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4 INVERSION METHODS 

4.1 INTRODUCTION

As explained in Chapter 3, in order to obtain the magnitude of the scattering coefficient, 

we have to solve the system of equations: 
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j j N N

i ij j iN N i
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w f w f w f p

w f w f w f p
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 (4.1) 

where N is the number of blocks in which the region has been divided and M is the 

number of residuals obtained from the seismograms. In our case 50000N

and 10000M . To solve such a system of equations it is not possible to use 

conventional matrix theory methods to invert the system. There are several reasons [46]. 

The most important reason is that these systems of equations are always close to 

singular. While not exact linear combinations of each other, some of the equations may 

be so close to be linearly dependent that round off errors render them linearly dependent 

at some stage in the solution process. This may make the numerical procedure to fail. If 

it does not fail, round off errors in the solution process can swamp the true solution. 

This problem particularly emerges if N is a large number (N>10)!

 For large values of M and N there are very convenient algebraic iterative 

methods based on the “method of projections” as first proposed by Kaczmarz [47]. 

These methods have been successfully used in Computerized Tomographic (CT) 

imaging for medical applications [48]. The simplest iterative method is the so-called 

Algebraic Reconstruction Technique (ART) algorithm. Another method based on ART 

is the Simultaneous Iterative Reconstruction Technique (SIRT).  These methods are 

discussed in sections 4.2 and 4.3.

 Algebraic methods are slow although they have some advantages discussed in 

section 4.4.7. There is a non-iterative algorithm that performs the inversion more 
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efficiently. This algorithm is the Filtered Backprojection (FBP) algorithm. This 

algorithm uses a completely different approach to carry out the inversion and the 

solution is readily obtained as a linear combination of the residuals. The theoretical 

background necessary to grasp the intuitive ideas behind the method are introduced for 

2-dimensional reconstruction problems in section 4.4.1. In section 4.5 the algorithm is 

generalized in order to carry out inversions in three dimensions.  

4.2 ART ALGORITHM 

In order to solve Eq.(4.1) we may consider the geometrical meaning of a system of 

equations. We consider a N-dimensional space. In this space, each equation represents a 

hyperplane. When a unique solution exists, the intersection of all these hyperplanes is a 

single point.  

The computational procedure to locate the solution consists of first starting with 

an initial guess, denoted by (0) (0) (0) (0)

1 2( , ,..., )Nf f f f . In most cases we simply assign a 

value of zero to all the fi’s. This initial guess is projected on the hyperplane represented 

by the first equation in (4.1) giving (1)f . (1)f  is then projected on the hyperplane 

represented by the second equation in (4.1) to yield (2)f and so on. This is illustrated in 

Figure 4-1 for a system of two equations with two unknowns. 

When ( 1)if  is projected on the hyperplane represented by the ith equation to 

yield ( )if , the process can be mathematically described by: 

( 1)
( ) ( 1)

i
i i i i

i

i i

f w p
f f w

w w
 (4.2) 

where 1 2( , ,..., )i i i iNw w w w . To see from where Eq.(4.2) comes from we first rewrite 

the first equation of (4.1) as: 

1 1w f p  (4.3) 
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The hyperplane represented by this equation is perpendicular to the vector 1w  as 

can be seen in Figure 4-2. The equation (4.3) states that the length of the projection of 

the vector f  on the vector 1w has a constant length (if 1 1w  then p1 is the distance of 

the plane from the origin). 

Figure 4-1. The Kaczmarz method of solving algebraic equations is illustrated for the case of two 

unknowns. One starts with some arbitrary initial guess and then projects onto the line corresponding to 

the first equation. The resulting point is now projected onto the line representing the second equation. If 

there are only two equations, this process is continued back and forth, as illustrated by the dots in the 

figure, until convergence is achieved [48]. 

The unit vector along 1w is given by: 

1

1 1

w
u

w w
 (4.4) 
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Figure 4-2. The hyperplane 1 1w f p  (represented by a line in this two-dimensional figure) is 

perpendicular to the vector 1w  [48]. 

