per determinar la seva posició en l’espai, detectar el seu moviment (kinestèsia) i la sensació de resistència que actua sobre ella (9). Aquesta capacitat és adquirida per l’estímul dels mecanoreceptors perifèrics, que convertiran aquest estímul mecànic en un senyal neural que serà transmès per les vies aferents fins el seu processament en el SNC. La propriocepció també es definida com la via aferent del sistema somatosensorial i no incloeu ni el processament de la senyal sensorial per part del SNC ni l’activitat resultant de les vies eferents que donaran lloc a la resposta motora (6).

Una altra definició és la de Roberts (2003), que segueix la utilitzada per BD Wyke (11):

1) consciència de la posició articular (sensació de posició) i consciència del moviment en l’espai (kinestèsia); i
2) feedback dels mecanoreceptors què exercien un efecte continu reflex i inconscient sobre el to muscular i l’equilibri, mitjançant el circuit de motoneurones gamma, per a mantenir l’estabilitat dinàmica de les articulacions.

A partir dels diferents treballs comentats i de l’estudi realitzat sobre el tema, en aquesta tesi doctoral definim propriocepció com el tipus de sensibilitat del sistema somatosensorial que té com a principal objectiu mantenir l’estabilitat dinàmica de l’articulació, fet que s’aconsegueix mitjançant la detecció de les variacions de pressió, tensió i longitud dels diferents teixits articulars i musculars. Segons aquest concepte i el treball de Rienman et al. (2002), els quals parlen de la importància de diferenciar entre la recepció perifèrica inconscient dels estimuls i el procés mitjançant aquests es fan conscients (7), hem de tenir clar que la propriocepció es refereix únicament al procés de detecció perifèrica dels mecanoreceptors. A partir d’aquí, i malgrat la controvèrsia existent al voltant d’aquests
conceptes (6), l’estabilitat articular no només vindrà donada pels receptors perifèrics, sinó que també hi participarà la integració i processament central de la informació i les vies motores.

Roli dels mecanoreceptors en el control del sistema neuromuscular

Tal i com hem dit anteriorment, la contribució de les aferències articulars al control motor, dins del qual ja hem explicat que incloem la posició i sentit del moviment (propiocepció), ha estat i continua estant sota debat. Generalment, els mecanoreceptors es classifiquen en tres grups: receptors articulars, receptors cutanis i receptors muscals. En l’actualitat es coneix que aquests tres tipus de receptors actuen sobre la propiocepció de l’aparell locomotor, malgrat que les seves contribucions relatives es troben encara sense aclarir (11).

Quan aquests receptors són estimulats amb una intensitat suficient generen impulsos aferents que es propaguen fins al SNC. Aquests senyals aferents són mediats a 3 nivells del SNC: la medul·la espinal, el tronc cerebral i els centres cognitius (còrtex). El SNC processarà aquests senyals aferents i generarà respostes motores (eferents), les quals modularan l’activitat muscular (12).

A continuació descriurem breument els diferents tipus de receptors agafant com a model l’articulació del genoll, que és la més investigada en la literatura científica actual.

- **Receptors articulars**

 Es localitzen 4 tipus de receptors en les parts toves de l’articulació del genoll. Aquests són: terminacions de Ruffini, corpuscules de Pacini, receptors de Golgi i terminacions nervioses lliures (11-13). Els receptors articulars són descrits segons l’estímul i les següents característiques (6):

 - Estat de l’articulació (estàtica, dinàmica o ambdós) en el qual estan actius.
 - Intensitat de l’estímul que determina el llindar d’activació (llindar alt o baix).
 - Tipus d’adaptació a l’estímul: si els receptors segueixen actius quan l’estímul persisteix s’anomenen d’adaptació lenta; d’altra banda, si deixen o disminueixen el seus senyals després de la presentació de l’estímul, s’anomenen d’adaptació ràpida.

 A la taula 1 es descriuen les principals característiques dels receptors articulars.

- **Receptors cutanis**

 Actualment encara no hi ha evidència que recolzi la contribució significativa dels receptors cutanis sobre l’estabilitat dinàmica de l’articulació del genoll; tot i així, alguns autors suggereixen que aquests receptors poden informar sobre la posició i kinestèsia (sensació de moviment) de l’articulació quan la pell és estirada (14;15). Encara amb
menys importància que els receptors articulars, la contribució dels receptors cutanis sobre la posició de l’articulació és substancialment inferior a la dels receptors muscualrs (12;14).

<table>
<thead>
<tr>
<th>Tipus de receptor</th>
<th>Localització</th>
<th>Sensible a</th>
<th>Actiu quan l’articulació es troba</th>
<th>Llindrar d’activació</th>
<th>Resposta a l’estímul persistent</th>
<th>Projecció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminacions Ruffini</td>
<td>Càpsula i lligaments</td>
<td>Posició articular, pressió intra-articular, amplitud i velocitat de moviment</td>
<td>Estàtica o dinàmica</td>
<td>Baix</td>
<td>Adaptació lenta</td>
<td>Medul·la espinal, còrtex sensorial</td>
</tr>
<tr>
<td>Corpuscles de Paccini</td>
<td>Càpsula, lligaments, menisc i coixinet adipós</td>
<td>Acceleració o desacceleració</td>
<td>Només dinàmica</td>
<td>Baix</td>
<td>Adaptació ràpida</td>
<td>Medul·la espinal, còrtex sensorial</td>
</tr>
<tr>
<td>Receptors de Golgi</td>
<td>Lligaments i menisc</td>
<td>Tensió als lligaments, esp. al final del rang de moviment</td>
<td>Només dinàmica</td>
<td>Alt</td>
<td>Adaptació lenta</td>
<td>Medul·la espinal, còrtex sensorial</td>
</tr>
<tr>
<td>Terminacions nervioses lliures</td>
<td>Àmpliament distribuïts a càpsula, lligaments, coixinet adipós, i menys al menisc</td>
<td>Dolor d’origen mecànica o químic</td>
<td>Inactiu, excepte en la presència d’estímul noxious (estàtica i dinàmica)</td>
<td>Alt</td>
<td>Adaptació lenta</td>
<td>Medul·la espinal, còrtex sensorial</td>
</tr>
</tbody>
</table>

- **Receptors musculars**

Existeixen principalment dos tipus de receptors, el fus neuromuscular i l’òrgan tendinós de Golgi (OTG) (10). Els senyals que provenen d’aquests tenen com a principal finalitat el control de la contracció muscular de forma inconscient, transmetent informació a la medul·la espinal, cerebel i escorça cerebral, ajudant a cada un dels diferents segments del SNC a la seva funció de control del sistema neuromuscular. És important destacar que aquests receptors permeten una retroalimentació continua d’informació sobre l’estat muscular en cada instant. Com descriurem a continuació més detalladament, el fus muscular envia informació al SNC sobre l’estat i la variació de la longitud del múscul. Per una altra part, l’OTG envia informació sobre la tensió muscular i la variació d’aquesta (10).
El primer receptor que descriurem és el fus muscular. Anatònicament, cada fus està format per fibres intrafusals, les quals estan lligades a les fibres extrafusals. Hi ha dos tipus de fibres intrafusals: fibres de bossa nuclear i fibres en cadena nuclear. A la part central d’aquestes es troba el component receptor; d’altra banda, els seus extrems tenen capacitat de contracció. Aquests receptors estan connectats a dos tipus de terminacions sensitives: terminacions primàries o tipus I (innerva els dos tipus de fibres intrafusals) i terminacions secundàries o tipus II (només innerva les fibres en cadena) (Figura 2) (10;16).

L’estimulació dels receptors del fus neuromuscular pot produir dos tipus de respostes: estàtica, provocada per les terminacions primàries i secundàries, i dinàmica, donada només per les terminacions primàries. Respecte les motoneurones que innerven el fus també es poden dividir en gamma-dinàmiques (gamma-d) i gamma-estàtiques (gamma-e). La manifestació més simple de la funció del fus muscular és l’anomenat reflex miotàtic, el qual, davant d’un estirament sobtat del múscul i, per tant, del fus, provoca una contracció reflexa instantània, molt dinàmica i de gran intensitat. Amb aquest mateix estimul es provoca un altre tipus de resposta més mantinguda, anomenada reflex d’estirament estàtic, el qual persisteix durant tot el temps que és mantingui el múscul en una longitud excessiva (10).

Tot aquest procés possibilita el manteniment de la postura i la col·locació idònia del cos o d’un dels seus segments per aconseguir el control neuromuscular desitjat. Ja hem explicat que es tracta d’una sensació inconscient, ja que aquests receptors no produeixen una sensació de dolor, calor o fred. (6;8;12) Es projecten a nivell de la medul·la espinal (reflexes monosinàptics) i cerebel (8).

El segon tipus de receptor muscular, l’OTG, és localitzat principalment a la unió neuromuscular, on les fibres de col·lagen del tendó es fusionen amb les fibres musculars extrafusals. Els receptors de Golgi situats al múscul-tendó es diferencien dels que resideixen en l’articulació ja que són sensibles principalment als canvis de tensió muscular (8;12;14). Quan aquests receptors són estimulats es produeix una relaxació del múscul (16). De la mateixa forma que el fus muscular, tenen una resposta dinàmica que s’activa davant una tensió muscular sobtada, a la qual li segueix una resposta estàtica de menys intensitat (10). Aquest receptors es projecten a nivell de la medul·la espinal, còrtex sensorial i cerebel (8).

Tal i com hem apuntat, sembla ser que els receptors musculars són els principals determinants del sentit de moviment i posició de l’articulació, i els receptors articulars i cutanis podrien tenir un rol més secundari (8;12).
INTEGRACIÓ I PROCESSAMENT CENTRAL

Tots els estímul sensorials esmentats anteriorment són integrats als diferents nivells del SNC per a generar les respostes motores adequades. El control del moviment i la postura de l’individu depèndrà del flux continu d’informació sensorial que existeix al seu voltant (6).

Aquesta informació és enviada via aferent i processada en el que podem anomenar un eix central i dues àrees d’associació. L’eix central correspon als tres nivells de control motor: la medul-la espinal, el tronc cerebral i l’escorça cerebral. D’altra banda, les dues àrees d’associació són el cerebel i els ganglis bassals, que són els responsables de la modulació i regulació dels comandaments centrals. La posterior activació de les neurones motores pot donar-se en respost directa a l’entrada sensorial perifèrica (reflexos) o bé ser dirigida de forma descendent des del tronc de l’encèfal o còrtex cerebral (9).

Les respostes motores, doncs, es poden ubicar a tres nivells de control motor. El nivell espinal o reflex monosínàptic per a les respostes motores simples, el tronc de l’encèfal per a la resposta immediata davant de reflexes més complexes i l’escorça cerebral o control voluntari per al control dels moviments altament complicats (6).

- Nivell de la medul-la espinal: Aquest tipus de nivell de control motor s’utilitza en circumstàncies on s’exigeix una resosta reflexa a estímul externs. Aquesta resposta és altament estereotipada i d’acció ràpida. Els reflexos poden ser provocats a partir de l’estimulació dels mecanoreceptors cutanis, musculars i articulars, i impliquen l’excitació de les motoneurones alpha i gamma (9). Un dels exemples més coneguts d’aquest tipus de reflex és el d’estirament.

- Nivell del tronc encefàlic: Es relaciona amb respostes intermitges i automàtiques però no tan estereotipades com el reflex espinal. Conté els principals circuits que controlen l’equilibri postural i molts dels moviments estereotipats i automàtics dels cos humà (9). A més d’estar sota comandament cortical directe i de prestar una estació indirecta de transmissió entre l’escorça i la medul-la espinal, les àrees del tronc cerebral regulen i
modulen de forma directa les activitats motores basades en la integració de la informació sensorial que prové de la font visual, vestibular i somatosensorial (6;9).

- **Nivell de l’escorça cerebral**: És el nivell més alt de control motor, on la informació procedent dels diferents sistemes sensitius és descodificada i processada per la consciència cognitiva. Aquest fet permet crear estratègies motores complexes, el que possibilita el conegut com a moviment voluntari.

- **Àrees associades**: Encara que les dues àrees d’associació, el cerebel i els ganglis basals, no poden iniciar de forma independent l’activitat motora, són indispensables per a la continua regulació de la mateixa, fet que permet l’execució coordinada de la resposta motora (6;9).

RESPOSTA NEUROMUSCULAR

En l’apartat anterior es descriuen 3 tipus de resposta motora en funció dels diferents nivells del SNC que intervenen. Aquesta resposta està estretament relacionada amb el concepte de control del sistema neuromuscular i, per tant, de l’estabilitat dinàmica de l’articulació, temàtica principal d’aquest treball.

Williams et al. (2001) defineixen el control neuromuscular com la capacitat per a produir un moviment controlat mitjançant una activitat muscular coordinada, fet que resulta d’una complexa interacció entre el sistema nerviós i el sistema musculesquelètic (12). D’altra banda, Lephart et al. (2000) l’interpreten com la resposta eferent inconscient a un senyal aferent que té com a objectiu aconseguir l’estabilitat dinàmica de l’articulació (6).

Prentent com a referència aquests autors, definim el control neuromuscular com l’activació muscular precisa que possibilita el desenvolupament coordinat d’una acció.

És important parlar de les diferents estratègies de control neuromuscular per a dur a terme una acció coordinada i eficient, tal i com fem a continuació.

- **Coordinació intramuscular**

Un dels principals factors neurals que afecta a la força és la coordinació intramuscular d’un mateix múscul. Aquest fet implica varis mecanismes de control. Entre ells, es troben, el reclutament espaial (augment del nombre d’unitats motores reclutades), el reclutament temporal (augment de la freqüència d’impulsos d’unitats motores) i la sincronització de les diferents unitats motores per a produir una contracció voluntària màxima (17;18).

- **Coordinació intermuscular**

La literatura actual descrit principalment dos principis neuromusculars sobre la programació de la intervenció muscular en un moviment (19): coactivació d’agonistes i antagonistes i activació recíproca.
Solomonow i Krogsgaard (2001) van definir la coactivació com una activitat d’alta intensitat de la musculatura agonista de forma simultània a una activitat de baixa intensitat de la musculatura antagonista d’una mateixa articulació (8), malgrat que hem de tenir en compte que aquests nivells d’activació de que parlen poden no tenir sempre aquesta proporció, doncs depèndrà del tipus de tasca realitzada. La coactivació és utilitzada sobretot quan es realitzen accions noves i/o balístiques, quan la velocitat d’execució augmenta, i quan es necessita donar estabilitat per mantenir una posició articular constant (19). El grup de Ford et al. (2009) conclou en la seva revisió sistemàtica que la coactivació antagonística de la musculatura isquiudural és evident durant les accions dinàmiques en cadena cinètica tancada (20). El manteniment d’aquesta posició de coactivació és convertit en un patró d’estabilització articular, el qual provoca una reducció de la càrrega que poden sofrir les estructures lligamentoses i articulars (8;19). Pel contrari, l’existència d’una coactivació no desitjada provoca una disminució de la velocitat d’execució, una major despesa energètica i paral·lelament una disminució del rendiment (20).

D’altra banda, l’activació recíproca a la que es refereix Lloyd (2001) ve donada pel principi neuromuscular d’inhibició recíproca, la qual consisteix en la inhibició d’un múscul per a facilitar la contracció del seu antagonist (10). Aquesta estratègia és utilitzada preferentment en molts moviments poliarticulares automatitzats, com per exemple aixecar-se d’una cadira o durant la marxa (19). Existeix una relació complexa entre aquests dos mecanismes de control neuromuscular per garantir l’eficiència del moviment i l’estabilitat articular (20). Actualment sabem que les estratègies neuromusculars són modificables amb l’entrenament (4;21). D’aquesta manera, quan s’aprenen nous moviments, la tasca es realitza en primer lloc amb elevats nivells de coactivació, i és a mesura que es realitza un aprenentatge quan hi ha una progressió cap a l’activació recíproca (19). És a dir, en les accions produïdes en l’esport hem d’arribar a un equilibri entre la coactivació, que dona estabilitat i protecció a l’articulació, i l’activació recíproca, la qual pot augmentar l’eficiència muscular de l’acció esportiva.

A part de les estratègies esmentades, és important ressaltar que el control dinàmic de l’articulació ve influenciat per dos mecanismes de control motor, anomenats en llengua anglosaxona feedback (via reflexa) i feedforward (preactivació) (9;20). El control feedback es refereix a la resposta donada via reflexa per un estimul sensorial. D’altra banda, els mecanismes de control feedforward són descrits com les accions d’anticipació que ocorren abans de la detecció sensorial d’una disruptió de l’homeòstasi i que es basen en
experiències anteriors. Per una banda, el retard electromecànic, que és inherent al mecanisme *feedback*, pot limitar l’eficàcia de la protecció articular proporcionada per la musculatura implicada. Pel contrari, si són adequats per al manteniment de la postura i moviments més lents. Per altra banda, el mecanisme de preactivació involucra una preparació mitjançant l’anticipació de la càrrega o el moviment. Aquesta preparació pot ser apresa i ajustada a les diferents accions que es presentin mitjançant l’acumulació d’experiències motrius. A mesura que un esportista adquireix més experiència, els models de coactivació inapropiats van desapareixent i són substituïts per patrons musculars més coordinats per al desenvolupament d’una bona estabilitat dinàmica articular i un moviment eficient, ja que per a què una acció pugui resultar òptima ha de complir aquests dos aspectes (20). Tot i que no existeix una evidència que ratifiqi l’explicació desenvolupada, la qual és extreta dels autors comentats, aquesta teoria sobre l’evolució del control motor segons l’experiència motriu té aspectes ben fonamentats.

Control postural

En aquest treball és important definir el control postural, que depèn de la capacitat de l’individu de controlar el sistema neuromuscular. Aquest implica el domini de la posició del cos en l’espai amb els objectius d’estabilitat i orientació. L’estabilitat postural, també anomenada equilibri, es defineix com la capacitat per a mantenir el centre de gravetat corporal dins de la base de sustentació. D’altra banda, l’orientació postural es refereix a l’habilitat de mantenir una correcta relació entre els propis segments del cos i entre aquests i l’entorn alhora de realitzar una tasca (11;22). Per últim dins d’aquest apartat, és necessari tenir present que el manteniment d’aquest control postural ve donat per tres fonts d’informació sensorial (6): el *feedback* somatosensorial dels receptors perifèrics, la visió i el sistema vestibular.

EL CONTROL NEUROMUSCULAR EN LA PREVENCIÓ DE LESIONS ESPORTIVES

La lesió esportiva per mecanisme sense contacte més estudiada en la literatura científica és la ruptura del LCA. És per això que ens centrem en aquesta lesió com a exemple per a explicar la implicació del sistema neuromuscular en la prevenció de lesions de l’extremitat inferior. És important tenir en compte que el principal mecanisme de lesió del LCA sense contacte es dóna en situacions de desaceleració, canvis de direcció i recepció d’un salt. Un
dels patrons lesius més comuns és la combinació de rotació tibial, \textit{valgus} de genoll, pronació del peu, i extensió relativa de genoll i maluc (23).

\begin{table}
\centering
\begin{tabular}{|l|l|
\hline
\textbf{Taula 2. Factors neuromusculars de risc de lesió durant els canvis de direcció i la recepció del salt} \\
\hline
\textbf{Alteració dels patrons de moviment} & Chappell et al., 2005; Kernozek et al., 2008 (28;29).
\hline
Fatiga neuromuscular & Solomonov i Krogsgaard, 2001; Hewett et al., 2005 (8;30).
\hline
Dèficits de la coactivació muscular & Cowling i Steele, 2001; Zazulac et al., 2005; Myer et al., 2005 (31-33).
\hline
Alteració de la magnitud i temps d’activació muscular & Hewett et al., 2002; Griffin et al. (2006); Huston i Wojtys, 1996 (5;24;34).
\hline
Predominança en l'activació de quadriceps respecte als isquiosurals & Lephart et al., 2002; Wikstrom et al., 2006; Jacobs et al., 2007; Mc Lean et al., 2005 (13;35-37).
\hline
Estratègia del control dinàmic del genoll en el pla frontal & Hewett et al., 1996, Huston et al. 1996 (34;38)
\hline
Minor flexió de genoll i maluc (control en el pla sagital) & Hewett et al.,1996; Ross et al., 2004 (38;39).
\hline
Desequilibris entre cama dominant i no dominant & Myer et al., 2005; Rozzi et al., 1999 (32;40).
\hline
Desequilibris entre l’activació muscular medial-lateral & Woights et al., 2002 i 2003; Granata et al., 2002 (41-44)
\hline
\textbf{Inadequada stiffness muscular} & Lysholm et al., 1998; McGuine et al., 2000; Tropp et al., 1984 (45-47).
\hline
\textbf{Déficits en el control de l’estabilitat postural} & Hewett et al., 1999; Rozzi et al., 1999 (40;48).
\hline
\end{tabular}
\end{table}

Al gener de 2005 es va celebrar el “Hunt Valley II meeting”, realitzat a Atlanta, on diversos professionals del món de les ciències de l’esport van dividir els principals factors de risc de lesió en quatre categories: ambiental, anatòmica, hormonal i neuromuscular (24). D’altra banda, la classificació més genèrica dels factors de risc continua sent la que els divideix en factors intrínsecs i extrínsecs (1). L’origen de les lesions esportives és habitualment multifactorial, fet que fa que la primera estratègia de prevenció sigui l’anàlisi previ de tots aquests factors (25-27). Ens centrem en el nostre motiu principal d’estudi, el control
neuromuscular, que com a factor intrínsec és un dels més modificables amb l’entrenament. En la bibliografia científica actual hi ha varis factors de risc de lesió relacionats amb el control neuromuscular que es troben detallats a la taula 2 i descrits de forma breu a continuació.

ALTERACIÓ DELS PATRONS DE MOVIMENT
En relació a l’alteració dels patrons de moviment, s’ha estudiat especialment la diferència entre homes i dones, ja que, tal i com s’ha registrat, les esportistes tenen una incidència de lesions d’extremitat inferior superior als homes (23;49;50). Actualment està descrit que les dones pateixen similars tipus de lesions esportives als homes, encara que hi ha alguns tipus d’afeccions de genoll i turmell que predominen en les dones (49). Entre aquestes alteracions es poden citar síndromes com el dolor anterior de genoll (50) i lesions com la ruptura del lligament creuat anterior (21;51) i la distensió de grau I del lligament lateral del turmell (52). La literatura actual identifica les hormones sexuals, l’anatomia de la dona i els desequilibris neuromusclars com a principals factors intrínsecs que expliquen la major incidència de lesions en el sexe femení (23;49). És especialment important l’anàlisi dels factors de risc en l’edat de la pubertat, ja que es donen canvis molt significatius a nivell anatòmic i hormonal. Els canvis musculosquelètics podrien alterar la laxitud articular passiva, i portar també a una disminució de l’estabilitat dinàmica de l’articulació en aquestes joves esportistes (23).

A continuació s’analitzen els diferents factors que relacionen la incidència lesiva amb l’alteració dels patrons de moviment.

Fatiga neuromuscular
És important considerar la fatiga com un procés negatiu en el control del sistema neuromuscular. Alguns estudis mostren com un exercici fatigant pot alterar les estratègies de control motor, la qual pot augmentar el mecanisme de cisallament anterior tibial i portar a un augment de tensió i possible lesió del LCA, tant en homes com en dones (28;29). També s’ha observat com alguns exercicis fatigants poden alterar la sensació de posició del turmell i l’activació de la musculatura peroneal, és a dir, poden afavorir el risc de lesió de l’articulació del turmell (53;54).

Déficits en la coactivació muscular (agonista-antagonista)
La coactivació dels músculs quadricipitals i isquiosurals poden protegir a l’articulació del genoll, i no només contra l’excés de calaix anterior, sinó també contra el valgus dinàmic de l’extremitat inferior (30). Els déficits de força i activació d’isquiosurals limitaran la possibilitat de coactivació muscular per protegir l’articulació del genoll (8).
Alteració de la magnitud i temps d’activació muscular

Existeixen diversos estudis, fets amb electromiografia, que mostren com la magnitud i el temps d’activació muscular durant les accions esportives diferencien entre sexes (31-33;40).

Zazulac et al. (2005) van comparar els patrons d’activació muscular en la recepció del salt unipodal entre homes i dones. Els seus resultats mostren com les dones disminueixen l’activació del glutí major i augmenten la del recte femoral durant la recepció. Aquesta major implicació del quàdriceps porta a un augment del lliscament tibial anterior, fet que pot contribuir a una major predisposició del sexe femení a sofrir una lesió de LCA sense contacte (33). En aquesta línia, i malgrat Cowlin and Steele (2001) anteriorment no havien trobat diferències en l’activació del quàdriceps també en la recepció del salt, sí van registrar un retard en l’activació del semimembranós en els homes respecte les dones. Aquest fet, que representa una major sincronització i per tant coactivació muscular al voltant del genoll en el cas dels homes, facilita igualment una major protecció de l’articulació del genoll (31).

Predominança en l’activació de quàdriceps respecte als isquiosurals

Hi ha diversos treballs que identifiquen com a factor de risc de lesió del LCA una activació excessivament predominant del quàdriceps en les accions de recepció del salt i/o canvis de direcció i acceleració (5;23;24). L’alta activitat del quàdriceps envers la menor activació dels isquiosurals, especialment en accions excèntriques, pot produir importants desplaçaments anteriors de la tíbia. Tal i com hem comentat, diferents autors demostren com les dones tendeixen a activar preferentment els extensors de genoll envers els flexors quan es necessita donar estabilitat articular en els moviments esportius (5;24). Aquest fet accentuarà i perpetuarà els desequilibris de força i reclutament muscular entre aquests músculs.

Estratègia del control dinàmic del genoll predominant en el pla frontal

Diverses investigacions han mostrat com les dones tenen una pitjor estratègia del control dinàmic del genoll. Aquestes tendeixen a prioritzar l’estratègia de control neuromuscular del genoll en el pla frontal, el qual ha demostrat ser ineficaç per absorbir de forma adequada les forces de reacció provocades per la recepció (13;36;37;39) (Figura 3).

Lephart et al. (2002) van observar que les dones tenen una menor capacitat d’absorbir les forces verticals de l’impacte després del salt, fet que van correlacionar amb una menor flexió i control del genoll en la recepció i amb una debilitat de la musculatura del quàdriceps i dels isquiosurals (13). En la mateixa línia de treball, el grup de Wikstrom et al. (2006) també va observar que les dones absorbien de forma menys eficaç les forces de reacció del terra, fet
que s’associava a una menor flexió de genoll. Malgrat aquests resultats, les dones van obtenir un millor índex de control postural dinàmic que els homes (37).

També es important ressaltar com varis estudis han identificat una major sol·licitació de la musculatura flexora plantar en les posicions d’equilibri unipodal (48;55). En acord a aquest resultats Nyland et al. (2006) van estudiar com el subjectes amb major valgus o varus de genoll en el pla frontal corresponen a diferents estratègies neuromusclars, les quals poden disposar a un major risc de lesió de l’extremitat inferior (56).

Per últim destacar el treball de Ford et al. (2005), que va comparar les diferències de gènere en les components cinemàtiques que ocurren durant els canvis de direcció imprevistos en joves esportistes adolescents (57). Els autors conclouen que les noies tenen un major increment de les angulacions de genoll i turmell en el pla frontal durant aquests canvis de direcció, les quals podrien explicar la major incidència de lesions d’aquest grup de població.

Figura 3. Estratègia de control dinàmic predominant en el pla frontal.
Les diferents instantànies mostren mecanismes que poden posar en compromís l’articulació del genoll. En la imatge de l’esquerra es provoca un recolzament bipodal en valgus. D’altra banda, en la instantània del centre s’aprecia un recolzament unipodal també amb valgus però amb una marcada rotació externa tibial. Per últim, la imatge de la dreta mostra igualment una rotació externa tibial acompanyada d’un valgus de genoll, encara que en aquesta situació l’estrès articular s’accentua per la contrarotació de cintures que es provoca.

Augment del valgus dinàmic de genoll

La manca de control de l’extremitat inferior en el pla sagital esmentada en l’apartat anterior propiciarà un augment del valgus del genoll en les accions dinàmiques, el qual augmentarà el risc de lesions. És important diferenciar el valgus anatòmic del dinàmic. Com mostren els resultats de McLean et al. (2005), els subjectes amb major valgus anatòmic detectat en una exploració estática no es correlaciona amb un major valgus en la sortida oberta, salt lateral o recepció del salt unipodal. Envers els seus resultats dedueixen que el valgus funcional en l’acció esportiva té més aviat un origen centrat en l’estratègia neuromuscular que una justificació anatòmica (36).
Aquest *valgus* dinàmic, el qual s’associa a una estratègia de control motor en el pla frontal, podria ser secundari a una disminució de la funció dels abductors de maluc (35). L’augment del *valgus* de genoll i rotació externa de la tibia, conjuntament a una adducció i rotació interna de maluc, es poden associar tant a lesions agudes de genoll (Ireland, 1999, on explica el seu concepte de “posició de no retorn”) (58) com a lesions cròniques. Respecte aquestes últimes, podem posar els exemples de la síndrome de dolor femoropatelar (59) i la síndrome de fricció del tracte iliotibial (60). En tots els casos descrits anteriorment s’ha associat aquest augment del *valgus* dinàmic a un dèficit de força d’abductors de maluc (35;59;60), el qual pot incidir de forma negativa en el control neuromuscular.

Desequilibrís neuromusculars entre cama dominant i no dominant

Hewett at al. (1996) van observar com la cama no dominant sol tenir una musculatura més débil i amb menys coordinació que la dominant, especialment en el sexe femení i en les tasques de recepció, pivotatge i desacceleració del salt unipodal (38). Ross et al. (2004) van estudiar les diferencies de força, equilibri i rang de moviment de la flexió de genoll entre cama dominant i no dominant durant la recepció unipodal en 30 individus d’ambdós sexes físicament actius. Malgrat no trobar diferències significatives en el temps d’estabilització de la recepció del salt entre totes dues cames, conclouen que l’absorció de les forces de reacció del terra, l’equilibri i la força muscular van ser superiors en la cama dominant (39). D’altra banda, Wikstrom et al. (2006) no van trobar diferències significatives entre cama dominant i no dominant en diferents tests de control postural dinàmic (salt vertical, salt unipodal i manteniment de l’equilibri 3 segons) en 40 individus sans de tots dos sexes (37).

Desequilibrís entre els patrons musculars medials-laterals

Els desequilibris entre la part medial i lateral de la musculatura han estat descrits com a factors de risc de lesió, i aquesta dada ha estat registrada especialment en la musculatura quadricipital (32) i isquiosural (40). Myer et al. (2005) van estudiar el patró d’activació del quàdriceps en una posició de risc de lesió del LCA en ambdós sexes. Els resultats mostren que les dones, a diferència dels homes, activen en major proporció la part lateral del quàdriceps, estratègia d’activació que contribueix al *valgus* dinàmic de genoll i ruptura del LCA (32). Un desequilibri o disminució de la relació entre la part lateral i medial del quàdriceps associat a un augment d’activació de la part lateral dels isquiosurals podria afavorir una compressió lateral de l’articulació i augmentar així el risc de lesió del LCA (23;40).
INADEQUADA STIFFNESS MUSCULAR

Varis estudis mostren com els homes tenen una millor stiffness muscular en comparació a les dones en les activitats on predominen els canvis de direcció i les pertorbacions de l’equilibri (41-44). La stiffness proporcionada per l’activació de la musculatura periarticular és un important component per a l’estabilitat de l’articulació (43;61). Aquest concepte, al qual ens podem referir com a stiffness activa i que és proporcional a l’activació mioelèctrica i a la força generada pel múscul (41), és important diferenciar-lo de la stiffness muscular passiva, la qual ve donada per la capacitat elàstica dels músculs. Donat el seu component estabilitzador en l’articulació, la menor stiffness muscular de les dones podria augmentar el risc de lesió. Malgrat això, i tal com alguns autors suggereixen, el reclutament neuromotor pot ser utilitzat per a modificar la stiffness muscular durant les activitats esportives i així millorar l’estabilitat articular (41).

DÈFICITS DEL CONTROL DE L’ESTABILITAT POSTURAL

El dèficit de control de la posició del centre de gravetat ha estat descrit com un important factor de risc de lesió de l’extremitat inferior, doncs un increment de la variació de l’estabilitat corporal s’associa a una alteració de l’estratègia del control neuromuscular. Aquest fet augmenta les forces que es transmeten a les estructures articulars i musculars (15;22;62-64). Malgrat això, els estudis que associen la disminució del control postural amb les lesions traumàtiques ens donen diferents resultats. La majoria d’investigacions han trobat relació entre l’existència de lesions prèvies i una disminució de l’estabilitat postural (45;64-67). En aquesta línia, també s’ha registrat una relació entre una estabilitat postural disminuïda i un major risc de sofrir lesions esportives (46;47). Tot i l’existència d’aquestes associacions, altres autors no han obtingut resultats significatius a l’estudiar aquestes relacions (68;69).

DISMINUCIÓ DE LA PROPIOCEPCIÓ

El fus neuromuscular actua en resposta a l’estirament del LCA activant la musculatura isquiosural (8). Un dèficit proprioceptiu del LCA afectaria a l’activació protectora d’aquesta musculatura sobre l’estabilitat del genoll.

Tenint en compte l’idea comentada en el paràgraf anterior, Hewett et al. (1999) van estudiar les diferències de gènere en el control de l’estabilitat unipodal i van concloure que les dones tenien major estabilitat corporal tant amb la cama dominant com amb la no dominant. Aquest treball va ser realitzat en subjectes sans. D’altra banda, entre una mostra d’esportistes amb un dèficit del LCA, els homes tenien major estabilitat que les dones en els tests preoperatoris realitzats en totes dues cames, dominant i no dominant. Després de que
els subjectes fossin intervinguts quirúrgicament, els homes continuaven tenint major estabilitat als 6, 9 i 12 mesos (70). Aquest fet es pot associar a una disminució més accentuada en el sexe femení de la sensibilitat propioceptiva del LCA lesionat.

En un altre estudi, Rozzi et al. (1999) van valorar la laxitud articular, la propriocepció, l’equilibri i el temps necessari per aconseguir la tensió màxima muscular entre 34 homes i dones esportistes, així com el seu patró d’activació muscular en diferents proves realitzades. Els resultats van mostrar que, en comparació amb els homes, les dones esportistes tenien major laxitud articular i necessitaven més temps per a detectar canvis en la posició articular (pitjor propiocepció), malgrat tenir major capacitat per a mantenir el recolzament monopodal, fet que denota millor equilibri (40).

AVALUACIÓ DE LA RESPONSA NEUROMUSCULAR

En les ciències de l’esport, l’avaluació del control neuromuscular pren una gran rellevància tant a nivell terapèutic i de readaptació a la competició com a nivell de rendiment esportiu. En el cas de l’esportista en procés de recuperació, els tests sobre el sistema sensoriomotor ens donen informació de l’evolució de l’atleta i del moment òptim per a tornar a la seva activitat, evitant caure d’aquesta manera en una lesió recidivant (Figura 4). D’altra banda, l’avaluació en l’esportista sa ens dóna dades sobre el seu estat de forma, fet que podem aprofitar per a millorar la seva condició física i establir adequats programes preventius.

La utilitat de les eines de mesura depenen de la fiabilitat i validesa d’aquestes. Malauradament, en l’àmbit de l’esport hi ha una manca d’acord sobre les variables d’avaluació del control neuromuscular. A aquest fet hem d’afegir que els protocols de mesura varien notòriament entre els estudis publicats. Aquesta heterogeneïtat metodològica sovint dificulta la comparació entre treballs i l’establiment de conclusions aclaridores sobre la millora o deficit del control neuromuscular.

Els estudis més recents estan d’acord en la importància de la valoració de l’estabilitat dinàmica de l’articulació (5;71;72). Cada vegada més es tendeix a valorar el control muscular mitjançant tasques que representin més una pràctica esportiva específica (73). Malgrat aquesta intenció, i tot i que els equipaments han millorat en els últims anys, els tests de camp continuen presentant certes dificultats metodològiques i és aquest un dels motius que ens fa continuar valorant els esportistes en condicions de laboratori.
Aquest apartat sobre avaluació està distribuït en cinc punts. Els tres primers responen a una classificació de la progressió en la complexitat dels gestos a analitzar, valorant la propriocepció de manera analítica i arribant a avaluar gestos complexes com la recepció del salt unipodal, per posar un exemple. D’altra banda, els dos últims punts estan focalitzats en diferents eines d’anàlisi, com són els estudis cinemàtics i dinàmics i les valoracions electromiogràfiques.

PROPIOCEPCIÓ

En la bibliografia científica actual es descriu la valoració del que els autors defineixen com a diferents submodalitats de propiocepció (kinestèsia, sensació de posició, sensació de tensió). S’han realitzat proves amb diferents dissenys que evaluen el sistema propioceptiu: tests passius i actius, en cadena cinètica oberta i tancada, amb condicions de sobrecàrrega o sense, i en bipedestació, assegut o en decúbit mitjançant un equipament específic (11;22;71).

Una de les formes de valoració més utilitzades és la de la sensació de posició del genoll, que consisteix en demanar al pacient que reproduueixi un angle articular prèviament mostrat, realitzant-se, evidentment, sense informació visual (74;75). Una altra manera, també molt utilitzada, però que mesura la sensació de moviment o kinestèisia, consisteix en detectar el llindar de percepció del moviment passiu (76;77). Segons un estudi realitzat per Beyond et al.

(2000), la mesura de la kinestèsia articular va resultar tenir una major repetibilitat i precisió que les tècniques que mesuren la sensació de posició articular (6).

D’altra banda també s’han dissenyat diferents instruments per a la mesura de la propriocepció del turmell. Sembla ser que les mesures que han mostrat tenir major validesa i reproductibilitat són les que mesuren la sensació de posició del turmell (53) i el temps de reacció de la musculatura peroneal després d’una inversió sobtada (6;78).

Malgrat la importància de la mesura de la propriocepció, tots aquests tests no deixen de ser estàtics i poc funcionals, fet que ens ha de portar a crear noves eines de mesura que s’aproximin més a la realitat del moviment esportiu.

ESTABILITAT POSTURAL

El manteniment de l’estabilitat postural durant les activitats esportives és fonamental per al rendiment esportiu. Generalment, la tasca més utilitzada per a valorar el control postural és el manteniment de la posició d’equilibri unipodal o bipodal, realitzant-se freqüentment de manera estàtica (15;62;64;79) o bé provocant pertorbacions de la superfície de suport o del propi cos (80-83).

