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Capitol 1

Introduccio 1
estructura de la memoria

En Vestudi de sistemes dinamics és important calcular els punts fixos de la
dinamica determinista del sistema i determinar la seva estabilitat. Per obtenir
aquests resultats es pot fer servir el potencial de Lyapunov, tant en el cas de sis-
temes mecanics com no mecanics. Aquesta funcié dinamica decreix al llarg de les
trajectories, i és possible calcular els punts fixos com els extrems de la funcié de
Lyapunov. En alguns casos, I'existéncia del potencial de Lyapunov permet entendre
les trajectories a l’estat transitori i a ’estacionari. La distribucié de probabilitat
estacionaria en el cas de la dinamica estocastica pot, sota determinades condicions,
estar també governada pel potencial de Lyapunov. Part del proposit d’aquest treball
és explicar la dinamica d’alguns sistemes lasers utilitzant aquests potencials.

Fisicament, un laser és un dispositiu en que el llum emes s’origina en el procés
d’emissié estimulada. Els tres elements basics que es requereixen sén: un mitja
amb guany, una cavitat optica i un mecanisme de bombeig. Des del punt de vista
dinamic, els distints tipus de lasers es poden classificar segons el ritme de decaiment
de les variables involucrades en les equacions d’evolucié: el camp electric dins la
cavitat, la inversié de poblacié i la polaritzacié material. En els lasers de classe B,
la polaritzacié decau cap a l'estat estacionari molt més rapidament que les altres
variables i es pot eliminar adiabaticament. Per als lasers de classe A, una tnica
equacié per al camp electric és suficient per descriure la dinamica.

Aquest treball tracta els lasers de classe A i classe B, estudiant la seva dinamica,
en els casos determinista i en presencia de renou, fent 1s del potencial de Lyapunov.

El control d’un laser a partir de I'aplicacié d’un senyal injectat coherent és una
area important de recerca amb una gran varietat d’aplicacions. Quan als lasers
se’ls aplica un senyal injectat, la dinamica resultant esdevé molt complexa. El
comportament del sistema pot ser qualitativament diferent depenent de D’eleccid
dels parametres: estats amb la mateixa freqiiencia que la d’entrada, polsos, rutes
cap al caos, etc. De I'estudi del conjunt invariant d’aquest sistema no lineal, es veu
que la bifurcacié Hopf-sella—node (HSN) (el camp vectorial linealitzat té un punt fix
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degenerat amb dos autovalors imaginaris i un zero) actua com a centre organitzatiu.

La modulacié a alta velocitat dels diodes lasers és una area en estudi a causa
de les seves possibles aplicacions. Els lasers en aquestes circumstancies poden pre-
sentar diversos comportaments no lineals: distorsié harmonica, periode doble, bi-
estabilitat, i caos. L’objectiu de part d’aquest treball és el d’obtenir els dominis
d’existencia de les inestabilitats basiques involucrades. Ens restringim a l’estudi
de les resonancies principals: maxima resposta del sistema a una pertorbacié ex-
terna quan la freqiiéncia de modulacié es varia (s’entén com a resposta la intensitat
maxima de la poténcia optica de sortida).

Aquesta memoria es basa en els segiients articles:

[1] C. Mayol, R. Toral i C.R. Mirasso, “Lyapunov—potential description for laser
dynamics”, Physical Review A 59, 4690 (1999).

[2] C. Mayol, M.A. Natiello i M. Zimmermann, “Resonance structure in a weakly
detuned laser with injected signal”. International Journal of Bifurcation and Chaos
11, 2587 (2001).

[3] C. Mayol, S.I. Turovets, R. Toral, C.R. Mirasso i L. Pesquera, “Main Reso-
nances in Directly Modulated Semiconductor Lasers: Effect of Spontaneous Emis-
sion and Gain Saturation”. IEE Proc.-Optoelectronics 148, 41 (2001).

[4] C. Mayol, R. Toral, C.R. Mirasso, S.I. Turovets i L. Pesquera, “Theory of
Main Resonances in Directly Modulated Diode Lasers”. Acceptat a IEEE Journal
of Quantum Electronics, a publicar—se el marc de 2002.