Then, the perpendicular distance of the hyperplane from the origin, is given by: 

1 1

1 1 1 1

w f p
u f

w w w w
 (4.5) 

To get the projection (0)f on the hyperplane, we consider the distance of (0)f

from the plane that may be written as: 

(0)
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p w f p
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w w w w
 (4.6) 
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Then, the projection (1)f may be written as: 

(0)
(1) (0) 1 1
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w w
 (4.7) 

 For the computer implantation of this method our initial guess at the solution 0f

is a unity value to all the f0,j. The ART iteration process can be mathematically 

described by the following equation: 
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where 1 2( , , , )i i i iNw w w w , and the new solution ( )i

jf  is obtained from the last 

solution ( 1)i

jf by the addition of the change ( )i

jf . As already stated, every iteration has a 

geometrical meaning: in each iteration, the solution is projected in the hyperplane 

represented by each equation. Each projection becomes closer to the solution if it exists.  

4.2.1 CONVERGENCE AND CHARACTERISTICS OF THE SOLUTIONS 

An important comment about the convergence of the algorithm is in order. If the 

consecutive hyperplanes have only a very small angle between them, the rate of 

convergence to the solution might be very slow because only a small increment ( )i

jf is

added from one equation to the next one. If equations are arranged in such way that 

hyperplanes are as much orthogonal as possible, the rate of convergence becomes much 

faster. But too much orthogonalization will also tend to enhance the effects of the ever 

present measurement noise in the final solution. The rate of convergence depends also 

on the choice of the initial guess 0f .

ART reconstructions usually suffer from “salt and pepper” noise which is caused 

by the inconsistencies introduced in the set of equations by the approximations 

commonly used in the calculation of the matrix parameters. It is possible to reduce the 

effects of this noise by relaxation, in which we update a block by ( )i

jf  where is less 

than one. In some cases it is convenient to make the relaxation parameter a function of 

the iteration number; that is, it becomes progressively smaller with increase number of 
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iterations. The resulting improvements in the quality of reconstruction are usually at the 

expense of convergence. Another method based on the ART may be considered in the 

next section 4.3 in order to minimize still more this kind of noise. 

If M>N a unique solution of the set of linear system in Eq. (4.1) does not exist, 

and, in fact, an infinite number of solutions are possible. In this case ART algorithm 

converges to a solution sf such that 
2

(0)

sf f is minimized. For an over determined 

problem, N>M, no unique solution can be found by ART. A not uncommon situation in 

image reconstruction is that of an over determined system in the presence of 

measurement noise. That is, we may have N>M and je  corrupted by noise. No unique 

solution exists in this case: the “solution” doesn’t converge to a unique point, but will 

oscillate in the neighbourhood of the intersections of the hyperplanes.

One attractive feature of the iterative approach is that it is possible to incorporate 

into the solution some types of a priori knowledge about the scattering coefficients. For 

example, if the coefficients are known to be positive, one may set the negative 

components equal to zero.  

4.3 SIRT ALGORITHM 

The Simultaneous Iterative Reconstructive Technique (SIRT) [49] is another 

algorithm which eliminates the continual and competing block update as each equation 

is considered. Then, using the SIRT algorithm smoother and better looking 

reconstructions are usually obtained at the expense of slower convergence [50].  In each 

iteration of the SIRT algorithm, the change in each block is computed by the use of the 

same equations as in the ART algorithm (Eq. (4.8)), but before making any changes, all 

the equations are considered, and then only at the end of each iteration are the block 

values changed, the change of each cell being the average value of all the computed 

changes for that block. It is also known that SIRT algorithms perform better in extreme 

situations [51] such as uneven distribution of data, incomplete data, etc. It is also 

possible to easily incorporate constrains as positivity, limited spatial support, etc. 
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4.3.1 THE WEIGHT COEFFICIENTS ijw

In applications like ours, requiring a large number of equations the difficulty of using 

Eq. (4.2) can be in the calculation, storage, and fast retrieval of the weight 

coefficients ijw . The number of coefficients is in our case of the order of 910 . This 

problem is somewhat eased by making approximations, such as considering ijw to be 

only a function of the perpendicular distance of the ith spheroidal shell and the centre of 

the jth cell.  

In many ART [52] and SIRT implementations to find the distribution of 

scattering coefficients the wij’s are simply replaced by 1’s and 0’s depending upon 

whether the centre of the jth block is within the ith spheroidal shell. As consequence 

extra salt and pepper noise is introduced in the reconstruction. In our calculations the 

width of the shell is smaller than the width of the blocks. Then it is important to 

calculate the fraction of volume Vij of each block lying inside the ith spheroidal shell. 

