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2 CODA CHARACTERISTICS 

2.1 INTRODUCTION

From the geological point of view, it is evident that the earth has heterogeneities 

on many scales. Rocks have crystals that range in size from fractions of mm to a few cm 

in scale. An example is in Figure 2-1 where a picture of granite is shown.

Figure 2-1. Picture of the crystals of granite [6].

Also, fractures range in size from submicroscopic to many tens of meters. Faults 

can be larger than 1000 km as S. Andreas Fault (see Figure 2-2).

Figure 2-2. S. Andreas Fault, California [7].
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Additionally, the earth’s crust contains a wide variation of rock types; its 

composition can range on scales of a few mm to many km. Tectonic processes also 

contribute to heterogeneity in the lithosphere by means of faulting and folding.  

Figure 2-3. Non-filtered seismograms corresponding to Galeras volcano events (appendix A). (A) Event 

4 station 22, 26/09/1989. (B) Event 75,  station 4, 02/06/1992 (C) Event 250 station 19, 16/02/1996,  (D) 

Event 301, station 20, 30/04/1997. Green lines indicate the S-waves arrival time. 

Ground motion in the vicinity of earthquakes often dies away slowly leaving a tail 

following the passage of primary waves. Aki [8] called the observed continuous wave 

trains “coda waves” and this term has been used since then to describe the tail portion of 

regional seismograms. 

Examples of coda waves following the primary waves corresponding to events in 

the Galeras volcano (that will be studied in Chapter 6) are shown in Figure 2-3. At 

present, the word “coda” is used to refer all wave trains except direct waves, thus 

naming P-coda the waves between the direct P and S waves and S-coda the waves 

following the direct S-waves. Because the most prominent characteristic of typical high 
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frequency seismograms of local earthquakes is the coda of S-waves, in this work we 

will use the word coda for the S-wave coda.  

Aki (1969) [8] proposed that the coda was the result of the scattering of seismic 

waves by random heterogeneities in the earth’s lithosphere. Therefore, the later portion 

of regional seismograms may be considered as a result of some kind of averaging over 

many samples of heterogeneities, thus suggesting a statistical treatment in which a small 

number of parameters characterize the average properties of the heterogeneous medium.  

Aki and Chouet (1975) [9] developed two simple theoretical models that proved 

to fit extremely well the observed energy envelopes of coda waves: the single scattering 

model and the diffusion model. The first one relied on the simple assumption that waves 

are scattered only once on their way from the source to the station. On the other hand, 

the second describes the coda by means of a diffusion equation. They also introduced 

coda Q (Qc) as a parameter to account for anelastic loss of energy from the wavefield.

Qc, which describes the rate of decay of seismogram envelopes, has been extensively 

measured in many regions of the world [10] and it has proved to be an extremely 

sensitive parameter to the geological environment. Both the single scattering and the 

diffusion models will be developed in detail in section 2.4.

The physical interpretation of Qc in terms of the medium properties still remains 

unclear. Within the context of the single scattering theory, Qc appears to represent an 

effective total attenuation including both absorption and scattering loss: 

c t s i

1 1 1 1

Q Q Q Q
 (2.1) 

where Qt, Qs and Qi denote the total, scattering and intrinsic quality factors, 

respectively. On the other hand, in the diffusion model Qc represents the effect of 

absorption only (Qc = Qi). In order to give a meaningful interpretation to Qc, it is 

therefore critical to determine the range of validity of the various approximations used 

to fit the data. The radiative transfer theory is the tool that can address this problem. 

This theory enables the calculation of energy envelopes of seismic waves taking into 

account all orders of scattering. Radiative transfer was first introduced in Seismology by 

Wu [11] and it has, since then, greatly enhanced the understanding of the coda of 
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earthquakes. Radiative transfer theory shows a different functional dependence 

for sQ and iQ . This makes it possible to determine both magnitudes from total 

attenuation (Frankel and Wennerberg, 1987 [12]; Hoshiba et al., 1991 [13]]; 

Matsunami, 1991 [14]),  

The most sophisticated modelling one may hope for is the complete fitting of 

seismic waveforms, which contain all information on phase and amplitude. The goal of 

the radiative transfer (and the other models commented above) is more modest as they 

aim at explaining only the energy envelope of the seismograms. However, at relatively 

high frequencies, the correlation length of the wavefield is of the order of a few 

kilometres only (Dainty and Toksöz, 1990 [15]), which makes the waveform fitting 

procedure almost inapplicable. In disordered media or random media the phase gets 

randomized by the scattering events. As a consequence, the wavefield at a point can be 

viewed as a sum of waves whose phase and amplitude are independent random 

variables. We may then reasonably expect that wave energies rather than amplitudes are 

additive in random media. But, since on the time scale of seismic observations the Earth 

is a static disordered medium we do not have access to a true statistical ensemble. In 

other words, scattering is a deterministic process that happens at cracks, 

inhomogeneities, faults…, not a stochastic process [16]. Thus, theory and observation 

can only be connected through some kind of ergodic hypothesis (time average and space 

average coincide).  