[5] C. Mayol, R. Toral, C.R. Mirasso i M.A. Natiello, “Class A lasers with injected
signal: bifurcation set and Lyapunov potential function”. Enviat a Physical Review
E (2002).

A la part ]| de la memoria es resum els elements basics que s’utilitzen a la resta
del treball. En el capitol P, es presenta la relacié entre els potencials de Lyapunov i
les equacions dinamiques; en el capitol f, es fa un resum d’analisi de bifurcacions; i
en el capitol [, apareixen les caracteristiques del laser com a sistema dinamic.

La part [[] es destina a Pestudi dels lasers de classe A. En el capitol [, basat
en [1], es descriu la dinamica d’aquests lasers mitjancant el potencial de Lyapunov.
En el capitol [, basat en [5], els lasers de classe A amb senyal injectat s’estudien,
obtenint el conjunt de bifurcacions a l’estacionari i estudiant la dinamica amb el
potencial de Lyapunov quan és possible.

La part [T] tracta de la dinamica dels lasers de classe B. En el capitol [, basat
en [1], la dindmica de les equacions de balang per a aquests lasers s’analitza en
termes del potencial, incloent els termes de saturacié de guany i d’emissié espontania.
El capitol B, basat en [2], tracta dels lasers de classe B amb senyal injectat. El
treball que es presenta completa la serie d’estudis anteriors de bifurcacions de lasers
amb senyal injectat a prop de la singularitat Hopf-sella-node; s’analitza el rang de
parametres on el tipus II Hopf-sella-node s’espera. En el capitol [, basat en [3] i
[4], s’estudia les resonancies principals, i I'impacte que els termes de saturacié de
guany i emissi espontania tenen en ells, en els lasers directament modulats.



Chapter 1

Introduction

In the study of a dynamical system, it is important to obtain its invariant sets,
being the fixed points the simplest ones. In some systems, either mechanical or
non—mechanical, it is possible to construct a dynamical function (called Lyapunov
potential) that decreases along trajectories. The usefulness of Lyapunov functions
lies on that they allow an easy calculation of the fixed points of a dynamical (deter-
ministic) system as the extrema of the Lyapunov function as well as determining the
stability of these fixed points. In some cases, the existence of a Lyapunov potential
gives an intuitive understanding of the transient and stationary trajectories as move-
ments of test particles in the potential landscape. In the case of nondeterministic
dynamics, i.e. in the presence of noise terms, and under some general conditions, the
stationary probability distribution can also be governed by the Lyapunov potential
and averages can be performed with respect to a known probability density function.
Part of the aim of this work is to explain the dynamics of some laser systems by
using Lyapunov potentials.

1.1 Lasers: Classification

Physically, a laser is a device in which the emitted light is originated in a
process of stimulated emission. For obtaining laser action three basic ingredients
are necessary: a gain medium (that amplifies the electromagnetic radiation inside
the cavity), an optical cavity (that provides the necessary feedback) and a pump-
ing mechanism. Lasers are classified depending on the material which constitutes
the gain medium. For example, semiconductor lasers are those for which the gain
medium is a semiconductor material. A complete understanding of a laser is based
on a fully quantum-mechanical description [Haug, 1969; Bargent ef al., 1974]. How-
ever, a simpler description can be given in terms of evolution equations for the
electric field inside the cavity, the population inversion and the material polariza-
tion. Different types of lasers can be classified according to the decay rate of the
variables involved in the equations. In class C lasers, the material polarization, the
population inversion and the electric field decay within comparable time scales. For
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class B lasers, the material polarization decays towards the steady state much faster
than the other variables and it can be adiabatically eliminated. Finally, in class
A lasers, the population inversion and the material polarization decay much faster
than the electric field and only one complex equation is required to describe the
dynamics.

In this work we will deal with class A and class B lasers. Both lasers decay to
their steady states when their thresholds are crossed. However, this simple dynamics
becomes richer when an injected signal is applied or some of the parameters are
modulated. During this thesis these effects will be discussed with some detail.

