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3 SPATIAL DISTRIBUTION OF CODA SCATTERERS 

3.1 INTRODUCTION

The fundamental assumption of all coda models of Chapter 2 is that intrinsic absorption 

and the distribution of structures causing scattering is random and uniform (e.g. Aki & 

Chouet, 1975 [9]; Sato, 1977 [18]). As a result of this assumption all these models 

predict that the envelopes of S coda waves should decay smoothly and that the coda 

decay rate should be independent of the hypocenter. The observed envelopes of S coda 

waves differ from those synthesized by models based on the hypothesis of a random and 

uniform distribution of scatterers in space. Small amplitude fluctuations or ripples 

overlying on a smoothly decaying coda envelope which is predicted by the scattering 

theory, are often observed. This observed behaviour can be explained by a non-uniform 

three-dimensional distribution of scatterers in the crust due to localized inhomogeneities 

such as active faults, volcanoes, subducting slabs and so on. Then, a deterministic 

approach on coda waves is necessary in order to elucidate the detailed inhomogeneous 

structures in the crust and the upper mantle. 

Nishigami (1991) [40], identified the structures causing strong scattering by 

analyzing the observed coda envelope fluctuations from a synthesized model. In this 

work, he analyzed the seismic data of Hokuriku district of central Japan and detected 

zones of strong scattering in the surface layer and upper crust; some of these regions of 

strong scattering were located near major active faults. Applying the coda-envelope-

inversion technique to three regions in central part of Japan, Nishigami [41] identified 

significant heterogeneous structures in the crust around one active fault system and two 

active volcanoes. In the same way, he established also the three-dimensional 

distribution of scatterers in the crust in San Andreas Fault system region [42]. There are 

also other authors applying similar techniques to other regions. Chen and Long (2000) 

[43], in the Piedmont Province of central Georgia, found a correlation at shallow depths 

between zones of strong scattering and the location of hypocenters and areas with 

greater topographic relief, and were able to identify a strong reflecting layer which was 

consistent with a thrust plain previously reported using other geophysical methods. 
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More recently, Asano and Hasegawa (2004) [44] suggested the correlation between 

large scattering zones with the existence of fault-damaged zones in south-western Japan, 

as well as other scattering properties of the region at different depths. 

Following Nishigami’s work, in section 3.2, we will develop the method of 

analysis necessary to establish the distribution of scatterers. This method implies a 

previous knowledge of the depth dependent velocity model and it assumes a synthetic 

single isotropic scattering model for the absolute reference scattering coefficients (Sato, 

1977, [18]). An important step to establish this distribution is the computation of the 

energy residuals. This calculation is explained in detail in section 3.3. 

3.2 THE OBSERVATIONAL EQUATION 

In this section, we are going to develop an inversion method of coda waveforms in 

order to estimate the spatial distribution of coda scatterers deterministically. Therefore 

we will derive the relationships between the fluctuation of observed coda power 

envelope and the spatial variation of scattering coefficient.  

We start by considering the Single Isotropic Scattering (SIS) model for the shape 

of the coda of local earthquakes [18] which assumes single isotropic scattering, random 

and homogeneous distribution of scatterers, and spherical radiation of elastic energy. 

According to the SIS model, and considering the anelastic attenuation effect, the coda 

energy density at a frequency f, hypocentral distance r and lapse time t in a three-

dimensional space can be expressed as an integral all over the space in the form [18]: 
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where 3d =dV x ; x is the coordinate vector of the scattering point; 1r x  is the distance 

between the hypocenter and the scatterer; 2r x r  is the distance between the 

scatterer and the station; r r ; t is the lapse time measured from the origin time of the 

earthquake;  is the average S-wave velocity; 0 ( )W f  represents the total energy 

radiated from the source within a unit frequency band around f; and ( )g f  is the total 
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scattering coefficient for the frequency f. In a constant velocity medium, the scatterers 

responsible for the generation of coda waves at a distance r and time t are contained in a 

spheroidal shell whose foci are located at the source and receiver, which is expressed by 

the term 1 2(1/ ) ( ) /t r r  in Eq. (3.1). The integration of Eq. (3.1) gives [18] 
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for a homogeneous spatial distribution of the scattering coefficient 0 ( )g f , being 

( ) (1/ ) ln ( 1) /( 1)K a a a a  for a >1; / Sa t t ; and tS the S-wave travel time. For 

a >>1 2( ) 2 /K a a and therefore Eq.(3.2) becomes 
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which corresponds to the single scattering model of Aki and Chouet (1975) [9]. 

 We divide the area under consideration into a number N of small blocks of 

volume V, as it will be detailed later. Therefore, by multiplying the right side of Eq. 

(3.1) by the factor 1/2 for including the effect of a half space, then by integrating Eq. 

(3.1)  in the radial direction over the spheroidal shell (which radius is approximated by 

t/2), which corresponds to the lapse time window tj± t/2 (the magnitude of twill be 

computed in section 3.3), we obtain: 
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where the integral has been approximated by a summation of the blocks, where each 

term corresponds to a certain block i. The sub index a in the energy density indicates the 

consideration of an average scattering coefficient g0 over the half space. ij equals 1 

when the ith block lays inside the spheroidal shell which corresponds to the j time 

window and equals zero otherwise. Nj is the total number of scatterers in each 

spheroidal shell. 