2.2 S-WAVE CODA ATTRIBUTES 

Let us first enumerate several important observations about the coda waves, which were 

compiled by Aki and Chouet [9] and that may be satisfactorily explained by a 

“backscattering model”:  

A. The spectral contents of the early part of a local earthquake seismogram depend 

strongly on the travel distance and the nature of the wave path to a station. The 

difference in spectrum among stations, however, diminishes in the later part of 

the seismograms and disappears in the coda. 

B. The coda length is nearly independent of the epicentral distance or azimuth for a 
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given region and can be used effectively as a measure of earthquake magnitude. 

C. The power spectra of coda waves from different local earthquakes decay as a 

function of time in the same manner at all stations and for all events within a 

given region. The temporal decay shape is independent of earthquake magnitude 

for events with local magnitudes (ML) less than about 6.

D. The coda amplitude varies with the local geology at a recording site. It can be 5-

8 times larger on the sediment than on granite. Interestingly, the amplitude of 

ambient ground noise tends to be proportional to the site factor of coda 

excitation, making the total duration nearly independent of local geology. 

E. The study of coda by a small-aperture array seismographs shows that they are 

not regular plane waves from the epicenter. 

Now let us now follow the waves as they are generated when an earthquake occurs. 

An important initial consideration is that we expect that the source duration of 

earthquakes with ML<6 is less than a few seconds. This consideration is supported by 

the fact that the duration of the major event at an earthquake source may be measured 

roughly by the fault length divided by the rupture velocity, where the fault length for 

earthquakes with magnitude ML~6 is about 10 km and the rupture velocity is roughly 

the shear velocity. Similarly, the duration for an ML~1 earthquake is probably a few 

hundredths of a second.

Then, the nature of the primary waves which spread outward from the source and 

are recorded at a station will depend on the earth’s structure along the wave path from 

source to station. As the primary waves spread out, secondary waves are generated at 

each of the heterogeneities that they encounter. Suppose for simplicity, that both the 

primary and the secondary waves are of the same kind of wave with velocity v. Then we 

consider a time interval ,t t t measured from the origin where t is longer than the 

duration of primary waves. During this time interval the secondary waves arrive from 

the heterogeneities within the zone sandwiched by two ellipsoids, both with the foci at 

source and station and with the length of the major axis equal to  and vt v t t . If we 

consider seismograms of an event recorded at two different stations, for the given time 

interval ,t t t the two ellipsoidal zones will increasingly overlap as t increases. 
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Besides, a greater number of heterogeneities will contribute to the later time interval and 

tend to average out the difference between backscattering energies received at the two 

stations. Thus the difference in the appearance of seismograms disappears in the coda. 

2.3 CHARACTERIZING S-CODA ENVELOPES 

To characterize S-coda envelopes one often calculates the smoothed trace of the square 

of the seismogram for a narrow frequency band, which is called the MS seismogram 

envelope. The amplitude of the MS envelope is linearly proportional to energy density. 

A very important property of the MS envelopes 2 ,A f t  (which are a function of 

frequency f and lapse time t) is that they can be described as the product of the spectrum 

of waves radiated by the source ( )S f , and a function describing the response of the 

medium to a source ( , )f t (Aki, 1969 [8]):  

2 ( , ) ( )· ( , )A f t S f f t  (2.2) 

This relation constitutes a cornerstone in coda-wave analysis and has been 

confirmed for many different areas (Aki and Chouet, 1975[9]; Rautian and Khalturin, 

1978 [17]). The assumption that ( , )f t  is common to all sources implies that different 

seismic sources share a common composition of wave types, so that the same scattering 

effects apply to all. Then, the precise form of ( , )f t depends upon how seismic waves 

are scattered and attenuated.  

Two extreme models of scattering are the single scattering, for which outgoing 

waves are reflected only once before reaching the receiver, and multiple scattering, to 

the extent that seismic energy is scattered so much that it diffuses away from the source. 

For both cases, when the time t after the event is large compared with the distance to the 

source, r, divided by the wave velocities v, (t>>r/v), theoretically is ( , )f t independent

of distance r, and is of the form: 

c

2
( , ) exp( )

ft
f t t

Q
 (2.3) 

where Qc is a measure of attenuation. The constant  takes into account geometrical 
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spreading and it is equal to 2 for single scattering of body waves. The diffusion theory 

gives 3/ 2 (Aki and Chouet, 1975 [8]; Rautian and Khalturin, 1978 [17]) Then, if 

2 ,A f t  follows Eq. (2.2) and the envelope of the coda is predicted to be and turns out 

to be independent of the source spectrum ( )S f , in principle the parameters  and Qc

can be determined. From them, inferences about how scattering takes place can be made 

and the properties of different regions can be compared. 