1.2 Laser with injected signal

The control of a laser via an injected coherent signal is an active area of re-
search with a great variety of applications. Experiments and numerical analysis
with this special arrangement have been performed leading to different kinds of be-
haviours (locked lasers, pulses, etc.) [Braza and Erneux, 1990; [Gavrielides ef al]
[997; Bimpson et al., 1997; Nizette and Erneux, 1999]. The behaviour of the system
can be qualitatively different depending on the choice of parameters and numeri-
cal simulations in three-dimensional models of lasers with injected signal, revealed
multistability |Wieczorek et al., 2000b] and different “routes to chaos” for different
parameter regions |[Tredicce ef al., 19854 Bolari and Oppo, 1994; Krauskpof ef al.]
P000; Wieczorek et al., 2000a; Wieczorek et al., 2000d].

A good theoretical understanding of the underlying mechanisms governing the
great variety of possible behaviours was required. An early attempt in this direction,
[Solari and Oppo, 1994] aimed to approximate the three—dimensional rate equations
for a class B laser in the vicinity of the parameter region, where this system be-
comes a Hamiltonian system, by a more tractable two-dimensional averaged system
[Guckenheimer and Holmes, 1983]. A detailed study of the invariant sets revealed
that at the heart of this nonlinear system, the Hopf-saddle-node bifurcation played
the role of an organizing center. This local bifurcation arises when the linearization
of the vector field has a degenerate fixed point with two purely imaginary and a
simple zero eigenvalue. The unfolding of this bifurcation requires two parameters
(the amplitude injection rate § and the detuning 7 of the injected signal to the
unperturbed laser operating frequency), and four different variants known as type
(I-IV) have been studied [Guckenheimer and Holmes, 1983; Wiggins, 1991]. All of
these types display curves of saddle-node and Hopf bifurcations of fixed points in
parameter space, which are tangent at one point. For increasing cavity detuning
6 > 0, Solari and Oppo [Bolari and Oppo, 1994 found that type II, I and III may
be visited (in that order).

The interest in a physical (and testable) application displaying the above qual-
itative changes close to the Hopf-saddle node bifurcation, is not restricted to the
determination of the well known invariant sets which result from normal form anal-
ysis (saddle-node, primary and secondary Hopf bifurcations). Global behaviour not
present in the usual unfolding of Hopf-saddle node singularity has recently been
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studied as a primary source for chaotic behaviour in lasers with injected signal. For
example, in the large cavity detuning regime (corresponding to type III of Hopf-
saddlenode) Zimmermann et al. [Zimmermann ef al., 1997] showed the occurrence
of Sil’nikov homoclinic orbits [Sil'nikov, 1965 to any of the saddle—focus fixed points
(locked solutions). Furthermore, as the detuning is decreased the transition from
type III to type I showed that the homoclinic orbits to a fixed point, at the critical
where the Hopf-saddle-node type changes turns to a homoclinic tangency to the pe-
riodic orbit of Hopf-saddle-node |[fimmermann ef al., 2001)|. This novel behaviour
opens the possibility that this physical system may become an ideal test—bench for
new global bifurcation scenarios.

In the previous studies on the global bifurcations in laser with injected signal, a
combination of the Hopf-saddle-node singularity together with a global reinjection
resulted in a proper framework for understanding the laser dynamics. However, in
type II, which is the interesting case for our work, we find a new possible complication
which involves a heteroclinic cycle with the off state.

1.3 Directly modulated lasers

High-speed modulation of laser diodes is an important area of study due to the
possible applications of these devices. Diode lasers clearly exhibit in such circum-
stances various kinds of nonlinear behaviour, i.e., harmonic distortion, multi-—pulse
response on the time scale of one modulation period, period doubling, amplitude
and/or pulse position bistability, and chaos [Kawaguchi, 1994]. Usually, these com-
plicated dynamical phenomena are considered as harmful to the practical application
and should be avoided. Nevertheless, there have been some experimental demonstra-
tions of feasibility of using a resonance period doubling regime and pulse position
bistability for realizing high speed optical logic elements |Gallagher ef al., T985).
Also, large capacity information transmission and ultrafast optical processing sys-
tems |Liu and Ngai, 1993; Mirasso et al., 1993 Breuer and Petermann, 1997 are
representative of the possible applications of these systems. Recently, a great deal
of interest has been generated by the potential of using lasers running in a chaotic
regime as the carriers of information in secure chaotic communication schemes
Irasso et al., 1996 [Goedgebuer ef al., T998; [Fisher ef ol., 2000]. In addition to the
optical feedback and saturable absorption effects, chaos in laser diodes induced by
modulation in the pump current is another option for building transmitters and
receivers for encoded optical communications.