Then, instead of using Eq. (3.8) we will use the following expression for the coefficients 

wij:
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ij
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 (4.9) 

 Also, it is important to use a relaxation parameter ( , a factor smaller than unity 

multiplying the increment ( )i

jf ) which is commonly determined by trial and error. If 

incorrectly selected, will either cause premature termination and incorrect result or, if 

number of iterations or  too small, will result in a reconstruction lacking high-

frequency details. By trial and error we chose 0.01  for about 120 iterations.
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4.4 BACKPROJECTION ALGORITHM 

We will start the derivation of the Backprojection algorithm [48,53] under the set of 

conditions as simplest as possible. These conditions will be clearly different from our 

problem’s: two-dimensional distribution, ray emitters and transducers located over 

arrays around the two-dimensional area. This initial development will be derived in 

section 4.4.1. Nevertheless, the results that we will obtain with this derivation will be 

easily extended by intuitive reasoning to the geometry of our case in section 4.5. Then, 

using this algorithm, scattering coefficients will become a weighted average value of the 

residues that correspond to a certain block. This will make this algorithm to be much 

faster than any other iterative method. Computations times will be about 100 times 

smaller than the ones for ART or SIRT and no relaxation parameter will have to be 

chosen.

4.4.1 BACKPROJECTION ALGORITHM IN TWO DIMENSIONS WITH 

LINEAR ARRAYS OF TRANDUCERS. GEOMETRY AND 

DEFINITIONS 

We start by assuming the geometry outlined in Figure 4-3 [51]. Notice that we will use 

two set of axis: the main set (x,y) is the original set of coordinates used to describe the 

object function g(x,y). We also have a second frame (x’,y’) that takes into account the 

direction of the beams. We consider then g(x,y) (from now on it will be noted as object 

function) to be traversed by a set of parallel beams. There is a set of transducers  located 

on a line recording a “parallel projection” of g(x,y) on a line parallel to the x’ axis at an 

angle  from main reference frame. The coordinate systems will allow us to describe 

line integrals and projections in a simple fashion. Let us define both concepts 

rigorously. 

A line integral will represent the integral of the function g(x,y) along a line. This 

may correspond to the total attenuation suffered by a ray as it travels in a straight line 

through the object function. Each line integral may be represented by a set of two 

parameters , 'x  because the equation of the lines describing the beams in the figure 

is:
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cos sinx y xx n  (4.10) 

Figure 4-3. Illustration of the geometry of a set of parallel projection beams [53]. 

And we will use this equation to write the line integral ( )P x as:

( ) ( , )dP x g x y y  (4.11) 

Using a delta function this can be rewritten as : 

( ) ( , ) ( cos sin )d dP x g x y x y x x y  (4.12) 

The function ( )P x  is the so-called Radon Transform of the object function 

g(x,y) (the graphic representation of the radon transform is called sinogram). A 

projection is formed by combining a set of line integrals. The simplest projection is a 

collection of parallel ray integrals as is given by ( )P x  for a constant . This is known 
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as a parallel projection. 

We will show now, that if we know ( )P x  for all possible values of  it is 

possible to estimate g(x,y) by simply performing a two-dimensional inverse Fourier-

Transform. This is done by means of the Fourier-Slice Theorem. 

4.4.2 THE FOURIER SLICE THEOREM 

The Fourier slice theorem is derived by taking the one-dimensional Fourier Transform 

of a parallel projection and noting that it is equal to a slice of the two-dimensional 

Fourier transform of the original function g(x,y). 

We start by defining the two-dimensional Fourier transform of the object 

function as:  

( , ) ( , ) exp 2 d dG u v g x y i x yx u  (4.13) 

where ( , )u vu . Likewise we define the Fourier Transform of ( ')P x as:

( ) ( ) exp 2 dS w P x i wx x  (4.14) 

Using Eq. (4.11) and Eq.(4.10) in Eq. (4.14) we obtain: 

( ) ( , ) exp 2 d dS w g x y i wx x y  (4.15) 

This two-dimensional integral may be rewritten in terms of the coordinates (x,y)

as:

( ) ( , ) exp 2 d dS w g x y i w x yx n  (4.16) 

Note that Eq. (4.16) and Eq. (4.13) are very similar. To relate them it is 

convenient to consider polar coordinates in Eq. (4.13):  

cos

sin

u w

v w
 (4.17) 
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Then it is easy to write the following equality: 

( ) ( , )S w G w  (4.18) 

This equality has a fundamental meaning: the Fourier Transform of the 

projection is identical to the spectrum of the original object function on a slice normal to 

the direction of the projection beam. This has been illustrated in Figure 4-4: 

Figure 4-4 Illustration of the Fourier Slice Theorem [53].