A remarkable property of the coda is that at any given station, for each 

frequency band, the dependence of the envelope of the coda on time is nearly identical 

for all events in a large region surrounding the station. This was noticed by Rautian and 

Khalturin (1978) [17] when they represented together data from several different events 

of different magnitudes in a certain region and obtained parallel lines. If the events were 

combined without regard to their individual levels, they observed a remarkably good 

overlapping. When they built a summary of coda envelopes for different frequency 

bands as a function of time they observed that for each band the scatter among the data 

was remarkably small, in general less than a factor of 2 (see Figure 2-4). Even when 

these bands were built from events within 50 km of the station, data from events as far 

as 600 km from intermediate depths also fell on the bands. They concluded that, at a 

given station, the time dependence of the envelope of the coda in the frequency band 0.1 

to 40 Hz is essentially independent of the location of the source, which justifies the 

separation of the coda spectrum at a given site into a source factor, which is independent 

of time, and a path factor which shapes the coda with time.  

The above authors also experienced that the amount of time that must transpire 

before the coda envelopes overlap one another depends on epicentral distance. They 

observed that if tS-t0 is the time between the S-wave arrival time tS and the origin time 

t0, then often after 02( )st t and always after 03( )st t , the general form of the coda is 

established. 
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Figure 2-4. Summary of root mean squared coda envelopes for different frequency bands. Data are from 

many different events [17].
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Although the time dependence of the envelope of the coda at a particular station 

is independent of the position of the earthquake, sometimes the envelopes at different 

stations from the same earthquake are different in absolute level. This presumably 

reflects differences in the environments of stations-attenuation and local site effects. 

The time dependences of the codas for different events differ only by a constant factor 

for each frequency band. Therefore when a simple correction is applied to the codas at 

one station, the corrected envelopes overlap the observed envelopes at the other station 

for all events. This correction is the same for all events independent of the positions of 

the earthquakes, and therefore epicentral distance. Then, the envelope of the coda over a 

wide range of frequencies is a very stable function of time and of hypocenter. Rautian 

and Khalturin (1978) [17] noticed that coda envelopes cannot be described by a single 

Qc value, but it changes with different segments and different frequencies. Single 

scattering coda models that are based on the assumption of spatial homogeneity of the 

scattering coefficient and intrinsic attenuation predict that Qc is independent of lapse 

time. Most of the investigators who found a lapse time dependence of the coda decay 

rate suggested that the later portion of the coda is dominated by energy that has 

propagated in zones with lower attenuation than energy in the early coda. However, 

lapse time dependence of coda decay is still an unresolved issue (Sato and Fehler, 1998) 

[10].

The frequency dependence of Qc can be written in the form of a power of 

frequency f as c

nQ f for f >1 Hz. The power n ranges between 0.5 and 1. 

2.4 TWO EXTREME MODELS FOR CODA WAVES 

Several phenomenological models for coda-wave generation have been proposed. 

Aki and Chouet (1975) [9] proposed the single backscattering model to explain the time 

dependence of the scattered energy density at the source location in 3-D space. They 

considered the case of impulsive spherical radiation of total energy from the source, 

which location was coincident with the receiver.

Sato (1977)[18] extended the formulation for the case of a single isotropic 

scattering model for general source and receiver locations. Under the single scattering 

approximation, the coda is considered as a superposition of backscattering wavelets 
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from discrete scattering sources. Each wavelet is due to a single scatterer in the absence 

of the other scatterers. Another extreme model is to consider the seismic energy transfer 

as a diffusion process (Wesley, 1965 [19]; Aki and Chouet, 1975 [9]; Dainty and 

Toksöz, 1981 [20]).

2.4.1 SINGLE ISOTROPIC SCATTERING MODEL 

We are going to consider now how the elastic energy propagates in a three-dimensional 

infinite elastic medium, in which numerous scatterers are distributed homogeneously 

and randomly, when the elastic energy is radiated spherically. In other words, we 

restrict the problem to the body wave isotropic scattering. Then, we will derive a space-

time distribution of the mean energy density of the single scattered waves in a similar 

fashion as the one given by Sato (1977) [18].

2.4.1.1 Distribution of scatterers. Isotropic scattering assumption 

We suppose that scatterers are distributed randomly and homogeneously with a number 

density n in the elastic medium. The scattered waves will be considered as incoherent 

waves. Scatterers are generally characterized by the effective cross section . Here, we 

notice that depends on 2 f . When scatterers are distributed homogenously with 

the number density n, the length

1
l

n
 (2.4) 

is the mean free path and l v the mean free time, being v the wave velocity. The 

scatterers reduce the mean energy flux density of the incident wave by exp x l ,

where x is the distance along the propagation direction. The scattering coefficient 

(turbidity) corresponds to g=1/ l and can be measured. The turbidity is of the order of 

5 6 110 10 m at frequencies higher than 10 Hz [9]. 