Before Liu and Ngai |Liu and Ngai, 1993 succeeded in observing chaos in a 1.55
pm InGaAsP distributed feedback bulk laser, followed by the report on a similar
observation in 1.55 ym multiple quantum well lasers [Matsui ef al., T99§|, there had
been some controversy in earlier theoretical predictions [[Tang ef al., 1963 and ex-
perimental results [Hemery ef al., T990; [Kao and Lin, T993||. Specifically, chaotic and
high periodic regimes had not been experimentally observed in contrast to numerical
predictions based on the rate equations. It is well known [Agrawal, 1986 that the
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gain saturation factor contributes to the damping of relaxation oscillations and it
might be the reason for eliminating chaos. The presence of spontaneous emission
in the cavity and the Auger recombination factor have also been numerically exam-
ined as being one cause of the suppression of chaos [lang and Wang, 1987]. The
importance of noise terms is again under consideration [[Lim ef ol., 2000]]. Finally,
the gain sharing among multi-longitudinal oscillating modes was identified as an ef-
fective gain compression factor and therefore leading to suppression of chaos [Wadd

et al, 1998. Now, it is largely accepted that a single mode laser diode with rel-

atively small gain saturation and spontaneous emission parameters might undergo
a period doubling route to chaos under current modulation. From the analytical
side, such an impact of these parameters was explained in the framework of the
small signal analysis showing an increase of the system damping with the increase
of the above mentioned parameters [Yoon ef al., 1989]. In addition, Hori et al. [Hor]

et ol., T98Y| suggested that in the large signal modulation regime, the spontaneous

emission term, besides contributing to a linear damping of the system, leads to an
additional nonlinear damping. This effect would change the representation of the
typical Toda oscillator potential topology for the laser and would be also responsible
for suppression of chaos. Nevertheless, specific mechanisms of these effects in the
large signal regime are not yet fully understood. To the best of our knowledge, a
detailed study of the role of spontaneous emission and gain saturation on nonlinear
dynamics in the large signal regime is still lacking even in the framework of the
simple rate equation model.

Part of this work aims to clarify the parameter domains of the basic instabili-
ties involved. We will restrict ourselves to the study of main resonances to which
little attention has been paid in previous works. Defining the response variable as
maximum intensity in the optical-power output, a main resonance is understood as
the maximum response of the system to the external perturbation when the modu-
lation frequency of the external perturbation is varied. Although main resonances
were considered theoretically and numerically [Erneux ef al., T987; Bamson and Tur

ovets, 1987, Bchwartz, 1988; Bamson ef al., 1990; Bchwartz and Erneux, 1994 and

also experimentally |[Bamson ef al., T992; [Chizhevsky and Turovets, 1993; Benneti

et al., 1997; Chizhevsky, 2000], for conventional class B lasers the impact of large

gain saturation and spontaneous emission terms, which are typical for laser diodes,
is not fully understood yet. By using the asymptotic quasi-conservative theory
[Katz, 1955; [Drozdov, 1955; Erneux ef al, 1987; Famson and Turovets, 19387 with
an appropriate Lyapunov potential describing the laser dynamics, we compute the
domains of existence for the resonance n7' periodic responses in arbitrarily large
amplitude modulated laser diodes. For this particular kind of nonlinearity, these
resonant curves are associated to the so—called primary saddle-node bifurcations
and are often confused in experiments with the multiperiodic windows in chaos.
When considering gain saturation and spontaneous emission terms on the dynamics
we find that, besides increasing the damping of relaxation oscillations, these param-
eters change the topology of the Lyapunov potential, increasing the thresholds of
instabilities in the system. The theory is substantiated by numerical results. The
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estimations for primary saddle-node bifurcations in strongly modulated laser diodes
create the basis for a systematic search for a priori wanted regimes in simulations or
experiment and also naturally explain pulse position multistability [[Gallagher ef al.]
1985, Chizhevsky and Turovets, 1993].