L’estabilitat postural pot ser mesurada sense un equipament sofisticat (84;85), tot i que existeixen diferents equips amb aquest objectiu en el mercat (79;86;87). Els equipaments més evolucionats utilitzen normalment sensors de superfície, entre els que destaquen les plataformes de forces (71). Si aquestes plataformes tenen la capacitat de valorar les fluctuacions del centre de pressió del cos, podem parlar d’avaluació estabilomètrica (22). L’estabilometria és una tècnica no invasiva desenvolupada per valorar les pertorbacions de l’equilibri. Registra quantitativament la desviació del centre de pressions (CP) del cos amb sensors de pressió tant en l’eix vertical com horitzontal (46;88). Una menor àrea de desviació del CP implica una millor estabilitat postural (89). La seva fiabilitat com a eina de mesura ha mostrat una correlació de moderada a excel·lent (79;80;86;90-92).

RENDIMENT FUNCIONAL MUSCULAR

La mesura de les característiques del rendiment muscular ha possibilitat l’avaluació integral del sistema sensoriomotor durant molt anys. Existeixen diferents enfocaments d’avaluació depenent del tipus d’acció muscular mesurada. Una de les més populars és la valoració muscular isocinètica, és a dir accions musculars a velocitat constant. Tot i així, la seva funcionalitat ha estat molt criticada degut a que les accions esportives es desenvolupen amb variacions de velocitat i acceleració. Malgrat això, es segueix utilitzant gràcies a la facilitat de quantificació de la força, especialment a nivell clínic (71). Actualment existeixen
altres tipus de mesures que sí tenen en compte l’acceleració a la que es desenvolupa la força, les quals s’apropen molt més a la realitat de l’esportista. Aquests sistemes, com per exemple el MuscleLab (Ergotest Technology a.s., Langesund, Noruega) i el SmartCoach™ (SmartCoach Europe, Estocolm, Suècia), permeten adaptar els tests de mesura a moviments més fisiològics, sense limitacions de velocitat o tipus de moviment, i inclús a situacions de cicles d’estirament-escurçament desenvolupats a grans velocitats (17).

Gràcies a aquestes últimes metodologies esmentades i a d’altres que veurem en els següents punts, el rendiment funcional muscular s’ha pogut avaluar en accions com el salt, tasca àmpliament estudiada en la literatura actual. El test de salt unipodal, un dels mes extenuants des del punt de vista físic, és molt comú per a la valoració de la funció del rendiment de l’esportista. A més a més, es molt utilitzat per valorar els progressos assolits pels programes de rehabilitació de genoll, especialment del LCA (11;22;93). Encara que es necessita continuar investigant en aquesta línia de treball, aquest test, a més de mesurar indirectament la força explosiva, sembla ser una eina vàlida i reproduïble per valorar l’estabilitat dinàmica de l’extremitat inferior, especialment del genoll (93).

CINEMÀTICA I CINÈTICA

La cinemàtica ens permet estudiar els diferents moviments de l’aparell locomotor mitjançant els registres de velocitat, acceleració i desplaçaments lineals i angulars (71). Per a poder obtenir aquestes variables, sovint es necessiten grans despeses econòmiques, encara que cada vegada més els equipaments necessaris per a tal finalitat estan més a l’abast de la comunitat científica. Entre aquesta tecnologia destaquem les càmeres d’alta velocitat, els sistemes electromagnètics, els electrogoniòmetres i els acceleròmetres (6;29;30;94;95). Freqüentment aquests sistemes es combinen amb equipaments que mesuren la cinètica corporal, sobretot mitjançant plataforma de força, les quals valoren la força de reacció del terra en els 3 vectors octogonals (dos horitzontals i un vertical) i els moments de cadascun dels vectors (30;86;96). Aquestes dades són molt útils per a descriure les forces associades amb l’acceleració del centre de massa corporal, destacant les mesures del pic de força i el temps per obtenir-lo (71).

PATRONS D’ACTIVACIÓ MUSCULAR

L’electromiografia de superfície és una eina àmpliament utilitzada per a la detecció de l’activitat elèctrica dels músculs esquelètics (71). Degut a que mesura directament l’activació del múscul, és un equipament molt útil en la valoració del sistema neuromuscular, i més específicament en la detecció dels diferents patrons d’activació muscular en el camp de
l’activitat física i l’esport (97). La informació obtinguda per aquest tipus de mesura permet determinar l’inici, el final i la magnitud de l’activitat muscular. Tot i així, s’ha de tenir en compte que és una eina que requereix d’un equipament sofisticat i de personal molt qualificat per a poder interpretar dades de manera correcta. És important recordar que, tal i com hem dit, ens possibilita estudiar l’excitació del sistema neuromuscular, però no ens proporciona mesures directes de la força muscular (6).

MÈTIODES D’ENTRENAMENT PER A LA MILLORA DEL CONTROL DEL SISTEMA NEUROMUSCULAR

Actualment sabem que certes formes d’entrenament neuromuscular poden millorar la sensació de posició i moviment articular, els patrons d’activació muscular i qualitats físiques com la força i l’equilibri (12;48;97-101) (Figura 5). Aquests mètodes cobren especial interès en el món de l’activitat física i l’esport, doncs aquest tipus d’entrenament s’ha associat a la prevenció de lesions esportives, sobretot de genoll i turmell (4;15;51;63;89;98;102-105). Habitualment, els factors de risc causats per un déficit en el control neuromuscular poden resultar en una càrrega anormal en l’articulació en accions com desacceleracions i canvis de direcció (30;96;101), i aquest fet pot ser modificat per l’entrenament (101).

Tot i així, també podem trobar estudis on l’entrenament neuromuscular no redueix les lesions esportives en un grup experimental respecte un grup control (100;106). Respecte tots aquests estudis, és necessari tenir present que la seva qualitat metodològica és molt heterogènia, fet que fa que la interpretació de les dades pugui portar a problemes de consens en l’àmbit acadèmic.

En quant a mètodes d’entrenament, s’han desenvolupat programes per a millorar el control del sistema neuromuscular mitjançant plats instables (51;98;100), així com entrenaments de caire funcional (salts i recepcions) (48;51) i programes d’agilitat o tasques amb pertorbacions (97;99). Tots aquests mètodes es basen en la capacitat per a controlar les accions estàtiques i dinàmiques de forma unipodal i/o bipodal. Com a adaptacions, aquest tipus de treball comportarà una millora del control neuromuscular i per tant la millora de l’estabilitat de l’articulació, tal i com ja hem comentat.

És important destacar un metànàlisi, realitzat per Hewett et al. (2006), on es va avaluar l’evidència actual sobre l’entrenament neuromuscular en la reducció de lesions del LCA en dones. Els autors conclouen que existeix evidència de que aquest entrenament redueix els
factors de risc biomecànics associats a la lesió d’aquest lligament. A més a més, s’aconsegueix disminuir la incidència d’aquestes lesions en una població de dones esportistes. Els autors van observar com l’entrenament neuromuscular va ser efectiu quan els exercicis anomenats de pliometria, equilibri i força s’incorporaven de forma global en el protocol d’entrenament. Aquest protocol necessitava, a més a més, d’un mínim de freqüència setmanal de més d’una sessió, i que la duració del programa tingués un mínim de sis setmanes (21).

Figura 5. Exemples d’entrenament neuromuscular

A continuació es mostren alguns exemples dels estudis més recents sobre diferents tipus d’entrenament neuromuscular per a la prevenció de lesions esportives.

Com a exemple d’un programa d’entrenament neuromuscular en la prevenció de distensions de turmell, destacar el treball McGuine et al. (2006). Aquests autors van estudiar els efectes d’un entrenament progressiu d’equilibris estàtics i dinàmics de 5 setmanes sobre una mostra de 765 jugadors/es adolescents de futbol i bàsquet (16,5 ± 1,2 anys). El grup intervenció va reduir significativament el risc de lesió ligamentosa de turmell respecte al grup control (107).

En relació a la prevenció de lesions de genoll, és important destacar l’estudi controlat i aleatoritzat de Gilchrist et al. (2008), on es va estudiar l’efectivitat d’un programa
d’entrenament neuromuscular sobre la incidència de lesions de LCA durant una temporada amb una mostra de 1435 jugadores de futbol (19,9 anys). Aquest programa es va realitzar a mena d’escalfament, durant 12 setmanes (tres dies per setmana), i va consistir en exercicis bàsics d’estirament, força, pliometria, agilitat i consells sobre com evitar certes posicions d’alt risc de lesió de l’extremitat inferior. Els resultats van mostrar un índex de lesions de LCA inferior en el grup experimental, especialment de les lesions sense contacte, tot i que les dades no van ser significatives respecte el grup control. En canvi, si va ser significativa la menor incidència de lesions de LCA de les esportistes que ja havien sofert una lesió de LCA prèviament a l’estudi (105).

Per últim, ressaltar el grup de treball d’Emery et. al (2007), els quals van estudiar els efectes d’un entrenament neuromuscular sobre la incidència lesiva esportiva, amb una mostra de 929 jugadors/es adolescents de bàsquet (12-18 anys). L’entrenament va consistir en 5 minuts d’exercicis d’equilibri dinàmic introduïts a la part d’escalfament i un programa d’entrenament de 20 minuts a sobre d’una plataforma inestable realitzat a casa (aproximadament 5 cops per setmana). Els resultats van mostrar una reducció de la incidència de lesions esportives en el grup experimental respecte el control, encara que aquestes no van ser significatives (108).

Seguidament, s’introdueixen els dos mètodes d’entrenament neuromuscular emprats en la tesi doctoral que aquí es presenta.

TRAL

El TRAL (Teràpia Reequilibradora de l’aparell Locomotor) és un tipus d’entrenament neuromuscular que es defineix com un mètode de recuperació funcional dinàmica i que es basa en la percepció de la postura corporal a través del moviment i els canvis de posició del centre de gravetat. Va ser creat per Pedro de Antolin l’any 1989 (109), i té com a objectiu fonamental treballar el sistema proprioceptiu. Aquesta tècnica s’utilitza actualment en alguns centres de fisioteràpia, especialment per a tractaments rehabilitadors de lesions de l’extremitat inferior. Es sol treballar en una posició bípeda, realitzant diferents moviments unipodals o bipodals; i sempre mantenint una correcta biomecànica dels diferents segments de l’extremitat inferior (turmel, genoll, maluc).

ENTRENAMENT MITJANÇANT VIBRACIONS MECÀNIQUES

El concepte de WBV (Whole Body Vibration) és un terme anglosaxó estès especialment durant la última dècada en la literatura científica. Aquest concepte es refereix al que
coneixem habitualment com entrenament amb plataformes vibratòries, i una possible traducció al català seria parlar de vibracions de cos sencer (VCS).

En el seu origen, l’entrenament mitjançant vibracions mecàniques (EV) va ser utilitzat per primer cop per científics russos i tenia l’objectiu de disminuir la pèrdua de massa òssia dels astronautes (110). Recentment s’està proposant com a un nou instrument d’entrenament per a la millora del rendiment esportiu, la rehabilitació i la salut general.

Els estudis realitzats fins al moment atribueixen a l’entrenament amb vibracions mecàniques efectes positius sobre el rendiment físic i sobre diferents paràmetres fisiològics. Entre aquests destaquen la millora de la força (111-114), capacitat de salt vertical (115-118), flexibilitat (119-121), densitat òssia (122-124), equilibri (111;125-127), flux sanguini (128), consum d’oxigen (129), temperatura intramuscular (130), respostes hormonals (131;132), dolor crònic (133) i dolor muscular d’aparició tardana (DOMS) (134;135). A més a més, també s’ha descrit una millora de la qualitat de vida (125). Aquests estudis s’han realitzat tant en població sana entrenada (136-139) com no entrenada (140-143). Igualment, en els últims temps també s’han estudiat els seus efectes beneficiosos en gent gran (125;140;144) i en diverses patologies com osteoporosi (123), accident cerebrovascular (127;128), tractament post cirurgia de LCA (145), esclerosi múltiple (146), paràlisi cerebral (147) i síndrome postcompartimental (148).

És important destacar que alguns d’aquests protocols referenciats estudiien els efectes provocats a nivell agut (132;149;150), mentre d’altres registren les adaptacions aconseguides a llarg termini (114;118;125), fet que s’ha de tenir en compte en el moment de dissenyar un programa d’entrenament.

Pel contrari, s’han detectat també estudis amb EV que no han obtingut cap millora significativa (118;139;151;152). Aquests resultats es poden explicar pel fet que l’efecte de l’entrenament amb vibracions mecàniques sobre el rendiment físic depèn de les característiques de la vibració (amplitud, freqüència, mètode d’aplicació) i el protocol d’exercicis aplicat (tipus d’entrenament, intensitat, volum). A més a més, els estudis més recents semblen mostrar que cada tipus de població té uns paràmetres òptims d’estimulació. D’aquesta manera, seria lògic aplicar diferents paràmetres de vibració en persones entrenades i no entrenades. Un exemple és l’aplicació del mateix protocol d’entrenament amb vibració que va donar efectes positius en persones no entrenades (112;153) i no va tenir efectes en atletes entrenats en velocitat (139). A aquest fet li hem d’afegir que sembla ser que cada grup muscular i cada posició d’exercici té uns paràmetres d’estimulació òptima (150;154;155). En relació a l’anterior i com a aplicació pràctica, alguns autors suggereixen
que si no és possible analitzar electromiogràficament els paràmetres òptims de vibració de forma individual en persones entrenades, la freqüència òptima a utilitzar són 30 Hz (156).

En relació al context del rendiment esportiu L’EV té especial rellevància ja que podria aconseguir efectes similars a l’entrenament amb cicles d’estirament escurçament i sembla tenir aspectes avantatjosos sobre altres tècniques d’entrenament (150). A més a més, la combinació d’aquest mètode amb el treball clàssic de força pot provocar els mateixos efectes en els teixits sense la necessitat d’aplicar càrregues importants en les articulacions, efecte especialment important per a la salut de l’esportista.

En l’àmbit de l’esport les vibracions han estat aplicades principalment a sobre de plataformes vibratòries, aconseguint un efecte global en el cos (112;113;118;158;159), encara que també s’han aplicat de forma més localitzada mitjançant cables vibratoris (120;149) i, més recentment, a través d’una barra vibratòria dissenyada per a l’estimulació dels músculs de l’extremitat superior (160).

Metodologia d’aplicació de l’EV

La postura que s’adopta a sobre de les plataformes vibratòries té especial importància. Per esmorteir correctament la vibració i evitar que arribi a òrgans interns i inclús al cap (136), la majoria d’estudis adopten una posició de semi flexió de les articulacions de càrrega. D’aquesta manera, la petita flexió del maluc, genoll i turmell assegura una major implicació muscular i a més a més protegeix aquestes articulacions. Tenint això en compte, interessa que la vibració sigui atenuada pel sistema viscoelàstic de l’aparell locomotor per preservar les estructures esmentades, però hem d’aconseguir també que l’estímul vibratori sigui suficient a nivell muscular per aconseguir les adaptacions desitjades.

Característiques de la vibració (110;161-164):

- Amplitud: És el desplaçament que es realitza en cada cicle de moviment sinusoïdal expressat en mm. El rang de moviment utilitzat en els estudis varia entre 1 i 10mm.
- Freqüència: Número de cicles de moviment per unitat de temps, expressada en Hz. Les freqüències aplicades en els estudis oscil·len en un rang d’entre 15 i 50Hz.
- Magnitud: La magnitud de la vibració s’expressa per raons pràctiques en unitats d’acceleració. L’acceleració es pot obtenir a partir de la freqüència i l’amplitud amb l’equació : \(a=(2 f)^2 d \) (165).
- Durada: Els estudis realitzats van dels 4 als 20’ de temps total d’exposició a la vibració per sessió.
• Direcció: Al mercat existeixen 2 tipus de plataformes. Les més habituals vibren uniformement amb un component vertical. D’altra banda, existeixen les plataformes que vibren recíprocament al voltant d’un fulcre central amb un marcat component rotacional.

És important destacar que les característiques de la vibració varien en funció del tipus de plataforma utilitzada. Les plataformes en les que predomina un component més vertical poden utilitzar una amplitud que va de 1 a 8 mm i una freqüència de 30 a 50 Hz. D’altra banda, les plataformes rotacionals poden arribar a amplituds més elevades que van de 1 a 14 mm, i freqüències més baixes, entre 16 i 26 Hz (166).

Característiques del protocol d’exercici

Els protocols d’entrenament utilitzats amb vibració són molt heterogenis en relació a la utilització de les següents variables: durada de l’estímul, tipus d’exercici, càrrega externa aplicada, densitat de l’estímul, freqüència setmanal i durada de l’entrenament.

Cal ressaltar que encara que no existeix evidència sobre quin tipus de plataforma (vertical o rotacional) és més adequada, aquesta influeix en el protocol d’exercici a utilitzar (166). Les plataformes rotacionals, degut al seu moviment basculant sobre la pelvis, poden ajudar a disminuir l’energia transferida a la columna i el cap, el que pot ser més indicada per a la gent gran. D’altra banda, els exercicis unipodals, amb salt o asimètrics serien més adequats per a les plataformes verticals. Per tant, en població entrenada, serà més interessant entrenar amb aquest últim tipus d’equipament.

Efectes de l’EV sobre el sistema neuromuscular

Per a entrenar la potència i la força muscular és habitualment necessari l’efecte de la gravetat sobre les estructures musculesquelètiques (167). Normalment aquestes qualitats físiques s’entrenen mitjançant pes lliure o altres formes de resistència. D’altra banda, l’entrenament mitjançant plataformes vibratòries ja implica, sense la utilització de càrregues externes, una situació d’hipergravetat deguda a les elevades acceleracions que s’hi provoquen (115). Com a conseqüència d’això s’aconseguirà un augment de les adaptacions neurals i estructurals del complex neuromuscular, fets que portaran a un increment de la força.

Actualment no hi ha consens sobre quins són els mecanismes pels quals la vibració millora el rendiment neuromuscular, encara que la revisió realitzada per Luo et al (2005) postula vòries hipòtesis, com són el reflex tònic vibratori (RTV), la millora en l’excitabilitat de
la motoneurona, el increment de la temperatura i circulació sanguínia, l’augment de la secreció hormonal i la hipertròfia muscular (162).

Hem d’afegir aquí els efectes que es poden provocar per l’experiència motriu donada per l’estímul vibratori, el qual porta a noves situacions motores facilitades per la potenciació del *feedback* propioceptiu aconseguit (87). Amb això ens estem referint a un augment de la coordinació neuromuscular de l’individu que entrena amb plataformes vibratòries, fet que, conjuntament amb la millora en els mecanismes de reclutament de motoneurones, sincronització de les unitats motores i coordinació dels músculs agonistes-antagonistes, constitueixen els guanyos de força inicials que s’experimenten amb un entrenament. Tots aquests efectes sobre el sistema neuromuscular podrien proporcionar major sobrecàrrega sobre els exercicis convencionals d’entrenament i, per tant, produir adaptacions superiors a llarg termini.

A continuació descriurem els efectes a curt i llarg termini de l’EV sobre el sistema neuromuscular, incidint sempre en la població entrenada, motiu principal d’estudi de la línia de treball presentada.

Efectes aguts de l’EV sobre el sistema neuromuscular

Les millores agudes en el rendiment neuromuscular provocades per les VCS sembla ser que es deuen principalment a l’activació del RTV. En aquest apartat anem a tractar l’estudiat fins el moment sobre els efectes aguts de l’EV sobre el sistema propioceptiu i les qualitats de força i equilibri.

- **Sistema propioceptiu**

 Fus neuromuscular: Com ja s’ha esmentat la contracció muscular involuntària que es produeix quan el múscul es sotmès a vibració es defineix com a RTV (157;168) (Figura 6). Aquesta contracció reflexa produïda per la vibració s’inicia en les terminacions primàries del fus muscular, sensibles a l’estirament. Amb cada cicle de vibració el fus és estirat de forma mínima però suficient per originar la contracció. Des del fus muscular els impulsos viatgen per les fibres aferents la cap a l’asta posterior de la medul·la espinal on sinapten amb les motoneurones alfa. L’excitació d’aquestes últimes provoca la transmissió de l’estímul eferent a les mateixes fibres extrafusals, donant com a resultat la contracció muscular (157).

S’ha observat en diversos treballs com augmenta el senyal electromiogràfic durant l’entrenament vibratori amb valors superiors als que s’observen en contraccions voluntàries sense vibració, fet que s’identifica com un potenciador del circuit descrit (149). Malgrat aquesta primera teoria és la més estesa, altres autors com Nordlund i
Thorstensson (2007) discrepen de l’aparició d’aquest reflex en les vibracions de cos sencer (169). Segons aquests autors, el RTV va ser demostrat originalment com el resultat d’una breu exposició d’alta freqüència aplicada directament al tendó (170). De forma contrària, les VCS es realitzen amb durades superiors, la freqüència és considerablement inferior i la vibració s’aplica de forma inespecífica sota els peus. La força de resposta d’aquest RTV depèn de 4 factors: localització de la vibració (múscul o tendó), longitud inicial del múscul (major resposta a major elongació), estat de l’excitabilitat del SNC i paràmetres de l’estímul vibratori (157). Els efectes aguts descrits sobre els proprioceptors sembla ser que es mantenen durant un breu període de temps (110). Per exemple, l’aplicació d’un entrenament vibratori va obtenir efectes positius sobre el salt vertical als dos minuts, però van desaparèixer al cap d’una hora (171).

Figura 6. Arc reflex produït amb l’aparició del reflex tònic vibratori (Johnston et al., 1970) (157)

És important destacar que l’esmentada estimulació del fus neuromuscular induïda per les vibracions no només excita la motoneurona homònima, sinó que també estimula les interneurones de la medul·la espinal, les quals inhibirien motoneurones dels músculs antagonistes mitjançant el mecanisme d’inhibició recíproca (169). En relació a aquest últim aspecte, Cardinale i Bosco (2005) van suggerir que l’EV podria activar la inhibició dels músculs antagonistes via les neurones inhibitòries Ia. Això podria explicar un dels possibles mecanismes de millora del rang de moviment de la musculatura antagonist a en una determinada acció mitjançant l’EV. Aquesta millora de l’amplitud de moviment (119-
121;172), tot i ser un tema actual de discussió, s’ha relacionat amb la disminució del llindar del dolor (120;173), l’augment de la circulació sanguínia (128;129), l’activació de l’OTG i la ja esmentada inhibició dels músculs antagonistes degut al RTV (110).

Receptors cutànies: En la bibliografia científica també s’ha descrit com els receptors cutànies són sensibles a la vibració, tant els d’adaptació lenta com ràpida, i tant durant la vibració com després de la seva aturada (174;175). El grup de Rittwegger et al. (2009) associen aquest augment de la sensibilitat cutània post-vibració a la sensació de formigueig que descriuen molts subjectes d’estudi després de les VCS (166). Aquest mateix grup d’autors també suggereixen els efectes que podria tenir l’EV en acord a la hipòtesi del Gate Control (176) sobre el dolor, teoria ampliada i coneguda actualment amb el nom de Neuromatriu (177). És a dir, que l’EV podria utilitzar-se de forma similar a la que es coneix com a estimulació elèctrica nerviosa transcutània (TENS) (178), molt utilitzada en l’àmbit de la fisioteràpia.

- Força
La majoria d’investigadors demostren com els efectes induïts per la vibració tenen els seus efectes principalment sobre la força màxima i la potència (179).
És molt important destacar, com a un dels pioners, l’équip de Bosco et al. (1999), els quals van començar a estudiar la influència de la vibració de forma aguda en les propietats mecàniques dels flexors de colze en un grup de 12 boxejadors de nivell internacional. La sessió de treball consistia en la realització de 5 repeticions isomètriques d’un minut de durada a una freqüència de 30 Hz i 6 mm d’amplitud en un dispositiu Galileo 2000. Van obtenir millores significatives en la potència muscular associades a un augment del senyal electromiogràfic durant l’EV (149).
El mateix grup d’investigadors va seguir estudiant els efectes aguts en l’extremitat inferior amb 14 esportistes homes joves mitjançant un entrenament estàtic de 10 sèries de 60” en bipedestació (26 Hz, 4mm). Van obtenir els mateixos resultats significatius que el treball
anterior, però en l’extremitat inferior (131). En aquesta línia, el grup d’Issurin et al (1999) van obtenir resultats similars en relació a la força explosiva de braços en 14 atletes d’elit i 14 amateurs (freqüència 44 Hz i amplitud 3 mm; Schnell, Germany) durant l’exercici de curl de bíceps a màxima velocitat (113).

Torvinen et al. (2002) van estudiar els efectes produïts sobre el rendiment muscular i l’equilibri després de 4 minuts de vibració (Kuntotäry, Erka Oy, Kerava, Finland) en joves sans. Aquest entrenament (25-40Hz) no va produir canvis significatius als 2 i 60 minuts després de l’aplicació de la vibració quan l’amplitud va ser de 2mm (152). Pel contrari, el mateix grup de treball sí va obtenir millores significatives en tots els paràmetres valorats en un estudi de característiques similars, però amb una amplitud de 10 mm (126).

Més recentment, Cochrane et al (2005) van estudiar com un grup de jugadores professionals d’hoquei herba femení (Galileo 2000, 5’ d’exposició a la vibració, 26 Hz, 6 mm) augmentava la potència (8%) i la flexibilitat (8,2 %) dels membres inferiors (158).

S’ha realitzat aquesta breu exposició històrica dels efectes aguts de l’EV sobre la força muscular degut a la repercussió que els resultats trobats ha tingut en l’entrenament neuromuscular de molts esportistes actuals. Malgrat aquests efectes positius esmentats, hi ha treballs on l’EV no ha tingut efectes significatius sobre la força explosiva (152;180).

• **Equilibri**

Els efectes aguts de l’EV sobre l’equilibri i la propriocepció han estat poc estudiats en població activa, encara que s’han obtingut resultats significatius en població jove sana (126), esclerosi múltiple (146) i accident cerebrovascular (181).

Efectes a llarg termini de l’EV sobre el sistema neuromuscular

L’estudi V d’aquesta tesi doctoral descriu de forma molt extensa i descriptiva els efectes a llarg termini de l’entrenament vibratori sobre el rendiment físic en persones físicament actives. A continuació s’exposa breument els efectes produïts en les qualitats de força i equilibri.

• **Força explosiva**

Un dels principals beneficis estudiats sobre l’EV amb esportistes és el relacionat amb la força explosiva, usualment mesurada amb el salt vertical amb contramoviment (CMJ). Diversos autors han estudiat els efectes de l’entrenament vibratori sobre la força explosiva en persones entrenades, descrivint efectes positius en el grup de vibració (115;119;136;159;182). D’altra banda, també hi ha estudis que no han trobat diferències significatives entre un grup control i un experimental (116;118;136;139;183). És important destacar com Fagnani et al. (2006) van mostrar com un protocol de 8 setmanes d’EV (3 vegades per setmana, 35 Hz, 4 mm) va augmentar significativament el CMJ en dones
atletes (119). De la mateixa manera, Annino et al. (2007) van observar una millora significativa en el CMJ després de 8 setmanes d’EV amb ballarines d’elit (136). D’altra banda, de Ruiter et al. (2003) van estudiar els efectes de l’EV durant 11 setmanes (30 Hz, 8 mm) en 20 estudiants físicament actius i no van obtenir diferències significatives en el CMJ (180).

- **Força màxima**
 Hi ha varis estudis que valoren els efectes de l’EV en la força màxima de forma isomètrica i dinàmica, encara que amb mètodes de mesura i resultats molt dispers, fet que fa difícil extreure conclusions aclaridores. En aquest sentit, hi ha alguns treballs que mesuren la força isomètrica i cap d’ells obté diferències significatives en una població entrenada (139;183;184). D’altra banda, en quant als treballs que han mesurat la força dinàmica en gent físicament activa es troben tant resultats amb diferències significatives (120;159) com d’altres sense significació estadística (139;185).

- **Equilibri i propriocepció**
 Actualment hi ha diferents investigacions on s’han aplicat les VCS per millorar la propriocepció i l’equilibri en persones no entrenades, especialment quan es pertorba el control postural. Alguns d’aquests estudis han mostrat efectes positius sobre aquesta qualitat (126;140;145;146), mentre que d’altres no ho han fet (159;171). Pel contrari, hi ha una important manca de recerca sobre els efectes de l’entrenament vibratori sobre el control postural i la propriocepció en persones entrenades. Mahieu et al. (2006) van comparar el control postural mitjançant el sistema Balance Master entre un grup que va entrenar amb vibracions mecàniques i un altre sense vibracions. Cap dels grups va obtenir diferències significatives (159). Per tant, els efectes de l’entrenament vibratori sobre l’equilibri i la propriocepció estan actualment poc estudiats.

Per finalitzar aquest apartat destacar un revisió molt recent sobre els efectes crònics de l’EV sobre la força, potència i velocitat en persones entrenades. Els autors conclouen que actualment hi ha algunes proves que recolzen que l’entrenament vibratori proporciona un petit benefici sobre la força màxima (1RM) i la potència (salt contramoviment); encara que sigui sota una falta d’evidència científica. També afegeixen que els possibles mecanismes de millora d’aquestes capacitats es troben encara per aclarir (156).

Efectes adversos produïts per l’EV

La vibració ha estat molt estudiada pels seus efectes perillosos sobre les persones,
examinant les diferents amplituds, freqüències i durades aplicades. Aquest tipus d’estímul pot afectar diferents paràmetres fisiològics, i els seus efectes poden ser transitoris o permanentes depenent de les característiques de la vibració. Quan aquesta és transmesa per la mà (maquinària, eines o útils vibratoris) ha estat associada a desordres vasculars (síndrome del dit blanc), neurològics (síndrome del túnel carpià) i musculoesquelètics (malaltia de Kienbock’s), coneguts com a “síndrome de la vibració mà-braç” (163;179). Aquests problemes estan controlats per la normativa ISO 2631 (The International Standards Organisation), on es regulen uns límits de vibració que podrien ser perjudicials per a les persones. D’altra banda, la VCS (normativa ISO 5349) s’ha associat principalment a desordres de la columna vertebral.

Els estudis més recents suggereixen que el treball a baixes amplituds, freqüències moderades i períodes d’exposició curts són un estímul mecànic segur i eficaç per a provocar efectes positius sobre les estructures muscoloesquelètiques (122;161;162;164;169;186). Amb relació a això últim, el grup de Cardinale et al. (2006) va elaborar un llistat de possibles contraindicacions en base a la seva experiència (187) (Taula 3).

En quant a la població entrenada no sembla que hi hagi cap tipus d’efectes perjudicials sempre i quan l’entrenament vibratori sigui controlat (156).

<table>
<thead>
<tr>
<th>Condició</th>
<th>Possible problema produït per l’EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetis amb neuropatia i ulceració</td>
<td>Manca de sensació per empitjorament de l’úlcera</td>
</tr>
<tr>
<td>Trombosi venosa recent</td>
<td>Embòlia pulmonar</td>
</tr>
<tr>
<td>Fractura recent</td>
<td>Inestabilitat/re fractura</td>
</tr>
<tr>
<td>Osteosíntesi a extremitats inferiors amb implants de metall</td>
<td>Desconfort</td>
</tr>
<tr>
<td>Tumor espinal o metástasi</td>
<td>Inestabilitat</td>
</tr>
<tr>
<td>Hèrnia discal aguda</td>
<td>Inestabilitat</td>
</tr>
<tr>
<td>Cirurgia abdominal recent</td>
<td>Es poden comprometre els resultats de l’operació</td>
</tr>
<tr>
<td>Embaràs</td>
<td>Riscos desconeguts</td>
</tr>
<tr>
<td>Endopròtesi de maluc/genoll o altres implants de metall</td>
<td>Riscos desconeguts</td>
</tr>
<tr>
<td>Aneurisma aòrtica</td>
<td>Risc de ruptura</td>
</tr>
</tbody>
</table>
OBJECTIUS I HIPÒTESI

HIPÒTESI: L’entrenament del control neuromuscular, desenvolupat mitjançant pertorbacions de l’equilibri i plataformes vibratòries, millora el rendiment físic dels esportistes sense la utilització de càrregues externes.

OBJECTIU GENERAL: Avaluar l’eficàcia de diferents tipus d’entrenament neuromuscular en esportistes.

OBJECTIUS ESPECÍFICS

I. Avaluar l’eficàcia d’un programa d’entrenament proprioceptiu (TRAL) com a mètode de prevenció de lesions de l’extremitat inferior en joves esportistes.

II. Avaluar l’eficàcia d’un programa propioceptiu com a mètode per a millorar el control postural en joves esportistes.

III. Avaluar la fiabilitat d’una medició estabilomètrica del control postural de l’extremitat inferior mitjançant una plataforma de sensors òptics.

IV. Comparar les dades estabilomètriques de l’equilibri unipodal entre el sexe del individu i cama dominant - no dominant de forma estàtica i dinàmica.

V. Estudiar els efectes a llarg termini de l’entrenament amb vibracions mecàniques sobre el rendiment físic de persones actives.

VI. Avaluar l’eficàcia d’un programa d’entrenament mitjançant vibracions mecàniques per a la millora del control postural i la força explosiva en joves esportistes.
MÈTODE

A continuació es descriurán de forma breu els diferents mètodes utilitzats pels estudis que componen aquesta tesi doctoral.

MOSTRA

La taula 4 mostra les característiques de tots els subjectes d’estudi.

<table>
<thead>
<tr>
<th>Estudi</th>
<th>n (dones/homes)</th>
<th>Edat Promig (DS)</th>
<th>Activitat esportiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>I i II</td>
<td>28 (14/14)</td>
<td>15,7 (0,79)</td>
<td>Voleibol</td>
</tr>
<tr>
<td>III i IV</td>
<td>20 (10/10)</td>
<td>22,56 (5,7)</td>
<td>Individus físicament actius</td>
</tr>
<tr>
<td>VI</td>
<td>23 (23/0)</td>
<td>15,8 (1,2)</td>
<td>Basquetbol</td>
</tr>
</tbody>
</table>

Estudi I i II

Els criteris d’inclusió per aquest estudi van ser esportistes de tecnificació esportiva de Catalunya. La mostra va constar de 14 nois i 14 noies jugadors de voleibol d’edat compresa entre 15-18 anys d’edat. Les hores d’entrenament durant el temps de pressa de dades va ser d’aproximadament 20 hores setmanals per als dos grups. La mateixa mostra es va utilitzar com a grup control i experimental, és a dir, es van comparar les dades dels tres primers mesos d’estudi sense intervenció amb les dels següents tres mesos amb entrenament. Totes les dades es van recollir de forma prospectiva excepte la recollida de lesions esportives de la temporada anterior, que va ser retrospectiva.

Es va disposar del consentiment informat signat pels pares i esportistes participants en l’estudi. Aquest estudi va ser aprovat pel comitè d’ètica del Centre d’Alt Rendiment de Sant Cugat del Vallès.

Estudi III i IV

La mostra va estar formada per 20 individus sans de 22,56 (± 5,7) anys, 10 homes i 10 dones. Els criteris d’inclusió van ser persones sanes d’edat entre 18-35 anys, físicament

Estudi VI

La mostra va estar formada per 23 individus sans de 15,8 anys amb una desviació típica de 1,2 anys. Les hores d’entrenament durant el temps de pressa de dades es va fer de forma prospectiva amb una durada d’aproximadament 20 hores setmanals.

Activitat esportiva

- Voleibol
- Individus físicament actius
- Basquetbol

La taula 4 mostra les característiques de tots els subjectes d’estudi.
actives (3 o més sessions a la setmana d’un mínim de 60 minuts distribuïdes en dies alterns). Es van excloure subjectes amb qualsevol lesió (aguda o crònica) o malaltia a l’inici de l’estudi. Els participants van signar un consentiment informat d’estudi, i aquest va ser aprovat pel comitè d’ètica de la Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna (Universitat Ramon Llull).

Estudi VI

Els subjectes d’estudi van ser 24 jugadores de bàsquet d’alt nivell competitiu d’edat compresa entre 14-18 anys. Aquesta mostra va ser dividida de forma aleatòria en un grup de vibració de cos sencer i un grup control (12 i 11, respectivament), utilitzant una taula de nombres aleatoris. L’entrenament específic del seu esport va ser el mateix per a tots dos grups: 10 sessions per setmana (20 hores aproximadament), afegint-hi el partit de cap de setmana durant la temporada d’estudi. El grup experimental va afegir al seu programa habitual l’entrenament mitjançant vibracions mecàniques. Abans de la seva participació en l’estudi, tots els subjectes van signar el seu consentiment informat per escrit. El protocol va ser aprovat pel Comitè d’Ètica de la Facultat de Ciències de l’Esport, de l’Educació i Psicologia Blanquerna (Universitat Ramon Llull).

DISSENY

El tipus de disseny utilitzat en cadascun dels treballs presentats es mostra a la Taula 5. En aquesta es pot observar una progressió en quant a la qualitat metodològica del disseny dels diferents estudis.

<table>
<thead>
<tr>
<th>Taula 5. Disseny dels estudis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudi</td>
<td>Disseny</td>
</tr>
<tr>
<td>I</td>
<td>Estudi d’ intervenció de disseny longitudinal, de grup únic amb avaluació abans-després</td>
</tr>
<tr>
<td>II</td>
<td>Estudi d’ intervenció de disseny longitudinal, de grup únic amb avaluació abans-després</td>
</tr>
<tr>
<td>III</td>
<td>Test de correlació entre dos mesures quantitatives: coeficient de correlació intraclasse</td>
</tr>
<tr>
<td>IV</td>
<td>Estudi transversal</td>
</tr>
<tr>
<td>V</td>
<td>Revisió sistemàtica: metanàlisi</td>
</tr>
<tr>
<td>VI</td>
<td>Assaig controlat i aleatoritzat</td>
</tr>
</tbody>
</table>
MÈTODES DE VALORACIÓ

La taula 6 mostra els diferents mètodes de valoració utilitzats en cada estudi de la línia de treball presentada.

| Taula 6. Mètodes de valoració utilitzats en els diferents estudis |
|-----------------------|-----------------|-----------------|-----------------|-----------------|
| Valoració | Estudi |
| | I | II | III | IV | VI |
| Dolor (VAS) | x | | | | |
| Lesions esportives extremitat inferior | x | | | | |
| Estabilometria I | | | | | |
| Equilibri unipodal ulls oberts (25 seg) | | | | |
| Equilibri unipodal ulls tancats (10 seg) | | | | |
| Estabilometria II | | | | | |
| Equilibri unipodal ulls oberts (10 seg) | | | x | x | x |
| Equilibri unipodal ulls tancats (10 seg) | | x | x | x | |
| Salt unipodal (3 seg) | x | x | | | |
| Test de salt unipodal | | | x | | |
| Salt amb contramoviment | | | | | x |

DOLOR (ESCALA VISUAL ANALÒGICA) (Estudi I)

L’objectiu principal d’aquesta valoració va ser mesurar la intensitat del possible dolor produït com a conseqüència de la seva activitat esportiva (entrenament o competició). Es va utilitzar la coneguda escala visual analògica (VAS), que ha estat validada prèviament (188;189).