Here, we will assume isotropic scattering in order to obtain an analytic solution 

with rather simple calculations. Roughly, isotropic scattering may be assumed when the 

wavelength a where a is the size of the scatterers (Sato, 1977, [18]). For the sake of 

simplicity, no conversion between longitudinal waves and transverse waves during 
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scattering will be considered and the medium will be characterized by a single wave 

velocity.

2.4.1.2 Single isotropic scattering approximation 

Let us suppose that the mean free path l is much longer than the distance r under 

consideration r l  or /t l v . Since the scattering is assumed to be a weak 

process, only single scattering is considered. Let us also suppose that the source emit a 

unit of energy in the time t=0. The mean energy density at a certain distance r1 may then 

be written as: 

1

1 1 2

1

exp
( , )

4
d

n r
E r t r v dt

r
 (2.5) 

where dt is the time it takes to emit the unit energy. Note that Ed is the energy per unit 

area and per unit time. The amount of energy scattered at a certain volume 

(dV=dS·dr=dS·v·dt) may then be written as: 

1 1

1 1 2 2

1 1

exp exp
( , )

4 4
s

n r n n rdr
E r t r v vdtdS dS dV

r l r
 (2.6) 

where Es is the energy scattered per unit volume and per unit time. The mean energy 

flux re-emitted by a certain scatterer (located inside a certain dV at the coordinates 1r ) at 

a point 2r  is then written as: 

2

1 12

2

exp
, ,

4
s s

n r
E r t vdtdS E r t r v vdtdS

r
 (2.7) 

where
1 2

r r r . Using Eq.(2.6) we obtain: 

1 2

2 2 2

1 2

exp ( ) 1
,

4
s

n n r r
E r t vdtdS dV

r r
 (2.8) 

In order to get all the energy scattered in a certain time interval dt we will 

consider a new set of coordinates (alternate prolate spheroidal coordinates which are 

adapted to “two-centre” problems [21]):  
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2 2

1 2 3

2 2

1 2 3

1 2

3 2 2

1 2 1 2 3

1 1 cos

1 1 sin

x a

y a

z a

dV vdtdS a d d d

 (2.9) 

The set of coordinates 1 2 3, ,  are defined on certain intervals that we write 

as: 1 2 3[1, ),   [ 1,1],   [0, 2 ].

Figure 2-5 Prolate spheroidal coordinates. 1 2 3sinh ,  cos ,  [21].

Then we write the coordinates of the source as (0,0,-a), and the ones of the 

receiver as (0,0,a). Then (0,0,2 )ar , 1 ( , , )x y z ar , 2 ( , , )x y z ar . Notice the 

following equalities: 

1 1 2 2 1 2 1 2

1 2 1 2
1 2

2

2 2

r a r a a r

r r r rvt

a r a

r r

 (2.10) 

where r is the distance from the source to the observer. Notice that: 

1

v
d dt

r
 (2.11) 
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Then dV may be writen as: 

3 2 2

1 2 2 3

1
dV vdtdS vdt a d d

r
 (2.12) 

and using Eqs. (2.9) , (2.10) and (2.12) in Eq. (2.8) we obtain: 

2 32 2 2

1 2

exp( ) 1 1
( , )

4
s

n n
E r t vdtdS vdt d d

ar
 (2.13) 

Now, integrating the third coordinate: 

22 2 2

1 2

exp( ) 1
( , )

4
s

n n
E r t vdtdS vdt d

r
 (2.14) 

and then the second we obtain: 

1

2

1 1

1exp( ) 1
( , ) ln

4 1
s

n n
E r t vdtdS vdt

r
 (2.15) 

Using Eq. (2.10) we may finally write: 

exp 1
, ln

4
s

n n vt vt r
E r t

r vt vt r
 (2.16) 

2.4.1.3 Properties of the solution 

It is important to consider how this distribution behaves for t r v . Considering a first 

order Taylor expansion of the logarithmic expression we obtain:  

2
1 /

ln 2
1 /

r r vt r

vt r vt vt
 (2.17) 

Then, for t r v we may write:  
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2

exp( )
( , )

2
s

n n vt
E r t

vt
 (2.18) 

We observe a t
-2

 dependence under such condition, as derived for the single 

backscattering model of Aki and Chouet (1975) [9]. 

We notice now that Eq. (2.16) makes sense only for vt r . Then we may write: 

exp 1
, ln

4
s

n n vt vt r
E r t vt r

r vt vt r
 (2.19) 

This distribution diverges for vt r . The total energy scattered up to a certain 

time t may be written as: 

2

0 0

exp
( ) , 4 ln

vt

s

n n vt vt r
U t E r t r dr r dr

vt vt r
 (2.20) 

and solving the integral it yields: 

( ) expU t n vt n vt  (2.21) 

Notice that this expression does not tend to one for t ; it tends to zero. The 

expressions previously developed are only valid for t l v . This means that as time 

increases, the energy coming from double scattering becomes smaller.  

