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“I think however, that there isn’t any solution to this problem of education other than to 

realize that the best teaching can be done only when there is a direct individual 

relationship between a student and a good teacher, a situation in which the student 

discusses the ideas, thinks about the things, and talks about the things. It’s impossible to 

learn very much by simply sitting in a lecture, or even by simply doing problems that 

are assigned. But in our modern times we have so many students to teach that we have 

to try to find some substitute for the ideal. Perhaps my lectures can make some 

contribution. Perhaps in some small place where there are individual teachers and 

students, they may get some inspiration or some ideas from the lectures. Perhaps they 

will have fun thinking them through or going on to develop some ideas further.”

The Lectures on Physics, Richard Feynmann, June, 1963 
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1 INTRODUCTION

Seismology is the primary tool for the study of the earth’s interior. Because few 

kilometres in depth can be drilled, all the information on deeper depths comes from 

indirect methods. Seismograms provide the data used for mapping the earth’s interior 

and for studying the distribution of physical properties. The analysis of seismograms is 

also useful for assessing the societal hazards posed by earthquakes. 

 Because of the complexity of the processes involved, the approach taken, in 

general, is to describe them with simplified models that seek to represent key elements 

of the process under consideration. A hierarchy of different approximations, as 

appropriate, are used as starting models for more detailed investigations. The most 

accurate earth model used in Seismology is a laterally heterogeneous sphere. This 

model is often approximated as being spherically symmetric, with properties varying 

only with radius. This spherically symmetric model can be further approximated for 

many purposes as a stratified half-space, in which properties vary only with depth, or as 

a layered half-space composed of discrete uniform layers (Stein and Wysession, 2003, 

[1]).

A type of model to represent the earth medium is often chosen, and then 

seismological and other data is used to estimate the parameters of this model. Thus, a 

characteristic activity of Seismology is to solve inverse problems. Inverse problems are 

complicated to solve, because seismograms reflect the combined effect of the source 

and medium, neither of which is known exactly. Moreover, the inverse problems often 

have no unique solutions and the model parameters that describe the observations well 

do not have to reflect the physical reality necessarily. As a consequence, it is necessary 

to consider issues of precision, accuracy, and uncertainty. 

A homogeneous, isotropic, elastic, layered half-space is often used in crust and 

upper mantle studies, where the distance between source and receiver is less than few 

hundred kilometres. For larger source-receiver distances, spherical geometry is required. 

More complex and accurate models consider the anisotropic and anelastic behaviour of 

the earth, and lateral variations, or heterogeneities. 
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In addition to reflection and transmission at discrete interfaces, the reasons why 

seismic waves attenuate or decrease in amplitude as they propagate are: anelasticity (or 

deviation from eleasticity), geometrical spreading, multipathing, and scattering. 

Anelasticity, also called intrinsic absorption, implies the conversion of seismic energy 

into heat and it differs from the other processes in that energy is lost, not just moved 

onto a different path. The geometrical spreading effect is due to the redistribution of 

energy that occurs as the wave front expands or contracts during seismic waves’ 

propagation. Multipathing implies a focusing and defocusing of seismic waves by 

lateral variations in velocity.  

Scattering is due to the interaction of seismic waves with the heterogeneities of 

the medium and it occurs depending on the ratio of the heterogeneity size to the 

wavelength and the distance the wave travels through the heterogeneous region (Aki 

and Richards, 1980, [2]). When the heterogeneity is large compared to the wavelength, 

the wave is regarded as following a distinct ray path that is distorted by multipathing. 

When the heterogeneities are closer in size to the wavelength, scattering occurs. When 

the heterogeneities are much smaller than the wavelength, they simply change the 

medium’s overall properties. 

Scattering is especially important in the continental crust, which has many small 

layers and reflectors resulting from continental evolution. These structures do not affect 

waves with wavelengths longer than tens of kilometres, but they act as point scatterers 

fro shorter wavelength waves. Scattering is the cause of the presence, in high frequency 

(>1Hz) seismograms, of continuous wave trains following the direct S-wave which are 

known as coda waves. Array observations have shown that they are incoherent waves 

scattered by randomly distributed heterogeneities having random sizes and contrast of 

physical properties (Sato and Fehler, 1998) [10]. 

 A number of models have been developed to explain the relationship between 

coda-waves’ envelopes and the spectral structure of the random heterogeneity in the 

earth. The characterization of the earth as a random medium is complementary to the 

classical stratified media characterization. 

In this thesis, coda waves’ recordings from local earthquakes will be analyzed to 

estimate the three-dimensional spatial distribution of scatterers in the crust. For this 
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purpose, it is necessary to know how the scattered waves’ energy is distributed spatially 

and as a function of time. Thus, some hypothesis about the media characteristics and 

how and where the scattering is produced are necessary. The existing models on the 

scattering process will be reviewed in Chapter 2.