Es va mesurar el dolor habitual de l’última setmana i el dolor més intens produït en la darrera setmana de turmell i genoll, mitjançant una taula adaptada. Les dades es van valorar de 0 a 100.

INCIDÈNCIA DE LES LESIONS ESPORTIVES DE L’EXTREMITAT INFERIOR (Estudi I)

Es va considerar lesió a la incidència que comportava l’aturada de la pràctica esportiva habitual durant més d’una setmana, és a dir, les lesions considerades com a moderades segons classificacions utilitzades en diferents estudis (190;191). Totes les lesions esportives van ser diagnosticades pel servei mèdic del Centre d’Estudis d’Alt Rendiment Esportiu del
Consell Català de l’Esport. La recollida de dades de l’any anterior es va fer de forma retrospectiva gràcies a l’accés de l’historia clínica esportiva de cadascun dels participants en l’estudi.

ESTABILOMETRIA I (Estudi II)

Figura 7. Estabilometria I

Test equilibri unipodal ulls oberts (25 seg) / ulls tancats (10 seg)

Programa Foot Checker 3.1.

Es van prendre mesures de l’àrea de desviació del centre de pressions (CP) en les següents posicions: 1/Equilibri unipodal amb ulls oberts (UO) i , 2/ Equilibri unipodal amb ulls tancats (UT). En cadascuna d’aquestes posicions les dades del CP van ser recollides tres cops consecutius mesurant alternativament cama dreta i esquerra. En el test 1 es van recollir dades durant 25 segons i en el test 2 durant 10 segons. Per a familiaritzar als subjectes amb el procediment del test es van fer entre tres i cinc repeticions cadascun d’aquests. Aquesta pràctica va ser realitzada prèviament a la data de pressa de dades i un cop just abans del test. Tothom va començar primer per cama dreta. Entre el test 1 i 2 va haver un descans de
60 segons. La posició de partida en els tests comença amb el subjecte en bipedestació amb recolzament del peu a mesurar al centre de la plataforma (marcat amb una creu) i una petita flexió de genoll (15º) per tal de desbloquejar l’articulació de l’extensió. D’altra banda, el peu oposat és situat en contacte amb l’angle superior de la plataforma. Quan el subjecte estava preparat era instruït per a començar a flexionar el genoll contrari al de recolzament fins els 90º. Una vegada l’individu estava en aquesta posició, començava la pressa de dades. Durant el test amb ulls oberts, els participants miraven a una cartolina negra DIN A4 situada a la paret a 2 metres de la plataforma. Amb el test d’ulls tancats els subjectes feien el mateix fins a tancar els ulls. Durant els dos tests s’indicava que s’havia d’intentar estar el més quiet possible, amb els braços al llarg del cos. Si algun dels subjectes no podia acabar el test sense perdre l’equilibri es tornava a repetir.

ESTABILOMETRIA II (Estudi III, IV i VI)

![Figura 8. Proves d’equilibri unipodal](image)

Test equilibri unipodal ulls oberts/ulls tancats (10 seg)

Test de salt unipodal (3 seg)

X_Deviació lateral;
Y_Deviació anteroposterior

El test d’estabilometria II va consistir en mesurar la desviació del CP en el pla sagital (desviació anteroposterior, eix y) i en el pla frontal (desviació lateral, eix x). Es van mesurar les següents posicions (Figura 8): 1/Equilibri unipodal amb ulls oberts (UO), 2/Equilibri unipodal amb ulls tancats (UT), 3/Salt unipodal d’una llargada que equivalia a la distància de la meitat de l’extremitat inferior del subjecte (de trocànter major a mal·lèol extern). En
cadascuna d'aquestes posicions les dades del CP van ser recollides tres vegades consecutives, alternant cama dreta i esquerra. El primer i segon test va durar 10 segons i el test de salt acabava tres segons després de la recepció. Per familiaritzar els subjectes amb el procediment es va realitzar una prova d’un a tres dies abans de la primera sessió de presa de dades. Abans de realitzar el test tots els subjectes van realitzar el següent escalfament: Carrera continua de 7 minuts entre 7-9 km/h i estiraments en tensió activa (192) durant 3 minuts. Seguidament van executar les proves (3 vegades cada test). Entre els test 1, 2 i 3 hi va haver un descans de 60 segons. La posició de partida en els tests 1 i 2 va començar amb el subjecte en bipedestació amb el peu de recolzament al centre de la plataforma (marcat amb un punt) i una petita flexió de genoll (15º). Quan el subjecte estava preparat va ser instruït per començar la flexió del genoll contrària a la de recolzament fins els 90º. Quan el voluntari deia que estava preparat en la posició descrita, s’iniciava la presa de dades.

Durant el test 1 i 3, on els subjectes estaven amb els ulls oberts, van mirar a una cartolina negra DIN A4 situada a la paret a un metre de la plataforma. Amb el test sense visió, els voluntaris van seguir el mateix procés fins a tancar els ulls.

Durant els tres test se’ls va indicar que havien de romandre el més quiet possible, amb els braços al llarg del cos. Si algun dels subjectes no podia acabar el test sense perdre l’equilibri es tornava a repetir.

Figura 9. Test de salt vertical amb contramoviment (CMJ)

TEST DE SALT AMB CONTRAMOVIMENT (Estudi V i VI)

El test de salt amb contramoviment (CMJ) és una prova molt utilitzada en el rendiment esportiu i ha estat demostrada vàlida i reproduïble (193;194) (Figura 9). Per a la seva realització, es va utilitzar una plataforma de contacte (*Ergojump Bosco System*, Roma, Itàlia). El CMJ mesura el salt explosiu, la capacitat de reclutament nerviós, expressió de percentatge de fibres FT, reutilització de l’energia elàstica i coordinació intra i intermuscular.
El subjecte es posiciona en bipedestació amb les mans a la cintura; a continuació ha de realitzar un salt vertical després d’un contramoviment descendent (fins a 90 ° de flexió de genoll). Durant l’acció de flexió el tronc ha d’estar el més recte possible (195).

TEST DE SALT UNIPODAL (Estudi VI)

El test de salt unipodal (*one-leg hop test*) és utilitzat per a mesurar la funcionalitat de l’extremitat inferior i ha estat demostrat com reproduïble i vàlid (196); a més s’ha testat com a predictor de l’estabilitat funcional del genoll (93). Aquest test ha estat molt utilitzat per examinar els pacients amb lesió del lligament creuat anterior. En el nostre estudi utilitzarem la versió modificada del clàssic *one-leg hop test*, amb els braços lliures, per assegurar una major funcionalitat del mateix (79). Els subjectes van haver de saltar el més lluny possible, enlairant-se i aterrant amb el mateix peu de forma estable (aguantant un mínim 3 segons amb suport unipodal) (Figura 10). El test es va realitzar tres vegades amb cada cama de forma alternativa, agafant la millor de les tres distàncies. Es van realitzar 3 intents de prova abans del test. Els subjectes van portar sabatilles esportives.

![Figura 10. Test de salt unipodal horitzontal](image)

MÈTODES D’ENTRENAMENT NEUROMUSCULAR

Els mètodes d’entrenament neuromusculars que engloba aquesta tesi són bàsicament dos: TRAL i vibracions mecàniques.

TRAL (Estudi I i II)

El primer mètode d’entrenament neuromuscular utilitzat va ser l’anomenat TRAL. Aquest
va tenir una durada d’aplicació de 3 mesos, i es va adaptar al temps i material del que es disposava. Les sessions eren introduïdes dins de la preparació física dels esportistes, dedicant una durada de 15 minuts per sessió entre dilluns i dijous i durant un total de 12 setmanes. Es va realitzar sense sabatilles esportives de dos a tres dies a la setmana i amb elles d’un a dos dies. Aquest programa va tenir una progressió en dificultat, començant pels exercicis més bàsics i introduint tasques més complexes a mesura que avançaven les setmanes. A cadascuna de les sessions es va insistir en la correcta biomecànica de l'extremitat inferior, especialment en els canvis de posició i direcció. De la mateixa manera es va fomentar un feedback continu entre els subjectes de la mostra i la investigadora principal.

PROGRAMA D’ENTRENAMENT NEUROMUSCULAR MITJANÇANT VIBRACIONS MECÀNIQUES (Estudi VI)

La càrrega vibratòria es va dur a terme mitjançant una plataforma Nemes (Bosco System, Itàlia) dins d’un protocol de 15 setmanes de duració. El programa es va aplicar de forma progressiva amb 5 exercicis estàtics i dinàmics. L'entrenament va anar augmentant d'intensitat de forma progressiva cada setmana mitjançant els diferents paràmetres de vibració: freqüència (25-35Hz), tipus d'exercicis (squat, squat una cama, salt,…), durada total de treball (7-10,5min), durada de cada repetició (30-60seg) i la dificultat de cada situació d'exercici. L'amplitud (4 mm) i el descans entre exercicis (60seg) es va mantenir durant tot l'estudi. És important ressaltar que en cadascuna de les sessions es va insistir en la correcta biomecànica de les extremitats inferiors alhora de realitzar els diferents exercicis, especialment les recepcions de salts i els canvis de direcció.

ANÀLISI ESTADÍSTICA

Les dades recollides dels diferents treballs d’aquesta tesi van ser analitzades pel paquet estadístic SPSS 13.0 per als estudis I i II, el SPSS 15.0 per als estudis III, IV i VI i el programa EPIDAT versió 3.1 per a l’estudi V.

Estudi I i II

En primer lloc es va realitzar la prova de normalitat Shapiro-Wilk.

En l’estudi I es van realitzar dos tipus de proves per a la valoració del dolor. Per una banda, en els casos on la mostra va ser Normal, es van utilitzar proves paramètriques. En aquest cas es va utilitzar una proba T per a mostres independents, per la raó que comparem
promig i no individu per individu. Per altra banda, en els casos on la distribució no va resultar Normal es va utilitzar la prova no paramètrica de Mann-Whitney (197). La incidència de lesions esportives no va poder ser analitzada estadísticament per la poca quantitat de dades obtingudes. Aquest fet va ser degut a la petita mostra utilitzada. Per tant, i en relació a aquesta variable, l’estudi es va limitar a fer una valoració quantitativa absoluta de la disminució del nombre de lesions.

En l’estudi II la distribució no va resultar Normal per la qual cosa es van realitzar proves no paramètriques. Seguidament, es va comparar la prova no paramètrica de Friedman; i si existien diferències, es va procedir amb la prova de Wilcoxon.

Estudi III

Es va mesurar l’amplitud de la desviació del CP tres vegades en cada test. Aquesta mesura es va repetir en dues sessions separades per un temps d’entre 24 i 48 hores. A cada presa de dades es van analitzar les següents variables, tant en el pla frontal com sagital i amb cada cama: valor màxim i promig de la desviació del CP (en tots dos casos es va analitzar el millor valor i el promig d’aquests). D’aquesta manera, el total de variables analitzades va ser de quatre per a cadascun dels tests executats. Es va realitzar un test de concordança entre dues respostes quantitatives: coeficient de correlació intraclasse (CCI) per poder valorar la variable de mesura més fiable. Els valors obtinguts de CCI oscil·len entre 0 (absència de concordança) i 1 (concordança absoluta).

Estudi IV

En aquest treball es va seleccionar el millor resultat de les mesures realitzades en cada test. Es van comparar les desviacions del CP de nois i noies amb la prova per a dues mostres independents U de Mann-Whitney, ja que la mostra va ser petita i no va complir el criteri de Normalitat. També es va fer una prova de mostres relacionades de Wilcoxon per trobar les diferències del CP entre cama dominant i no dominant.

Estudi V

En primer lloc, es van obtenir les dades quantitatives de les variables de mesura i a partir d’aquí es va procedir a l’anàlisi estadístic. A cadascun dels grups es va considerar com a variable d’interès l’increment de la variable de mesura, és a dir, la diferència del post-pre test. Per a la realització del metanàlisi, es va tenir en compte que aquesta variable és de tipus quantitatiu (continua), amb una distribució Normal. En conseqüència, per tal de calcular la desviació estàndard de la variable, es va es va utilitzar el següent principi: "la distribució
d’una variable que és diferència de dues Normals és una Normal, amb mitjana la diferència de mitjanes i desviació estàndard igual a l’arrel quadrada de la suma de les variàncies”.

Pel contrast d’heterogeneïtat es van utilitzar les proves de Dersimonian i Laird’s, i per a l’estimació del biaix de publicació les proves de Egger i Begg. També es realitzà l’anàlisi de sensibilitat quan aquest va ser possible.

Estudi VI

Es va realitzar un anàlisi dels tests al inici, a les 8 i a les 15 setmanes d’entrenament. Primerament es va realitzar la prova de normalitat Shapiro-Wilk; si la mostra era Normal es va utilitzar la prova paramètrica T Student i si no ho era la prova de Wilcoxon. El grau de significació per a tots els tests va ser de p<0.05. Es va triar la millor dada de les tres mesures de cada test.
RESULTATS

Estudi I
Durant el període d’entrenament propioceptiu de tres mesos es va produir una reducció significativa del dolor de turmell ambdós sexes (p=0,00) en comparació als tres mesos sense intervenció. En el cas del dolor de genoll només hi va haver diferències en les dones (p=0,002). També hi ha una tendència a la disminució de la incidència de lesions esportives d’extremitat inferior ambdós sexes, especialment de turmell, durant el període d’entrenament.

Estudi II
En aquest treball destaca la reducció significativa de l’àrea de desviació del centre de pressions en els quatre tests d’equilibri en el cas de les noies (p<0,05), i només una reducció significativa en la prova d’equilibri de la cama dreta amb ulls tancats en el grup de nois.

Estudi III
La variable amb major coeficient de correlació intraclass que va mostrar aquest estudi va ser la millor amplitud promig de les tres mesures de cada sessió. En el cas del test unipodal d’ulls oberts i tancats la correlació va ser de bona a excel·lent (0.613-0.764) en totes les variables de la millor amplitud promig. Pel contrari, en el cas del test de salt la correlació va ser baixa.

Estudi IV
El test UO no va mostrar diferències significatives en la desviació del CP en cap de les variables. La prova UT va mostrar diferències significatives entre homes i dones en l’eix lateral i anteroposterior de la cama no dominant (p<0,029 i p<0,035, respectivament). Per últim, en el cas del salt es van trobar diferències significatives en la cama dominant i no dominant només en l’eix lateral (p<0,011 i p<0,002; respectivament). No hi va haver diferències significatives entre cama dominant i no dominant; tot i que si analitzem per separat ambdós sexes es van trobar diferències en els dos eixos del salt de les dones i l’eix anteroposterior dels homes en el test UO.

Estudi V
Es van trobar 16 articles rellevants, dels quals hi va haver 13 assajos clínics controlats i
aleatoris, i 3 no aleatoris. Degut a la significativa heterogeneïtat clínica entre els estudis només es va aplicar el metanàlisi als resultats de la força explosiva mesurada amb el test de salt amb contramoviment en 7 estudis dividits en dos subgrups: 1/Entrenament amb vibracions versus grup control passiu (GV vs GP) i 2/ Entrenament amb vibracions versus grup que fa exercicis similars sense vibració (GV vs GSV). Només va mostrar homogeneïtat el primer grup, on els resultats van tendir a una millora del salt a favor del grup experimental, obtenint una mesura d’efecte global de 0.4007 cm. El resultat final no va ser significatiu entre grups, ja que es va obtenir un IC 95% de [-0.0433, 0.8446].

Estudi VI

A les 8 i 15 setmanes d’entrenament el grup de vibracions incrementa significativament el salt amb contramoviment i el salt unipodal (p = 0,00) respecte als valors preintervenció. El grup control no experimenta diferències. No existeixen diferències significatives entre les 8 i 15 setmanes.

El test d’equilibri unipodal amb ulls oberts no mostra canvis significatius en cap grup. El test unipodal d’ulls tancats només mostra diferències significatives en el grup de vibracions a les 8 i 15 setmanes respecte al valor previ a la intervenció (p <0.05). Tampoc existeixen diferències significatives entre les 8 i 15 setmanes.
DISCUSSIÓ

EFECTES DE L’ENTRENAMENT NEUROMUSCULAR MITJANÇANT TRAL
(Estudi I i II)

DOLOR (Estudi I)

Durant el període d’entrenament propioceptiu es va produir una reducció significant del dolor de turmell ambdós sexes. D’altra banda, en el cas de l’articulació del genoll, només es va produir una disminució significativa en les noies. És necessari tenir en compte que el grup d’estudi utilitzat constituïa també el grup control (primer període de l’estudi), el que fa que no tingui la qualitat metodològica pròpia d’un assaig clínic randomitzat. Malgrat aquest fet, es destacable el continu seguiment realitzat a la mostra.

Com ja s’ha esmentat, el programa de TRAL utilitzat es basa en posicions unipodals en equilibri. D’acord amb els resultats obtinguts per Riemann et al. (55), la posició d’equilibri mantinguda té una major incidència sobre la musculatura del turmell respecte a la del genoll, fet que recolza els resultats més significatius que hem trobat en el turmell.

És important recordar que el voleibol és un esport on les situacions de salt són molt freqüents, el que propicia una alta càrrega sobre el genoll en les accions de recepció. De fet, la lesió per sobrecàrrega de l’extremitat inferior més freqüent en voleibol és la relacionada amb el tendó rotulià (198). Les lesions per sobrecàrrega, en la majoria dels casos, exigeixen un seguiment a llarg termini. En el cas del nostre estudi només es fa un seguiment de tres mesos, pel que per a futures treballs seria interessant realitzar un control més prollongat.

També cal destacar que els millors resultats obtinguts en el cas de les noies, podrien estar relacionats amb el grau d’implicació d’aquestes durant els entrenaments, tal i com, de manera subjectiva, ha estat observat per l’experimentador. Mirar autors que recolzin això

INCIèNCIA DE LESIONS ESPORTIVES (Estudi I)

Hem de ressaltar que no es va poder fer un anàlisi estadístic adequat de les lesions esportives degut a la petita mostra utilitzada. Malgrat això, els resultats obtinguts mostren una clara tendència a la disminució de lesions esportives de turmell i genoll tant en nois com en noies durant el període d’entrenament amb TRAL.

La majoria de lesions registrades durant el període d’estudi van ser distensions de turmell, tal i com han descrit altres autors (198). A més a més, el nombre de lesions registrades
durant el període d’entrenament en aquesta articulació, en comparació al mateix període de la temporada anterior, va ser inferior. Aquests resultats es troben en la mateixa línia que la disminució del dolor, que va ser superior en el turmell ambdós sexes.

En relació a la recollida de les lesions produïdes en el període d’estudi, s’ha d’explicar perquè només es va considerar com a lesió les incidències que comportaven l’aturada de la pràctica esportiva durant més d’una setmana. Els esportistes estudiats entrenaven en un centre de tecnificació esportiva, però cadascun d’ells jugava amb equips diferents durant els caps de setmana. Per aquest motiu, i facilitar així un registre de dades més precís, es van escollir les lesions que són considerades com a moderades en quant a una de les classificacions de gravetat més utilitzada (190;191).

És important per a futures investigacions poder realitzar un seguiment post-estudi de les lesions esportives, ja que d’aquesta manera podrem observar l’efecte a curt o llarg termini que té aquest tipus d’entrenament sobre la prevenció de lesions.

ESTABILITAT POSTURAL (Estudi II)

En les noies, l’estudi II va mostrar una millora significativa de l’àrea de desviació del centre de pressions en els quatre tests realitzats. En el cas dels nois, només es va registrar una reducció significativa en un dels test executats. Així doncs, i malgrat que la majoria de les proves no van ser significatives en el grup masculí, sí es va observar una millora quantitativa del CP, el que ens fa pensar que, possiblement, amb una mostra més representativa, podríem trobar resultats significatius del que aquí és només una tendència.

Aquestes dades concorden amb altres treballs, on programes d’entrenament de l’equilibri també van obtenir resultats significatius en la millora de la desviació postural (15;51;83;89).

Un altre punt a destacar és el grau de fiabilitat de les proves utilitzades, on s’han obtingut resultats de correlació entre moderats y excel·lents (79;86). És important senyalar que aquests últims treballs referenciats han utilitzats plataformes de forces, mentre, en el nostre cas, les valoracions realitzades s’han desenvolupat mitjançant una plataforma de pressions. L’estudi III d’aquesta tesi doctoral va estar dissenyat per a demostrar la fiabilitat d’aquest últim tipus de plataforma, i es va obtenir igualment una correlació de moderada a alta.

També vam poder observar com les noies tendien a una major estabilitat postural en comparació als nois, tal i com prèviament havien observat Hewett et al. (1999) (70). Hem de tenir present que l’alçada promig de les noies en el nostre estudi era inferior a la dels nois, la qual cosa implica un centre de gravetat més baix i per tant afavoreix la qualitat d’equilibri.

Aquest primer estudi ens va fer reflexionar sobre dues necessitats per a futurs treballs: disposar d’una mostra d’esportistes amb grup control i disposar d’un equipament testat com
a fiable. Aquestes premisses van ser prioritàries en el disseny dels estudis posteriors (III, IV i VI). Una altra decisió presa a partir d’aquest segon treball va ser el voler fer un anàlisi dinàmic del control postural, ja que és el més lligat a la realitat de les accions esportives.

FIABILBITAT DE LA BATERIA DE TESTS D’EQUILIBRI (Estudi III)

La primera línia de treball (Estudi I i II) va portar a la necessitat de crear una eina vàlida i fiable per a la mesura de l’estabilitat postural. És així com es va procedir a l’estudi que tenia com a objectiu donar fiabilitat a una bateria de tests que mesuressin l’estabilitat postural, i que s’aproximés el més possible a la realitat esportiva. Els resultats d’aquest nou estudi ens van donar una correlació de bona a excel·lent en el test d’ulls oberts i tancats, però baixa en el cas del test de salt. Arrel d’aquest nou treball, es van poder utilitzar aquests dos primers tests per a la comparació entre subjectes en els estudis següents.

En l’estudi IV, tot i saber que la correlació del test de salt era baixa, vam estimar convenient analitzar les dades degut a la manca de treballs similars, i sempre conscients de la baixa fiabilitat de la mesura. En aquests tipus de tests en moviment, altres autors com Colby et al. (1999) van obtenir una correlació excel·lent al mesurar el temps d’estabilització i la desviació estàndard de la força de reacció del terra amb una prova similar, encara que al mesurar el CP la fiabilitat obtinguda va ser menor (80). En aquesta línia, altres treballs mostren com les mesures de força són més fiables a les del CP (90). També cal tenir en compte que el test de salt és el més dinàmic dels tres, i és on entren en joc més factors que podrien alterar la mesura.

Per a futures investigacions es necessiten estudiar i comparar noves variables de mesura amb una major mostra per veure quina és la més fiable i apropiada en cada cas i en cada tipus de població. Encara que nosaltres no hem obtingut un test de salt fiable en tots els seus paràmetres, altres estudis sí ho han fet (80;86). És igualment important posar èmfasi en l’estudi de tests que s’aproximin al màxim a la realitat de les accions esportives.

S’ha de tenir en compte que l’equipament utilitzat no disposava d’un programa d’estabilometria. Aquest fet va provocar que, per a obtenir cadascuna de les dades estabilomètriques, es van haver de convertir els diferents formats de vídeo i text a una plantilla de càlcul d’excel. Tot això va alentir el tractament de dades. Per a futurs estudis amb aquest tipus d’equipament, i malgrat tenir en compte els bons resultats obtinguts de fiabilitat.
en dos dels tres tests estudiats, és necessari la millora d’aquest software estabilomètric. Aquest fet facilitarà la presa de dades en treballs amb major mostra.

DIFERÈNCIES DE L’ESTABILITAT POSTURAL SEGONS SEXE (Estudi II i IV)

El segon protocol d’estabilometria (taula 6) utilitzat no va trobar diferències significatives entre sexes en la desviació del CP en cap de les variables del test d’equilibri unipodal amb ulls oberts, tal i com van obtenir Black et al. (1982) (199). Pel contrari, altres autors sí van trobar un major equilibri per part de les dones (40;48) en aquest mateix tipus de prova. D’altra banda, i retornant al nostre estudi, la prova amb ulls tancats va mostrar diferències significatives entre homes i dones en l’eix lateral i anteroposterior només en la cama no dominant.

Els resultats de l’estudi II mostren tendències similars, malgrat no tenir dades estadístiques. D’aquesta manera, l’oscil·lació del CP del primer protocol d’estabilometria va mostrar un major control de l’estabilitat postural per part de les noies. La diferència, en aquest primer protocol, va ser que aquests resultats es van donar tant amb els ulls oberts com tancats i en totes dues cames. Una de les causes podria ser el fet de tenir una menor alçada i per tant un centre de gravetat més baix (5), tal i com hem apuntat prèviament.

Per últim, en el cas del salt es van trobar diferències significatives en totes dues cames només en l’eix lateral, mostrant com les dones tenien una major estabilitat. Aquest últim test, tot i tenir en compte la baixa correlació obtinguda, es va incloure en la base de dades ja que es va considerar la seva utilitat per a estudis futurs. De la mateixa manera, Wikstrom et al. (2006) van obtenir també un millor índex de control postural dinàmic en les dones, encara que el component vertical de les forces de reacció del terra va ser millor absorbit pels homes, fet que s’associa a una major flexió de genoll d’aquests últims en la recepció del salt (37). Com ja hem descrit anteriorment en la introducció, aquesta causa podria repercutir en una disminució del control neuromuscular i associar-se a la major incidència lesiva de les dones, especialment en relació al LCA i al lligament lateral del turmell (49;52). Segons aquests resultats, és interessant destacar que el sexe femení no mostra una menor capacitat d’equilibri en els tests més dinàmics (UT i salt unipodal) en comparació als homes, tal i com també mostren altres treballs (37;48). D’aquesta manera, la major incidència lesiva esmentada sembla ser més deguda a diferències en el control neuromuscular, d’aquí la
importància de mesurar les forces d’impacte del terra i la cinemàtica de les extremitats. En aquesta línia, és important destacar que alguns autors han observat una millora en l’estratègia de recepció del salt després d’un entrenament neuromuscular (30;200), d’aquí la importància d’aquest tipus d’entrenament des de la infància.

DIFERÈNCIES DE L’ESTABILITAT POSTURAL SEGONS CAMA DOMINANT (Estudi IV)

No hi van haver diferències significatives entre cama dominant i no dominant en cap dels tests realitzats. D’altra banda, si analitzem per separat ambdós gèneres es van trobar diferències en els dos eixos del salt en les dones, obtenint-se millors resultats en la cama dominant. En quant als homes, només es van obtenir dades significatives a favor de la cama dominant en l’eix anteroposterior durant el test d’ulls oberts. En aquesta línia, el grup de Ross et al (2004) també va obtenir anteriorment una menor desviació anteroposterior en la cama dominant respecte la no dominant tant en homes com dones en l’equilibri unipodal, encara que no es van observar diferències en la desviació mediolateral (39).

En el test de salt, la major desviació del CP de la cama no dominant respecte la dominant en les dones també havia estat observada per Hewett et al. (2002). Aquest grup d’investigadors refereix aquest fet com un dels possibles factors que predisposen a la major incidència de lesió del LCA en dones respecte els homes (5). Pel contrari, Wikstrom et al. (2006) no van trobar diferències significatives entre extremitats en el cas del salt unipodal tant en homes com dones (37). Es necessiten estudis amb major mostra d’individus que mesurin les diferents variables de control neuromuscular de forma més dinàmica i per tant més propera a la realitat de les activitats esportives.

EFECTES A LLARG TERMINI DE L’ENTRENAMENT MITJANÇANT VIBRACIONS MECÀNIQUES EN PERSONES ENTRENADES (Estudi V i VI)

ANTECEDENTS (Estudi V)

A continuació es discutiran els resultats obtinguts en la revisió sistemàtica sobre els efectes a llarg termini de l’entrenament mitjançant vibracions mecàniques en població
físicament activa (Estudi V). Aquesta revisió, la qual segueix les directrius marcades per la guia *Cochrane Handbook* (201), va ser el pas previ a l’estudi VI, un assaig controlat aleatori que discutirem a posteriori.

Força explosiva

Encara que no es van observar millores estadísticament significatives en la força explosiva avaluada amb el CMJ, el metanàlisi realitzat amb el subgrup GV vs GP mostra una tendència a la millora d’aquesta qualitat (IC 95% de [-0.0433, 0.8446]). Dels quatre articles analitzats (115;119;136;139), només la publicació de Delecluse et al. (139) no va obtenir diferències significatives en el grup de vibració.

En el cas del subgrup GV vs GSV no va ser possible realitzar un metanàlisi degut a la heterogeneïtat entre grups. Quatre d’aquests estudis van mostrar diferències significatives en la millora de la força explosiva en el grup de vibració (117;159;182;185), mentre els tres restants no van mostrar diferències entre grups (116;118;183).

Tenint en compte les dades obtingudes en els dos subgrups, i malgrat la diversitat metodològica esmentada, podem dir que els resultats de l’entrenament amb vibracions mecàniques millora el salt en totes els estudis inclosos, encara que no podem evidenciar l’efecte afegit que pot provocar aquest nou tipus d’estímul sobre l’entrenament clàssic de força. En la mateixa línia que els nostres resultats, Wilcock et al. (2009), en la seva revisió sistemàtica, conclouen que existeix una certa evidència sobre els petits beneficis de les VCS sobre la força màxima i la potència en persones entrenades (156).

Es necessiten nous estudis que utilitzin un mateix protocol de valoració per a determinar la força explosiva i la resta de variants de força.

Força màxima

La revisió sistemàtica realitzada no va mostrar una tendència clara sobre els effectes de l’entrenament amb vibracions sobre la força màxima. Aquesta qualitat va ser mesurada amb diferents mètodes en relació a l’acció muscular desenvolupada: estàtica, dinàmica a velocitat constant (isocinètica) i dinàmica a velocitat variable. Aquesta heterogeneïtat metodològica de les valoracions dutes a terme, associada a l’escassetat d’estudis, dificulta encara més la tasca de consens sobre els seus efectes.

La força màxima isomètrica no va obtenir diferències significatives en cap dels estudis inclosos (139;183;184). D’altra banda, els estudis que mesuraven la força màxima dinàmica van mostrar resultats divergents. Entre els estudis que comparaven GV vs GP, el grup de Issurin et al. (1994) va observar diferències significatives en el guany de força màxima
“isotònica” dels flexors de colze a favor del grup de vibració, mentre Delecluse et al. (2005) no van obtenir diferències en la força isocinètica dels flexors i extensors de genoll (120). En quant als estudis que comparen GV vs GSV, la majoria d’aquests no obtenen diferències entre grups (184;185), encara que Mahieu et al. (2006) sí van observar diferències significatives en la força isocinètica dels flexors plantars del turmell a baixa velocitat en el grup de vibració respecte el control (159).

Malgrat la revisió ja esmentada de Wilcock et al. (2009) (156) arriba a la conclusió de que existeix una evidència lleu sobre els efectes beneficiosos de l’EV sobre la força màxima en persones entrenades, en el nostre cas no podem estabir conclusions clares sobre aquesta qualitat.

Amplitud de moviment

La flexibilitat, tot i no poder-se analitzar estadísticament degut a l’heterogeneïtat de les eines de mesura, va registrar resultats de millora significativa en el grup de vibració en els quatre estudis inclosos (119-121;172). Aquestes millores es van obtenir en els dos subgrups.

Control Postural

El control postural només va ser mesurat per un estudi del total d’inclosos (159), el qual no va obtenir resultats significatius. Cal destacar que sí s’han trobat diferències significatives en la millora de l’estabilitat postural en altres tipus de població, com per exemple pacients postcirus de LCA (145), pacients geriàtrics (111) o pacients amb patologia (127;146). Són necessaris, per tant, nous assajos clínics controlats aleatoris amb persones entrenades per a poder valorar els efectes de la vibració sobre aquesta variable.

És important ressaltar que cap dels estudis va descriure efectes negatius provocats per l’entrenament amb vibracions mecàniques, doncs només un d’ells va descriure un dolor a la cara anterior de la tíbia que va propiciar l’aturada de l’entrenament (118).
Respecte els resultats obtinguts en aquesta revisió, és necessari tenir en compte la baixa qualitat metodològica de la majoria dels estudis analitzats. La raó per la qual vam incloure aquests estudis va ser degut a la manca de treballs longitudinals de qualitat sobre els efectes de l’entrenament amb vibracions mecàniques sobre el rendiment físic, especialment en població físicament activa. Aquest fet és probablement causat per la dificultat i els esforços que implica el seguiment de l’entrenament diari amb una població homogènia i a més a més de forma controlada. És necessari, doncs, seguir estudiant els efectes a llarg termini sobre el rendiment físic en població físicament activa amb mostres més grans, comparar els mateixos protocols d’exercici per a igual tipus de població, consensuar les diferents proves de mesura i incidir en la millora de la qualitat metodològica dels estudis. Aquesta última ha d’estar lligada a la idoneïtat del mètode d’aleatorització, l’ocultació de l’assignació aleatòria, el cegament en l’avaluació dels resultats, la descripció del nombre i les causes de les pèrdues de seguiment i el seguiment post- estudi, tal i com detalla la institució Cochrane (201).

Per últim destacar que tot i no haver evidència científica sobre els efectes addicionals de les VCS en la millora del rendiment esportiu, aquest tipus d’entrenament pot proporcionar un estímul diferent; és adir, pot variar l’entrenament d’un esportista quan es combina amb mètodes tradicionals.

EFECTES D’UN ENTRENAMENT DE VCS DE 15 SETMANES DE DURACIÓ EN JOVES JUGADORES DE BÀSQUET (Estudi VI)

La principal troballa d’aquesta investigació ha estat la millora de l'estabilitat postural i la força explosiva després d’un entrenament de VCS de 15 setmanes en dones joves jugadores de bàsquet. Aquests beneficis només han estat significatius després de 8 setmanes d’entrenament, mentre que no ho han estat en comparar les dades obtingudes a les vuit i les quinze setmanes de la intervenció. A continuació analitzarem cadascuna de les variables mesurades.

Força explosiva

Els efectes positius obtinguts en la força explosiva són de particular interès ja que la potència muscular màxima és molt important pel rendiment en el bàsquet. Hem trobat altres autors que ja van comparar l'entrenament mitjançant VCS versus programes estàndards en persones entrenades, obtenint diferències significatives a favor del grup de vibració (119;136). Així Aninno et al. (2007) i Fagnani et al. (2006) van obtenir resultats significatius en el salt vertical després de 8 setmanes d'entrenament en dones entrenades.
Alhora d’interpretar els estudis de VCS és important tenir present no només l’àmplia varietat de protocols d’entrenament mostrats entre els diferents treballs publicats (119;136;185), sinó també els diferents paràmetres òptims de vibració depenent del tipus de població (112;139). Malgrat aquesta heterogeneïtat metodològica, hi ha alguns treballs que comparen exactament el mateix protocol d’entrenament amb i sense vibracions, obtenint diferències significatives en el salt vertical a favor del grup de vibració a les 5 (185), 6 (159) i 12 (182) setmanes després de l’entrenament de VCS. Al costat oposat, hi ha altres treballs que no han trobat una millora significativa entre grups en el salt vertical (118;139). En comparar les diferents metodologies aplicades, no s’han trobat raons per explicar els diferents resultats. Segons els nostres resultats, la millora de CMJ reflecteix un efecte beneficiós en el rendiment físic de les jugadores de bàsquet.

El control postural de l’extremitat inferior

Degut a les seves característiques intrínseques, el bàsquet és un esport amb un gran risc de lesió. En un estudi amb 10.393 jugadors de bàsquet els autors van registrar un Índex de lesions de 18,3 per cada 1.000 participacions. Les lesions més greus de l’extremitat inferior afectada són el turmell, com la zona amb major incidència, seguida de la cara anterior de la cama i del genoll (202). En relació a aquests trets característics, la nostra població d’estudi (dones adolescents, jugadores de bàsquet) es pot considerar com una de les de major risc de sofrir lesions esportives (108). S’ha observat en diverses publicacions com les millores en l’estabilitat postural i el control neuromuscular poden ser una estratègia eficaç per a la prevenció de lesions en els esportistes (98;103;106). En la intervenció que hem realitzat s’han registrat importants avanços després de 15 setmanes d’entrenament en els dos tests que avaluen el control postural: test de salt unipodal i test d’equilibri unipodal descartant el sistema visual. Aquests resultats mostren que l’entrenament mitjançant VCS podria ser una eina per prevenir les lesions esportives de l’extremitat inferior.

Test del salt unipodal horitzontal

No s’han trobat estudis que avaluin l’efecte de les vibracions de cos sencer sobre la prova de salt unipodal en la recerca bibliogràfica inicial. En el treball presentat, la prova de salt unipodal ha estat la que més millores significatives ha obtingut en el GV comparat amb el GC en ambdues cames. El salt unipodal ha demostrat ser un bon predictor de l’estabilitat funcional del genoll (93) i s’ha utilitzat per examinar pacients amb lesió del LCA (11;203). Aquesta prova podria ser també una bona eina per a avaluar el control neuromuscular de l’esportista, com ja hem esmentat ha estat provada com a vàlida i reproduïble. A més es
Els resultats de la prova d'equilibri només mostren canvis significatius en el test amb ulls tancats a favor del grup de vibració. Tenint en compte les condicions de la prova i que el sistema nerviós rep informació de tres tipus diferents de receptors neuronals (propioceptors, sistema visual i sistema vestibular), és possible apuntar que els canvis obtinguts es deuen a la millora del sistema propioceptiu. Malgrat els nostres resultats, actualment els efectes de les VCS sobre el control postural i propriocepció no són prou clars. Segons les últimes investigacions, alguns estudis han avaluat els efectes aguts (126;146;181) i a llarg termini (140;145;171) de l'entrenament de VCS sobre l'equilibri, però molt pocs d'ells ha utilitzat una població entrenada. Tot i no estudiar els efectes aguts, és important esmentar la tasca realitzada per Torvinen et al. (2002), els quals van observe millores significatives agudes en l'equilibri després de 4 minuts de VCS (Galileo 2000, 15.-30. Hz, 10 mm) en adults joves (126). D'altra banda, un altre estudi no va trobar cap efecte de l'aplicació de 4 minuts de VCE en adults joves (Kuntötary màquina, 25-40Hz, de 2 mm) (152). Els efectes crònics són encara més desconeguts. El mateix grup d'investigadors no va mostrar efectes sobre l'equilibri després de 4 mesos d'entrenament amb VCS (171). En la mateixa línia, Mahieu et al. (2006) van investigar els efectes d'un entrenament mitjançant VCS de 6 setmanes de durada en esquiadors de competició comparat amb un programa d'exercici equivalent realitzat sense vibracions. En aquest estudi, ni el grup de vibracions ni el control van mostrar efectes significatius sobre el control postural (159). En el sentit oposat, Moezy et al. (2008) van comparar els efectes d'un programa d'entrenament de VCS amb un programa d'entrenament estàndard i van obtenir millores significatives en el grup de vibracions en la propriocepció de genoll i l'estabilitat postural després de la reconstrucció del LCA (145). Encara que la millora trobada en el nostre estudi es troba només recolzada per l'estudi de Moezy et al (2008), i fins i tot sabent que aquest es va realitzar en una població postcirurgia de LCA, els nostres resultats suggereixen clarament que la vibració té un fort efecte estimulant sobre els proprioceptors muscualrs i articulars. Tenint en compte que hi ha poca evidència d'aquest fet,
són necessaris nous estudis. El dèficit de control del centre de gravetat s'ha descrit com un important factor de risc per les lesions de membres inferiors, per la qual cosa un augment en la variació del centre de pressions del cos s'associa a un deteriorament de l'estratègia de control neuromuscular. Aquest fet augmentarà les forces transmeses a la estructures intraarticulars, lligamentoses i musculars (63). La millora significativa del centre de pressions obtinguda en el grup de vibració del nostre estudi podria prevenir futures lesions en les extremitats inferiors de joves jugadors de bàsquet.