We can see then that it might be possible to recover the object function as a 

function of the projections.  

4.4.3 RECONSTRUCTION ALGORITHM FOR PARALLEL PROJECTIONS 

From Eq. (4.18) we wish now to write the object g(x,y) as a function of ( , )G w . This 

can be done considering the inverse Fourier transform of G(u,v) in Eq. (4.13) written in 

polar coordinates: 

2

2 0 0

1
( , ) ( , ) exp 2 cos sin d d

4
g x y G w i w x y w w  (4.19) 
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This integral can be split into two by considering: 

2 0 0

2 0 0

1
( , ) ( , ) exp 2 cos sin d d

4

1
( , ) exp 2 cos( ) sin( ) d d

4

g x y G w i w x y w w

G w i w x y w w

 (4.20) 

Using the following property: 

( , ) ( , )G w G w  (4.21) 

and Eq. (4.10) we obtain: 

2 0

1
( , ) ( , ) exp 2 ' d d

4
g x y G w i wx w w  (4.22) 

This expression is now ready to include the information from the projections 

given in Eq. (4.18). Using this equation we rewrite the integral in Eq. (4.22) as: 

2 0

1
( , ) ( ) exp 2 ' d d

4
g x y S w i wx w w  (4.23) 

This integral may be expressed as: 

2 0

1
( , ) cos sin d

4
g x y Q x y  (4.24) 

where:

( ) ( ) exp 2 ' dQ x S w i wx w w  (4.25) 

Eqs. (4.24) and (4.25) are the key result of this development. We will now 

explain the meaning of these expressions.  

Eq. (4.25) represents a filtering operation over a certain projection ( )P x . Notice 

that the Fourier Transform of ( )P x  is ( )S w and that we are performing the inverse 

Fourier transform of ( )S w times a ramp function w .  Thus, Eq. (4.25) represents 

filtering the projection set ( )P x  with a filter with a frequency response given by w .
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Therefore Q x  is called “Filtered Projection”. It is very important now to understand 

what is Q x  in the real space. Notice that a filtered projectionQ x , for a certain 

value of x’, assigns the same contribution to all points (x,y) lying along the projection 

(all points on the line cos sinx y x  ). Then we say that each function Q x  is 

backprojecting a filtered projection. In Eq. (4.24) the resulting projections for different 

angles  are then added to form the estimate of g(x,y). We say then that Eq. (4.24) calls 

for each filtered projection Q x  to be backprojected. Now, the name of the algorithm 

becomes evident. 

4.4.4 IMPLEMENTING A FILTERED-BACKPROJECTION ALGORITHM 

FOR PARALLEL DATA. 

Several problems arise when trying to implement Eq. (4.23) in a real case. First, it is 

only possible to obtain a finite number of projections. If the total number of projections 

N is large enough and the projections are distributed over 180º then Eq. (4.23) may be 

approximated as: 

1

( , ) cos sin
i

N

i i

i

g x y Q x y
N

 (4.26) 

This equation calls for the filtered projections to be backprojected over the (x,y)

plane. Each filtered projection makes an equal contribution to each image point (x,y),

lying along a parallel projection. However in backprojecting 
i

Q to a point (x,y) we need 

to know it for cos sini ix x y . However this value of x’ may not correspond to a 

known value of 
i

Q due to the projections being discretely sampled. It is possible to find 

a value of 
i

Q that corresponds to the image point (x,y) by interpolation. Linear 

interpolation is often sufficient.  

Another problem arises from the filtering of the projection. Notice that the ramp 

filter in Eq. (4.25) enhances high frequencies making this filtering process extremely 

sensitive to noise. Therefore, it is necessary to use a different filter to take this into 

account, usually a band-pass filter. There is a wide variety of choices. Two important 

examples are the Hamming window: 
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( ) 0.54 0.46cos
c

w
H w w

w
 (4.27) 

and the Butterworth filter: 

2

1
( )

1

n

c

H w w
w

w

 (4.28) 

In the Hamming window cw  is equal to the maximum frequency the transducers 

can measure. In the Butterworth filter cw  is adjusted to filter the noise and allow the 

information of the object function to be recovered. 