2.4.2 RATIO OF SINGLE SCATTERED ENERGY VERSUS MULTIPLE 

SCATTERED ENERGY 

Equation (2.19) gives us the distribution of energy that arrives at the distance r at the 

time t after a single scattering process. Equation (2.21) gives us the total amount of 

energy scattered by a single scattering process up to the time t. This energy is 

distributed inside a sphere with a radius Ur vt . The total amount of energy scattered up 

to the time t and also distributed inside a sphere with a radius Ur vt  may be easily 

written as: 

1 exptotal

t
U t

Q
 (2.22) 
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Then, we may write the ratio of the single scattered energy to the total scattered 

energy up to a time t as:  

exp( )
( )

1 exp

n vt n vt
R t

t

Q

 (2.23) 

and taking into account the following equalities: 

1 CvQ
l

n
 (2.24) 

we may rewrite the ratio as:  

exp( )

( )

1 exp

t
n vt

Q
R t

t

Q

 (2.25) 

In order to study this expression let us define the following parameter:  

t

Q
 (2.26) 

Then we rewrite the ratio as:  

exp( )
( )

1 exp( )
R  (2.27) 

The ratio takes the following values; R(0)=1.0; R(0.20)=0.90; R(0.43)=0.80;

R(0.67)=0.70. Let us take as a unit of time the arrival time at d v  (d is the hypocentral 

distance); then we shall rewrite the time as an t . Let us also compute  for f=1 Hz and 

v=3.5 Km/s for several possible values of Q and n. Then, we rewrite as a function of 

d, n,v and Q:   

2
n d

v Q
 (2.28) 



40

It might be useful to have d as function of the other parameters: Then using Eq. 

(2.28):

2

v Q
d

n
 (2.29) 

Let us calculate now for what distance d is R( )=0.9 or R( )=0.8 for n=2 and 

n=3 for several values of Q. From Eq. (2.27) R( )=0.9 is verified when  = 0.2, and 

R( )=0.8 is verified when  = 0.43. We take. v=3.5 km·s
-1

.

Results are plotted in table Table 2-1 and represented in Figure 2-6. The table 

and the figure show the distances (in km) up to which the single scattered energy 

constitutes the 90% and the 80% of the total radiated energy for several values of the 

quality factor of the medium. These values indicate that care should be taken when 

using the single scattering approximation in regions where Q might be a small number.  

d (n=2) (km) d (n=3) (km) Q

0.2 0.43 0.2 0.43

50 2.7 6.0 1.8 4.0 

100 5.6 12.0 3.7 8.0 

200 11.1 23.9 7.4 16.0 

400 22.3 47.9 14.8 31.9 

800 44.6 95.8 29.7 63.9 

Table 2-1 Maximum distance up to which the single scattering approximation may be used (v=3.5km/s).
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Figure 2-6 Maximum distance up to which the single scattering approximation may be used (v=3.5 

km/s). Blue lines correspond to n=2 and red line to n=3. Solid lines correspond to 0.2 and dashed 

lines to 0.43 .

2.4.3 DIFFUSION THEORY 

As lapse time increases it is expected that multiple scattering will dominate compared to 

single scattering. For large lapse times, it is reasonable to assume that direct energy is 

small and that multiple scattering produces a smooth spatial distribution of energy 

density. We shall now describe another model in which a strong multiple scattering 

process can be formulated by means of the diffusion equation (Sato and Fehler, 1998) 

[10].

Let ( , , )E tr be the seismic energy per unit volume within a unit frequency band 

around . Taking into account linear dissipation in the medium, the diffusion equation 

may be written as: 

2E
D E E

t Q
 (2.30) 

where D is the diffusivity and the last term represents the loss by anelasticity which 
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turns the seismic energy into heat. Clearly, here Q is the intrinsic quality factor and does 

not include the loss by scattering.

The diffusivity D may be related to the wave-scattering process. In analogy with 

the scattering of particles moving with a certain mean free-path, Dainty et al. [20] 

obtained the relation between D and the mean free path l as: 

3

v l
D  (2.31) 

where v is the velocity of the wave propagation and l is defined as the distance travelled 

by the primary wave, over which its energy is reduced to e
-1

 by scattering. 

The solution of Eq. (2.30) for a point source in time and space is given by: 

2

3/ 2
, , exp exp

44

U r t
E t

Dt QDt
r  (2.32) 

where U is the total seismic energy generated by one earthquake within the unit 

frequency band around . For large t, 210 4t r D and small distance r at which 

coda waves are observed, Eq. (2.32) becomes a function of only time and is independent 

of distance: 

3/ 2
, , exp

4

U t
E t

QDt
r  (2.33) 

The diffusion model solution Eq. (2.33) was used for the analysis of coda 

recorded near the hypocenter of earthquakes (Wesley, 1965 [19]; Aki and Chouet, 1975 

[9]) and the coda of lunar earthquakes (see Figure 2-7) (Nakamura, 1977 [22]; Dainty 

and Toksöz, 1981 [23]). The energy on the moon is intensely scattered due to the 

fractured regolith and intrinsic absorption is weak due to the lack of intergranular water. 