Les proves de major dificultat, com les que es realitzen amb els ulls tancats o el salt unipodal, estan més relacionades amb el rendiment funcional (86). De la mateixa manera, aquestes proves esportives que es troben més properes a la realitat de l'esportista són les que han registrat millores significatives en el grup de vibració. Segons els nostres resultats, l'entrenament de VCS podria ser un mètode excel·lent per a millorar el rendiment funcional dels esportistes.

Efectes adversos

No s'han registrat efectes adversos en el grup de vibració del nostre estudi, encara que la majoria de les esportistes van notar una sensació de picor i vermellor a la pell el primer dia d'entrenament, clínica que va desaparèixer entre el segon i el tercer dia. Aquesta sensació també ha estat descrita per altres autors i s'associa a l'eritema (derivat d'un augment de la circulació sanguínia cutània) produït per l'exposició aguda a la vibració (151).

Cap dels estudis seleccionats en la nostra revisió va descriure efectes adversos de l'EV sobre els esportistes avaluats excepte el cas del grup de De Ruiter et al. (2003), on van descriure el cas d'un subjecte que va abandonar l'estudi per desenvolupar dolor a la cara anterior de la tibia a les dues setmanes d'entrenament amb vibracions (118). En qualsevol cas, seria interessant poder realitzar un seguiment de l'EV a més llarg termini.

Per a futurs estudis amb VCS és important tenir en compte que el grup control hauria de realitzar els mateix tipus d'exercici que el grup d'estudi, encara que sense vibracions. En el nostre treball, el fet de tenir un grup control passiu que va seguir el seu entrenament estàndard, podria suposar un risc de biaix. Nous estudis amb major mostra de població són necessaris per a poder extreure conclusions clares sobre els efectes de l'entrenament mitjançant vibracions mecàniques sobre la força explosiva i control postural.
PREVENCIÓ DE LESIONS ESPORTIVES MITJANÇANT L’ENTRENAMENT NEUROMUSCULAR

Actualment sabem que els principals factors de risc a analitzar per prevenir lesions esportives es deuen a factors ambientals, anatòmics, hormonals i neuromusculars (24). Un dels factors més modificables, i a més a més principal objectiu d’estudi d’aquesta tesi, és el control neuromuscular. Avui dia sabem que aquest factor és modificable amb l’entrenament, el qual permet obtenir les adaptacions necessàries per tal que els esportistes utilitzin i segueixin els patrons d’activació neuromusculars més segurs per a la correcta estabilització activa de l’articulació.

En el nostre estudi hem utilitzat dos tipus d’entrenament neuromuscular molt diferents, el TRAL i les VCS. Els dos mètodes ens han donat efectes positius sobre el control postural, la manca del qual és un factor de risc important en relació a les lesions d’extremitat inferior (15;25;47;62;63).

Estudis anteriors ja van obtenir beneficis en la prevenció de lesions gràcies a entrenaments propioceptius en joves esportistes (51;98;103;106), encara que cap d’ells utilitzant pròpiament el mètode TRAL. Tot i així, el tipus de població i els mètodes d’entrenament utilitzats són molt variables entre estudis, així com la qualitat metodològica dels mateixos. És necessari seguir investigant en aquesta línia amb major mostra de població per tal de poder optimitzar al màxim aquest tipus d’entrenament que s’associa a la disminució de la incidència lesiva.

En relació a l’entrenament amb VCS com a mètode per prevenir lesions esportives, la manca d’estudis és també important. D’una banda, el grup de Moezy et al. (2008), tot i estudiar amb pacients intervinguts del LCA, van obtenir millores significatives en la propiocepció de genoll i en l’estabilitat postural després d’una intervenció realitzada amb VCS (145). Pel contrari, Mahieu et al. (2006) no van obtenir diferències en l’estabilitat postural en joves esquiadors postentrenament utilitzant igualment vibracions (159).

Dins dels possibles efectes de prevenció, hem de tenir en compte que les VCS provoquen augmentes de l’activació muscular (149;179), i per tant poden tenir efectes positius en el treball del control neuromuscular. Aquest tipus d’entrenament ha estat identificat com a una forma d’aconseguir patrons de coactivació a voltant del genoll en accions en cadena cinètica tancada, fet que incideix en la protecció d’aquesta articulació i per tant en una disminució de les lesions esportives (30).
Analitzant la metodologia utilitzada en aquesta tesi, hem de destacar que un dels trets diferencials entre els dos mètodes utilitzats (TRAL i VCS) és la introducció de salts en el segon dels mateixos. Recolzant la decisió d’introduir aquestes últimes accions, Hewett et al. (2006) van realitzar un metànàlisi sobre l’efectivitat dels entrenaments preventius de lesions de LCA en situacions de pràctica esportiva. Entre els sis articles que van determinar com a estudis de major qualitat metodològica, volem destacar el fet que s’utilitzessin, entre d’altres tipus d’exercicis, l’anomenat treball pliomètric, desenvolupat especialment mitjançant salts i incident, per tant, en el cicle d’estirament – escurçament de la musculatura. Aquest tipus de treball ha estat identificat com a una eina que disminueix les lesions del LCA en esportistes femenines gràcies a la millora del control neuromuscular i a l’estabilitat dinàmica de l’articulació (stiffness dinàmica) (21).

En relació al punt anterior, hem de recordar que l’EV incideix especialment en la força explosiva (115;179), la qual es troba estretament relacionada amb l’esmentat cicle d’estirament – escurçament. Malgrat aquests efectes positius, un dels inconvenients del treball pliomètric és l’alt impacte que reben les articulacions. Per a alleugerir aquest fet negatiu, l’EV, associat a exercicis de salt de baix impacte, podria ser una bona alternativa, doncs s’augmentaria l’estímul de l’entrenament sense haver de recórrer a grans sobrecàrregues per incidir en els components musculesquelètics responsables de l’augment de la força explosiva. Els nostres resultats recolzen aquesta importància d’introduir el treball de salts per a la millora del control neuromuscular. Aquesta afirmació la basem en el fet de que les proves d’equilibri unipodal realitzades mostraven més bons resultats quan s’introduïa el treball amb vibracions i salts (estudi VI en comparació a l’estudi II).

Referint-nos a la duració aconsellable d’aquests programes d’entrenament als que ens hem referit, i malgrat existir pocs treballs rellevants sobre aquest tema, Hewett et al. (2006) suggereixen que es necessita un mínim de sis setmanes per a obtenir resultats positius en la prevenció de lesions, temps que coincideix amb el que es necessita per a la millora del reclutament motor. Tot i que els nostres programes d’entrenament van tenir durades més perllongades, aquests resultats es poden relacionar amb l’estudi VI, doncs les diferèNCies significatives ja van ser registrades en l’avaluació realitzada a les 8 setmanes post intervenció. Malgrat l’estudi va mostrar que les adaptacions aconseguides es mantenien a les 15 setmanes, no va haver-hi diferèNCies significatives entre aquests dos controls, fet que demostra que la major part d’adaptacions aconseguides es trobaven en els dos primers mesos d’entrenament.

Aquest fet no significa que amb vuit setmanes d’intervenció sigui suficient per a la prevenció de lesions esportives de tota una temporada, ja que hem de tenir present la
desadaptació que es crearia al llarg de la mateixa. Recordem que períodes de menys de quatre setmanes sense entrenament poden provocar importants pèrdues de les diferents capacitats físiques d’individus entrenats (205).

Per últim, i recolzant el motiu pel qual hem triat les mostres d’aquesta tesi, cal destacar la importància de l’entrenament neuromuscular en l’adolescència. En aquesta edat hi ha un ràpid increment de la talla i pes sense que hagi d’accompanyar de manera proporcional un augment del control neuromuscular (206), fet que podria incrementar la incidència lesiva. Per acabar, és important tornar a esmentar el metanàlisi realitzat per Hübscher et al. (2010), que basant-se en set estudis considerats d’alta qualitat metodològica, mostren evidència sobre l’efectivitat de l’entrenament proprioceptiu/neuromuscular en la reducció de la incidència de certs tipus de lesions esportives en adolescents i joves adults durant accions esportives que impliquen canvis de direcció (4). D’acord a aquesta última revisió, queda clar que l’entrenament neuromuscular redueix la incidència de certs tipus de lesions esportives, entre elles la lesió de LCA sense contacte. Malgrat aquest avanç, encara hem de seguir investigant sobre quins són els paràmetres òptims d’aplicació en els diferents mètodes d’entrenament neuromuscular, sovint anomenats propioceptius.
Les principals conclusions basades en els resultats dels estudis (I-VI) descrits en aquesta tesi doctoral són:

- Un entrenament neuromuscular mitjançant Teràpia Reequilibradora de l'Aparell Locomotor (TRAL) durant tres mesos disminueix el dolor de turmell i genoll en esportistes adolescents i provoca una millora del control postural (Estudi I i II).

- L'estabilometria mitjançant sensors òptics és una eina fiable en la mesura de l'equilibri unipodal amb ulls oberts i tancats, malgrat aquest mètode no ha mostrat fiabilitat en un test de salt (Estudi III).

- Les dones esportistes mostren menor desviació del centre de pressió en els tests d'equilibri més dinàmics (equilibri amb ulls tancats i salt a una cama amb recepció unipodal) en comparació als homes (Estudi IV). Aquest fet revela millor equilibri en el sexe femení en aquests tipus de proves.

- La revisió sistemàtica realitzada sobre els efectes de l'entrenament mitjançant vibracions en persones físicament actives mostra resultats diversos degut a l'heterogeneïtat de les valoracions i intervencions desenvolupades; acompanyant aquest fet, destaca la baixa qualitat metodològica dels estudis. Els estudis inclosos mostren una tendència a la millora de la força explosiva, malgrat haver obtingut una evidència de pobre qualitat (Estudi V).

- L'entrenament amb vibracions de cos sencer en jugadores de bàsquet millora la força explosiva i l'equilibri (Estudi VI).

- L'entrenament neuromuscular millora el rendiment físic dels esportistes, encara que no es coneixen els paràmetres òptims a treballar. Els estudis futurs s'han de dirigir a la comparació sistemàtica d'assajos controlats i aleatoris per a poder identificar aquestes variables d’entrenament.

- És necessari continuar desenvolupar eines d’avaluació del control neuromuscular, i que aquestes s’apropin a la realitat de les accions esportives.
AGRAÏMENTS

A Dani Romero, perquè escollir-lo com a director de tesi ha estat un dels millors encerts, tant per la seva qualitat d’investigador com de persona.

A tot l’equip format pel Consell Català de l’Esport, especialment a tots els entrenadors i equip mèdic que m’han recolzat en aquest llarg procés.

A l’Iñefc de Barcelona, pel seu recolzament en la formació de joves investigadors novells, per l’entusiasme transmès durant la carrera i la beca com a personal investigador en l’àmbit de l’Activitat Física i l’Esport.

A Pere de Antolín, per la seva disponibilitat a ensenyar la seva experiència en el camp de la propriocepció.

A tot l’equip del laboratori de biomecànica de l’Escola universitària d’Infermeria, Fisioteràpia i Nutrició Blanquerna, per ajudar-me en moments claus del treball.

A tots els col·laboradors i participants en les diferents etapes del treball: Toni i Carlos, Lluís Costa, Núria Massó, Lluís Rueda, Agustí Muntanyola, Montse Girabent, equip de bàsquet s. XXI, equip de voleibol Residència Blume i equip espanyol d’esquí alpí.

A Cari Bagur, per ser una gran companya d’investigació i alhora una persona model a seguir.

A Myriam Guerra, per la seva paciència en explicar-me la importància del format, i sobretot, pel seu gran suport i recolzament en els últims tràmits d’aquesta tesi.

A Mario Lloret, gràcies per la seva gran confiança als investigadors novells, sense el seu recolzament les coses haurien estat molt diferents.

A Mercè Sitjà, per la seva empatia, amistat i companyia en la recerca.

A Janne i Ulla Britt Näslund, per obrir-me els ulls al món de la investigació, i sobretot, per aquella estància a Suècia, no la oblidaré mai.

Als meus pares, pel vostre recolzament i amor incondicional. Gràcies per tots els valors que mai podré aprendre en els llibres.

Als meus germans, que sempre esteu amb mi.

Als meus avis, que encara que ja no hi sou, heu marcat profundament la meva personalitat, i sempre tindré una part del meu cor a Peq (Bèlgica).

A tu, per fer que cada dia valgui la pena al teu costat.

I també gràcies a l’alegria de viure i suport que mai ha faltat dels meus amics, sense ells hagués estat més difícil superar aquest llarg procés.
I no voldria oblidar-me del meu poble, Vinaròs, que malgrat els quilòmetres que em separen d’ell sempre el porto molt a dins meu.

I per finalitzar, gràcies al suport de la Secretaria General de l’Esport i del Departament d’Innovació, Universitats i Empresa.
BIBLIOGRAFIA

(113) Issurin V.B TG. Acute and residual effects of vibratory stimulation on explosive strenght in elite and amateur athletes. 17, 177-182. 1999. Int Arch Occup Environ Health. Ref Type: Generic

ESTUDIS (I-VI)
Efectes d’un entrenament proprioceptiu sobre l’extremitat inferior en joves esportistes jugadors de voleibol

AZAHARA FORT VANNHEIRHAEGER, LLUIS COSTA TUTUSAURO, PEDRO DE ANTONI RUIZÓ i NÚRIA MASSÓ ORTIGOSA

RESUM

Introducció i objectius: Estudi longitudinal d’intervenció amb una durada de 6 mesos, de grup únic amb avaluació abans-després que preteni avaluar l’eficàcia d’un programa proprioceptiu com a mètode de prevenció de lesions d’extremitat inferior en joves esportistes.

Mètodes: La mostra d’estudi van ser 28 jugadors de voleibol d’ambdós sexes (15-18 anys). Es van prendre dades durant un primer trimestre sense intervenció i durant el següent trimestre amb entrenament. L’entrenament proprioceptiu format va ser mitjançant el mètode terapèutic d’equilibrament amb l’aparell locomotor (TRAL). Es va mesurar semanalment el dolor mitjançant l’escala analògica del dolor i la incidència de lesions d’extremitat inferior en la temporada d’estudi i les mateixes dates de la temporada anterior.

Resultats: Durant el període d’entrenament proprioceptiu es va produir una reducció significativa del dolor de turmell en ambdós sexes, en el cas del dolor de genoll només en noies, i una tendència a la disminució de la incidència de lesions esportives d’extremitat inferior en ambdós sexes, especialment de turmell.

Conclusions: L’entrenament proprioceptiu va permetre la disminució del dolor de genoll en el cas de les noies, amb tendència a la millora en els nois; millora la presència i intensitat de dolor de turmell en ambdós sexes; i en el cas de la incidència de lesions esportives, hi ha una clara tendència a la disminució de lesions de turmell.

PARAULES CLAU: Prevenció, Extremitat inferior, Propioceptio, Lesions esportives, TRAL, Voleibol.

INTRODUCTION

Introduction: We performed a 6-month longitudinal study, using a test-retest method, in a single group to evaluate the effectiveness of a proprioceptive program to prevent lower limb injuries in young athletes.

Methods: The study sample consisted of 28 high-level volleyball players of both sexes aged between 15 and 18 years old. Data were gathered during the first trimester (without intervention) and in the following trimester (with training). The proprioceptive training program was based on locomotive system rebalance therapy. Pain was measured weekly with a visual analog scale and the occurrence of lower limb injury was measured during the study period and in the same time period in the previous year.

Results: During the training period, there was a significant reduction each week in ankle pain in both sexes, as well as a significant reduction in knee pain in girls but not in boys. There was also a tendency to a reduction in lower limb injuries, especially ankle injuries, in both sexes.

Conclusion: The training method decreased the occurrence and intensity of knee pain in girls, and showed a tendency to improve knee pain in boys. The method reduced the occurrence and intensity of ankle pain in both sexes and showed a trend to reduce lower limb injuries, especially those of the ankle.

KEY WORDS: Prevention, Lower limb, Proprioception, Sports injury, Locomotive system rebalance therapy, Volleyball.

Aquest treball ha rebut un ajut a la recerca concedit pel Col·legi de Fisioteràpia de Catalunya 2004-2005.

APUNTS. MEDICINA DE L’ESPORT. 2008; 157: 5-13
INTRODUCCIÓ. ANTECEDENTS I ESTAT ACTUAL.

Un estil de vida actiu és important per a tots els grups d'edat. Les raons per practicar activitat física són moltes, com poden ser plens, relaxació, competició, socialització, manteniment i millora del benestar i de la salut. L'activitat física regular reduceix el risc de mort prematura, de patir malalties coronaries, hipertensió, càncer de càncer de còlon, obesitat i diabetis melito.

Malgrat això, la participació en esports també comporta un risc de patir lesions, per a molts casos, inhabilitant per a la pràctica esportiva.

El voleibol és un dels esports més populars, amb aproximadament 200 milions de participants al món. Malgrat la seva popularitat, hi ha pesos estudiats prospectius relacionats amb les lesions esportives i la seva prevenció. Com que el voleibol és un esport sense contacte, podria semblar que té una incidència de lesions menor, però a causa de la seva rapidesa i la potència dels seus moviments en senit vertical i horitzontal, és inevitable una gran incidència de lesions.

Inestabilitat funcional

Després de les lesions cròniques d'extremitat inferior, especialment les de tipus ligamentars, els símptomes crònics poden desenvolupar un defecte de la funció del múscul. El pacient es queixa d'un tornell o genoll inestable. Aquesta sensació també pot estar present en pacients que tenen una estabilitat mecànica normal. Per descriure aquesta disfunció s'utilitza el nom d'inestabilitat funcional. Aquesta condició ha estat descrita especialment després de lesions del ligament fibular. Freeman et al. van suggerir que la inestabilitat funcional és usualment el resultat d'un deficit de coordinació donada per la reducció dels senyals aferents proprioceptius dels receptors articulares.

Prevenció de lesions esportives

Les lesions esportives figuren entre les més comunes de la societat moderna. L'èxit en la prevençió d'aquest tipus de lesions exigiria intervencions vàlides abans i després de l'actuació per tractar el problema.

L'etiologia, els factors de risc i els mecanismes exactes que desencadenen les lesions han de ser identificats abans d'iniciar un programa de prevenció. Parkkari et al. conclouren en la seva revisió feta el 2001 que només hi ha 16 estudis controlats seleccionats a l'arxiu publicats en la prevençió de lesions esportives. D'acord amb aquest estu-
VALORACIÓ I ENTRENAMENT DEL CONTROL NEUROMUSCULAR

VALORACIÓ I ENTRENAMENT DEL CONTROL NEUROMUSCULAR

Síntesi de càpsula i lligaments laterals) i la instabilitat funcional es defineix com una diminució de la propocepció, força, control postural i control neuromuscular sense lligaments. Tropp et al. trobaron que només un 42% d'instabilitats funcionals de tumell s'associaven amb instabilitat mecànica i només un 36% amb instabilitat mecànica eren associades amb instabilitat funcional.

Està demostrat per diversos estudis que tant les turmelleres com els embenaments tenen un efecte preventiu. Tanmateix, aquestes dues mesures tenen certs efectes negatius, com per exemple: poden irritar o provocar petites ferides a la pell, poden diminuir la funcionalitat, els embenaments funcionals es poden desfer durant el partit, necessiten ser aplicats per personal qualificat.

L'entrenament propoceptiu amb taules d'equilibri també ha estat efectiu en la prevenció de lesions de tumell, i sense els inconvenients acabats d'esmentar.

L'entrenament propoceptiu en plans inestables és comú per prevenir noves lesions de tumell. En diversos estudis s'ha comprovat que existeixen diferències significatives en el control postural i la funcionalitat entre esportistes amb i sense lesions de tumell.

Stainiopoulos, en un paper publicat a la revista *Journal of Strength and Conditioning Research*, va comprovar que l'entrenament tècnic i propoceptiu va ser efectiu per prevenir les lesions de tumell en jugadors de voleibol i que va produir un augment de la força i de la funcionalitat dels esportistes.

Treballs originals

La majoria d'estudis revisats relacionats amb el genoll i la propocepció ens parlen de les lesions de lligament en la seva majoria, en particular el tornament ligamentari i el menisc. No obstant això, existixen altres factors que pot afectar la funcionalitat del genoll, com la contractilitat, la força muscular i la flexibilitat.

Caraffa et al. van demostrar, en un paper publicat a la revista *Journal of Sports Medicine and Physical Fitness*, que l'entrenament propoceptiu en jugadors de voleibol i fútbol va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 30%.

Diversos autors van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Prevenció de les lesions de genoll

La majoria d'estudis revisats relacionats amb el genoll i la propocepció ens parlen de les lesions de lligament en la seva majoria, en particular el tornament ligamentari i el menisc. No obstant això, existixen altres factors que pot afectar la funcionalitat del genoll, com la contractilitat, la força muscular i la flexibilitat.

Caraffa et al. van demostrar, en un paper publicat a la revista *Journal of Sports Medicine and Physical Fitness*, que l'entrenament propoceptiu en jugadors de voleibol i fútbol va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 30%.

Diversos autors van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Holm et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Un estudi publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy* va demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll.

En un estudi publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy* va demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.

Hewett et al. van demostrar que l'entrenament propoceptiu és efectiu per prevenir les lesions de lligament en el genoll. En un paper publicat a la revista *Journal of Orthopaedic and Sports Physical Therapy*, van demostrar que l'entrenament propoceptiu va augmentar la força i la funcionalitat del genoll, reduint les lesions en un 40%.
Malgrat que manquen estudis, els més recents semblen que mostren que els pacients amb síndrome rotuliana milloren la símptomatologia mitjançant un programa de propiocepción\(^{23,24}\).

Mètode TRAL

La teràpia reequilibradora de l'aparell locomotor (TRAL) és un mètode de recuperació funcional dinàmica que es basa en la percepció de la posició corporal mitjançant el moviment i els canvis de posició del centre de gravetat. Va ser creat per Pedro Antolin (professor de la Universitat de Fisioteràpia Gimbernat, especialista en recuperació proprioceptiva) l'any 1989-1990. Aquesta tècnica s'utilitza actualment en molts centres de fisioteràpia espanyols, especialment per a tractaments rehabilitadors de lesions d'extremitat inferior. Se sol treballar en una posició bipeda, realitzant diversos moviments unipodals o bipodals, i sempre mantenint una estètica correcta dels diversos segments de l’extremitat inferior (turbell, genoll, maluc).

Les variacions de la normalitat respecte de l’alineació del maluc, genoll i turbell han estat descrites com un factor potent de risc de lesions d’extremitat inferior. Actualment no hi ha acord en la bibliografia mèdica sobre les característiques de l’alineació anormal o els mètodes per mesurar-lo\(^{31}\).

Actualment no hi ha cap estudi que demostri l’eficàcia dels protocols del mètode TRAL com a entrenament proprioceptiu eficaç.

Estudis prospectius sobre factors de risc per a lesions d’extremitat inferior han estat revisats. Hi han estat implicats factors de risc intrínsecos i extrínsecos; malgrat això, hi ha poc acord respecte d’aquestes troballes. Calen estudis prospectius futurs utilitzant mostrers d’igual grandària d’homes i dones, i recollida de dades, utilitzant mètodes establerts per identificar i classificar la severitat de les lesions, a fi de poder determinar els factors de risc de lesions d’extremitat inferior\(^{42}\), i d’aquesta manera establir mètodes preventius eficaços.

Mètode

DisseNY

Estudi longitudinal d’intervenció, de grup únic amb avaluació abans-després. L’estudi va tenir una durada de 6 mesos, on es van comparar un primer trimestre sense intervenció i un segon trimestre amb entrenament proprioceptiu mitjançant TRAL.

Taula 1

<table>
<thead>
<tr>
<th>Pos (kg)</th>
<th>Talla (cm)</th>
<th>Edat (anyos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noves</td>
<td>66,5 ± 6,6</td>
<td>176 ± 1,0</td>
</tr>
<tr>
<td>Nois</td>
<td>79,2 ± 13,1</td>
<td>190 ± 0,1</td>
</tr>
</tbody>
</table>

Mostra (n)

Els subjectes escollits per a l’estudi van ser l’equip de recollida de dades que participa en les competicions de voleibol femení i masculí de la Residència Joaquim Blume d’Esplugues de Llobregat (taula 1). Aquest grup consta de 14 nois i 14 nois d’edats compreses entre 15-18 anys.

El temps d’entrenament durant el període de recollida de dades va ser de 18 h setmanals, tant per a nois com per a nois. Van realitzar dues competicions per setmana tant nois com nois, una amb el seu club i l’altra amb l’equip de la Residència Blume.

Es disposa del consentiment informat signat pels pares i esportistes participants en l’estudi. Aquest estudi va ser aprovat pel Comitè d’Ètica del CAR de Sant Cugat del Vallès.

Mètode d’observació. Recollida de dades

A continuació es descriuen els procediments utilitzats amb els subjectes d’estudi:

Valoració del dolor

L’objectiu principal d’aquesta valoració va ser mesurar la intensitat del possible dolor produït a conseqüència de la seva activitat esportiva (entrenament o competició). Es va utilitzar la coneguda escala visual analògica (VAS), que ha estat validada prèviament\(^{25,26}\).

Es va mesurar el dolor habitual de l’última setmana i el dolor al més indret produït durant la darrera setmana de turbell i genoll mitjançant una taula adaptada (fig. 1)\(^{20}\). Posteriorment es va comparar el primer trimestre (sense TRAL) amb el segon trimestre (amb entrenament TRAL).

Es va demanar als esportistes de marcar el dolor amb una creu. Es va explicar degudament als participants com omplir les taules per a cada mesurament. A l’extrem esquerre apareix el no-dolor i a l’extrem dret el màxim dolor imaginable. Les dades es van valorar del 0 al 100 (fig. 2).
Cada una de les taules utilitzades semanalment van ser guardades en arxiu amb clau al Departament de Fisioteràpia del Consell Català de l'Esport.

Segueixent de les lesions esportives d'extremitat inferior

Es va considerar lesió esportiva la que comportava l'aturada de la pràctica esportiva habitual més d'una setmana. Totes les lesions esportives van ser diagnosticades pel servei mèdic del Centre d'Estudis d'At Rendiment Esportiu (CEARE) del Consell Català de l'Esport. Les històries clíiques van ser arxivades pel servei habitual de l'equip de voltévol esportista.

La recollida de dades de l'any anterior es va fer de forma retrospectiva gràcies a l'accés de la història clínica esportiva de cada un dels participants en l'estudi.

Les lesions d'extremitat inferior diagnosticades durant el període d'estudi pel CEARE van ser classificades en síndrome rotullana, disseny de tornell, tendinopatia de genoll, ruptura fibular i ruptura de menisc del genoll. No es van incloure més lesions, ja que només es van diagnosticar les descrites anteriorment.

- **Disseny de lligament del tornell.** S'hi inclouen les dissenyes de grau I i II de lligament lateral intern i lligament lateral extern; però només n'hi va haver del segon cas.
- **Tendinopatia de genoll.** S'hi inclouen tendinopatia quadrículiptal, rotullana i tendinopatia diàstil de genoll.

Figura 2

Entrenament proprioceptiu mitjançant el mètode de teràpia reequilibradora de l'apparell locomotor (TRAL).

Posició d'equilibri amb moviments de abducció.

Posició bipodal bàsica.
- Ruptura fibrilar. S’hi inclouen tots tipus de ruptures fibril·laris d’extremítat inferior diagnosticades per ecografia.
- Síndrome rotuliana o síndrome de dolor femorerotuliana. La síndrome rotuliana és descrita per un dolor en la cam anterior del genoll o retrorotuliana en absència d’una altra lesió. El símp
toma més comú observat és el dolor retrogastro al durant i/o després d’activitats físiques com córrer, gatxetar, saltar i bai
xar escalors, ciclistes, saltar i seure amb genolls flexionats27.

Entrenament propioceptiu mitjançant mètode TRAL

Consisteix a fer un entrenament de prevenció de les possi
bles lesions esportives d’extremítat inferior, en concret de les
ions per traumatisme directe o sobrecarregament mitjançant el mètode
TRAL.

Es va adaptar el mètode TRAL al temps i al material de què
es disposava. En el nostre cas el programa es va aplicar en l’espai
reservat a la prevenció que els entrenadors dediquen en el
seu temps de preparació física. L’entrenament de prevenció es
pecific va tenir una durada de 15 min de dilluns a dijous i es va
realitzar durant 12 semanis (fig. 2).

El TRAL disposa de moltes plantilles d’exercicis, però només
es van escollir 12 plantilles, totes en posició bípeda i unipodal.
El programa d’entrenament es va fer sense vambres de 2 a 3
dies i amb vambres un dia a la setmana. Es va seguir una pro
gressió de dificultat començant amb els exercicis més bàsics.
Quan l’exercici era dominat amb ulls oberts, se n’incrementava
la dificultat augmentant el rang de moviment, les tasques
que calia fer, el nombre de repeticions i, per últim, sense ús del
sistema visual. L’assistència dels participants va ser superior al
80% en tots els casos.

Anàlisi estadística

Les dades recollides van ser analitzades amb el paquet esta
dístic SPSS 13.0.
Quant a les dades del dolor, primerament es va realitzar la
 prova de normalitat de Shapiro-Wilk. Si la distribució resulta
va normal, s’utilitzaven proves paramètriques. Es van compar
 les dades mitjançant una prova T per a mostres independents,
per la raó que varem comparar mitjana i no individu per indi
vidu. Si la distribució resultava no ser normal, s’utilitzava la
 prova no paramètrica de Mann-Whitney29.
La incidència de lesions esportives no va poder ser analiza
da estadísticament per la poca quantitat de dades a causa de la
pequena de la mostra. Ens limitarem a fer una valoració quantita
tiva de la disminució del nombre de lesions.

Es va separar el grup de nois i noies, ja que els entrenaments
tècnics i físics no van ser els mateixos.

Resultats

A continuació es descriuen els resultats obtinguts per ca
dascuna de les variables descrites

Valoració del dolor

Primerament es va fer una prova de normalitat per a cadasc
una de les variables: dolor de genoll habitual, dolor de genoll
al més intens, dolor de tornell habitual i dolor de tornell al
més intens.

**Comparació entre dolor de genoll habitual i dolor de genoll
al més intens del primer trimestre sense TRAL respecte
del segon trimestre amb TRAL**

Tant en nois com en noies la distribució va ser normal, per
això es van utilitzar proves paramètriques per als 2 grups.
Es van comparar les dades mitjançant una prova T per a
mostres independents, per la raó que varem comparar mitjana
i no individu per individu.
En el cas de les noies les diferències resulten ser significati
ces tant amb dolor de genoll habitual com dolor de genoll al
més intens. En el cas dels nois no hi ha diferències significati
ves en cap cas.

**Comparació entre dolor de tornell habitual i dolor de
tornell al més intens del primer trimestre sense TRAL
respecte del segon trimestre amb TRAL**

En aquest cas la distribució no va ser normal; per tant, es
van fer proves no paramètriques.
La prova no paramètrica de Mann-Whitney va donar dis
ferències significatives tant en nois com en noies. Com ens va
indicar la U de Mann-Whitney en ambdós sexes, el dolor de
tornell habitual i el dolor de tornell al més intens del primer
trimestre van ser superiors al segon (taula II).

Incidència de lesions esportives

En la taula III es mostraren les lesions d’extremítat inferior
produïdes durant la temporada d’estudi i les lesions produïdes
durant les mateixes dates, però l’any anterior. Com es pot ob
servar, en el cas de les noies el total de lesions d’extremítat in-

Discussió

Valoració del dolor

Dolor de genoll

En el dolor habitual i el dolor al més intens de genoll no-més apareixen diferències significatives en noies de forma positiva, fet que concorda amb els resultats obtinguts en la incidència de lesions. Al primer trimestre les noies van tenir 3 síndromes rotulians i en el segon cap, i el dolor habitual de genoll també disminueix en el segon quadrimestre respecte del primer. Tot i que la diferència no és significativa, en el cas dels nois hi existeix una tendència a la millora del primer trimestre al segon. Posseeix amb una mostra més gran les diferències serien significatives. El programa de TRAL utilitzar es base en les posicions unipodals en equilibri, d’acord amb els resultats obtinguts per Riemann et al.17; puc que tractament té més incidència sobre la musculatura del turnell.

El volcèlib és un esport en què el salt és freqüent, i que en la recepció el genoll sofreix molta càrrega de fet. Hi ha estudis que descriuen que la lesió per sobrecàrrega més freqüent en volcèlib és la tendinopatia de genoll18. Les lesions per sobrecàrrega, com són les tendinopaties rotulianes cròniques, exigeixen un seguiment a llarg termini en molts casos; potser hauria de valorar la incidència del dolor a llarg termini.

Com ja s’ha esmentat, Verhagen et al.11 van mostrar en un estudi prospectiu com l’aplicació d’un programa de propriocep-ció en plans d’equilibri no disminuïa, sinó que augmentava la incidència de lesions per sobreus de genoll. La majoria d’estu-dis, en canvi, mostren que els programes de propriocepció disminueixen les lesions de genoll10,27. En aquest estudi no hi ha un augment significatiu de les lesions de genoll del primer al segon trimestre, i el dolor millora en les noies i té una tendència a la millora en els nois. Per tant, no empijorja la síndrome rotuliana del genoll al programa de TRAL. A més, seria interessant poder aplicar el programa de TRAL durant més temps, per poder assolir les posicions correctes d’extremitat inferior durant l’entrenament. Hewett et al.26 ja van estudiar que una reducció dels moments d’aducción i abducció en l’articulació mitjançant un programa de propriocepció pot establir la restauració i preventre així les lesions de genoll. Aquest procés demana un temps d’aprenentatge. Calen, doncs, nous estudis amb una mostra més gran.

Dolor de turnell

En el cas del turnell, es pot observar una clar millora del síndrome del dolor habitual i del més intens tant en noies com en nois (fig. 3). Aquestes dades concordan amb la disminució de la incidència d’esquigs de turnell del primer al segon tri-imestre.

Aquests resultats es podrien justificar en el sentit que el programa de propriocepció aplicat té una major incidència sobre l’articulació del turnell. De fet, el programa es fa sense atalles esportives (amb mitjons), per la qual cosa la majoria de receptors estimulats durant els exercicis són plantars; a més a més, l’articulació més propers a la terra és el turnell. Aquest fet
Figura 3: Diagrama de dispersió del dolor del tornell habitual (DTH).

Concorda amb els estudis fets per Riemann et al, que van observar que en la posició d'equilibri unipodal la musculatura pertanyent a l'articulació del tornell va ser la més reclamada tant en posició fija sobre el terra, amb matalas, com amb plans multiartics o d'ells tancats. Amb TRAL, potser es fa més incidència en l'articulació del tornell, ja que és la primera articulació després del terra i és la que rep més càrrega.

Incidència de lesions esportives

Com ja s'ha esmentat en el marc teòric, Verhagen et al afirman en els seus estudis que la majoria de lesions en voleibol són les distensions del tornell, igual que en el nostre estudi.

Com ja s'ha esmentat, no es va poder fer una anàlisi estadísticament adequada de les lesions esportives a causa de la dimensió petita de la mostra.

Hi ha una tendència clara a la disminució de les lesions deportives del tornell i genell tant en nois com en noies després de l'entrenament amb TRAL. Tanmateix, com que la mostra és petita, no podem extreure conclusions clares. Si comparem les dades del primer trimestre (sense TRAL) i el segon trimestre (amb TRAL) de la temporada 2004-2005 amb la temporada 2003-2004, es pot observar que la temporada passada les lesions tendien a quedar igual o fins i tot a augmentar el mes final de recollida de dades, al contrari que la recollida de dades després del programa de TRAL. La millora de la incidència de les lesions esportives des d'un punt quantitatiu mitjançant TRAL és superior al 50%.

Línies de futur

Per a estudis futurs serà bàsic disposar d'una mostra d'estudi més gran i d'introduir-hi el grup control. L'ampliació de la mostra sobretot es servirà per aclarir les tendències a la millo-ra i podrem analitzar estatisticament la incidència de lesions esportives d'extremitat inferior.

Agraïments

S'agreix la col·laboració de tot l'equip de voleibol de la Residència Joaquim Blume, i de tot l'equip mèdic del Consell Català de l'Esport, especialment a l'equip de fisioteràpistes a Jaume i Ulla-Britt Nåland des de Suècia, i especialment a Pere de Antolín.