Notice then that the filtered backprojection algorithm is sensitive to noise. This 

sensitivity is due to the fact that the Radon transform is a smoothing transformation, so 

taking its inverse will have the effect of amplifying noise. 

4.4.5 EXAMPLES 

A typical example of object function g(x,y) is the Shepp-Logan Phantom [54]. This 

phantom appears everywhere through the literature as a standard test for different 

reconstruction methods. It can be seen in Figure 4-5. The Radon Transform of this 

Phantom is represented in the corresponding sinogram in Figure 4-6. The horizontal 

direction corresponds to  and the vertical direction corresponds to x’. Then in Figure 

4-7, we show the reconstruction process as a function of the number of projections used 

using a ramp filter. We can see that for a low number of projections artefacts appear in 

the reconstruction image, we say that there is aliasing due to insufficient angular 

sampling. Those artefacts tend to disappear as the number of projections increases.  
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Figure 4-5. Shepp-Logan Phantom [55]. Figure 4-6. Sinogram of the Shep-Logan Phantom [55]. 

Figure 4-7. Reconstructions for (left to right up to down) N=1, 4, 8, 16, 32, 64 and 128 projections [55].
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If the object function contains a sharp change between two regions one with 

important values and another with low values the aliasing effects might be even visible 

for a reconstruction with a large number of projections. This is shown in Figure 4-8 for 

N=256 projections. The characteristics of the reconstructed phantoms we may be 

considered to be analogous to reconstructions in the three-dimensional case. 

Figure 4-8. Aliasing effects [55]. 

4.4.6 CONNECTION BETWEEN ART AND BACKPROJECTION. A SIMPLE 

EXAMPLE. 

ART and Filtered Backprojection algorithms seem to be very different and unconnected 

methods. We will show with a simple example [56] that some similarities exist between 

both methods. To do this let us consider a very simple example of use of the ART 

algorithm. Let's assume we use a scanner whose beam scans the sample only along two 

perpendicular axes. The two-dimensional sample area is divided into a grid of four by 

four pixels. The embedded object we are interested in absorbs stronger than the matrix 

and is placed at location [1,1] (numbering the pixels from zero to three). The figure 

shows the true object. In the real experiment, this is what we would ideally want to 

measure 

Figure 4-9. Object to be measured [56]
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In the experiment, the sample is scanned horizontally and vertically at each row 

and column of pixels, respectively. The measured value (photon count) is lower in the 

row(s) and column(s) containing the absorbing object. 

Figure 4-10. Projection process [56].

To start the reconstruction, each pixel is initialized with the average intensity 

collected over the whole sample area. 

Figure 4-11. Initial Solution [56]

The first iteration takes into account the horizontal readings only. Using Eq.(4.7) 

the absorptivity value of each pixel is corrected by the path-length weighted absorption 

of its row (this is the meaning of w  in this case). Note that the correction is the same 

one for all the pixels of the row. We may say then that the correction is being 

“backprojected” to the entire row.  

Figure 4-12 Result of the first iteration [56].

The second iteration improves the image by taking into account the vertical 

readings. The absorptivity value of each pixel is corrected by the path-length 
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weighted absorption of its column. Note that, as before, the correction is the same for 

each pixel along the beam path. Because the absorptivity of the pixels before this 

iteration was different, the corrected absorptivity is also different as can be deduced 

from Eq. (4.8) that takes into account the previous correction. This is a important 

difference between ART and FBP. In the Filtered Backprojection Algorithm each 

projection is considered to be an independent measurement and it is independently 

backprojected. In ART each backprojected “projection” depends on the others in order 

to try to solve the system of equations.  

Figure 4-13 Result of the second iteration [56].

Compare the original sample in Figure 4-9 with the image obtained in Figure 4-

13. Obviously, the algorithm underestimates the absorptivity of the object and also of 

the matrix in general, but those pixels in the matrix which are located in the same row 

or column as the object are coming out too dark. In effect, the object smears out along 

the beam paths used. The image doesn't change if more iterations are applied because 

the two sets of beam paths are orthogonal. What's needed is information on the sample 

from a variety of angles. Then the image can be updated with the information obtained 

from each beam. The smearing-out effects, which persist for any single beam, cancel 

out because the beams are no longer orthogonal. This is true for both ART and FBP. 