These models for S-coda envelope synthesis are based on the assumption of a 

homogeneous distribution of isotropic scatterers and they predict results consistent with 

the observed characteristics of the coda. However, detailed observations show that there 

may be departures from the observed characteristics of S-coda waves which may be 

explained by a inhomogeneous distribution of scatterers. This issue will be the subject 

of Chapter 3. 

The problem of estimating deterministically the spatial distribution of scatterers 

leads to a inversion process of a huge system of equations that can not be solved by 

traditional methods. They require the use of sophisticated numerical techniques. We are 

talking about systems of equations with about 510  unknowns and 510 equations. These 

sorts of problems were solved for the first time in medical tomography applications and, 

since then, the computational methods needed have been applied to other scientific 

fields. The first approach used to obtain three dimensional reconstructions was an 

iterative method called ART. Then, other methods based on ART soon appeared. 

Although these methods are very accurate and the reconstructions are of a high quality, 

they have an important drawback: they are terribly slow and not appropriate for real 

time applications. Nowadays, scanners are able to obtain three dimensional images by 

solving large systems of equations, not by using iterative approaches, but using a 

remarkably fast non-iterative algorithm: the Filtered Backprojection. The Filtered 

Backprojection method is based on an important mathematical definition, the Radon 

Transform, and a theorem that connects the Radon transform and the Fourier Transform 

of the three-dimensional object to be reconstructed. This theorem is the so-called 

Fourier Slice Theorem.  

In Chapter 4 we will analyze in detail the ART, SIRT and Filtered 

Backprojection algorithms. ART algorithm has been previously used in other 

seismological studies (Chen and Long, 2000, [43]). SIRT reconstructions, which are 

based on ART, are less noisy and better looking than ART reconstructions at the 
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expense of computation time. We will use this algorithm for the first time in 

seismological applications. The Filtered Backprojection algorithm had never been used 

in Seismology because there is no simple way to adapt it to the kind of problem to 

solve. The Filtered Backprojection algorithm is very sensitive to the geometry defined 

by the problem to solve. Then, firstly, the Filtered Backprojection algorithm will be 

derived using a simple approach and, secondly, a generalization by taking into account 

the special geometry of our problem will be adapted to our case. This is the main 

mathematical contribution of this thesis.  

Chapters 5 and 6 present two applications of the methodology to different 

geotectonic regions in the earth: a seismically stable region in southern India and an 

active volcano in south-western Colombia. The three-dimensional spatial distribution of 

relative scattering coefficients in southern India will be estimated by means of an 

inversion technique applied to coda wave envelopes recorded by the Gauribidanur 

Seismic Array (GBA). The inversion analysis will be performed for the first time in this 

kind of seismological research by means of the Simultaneous Iterative Reconstruction 

Technique (SIRT) and Filtered Back-Projection method (FBP). Finally, the three-

dimensional spatial distribution of relative scattering coefficients will be estimated for 

the Galeras volcano, Colombia, by means of inversion analysis of coda wave envelopes 

and using the Filtered Backprojection algorithm. The scientific contribution of these 

applications is very important, since tomographic results confirm for the first time 

geological hypothesis on the structure of both regions. On the one hand, the presence of 

the Closepet granitic batholith to the east of GBA is revealed up to a depth of about 24 

km. This granitic intrussion if one of the most important geological features of the 

region that acts as the major geological boundary in the region. It is believed to be a 

Precambrian suture zone between the eastern and western Dharwar craton in southern 

India. On the other hand, the present magmatic plumbing system of Galeras volcano 

sketched by geological evidences is also confirmed. Two zones of strong scattering are 

detected: the shallower one is compatible with the presence of a shallow magmatic 

chamber located at a depth from 4 km to 8 km under the summit. The deeper one is 

imaged at a depth of ~37 km from the Earth’s surface and may be related to a deeper 

magma reservoir that feeds the system. 

Parallel to the theoretical developments in this thesis, an important amount of work 
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corresponds to programming the numerical algorithms and graphic displays. Numerical 

algorithms were programmed in C++ using a free version of Borland C++ (BuilderX 

[3]) and a commercial compiler as Microsoft Visual C++ [4] to assure a high 

compatibility. The program codes are annexed at the end of the document. Some of the 

graphic representations were generated with the DISLIN graphic libraries from the Max 

Planck Institute of Solar Research [5]. Using DISLIN, programs written in C++ were 

developed to display results. Special look-up tables (pseudocolor) were designed to 

enhance the significance of the three-dimensional reconstructions. Three-dimensional 

representations were also developed. The outcome of this effort can be particularly 

noticed in Chapter 6. 
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