Bibliografia

Efectes d’un entrenament proprioceptiu (TRAL) de tres mesos sobre el control postural en joves esportistes*

AZAHARA FORT VANMEERHAEGHE**
Llicenciada en Ciències de l’Activitat Física i l’Esport (INEFC)
Diplomada en Fisioteràpia (EUINF Blanquerna).
Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna. Universitat Ramon Llull

PEDRO DE ANTOLÍN RUIZ
Escola Universitària de Fisioteràpia Gimbemat

LLUÍS COSTA TUTUSAU
Escola Universitària d’Infermeria, Fisioteràpia i Nutrició Blanquerna. Universitat Ramon Llull

NURIA MASSÓ I ORTIGOSA
Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna. Universitat Ramon Llull

LLUÍS RUEDA PELÀEZ

MARIO LLORET RIERA
INEFC. Institut Nacional d’educació Física Catalunya. Barcelona

Correspondència amb autors/es
** azaharfort@hotmail.com

Resum
Introducció: És un estudi d’intervenció de disseny longitudinal amb una duració de 3 mesos, de grup únic amb avaluació abans-després; que pretén d’avaluar l’efectivitat d’un programa proprioceptiu com a mètode per a millorar el control postural en joves esportistes.

Mètodes: La mostra d’estudi van ser 28 jugadors/es de voleibol (15-18 anys).
Es van prendre dades un primer cop abans d’un primer trimestre sense intervenció, un segon cop finalitzat aquest període i un tercè cop després d’un segon trimestre amb entrenament. L’entrenament proprioceptiu utilitzat es va fer mitjançant el mètode Teràpia Reequilibradora de l’Aparell Locomotor (TRAL).
L’estudi de relació de correcció es va menjar calcular l’àrea de desviació del centre de pressió mitjançant una plataforma de forces amb sensores electrònics Buratto Advanced. Les posicions mesurades van ser la posició unipodal amb ells oberts i tancats de les dues cames.

Resultats: Reducció significant de l’àrea de desviació del centre de pressió en els quatre tests en el cas de les noies i només una reducció significativa en un dels tests amb el grup de nois.

Conclusions: L’entrenament amb TRAL millora el control postural en noies i produceix tendència a la millora en el cas dels nois.
No està amb grup control i mostra més gran són requerits.

Paraules clau
Prevenció, Extremidad inferior, Propriocepción, Control postural, TRAL, Voleibol.

Abstract
Effects of a proprioceptive training (TRAL) of three months on the control posture in young athletes

Introduction: It’s a longitudinal study of six months, a test-retest study in a single group which evaluates the effectiveness of a method called TRAL (Rebalance Locomotive System Therapy) as a proprioceptive programme to improve postural control in young athletes.

Methods: The study sample consists of 28 subjects between 15-18 years old, high-level volleyball players.
TRAL is the independent variable and postural control will be the dependent variable. A paired test will be taken before and after the training.
Postural control was measured with an electronic force platform (Buratto Advanced) three times: three months before training, at the conclusion of this training period, and for a further three months after the proprioceptive training.

Results: The training period shows a significant reduction of movements of the centre of pressure in women and there was only a significant reduction in one of the test in men. Conclusion: The training method improves postural control in women and only has a tendency to improve in men.

Key words
Prevention, Lower limb, Proprioception, Postural control, TRAL, and volleyball.

Introducció. Antecedents i estat actual del tema

Les lesions esportives són unes de les lesions més comunes de la societat moderna. L’etнологia, els factors de risc i els mecanismes exactes que desencadenen les lesions necessiten ser identificades abans d’iniciar un programa de prevenció.

Les lesions de turmel, quant a localització, són les més comunes en una àmplia varietat d’esports. Les lesions del ligament lateral extern de turmel representen entre el 15 % i el 25 % de totes les lesions causades per la pràctica d’esport (Leanderson et al., 1996).

Està demostrat per diversos estudis que tant les turmelles com els embolcallats funcionals tenen un efecte preventiu (MacAuley, 2002). Tanmateix, aquestes dues mesures tenen certes efectes negatius com per exemple poden irritar i provocar petites ferides a la pell, poden disminuir la funcionalitat, els embolcallats funcionals es poden desfer durant el partit, necessiten ser aplicats per personal qualificat.

L’entrenament proprioceptiu amb taules d’equilibri també ha estat efectiu en la prevenció de lesions de turmel sense els inconvenients esmentats anteriorment (Verhagen et al., 2004).

L’entrenament proprioceptiu amb plans inestables és comú per a prevenir noves lesions de turmel. En diversos estudis s’ha comprovat una millora del balanceig postural mitjançant un entrenament proprioceptiu després de 6 a 10 semaines, de 3 a 5 cops semanals i sessions de 10 a 20 minuts (varien segons els estudis) (Bahr et al., 1997; Matsusaka et al., 2001; Pinto et al., 1996; Tropp et al., 1984; Verhagen et al., 2000; Stasinopoulos, 2004).

La majoria d’estudis revisats relacionats amb el genoll i la propriocepció ens parlen de lesions de ligament creuat anterior (William et al., 2005; Caraffa et al., 1996).

Diversos autors demostraven l’efectivitat dels programes de prevenció de lesions de ligament creuat anterior de genoll mitjançant un programa d’entrenament neuromuscular en esportistes femenines (Hewett et al., 1999; Holm et al., 2004; Myklebust et al., 2003).

Encara que manquen estudis, els més recents semblen mostrar que els pacients amb síndrome de la mulló tenien una millor funció neuromuscular mitjançant un programa de propriocepció (Baker et al., 2002).

Mètode TRAL

El TRAL és un mètode de recuperació funcional dinàmica que es basa en la percepció de la postura corporal a través del moviment i els canvis de posició del centre de gravetat. Va ser creat per Pedro Antolín (Professor de la Universitat de Fisioteràpia Gimbertat) l’any 1989-90 (de Antolín Ruiz, 1998). Aquesta tècnica s’utilitza actualment en molts centre de fisioteràpia espanyols, especialment per a tractaments rehabilitadors de lesions d’extremitat inferior.

Actualment, no existeix cap estudi que demostrin l’eficàcia dels protocols del mètode TRAL com a entrenament proprioceptiu efectiu en esportistes.

Propiocepció. Control postural

La propriocepció és important per a mantenir l’equilibri, controlar els moviments de l’extremitat i l’estabilitat articular (Roberts, 2003). La definició de propriocepció ha creat i creua molta controvèrsia en la comunitat científica. Inicialment, definíem com “habilitat per rebre estimuls dels músculs, tendons i articulacions i el procés d’informació d’una manera significativa en el sistema nerviós central”, i, “ajuda en el coneixement del lloc on es troba un membre en l’espai” (Hewett et al., 2002). Aquesta mancança per definir, de forma acceptable per tothom, dels termes propriocepció i control neuromuscular mostren la complexitat de l’assumpte i la dificultat per investigar de forma vàlida i de confiança.

L’equilibri és la capacitat de mantenir la posició del centre de masses del cos sobre la base de recolzament (Lephart, 2000), és sinònim d’estabilitat postural (Ageberg, 2003).

El control postural es defineix com el control de la posició del cos en l’espai amb dos objectius: l’estabilitat i l’orientació. L’orientació postural es refereix a l’habilitat de mantenir una correcta relació entre els diferents següents del cos amb l’entorn a la hora de realitzar la tasca. L’habilitat postural es defineix com l’habilitat per a mantenir el centre de massa del cos sense límits específics. El sistema nerviós utilitzà informació sensitiva provenint de tres fonts per a mantenir el control postural (Hewett et al., 2002):

- **Mecanorreceptores perifèrics (propiocepció).**
- **La visió.**
- **El sistema vestibular.**
Cadascun d’aquests sistemes sensorials aporta contribucions úniques per al control postural.

Els mecanorreceptors períferics es localitzen a diversos llocs del cos incloent-hi la pell, les articulacions, els lligaments, els tendons i els músculs. El rol dels mecanorreceptors és el de convertir l’energia mecànica en un nou potent ciènci. Bèstament, el mecanorreceptor és un plèxe especialitat del nervi, que proporciona de forma mecànica sentit de posició i coneixement consciènt, tot iniciant respostes reflexes per estabilitzar articulacions i evitar lesions (Hewett et al., 1999).

Estabilimetria

L’estabilimetria consisteix en l’avaluació del control postural en una plataforma de forces (Ageberg, 2003).

Diversos tests de control postural amb estabilimetria han estat provats per a mensurar clinicament la metastabilitat funcional d’extremitat inferior (Friden et al., 1989; Shiraiishi et al., 1996; Birmingham, 2000).

Freeman i col·laboradors mitjançant un test de Romberg modificat han mostrat que els pacients amb una distensió unilateral de turmell disminueixen l’habilitat per mantenir l’equilibri estàtic amb la cama lesionada respecte la no lesionada. Els van suggerir que les lesions lligamentàries de turmell sovint provoquen un deficit propioperceptiu, i conduïxen a un control postural deteriorat (Freeman et al., 1965).

Leanderson i col·laboradors han documentat en el seu estudi prospectiu que l’anàlisi de l’estabilitat postural pot ser utilitzada per determinar l’efectivitat d’una rehabilitació propioperceptiva després de distorsions de turmell. Per tant, està considerat que el valor de l’àrea rectangular és útil per a la valoració de la funció inestable del turmell (Leanderson et al., 1996).

Tropp i col·laboradors van mostrar correlació entre resultats anormals estabilomètrics com a predictius d’una futura lesió de turmell (Tropp et al., 1984).

Han estat estudiats tests testats de confiança d’estabilometria i han demostrat tenir una correlació de moderada a excel·lent a l’hora de mensurar l’estabilitat corporal mitjançant una plataforma de forces (Ageberg, 2003; Birmingham, 2000).

El deficit de control de la posició del centre de gravetat ha estat descrit com a un potent risc de patir lesions d’extremitat inferior (Matsumaka et al., 2001).

En un estudi fet per Riemann i col·laboradors van observar com en la posició d’equilibri unipodal la musculatura pertanyent a l’articulació del turmell va ser la més requerida, tant en la posició ferma sobre el terra, amb matalàs, amb plans multiaixials o ulls tancats. A mesura que augmenta la dificultat, com ho és el patir amb els ulls tancats, es van utilitzant les articulacions més proximal al turmell (genoll/molícar) (Riemann et al., 2003).

Diferències de gènere

Les diferències entre els sexes sobre el rendiment és evident en el rendiment esportiu; malgrat això, encara existeixen grans llacunes (Wilmore, 1993).

Diferències de gènere en l’estabilitat unipodal

Hewett i col·laboradors (1999) van estudiar les diferències de gènere en el control de l’estabilitat unipodal i van concloure que les dones tenien major estabilitat corporal amb la cama dominant i no dominant. En els sujets amb deficiències en el lligament anterior creuat del genoll, els homes tenien major estabilitat que les dones prooperatoriament en la cama dominant i no dominant. En l’examen postoperatori els homes continuaven tenint major estabilitat 6, 9 i 12 mesos després de l’operació (Hewett et al., 2002).

Mètode

**Dissey

Estudi d’intervenció de dissey longitudinals, de grup únic amb avaluació abans-després. L’estudi va tenir una duració de 6 mesos, i s’hi van comparar un primer trimestre sense intervenció (inici d’octubre de 2004 a final desembre de 2004) i un segon trimestre amb entrenament propioperceptiu mitjançant TRAL (principi de gener 2005 a inici abril 2005).

Mostra (n)

Els objectius escollits per a a l’estudi van ser l’equip de trencament de voleibol de la Residència Joaquim Blume d’Esplugues de Llobregat. Aquest grup consta de 14 nois i 14 noies d’edat compresa entre 15-18 anys d’edat (Taula 1).

<table>
<thead>
<tr>
<th>Pès (Kg)</th>
<th>Fèma (cm)</th>
<th>Edat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nois</td>
<td>66,5±6,6</td>
<td>178±3,0</td>
</tr>
<tr>
<td>Nois</td>
<td>79,2±13,1</td>
<td>120±0,1</td>
</tr>
</tbody>
</table>

Taula 1. Característiques subjectes d’estudi (Mitjana ± desviació estàndard).
Procediment
Valoració estabilitat corporal
L’estabilitmetria es va fer mitjançant una plataforma de forces amb sensors electrònics.
Els va seguir les directius del protocol d’estabilitmetria fetes per Trevor B. Birmingham (Birmingham, 2000) i Eva Ageberg (Ageberg, Zatterstrom, i Mortiz, 1998).
El test d’estabilitmetria es va efectuar en tres ocasions: a final de setembre, final de desembre i principi d’abril (Taula 2). En cadascuna de les tres ocasions es van prendre mesures de l’àrea de desviació del centre de pressió. Es van realitzar les posicions següents: 1) Equilibri unipodal amb ulls oberts (Figura 1) i, 2) Equilibri unipodal amb ulls tancats. En cadascuna d’aquestes posicions les dades del centre de pressió van ser recollides tres cops consecutius, tot mesurant alternativament com dreta i esquerra. En el test 1 es van recollir dades durant 25 segons, en el test 2 durant 10 segons.
Per familiaritzar els subjectes amb el procediment del test els subjectes van practicar de tres a cinc cops cada un dels tests prèviament a la data de presa de dades i un cop just abans del test.
Tot i que es va començar primer per la com a dreta. Entre el test 1 i el 2 hi va haver un descans de 60 segons.
La posició de partida en els tests començà amb el subjecte en bipedestació amb recolzament del peu a mesurar al centre de la plataforma (marcat amb una creu) i una petita flexió de genoll (15°). Amb el peu oposat en contacte amb l’angle superior de la plataforma. Quan el subjecte estava preparat era instruït per a començar a flexionar el genoll contrari al recolzament a 90°, quan el subjecte estava preparat començava la presa de dades.
Durant el test si els subjectes estaven amb els ulls oberts, maraven a una cartolina negra DIN A4 situada a la paret a 2 m de la plataforma. Amb el test dels ulls tancats els subjectes feien el mateix fins a tancar els ulls.
Durant els dos tests se’ls va indicar als subjectes que havien d’intentar estar el més quietos possibles, amb els braços al llarg del cos.
Si algú dels subjectes no podia acabar el test sense perdre l’equilibri es tornava a repetir.

Entrenament proprioceptiu mitjançant mètode TRAL
L’entrenament proprioceptiu es va basar en el mètode TRAL.
Es va adaptar el mètode TRAL al temps i al material de què es disposava. En el nostre cas, el programa es va aplicar en l’espai reservat a la prevençió que els entre-
nadors dedicen en el seu temps de preparació física. El tractament de prevenció específic va tenir una durada de 15 minuts de dilluns a dijous i es va realitzar durant 12 setmanes (Figura 2). Tots els subjectes d’estudi van realitzar més del 80% dels entrenaments.

El TRAL disposa de moltes plantilles d’exercicis, només se’n van escoltar 12, totes en posició bipèdia i unipèdal.

El programa d’entrenament es va realitzar sense bamba, de dos a tres dies, i amb bamba, un/dos dies a la setmana. Es va seguir una progressió de dificultat començant amb els exercicis més bàsics. Quan l’exercici era dominat amb ulls oberts s’augmentava la dificultat tot augmentant el rang de moviment, les tasques a realitzar, el nombre de repeticions i, finalment, sense la utilització del sistema visual.

Anàlisi estadística

Les dades recollides han estat analitzades amb el paquet estatístic SPSS 13.0.

Primerament es va realitzar la prova de normalitat de Shapiro-Wilk. La distribució no va resultar Normal per la qual cosa es van realitzar proves no paramètriques (Domènech, 2000).

Seguidament, es va comparar la prova no paramètrica de Friedman, i si existien diferències, es va procedir amb la prova de Wilcoxon.

Es van utilitzar les proves de Wilcoxon i Friedman (mòstres relacionades) perquè comparen dades intrasubjecte.

Es va agafar la millor mostra de les tres preses de dades de cada test.

Per calcular les mitjanes es va utilitzar el programa Excel.

Es va separar el grup de nois i noies, perquè els entrenaments tècnics i físics no van ser els mateixos.

Equipament

L’estabilometria es va fer mitjançant una plataforma de forces amb sensores electrònics (Burato advanced technology, Itàlia; 1998) i un ordinador portàtil (Compaq Pentium 4). El programa utilitzat per a la presa de dades va ser el Foot Checker 3.1 (2004) (figura 3). La plataforma és de 50 x 48 cm i, en ser montada sobre el terra del laboratori.

El lloc on es van prendre les dades va ser el laboratori de biomecànica del servei mèdic del Consell Català de l’Esport.
Results

Tots els subjectes van finalitzar el programa d'entrenament amb èxit, i van complir el 80 % d'assistència mínima.

Es comparà l'equilibri unipodal amb ulls oberts de la cama dreta (UOD), l'equilibri unipodal amb ulls oberts de la cama esquerra (UOE), l'equilibri unipodal amb ulls tancats de la cama dreta (UTD) i l'equilibri unipodal amb ulls tancats de la cama esquerra (UTE) en els tres moments de preses de dades, octubre-desembre-abril (o-d-a).

El valor comparat és l'àrea rectangular que representa les oscil·lacions del centre de gravetat de l'individu. A menor àrea significa que el seu centre de gravetat ha oscil·lat menys i, per tant, ha pogut mantindre una posició més estable i, doncs, un millor control postural. A la figura 4 es poden observar les mitjanes de les àrees de desviació postural obtingudes en els tres preses de dades per nois i noies.

Comparació UOD

Friedman, amb noies, dóna diferències significatives. Malgrat que amb nois no existeixen diferències significatives amb la prova de Friedman, farem Wilcoxon igualment; s'ha d'assumir que el marge d'error serà superior, però en aquest cas es justifica perquè no m'interessen tant les diferències globals com les diferències per parelles.

Amb les noies, no hi ha diferències significatives entre octubre i desembre, sí, entre desembre i abril, i no n'hi ha entre octubre i abril. És a dir, a l'abril tenen millor control postural que al desembre i només una mica millor que a l'octubre. En el cas de les noies, quan comparem desembre amb octubre observem 4 subjectes amb menor àrea (millor en ell) i 10 subjectes amb major àrea. Això canvia indicant una tendència a empatjar el control postural d'octubre a desembre. Si comparem desembre amb abril, 12 noies milloren l'àrea i 2 l'empitjoren. Si
compararem octubre i abril, 11 noies milloren i 3 empeixen. Per tant, es pot observar una clara millora del control postural del segon trimestre amb entrenament respecte al primer.

En el cas dels nois no existeixen diferències significatives.

Comparació UOE

En el cas de les noies, no hi ha diferències significatives entre octubre i desembre, però si que n’hi ha entre octubre-abril i desembre-abril. Igual que amb la camà dreta amb ulls oberts, en aquest cas hi ha una clara millora de l’estabilitat corporal a l’abril respecte desembre i octubre.

En el cas dels nois, no hi ha diferències significatives.

Comparació UTD

Friedman dona diferències significatives tant amb noies com amb nois.

La prova Wilcoxon ens indica que no existeixen diferències significatives en cap dels dos sexes entre o-d, però sí entre o-a i d-a. Hi ha una clara reducció de la desviació del centre de pressions el mes d’abril respecte a les altres dues preses de dades d’ambdós sexes.

Comparació UTE

Friedman només dona diferències significatives entre noies.

En el cas de les noies, no hi ha diferències entre o-d i sí que n’hi ha entre o-a i d-a, de forma que és millor el control postural el mes d’abril. En el cas dels nois, no hi ha diferències significatives en cap dels casos.

Comparació nois-noies

Si observem la Figura 5 veurem les diferències de l’àrea de desviació dels diferents tests en nois i noies. Es pot observar que l’àrea es inferior en el cas de les noies en els quatre tests.

Discussió

Els resultats obtinguts en l’estabilitmetria no són exactament els esperats en el cas dels nois. Hi ha una clara millora significativa en la tercera presa de dades (abril) en el cas de les noies respecte a les altres dues preses de dades en els quatre tests aplicats, però no en el cas dels nois. En el cas dels nois, les millores només són significatives en el test d’ulls tancats camà dreta. La petita mostra (n=28) d’estudi podria justificar els resultats. També cal ressaltar que els tests aplicats han tingut una correlació de fiabilitat de moderada a excel·lent, però utilitzant un altre tipus de plataforma de forces (Ageberg et al., 1998; Birmingham, 2000).

Els millors resultats obtinguts en el cas de les noies i no en el cas dels nois, podrien ser deguts al gran d’impatiència. Com a mera observació personal, el grau d’impatiència en l’execució del programa va ser molt superior en les noies que no passen en les nois.

La tendència a empiçar els resultats d’octubre a desembre es pot explicar perquè la càrrega d’entrenaments comença a ser important en aquest període.

Malgrat que les dades no són significatives en el cas dels nois, si observem les mitjanes de les àrees de desviació postural (Figura 5) s’hi aprecia una clara millora del mes d’abril respecte a les altres dues preses de dades, tant amb nois com amb noies, en els quatre tests aplicats. Posar amb una mostra més representativa podria arribar a dades significatives estadísticament.

La tendència a la millora dels resultats concorren amb els obtinguts per Lenderson i col·laboradors (1996), els quals van documentar en el seu estudi prospectiu que l’anàlisi de l’estabilitat postural pot ser utilitzada per determinar l’efectivitat d’una rehabilitació proprioceptiva després de distensions de tornell, pre-
VALORACIÓ I ENTRENEMENT DEL CONTROL NEUROMUSCULAR

Pedagogia i Esport

ament el valor de l’àrea rectangular útil per a la valora-

ció de la funció inestable del túnel (Leanderson et al., 1996).

Les diferències entre nois i noies ens donen un ma-

yor control postural en el cas de les noies. Aquests re-

sultats concordan amb els de Hewett i col·laboradors

(1999) que ja van estudiar les diferències de gènere en

el control de l’estabilitat unipodal i van concloure que

les dones tenien més estabilitat corporal amb la coma

domini

Gament i no dominant.

Linies de futur

Per a futurs estudis serà bàsic disposar d’una mostra

d’estudis més gran i introduir el grup control. L’am-

pliació de la mostra, sobretot, ens servirà per aclair

les tendències a la millora.

A més a més, en el cas de la prova estabilitè-

trica s’hauria de realitzar un test retet de correla-

ció d’intraclass per a donar-li fiabilitat a les proves

evaluadores. També s’haurà de tenir en compte la possibilitat de poder fer una analisi dinà-

mica del control postural, perquè és la presa de
dades més lligada a la realitat de les lesions esportives.

Agraïments

S’agreix a la col·laboració de tot l’equip de voleibol

de la Residència Blume; a tot l’equip medici del Cornell

Català de l’Esport, especialment a l’equip de fisiotera-

peus; a Jaume i Ulla-Britt Nåslund, des de Suècia; i

e specialment a Pere de Antonil. Aquest estudi ha rebut

una ajuda del Col·legi de Fisioterapeus de Catalunya.

Amb el suport de la Secretaria General de l’Esport

de l’Institut de Innovació, Universitats i Empresa.

Bibliografia

Individuals with Anterior Cruciate Ligament Injury and Unimpaired

Controls. Lund University.

crane walk test have high test-retest reliability. Scand J Med Sci.

Sports (8), 193-197.

the incidence of acute ankle sprains in volleyball after the introduction

Anterior knee joint position sense in individuals with patellofemoral

Birmingham, T. B. (2000). Test-retest reliability of lower extre-

mity functional instability measures. Clin J Sport Med (10),

264-268.

Prevention of anterior cruciate ligament injuries in soccer: A pro-

spective controlled study of proprioceptive training. J Bone Joint Surg

Arthroscopy (4), 1921.

stabilometric technique for evaluation of lower limb instabilities.

Hewett, T. E.; Lindensfled, T. N.; Riccobene, J. V. i Nyes, F. R.

(1999). The effect of neuromuscular training on the incidence of

(27), 698-706.

enhancing proprioception and neuromuscular control of the knee.

Hult, I.; Fosbalt, E. M., Foss, M., Lilja, B., Sjöberg, M. M. i Myklebust,

G. i Sjöberg, I. M. (2002). Effect of neuromuscular training on propo-

rioception, balance, muscle strength, and lower limb function in

Proprception in classical ballet dancers. A prospective study of the

influence of an ankle sprain on proprioception in the ankle joint.

London.

Matsumura, N.; Yohoyama, S.; Tsunetomi, T.; Inoue, E. i Ozawa,

M. (2001). Effect of ankle distr training combined with tachistos-

copy to the leg and foot on functional instability of the ankle.

Myklebust, G.; Engeset, A.; Brokland, I. H.; Sjoberg, A. M. i

ligament injuries in female team handball players: a prospective

in standardized perturbations of single limb stance effect of train-

ing and genetic factors in patients with ankle instability. Br J

Romero, B. L.; Nyers, J. B. i Lephart, S. M. (2003). Comparison of

the ankle, knee, hip, and trunk corrective action shown during

single-leg stance on firm, foam, and multisurface surfaces. Arch

Phys Med Rehabil (84), 90-95.

University.

Shiraiishi, M.; Mizota, H.; Ikuta, K.; Onooka, Y.; Nagamoto, N. i

order to reduce the incidence of ankle inversion sprains among

tional instability of the ankle and its value in predicting injury. Med

Verhaeghe, E.; van der, B. A.; Twisk, J.; Boutier, L.; Bahr, R. i

training program for the prevention of ankle sprain: a prospective

effect of preventive measures on the incidence of ankle sprains. Clin

J Sport Med (10), 291-296.

Acute and Overuse Disorders. The physician and sports medicine, 27.

Barcelona.
actividad física y salud

Fiabilidad de una medida del control postural estático y dinámico de la extremidad inferior

Fort Vanmeerhaeghe, A.¹; Costa Tulasaus, L.²; Montañola Vidal, A.³; Romero Rodríguez, D.³

¹CEARE. Centre d’estudis d’alt rendiment esportiu. Consell Català de l’esport. Esplugues de Llobregat.
²Escola Universitaria d’Infermeria, Fisioteràpia i Nutrició Blanquerna. Universitat Ramon Llull de Barcelona
³Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna. Universitat Ramon Llull de Barcelona

DIRECCIÓN DE CONTACTO
Azahara Fort Vanmeerhaeghe: azaharafort@hotmail.com
Fecha de recepción: 30 de marzo de 2008
Fecha de aceptación: 16 octubre de 2008

RESUMEN
Introducción: La valoración del control postural tiene especial interés en el mundo de la medicina y el deporte; pese a ello faltan medidas fiables para valorarlo tanto de forma estática como dinámica.
Objetivo: Evaluar la fiabilidad de la medición estabilométrica en el control postural de la extremidad inferior mediante una plataforma de sensores ópticos.
Diseño: Test de correlación entre dos medidas cuantitativas: coeficiente de correlación intraclass.
Muestra: 20 sujetos, 10 mujeres y 10 hombres físicamente activos (22,56±5,7 años).
Procedimiento: Los sujetos realizaron tres test unipodales de dificultad progresiva: ojos abiertos (OA), ojos cerrados (OC) y salto (S); en dos sesiones separadas entre 24 y 48 horas. Se registró la amplitud máxima con la amplitud media de la desviación lateral y antero posterior del centro de presiones mediante una plataforma optométrica.
Resultados: La variable con mayor coeficiente de correlación intraclass fue la mejor amplitud media de las tres mediciones de cada sesión. En el caso del test OA y OC la correlación fue de buena a excelente (0.613-0.764) en todas las variables de la mejor amplitud media; en el caso del test de salto la correlación fue baja.
Conclusiones: Podemos sugerir la utilización de los test unipodales OA y OC como fiables para la distinción entre grupos de sujetos. Aunque nosotros no hemos obtenido un test de salto fiable, nuestros estudios futuros deberían seguir esta misma línea.
Palabras Clave: Control postural, equilibrio, fiabilidad, estabilometría.
INTRODUCCIÓN

El control postural implica el dominio de la posición del cuerpo en el espacio con los objetivos de orientación y estabilidad. La orientación postural se refiere a la habilidad de mantener una correcta relación entre los propios segmentos del cuerpo y entre estos con el entorno a la hora de realizar la tarea. La estabilidad postural o también llamada equilibrio se define como la capacidad para mantener el centro de masa corporal dentro de la base de sustentación (Ageberg E, 2003; Roberts D., 2003).

Desde el trabajo de Freeman y col. (1965) la valoración del control postural tiene especial interés en el mundo de la medicina y el deporte (Lephart 2000; Hewett y col. 2002; Wikstrom y col. 2005).

Generalmente la tarea más utilizada para valorar el control postural es el mantenimiento de la posición de equilibrio unipodal o bipodal, aunque también se asocia a la ejecución de otras acciones. De esta manera, la valoración de la capacidad para mantener el equilibrio se ha utilizado frecuentemente durante la posición estática (Friden y col. 1989; Tropp y Odenrick 1998; Matsusaka y col. 2001; Ageberg 2003) o después de perturbaciones de la superficie de apoyo o del propio cuerpo (Colby y col. 1999; Mansfield y col. 2007; Paterno y col. 2004; Pintsar y col. 1996). El control postural se puede medir sin un equipamiento sofisticado (Olmsted y col. 2002; Rodríguez y col. 1998); aunque existen diferentes equipos con tal objetivo en el mercado (Ageberg y col. 1998; Birmingham 2000; Hansen y col. 2000; Ageberg 2003). La cuantificación del control postural con equipamiento suele obtenerse mediante sensores de superficie, los más comunes son los de las plataformas de fuerzas (Riemann y col. 2002).

Se han estudiado diversos test-retest de fiabilidad y han demostrado tener una correlación de moderada a excelente a la hora de medir la estabilidad corporal mediante una plataforma de fuerzas (Goldie y col. 1992; Hoffman y Kocaja 1997; Colby y col. 1999; Birmingham 2000; Ageberg 2003; Naylor y Romani 2006).

Goldie y col. (1992) buscaron la concordancia entre las medidas de una plataforma de fuerzas (kistler 6) de un test de equilibrio unipodal con ojos abiertos y cerrados (24 sujetos sanos de edad 25.7±6.5). En cada posición se compararon las tres fuerzas ortogonales de las señales de fuerza y los dos centros de presión horizontal y antero posterior durante 5 segundos en dos registros separados por un tiempo de 5 minutos. La fiabilidad retest fue más alta en las medidas de fuerza (0.44-0.85) en comparación con las medidas del CP (0.36-0.76) (Goldie y col.1992).

Hoffman y col. (1997) investigaron la fiabilidad de un test de equilibrio dinámico y estático (15 segundos) en 10 sujetos (27.2 años) en tres días consecutivos midiendo el CP en una plataforma de fuerzas Kistler. La prueba dinámica consistió en mantener el apoyo bipodal durante una perturbación eléctrica del tibial anterior que resultaba en un desplazamiento posterior del centro de gravedad. Se midió el área, la longitud y la desviación estándar del balancio del CP en el plano sagital y frontal. Obtuvieron una correlación de buena a excelente (0.71 a 0.99) en todos los parámetros medidos.

Colby y col. (1999) realizaron un test de fiabilidad (3 sesiones separadas) para medir la estabilidad dinámica mediante un salto unipodal y un salto unipodal desde un step de 19 cm (utiliza la distancia entre maleolo y trocánter mayor) durante 3 segundos. Se midió la desviación estándar y el tiempo de estabilización de la fuerza, así como la desviación del centro de presiones utilizando una plataforma de fuerzas Bertec. Todas las variables de medida obtuvieron un coeficiente de correlación intraclass superior a 0.8, excepto la desviación estándar de la fuerza lateral y antero posterior para el test de salto desde step, y el tiempo de estabilización y desviación estándar lateral y antero posterior del centro de presiones para el salto unipodal.

<table>
<thead>
<tr>
<th>Tabla 1. Características de la muestra de estudio (n=20) Media (Desviación estándar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso (Kg)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Hombres</td>
</tr>
<tr>
<td>Mujeres</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
AZAHARA FORT ESTUDI III

Birmingham (2000) obtuvo una correlación de moderada a excelente (0.41 a 0.91) de la trayectoria del CP (plataforma de fuerzas AMTI modelo OR6-5) en diferentes test de equilibrio unipodal y salto máximo unipodal comparando los resultados obtenidos en dos días separados con una muestra de 30 hombres y mujeres. Los test evaluados fueron: 1/Equilibrio unipodal con ojos abiertos, 2/Equilibrio unipodal con ojos cerrados sobre una colchoneta, 3/Equilibrio unipodal con ojos cerrados, y 4/Aterrizaje sobre la plataforma después de un salto unipodal máximo.

Ageberg y col. (2003) realizaron otro test-retest con un apoyo unipodal de 25 segundos de duración con 42 sujetos sanos utilizando una plataforma de fuerzas estándar y midiendo diferentes parámetros del CP: desviación estándar de la amplitud, velocidad media de movimientos, y número de movimientos que excedían los 5-10 mm de la media del CP. El índice de correlación intraclase resultó ser excelente (0.79 a 0.95) en todas las variables excepto en la amplitud del plano sagital.

Naylor y col. (2006) obtuvieron una correlación de moderada a excelente comparando la distancia, el índice de impacto, el tiempo de contacto y la fuerza de impulso (registrada mediante una plataforma de fuerzas Neurocom Balance Master) durante la realización de tres test dinámicos en tres días diferentes con 15 mujeres físicamente activas.

El objetivo principal de este estudio es dar fiabilidad a tres test de estabilidad postural (ojos abiertos, ojos cerrados y salto), los cuales ya han sido estudiados con otros tipos de plataformas de fuerzas, pero que aún no han sido evaluados en una plataforma optométrica como la que disponemos en nuestro centro de trabajo. Más específicamente, nuestro objetivo es calcular la variable de medida más fiable para medir la desviación del CP en una plataforma optométrica de forma estática y dinámica.

MÉTODO

Sujetos
La muestra consiste en 20 voluntarios sanos físicamente activos (22,56 ± 5,7) (Tabla 1). Los criterios de inclusión fueron individuos sanos de edad comprendida entre 18-35 años, físicamente activos, que realizaban ejercicio físico tres o más sesiones por semana durante un mínimo de 60 minutos y en días alternos. Los criterios de exclusión fueron cualquier lesión deportiva (aguda o crónica) o enfermedad al inicio del estudio. Se dispuso del consentimiento informado de cada uno de los participantes en el estudio y fue aprobado por el comité de ética de la Facultad de Psicología, Ciencias de la Educación y del Deporte Blanquerna, Universidad Ramón Llull.

PROCEDIMIENTO
La estabilometría se hizo mediante una plataforma optométrica.
El test de estabilometría se efectuó en dos ocasiones separadas 24-48 horas en las mismas condiciones, es decir a la misma hora, lugar y habiendo ejecutado la misma sesión de entrenamiento previo (Tabla 2). En cada una de las dos ocasiones se midió la desviación del CP en el plano sagital (desviación antero-posterior, eje y) y en el plano frontal (desviación lateral, eje x) (Fig.1). Se midieron las siguientes posiciones (Fig. 2): 1/Equilibrio unipodal con ojos abiertos (OA), 2/Equilibrio unipodal con ojos cerrados (OC), 3/ Salto unipodal de la mitad de la distancia de la extremidad inferior del sujeto (S) (de trocánter mayor a maleólogo externo). En cada una de estas posiciones los datos del CP fueron recogidos tres veces consecutivas, alternando pierna derecha e izquierda. El primer y segundo test duraron 10 segundos y el tercero, 3 segundos. Para familiarizar a los sujetos con el procedimiento se realizó una prueba de uno a tres días antes de la primera sesión de toma de datos.
Antes de realizar el test todos los sujetos realizaron el siguiente calentamiento: Carrera continua 7 minutos a 7/9 km/h y estiramientos en tensión activa (Essual, 1996) durante 3 minutos. Seguidamente ejecutaron las pruebas del estudio (3 veces cada test). Entre los test 1, 2 y 3 hubo un descanso de 60 segundos.

Tabla 2. Medida de la amplitud máxima y la amplitud media de la desviación del centro de presiones en los ejes lateral y antero-posterior

<table>
<thead>
<tr>
<th>Test</th>
<th>Sesión 1</th>
<th>Sesión 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>Pie</td>
</tr>
<tr>
<td>Test unipodal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ojos abiertos (10s)</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Test unipodal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ojos cerrados (10s)</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>Test salto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unipodal (3s)</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

D=Derecha, 1=Izquierda; Nº=número de registros
La posición de partida en los test 1 y 2 comenzó con el sujeto en pie con apoyo del pie a medir en el centro de la plataforma (marcado con un punto) y una pequeña flexión de rodilla (15°). Cuando el sujeto estaba preparado fue instruido para empezar la flexión de la rodilla contraria al apoyo a 90°, a la señal del voluntario se iniciaba la toma de datos.

Durante el test 1 y 3, donde los sujetos estaban con los ojos abiertos, miraron a una cartulina negra DIN A4 situada a la pared a un metro de la plataforma. Con el test sin visión, los sujetos siguieron el mismo proceso hasta cerrar los ojos.

Durante los tres test se les indicó que debían permanecer lo más quietos posible, con los brazos a lo largo del cuerpo.

Si alguno de los sujetos no podía acabar el test sin perder el equilibrio, se volvía a repetir.

![Figura 1. Desviación del centro de presiones en el eje lateral y anteroposterior](image)

Figura 1. Desviación del centro de presiones en el eje lateral y anteroposterior

Test unipodal ojos abiertos/ojos cerrados (10”)

![Test de salto unipodal (3’’)](image)

Figura 2. Pruebas de equilibrio unipodal

EQUIPAMIENTO

Plataforma optométrica para la valoración de las presiones plantares (Podocomputer/CbsScanGraf) con un sistema computarizado de análisis del pie, apoyos plantares y biomecánica de la marcha. Este modelo de plataforma se comercializa desde el año 2006 por Computational Bio-Systems SL, empresa especializada en sistemas de diagnóstico biomédico.

Tiene una superficie de medida de 370 x 450 mm con una densidad de 60 sensores por centímetro cuadrado, una frecuencia de captura entre 1-25 fotogramas por segundo y funciona con el sistema Windows XP.

ANÁLISIS DE DATOS

Se midió la amplitud de la desviación del CP tres veces cada test y en dos sesiones separadas 24-48 horas. En cada toma de datos se analizan con las siguientes variables, tanto en el plano frontal como sagital y en las dos piernas:

- Amplitud máxima de la desviación del CP: Tanto la mejor como la media de las tres tomas de datos de cada test y de cada sesión.
- Media de las amplitudes de la desviación del CP: Tanto la mejor como la media de las tres tomas de datos de cada test y de cada sesión.

Los datos recogidos fueron analizados estadísticamente con el sistema SPSS 15.0. Se realizó un test de concordancia entre dos respuestas cuantitativas: coeficiente de correlación intraclass (CCI) para poder valorar la variable de medida más fiable. Los valores obtenidos de CCI oscilan entre 0 (ausencia de concordancia) y 1 (correlación absoluta). En la tabla 3 se muestran los valores de concordancia que hemos utilizado según las recomendaciones de Fleiss (1986).