We are going to generalize now the results we have derived for two dimensional 

reconstructions to 3 dimensions.  

4.4.7 BACKPROJECTION ALGORITHM VERSUS ART AND SIRT 

Backprojection algorithm is a computationally efficient method and it is used in most 

commercial medical scanners in CT applications and has proved to be extremely 

accurate and amenable to fast implementation. Backprojection algorithm is then much 

faster than ART or SIRT and it is able to provide high quality reconstructions. When the 
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three methods are compared for CT applications, ART and SIRT have a better noise 

tolerance, and needs fewer projections and perform better when handling for non-

uniformly distributed data sets under the condition that angles between projections are 

not larger than about 20 degrees. Although ART and SIRT may provide sometimes 

better reconstructions, they are extremely slow and then they are only used for academic 

purposes or to enhance the quality of a certain reconstruction if an extra amount of time 

is available.  

When the algorithms are compared in other applications, as imaging by 

transmission measurements using a thermal neutrons to determine water content, cracks 

and homogeneity in concrete samples the conclusions are different [57]. In this case the 

Filtered Backprojection produces images of higher contrast, more smoothing and 

slightly better resolution than those obtained using iterative algebraic methods. 

4.5 BACKPROJECTION ALGORITHM TO FIND 3D 

DISTRIBUTIONS OF SCATTERING COEFFICIENTS  

Let us now write the results from section 4.4.1 in a general way. In Figure 4-3 there is 

an outline of a measurement process. The measured data set has been called projection. 

Each projection is a set of numbers. Each number corresponds to an integral of a certain 

property over a certain region of a certain object function. From the data of all the 

projections it is possible to reconstruct the original object function. To do this we only 

have to perform the following process. Firstly, to filter the data corresponding to a 

certain projection with a ramp filter or some other filter if there is a non-negligible 

amount of noise in the projection data. Secondly, to backproject the projections one by 

one. This means to assign each measured number of a certain projection to the region it 

was coming from. All the data corresponding to a certain pixel or block is then averaged 

in order to obtain the reconstruction value. From this conclusion, that has been written 

in a way as general as possible we may derive now an inversion process from the 

residuals obtained from seismograms. 

Let us analyze the meaning of the set of residuals obtained from a certain 

seismogram. We will show now that a set of residuals from a certain seismogram is 

analogous to a filtered projection. Each residual corresponds to an average value of the 
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scattering coefficient in a certain region of the space (a thin volume between two 

spheroidal shells). The residuals come from seismograms that have been previously 

filtered by a band-pass Butterworth filter. Then the set of residuals from a certain 

seismogram are completely analogous to a filtered projection.  

To obtain the scattering distribution we will just have to backproject each 

residual to the corresponding spheroidal region. Finally, the scattering coefficient in a 

block is obtained by averaging all the residuals corresponding to that block. Block by 

block the full distribution is obtained. We notice here that the average will become a 

weighted average due to the fact that the geometry of our inversion problem is different. 

The exact expression to calculate the inversion from the residuals will be now derived. 

We start by considering a set of 1, 2,...,k K events that have happened in a certain 

region. The region is divided in N blocks (identified by a subindex j) and L

seismometers (identified by the subindex l). The correspondence between the 

coefficients and the residuals are established following several steps: 

i) For each earthquake k, the travelling time of the signal from the source to the 

jth block plus the travelling time from the jth block to each seismograph l is 

computed. This time will be noted as Tjkl. With this data we define the 

corresponding spheroidal surface that we note as Sjkl. The centre of the kth

block lies on Sjkl and the location of the seismograph and the hypocenter are 

the corresponding focus of the spheroid. Note that every block defines a 

different spheroidal surface for the same seismograph and hypocenter. 

ii) The corresponding magnitude of the residuals for each earthquake k and 

each seismograph l at the time Tjkl is computed by simple linear interpolation 

(we have the magnitudes of the residues only for certain times, as already 

stated in section 3.3). We note this magnitude as R(Tjkl).