Another way of obtaining nonlinear effects in lasers is by modulating their losses.
Cavity loss can be modulated in practise by using a variable reflector or in a two—
section laser when modulating periodically the passive section.

1.4 Structure of the work

This manuscript is based on the following papers:

[1] C. Mayol, R. Toral and C.R. Mirasso, “Lyapunov—potential description for
laser dynamics”, Physical Review A 59 (6), 4690-4698 (1999).

[2] C. Mayol, M.A. Natiello, and M.G. Zimmermann, “Resonance structure in
a weakly detuned laser with injected signal”. International Journal of Bifurcation
and Chaos 11 (10), 2587-2605 (2001).

[3] C. Mayol, S.I. Turovets, R. Toral, C.R. Mirasso, and L. Pesquera, “Main
Resonances in Directly Modulated Semiconductor Lasers: Effect of Spontaneous
Emission and Gain Saturation”. IEE Proc.-Optoelectronics 148 (1), 41-45 (2001).

[4] C. Mayol, R. Toral, C.R. Mirasso, S.I. Turovets, and L. Pesquera, “Theory of
Main Resonances in Directly Modulated Diode Lasers”. Accepted in IEEE Journal
of Quantum Electronics, to appear in March 2002.

[5] C. Mayol, R. Toral, C.R. Mirasso, and M.A. Natiello, “Class A lasers with
injected signal: bifurcation set and Lyapunov potential function”. Submitted to
Physical Review E (2002).

and it is structured as follows.

In part J] some basic concepts are given:

e In chapter [, a brief review of the relation between Lyapunov potentials and
the dynamical equations and the splitting of the latter into conservative and
dissipative parts is given. We also present some results on Fokker-Plank equa-
tions and numerical integration of stochastic equations, which are used in the
following chapters.

e In chapter B, a review of bifurcation analysis is done.

e In chapter ], the main features of the laser as a dynamical system are reviewed.
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Part 1] is devoted to the study of class A lasers:

e In chapter [, based on [1], the Lyapunov potential gives an intuitive under-
standing of the dynamics observed in the numerical simulations for class A
lasers. In the presence of noise, the probability density function obtained from
the potential allows the calculation of stationary mean values of interest as,
for example, the mean value of the number of photons. We will show that
the mean value of the phase of the electric field in the steady state varies lin-
early with time only when noise is present, in a phenomenon reminiscent of
noise-sustained flows.

e In chapter fj, based on [5], class A lasers with injected signal are studied.

The dynamical behaviour in the steady state is more complex than the non—
injected signal case due to the introduction of new degrees of freedom. The
bifurcation set is obtained in terms of the amplitude and phase of the injected
signal by using the tools introduced in chapter f. Moreover, this complex dy-
namical system is studied in terms of a Lypunov potential function whenever
it is possible. In particular, noise-sustained flows are also obtained and mean
values calculated by using the Lyapunov potential in the case of a injected
signal without detuning.
The bifurcation set obtained reveals the complexity of the system and the im-
portance of the parameter choice in experiments. Class A lasers with injected
signal are the simplest example one can consider. A more complex situation
arises considering class B lasers with injected signal (chapter ). From the dy-
namical point of view the main difference between class A and class B lasers is
the number of variables that one works with. For class A lasers, two variables
suffice and the full bifurcation set can be described. For class B lasers, three
variables, a more complex variety of phenomena can appear and the system
can also show chaotic behaviour when injecting an external signal. Although
part of the bifurcation structure of class B lasers is already present in class A
lasers, the overall dynamics of the former becomes extremely complicated.