Tabla 3. Valoración de la concordancia según los valores del Coeficiente de Correlación Intraclass (CCI)

<table>
<thead>
<tr>
<th>Valor del CCI</th>
<th>Fuerza de la concordancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0,75</td>
<td>Excelente</td>
</tr>
<tr>
<td>0,60-0,74</td>
<td>Buena</td>
</tr>
<tr>
<td>0,40-0,59</td>
<td>Aceptable</td>
</tr>
<tr>
<td><0,40</td>
<td>Pobre</td>
</tr>
</tbody>
</table>

También se realizó una prueba para muestras relacionadas de Wilcoxon para encontrar las diferencias entre pierna derecha e izquierda.
RESULTADOS

En la tabla 4 se muestran los grados de significación de cada una de las variables estudiadas:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parámetros</th>
<th>Eje</th>
<th>OA</th>
<th>OC</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitud máxima (Mejor de las tres)</td>
<td>Derecha</td>
<td>x1,x2</td>
<td>.608</td>
<td>.551</td>
<td>.372</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y1,y2</td>
<td>.401</td>
<td>.731</td>
<td>.241</td>
</tr>
<tr>
<td></td>
<td>Izquierda</td>
<td>x1,x2</td>
<td>.816</td>
<td>.725</td>
<td>.563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y1,y2</td>
<td>.820</td>
<td>.507</td>
<td>.371</td>
</tr>
<tr>
<td>Amplitud media (Mejor de las tres)</td>
<td>Derecha</td>
<td>x1,x2</td>
<td>.708</td>
<td>.713</td>
<td>.137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y1,y2</td>
<td>.647</td>
<td>.675</td>
<td>.148</td>
</tr>
<tr>
<td></td>
<td>Izquierda</td>
<td>x1,x2</td>
<td>.769</td>
<td>.649</td>
<td>.419</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y1,y2</td>
<td>.754</td>
<td>.613</td>
<td>.119</td>
</tr>
</tbody>
</table>

X1, X2 = Desviación lateral del CP en la sesión 1 y 2; Y1, Y2 = Desviación antero posterior del CP en la sesión 1 y 2; UO = Test unipodal ojos abiertos, UT = Test unipodal ojos cerrados, S = Test salto unipodal

En los test de OA y OC la variable con mejor correlación en todos los parámetros es el mejor resultado de la amplitud media de las tres tomas de datos de cada test. Los resultados, como muestra la tabla 4, van de buenos a excelente en todos los parámetros de medida (0.613-0.764). Pese a que hay otros parámetros de las diferentes variables que nos dan un mejor resultado, hemos tomado como bueno el conjunto de variables con mayor homogeneidad en cuanto a fiabilidad. En el caso del test S, no hay ninguna variable que nos dé una correlación buena en todos los parámetros, por lo tanto la correlación es pobre si analizamos el conjunto de las variables. Solo hemos obtenido una correlación buena en la variable de la amplitud media (media de las tres) en el eje de las x en ambas piernas.

Si elegimos la variable de la amplitud media (mejor de las tres) como la más fiable podemos observar en la tabla 5 la media y la desviación estándar de la longitud de la trayectoria lateral y anteroposterior del CP.

DISCUSIÓN

Gracias a los resultados del presente estudio podemos decir que dos de los test estudiados (OA y OC) han demostrado tener una fiabilidad de buena a excelente. Por tanto, podemos sugerir la utilización de estos test para la distinción entre grupos de sujetos (Tabla 4). Como por ejemplo el hecho de poder comparar el rendimiento de diferentes grupos de individuos que hayan recibido intervenciones diferentes.

El test de salto, en cambio, nos da una correlación baja en todas las variables excepto en el plano frontal de la variable de medida de la amplitud media de los tres segundos de duración del test (en este caso de la media de las tres tomas de datos). Como ya comentamos, se ha adaptado el test de Colby y col. (1999). No se pudo tomar la longitud completa de la pierna (desde trocánter a maléolo) por recomendaciones del fabricante de la plataforma, ya que está preparada para soportar fuerzas verticales y no fuerzas de cizallamiento excesivas. Colby y col. (1999) obtuvieron una correlación excelente, al medir el tiempo de estabilización y la desviación estándar de la fuerza, pero no pasó lo mismo con el CP. Puede ser que no analizáramos las variables más adecuadas. También hay que tener en cuenta que el test de salto es el más dinámico de los tres, y es donde entran en juego más factores que podrían alterar la medición.

Goldie y col. (1997) estudiaron las medidas de fuerza y CP en una plataforma Kistler y encontraron una

| Tabla 5. Promedio y desviación estándar de la media de la desviación del CP de forma lateral (x) y anteroposterior (y) |
|---|---|
| Desviación Lateral (x) | Desviación Anteroposterior (y) |
| Derecha | Derecha |
| Izquierda | Izquierda |
| S1, S2 | S1, S2 |
| OA | 4,2 (1,1) | 11,4 (4,6) | 4,0 (1,5) | 3,5 (1,7) | 4,0 (1,0) | 3,6 (0,9) | 4,0 (1,4) | 3,8 (1,1) |
| OC | 9,9 (3,5) | 10,7 (3,8) | 9,9 (3,2) | 9,3 (3,2) | 10,0 (3,3) | 10,7 (2,9) | 10,6 (3,0) | 9,7 (2,5) |
| S | 11,4 (4,6) | 14,2 (14,4) | 10,2 (3,3) | 10,8 (4,7) | 8,7 (2,9) | 8,0 (2,3) | 8,8 (1,8) | 7,6 (1,7) |

S1=solución 1; S2=solución 2; OA=Test unipodal ojos abiertos, OC=Test unipodal ojos cerrados; S=Test salto unipodal
correlación baja entre las dos medidas, además de un test-retest de fiabilidad bajo en las medidas del CP. Este grupo de trabajo concluyó que las medidas de fuerza eran preferibles a las del C. Colby y cols. (1999) obtuvieron resultados similares al anterior autor con el test de salto unipodal (Plataforma de fuerzas Bertec). En cambio Ageberg (2003) con su test unipodal con ojos abiertos encontró una correlación alta (plataforma estándar de 33x38 cm) midiendo el CP y Birmingham (2000) (plataforma de fuerzas AMTI modelo OR6-5) también encontró una correlación de moderada a excelente en todos los test midiendo el CP tanto dinámicos como estáticos. Estas diferencias, comparadas con los resultados de nuestro estudio, podrían ser debidas a la utilización de plataformas de diferentes casas comerciales.

Ageberg y col. (1998, 2003) observó en sus estudios como las medidas en el plano frontal obtuvieron una mayor correlación que en el plano sagital en un test con ojos abiertos. En nuestro estudio también podemos observar una correlación más alta en la mayoría de variables referentes a la desviación lateral, especialmente en el caso del salto. En cuanto a los promedios de la desviación del CP no se observan grandes diferencias entre la desviación lateral y anteroposterior en el test OA y OC. Por el contrario, si se observa una mayor desviación lateral comparado con la anteroposterior en el caso del test de salto.

Al igual que los resultados obtenidos por Birmingham (2000) podemos observar en la tabla 4 cómo la mayor variabilidad de la amplitud se da en los test más dinámicos; en el test de ojos cerrados y salto. Esto es, cuántos más requerimientos físicos necesita el test para su ejecución, mayor variabilidad y trayectoria del CP.

Ageberg y col. (1998, 2003), a diferencia de nuestro estudio, donde obtuvimos una mayor correlación seleccionando la mejor de las tres tomas de datos consecutivos de cada test, creyeron más conveniente utilizar la media de las tres tomas para evitar valores extremos, aunque no obtuvieron diferencias significativas entre la mejor o la media de las tres.

Al igual que Ageberg y col. (2003), en el test de ojos abiertos existe una mejora de las medidas de la desviación del CP en la sesión 2 respecto a la sesión 1, que podría ser debido a un efecto de aprendizaje.

Se necesitan nuevos trabajos para valorar el control postural de forma fiable con mayores y diferentes muestras de población, con mayor número de registros y repeticiones. También se deberán estudiar test más cercanos al rendimiento y a la realidad del deportista. Además se necesitan estudiar y comparar nuevas variables de medida para ver cuál es la más fiable y apropiada en cada caso. Aunque nosotros no hayamos obtenido un test de salto fiable en todos sus parámetros, otros estudios sí lo han hecho (Birmingham, 2000; Colby et al., 1999); por tanto, nuestros futuros estudios deben seguir esta línea, puesto que es la que más se aproxima a la realidad de las acciones deportivas.
REFERENCIAS BIBLIOGRÁFICAS

Diferències de l’estabilitat postural estàtica i dinàmica segons sexe i cama dominant

AZAHARA FORT VANMEERHAEGHE, DANIEL ROMERO RODRIGUEZ, LLUIS COSTA TUTUSAU, CARITAT BAGUR CALAFAT, MARIO LLORET RIERA i AGUSTIN MONTAÑOLA VIDAL

ABSTRACT

Introduction and objectives: The main objective of this study was to compare the single leg static and dynamic equilibrium data between gender of subjects and dominant and non-dominant limbs.

Participants: A total of 20 physically active subjects, 10 men and 10 women (ages: 22.56 ± 5.7 years).

Methods: We measured the mean amplitude of lateral and anteroposterior deviation of the pressure centre (PC) by means of an optometric platform using three single leg tests with progressive difficulty: open eyes (OE), closed eyes (CE) and one leg hop (H).

Results: There were no significant differences between men and women in the OE test. The CE test showed significant differences in the anteroposterior and lateral plane in the non-dominant leg (p < 0.029 and p < 0.035, respectively). As regards the H test, the results showed significant differences in dominant and non-dominant leg only in the frontal plane (p < 0.011 and p < 0.002, respectively). There were no significant differences between legs; but when the groups were analysed separately by gender differences were found in both planes of the H test in women and anteroposterior axe of OE test in men.

Conclusion: Women tend to show lower PC sway in the more dynamic tests (CE and H) compared to men. Although there were no differences between legs in the total group, it was found that women showed a greater PC sway in the non-dominant leg when landing in the one leg hop test compared with men.

KEY WORDS: Postural control. Lower limb. Gender. Dominant leg.
ANTECEDENTS I ESTAT ACTUAL DEL TEMA

La valoració del control postural té especial interès en el món de la medicina i de l'esport. El control postural implica el domini de la posició del cos en l'espai amb els objectius d'estabilitat i orientació. L'estabilitat postural, també anomenada equilibri, es defineix com la capacitat per mantenir el centre de massa corporal dins la base de sustentació. D'altra banda, l'orientació postural es refereix a l'habilitat de mantenir una correcta relació entre els propis segments del cos i entre aquests i l'entorn a l'hora de realitzar la tasca.

El defecte de control de la posició del centre de gravetat ha estat descrit com un important factor de risc de lesió de l'extremitat inferior, atès que un increment de la varietat de l'estabilitat corporal s'associa a una alteració de l'estrategia de control neuromuscular. Aquest fet augmenta les forces que es transmeten a les estructures intraarticulares, lligamentoses i muscular. Malgrat això, els estudis que associen la disminució del control postural amb les lesions traumàtiques ens donen resultats contradictoris. La majoria d'investigacions han trobat relació entre la disminució de l'estabilitat postural després de lesions articulars o un risc més gran de tenir lesions esportives amb atletes d'una estabilitat menor, encara que d'altres no han obtingut resultats significatius.

La majoria d'investigacions que associen la disminució d'estabilitat postural a les lesions articulars de genoll i turrumell han estat desenvolupades amb posicions unipodals estàtiques en superfícies estables amb ulls oberts o tancats. En detriment d'això, hem de pensar que tant les activitats esportives com les de la vida diària tenen una naturalesa dinàmica, fet que fa que la rellevància dels tests estàtics sobre les activitats funcionals sigui encara avui dia un tema de controvèrsia.

S'ha estat que les esportistes femenines tenen una incidència de lesions del lligament creuat anterior de 4 a 6 vegades més gran que els homes practicant la mateixa activitat esportiva. A més a més, també s'ha trobat que les dimensions de grau I del lligament lateral de turrumell tenen una incidència del 25% superior al sexe masculí.

Aquesta més gran incidència de lesions podria venir donada per diferents alteracions en el control neuromuscular de les dones:

- Absència de control neuromuscular en el pla frontal del genoll, la qual cosa provoca un augment del valg i de les forces de reacció del terra. Aquest fet es dona en l'arratge del salt unipodal i en les accions de canvi de direcció i/o desacceleració, és a dir, segons els mateixos mecanismes que es donen en les lesions lligamentoses sense contacte de genoll.
- Desequilibris neuromusculars entre cama dominant i no dominant quant a força i reclutament muscular. Hewett et al han observat que la cama no dominant sol tenir una muscularitat més débil així com amb menys coordinació que la dominant. A més a més, durant l'arratge, el pivotage o la desacceleració del salt unipodal, les atletes femenines solen tenir una manca de control muscular dinàmic del genoll no dominant que podria predisposar a la lesió.
- Utilització de diverses estratègies d'arratge en comparació amb els homes. Segons Hewett et al, les dones activen preferentment els extensors de genoll envers els flexors quan es necessita donar estabilitat articular en els moviments esportius, cosa que accentuarà i perpetuarà els desequilibris de força i reclutament muscular entre aquests màscules. Lephart et al descriuen una major rotació interna de maluc en les dones en comparació amb els homes durant la recepció del salt unipodal.

La majoria de treballs que han estat realitzats per totes equilibri entre sexe i/o cama dominant/no dominant ho han fet d'una manera estàtica. Hi ha pocs treballs que analitzen les diferències en l'estabilitat dinàmica de l'extremitat inferior.

En un treball previ, Black et al van explorar l'equilibri postural estàtic en 132 adults sans mitjançant el test de Romberg i no va trobar diferències entre homes i dones. Hewett et al van estudiar les diferències de sexe en el control de l'estabilitat unipodal i van concloure que les dones tenien més estabilitat corporal amb la cama dominant i no dominant. En els subjectes amb deficiències en el lligament creuat, els homes tenien més estabilitat que les dones preoperatòriament en la cama dominant i no dominant. En l'examen postoperatori, els homes continuaven tenint més estabilitat als 6, 9 i 12 mesos després de l'operació. La diferència de la més elevada estabilitat en dones sense lesió prèvia podria explicar-se amb un centre de gravetat més baix.

Rozzi et al van valorar la laxitud articular (translació anterior de la tibia), la propioscepcio, l'equilibri i el temps necessari per aconseguir la tensió màxima muscular i el patró de l'activitat muscular entre 34 homes i dones esportistes. Els resultats van mostrar que, en comparació amb els homes, les dones esportistes tenien més laxitud articular i necessitaven més temps per detectar canvis en la posició articular (pitjor propioscepcio), malgrat tenir més capacitat per mantenir el recolzament monopodal. A més a més, les dones van obtenir una
més gran activitat electromiogràfica dels isquiotibials en la recepció del salt.

Ross et al.²⁰ van estudiar les diferències de força, equilibri i rang de moviment de la flexió de genoll entre la cama dominant i la no dominant durant la recepció unipodal en 30 individus d’ambdós sexes físicament actius. Les tasques d’equilibri es van mesurar mitjançant un test unipodal estàtic amb ulls tancats i un salt unipodal des d’un graó. Els resultats pertinents a les tasques d’equilibri amb ulls tancats indiquen una menor desviació en el pla sagital en la cama dominant, encara que no s’observen diferències en el pla frontal. Malgrat no trobar diferències significatives en el temps d’estabilització de la recepció del salt entre cames, conclouen que les forces de reacció del terra són més absorbides per la cama dominant a causa de la més gran flexió de genoll durant l’atterratge. Tots els altres paràmetres mesurats van ser superiors amb la cama dominant.²⁰

Wikstrom et al.²⁵ van estudiar les diferències entre sexe i cama dominant en diversos tests de control postural dinàmic (salt vertical, salt unipodal i manteniment de l’equilibri 3 s) en 40 individus sans de tots dos sexes. Els resultats no van donar diferències significatives entre la cama dominant i la no dominant. Quant a la diferència entre sexes, els autors conclouen que encara que les dones van obtenir un millor índex de control postural dinàmic, no van absorbi treball en bé com els homes les forces de reacció vertical del terra. Segurament homes i dones teixen diferents estratègies de recepció del salt per establitzar-se i absorbi l’energia després del salt. Lephart et al.²⁶ també van observar que les dones tenen una menor capacitat d’absorbir les forces verticals d’impacte després del salt, fet que van correlacionar amb una menor flexió i control del genoll en la recepció i amb una debilitat de la musculatura de quadriceps i isquiotibials.

Avui dia encara hi ha pocs estudis relacionats amb les diferències en l’estabilitat postural entre cama dominant i no dominant, així com respecte de les diferències entre homes i dones. L’objectiu d’aquest estudi és comparar les dades estatístiques de l’equilibri unipodal entre sexe i cama domi-

nent/no dominant en una població físicament activa tant de forma estàtica com dinàmica mitjançant una plataforma optomètrica.

Mètode

Disseny

Estudi transversal. Es compara el control postural segons les variables de sexe i cama dominant/no dominant en un sol mesurament de dades.

Mostra (n)

La mostra està formada per 20 individus sans de 22,56 a 5,7 anys: 10 homes i 10 dones (taula D). Els criteris d’inclusió corresponien a persones sans d’edat entre 18-35 anys, físicament actives (3 o més sessions a la setmana d’un mínim de 60 minuts distribuïdes en dies alternes). Es van excloure subjectes amb queixoveg lesió (aguda o crònica) o malaltia a l’inici de l’estudi. Els participants van signar un consentiment informat d’estudi, i aquest va ser aprovar pel Comité d’Ètica de la Facultat de Psicologia, Ciències de l’Educació i de l’Esport Blanquerna, Universitat Ramon Llull.

Mètode d’observació. Recollida de dades

L’establometria es va fer mitjançant una plataforma de pressions plantars amb sensors àptics i es van seguir les directius del protocol de Trevor B. Birmingham²⁶ i Colby et al.²⁶. Es van fer els tests següents (fig. 1):

- Equilibri unipodal amb ulls oberts (UO).
- Equilibri unipodal amb ulls tancats (UT).
- Salt unipodal amb la meitat de la distància de la cama del subjecte (S) (des de troçànter major del fêmur a mal-lèol peronel).

![Taula 1: Característiques de la mostra d’estudi (n = 20): mitjana (desviació estàndard)](attachment:image.png)

<table>
<thead>
<tr>
<th></th>
<th>Pes (kg)</th>
<th>Talla (cm)</th>
<th>IMC</th>
<th>Edat</th>
<th>Activitat física (hores/semana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homes</td>
<td>60 (8,2)</td>
<td>1,80 (0,1)</td>
<td>18,3 (3,6)</td>
<td>26,30 (5,9)</td>
<td>9,5 (4,2)</td>
</tr>
<tr>
<td>Dones</td>
<td>55,6 (18,4)</td>
<td>1,66 (0,1)</td>
<td>20,1 (6,3)</td>
<td>24,30 (5,7)</td>
<td>12,40 (4,9)</td>
</tr>
<tr>
<td>Total</td>
<td>57,8 (14,0)</td>
<td>1,73 (0,1)</td>
<td>19,4 (5,0)</td>
<td>22,56 (5,7)</td>
<td>10,95 (4,7)</td>
</tr>
</tbody>
</table>

APUNTS MÉD ESPORT. 2009;162:74-81
Cada test es va efectuar tres cops consecutius, alternant cama dreta i esquerra. En cada mesurament de dades es va recollir la mitjana de la desviació del centre de pressions (CP) en el pla frontal (eix X) i sagital (eix Y) de la duració total de cada test (fig. 2). El primer i segon test duraven 10 s, i el tercer, 3 s. Per familiaritzar-hi, els subjectes es va fer una prova d’un a tres dies abans de la primera obtenció de dades. Abans de fer el test, tots els voluntaris van seguir l’escalfament següent: cursa contínua 7 min a 7/9 km/h i estiraments en tensió activa12 durant 3 min, i seguidament es van fer tres vegades els tests esmentats. Entre cada test va haver-hi un descans de 60 s.

En els tests 1 i 2, el subjecte se situava dret amb recolzament del peu que calia mesurar al centre de la plataforma (marcat amb un punt) i una petita flexió de genoll (15 graus). Quan l’individu estava preparat, començava a flexionar el genoll contrari al recolzament a 90 graus, i al senyal del mateix voluntari s’iniciava l’obtenció de dades.

Durant el test 1 i 3 (ulls oberts), els subjectes miraven una cartellina negra DIN A4 situada a la paret a 1 m de la plataforma. Amb el test sense visió, els subjectes van fer el mateix fins a tancar els ulls.

Durant els 3 tests se’ls va indicar que havien d’intentar estar al més quiets possible, amb els braços al llarg del cos. El test es tornava a repetir en el cas que el subjecte no el pogués finalitzar sense perdre l’equilibri. La cama dominant va ser escollida en funció de la cama amb què es xuta una pilota. El protocol escollit va seguir les directrius de Trevor B. Birmingham19 i Colby et al20. Un estudi previ ens va donar un coeficient de correlació intraclasse del test unipodal d’ulls oberts i tancats de bo a excel·lent en tots els paràmetres (0,769-0,613); contràriament, el del salt va ser de bo a baix (0,713-0,119).

Equipament

Plataforma optomètrica per a la valuació de les pressions plantars (podocomputer/CbsScanGraf) amb un sistema com-
putat d’anàlisi del peu, recolzaments plantars i biomecànica de la marxa. Té una superfície de mesurament de 370 x 450 mm amb una densitat de 60 sensors/cm², una freqüència de captura de fins a 25 Hz i funciona amb el sistema Windows XP. Té la capacitat de quantificar la posició del centre de gravetat de forma bipodal o unipodal.

Anàlisi estadística

Les dades recollides van ser analitzades estadísticament amb el sistema SPSS 15.0. Per a aquesta anàlisi es va seleccionar el millor resultat dels 3 mesuraments de dades consecutius de cada test. Es van comparar les desviacions del CP de nois i noies amb la prova per a dues mostres independents U de Mann-Whitney, ja que la mostra és petita i no compleix el criteri de normalitat. També es va fer una prova de mostres relacionades de Wilcoxon per trobar les diferències del CP entre cama dominant i no dominant.

Resultats

La taula II ens mostra les diferències entre homes i dones. El test UO no mostra diferències significatives en cap cas. El test UT mostra diferències significatives en els dos plans en la cama no dominant. En el cas del test S es troben diferències significatives de totes dues cames només en el pla frontal. En els casos en què hi ha diferències significatives, la mitjana de la desviació del CP sempre és menor en el cas del grup femení.

Si comparem cama dominant i no dominant agafant com a mostra el total de dones i homes, no hi ha diferències significatives entre totes dues cames (taula III). En canvi, al separar homes i dones sí que hi trobem diferències significatives. En el cas de les dones hi ha una major desviació del centre de pressions de forma significativa de la cama no dominant en els dos eixos del test de salt. En el cas dels homes s’observa un augment significatiu del CP en el cas de la cama no dominant en el eix anteroposterior del test UO.

Discusió

Diferències entre sexe

En la prova UO, igual que Black et al\(^{26}\), no hem trobat diferències significatives entre sexes. En canvi, Hewett et al\(^{27}\) i Rozzi et al\(^{28}\) sí que van trobar un més gran equilibri en les dones. En el cas del test UT, només obtenim diferències significatives en la cama no dominant. Si observem la mitjana de les desviacions del CP (taula II), la diferència indica més oscil·lació del CP en el cas dels homes. Encara que les altres variables no han donat diferències significatives entre sexe, les mitjanes tendeixen a donar una menor desviació del CP en les dones en tots dos eixos. No hem trobat altres estudis que comparin la diferència de sexe amb el test unipodal d’ulls tancats.

En la prova de salt, les diferències significatives entre homes i dones es donen només en el pla frontal, amb una menor desviació del CP a favor del sexe femení. Wilkstrom et al\(^{26}\) també van obtenir un millor Índex de control postural dinàmic en les dones, encara que el component vertical de les forces de reacció del terra va ser més ben absorbit pels homes, fer que s’associa a una menor flexió de genoll durant la recepció del salt entre les dones.

Segons els resultats obtinguts de la desviació del CP, tant pel nostre estudi com els ja esmentats, la més gran incidència de lesions d’extremitat inferior en les dones\(^{20,21}\) no estaria relacionada amb una més gran desviació del CP, ja que aquesta variable no es mostra més elevada en el sexe femení. En el nostre estudi, igual que en d’altres\(^{25,27}\), les dones tendeixen a mostrar una menor desviació del CP en els tests més dinàmics (UT i S), és a dir, els que necessiten més requeriments físics i la variació del CP és més gran. Recordem que l’equipament utilitzat mesura la desviació del centre de pressions i no les forces d’impacte del terra ni la biomecànica de les extremitats.

Per tant, sembla que hi ha diferències entre homes i dones en el control neuromuscular, malgrat que en aquests moments no queda clar si és per diferents estratègies de control postural o deficits del control neuromuscular. Igual que altres autors\(^{12,23}\), creiem que les estratègies de recepció del salt entre sexes solen ser diferents i podrien tenir influència en una major o menor incidència de lesions esportives de l’extremitat inferior. En relació amb els components de valg i posició propera a l’extensió de genoll com a factors que existeixen habitualment en el mecanisme lesional del ligament encreuat anterior, McLean et al\(^{39}\) arriben a conclusions força interessants en comparar jugadors i jugadores de bàsquet. Els autors conclouen que estan d’acord amb l’existència de més valg en les dones, però afegixen una dada que cal tenir en compte; els seus resultats no mostren que els subjectes amb més valg anatómic detectat en una exploració produïx el més valg en la sortida oberta, salt lateral o recepció del salt unipodal. Pels seus resultats, dedueixen que el valg funcional en l’acció esportiva té més un origen d’estratègia neuromuscular que no anatómic\(^{35}\). Per tant, podríem suggerir que la prevenció de lesions de ligament encreuat anterior mitjançant l’entrenament neuromuscular és possible.
Taula II
Comparació de mitjana i desviació estàndard (DE) de la mitjana de la desviació del centre de pressions entre homes i dones

<table>
<thead>
<tr>
<th>Test</th>
<th>Eix</th>
<th>Sexe</th>
<th>Dominant Mitjana (DE)</th>
<th>p *</th>
<th>No dominant Mitjana (DE)</th>
<th>p *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulí de oberts</td>
<td>X</td>
<td>Dones</td>
<td>4,2 (1,1)</td>
<td>0,971</td>
<td>3,9 (1,4)</td>
<td>0,739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>4,2 (1,2)</td>
<td></td>
<td>4,1 (1,7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Dones</td>
<td>4,2 (1,0)</td>
<td>0,529</td>
<td>3,6 (1,3)</td>
<td>0,143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>3,8 (1,1)</td>
<td></td>
<td>4,4 (1,4)</td>
<td></td>
</tr>
<tr>
<td>Ulí de tancats</td>
<td>X</td>
<td>Dones</td>
<td>8,9 (2,0)</td>
<td>0,218</td>
<td>8,4 (3,0)</td>
<td>0,029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>10,9 (4,4)</td>
<td></td>
<td>11,4 (2,8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Dones</td>
<td>9,5 (1,6)</td>
<td>0,529</td>
<td>9,0 (2,6)</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>10,6 (4,4)</td>
<td></td>
<td>12,3 (2,4)</td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>X</td>
<td>Dones</td>
<td>8,6 (2,8)</td>
<td>0,011</td>
<td>10,8 (5,3)</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>14,3 (4,4)</td>
<td></td>
<td>9,5 (3,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Dones</td>
<td>7,0 (2,0)</td>
<td>0,853</td>
<td>9,2 (1,2)</td>
<td>0,247</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homes</td>
<td>10,1 (2,8)</td>
<td></td>
<td>8,6 (1,9)</td>
<td></td>
</tr>
</tbody>
</table>

*Prova U de Mann-Whitney, p < 0,05.

Taula III
Comparació de la mitjana de la desviació del centre de pressions (CP) entre cama dominant i no dominant

<table>
<thead>
<tr>
<th>Test</th>
<th>Ulí de oberts</th>
<th>Ulí de tancats</th>
<th>Salt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eix X *</td>
<td>Eix Y *</td>
<td>Eix X *</td>
</tr>
<tr>
<td>Dones</td>
<td>0,878</td>
<td>0,359</td>
<td>0,464</td>
</tr>
<tr>
<td>Homes</td>
<td>0,919</td>
<td>0,015</td>
<td>0,241</td>
</tr>
<tr>
<td>Total</td>
<td>0,970</td>
<td>0,456</td>
<td>0,751</td>
</tr>
</tbody>
</table>

*Prova de Wilcoxon, p < 0,05.

Diferències entre cama dominant/no dominant

En la prova UO no es troben diferències significatives aagafant el grup total o el grup femení o masculí per separat, excepte en la variable anteroposterior dels homes, en què segons les mitjanes (taula II) hi ha més variació en la cama no dominant.

En la prova d'UT tampoc hi ha diferències significatives en cap cas. El grup de Ross va obtenir una menor desviació anteroposterior en la cama dominant, encara que no es van observar diferències en la desviació mediolateral.

En el test de salt es troben diferències significatives entre cama dominant i no dominant només en les dones. Si el resultat és que la desviació del CP en les dones és més gran que en els homes, podem dir que Hewett et al. parlen d'aquest fet com un dels possibles factors que predisponen a una més alta incidència de lesió del ligament encreuat anterior en dones respecte d'homes. En aquesta línia, Ross et al. van trobar diferències en el temps necessari per atribuir al pic de força de reacció vertical del terra. Wilstrom et al. no van trobar diferències significatives entre cames en el cas del salt unipodal.

Com que existeixen algunes controvèrsies en el tema de què tractem, és important pensar en futurs estudis el fet de considerar si una més gran variació del centre de pressions s'associa realment amb un menor control postural com es pensa fins ara, ja que alguns autors han suggerit recentment que més variabilitat pot oferir més flexibilitat per actuar sobre forces inesperades. Aquest fet pot donar a l'esportista una més gran riquesa de patrons motors, fet que implica més capacitat coordinativa davant de la gran variabilitat d'estimuls que es poden provocar en determinats esports. Els estudis publicats sobre el tema mostren poblacions molt diferents, igual que una gran diversitat de proves i mesuraments vàlids i fiables i mostres d’estudi petites. Malgrat que seria necessari ampliar la mostra de les investigacions, el nostre estudi també utilitza una mostra petita perquè
el processament de dades estabilomètriques exigix una llarga elaboració per obtenir uns resultats definitius. En aquest sentit, s’haurà de millorar el programa informàtic de tractament de dades per a futures investigacions.

També necessitem nous mesuraments que ens permetin comparar tant l’estabilitat postural, la propiopcióció, les forces de reacció del terra, la força muscular i la cinètica de les articulacions implicades, ja sigui en posició estàtica com dinàmica. Per últim, hem de pensar que les posicions dinàmiques són les que més ens interessen, perquè s’apropen més a la realitat de l’esportista. Atesa una més gran dificultat i variabilitat que tenen en el mesurament, hem d’indicir encara més a estudiar-les per arribar a aconseguir dades que ens permetin plantear estratègies d’aplicació segons els objectius que ens proposem.

AGRAIjMENTS
A tot l’equip mèdic i tècnic del Consell Català de l’Esport.

EFECTOS DEL ENTRENAMIENTO VIBRATORIO EN
PERSONAS FÍSICAMENTE ACTIVAS: REVISIÓN
SISTEMÁTICA

Fort Vanmeerhaeghe, A.¹,²,³; Guerra Balic M.²; Romero Rodríguez, D.⁴; Sitjà Rabet M.⁴; Bagur Calafat C.³; Girabent Farrés M.³; Lloret Riera M.⁵

RESUMEN
El objetivo de esta revisión sistemática es estudiar los efectos a largo plazo del entrenamiento mediante vibraciones mecánicas sobre el rendimiento en personas físicamente activas.

La estrategia de búsqueda se realizó en las bases de datos PUBMED y Sport Discus el 7 de enero de 2008. Sólo se incluyeron ensayos clínicos controlados. Los artículos incluidos en el estudio se repartieron entre cuatro revisores, de tal forma que cada artículo fue revisado por dos de ellos. Se evaluó la calidad metodológica siguiendo las bases del manual Cochrane 2008. Los resultados mostraron una gran heterogeneidad clínica y una baja calidad metodológica de los trabajos analizados hasta la fecha buscada. Debido a ello, sólo se pudo metaanalizar la capacidad física de la fuerza explosiva. A pesar de no poder extraer conclusiones claras, existe una tendencia a la mejora de la fuerza explosiva.

Palabras clave: vibración, entrenamiento, ejercicio, revisión sistemática.

ABSTRACT
The objective of this systematic review is to study the long-term effects of vibration training on physical performance in physically active people. Search strategy was carried out in the databases PUBMED and Sport Discus on January 7th, 2008, and from the available date of 1966. Of the total number of references found, only those corresponding to controlled clinical
trials studying were selected. The articles included in the study were distributed among four reviewers, in such a way that every article was reviewed by two of them, who collected data independently. Methodological quality was assessed following the Cochrane Handbook (2008) guidelines. Given the significant clinical heterogeneity among studies, meta-analysis was only applied to results of explosive strength. There is a tendency in the improvement of explosive strength, despite the evidence of poor quality.

Key words: vibration, exercise, training, systematic review.

INTRODUCCIÓN

Recientemente se está proponiendo en la literatura científica el entrenamiento por medio de vibraciones mecánicas (EV) como una nueva intervención de ejercicio para la mejora del rendimiento físico, la rehabilitación y la salud general. Sin embargo, ya hace tiempo que la carga vibratoria está presente en actividades de nuestra vida diaria como son la conducción de un tractor, camión o bicicleta de montaña.

La vibración ha sido muy estudiada por sus efectos peligrosos sobre las personas, examinando las diferentes amplitudes, frecuencias y duraciones aplicadas. Este tipo de estímulo puede afectar a diferentes parámetros fisiológicos, y sus efectos pueden ser transitorios o permanentes dependiendo de las características de la vibración (1;2). Cuando ésta es transmitida a través de la mano (maquinaria, herramientas o útiles vibrátiles) ha sido asociada a desórdenes vasculares (síndrome del dedo blanco), neurológicos (síndrome del túnel carpiano) y musculoesqueléticos (enfermedad de Kienbock’s), conocidos como "síndrome de la vibración mano-brazo". Estos problemas están controlados por la normativa ISO 2631 (The International Standards Organisation), donde se regulan unos límites de vibración que podrían ser perjudiciales para las personas. Por otra parte, las vibraciones de cuerpo entero (normativa ISO 5349) se han asociado principalmente a desórdenes de la columna vertebral. Pese a los efectos negativos descritos en el campo de la medicina laboral, los estudios más recientes sugieren que el trabajo vibratorio a bajas amplitudes, frecuencias moderadas y períodos de exposición cortos son un estímulo mecánico seguro y eficaz para provocar efectos positivos sobre las estructuras musculoesqueléticas (3-8).

En el ámbito deportivo las vibraciones han sido aplicadas principalmente encima de plataformas vibratorias (vibraciones de cuerpo entero, VCE) consiguiendo un “efecto global en el cuerpo” (9-12), aunque también se han aplicado de forma más localizada mediante cables vibratorios (13;14), o bien una barra vibratoria diseñada para la estimulación de los
músculos de la extremidad superior (15). Destacar también que existen varios dispositivos en el mercado para el entrenamiento mediante VCE, en algunos de ellos predomina un componente más lateral, o también llamado rotacional (9;16), y en otros un componente más vertical (17;18).

Los principales efectos atribuidos a la vibración se relacionan con la contracción muscular no voluntaria, llamada reflejo tónico vibratorio (RTV) (19). El EV podría conseguir efectos similares al entrenamiento con ciclos de estiramiento acortamiento y parece tener aspectos ventajosos sobre otras técnicas de entrenamiento (20). Además, la combinación de este método con el entrenamiento clásico de fuerza puede provocar los mismos efectos en los tejidos sin la necesidad de aplicar cargas importantes en las articulaciones, efecto especialmente importante para la salud del deportista. Los estudios realizados hasta el momento atribuyen al entrenamiento con vibraciones mecánicas efectos positivos sobre el rendimiento físico y sobre diferentes parámetros fisiológicos. Entre estos destacan la mejora de la fuerza (21-24), capacidad de salto vertical (25-27), flexibilidad (14;28;29), densidad ósea (30;31), equilibrio (21;32-34), flujo sanguíneo (35), consumo de oxígeno (36), respuestas hormonales (37;38) y dolor crónico (39). Además, también se ha descrito una mejora de la calidad de vida (32). Estos estudios se han realizado tanto en población sana entrenada (9;11;40;41) como no entrenada (42-44). Igualmente, en los últimos tiempos se han estudiado sus efectos beneficiosos en personas mayores (32;44) y en diversas patologías como osteoporosis (30), accidente cerebrovascular (45), tratamiento post cirugía de ligamento cruzado anterior (46), esclerosis múltiple (47) y parálisis cerebral (48). Es importante destacar que algunos de estos protocolos referenciados estudian los efectos provocados a nivel agudo (25;38;43), mientras otros registran las adaptaciones conseguidas a largo plazo (32;49). Estos últimos se encuentran en menor proporción debido al mayor esfuerzo que suponen los estudios longitudinales.

Pese a los estudios referenciados anteriormente, también se han detectado estudios con EV que no han obtenido ninguna mejora significativa (11;27;50). Estos resultados pueden explicarse debido a que los efectos de este tipo de entrenamiento dependen en gran medida de las características de la vibración (amplitud, frecuencia, método de aplicación) y el protocolo de ejercicios aplicado (tipo de entrenamiento, intensidad, volumen). Además, los estudios más recientes parecen mostrar que cada tipo de población tiene unos parámetros óptimos de estimulación. De esta manera sería lógico aplicar diferentes parámetros de vibración en personas entrenadas y no entrenadas. Un ejemplo es la aplicación del mismo protocolo de entrenamiento con vibración que dio efectos positivos en personas no entrenadas (22) y no tuvo efectos en atletas entrenados en velocidad (11). A esto hemos de
añadir que parece ser que cada grupo muscular posee una frecuencia de estimulación óptima (51;52).

Hasta la fecha de búsqueda de esta revisión, existen varias revisiones científicas que estudian los efectos del EV sobre el rendimiento físico de las personas (1-8;20;53). De todas las revisiones citadas, sólo dos están realizadas con personas físicamente activas (1;2) y ninguna de estas últimas describe una sistematización de la estrategia de búsqueda y recopilación de datos. Nos encontramos pues, con una falta de fundamentación científica sólida para establecer un consenso sobre cuáles son los efectos reales del EV sobre el rendimiento físico en personas activas.

El objetivo principal de esta revisión sistemática es estudiar los efectos del EV, producidos a largo plazo, sobre el rendimiento físico en población activa.