iii) The contribution of each block is proportional to 
2

1, 2,1/ j jr r . This 

geometrical factor indicates whether the contribution of a certain block is 

more important or less important than the contribution of other blocks on the 

spheroidal surface Sjkl. Therefore we have to consider a normalized weighted 

linear combination of residues in order to compute the corresponding 
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scattering coefficient for each jth block. Thus the magnitude of the scattering 

coefficient should be written as: 

( )jkl jkl

k l
j

jkl

k l

w R T

f

w

 (4.29) 

The problem now is to find a suitable definition for the weights jklw . An 

important fact that has to be taken into account is that each weight in Eq. (4.29) 

corresponds to a different spheroidal surface. The importance of the contribution 

depends on the magnitude of 
2

1, 2,1/ j jr r  on each spheroidal surface. In order to 

normalize the importance of the weights for each spheroidal surface we consider that a 

good definition for the weights jklw in Eq. (4.29)  would be: 

2 2

1, 2,

2 2

1, 2,

1 1

1 1
jkl

j j

jkl

j j
S

r r
w

r r
 (4.30) 

where
2 2

1, 2,1 1
jkl

j j
S

r r is the average value of 
2 2

1, 2,1 1j jr r on the surface jklS .

Note that this definition (that may be considered as inspired in Eq. (3.8)) is very 

convenient since an analytical expression will be written for the average value. Note 

also that Eq. (4.30) makes the weights only depend on the time jklT  and the position of 

the jth block, the lth seismograph and the kth hypocenter. This is a quite important point 

in order to perform a very fast calculation. We will now derive an explicit analytical 

expression for Eq. (4.30). 

We start by writing the average value as a two-dimensional integral: 

2 2 2 2

1, 2, 1, 2,

1
1 1 1 1

jkl
jkl

j j j j
S jkl S

r r r r dS
A

 (4.31) 

where Ajkl is the area of Sjkl. This integral is analogous to the one solved in section 2.4.1. 

Using the same spheroidal coordinates and taking into account that r is the distance 
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between the two centres (hypocenter and station) and that we must use jklT  instead of t

in Eq. (2.10) we may rewrite the integral in Eq. (4.31)  as: 

2 2 2 1

, , 2 32 2 20 1
1 2

1 2 1
1 1 d d

jkl

i j i j
S jkl

r r
A r

 (4.32) 

Solving it we obtain: 

2 2

1, 2,

4
1 1 ln

jkl

jkl

j j

jkl jklS

vT r
r r dS

rvT vT r
 (4.33) 

We need now to write a expression for the area of the spheroidal shell jklS . There 

are two types of spheroidal shells, prolate spheroidal shells and oblate spheroidal shells, 

as can be seen in Figure 4-14. The corresponding equation for both types of spheroids is 

the same one: 

2 2 2

2 2 2
1

x y x

a b b
 (4.34) 

where a and b are the length of the semi-axis. For the prolate spheroid (a > b) and looks 

like a rugby ball and for the oblate spheroid (a < b) and can resemble a disk. Although 

the equation describing both spheroids is the same one, the expression for the area of 

the corresponding surface is different and care should be taken choosing the right one. 

We are interested in the area of the prolate spheroidal shell. It can be written as: 

2 2
2 arcsin

ab
A a  (4.35) 

where a and b are the major and minor semiaxes and  is the eccentricity of the 

spheroidal shell and can be written as: 

2 2b a

b
 (4.36) 



85

Figure 4-14. Prolate spheroid (left) and oblate spheroid (right) [58]. 

Taking into account the following identities: 

2 2

2

2 2

jkl

jkl

vT
a

vT r
b

 (4.37) 

and using them in Eq.(4.36) we obtain: 

jkl

r

vT
 (4.38) 

Combining Eqs. (4.37) and (4.38) in Eq. (4.35) we may then write: 

2

2 2 2 2 2
1

arcsin
2

jkl

jkl jkl jkl jkl

jkl

r vT
A v T r v T r vT

r vT
 (4.39) 

And by using Eq. (4.39) in Eq.(4.30), we finally obtain the expression we were looking 

for: 
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2

2 2 2 2 2

2

1, 2,

1
arcsin

8
ln

jkl

jkl jkl jkl

jkl

jkl

jkl

jklj j

jkl

r vT
v T r v T r vT

r vT
rvT

w
vT rr r

vT r

 (4.40) 

Note that this expression depends only on v, Tjkl, r (distance between hypocenter 

and seismometer) and r1,j and r2,j.