Part deals with the dynamics of class B lasers:

e In chapter [d, based on [1], the dynamics of rate equations for class B lasers
is presented in terms of the intensity and the carriers number (we will re-
strict ourselves to the semiconductor laser). In this case we obtain a potential
which helps us to analyse the corresponding dynamics in the absence of noise
fluctuations. By using the conservative part of the equations, we obtain an
expression for the period of the oscillations in the transient regime following
the laser switch—on. This expression extends a simpler one that identifies the
laser dynamics with a Toda oscillator, by adding in the expression for the pe-
riod the corresponding modifications due to gain saturation and spontaneous
emission noise terms.
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e Chapter B, based on [2], deals with class B lasers with injected signal. The
work presented here completes the above series of studies of bifurcations of
the laser with injected signal in the neighbourhood of the Hopf-saddle-node
singularity, see Sec. [[.J. We analyse a range of parameters where type II
Hopf-saddlenode is expected by using the tools of chapter . The main bi-
furcation structure consists of a (secondary) Hopf bifurcation on the periodic
orbit associated to the Hopf-saddle node bifurcation. We have analysed in
detail the resonance structure which reveals a rich interaction with other bi-
furcations not present in the usual Hopf-saddlenode scenario. We find that
the Arnold tongues are truncated by another (secondary) Hopf bifurcations
of periodic orbits. These in turn originate in an Andronov global bifurcation
at the saddle-node of fixed points (saddle-node infinite period bifurcation)
[Kuznetsov, 1997]. Another particular behaviour is that inside the Arnold
tongues we also find homoclinic bifurcations to a saddle fixed point corre-
sponding to the off state of the laser. Finally we show how the Arnold tongues
of increasing winding number, together with all their associated bifurcations,
accumulate towards the Hopf-saddle-node bifurcation point.

e In chapter [, based on [3] and [4], we have undertaken analytical and numeri-
cal calculations in the framework of the single mode rate equation model with
direct modulation with the aim of clarifying the parameter domains of the ba-
sic instabilities involved and relating them to the reported experiments using
1.55um InGaAs distributed feedback lasers [Liu and Ngai, 1993]. We study
main resonances and the impact that large gain saturation and spontaneous
emission terms have on them. By using the asymptotic quasi—conservative the-
ory with an appropriate Lyapunov potential describing the laser dynamics, the
one presented in chapter [q, we have computed the domains of existence of res-
onances in arbitrarily large amplitude modulated laser diodes, and compared
them to the numerical results.

In the final chapter, we summarize the main results obtained as well as some
possible extensions and other problems.






Part 1

Conceptes basics






Capitol 2

Resum de sistemes dinamics

En aquest capitol, es resumeixen alguns resultats basics en sistemes dinamics que
seran utilitzats en capitols posteriors. En primer lloc, es revisa la forma de tractar
equacions diferencials estocastiques. Llavors, s’introdueix la definicié de potencial de
Lyapunov i les diferents maneres que aquest potencial es relaciona amb les equacions
dinamiques per a sistemes deterministics. Per acabar, les relacions entre processos
estocastics i potencials de Lyapunov es presenten en els casos on la funcié densitat
de probabilitat estacionaria per a un procés estocastic es pot obtenir a partir del
potencial de Lyapunov.

Per descriure els sistemes dinamics, s’utilitzen equacions diferencials que modelit-
zen el sistema. En el cas de sistemes deterministics, s’empren equacions diferencials
ordinaries o equacions diferencials en derivades parcials. El tractament d’aquest
tipus d’equacions esta ben establert, i es pot fer analiticament o emprant metodes
numerics.