MÉTODOS

Criterios de inclusión para la selección de los estudios

Tipo de estudio: Ensayo clínico con grupo control tanto si la asignación de grupos es aleatoria como no.

Tipo de participantes: Individuos físicamente activos. Hemos incluido en esta muestra lo que los propios autores definen como individuos físicamente activos (incluimos estudiantes de educación física) o deportistas de competición.

Tipo de intervenciones: Entrenamiento a largo plazo mediante vibraciones mecánicas. Se incluyeron todos los estudios que cumplían de forma regular un mínimo de 2 semanas y/o 7 sesiones de trabajo. Los tipos de intervención incluidas se dividieron en dos subgrupos:
- Grupo que realiza un EV comparado con grupo control pasivo (GV vs GC): Entendemos grupo pasivo como el grupo que realiza su entrenamiento habitual.
- Grupo que realiza un EV comparado con grupo que hace ejercicios similares sin vibración (GV vs GSV): Entendemos grupo control como el que hace los mismos ejercicios que el GV, pero sin vibración, más su entrenamiento habitual.

Tipo de medida de resultados: Las medidas de resultado son aquellas que valoran el rendimiento físico. Se han agrupado las medidas de resultado en 6 elementos teóricos que representan las capacidades físicas que podrían beneficiarse del EV: fuerza máxima isométrica, fuerza máxima dinámica, flexibilidad, estabilidad postural, fuerza explosiva y velocidad.
Estrategia de búsqueda para la identificación de los estudios

Se realizó la búsqueda en las bases de datos PUBMED y Sport Discus el 7 de enero de 2008 y desde la fecha disponible de 1966. También se examinaron las listas de referencias de otras revisiones. No se aplicó ninguna restricción de idioma. La base de datos Cochrane fue excluida porque no se encontró ningún artículo relacionado con los criterios de selección. La Tabla 1 nos muestra los algoritmos de búsqueda que se diseñaron.

<table>
<thead>
<tr>
<th>Bases de Datos</th>
<th>Estrategia de búsqueda</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPORT DISCUS</td>
<td>1 vibration 2 sports OR athletic OR athletes 3 exercise OR fitness OR training OR strength 4 2 OR 3 5 1 AND 4</td>
</tr>
</tbody>
</table>

Métodos de valoración de los estudios

En primer lugar fueron examinados el título y resumen de los estudios encontrados en la búsqueda bibliográfica por cuatro revisores, de forma que cada título y resumen fue revisado por dos de ellos de forma independiente. Las discrepancias entre autores fueron resueltas por consenso o por la opinión de un tercer revisor. Una vez seleccionados los artículos relevantes para la revisión, otra vez cuatro revisores independientes procedieron a la lectura crítica y valoración de la calidad metodológica de cada uno de ellos (riesgo de sesgo), de tal manera que cada estudio fue evaluado por dos revisores independientes. Para el análisis cuidadoso de cada estudio seleccionado se elaboró una hoja extracción de datos (Anexo 1). De esta forma se valoró la calidad de los estudios, las características de los participantes en el estudio, las características del entrenamiento, los diferentes grupos de comparación y las características de los resultados para cada subgrupo de participantes. Los tres artículos seleccionados en lengua alemana fueron revisados por tres personas con conocimientos de la lengua. Los efectos adversos del entrenamiento con plataforma vibratoria también se contemplaron.

Análisis del riesgo de sesgo de los artículos incluidos

La calidad de los estudios incluidos se evaluó mediante una serie de criterios de validez
Análisis de datos

Una vez disponibles los datos cuantitativos de las medidas de resultado se procedió al análisis estadístico. En cada uno de los grupos se consideró como variable de interés "el incremento de la medida del resultado", es decir la diferencia del post-pre de la medida del resultado, estimando la desviación estándar de esta variable como diferencia de dos Normales. Se realizó un metaanálisis considerando esta la variable de interés, que al ser esta una variable continua se tomó como medida de efecto la diferencia de medias standarizada. Para el contraste de heterogeneidad se utilizaron las pruebas de Dersimonian y Laird's, y para la estimación del sesgo de publicación las pruebas de Egger y Begg. También se realizó el análisis de sensibilidad cuando éste fue posible. Para todos los análisis se utilizó el programa EPIDAT versión 3.1 y se tomó como nivel de significación $\alpha = 0.05$.

RESULTADOS

La estrategia de búsqueda identificó 963 títulos potenciales para la inclusión. Se seleccionaron 17 artículos para ser analizados en texto completo. De estos artículos se incluyeron 16 artículos (11;12;14;17;18;25-29;40;55-59) que cumplieron con los criterios de inclusión, uno de ellos fue excluido por no cumplirlos (60).

De los 16 estudios incluidos encontramos 13 ensayos clínicos controlados y aleatorios (3, 5, 9; 12; 18-20; 20; 22; 24; 35; 53; 55), y 3 no aleatorios (21; 52; 54). Además, hubo grandes diferencias entre las características de los participantes, el diseño, el contenido de los ejercicios de entrenamiento y los resultados evaluados.

Los ensayos se realizaron en América del Norte ($n = 1$), Europa ($n = 13$) y Nueva Zelanda ($n = 2$).

Descripción de los estudios incluidos

No pudimos realizar una estimación de efecto global en todos los ítems analizados debido a la heterogeneidad de las valoraciones. Como describiremos a posteriori, el metaanálisis solo se pudo realizar en la medida de resultado de la fuerza explosiva. A continuación se describirán los diferentes ensayos clínicos en función del tipo de efecto estudiado. Así mismo, los resultados se dividen en los dos subgrupos ya descritos anteriormente (Anexos 2 y 3).
Grupo que realiza un EV comparado con un grupo control pasivo

Efectos sobre la fuerza, el salto y la velocidad

Uno de los primeros trabajos de la literatura científica sobre los efectos del EV sobre el rendimiento deportivo fue el del grupo de Issurin et al. (1994). Los autores estudiaron los efectos de un EV de 3 semanas, 3 sesiones por semana, sobre la fuerza máxima dinámica y la flexibilidad. Dividieron la muestra de 28 atletas masculinos (19-25 años) en tres grupos: un primer grupo que realizó estiramientos de piernas combinados con estimulación vibratoria y ejercicios de fuerza convencionales en los brazos; un segundo que realizó estiramientos convencionales en las piernas y ejercicios de fuerza de brazos combinados con estimulación vibratoria; y un último grupo control que no realizó ningún entrenamiento relevante. El aparato utilizado fue un sistema de poleas con vibración (amplitud 3mm, frecuencia 44Hz). El grupo que realizó el EV combinado con ejercicios de fuerza obtuvo una ganancia del 49,8% en la fuerza dinámica, comparado con un 16% en los ejercicios convencionales, y ninguna ganancia en el grupo control (14).

Bosco et al. (1998), realizaron un experimento con 14 sujetos físicamente activos asignados a un grupo que entrenó con vibraciones (GV) y un grupo control (GC). El GV realizó una progresión de ejercicios estáticos encima de una plataforma vibratoria rotacional (Galileo 2000) durante 10 días, a 26 Hz de frecuencia y 10 mm de amplitud, y 5 series de 1,5-2 min (pausa de 4 seg). Los autores midieron la fuerza explosiva mediante un test de salto con contramovimiento (CMJ) y la misma prueba durante 5 segundos (5s CJ) al inicio y final del periodo de entrenamiento. Según los autores, el GV obtuvo mejoras significativas en la potencia y altura del mejor de los saltos (un 6,1% y un 12% respectivamente, p <0.05) y una mejora de la media del salto vertical en el test 5s CJ (un 12%; p <0.05); al contrario que el grupo control (25).

Más recientemente, Delecluse et al (2005) estudiaron los efectos de un entrenamiento de VCE en un grupo de 20 velocistas (13 hombres y 7 mujeres, 17-30 años). El GV añadió a su entrenamiento habitual una progresión de ejercicios estáticos y dinámicos encima de una plataforma vibratoria durante cinco semanas (35-40Hz, 1,7-2,5 mm, 9-18 min de duración, Power Plate). Después del periodo de intervención no se obtuvieron resultados positivos en el GV en relación a la velocidad de carrera ni en la fuerza isométrica y dinámica de los flexores y extensores de rodilla. Los autores creen que los resultados pueden ser debidos a un mal diseño del protocolo de intervención, ya que este mismo diseño obtuvo resultados significativos en personas no entrenadas (11).
Fagnani et al. (2006) estudiaron los efectos de un protocolo de entrenamiento mediante VCE durante 8 semanas sobre el rendimiento muscular en un grupo de 26 deportistas femeninas (21-27 años). El GV realizó una progresión de ejercicios estáticos en una plataforma Nemes Bosco, tres veces por semana, con una vibración de 35 Hz, una amplitud de 4 mm y un tiempo máximo de duración total de trabajo de 6’. El GV mostró una mejora significativa en la fuerza de extensores de rodilla (p <0.001), valorada mediante una máquina isocinética, y el test de CMJ (p <0.001). Sin embargo, no obtuvieron diferencias significativas en el grupo control (28).

Por último, el grupo de Annino et al. (2007), estudiaron los efectos de un entrenamiento mediante VCE (Nemes Bosco system) en una muestra de 22 bailarinas de élite (21.2 ± 1.5 años). El EV consistió en 5 series de 40 seg (60 seg de reposo) a 30 Hz en una posición en semiflexión de rodillas (100º) y rotación externa de caderas durante 8 semanas, tres sesiones por semana. Los resultados muestran una mejora significativa en el GV sobre el salto vertical (6.3 ± 3.8%, p <0.001), la potencia y la velocidad de los extensores de rodilla, al contrario que el GC (40).

Efectos sobre la flexibilidad

El grupo de Issurin et al. (1994), ya descrito anteriormente, además de los efectos sobre la fuerza, también estudiaron los efectos del EV sobre la flexibilidad de extremidad inferior. El GV combinó de forma simultánea un trabajo vibratorio con ejercicios de flexibilidad de la extremidad inferior. Los dos test evaluados fueron el Two legged split y el Flex and reach test. El GV obtuvo una mejora del 8.7 y 43.6% respectivamente, comparado con un 2.4 y 19-7% en el grupo que realizó estiramientos convencionales, y un 1.2 y 5.2% en el grupo control (14).

El grupo de Fagnani et al. (2006), también descritos en el apartado anterior, estudiaron los efectos del entrenamiento vibratorio sobre la flexibilidad mediante el test sit and reach. El GV, después del periodo de entrenamiento, obtuvo una mejora significativa en la flexibilidad (p <0.001). Sin embargo, el grupo control no obtuvo diferencias (28).

Efectos sobre la estabilidad postural

En este subgrupo no hemos encontrado ningún trabajo que estudie los efectos del EV sobre la estabilidad postural.
Grupo que realiza un EV comparado con grupo que hace ejercicios similares sin vibración

Efectos sobre la fuerza, el salto y la velocidad

Este subgrupo empezó a ser estudiado por un grupo de alemanes, Schlumberger et al. (2001), que compararon los efectos de un entrenamiento de fuerza mediante el ejercicio de *squat* unilateral sobre una plataforma vibratoria (4 series de 8-12 repeticiones, 4mm, 25Hz) con el mismo ejercicio sin vibración en 10 sujetos entrenados. Una pierna fue la experimental y la otra la control. El entrenamiento se realizó durante 6 semanas, tres sesiones semanales. Los resultados mostraron un aumento significativo de la fuerza máxima isométrica tanto en el grupo de vibración como en el grupo control (6'5 y 6,2% respectivamente). El momento de fuerza no dio diferencias en ningún grupo (59).

Ese mismo año, también desde Alemania, Becerra y Becker (2001), estudiaron los efectos de un entrenamiento de 7 sesiones con un sistema de cables transmisores de vibraciones en 23 nadadores entrenados. La muestra se dividió en 4 grupos: (a) vibración (20-24 Hz; 4 mm) añadida a la movilización de una carga equivalente al 50-60% de la fuerza máxima isométrica y a una velocidad angular de 180 °/s en la articulación del hombro (2 min de trabajo, 2 min de pausa, con incremento de 2 repeticiones por sesión); (b) mismo trabajo sin vibración que grupo a; (c) vibración añadida a la movilización de una carga equivalente al 90-95% de la fuerza máxima isométrica a una velocidad angular de 30 °/s (10 -14 repeticiones de 30 seg, 90 seg de recuperación); (d) mismo que grupo c, pero sin vibración. La presentación de resultados es bastante confusa por lo que deben interpretarse con cautela. Según los autores, los resultados muestran mejoras en los tiempos para nadar diferentes distancias, aunque no significativas (55).

De Ruiter al. (2003) estudiaron los efectos de 11 semanas de entrenamiento con VCE (posición bipodal 5-8 series de 60 seg, 8 mm, 30 Hz, Galileo 2000) sobre la propiedad contráctil, activación muscular de los extensores rodilla y salto vertical en 20 individuos jóvenes físicamente activos. Se testó al grupo en 5 ocasiones durante las 13 semanas de duración del estudio. El GV no obtuvo resultados significativos respecto al GC en la fuerza máxima de extensores de rodilla, el % de desarrollo de fuerza ni el salto vertical (27).

Berschin et al. (2003) compararon el entrenamiento de fuerza combinado con VCE y un entrenamiento convencional de fuerza en 24 jugadores de rugby profesionales. El entrenamiento tuvo una duración de 3 meses y 3 sesiones semanales. El GV realizó 5 series de sentadilla y salto durante 3 min con 2-3 min de pausa con sobrepeso creciente hasta 70% de 1RM. El GC realizó un entrenamiento de fuerza clásico (5x12 reps al 70%, levantamiento explosivo, 2 min de pausa). Los autores encontraron diferencias significativas a favor del
grupo de vibración en el test CMJ. Además, los sujetos de estudio mejoraron la capacidad de aceleración (sprint 30m) y una mejor agilidad y estabilidad en los cambios de ritmo y movimientos laterales (prueba de slalom) (27).

Ronnestad (2004) comparó los efectos producidos por un entrenamiento de fuerza con sentadillas con el mismo entrenamiento hecho sobre una plataforma vibratoria (Nemes L.C., 40Hz, 4mm) en 14 sujetos (21-40 años) entrenados en fuerza. El estudio se realizó durante 5 semanas, 2-3 sesiones por semana. El entrenamiento de fuerza consistió en una progresión de sentadillas de 3×10 a 4×6 RM. Tanto el grupo de vibraciones como el grupo control obtuvieron mejoras significativas en el test de una repetición máxima (32,4 ± 9.0 versus 24,2 ± 3,9 respectivamente). En el caso del test CMJ sólo se obtuvieron mejoras en el grupo de vibraciones. En ninguna de las dos medidas se obtuvieron diferencias significativas entre los dos grupos (17).

Cochrane et al. (2004) investigaron los efectos de un entrenamiento de 9 días de VCE sobre el salto vertical, la velocidad y la agilidad, en 24 estudiantes de Educación física. El grupo de vibraciones realizó 5 series de ejercicios estáticos de 2 min de duración a 26 Hz y 11mm de amplitud (pausa de 40 seg) en una plataforma Galileo 2000; sin embargo, el grupo control, realizó los mismos ejercicios pero sin vibraciones. No hubo diferencias significativas entre grupos en el test CMJ, SJ, carrera de velocidad de 5, 10 y 20 m, ni prueba de agilidad (505, up and back) (57).

Cronin et al. (2004) investigaron los efectos de tres tipos de intervenciones de 10 días sobre el rendimiento del salto en 15 bailarinas experimentadas. Dividieron a las bailarinas en tres grupos: (a) vibraciones (5 ejercicios progresivos de 90-120 seg, 40 seg de pausa, Galileo 2000, 26 Hz, y 5,2 mm); (b) mismos ejercicios sin vibraciones; y (c) control. El test DJ (Drop jump) y CMJ aumentaron un 1.4-8.7% en el grupo de vibración en relación a los otros dos. El grupo que entrenó con vibraciones obtuvo el mayor efecto en el test DJ (6.0 a 14%), es decir, en la mejora del ciclo estiramiento-acortamiento (26).

Kvorning et al. (2006) compararon los efectos de un EV sobre el sistema neuromuscular y hormonal. El entrenamiento duró 9 semanas y dividieron la muestra (n: 28) en tres grupos: (S) entrenamiento de sentadillas con carga; (S+V) entrenamiento de sentadillas con carga sobre una plataforma vibratoria (20-25Hz, 4 mm, Galileo 2000); y (V) sentadillas sin carga sobre una plataforma vibratoria. En los tres casos realizaron una progresión que llegó a 3 sesiones semanales y 6 series de 8 repeticiones con 2 minutos de descanso. No hubo diferencias significativas entre los tres grupos a nivel de contracción isométrica máxima de extensores de rodilla y CMJ; excepto en este último ítem, donde la potencia media fue superior en el grupo S respecto al grupo V. En cuanto a las diferencias intragrupo, el grupo
Azahara Fort

Estudi V

129

(S) y (S+V) aumentaron la contracción isométrica máxima voluntaria de forma significativa post entrenamiento. La altura del salto, la potencia media y el pico de potencia aumentaron sólo en el grupo (S) y la velocidad del pico de potencia en los tres grupos. Los autores concluyen que el entrenamiento mediante VCE combinado con un entrenamiento convencional de fuerza no aumenta de forma adicional la contracción isométrica máxima ni el rendimiento neuromuscular respecto a un entrenamiento convencional de fuerza (58).

Mahieu et al. (2006) compararon los efectos producidos por un entrenamiento de ejercicios dinámicos y estáticos encima de una plataforma vibratoria (Fitvive N.V., 2-4 mm, 24-28 hz, 4-13’) con los mismos ejercicios, pero sin vibración. La muestra fue un grupo de 33 esquiadores de competición (12.36 ± 1.71 años) que entrenaron durante seis semanas, tres veces por semana. Los resultados mostraron mejoras significativas post entrenamiento en los dos grupos en relación a la fuerza explosiva y la fuerza isocinética de los flexores y extensores de rodilla y tobillo. Por otra parte, el GV obtuvo mejoras significativas respecto al GC en la fuerza explosiva y en la fuerza isocinética de los flexores dorsales de tobillo (12).

Efectos sobre la flexibilidad

Van den Tillaar (2006) comparó las ganancias producidas sobre la flexibilidad de los músculos isquiosurales entre un grupo que combinó estiramientos (contracción-relajación) seguidos de VCE con otro grupo que realizó los mismos ejercicios, pero sin vibración. El periodo de entrenamiento duró 4 semanas, 3 sesiones por semana. Cada sesión de estiramientos consistía en 3 series de 5 segundos de contracción isométrica más 30 segundos de estiramiento estático por cada pierna. El grupo experimental añadió 30 segundos de vibraciones (Nemes Bosco System, 28 Hz, 10 mm, bipedestación estática) después de cada serie de estiramientos. Ambos grupos mostraron resultados significativos en la mejora de la amplitud de movimiento. Sin embargo, el GV obtuvo además un aumento significativo (30%) del rango articular respecto al GC (14%). Los autores concluyen que el entrenamiento mediante VCE puede tener un efecto positivo extra sobre la flexibilidad cuando se combina con estiramientos de contracción-relajación (18).

Sands et al. (2006) también estudiaron los efectos agudos y a largo plazo de las vibraciones mecánicas sobre la flexibilidad. En este caso se combinó el estiramiento realizado de forma simultánea a la vibración. La muestra fueron 10 chicos gimnastas (10.1±1.5 años). Compararon los efectos obtenidos por un grupo que realizó 4 minutos de estiramientos estáticos (2 posiciones de spagat, ambas piernas, 10 seg de estiramiento más 5 seg de reposo con una duración de 1 min) sin vibración, y otro grupo que realizó los mismos ejercicios, pero con vibración (30Hz, 2mm). Los resultados muestran mejoras
significativas en el rango articular spagat a nivel agudo. Sin embargo, a las cuatro semanas de entrenamiento las mejoras sólo se dan en la pierna derecha. Los autores concluyen que la combinación de vibraciones con estiramientos estáticos pueden ser un medio prometedor para aumentar el rango articular en gimnastas de alto nivel deportivo (29).

Efectos sobre la estabilidad postural

El único estudio que valora los efectos del EV sobre la estabilidad postural en personas entrenadas es del grupo formado por Mahieu et al. (2006), ya citado anteriormente. Los autores estudiaron los efectos producidos sobre el control postural por un EV comparado con un GC que realizó los mismos ejercicios, pero sin vibración. Este fue evaluado en una posición bipodal dinámica mediante el sistema *Balance Master*. Ninguno de los grupos obtuvo diferencias significativas (12).

Resultados del metaanálisis

A continuación se muestra el metaanálisis de la medida de resultado de la fuerza explosiva, medida con el test CMJ. No ha sido posible metaanalizar las otras medidas de resultado debido a la gran heterogeneidad de medidas de valoración. En primer lugar, al tener una variable continua (incremento entre pre y post) se tomó como medida de efecto la diferencia de medias estandarizada, utilizando el modelo de efectos aleatorios. La desviación estándar del incremento pre-post entrenamiento se estimó asumiendo que la diferencia de las variables es de distribución normal e independiente. Se excluyeron del metaanálisis los estudios que sólo proporcionaron datos categóricos (26;56). El grupo de De Ruiter et. al (27) utilizaron otro tipo de datos para medir el salto vertical, por lo que tampoco se incluyó.

Grupo que realiza un EV comparado con un grupo control pasivo

Tal y como nos muestra la figura 1, hay homogeneidad en la muestra (p> 0,05). Podemos observar que todos los estudios se encuentran en la zona de confianza de la medida de efecto.

Tal y como observamos en la tabla y la figura 2, los resultados tienden a una mejora del salto a favor del grupo experimental, obteniendo una medida de efecto global de 0’4007 cm. No obstante, el metaanálisis no ha sido capaz de demostrar que el grupo experimental presenta un resultado estadísticamente significativo diferente del grupo control, dado que se obtiene un IC 95% [-0,0433, 0,8446], que como se observa contiene el valor 0, lo que no nos permite concluir que hay diferencias entre los grupos (61)
Figura 1. Gráfico de Galbraith

<table>
<thead>
<tr>
<th></th>
<th>Peso (%)</th>
<th>N</th>
<th>d</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. aleat.</td>
<td>(GV-GC)</td>
<td>(95,0%)</td>
<td></td>
</tr>
<tr>
<td>Bosco et al., 1998</td>
<td>17.9273</td>
<td>14</td>
<td>0.1150</td>
<td>-0.9335</td>
</tr>
<tr>
<td>Delecluse et al., 2005</td>
<td>25.2529</td>
<td>20</td>
<td>0.3559</td>
<td>-0.5275</td>
</tr>
<tr>
<td>Fagnani et al., 2006</td>
<td>30.0083</td>
<td>24</td>
<td>0.3882</td>
<td>-0.4223</td>
</tr>
<tr>
<td>Annino et al., 2007</td>
<td>26.8116</td>
<td>22</td>
<td>0.6478</td>
<td>-0.2096</td>
</tr>
<tr>
<td>Efectos aleatorios</td>
<td>80</td>
<td>0.4007</td>
<td>-0.0433</td>
<td>0.8446</td>
</tr>
</tbody>
</table>

N_ muestra; d_ diferencia de medias estandarizadas; IC_ Intervalo de confianza; GV_ grupo vibración; GC_ grupo control

Sesgo de publicación

Tanto la prueba de Egger como la de Begg mostraron una P> 0.05. Esto indica ausencia de sesgo de publicación.

Análisis de sensibilidad

Si se elimina cualquier artículo, la diferencia estandarizada de medias siempre aumenta de la de efecto global. En todo caso, la diferencia siempre cae dentro del intervalo de confianza, lo cual nos corrobora que ninguno de los cuatro artículos puede ser eliminado, es decir, todos tienen un peso significativo en el análisis.
Grupo que realiza un EV comparado con grupo que hace ejercicios similares sin vibración

Se descartó el análisis debido a que el grupo no fue homogéneo. Por otra parte, al disponer sólo de tres artículos, hacer un meta-análisis por subgrupos no tiene sentido (17;57;58).

Riesgo de sesgo de los estudios incluidos

Las puntuaciones de la evaluación de la calidad metodológica de cada estudio se presentan en la tabla 3. Todos los estudios incluidos son aleatorios excepto tres (27;55;59). Ninguno de los estudios incluidos describe el método de asignación aleatoria. La ocultación de la asignación aleatoria no fue descrita por ninguno de los estudios incluidos. Sólo un estudio (18) de los 16 incluidos describe cegamiento en la evaluación de los resultados. Ninguno de los estudios seleccionados realizó seguimiento más allá del final del programa de la intervención con ejercicio. Sólo se informó sobre las pérdidas de los participantes en ocho de los estudios incluidos (11;17;18;27-29;57;58). Las pérdidas descritas son de ninguna pérdida (29;58;62), una pérdida (18;27), dos pérdidas (22;23) y 5 pérdidas (35), repartidas entre grupo control y experimental. Sólo en un estudio, el abandono fue causado por el EV, descrito por los autores por un dolor en la cara anterior de la tibia (14). Por último, siete de los estudios seleccionados presentan datos incompletos (18;26;27;29;55;56;59).
Tabla 3. Riesgo de sesgo de los estudios incluidos

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issurin et al. (1994)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Bosco et al. (1998)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Schlumberger et al. (2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Becerra & Becker (2001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Berschin (2003)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>De Ruiter (2003)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cochrane et al. (2004)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cronin (2004)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rønnestad (2004)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Delecluse et al. (2005)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Kvorning et al. (2006)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mahieu et al. (2006)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Sands et al. (2006)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Van den Tillaar (2006)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Fagnani et al. (2006)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Annino et al. (2007)</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

a) Aleatorización; b) Secuencia adecuada,
c) Ocultación de la asignación aleatoria,
d) Cegamiento, e) Descripción de pérdidas,
f) Datos incompletos

+_ afirmativo; -_ negativo; ?_ no se describe

Otras fuentes de sesgo

Tamaño de la muestra: El pequeño tamaño de la muestra incluida puede ser una debilidad de la mayoría de estudios incluidos. Los estudios se mueven entre una muestra de 33 como máximo (9) y 10 sujetos como mínimo (24; 54). El promedio de la muestra de los estudios incluidos es de 20.9 con una desviación estándar de 6.6.

Diversidad de medidas para la valoración de las cualidades físicas: Las diferentes capacidades físicas son medidas con métodos de valoración muy diversos, lo que podría ser una fuente de sesgo.

DISCUSIÓN

Aunque no se han observado mejoras estadísticamente significativas en la fuerza explosiva evaluada con el salto con contramovimiento en el metaanálisis realizado con el subgrupo GV vs GP, hay una tendencia a la mejora (IC 95% [-0.0433, 0.8446]). De los cuatro artículos analizados ((11;25;28;40), sólo el artículo de Delecluse et al. (11) no obtuvo diferencias significativas en el grupo de vibración.

En el caso del subgrupo GV vs GSV no hemos podido obtener datos estadísticos debido a la falta de homogeneidad entre grupos. En este subgrupo hay cuatro estudios que muestran
diferencias significativas en la mejora de la fuerza explosiva en el GV (12;17;26;56) y tres estudios que no muestran diferencias entre grupos (27;57;58). A pesar de la diversidad de resultados y la necesidad de nuevos estudios, estos datos muestran que el EV mejora el salto, aunque no queda demostrado si de forma adicional al entrenamiento convencional.

Actualmente, no hay consenso sobre cuáles son los mecanismos por los cuales la vibración mejora el rendimiento neuromuscular; aunque la revisión realizada por Luo et al (2005) postula varias hipótesis, como son el reflejo tónico vibratorio, la mejora en la excitabilidad de la motoneurona, el incremento de la temperatura y circulación sanguínea, el aumento de la secreción hormonal y la hipertrofia muscular (5). Más concretamente, parece ser que las principales mejoras en la fuerza producidas por el EV se deben a la regulación neural de la contracción muscular voluntaria y a las adaptaciones neuromusculares. Se necesitan nuevos estudios que utilicen medidas de resultado estandarizadas para determinar la fuerza explosiva y las otras variantes de fuerza.

Tanto la fuerza máxima isométrica como dinámica han sido evaluadas con métodos muy diferentes. Este hecho asociado a la escasez de estudios y la diversidad de resultados obtenidos dificulta aún más la tarea de consenso sobre sus resultados. Ninguno de los tres estudios que valoran la fuerza máxima isométrica obtiene diferencias significativas entre grupos (11;58;59).

Los estudios que han medido la fuerza dinámica los podemos dividir también en dos grupos (GV vs GP; GV vs GSV). Los dos estudios que comparan un GV vs GP, obtienen resultados contrarios. Por una parte, Issurin et al. (1994), obtienen mejoras significativas en lo que ellos definen como fuerza ´´isotónica`` de los flexores de codo a favor del GV (14). En cambio, Delecluse et al. (2005) no obtuvieron mejoras en la fuerza isocinética de los flexores y extensores de rodilla (11).

Por otro lado, los estudios que comparan un GV vs GSV no obtienen diferencias entre grupos (12;17;59); salvo el caso del estudio de Mahieu et al., donde se observaron diferencias significativas en la fuerza isocinética de los flexores plantares del tobillo a baja velocidad en el grupo de vibración respecto al control (12).

En el caso de la flexibilidad se han obtenido beneficios significativos en los cuatro estudios analizados (14;18;28;29), y además, en los dos subgrupos. Aunque son pocos estudios, parece ser que el entrenamiento vibratorio a largo plazo favorece esta capacidad física. No pudimos realizar el metaanálisis en estos datos debido a la variabilidad entre pruebas de valoración. Se puede observar que los estudios seleccionados muestran dos formas de aumentar el rango articular. Por una parte, la combinación de estiramientos y vibración de forma simultánea, y por otra, la simple aplicación de VCE en posición de semiflexión.
favorecería el aumento de la flexibilidad post exposición a la vibración. Esta mejora producida por el efecto vibratorio, a pesar de ser un tema actual de discusión, se ha relacionado con la disminución del umbral del dolor (14;63), el aumento de la circulación sanguínea (35;36), la activación del órgano tendinoso de Golgi y la inhibición de los músculos antagonistas debido al reflejo tónico vibratorio (20).

Actualmente hay varios trabajos que han aplicado las VCE para mejorar la propiocepción y el equilibrio en personas no entrenadas, especialmente cuando se perturba el control postural. Algunos de estos estudios han mostrado efectos positivos sobre esta capacidad (33;44;46;47), mientras que otros no lo han hecho (12;44;64). Por el contrario, hay una importante falta de investigación sobre los efectos del entrenamiento vibratorio sobre el control postural y la propiocepción en personas entrenadas. El único estudio seleccionado es el de Mahieu et al. (2006), el cual no obtuvo diferencias significativas (12). Por lo tanto, los efectos del entrenamiento vibratorio sobre el equilibrio y la propiocepción están actualmente poco estudiados. Pese a la falta de evidencia, es importante tener en cuenta que uno de los principales efectos del EV es la activación del huso neuromuscular, que como sabemos, es uno de los principales propioceptores musculares determinantes del control neuromuscular y estabilización articular.

Efectos adversos

Es importante resaltar que ninguno de los estudios describió efectos negativos sobre la salud de las personas provocados por el EV. Sólo uno de ellos describió un dolor en la cara anterior de la tibia que propició la detención del entrenamiento (27). Estos datos son importantes ya que nos permiten establecer unos parámetros de aplicación de la vibración seguros para la salud de nuestros deportistas. Como ya hemos visto anteriormente, la aplicación de vibraciones a ciertos parámetros puede provocar graves problemas sobre la salud de la persona. También cabe destacar que ninguno de los estudios seleccionados realizó seguimiento más allá del final del programa de la intervención del ejercicio.

Integridad general y aplicabilidad de las pruebas

Aún faltan estudios, y especialmente de buena calidad metodológica, para alcanzar plenamente los objetivos de esta revisión. Los resultados obtenidos deben tomarse con prudencia ya que la calidad de los estudios incluidos tiende a ser baja, tal y como nos indica la tabla 3.

La Colaboración Cochrane (65) recomienda escoger ensayos clínicos aleatorizados como criterios de inclusión, para minimizar el riesgo de sesgo. En nuestra revisión hemos incluido
tres ensayos clínicos controlados no aleatorizados (10;55;59); dada la relevancia que estos estudios suponía en nuestro campo de actuación. Además, no se consideran estudios aleatorios si la secuencia de aleatorización no es la correcta. En nuestro trabajo ninguno de los estudios incluidos describe la secuencia de aleatorización, sin embargo, los hemos considerado como aleatorios debido a la escasez de trabajos.

A pesar de que todos los participantes fueron físicamente activos, hubo diferentes niveles de actividad física, pero debido a la poca muestra de estudios, se consideró englobarlos en un mismo grupo. La media de edad de los participantes fue bastante homogénea, en la mayoría de los trabajos analizados (entre 10,1 y 25,9 años). Esta revisión se caracteriza por la gran heterogeneidad entre las diferentes intervenciones de vibraciones mecánicas. Estas difirieron en cuanto al tipo de ejercicio, amplitud, frecuencia, volumen del estímulo, método de aplicación de la vibración, dirección del estímulo vibratorio, número de sesiones semanales y duración del entrenamiento. Esta variabilidad de los protocolos utilizada por diferentes investigadores puede ser una razón importante de la gran diversidad de resultados obtenidos.

A pesar de la heterogeneidad de resultados e intervenciones podemos establecer un rango de trabajo seguro para la salud del deportista, es decir, entre 1,7-11mm de amplitud, 20-24 hz de frecuencia, tanto ejercicios estáticos como dinámicos y hasta un máximo de 18 minutos de trabajo con vibración.

En un inicio se consideró un mínimo de 9 días de trabajo como criterios de inclusión de los estudios. Este, se redujo a 7 días de trabajo para poder incluir el estudio de Becerra y Becker (2001) (55), ya que es el único estudio que comprueba la influencia de la estimulación vibratoria en la mejora del rendimiento de un deporte. En este caso se encontraron mejoras en los tiempos empleados para nadar diferentes distancias, aunque sin significación estadística.

La gran heterogeneidad de pruebas de medida de las diferentes cualidades físicas ha dificultado en gran medida poder extraer conclusiones claras. Es necesaria la unificación de pruebas de valoración de las diferentes cualidades físicas en el campo de la actividad física y el deporte para poder avanzar en el conocimiento científico.

Acuerdos y desacuerdos con otros estudios o revisiones

En nuestra búsqueda encontramos dos revisiones no descritas como sistemáticas sobre vibraciones y su aplicación en el mundo de la actividad física y el deporte (2;14). Sus autores también concluyen que existe una carencia de estudios que relacionen el EV con las mejoras en el rendimiento deportivo, especialmente a largo plazo.
Es importante destacar tres revisiones sistemáticas sobre los efectos del EV hasta la fecha de búsqueda, aunque no centradas forma específica en población entrenada. Las conclusiones de los autores son diversas. Luo et al. (2005) concluyen que las personas entrenadas pueden beneficiarse de los efectos agudos del EV, aunque todavía resta por demostrar la eficacia de este tipo de entrenamiento a largo término, debido a la escasez de trabajos longitudinales (5). Rehn et al. (2007) concluyen que existe de alta a moderada evidencia de los efectos positivos del entrenamiento de VCE a largo plazo sobre el rendimiento muscular en personas no entrenadas y mujeres mayores. Estos autores señalan que las personas no entrenadas podrían beneficiarse en mayor medida de los efectos a largo plazo que las personas entrenadas (50).

Como ya hemos mencionando anteriormente, cada individuo necesita unos parámetros óptimos de estimulación, por tanto, no podemos aplicar el mismo método de entrenamiento en personas entrenadas y no entrenadas. Todos los autores estamos de acuerdo en la necesidad de nuevos estudios a largo plazo para acercarse a los parámetros óptimos de estimulación de cada tipo de individuo. Estos parámetros parecen depender de la edad, sexo, grupo muscular estimulado, nivel de entrenamiento, capacidad física a estimular y tipo de ejercicio, entre otros.

A su vez, Norlund et al. (2007) revisaron los efectos crónicos del entrenamiento mediante VCE como alternativa o complemento del entrenamiento de fuerza resistencia. Sólo incluyeron los artículos que utilizaron un diseño con grupo control que realizase los mismos ejercicios que el grupo experimental, pero sin vibración. Estos autores no encontraron diferencias significativas entre grupos. Los autores sugieren ninguno o ligero efecto adicional de los efectos producidos por el entrenamiento mediante VCE (7). Este último estudio, y en comparación a nuestros resultados, nos permite sugerir que los efectos positivos del EV disminuyen cuando se compara con un GC que realiza los mismos ejercicios que el GV, pero sin vibración.

Por lo tanto, es evidente la falta de estudios longitudinales de calidad sobre los efectos del entrenamiento mediante vibraciones mecánicas sobre el rendimiento físico, especialmente en población físicamente activa. Esto último estaría relacionada a la mayor dificultad que implica el seguimiento del entrenamiento diario en una población homogénea, y además, de forma controlada y aleatoria.

Para el diseño de futuros estudios, debemos tener presente el poder comparar protocolos adecuados a cada tipo de población, utilizar pruebas de valoración válidas, fiables y estandarizadas, aumentar las muestras y valorar los efectos post entrenamiento a largo plazo. Por último, es importante mejorar la calidad de los estudios para evitar los diferentes
riesgos de sesgo. Sería recomendable utilizar la guía Consort para el diseño de nuevos estudios controlados y aleatorios (66).

CONCLUSIONES

Hay evidencia de pobre calidad en la mejora de la fuerza explosiva cuando se compara un grupo entrenado mediante vibraciones respecto a un grupo control pasivo. Pese a ello sí existe una tendencia a la mejora.

No hay evidencia suficiente sobre los efectos de la fuerza explosiva cuando se compara un grupo de vibración respecto un grupo control que realiza los mismos ejercicios sin vibración.

Debido al pequeño número de estudios y la poca homogeneidad de pruebas de valoración utilizada no se pueden estudiar de forma conjunta los efectos de las vibraciones mecánicas sobre la fuerza máxima isométrica y dinámica, flexibilidad, estabilidad postural y velocidad.

Destaca la baja calidad metodológica de los estudios, por lo que los resultados deben interpretarse con cierta cautela.

A pesar de no poder extraer conclusiones claras, podemos establecer un rango seguro en cuanto a los parámetros de aplicación de vibraciones mecánicas sobre la población físicamente activa. Este se encuentra entre 1,7-11 mm de amplitud y entre 20-44 Hz de frecuencia, aplicándose tanto en ejercicios estáticos como dinámicos y hasta un máximo de 18 minutos de duración.