43

Figure 2-7. Lunar earthquakes [24] showing long coda durations.
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2.5 RADIATIVE TRANSFER THEORY 

The squared sum of incoherent S-waves that are singly scattered by distributed random 

heterogeneities can provide an adequate first-order model of the MS envelope of S-

wave seismograms. However, as lapse time increases, a greater contribution of higher-

order multiple scattering is expected. A systematic approach for modelling the multiple 

scattering process is to use the radiative transfer theory for the energy density. The 

equation of radiative transfer is a basic analytical tool in nuclear reactor theory, in the 

kinetic theory of gases or in electron transport through conducting materials. The theory 

of radiative transfer discards the phase information contained in individual 

contributions; actually, this theory focus on the transport of energy, very much like a 

nuclear physicist is interested in the flux of neutron obtained by summing over 

individual particles. It is assumed that the addition of power holds rather than the 

addition of wavefields. 

We will define now the fundamental quantities which the subject of Radiative 

Transfer deals with and derive the basic equation (the equation of radiative transfer) 

[25]. The solution of this equation will provide us an expression describing the 

characteristics of the envelope of seismograms and will be useful to evaluate the 

magnitude of certain important parameters.  

2.5.1 RADIATIVE TRANSFER EQUATION 

Consider the elemental volume shown in Fig. 1.1 with cross-section da and length ds

containing ndads scatterers with n the number density of scatterers. Let the spatially 

incoherent intensity be defined as the energy per area, per time, and per solid angle d

so that the energy emergent from this volume in the  direction is ( , )d d dI s t a t  . The 

energy a distance ds away, moving at speed c also in the  direction at a time later will 

be ( d , d )d d dI s s t t a t .
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Figure 2-8. Propagation through the scattering volume in the direction and emission into the  direction 

from scattering events due to energy from the ' direction [26].

The difference in energy can be attributed to a loss caused by absorption and scattering, 

and an increase caused by emissions into the direction of propagation from other 

scattering events or from sources within the medium. This energy balance is written as: 

( d , d )d d d ( , )d d d

( , )d d d d ( , )d d d d

I s s t t a t I s t a t

I s t a s t n s t a s t
 (2.34) 

where s an  is the total intensity attenuation, a  is the absorption cross 

section per scatterer, s  is the scattering cross section per scatterer, and ( , )s t  is the 

emission coefficient per scatterer.  

The absorption cross section may include absorption within the scatterer as well 

as dissipation within the medium (which is zero for most applications with 

electromagnetic waves). The emission coefficient may include emissions from 

scattering events and primary sources. Equation (2.34) implies that 

( , ) ( , )
d d ( , )d ( , )d

I s t I s t
s t I s t s n s t s

s t
 (2.35) 

 Since d ds c t , Eq. (2.35) becomes: 
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( , ) 1 ( , )
( , ) ( , )

I s t I s t
I s t n s t

s c t
 (2.36) 

Note that in the absence of emissions, I(s,t) displaces and attenuates with time in 

the following manner: 

( , ) ( ) expI s t f s ct ct  (2.37) 

In three dimensions the radiative transfer equation becomes 

1 ( , , )
ˆ ˆ ˆ( , ) ( , , ) ( , , )

I t
I s t I t n t

c t

r s
s r s r s  (2.38) 

where ŝ  is the direction of propagation, r is the space vector and the total attenuation 

has been assumed isotropic (i.e. independent of ŝ ).  

To find the emission coefficient, consider the same volume of scatterers with 

radiation incident from the ˆ 's  direction within the solid angle 'd  scattering into the ŝ

direction in solid angle d  also shown in Figure 2-8. Let the angular distribution of the 

scattered portion of the radiation, scattered from the direction into the direction, be 

defined by

ˆ ˆ( , ')
4

d
q s s  (2.39) 

where ˆ ˆ( , ')q s s  is the phase function (Chandrasekhar, 1960)[25] and is 4  times the 

differential scattering cross-section (Ishimaru, 1978, [27]). The phase function is 

normalized so that  

4

ˆ ˆ( , ')
4

s

d
q s s  (2.40) 

which means that for isotropic scattering ˆ ˆ( , ') sq s s . This angular distribution 

multiplied by the intensity and integrated over all incoming directions is the emitted 

radiation per scatterer. Thus in the absence of primary sources the emission coefficient 

is:
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4

ˆ ˆ ˆ ˆ( , , ) ( , ') ( , , )
4

d
t q I tr s s s r s  (2.41) 

The full scalar radiative transfer equation is then written as: 

4

1 ( , , )
ˆ ˆ ˆ ˆ ˆ( , ) ( , , ) ( , ') ( , , )

4

I t d
I s t I t p I t

c t

r s
s r s s s r s  (2.42) 

where ˆ ˆ ˆ ˆ( , ') ( , ')p nqs s s s  is the phase function for an assemblage of independent 

scatterers. The radiative transfer equation is a first order integro-partial differential 

equation in space, time, and propagation direction. Its solutions are in general 

nontrivial.