Alguns sistemes tenen alguna de les seves parts modelada de forma aleatoria,
ja que el coneixement d’aquestes parts no és prou detallat o és massa complex per
poder ésser tractat de manera determinista. Aquestes parts aleatories sén les que
contenen els processos aleatoris, o també coneguts com termes de renou. Les equa-
cions diferencials que contenen els termes aleatoris sén les equacions diferencials es-
tocastiques. Les equacions estocastiques on els termes aleatoris apareixen linealment
s’anomenen equacions de Langevin. Segons que la funcié que multiplica el terme de
renou en ’equacié de Langevin sigui constant o no, tendrem, respectivament, renou
additiu o multiplicatiu. Dels diferents termes de renou que poden ésser considerats,
es restringeix ’estudi al renou blanc, que es caracteritza per ser un procés gaussia
Markovia de mitja zero i delta—correlacionat (B.3). L’equacié diferencial estocastica
de Langevin no esta completament definida a menys que es digui quina interpretacié
s’agafa per realitzar integrals que involucren el procés aleatori, les interpretacions
sovint més emprades sén la de It6 i la de Stratonovich. La generacié numerica de
les trajectories que defineix ’equacié diferencial estocastica de Langevin ve donada
per la generalitzacié dels metodes utilitzats amb equacions diferencials ordinaries,
com el de Runge-Kutta o el de Euler. En aquest cas, les equacions recurrents que
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s’obtenen al afegir els termes de renou donen lloc als metodes de Milshtein i de
Heun. Aquests metodes sén els que s’utilitzen per obtenir molts dels resultats que
es presenten en les parts [1i [I]] de la memoria.

L’evolucié d’un sistema dinamic es pot classificar en diferents categories depenent
de la relacié del potencial de Lyapunov amb les equacions de moviment. El teorema
d’estabilitat de Lyapunov diu que si es coneix una funcié de les variables del sistema,
que sigui una funcié decreixent en I'evolucié temporal, els minims de ’esmentada
funcié en termes de les variables sén els punts fixos estables de la dinamica del sis-
tema. L’evolucié del sistema és cap al minims de la funcié de Lyapunov, i a més,
el sistema queda a prop d’aquests minims quan hi actuen petites pertorbacions. El
potencial de Lyapunov déna informacié de ’estabilitat global del sistema: dels pos-
sibles minims, el més estable és aquell que té el valor del potencial més baix. Els
sistemes per als quals existeix un potencial de Lyapunov s’anomenen sistemes poten-
ctals, mentre que els altres sén sistemes no potencials. Dins els sistemes potencials
es pot fer una subdivisié depenent de com es relacionen les derivades de la funcié
de Lyapunov amb les equacions del moviment. El tipus més general, i que sera del
nostre interes en els capitols posteriors, és ’anomenat flur potencial no relazacional
(P29, B-28): les trajectories van cap al minim del potencial sense necessitat de seguir
les linies de maxim pendent, i pot haver-hi una dinamica residual una vegada que
s’ha arribat al minim. Perque el potencial que s’obté sigui un bon potencial de
Lyapunov, una condicié suficient és que verifiqui la condicid d’ortogonalitat (2.30),
que relaciona els termes residuals amb les derivades del potencial.

El potencial de Lyapunov introduit per a sistemes deterministics pot ser també
d’utilitat en el cas de considerar sistemes amb renou. Les equacions diferencials
estocastiques es tracten amb la seva funcié densitat de probabilitat, que verifica
I'equaci6é de Fokker—Planck (R.33). Quan la part determinista de les equacions es-
tocastiques és un flux potencial, es pot obtenir una expressié per a la funcié den-
sitat de probabilitat estacionaria en termes del potencial (.38). Ara bé, algunes
restriccions addicionals s’han de satisfer per a la matriu que relaciona el potencial
i les equacions del moviment i els termes residuals, com la condicio de fluctuacio—
dissipacid (B.39) i la condicié de divergéncia nul-la per als termes residuals (R.37).
En tot cas, existeix un resultat més general, indicant que es pot obtenir la funcié
densitat de probabilitat a partir del potencial de Lyapunov sempre i quan la inten-
sitat del renou sigui molt petita. La utilitat de la funcié densitat de probabilitat
apareix a I'hora de calcular valors mitjos de les variables d’interes (£.39).

Als capitols [, f i [] s’estudia la dinamica de lasers de classe A i classe B mit-
jancant els potencials de Lyapunov.



Chapter 2

Summary of Dynamical Systems

In this chapter, we summarize some results on dynamical systems that will be
used subsequently. First, a way of dealing with stochastic differential equations is
given. Then, we introduce the definition of Lyapunov potential and the different
forms in which the potential is related to the dynamical equations for determinis-
tic systems. Finally, the relationships between stochastic processes and Lyapunov
potentials are presented in the cases where the stationary probability distribution
function for an stochastic process can be obtained from the Lyapunov potential.