ANEXOS

Anexo 1. Hoja de extracción de datos
Anexo 2. Efectos a largo término: grupo que realiza un entrenamiento vibratorio comparado con un grupo control pasivo
Anexo 3. Efectos a largo término: grupo que realiza un EV comparado con grupo que hace ejercicios similares sin vibración

AGRADECIMIENTOS

En colaboración con la Secretaria General de l’Esport i del Departament d’Innovació, Universitats i Empresa de la Generalitat de Cataluña.
BIBLIOGRAFÍA

(16) Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 2006; 7:92.

Anexo 1. Hoja de extracción de datos

ARTÍCULO:
INTERVENCION:

<table>
<thead>
<tr>
<th>Riesgo de sesgo</th>
<th>Sí</th>
<th>No</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleatorización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secuencia de generación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocultamiento de la asignación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cegamiento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datos incompletos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pérdidas y abandonos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observaciones:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grupo

<table>
<thead>
<tr>
<th></th>
<th>Experimental I</th>
<th>Experimental II</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervención

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Género

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Edad

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Tipo de ejercicio físico

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Tipo de medida (valididad, reproducibilidad)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Criterios de inclusión

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Criterios de exclusión

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Outcomes

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Homogeneidad de (técnicas estadísticas)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th>Medidas de resultado</th>
<th>Experimental I</th>
<th>Experimental II</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 2. Efectos a largo término: Grupo que realiza un entrenamiento vibratorio comparado con un grupo control pasivo

<table>
<thead>
<tr>
<th>Autor y año</th>
<th>Tipo de estudio</th>
<th>Sujetos (edad)</th>
<th>Intervenciones</th>
<th>Cambios en el rendimiento</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issurin et al. (1994)</td>
<td>ECA 3 grupos: 1. GV1: Vibración + Estramiento piernas y fuerza convencional brazos. 2. GV2: Estramiento piernas convencional + vibración brazos 3. GC</td>
<td>28 ♂ físicamente activos (19-25)</td>
<td>Sistema de poleas Flexión codo 6 series 80-100% RM (r:2-3.5') Estramientos estáticos y balísticos pierna: 6 series 40-80" (r:2-2.5')</td>
<td>Fuerza máxima</td>
<td>GV1: ↑18.1%; GV2: ↑49%; GC: No #</td>
</tr>
<tr>
<td>Bosco et al. (1998)</td>
<td>ECA 2 grupos: 1. GV 2. GC</td>
<td>14? Físicamente activos (19-21)</td>
<td>Galileo 2000 Ejercicios estáticos 5 series×1.5-2" (r:45")</td>
<td>Flexibilidad: Two-leg-split across, flex-and-reach</td>
<td>GV1: ↑8.7%; GV2: ↑2.4%; GC: ↑ 1.2%</td>
</tr>
<tr>
<td>Delecluse et al. (2005)</td>
<td>ECA 2 grupos: 1. GV 2. GC</td>
<td>7 ♀ y 13 ♂ velocistas (17-30) 1.7-2.5 35-40</td>
<td>Power Plate Ejercicios dinámicos y estáticos 3×6, (30-60") (r:5-60") (0-18")</td>
<td>Fuerza isométrica Fuerza dinámica CMJ Start action Sprint 30m</td>
<td>No #</td>
</tr>
<tr>
<td>Fagnani et al. (2006)</td>
<td>ECA 2 grupos: 1. GV 2. GC</td>
<td>26 ♀ deportistas competición (21-27)</td>
<td>NEMES LCB Apoyo unipodal y bipodal, 6-8 series×15-60" (r:30-60")</td>
<td>Prensa piernas isocinética: Pico de Fuerza (PF); Trabajo total (TW)</td>
<td>Test de potencia: PF:GV ↑ 0.56%, GC ↑ 2%; TW: GV ↑ 11.24%, GC ↑ 2.05%</td>
</tr>
<tr>
<td>Annino et al. (2007)</td>
<td>ECA 2 grupos: 1. GV 2. GC</td>
<td>22 ♀ bailarinas competición (21.25 ± 1.5)</td>
<td>Nemes LC Semi-squat estático (110°) 5×40" (r:80")</td>
<td>CMJ</td>
<td>GV: ↑ 0.74%; GC: ↑ 1.04%</td>
</tr>
</tbody>
</table>

ECA_ Ensayo controlado aleatorio; EC_ Ensayo controlado; GV_ Grupo vibración; GC_ grupo control; EV_ Entrenamiento vibratorio; w_ semanas; s_ sesión; ↑_ aumento; ↑*_ aumento significativo (p<0.05); r_ descanso, #_ diferencias
Anexo 3. Efectos a largo término: Grupo que realiza un EV comparado con grupo que hace ejercicios similares sin vibración

<table>
<thead>
<tr>
<th>Autor y año</th>
<th>Tipo de estudio</th>
<th>Sujetos (edad)</th>
<th>Intervenciones</th>
<th>Cambios en el rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlumberger et al. (2001)</td>
<td>EC 2 grupos: 1. GV: Una pierna 2. GC: La otra pierna</td>
<td>39 y 7 estudiantes Educación Física (25.4)</td>
<td>Grupo Vibración (GV) 6 25 Squat unilateral 4 x 8-12RM GC sin vibración Duración 6 w 3s/w</td>
<td>Fuerza isométrica máxima Test de rendimiento</td>
</tr>
<tr>
<td>De Ruiter (2003)</td>
<td>EC 2 grupos: 1.GV 2.GC</td>
<td>88 y 12 estudiantes físicamente activos (19-20)</td>
<td>Postura estática, 110° flexión rodilla. Progresión 5-8 x1' (r:1') GC sin vibración Duración 11w 3s/w 5-8/s</td>
<td>Contracción voluntaria máxima Test de rendimiento</td>
</tr>
<tr>
<td>Ronnestad (2004)</td>
<td>ECA 2 grupos: 1. GV: Vibración + squat 2. GC: squat</td>
<td>16 Entrenados en fuerza amateur (21-40)</td>
<td>Nemes-LC 4 40 Squat dinámico Progresión 3x10 a 4x6 RM GC sin vibración Duración 5w 2-3 s/w</td>
<td>1RM squat CMJ Test de rendimiento</td>
</tr>
<tr>
<td>Cochrane et al. (2004)</td>
<td>ECA 2 grupos: 1. GV 2. GC</td>
<td>88 y 16 estudiantes físicamente activos (23.9 ± 5.9)</td>
<td>Galileo 2000 Estático 5x2' (r:40°) GC sin vibración Duración 9s</td>
<td>CMJ SJ Sprint (5, 10, 20m) Agilidad (AG, UAB)</td>
</tr>
</tbody>
</table>
Anexo 3. Continuación

<table>
<thead>
<tr>
<th>ECA</th>
<th>2 grupos:</th>
<th>30 gimnastas entrenados (10.1 ± 1.5)</th>
<th>2</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. GV</td>
<td>Dos posiciones de estiramiento (split y lunges): 4°, 1° por cada pierna (10° estiramiento + 5° r) + vibraciones</td>
<td>4w</td>
<td>5s/w</td>
</tr>
<tr>
<td></td>
<td>2. GC</td>
<td>Flexibilidad (Split test)</td>
<td>GV</td>
<td>[P < 0.01]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECA</th>
<th>2 grupos:</th>
<th>120 y 7 estudiantes físicamente activos (21.5 ± 2.0)</th>
<th>10</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. GV</td>
<td>Neme Bosco</td>
<td>GV</td>
<td>[28.8%; GC: 12.4%; GV > GC]</td>
</tr>
<tr>
<td></td>
<td>2. GC</td>
<td>Flexibilidad (isquiotibiales)</td>
<td>GV</td>
<td>[P < 0.05]</td>
</tr>
</tbody>
</table>

Notas:
- ECA: Ensayo controlado aleatorio
- EC: Ensayo controlado
- GV: Grupo vibración
- GC: Grupo control
- EV: Entrenamiento vibratorio
- w: semanas
- s: sesión
- #: aumento
- #: diferencias significativo (p<0.05)
EFFECTS OF WHOLE BODY VIBRATION TRAINING ON EXPLOSIVE STRENGTH AND POSTURAL CONTROL IN ATHLETES.

Fort A¹²³, Romero D⁴, Bagur C³, Guerra M², Costa L⁴, Lloret M⁵.
² Psychology, Educational and Sport Sciences Faculty. Ramon Llull University). Barcelona. Spain.
School of Nursing, Physiotherapy and Nutrition Blanquerna. Ramon Llull University. Barcelona, Spain
⁴ School of Nursing, Physiotherapy and Nutrition Blanquerna. Ramon Llull University. Barcelona, Spain
⁵ Catalanian Institute of Physical Education (INEFC). University of Barcelona. Barcelona, Spain.

ABSTRACT

The purpose of this study was to evaluate the efficacy of a 15 weeks whole body vibration training program to improve lower limbs postural control and explosive strength. The subjects were 23 basketball women players at a competitive level (14-18 years old). They were randomly assigned, 11 as control group (CG) and 12 as whole body vibration group (WBVG). Both groups carried out the habitual sport training. Only WBVG underwent also a training program with a vibration platform during 15 weeks, with a progression of static and dynamic exercises (25-35Hz, 4mm). Testing was performed at the beginning, at the week 8 and week 15. The explosive strength by means of a countermovement jump test (CMJ), static balance by means of one single leg test with open and closed eyes and dynamic balance through one single leg hop test were evaluated. After intervention, vibration group increased significantly the result of the CMJ and one single leg hop test (p=0.00) at 8 and 15 weeks of training compare to initial test, but no significant differences were found between week 8 and week 15. The control group did not show any changes. One single leg balance test with open eyes did not show significant changes in any group. One single leg test with closed eyes only showed significant differences in WBVG, at week 8 and week 15 of training compare to initial test (p<0.05). Meanwhile, there were no significant differences between week 8 and week 15 of training. In conclusion, whole body vibration training increases explosive strength and postural control in young athletes. The most significant increase has been registered at 8 weeks of training.

Key words: Whole body vibration, CMJ, balance
INTRODUCTION

WBV training has shown positive results in physiological parameters. Their effects have been studied in healthy (1-4) and trained population (5-7), both in acute (8-10) and chronic conditions (11-13). Moreover, it has been found beneficial effects in different pathologies as osteoporosis (14), stroke (15;16), anterior cruciate ligament rehabilitation (17), multiple sclerosis (18) and cerebral palsy (19).

Vibration training effects on performance depends on vibration features (amplitude, frequency, application method) and exercise protocol (type of training, intensity, volume). Recent studies show that every kind of population has optimal stimulation parameters (20-23). That is why it can be reasonable the application of different vibration parameters on trained and untrained people. Delecluse et al. (2005) applied the same protocol of vibration exercises with young sprinters (4) and untrained people (13), obtaining only significant improvements in the non athletes population.

In sports, vibration training is generally applied over vibration platforms that involve the whole body (2;24;25), but it has also been applied locally through vibratory cables on superior or lower limbs (26). The adaptations of vibration programs in trained people have been studied as acute effects (2; 27) and also but not widely as chronic adaptations (28; 29).

The major documented benefit of WBV training in athletes affects the explosive strength performance (27), usually measured by vertical jump. This is important because jumping and landing are skills often performed by basketball players (28). Several authors have studied explosive strength long term effects of vibration training in trained people, some of them with significant positive effects on vibration group (1;29-32) and others with no significant differences between vibration and control group (4;12;33;34). Fagnani et al. (2006) showed that an 8 week whole body vibration protocol (3 times per week, 35 Hz, 4mm) increased significantly a countermovement vertical jump in female athletes (31). In the same way, Annino et al. (2007) described significant improvements in vertical jump after 8 weeks of whole body vibration training in elite dancers(1). On the contrary, De Ruiter et al. (2003) studied 11 weeks of standard two-legged WBV training (30 Hz, 8 mm amplitude) in 20 physically active students and showed no significant effects in counter movement jump (12).

Proprioceptive and neuromuscular training has been suggested as an effective strategy for injury prevention in athletes (35-37). Related to this kind of work, several studies have applied WBV to improve proprioception and postural balance in untrained people, especially when the postural control is disturbed. There are several reports that have supported a positive effect (17;18;38;39) while others have not (32;40). However, there is an important lack of works
investigating the effects of WBV training on postural control and proprioception in trained people. Therefore, long term effects of vibration training on trained people are still unclear nowadays. The main objective of this study was to compare the efficacy of a vibration training program to improve the postural control and explosive strength in young female elite basketball players.

METHODS

Experimental Approach to the Problem
To address the question of whether long lasting vibration effects can improve neuromuscular performance in trained subjects, a 15 weeks WBV training program was compared to a control group. To show evidence of this intervention, both groups performed the same resistance training program, and the vibration exercises were added to the experimental group. Subjects were randomly included either to the whole body vibration group or control group according to a randomized list generated by a table computer. Data were obtained three times through the study: baseline measures (T1), and 9 (T2) and 15 (T3) weeks after starting the training program (Figure 1). To asses neuromuscular control, variables regarding explosive strength and static and dynamic balance were tested.

Subjects
Twenty four healthy female elite basketball players volunteered to participate in the study. This population was randomized in a WBV group (n=12) and a control group (n=11). One of the subjects did not fulfil the study because of an illness. Inclusion criteria were healthy competitive athletes between 14 and 18 years old. Table 1 shows subject’s characteristics. The specific sport training was the same for both groups: 10 sessions per week (20 hours approximately), adding the weekend match during the study season. The WBVG added to its training program a WBV training program. Before participation, all subjects gave their informed written consent. The protocol was approved by the Ethics Committee of the Psychology FPCEE-Blanquerna (Ramon Llull University).
Performance tests

To do the tests, subjects performed a 10-minute warm-up standardized protocol, consisting on running combined with stretching exercises. The tests were carried out with the following order: countermovement jump, one single leg hop test, and balance tests.

Countermovement jump test (CMJ) Three CMJ test were performed according to the protocol of Bosco et al. (41) using the Ergojump-Bosco System (Italy). According to this author, CMJ measures the explosive strength, the capacity of nervous recruitment, expression of FT fibres percentage, reuse of the elastic energy and intra and intermuscular coordination. Every jump was separated by a rest period of 20 seconds. The best height was recorded for the statistical analysis. The reproducibility of the CMJ procedure here used has been reported to be high (41).
One single hop test (HT) This test, which has been found as valid and reproducible (42), was carried out to estimate the functional stability of the knee. A modified version of the hop test, with free arms (43), was used to make it easier for the balance body. Subjects wearing trainers were told to hop as far as possible, taking off and landing on the same foot and keeping the balance with it for three seconds.

A trial one-leg hop preceded the measurements. The test was performed three times with each leg, alternating the right and the left one, and the best length of the three trials was used for statistical analysis.

Balance tests The control of single-limb standing balance was assessed using an optometric platform podocomputer/CbsScanGraf (Spain), which was 370 × 450 mm size, with a density of 60 sensors per cm2 and a sample frequency of 10Hz.

The anteroposterior (y axis, sagital plane) and mediolateral (x axis, frontal plane) centre of pressure were recorded continuously through every test (Figure 2). Centre of pressure data was collected during three single-limb standing balance repetitions alternatively with each leg during 10 seconds, under two situations: 1) One single leg standing position on the platform with open eyes (OE), 2) One single leg standing position on the platform with closed eyes (CE). The protocol described by Birmingham was followed (44).

Figure 2 Centre of pressure deviation in anteroposterior and lateral axis
X_ x axis, frontal plane, lateral deviation (mm); Y_ y axis, sagital plane, anteroposterior deviation (mm); CP_Centre of pressure. The right picture shows an example of CP course.

To familiarize subjects with testing procedures, and to avoid for potential learning effects with repeated testing, three trials were performed prior to initial data collection. An additional
attempt was performed prior to each test situation. Resting periods of 60 seconds were provided between test situations.

During the standing tests, subjects stood on one limb with their stance foot centred on the force platform and with their knee in a slight flexion (15°). With their opposite foot in contact with the upper corner of the platform, subjects were instructed to lift that limb by bending the knee and hold it in approximately 90° of knee flexion. Once this position had been attained, and subjects stated that they were ready, data collection was recorded. During the tests completed with opened eyes, subjects looked straight ahead at a cross marked at approximately the eyes level on a black board 2m away. For the tests completed with closed eyes, subjects looked at the same cross before firmly closing their eyes. For both tests, subjects were barefoot.

They were asked to concentrate on standing as quite as possible for 10 seconds and to correct their position as quickly as possible if a disturbance occurred. If standing balance was not maintained for the full 10 seconds, the distance was not recorded and the trial was repeated.

We recorded the best mean amplitude of the three centres of pressure deviation measures. One previous study gave a good to excellent correlation (CCI: 0.613-0.754) in all variables of measure (45).

Interventions

WBV Vibration loading was carried out on a Nemes Bosco device (Italy, 2005) following a 15 weeks training protocol. This period was divided in two phases: the first one of 8 weeks, followed by an evaluation data collection week without training, and a second phase of 7 weeks of intervention also followed by an evaluation.

The program consisted of 5 progressive static and dynamic exercises described on Figure 3 and Annex 1. Training parameters were progressively increased each week by means of frequency (25-35Hz), type of exercises (squat, one leg squat, lunge, calf raise, jump...), duration of training (7-10,5’), length of each repetition (30-60”), and difficulty of each exercise situation. The amplitude (4mm) and the rest among exercises (60”) was always the same.

We considered a valid training program when the subject performed a minimum of 80% of the total training sessions. During the training sessions, subjects were under a strict supervision of the main investigator.
Control The control group didn’t participate in any extra intervention of their habitual training.

Statistical analysis
All statistical analyses were performed using a specialized statistical software package (SPSS for Windows version 15). Dependant variables were compared in three period times: T1/ initial time; T2/ after 8 weeks of training period; and T3) after 15 weeks of training period. First Shapiro-Wilk test was runned. When the sample had normal parametric distribution, the T Student test was applied (p<0.005). And when the sample had not normal distribution, Wilcoxon test was the analysis carried out. The level of significance for all the analysis made was set at P <0.05.

RESULTS

There were no reports of adverse reactions and discomfort in either group, just an eritema in the lower limbs after the first training session in the WBVG. During the first training period of 8 weeks, one subject of WBV group withdrew due to an ankle sprain occurred in a basketball match and not due to causes of vibration training. During the second period of vibration
training two athletes (one of WBVG group and one of CG) decided not to continue in the study.

All the remaining subjects of the whole body vibration group completed at least the 80% of the program.

Pretraining Results
The Student T test revealed no significant differences between the 2 groups at the beginning of the study (Table 1).

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean(DS)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>1.82(0.7)</td>
<td>0.937</td>
</tr>
<tr>
<td>WBV</td>
<td>12</td>
<td>1.82(0.6)</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>70.3(9.8)</td>
<td>0.692</td>
</tr>
<tr>
<td>WBV</td>
<td>12</td>
<td>71.7(7.5)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>15.8(1.3)</td>
<td>0.976</td>
</tr>
<tr>
<td>WBV</td>
<td>12</td>
<td>15.8(1.0)</td>
<td></td>
</tr>
</tbody>
</table>

C, Control; WBV, whole body vibration; DS, standard deviation; P*, T Student test p<0.05

Posttraining Results
CMJ and HT We compared the increased values between the first assessment (T1) and the second one (T2), followed by the comparison of this second one (T2) and the third assessment (T3). Vibration group increased significantly the result of the CMJ and HT jumps (p=0.00) at 8 and 15 weeks of training comparing to the initial test. Control group did not show any changes, and no significant differences appeared between 8 and 15 weeks (Table 2).

Postural Control We compared the results between the first assessment (T1) and the second one (T2), followed by the comparison between this second one (T2) and the third assessment (T3). The table 3 shows means of the different variables.

One single leg balance test with open eyes One single leg balance test with open eyes did not show significant changes in any group (table 4).

One single leg balance test with closed eyes As we can see in table 5, control group did not show significant changes in any case. In the case of WBV group there is a clear significant
improvement in both axis when comparing T2 and T1. There is statistical significance as well between T1 and T3, but there is not between T2 and T3.

Table 2 Comparison of CMJ and HT jumps between T1 and T2, T2 and T3

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Difference pre-post cm</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment CMJ T1-T2</td>
<td>CONTROL -0.6</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>WBV 2.4</td>
<td></td>
</tr>
<tr>
<td>Increment CMJ T2-T3</td>
<td>CONTROL 0.4</td>
<td>0.431</td>
</tr>
<tr>
<td></td>
<td>WBV 1.0</td>
<td></td>
</tr>
<tr>
<td>Increment HTR T1-T2</td>
<td>CONTROL -2.5</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>WBV 15.2</td>
<td></td>
</tr>
<tr>
<td>Increment HTR T2-T3</td>
<td>CONTROL 3.9</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>WBV 6.3</td>
<td></td>
</tr>
<tr>
<td>Increment HTL T1-T2</td>
<td>CONTROL -3.7</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>WBV 12.8</td>
<td></td>
</tr>
<tr>
<td>Increment HTL T2-T3</td>
<td>CONTROL 4.9</td>
<td>0.553</td>
</tr>
<tr>
<td></td>
<td>WBV 8.4</td>
<td></td>
</tr>
</tbody>
</table>

CMJ, countermovement jump; HTR, one single leg hop test right leg; HTL, one single leg hop test left leg; T1, initial time; T2, after 8 weeks of period training; T3, after 15 weeks of period training

* T Student test p<0.05

Table 3 Means of pressure centre sway

<table>
<thead>
<tr>
<th>Open eyes</th>
<th>CG (DS) mm</th>
<th>WBVG (DS) mm</th>
<th>Closed eyes</th>
<th>CG(DS) mm</th>
<th>WBVG(DS) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right leg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X T1</td>
<td>X T2</td>
<td>X T3</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>X T1</td>
<td>4.38(1.33)</td>
<td>4.86(1.77)</td>
<td>11.09(3.44)</td>
<td>12.34(2.94)</td>
<td></td>
</tr>
<tr>
<td>X T2</td>
<td>4.56(1.36)</td>
<td>4.41(1.43)</td>
<td>12.38(6.48)</td>
<td>9.60(1.95)</td>
<td></td>
</tr>
<tr>
<td>X T3</td>
<td>4.86(1)</td>
<td>4.33(1.83)</td>
<td>10.75(3.67)</td>
<td>9.29(1.67)</td>
<td></td>
</tr>
<tr>
<td>Y T1</td>
<td>4.44(1.51)</td>
<td>4.53(1.14)</td>
<td>10.1(1.94)</td>
<td>12.47(2.05)</td>
<td></td>
</tr>
<tr>
<td>Y T2</td>
<td>3.87(1.25)</td>
<td>4.46(1.38)</td>
<td>10.61(2.43)</td>
<td>10.69(1.75)</td>
<td></td>
</tr>
<tr>
<td>Y T3</td>
<td>4.37(1.53)</td>
<td>3.68(1.12)</td>
<td>9.88(2.51)</td>
<td>11.06(1.91)</td>
<td></td>
</tr>
<tr>
<td>Left leg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X T1</td>
<td>X T2</td>
<td>X T3</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>X T1</td>
<td>4.01(1.47)</td>
<td>4.32(1.77)</td>
<td>10.54(2.87)</td>
<td>12.17(2.13)</td>
<td></td>
</tr>
<tr>
<td>X T2</td>
<td>4.33(1.72)</td>
<td>4.88(1.33)</td>
<td>10.03(2.62)</td>
<td>8.17(1.39)</td>
<td></td>
</tr>
<tr>
<td>X T3</td>
<td>4.71(2.41)</td>
<td>4.54(1.27)</td>
<td>9.48(1.87)</td>
<td>9.89(3.23)</td>
<td></td>
</tr>
<tr>
<td>Y T1</td>
<td>4.28(1.71)</td>
<td>3.96(0.99)</td>
<td>9.98(2.68)</td>
<td>12.55(2.28)</td>
<td></td>
</tr>
<tr>
<td>Y T2</td>
<td>4.02(1.69)</td>
<td>4.75(2.14)</td>
<td>9.87(2.13)</td>
<td>10.01(2.24)</td>
<td></td>
</tr>
<tr>
<td>Y T3</td>
<td>3.77(1.13)</td>
<td>3.94(0.60)</td>
<td>9.59(2.68)</td>
<td>10.38(2.56)</td>
<td></td>
</tr>
</tbody>
</table>

T1, initial time; T2, after 8 weeks of period training; T3, after 15 weeks of period training; X, x axis; Y, y axis; CG, control group; WBVG, whole body vibration group
Table 4 One single leg balance with open eyes results

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Right leg P*</th>
<th>Left leg P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-T2</td>
<td>Control 0,36</td>
<td>0,23</td>
</tr>
<tr>
<td></td>
<td>WBV 0,38</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>Control 0,11</td>
<td>0,08</td>
</tr>
<tr>
<td></td>
<td>WBV 0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>X T1-T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control 0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>Y T1-T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control 0,09</td>
<td>0,43</td>
</tr>
<tr>
<td>T2-T3</td>
<td>Control 0,34</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>WBV 0,39</td>
<td>0,29</td>
</tr>
<tr>
<td></td>
<td>Control 0,31</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>WBV 0,13</td>
<td>0,383</td>
</tr>
<tr>
<td></td>
<td>Control 0,09</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td>WBV 0,44</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td>Control 0,01</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>WBV 0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Control 0,5</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>WBV 0,03</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Control 0,29</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>WBV 0,45</td>
<td>0,45</td>
</tr>
</tbody>
</table>

T1, initial time; T2, after 8 weeks of period training; T3, after 15 weeks of period training; X, x axis; Y, y axis.

*Unilateral significance. Wilcoxon test p<0.05

Table 5 One single leg balance with closed eyes results

<table>
<thead>
<tr>
<th>GROUP</th>
<th>Right leg P*</th>
<th>Left leg P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-T2</td>
<td>Control 0,44</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>WBV 0,00</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Control 0,44</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>WBV 0,01</td>
<td>0,08</td>
</tr>
<tr>
<td>X T1-T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control 0,39</td>
<td>0,29</td>
</tr>
<tr>
<td>Y T1-T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control 0,09</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Control 0,4</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td>WBV 0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Control 0,5</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>WBV 0,03</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Control 0,29</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>WBV 0,45</td>
<td>0,45</td>
</tr>
</tbody>
</table>

T1, initial time; T2, after 8 weeks of period training; T3, after 15 weeks of period training; X, x axis; Y, y axis.

*Unilateral significance. Wilcoxon test p<0.05
DISCUSSION

The main finding of this investigation is the improvement of a 15 weeks of WBV training program in the postural stability and explosive strength in young women basketball players. These benefits have been found only significant after 8 weeks of training, while not significant differences have been found when comparing the 8th and 15th post training tests.

Explosive strength
The positive effects obtained in the explosive strength test are of particular interest because maximal muscle power is highly involved in basketball performance. Other authors who compared vibration training and standard training programs in trained people, obtained significant differences in favour of the vibration groups (1;31). Thus Anino et al. (2007) and Fagnani et al. (2006) obtained significant results in vertical jump after 8 weeks of training in female athletes, as happened with our results.

When interpreting WBV studies, it is important to be alert not only because of the wide variety of training protocols among different published works (31;32;46), but also due to the different optimal vibration parameters depending on the kind of population showed in other studies (4;47). In spite of this, there are some works comparing exactly the same training protocol with and without vibration, obtaining also significant differences in vertical jump in favour of the vibration group at 5 (46), 6 (32) and 12 (29) weeks after starting training. On the opposite side, few works have not found significant improvements after 5 weeks of WBV training on sprinters (4), and others have not found significant differences between groups in vertical jump (12; 35). When comparing the different methodologies, no reason has been found to explain these different results.

According to our findings, the improvement of CMJ test reflects a beneficial effect in the physical performance of basketball players.

Lower limb postural control
Because of its intrinsic features, basketball has an important risk of injury. In a study with 10,393 basketball players the authors registered an injury rate of 18.3 per 1,000 participations. The most serious injuries affected the lower limb, with the ankle joint as the area with more injuries followed by the calf/anterior leg and knee joint (48). Furthermore, our studied population (adolescent basketball women players) could be considered as one of the most affected by sport injuries (49). It has been documented that improvements in postural
stability and neuromuscular control can be an effective strategy for injury prevention in athletes (35;36;50).

In our study we observed significant gains after 15 weeks of training in both test that measures postural control: one leg hop test and balance test discarding the visual system. These results show that WBV training could be a preventive tool for lower extremity injuries.

One leg hop test

We have not found any other study evaluating the effect of whole body vibration training on one leg hop test in the search we made. In our study, one leg hop test is the one that has shown major improvements in the WBVG comparing to CG in both legs. Single leg hop test may be used as a predictor of functional knee stability (51) and has been used to examine patients with anterior cruciate ligament (ACL) injuries (52;53). This test can be also a good tool to evaluate the neuromuscular control of the player, as we have said is valid and reproducible. Moreover it is a dynamic test, which is closer than static tests to the reality of the sport performance. That is why this test could be of particular interest to evaluate the performance in basketball. Year-round female athletes who play soccer and basketball have an ACL tear rate of approximately 5% (54). According to our findings WBV training could be a good method to improve the functional stability of the knee and also preventing ACL injuries.

Balance test

The results of the balance test only show significant changes in the closed eyes trials, with an improvement of the balance performance in the vibration group. Considering the conditions of the test and that the nervous system receives information from three different kind of neural receptors (proprioceptors, visual system and vestibular system), it seems to be clear that the obtained changes are due to the improvement of the proprioceptive system, although there is poor evidence with regard to the effects of WBV on postural control and proprioception. According to the last information, some studies have analysed the acute (15;18;39) and long term effects (17;40;55) of WBV training on balance, but few of them were applied to trained people. Although we did not study the vibration acute effects, it is important to mention the work made by Torvinen et al. (2002), who observed acute significant improvements in body balance after 4 minutes of WBV training (Galileo 2000 machine, 15-30Hz, 10mm) in young adults (39). However, another study did not found any effects applying 4 minutes of WBV with different conditions in young adults (Kuntötary machine, 25-40hz, 2mm) (56).

The chronic effects are even more unknown. The same research group did not show any effects on balance skill after 4 months of WBV training (40). Following this trend, Mahieu et al.
(2006) investigated the effects of a 6 weeks WBV training program in competitive skiers comparing it to an equivalent exercise program performed without vibration. In this study, neither WBV group nor control group showed any effect on postural control (32). In the opposite way, Moezy et al. (2008) also compared the effects of a WBV training programme to a conventional training programme and obtained significant improvements in the vibration group on knee proprioception and postural stability after ACL reconstruction.

Although the improvement we found with WBV training are only supported by the study of Moezy et al (2008), and even thinking this was made in after surgery population, our results clearly suggest that the vibration had a strong stimulating effect on muscle and joint proprioceptors, as other studies support (54). Taking in account there is little evidence of this, new studies are needed.

The deficit of control of the centre of gravity has been described as a major risk factor for lower limb injuries, so an increase in the body balance variation is associated to an impairment of the neuromuscular control strategy. This event increases the transmitted forces to the intra-articular structure, ligaments and muscles (43;57). The significant improvement of the centre of gravity obtained in the vibration group of our study could prevent future injuries in lower limb young basketball players.

More challenging tests, such as those performed with closed eyes or maximal one leg hop test, are better related to functional performance (58). In the same way, these tests closer to the sports situation are the only ones in which we have registered significant improvements in the WBVG. According to our results WBV training could be a method to improve functional performance of athletes.

PRACTICAL APLICATIONS

This study shows positive effects of whole body vibration training both in explosive strength and static and dynamic balance in a female elite basketball population. One of the keys of the used methodology was the kind of the intervention program, focused on balance perturbation and not in heavy weight resistance exercises. Having this in account, sport and physical coaches as well physical therapists can consider this way of exercising to improve neuromuscular control without heavy loads. This possibility takes special relevance considering high risk factor sport population. In this sense, sport performance was improved at the time neuromuscular control showed also positive adaptations, what indirectly reflects benefits on injury prevention.
REFERENCES

ACKNOWLEDGEMENTS

This study was supported by the “Secretaria General de l’Esport i del Departament d’Innovació, Universitats i Empresa”. We thank all technical and medical team of women’s basketball s. XXI, “Consell Català de l’esport”.
Annex 1. Whole-Body Vibration Training Program

<table>
<thead>
<tr>
<th>Week</th>
<th>Exercises</th>
<th>Frequency, Hz</th>
<th>Repetitions</th>
<th>Duration, s</th>
<th>Variants</th>
<th>Duration Vibration, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Squat (knees flexed 15°)</td>
<td>23</td>
<td>2 each/leg</td>
<td>30"</td>
<td>D3; R2 CE</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2. Squat (knees flexed 120°)</td>
<td>2</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3. Lateral step</td>
<td></td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4. Calf rise</td>
<td>2</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5. 1-legged squat</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Squat (120°)</td>
<td>2</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. Lateral step</td>
<td></td>
<td>2 each/leg</td>
<td>40"</td>
<td>D1; R2 Ex. 5 dynamic</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3. Calf rise</td>
<td>25</td>
<td>2</td>
<td>40"</td>
<td>D2: R2 CE</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>4. 1-legged squat (knee flexed 15°)</td>
<td></td>
<td>2 each/leg</td>
<td>30"</td>
<td>D3: R1 dynamic, R2 CE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5. Lunge</td>
<td></td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1. ½ dynamic squat</td>
<td>2</td>
<td>50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2. Dynamic lateral step</td>
<td>2</td>
<td>50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. Dynamic calf rise</td>
<td></td>
<td>2 each/leg</td>
<td>50"</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5. Dynamic Lunge</td>
<td>2 each/leg</td>
<td>50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1. Squat (120°) with unstable plates</td>
<td>2</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2. ½ dynamic squat</td>
<td>2</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3. Dynamic diagonal step</td>
<td>30</td>
<td>2 each/leg</td>
<td>40"</td>
<td>R2: UT static</td>
<td>10.3</td>
</tr>
<tr>
<td>4</td>
<td>4. Dynamic 1-legged squat</td>
<td>2 each/leg</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5. Dynamic lateral step</td>
<td>2</td>
<td>50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1. Squat (120°) with plates</td>
<td>2</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2. ½ dynamic squat with plates</td>
<td>2</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3. Vertical jump (3 jumps)</td>
<td>30</td>
<td>2</td>
<td>50"</td>
<td>R2: CE except ex. 3</td>
<td>8.6</td>
</tr>
<tr>
<td>5</td>
<td>4. 1-legged squat with plate</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. Lunge with plates</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1. ½ dynamic squat with plates</td>
<td>2</td>
<td>60"</td>
<td></td>
<td>R1: ex. 5 passes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2. Lateral step with plate</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3. Vertical jump</td>
<td>30</td>
<td>2</td>
<td>50"</td>
<td>R2: ex. 5 CE</td>
<td>10.3</td>
</tr>
<tr>
<td>6</td>
<td>4. 1-legged squat with plate</td>
<td>2 each/leg</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5. 1-legged jump with plate</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1. ½ dynamic squat with plates</td>
<td>2</td>
<td>60"</td>
<td></td>
<td>R1: ex. 3 passes</td>
<td>10.5</td>
</tr>
<tr>
<td>7</td>
<td>2. Lateral step with plate</td>
<td>2</td>
<td>60"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3. Vertical jump</td>
<td>30-35</td>
<td>2</td>
<td>50"</td>
<td>R2: CE</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4. 1-legged squat with plate</td>
<td>2 each/leg</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5. 1-legged jump with plate</td>
<td>2 each/leg</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1. Squat (120°) with plates</td>
<td>2</td>
<td>60"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2. ½ dynamic squat with plates</td>
<td>2</td>
<td>60"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3. 1-legged squat dynamic with plate</td>
<td>30-35</td>
<td>2 each/leg</td>
<td>30"</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>4. Vertical jump</td>
<td>2</td>
<td>50"</td>
<td></td>
<td>R2: CE, ex 3 static</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5. 1-legged jump</td>
<td>2 each/leg</td>
<td>40"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Week 9: Rest of training and measures
<table>
<thead>
<tr>
<th>Week</th>
<th>Exercises</th>
<th>Frequency, Hz</th>
<th>Repetitions</th>
<th>Duration, s</th>
<th>Variants</th>
<th>Duration Vibration, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1. ½ dynamic squat</td>
<td>25 1st R. 30 2nd R.</td>
<td>2</td>
<td>50''</td>
<td>R1: With ball passes R2: CE</td>
<td>8.9'</td>
</tr>
<tr>
<td></td>
<td>2. Dynamic lateral step</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Dynamic Calf rise</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1-legged squat</td>
<td>2 each/leg</td>
<td>40''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1. ½ dynamic squat</td>
<td>25 1st R. 30 2nd R.</td>
<td>2</td>
<td>50''</td>
<td>R1: With ball passes R2: CE</td>
<td>9.6'</td>
</tr>
<tr>
<td></td>
<td>2. Dynamic lateral step</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Dynamic Calf rise</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1-legged squat</td>
<td>2 each/leg</td>
<td>40''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1. ½ dynamic squat with plates</td>
<td>25 1st R. 30 2nd R.</td>
<td>2</td>
<td>50''</td>
<td>R2. CE</td>
<td>9'</td>
</tr>
<tr>
<td></td>
<td>2. Dynamic lateral step with plates</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Vertical jump (5) with different passes</td>
<td>30</td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1-legged squat with plate</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. 1-legged jump (3) with different passes</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1. Squat (120°) with plates</td>
<td>30 R1 ; 35 R2</td>
<td>2</td>
<td>50''</td>
<td>R1: ex. 1, 2, 4 with passes R2: CE</td>
<td>9'</td>
</tr>
<tr>
<td></td>
<td>2. ½ dynamic squat with plates</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Vertical jump (5) with different passes</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1-legged jump (3)</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge with plate</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1. ½ dynamic squat with plates</td>
<td>30 R ; 35 R 1; 35 R 2</td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Vertical jump (5) with different passes</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 1-legged jump (3) with different passes</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1-legged squat with count lateral bouncing</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge with bouncing</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1. Squat (120°) with plates and passes</td>
<td>35 R 1; 40 R 2</td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 1-legged squat with plate</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Vertical jump (5) with different passes</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1 legged jump (3) with different passes</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge with passes and bouncing</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1. Squat (120°) dynamic with plates and passes</td>
<td>35 R 1; 40 R 2</td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 1-legged squat dynamic with plate</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Vertical jump (5) with different passes</td>
<td></td>
<td>2</td>
<td>50''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 1 legged jump (3) with different passes</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lunge with passes and bouncing</td>
<td>2 each/leg</td>
<td>30''</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R1_Repetition 1, R2_Repetition 2, D_Day, Ex_exercise, CE_Closed eyes

^ Amplitude: 4mm; Pause between exercises 60''