2.5.2 SOLUTIONS OF THE RADIATIVE TRANSFER EQUATION. 

ISOTROPIC SCATTERING 

Initial seismological models using the radiative transfer theory are those of Wu 

(1985)[28] and Wu and Aki (1988) [11]. They applied the stationary state solution for 

media having isotropic scattering. Shang and Gao (1988) [29] first formulated the 

multiple isotropic scattering process in 2-D space as an integral equation for the 

nonstationary state for the case of impulsive radiation. Zeng et al. (1991) [30] extended 

the nonstationary case to 3-D space. Sato et al. (1997) [31] used the radiative transfer 

theory to investigate the multiple isotropic scattering process for nonspherical source 

radiation whereas Sato (1994 [32], 1995 [33]) investigated the multiple nonisotropic 

scattering process in the framework of the radiative transfer theory.

The radiative transfer equation can be solved exactly in the Fourier space [30] in 

the case of isotropic scattering for one, two, three and four dimensions. It is possible to 

write an explicit expression in one, two and four dimensions. In three dimensions an 

accurate interpolation formula can be derived [34]. 

We will focus in the solutions on the real three-dimensional space. If we 

consider isotropic scattering, we may rewrite Eq. (2.42) in the following way: 
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1 1 1 1

4

1 ( , , )
ˆ ˆ ˆ( , ) ( ) ( , , ) ( , ) ( , , )

ˆ( , ) ( , , )
4

a

I t
I s t l l I t l I t c S t

c t

d
I t I t

r s
s r s r r s

r r s

 (2.43) 

where 1

sl n and 1

a al n  and S is a source function.

We notice here that the dependence of the intensity on the absorption is through 

a r and ŝ independent factor

( , ) ( , ) exp /with absorption without absorption aI t I t ct lr r  (2.44) 

Without loss of generality we can, therefore, leave the absorption of our 

considerations in the following, taking effectively al

The solution will be written as a summation of three terms. The first one 

corresponds to the ballistic peak. The second one corresponds to the contribution due to 

single scattering. The last term accounts for multiple scattering.  

2.5.2.1 Ballistic peak and single scattering 

The ballistic peak consists of a delta function due to unscattered waves: 

0 2

1
( , ) ( ) exp

4

ct
I r t r ct

r l
 (2.45) 

This peak will be followed by a tail due to waves which have undergone a single 

forward scattering event. The shape of the tail is given by 1P , which can be computed 

analytically for any dimension. 1P  has an integrable singularity at r=ct, which adds a tail 

to the ballistic peak. The singularity is logarithmic: 

1

1
( , ) exp ln

4

ct ct r
I r t

lctr l ct r
 (2.46) 
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2.5.2.2 Multiple scattering 

The contribution coming from multiple scattering is usually written as the summation of 

two terms. In this way the corresponding integrals may be evaluated by means of 

numerical integration techniques. The first term corresponds to double scattering: 

22
/

2 2 0

1 3 1
( , ) exp ln d

16 1

r ctct
I r t

l l ct r
 (2.47) 

and the other terms correspond to multiple scattering (excluding double scattering): 

4

3 3 20
3

arctan
1/1 exp( ) 1

( , ) d d
4 2 1

arctan
1/

n

N

k

l ii ct
P r t k

rl k k
k

l l i

 (2.48) 

This is the expression that Passchenns [34] obtained. The expression derived by 

Zeng [30] including absorption may be written as: 

4

3 3 20
3

arctan
1/ 1/1 exp( ) 1

( , ) d d
4 2 1

arctan
1/ 1/

a

n

N

a

k

l l ii ct
P r t k

rl k k
k

l l l i

   (2.49) 

This expression also verifies Eq. (2.44). Actually, it possible to define a new 

variable '  such that: 

' 1/

' /

a

a

i i l

i l
 (2.50) 

It is then easily demonstrated that both solutions are identical.  

2.5.2.3 Analytical approximation of multiple scattering integrals 

It is possible to derive accurate analytical expressions to compute the integrals 

corresponding to Eq. (2.47) and Eq. (2.48). The solution may then be written (with 

accuracy within 2% out of the ballistic peak): 
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2

1 3
2 2 2 8 2 4

2 2

3 3
4 23/ 2

3
1 4

1
( , ) ( ) exp

4

1
exp 1

4 3

( ) 8(3 )
!