 The observed coda envelope fluctuations from the theoretical model due to the 
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non-uniform distribution of scatterers can be expressed mathematically as spatial 

perturbations of the average scattering coefficient of the medium due to an individual 

scatterer in the form: g=g0 i  ( 0i ). Thus, the integration of Eq.(3.1) gives:  
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To obtain Eq.(3.4) and Eq. (3.5) we have assumed a constant value of Qc in the 

region, thus neglecting the effect of an spatial variation of Qc on the fluctuations of the 

coda envelope and considering that they are caused mainly by the spatial variations of 

the scattering coefficient. In order to get a system of equations that will allow us to 

estimate the spatial perturbations of the scattering coefficient we divide Eq.(3.5) by Eq. 

(3.4),
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where the left side of equation Eq. (3.6) is called coda wave energy residual (ej) and it 

measures the ratio of the observed energy density in this part of the coda to the average 

energy density of the medium. 

 If we divide the coda of one seismogram into several small time windows, we 

will have one equation based on Eq. (3.6) for each time window. Also for each time 

window, the scatterers contributing to the energy density are contained in a spheroidal 

shell. Thus, equation Eq.(3.6) can be re-written in the following form: 
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where M is the total number of equations (number of seismograms multiplied by the 

number of coda time windows considered), N is the total number of scatterers (number 
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of small blocks into which the study region is divided) and
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 Solving Eq. (3.7) will provide us the scattering coefficient distribution. The 

methods to solve such a system of equations will be developed in Chapter 4. 

3.3 COMPUTATION OF THE ENERGY RESIDUALS 

We will explain now in detail how to compute the energy residuals from the vertical 

component of seismograms. The steps to follow are: 

i. Extraction of frequency components from a certain frequency band, i.e, 4-10 Hz. 

This is done by using a Butterworth or Chebyshev band-pass filter. The filter has 

to be applied both forward and backward along the time axis to cause no phase 

delay.  We generated the algorithm to apply the filter by means of the software 

provided by Tony Fisher [45] in his web page. This web page is a tribute to him 

(he died on February 29
th

, 2000). 

ii. Computation of the rms amplitudes obs ( | , )A f r t  of the filtered traces using a 

time window for the averaging of about ten times the central period of the filter 

used [73]. The rms amplitudes for a noise window of 10 s before the P-wave 

arrival are also computed and only the amplitudes greater than two times the 

signal to noise ratio are kept. 

iii. The amplitudes are then corrected for geometrical spreading by multiplying by t
2

which is valid for body waves in a uniform medium. 

iv. The average decay curve is estimated for each seismogram by means of a least-

squares regression of 2

obsln | ,t A f r t  vs. t and only the estimates with a 

correlation coefficient greater than 0.70 are kept. It is convenient to consider 

starting lapse times from about 1.5-2 times [17] the arrival time of the S wave in 
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order to increase the resolution near the source region .  

v. The observed coda residuals e(t) are then calculated by taking the ratio of the 

corrected observed amplitudes to the estimated exponential decay curve.   

vi. We would like to obtain a limited number of coda residuals. So finally the 

residuals are averaged in time windows of t  to get ej at discrete lapse times tj.

There is an important reason for this: we will compute the scattering coefficient 

for each block into which the study region id divided, and every block has a 

finite volume V. Then, the residuals should correspond to the energy scattered 

by a finite volume. If a wave takes a certain time to travel the volume 

1/32( )V v  (the factor 2 comes from considering the wave going back and 

forth during the scattering process) then we will consider only a certain number 

of residuals ( )jE t coming from the average of e(t) in a time interval ( )t centered 

at a discrete lapse time jt . ( )t  has to be similar but smaller than ( ) and we 

consider 1 ( )j jt t t .

All this process is illustrated in Figure 3-1 (for the 4-8 Hz frequency band) and (E) 

Figure 3-2 (for the 8-12 Hz) where we show the following: Figures (A) corresponds 

to a coda waveform of an earthquake at an epicentral distance of 1.91 km and 1.53 km 

respectively, under Galeras volcano (Colombia). Figures (B) correspond to the band-

pass filtered coda waveform of seismograms on figures (A). Figures (C) corresponds to 

the power spectrum of figures (A). Figures (D) correspond to the logarithm of the 

running mean-squared amplitudes corrected for geometrical spreading effect. The 

continuous cyan line is the best linear fitting function to the logarithmic trace. Finally, 

figure (E) corresponds to the logarithm of the coda energy residuals averaged in a time 

window of 0.5 s. 
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(A)

(B)

(C)

(D)

(E)

Figure 3-1. Analysis of event 300 recorded by the station 14 in the Galeras volcano (see appendix A).  

(A) corresponds to the raw seismogram. (B) corresponds to the filtered seismogram in the 4-8 Hz band. 

(C) is the power spectrum of the seismogram between t=3.48 s  and t=11.48 s. This lapse time 

corresponds to the one that will be used to carry out the linear regression in figure (D). First green line 

indicates st  in Figs (A-B-D) and second green line indicates 2 st in Figs (B-D). In Fig (C) green lines 

indicate the frequency band under analysis. (E) corresponds to the logarithm of the coda energy residuals 

averaged in a time window of 0.5 s. 
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Figure 3-2. Analysis of event 128 recorded by the station 14 in the Galeras volcano (see Appendix A).  

(A) corresponds to the raw seismogram. (B) corresponds to the filtered seismogram in the 8-12 Hz band. 

(C) is the power spectrum of the seismogram (A) between t=4.0 s and t=13.95 s. This lapse time 

corresponds to the one that will be used to carry out the linear regression in figure (D). First green line 

indicates st  in Figs (A-B-D) and second green line indicates 2 st in Figs (B-D). In Fig (C) green lines 

indicate the frequency band under analisys. Dashed line indicates a safe initial time to avoid side effects 

from saturation of the recorded seismogram. (E) corresponds to the logarithm of the coda energy residuals 

averaged in a time window of 0.5 s. 
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