N

N

ct
I r t r ct

r l

r c t ct ct r
G

l ct l l c t

N x
G x x

N N

 (2.51) 

Where it is possible to approximate G(x) as follows 

( ) exp( ) 1 2.026 /G x x x  (2.52) 

All these expressions are useful in the calculation of 1l  and 1

al [13]. 

2.5.2.4 Comparing exact solutions and approximate solutions 

The only way to compare the analytical approximate solution an the exact solution is to 

carry out a numerical integration of the double integral in Eq. (2.48). This integral is a 

difficult one because of the following reasons: 

i. The integrand is highly oscillatory 

ii. The integrand logarithmically diverges in the limits of integrations. 

It is possible to use the Fast Fourier Transform (FFT) [35-36] algorithm to evaluate 

the integral. FFT algorithm may not be an accurate algorithm when the integrand is 

highly oscillatory. In such a case aliasing effects may arise and the accuracy of the 

calculation may be low.  

To avoid this problem, Paasschens [34] develops real integrals in order to facilitate 

the numerical inversion of the Fourier Transform in Eq. (2.48). We could not obtain the 

exact result from that development. We used several cubature algorithms (included the 

ones described in the next paragraphs) but all of them gave us a wrong solution. We 

were not able to tell if the error was originated because of a wrong evaluation of the 

integral by numerical algorithms or because there is a typographic mistake in the 

Paasschens development. Certainly, the evaluation of two-dimensional integrals is a 

non-trivial problem, especially if the integrand shows a strong oscillatory behaviour and 
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also diverges in some regions. 

Then we decided to obtain the exact solution directly from Eq.(2.48) using powerful 

numerical algorithms. We finally used two different algorithms, a two-dimensional 

adaptative cubature algorithm called Cubpack [37] and a non-adaptive algorithm r2d2lri 

[38]. These algorithms employ very different strategies for automatic integral 

evaluation. [39]. Then, if both methods give us the same result this will indicate that we 

are on the right way. A short description of both methods follows. 

Cubpack employs a globally adaptative algorithm that uses successive refinements 

or subdivisions of the integration region (IR) where each subdivision is used to provide 

a better approximation to the integral. These subdivisions are designed to dynamically 

concentrate the computational work in the subregions of IR where the integrand is most 

irregular, and thus to adapt to the behaviour of the integrand. The general structure of 

the globally adaptive algorithm consists of a sequence of stages. Each stage has the 

following five main steps:  

i. Select a subregion with largest estimated error from the current set of 

subregions.

ii. Divide the selected subregion.

iii. Apply a local cubature rule to any new subregions.

iv. Update the subregion set.

v. Update the global integral and error estimates, and check for termination.  

The initial subregion set for the algorithm is the original collection of simplices (n-

dimensional triangles) of IR. The required input for such an algorithm is IR, the 

integrand, a limit on the number of integrand values allowed, and a requested error 

tolerance. The algorithm terminates when the estimated global error is less than the one 

requested or further subdivision would require too many function evaluations. 

r2d2lri is a non-adaptive algorithm implemented in C++ for performing automatic 

cubature over a wide variety of finite and non-finite two-dimensional domains. The core 

integrator of r2d2lri() evaluates cubatures over the domain 2[0,1] using a non-adaptive 
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sequence of embedded lattice rules, coupled with a sixth-order Sidi transformation (a 

type of variable transformation for numerical integration). Before any cubature is 

performed, the provided integral is automatically transformed onto 2[0,1] . Since 

different types of non-finite to finite domain transformations suit different forms of 

integrand behaviour, for non-finite domains, r2d2lri performs cubatures using an 

ordered succession of up to three different transformations onto 2[0,1]  until it is 

determined that the requested accuracy (or the best achievable result) has been attained. 

These methods allow to carry out integrations over real integrands. Notice that 

the integral in Eq. (2.48) has to be a real number since it corresponds to an addition of 

multiple scattered energies. Using the following identity: 

arctan( ) ln
2

i i z
z

i z
 (2.53) 

it is possible to easily devise an algorithm to compute the real part of the integrand. 

To check the accuracy of Eq. (2.51) and Eq. (2.52) we now compare with a 

numerical evaluation of Eq.(2.46), Eq. (2.47) and Eq.(2.48) in Figure 2-9. Eq. (2.47) 

may be evaluated with a standard one-dimensional integration algorithm as the 

Romberg algorithm [46].  Eq.(2.48) will be evaluated using Cubpack++ and r2d2lri 

algorithms. Both algorithms will provide almost identical results. Only the ones 

obtained with Cubpack++ will then be plotted. Also, the diffusive approximation in 

Eq.(2.32) is considered in the figure.
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Figure 2-9. Intensity as a function of time t, at distances 2.0 ,  2.8  and 4.0r l l l , from left to right. The 

blue lines are the exact result, which is very close to the interpolation formulas: green line corresponds to 

Eq. (2.51) and orange line corresponds to using the approximation in Eq. (2.52). Dashed red lines 

correspond to the Gaussian diffusive result. 
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