2.1 Brief review on Stochastic Processes
The aim of this section is to give a brief introduction to the basic techniques of

stochastic processes that will be used during the rest of this work. We follow closely
Ref. [San Miguel and Toral, 1997).

Dynamical systems can be described by a set of differential equations, usually
derived after considering certain approximations. Deterministic systems can be well
described either by ordinary differential equations or partial differential equations.
There is a well established literature to deal with this kind of equations either
analytically or numerically, although in some cases the results obtained can be quite
complicated due to nonlinear terms appearing in the equations. Furthermore, there
are some systems for which certain parts of their behaviour are modelled as random,
because the knowledge of these parts is not detailed enough or it is too complex to
be treated deterministically. Random parts are those containing a random process
usually referred to as a noise term, £(t). The differential equations containing a
random process are referred to as stochastic differential equations.

Stochastic equations in which the random processes appear linearly are known
as Langevin equations. For a real variable z, the Langevin equation has the general
form

& = gm0+ 9(a, 0 £0) 2.1)

If the function g(z,t) is a constant, the noise is called additive, otherwise, it is a
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multiplicative noise.

There are different noise terms that can be considered, all of them defined by
their moments and their correlation functions. We will restrict our study to the
white noise, characterized as a Markovianf] Gaussian process of mean value and
correlations given by

€@) = 0o,
(€(t) E(t2)) = (i —ta). (2.2)

The white noise term can be considered as the derivative of the Wiener process,
W (t), which has a Gaussian, time dependent, probability density function

fW;t) = ! exp (—K> (2.3)
V2nt 2t
with one-time moments and two—times correlation function
(W(t)) = 0, (2.4)
(W()?) =t (2.5)
<W(t1)W(t2)> = min(tl,tg). (26)

The derivative of the Wiener process has lack of mathematical rigor and can
lead to different possible interpretations [fan Kampen, 1981} [Gardiner, 1985]. The
stochastic integral

[mmww, (2.7)

0
is interpreted as the limit of partial sums

&=iaww—wmm, (2.8)

where t; corresponds to the partition of the time interval

(to, ) = (o, t1) 1, t2) - - U1, tn = 7). (2.9)

The arbitrariness in the definition is related to the problem of which G; one takes in
order to evaluate the integral. Amongst all possible interpretations, the most widely
used are those of It6 and Stratonovich. In the It6 interpretation G; = G(¢;_1), while
for the Stratonovich interpretation G; = F[G(t;) + G (ti_1)].

The Langevin stochastic differential equation is not completely defined unless one
chooses one of the previous interpretations. However, there is a simple relationship
between the results of these most common interpretations. The rule is that the
stochastic differential equation in the It6 sense

™ = a(a) + 9(2) €00, (2.10)

In a Markovian process the probability of a future event depends only on the present state of
the system and not on the way it reached its present situation.
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is equivalent to the stochastic differential equation in the Stratonovich sense

W o)~ 50(5) 9(2) + 9(@) €01). (211)
In the It6 interpretation (G(t)&,(t)) = 0, for any non—anticipating function G(t) of
£,(t) [Gardiner, 1985]. However, this result is not true in the Stratonovich inter-
pretation, where the Novikov’s theorem [Novikov, 1964 Novikov, 1965 should be
applied. The Stratonovich interpretation enables the use of the rules of ordinary
calculus. However, this is not possible in the It6 interpretation, although it is the
most mathematically and technically satisfactory.

Since in most of the cases, it is not possible to integrate the differential equations
analytically, one will be interested in obtaining the numerical values for the variables
as time evolves. In the next subsection, numerical algorithms for the generation of
trajectories are reviewed.

Numerical generation of trajectories

For an ordinary (non-stochastic) differential equation of the form

dz(t)

5 = q(t, x), (2.12)

the second order Runge-Kutta method gives an approximation to z(¢ + h) of order
O[h?]

z(t + h) = z(t) + g [q(t,z(t)) + q(t + h, z(t) + hq(t, z(t)))] + O[R®]. (2.13)

This is an improved algorithm upon the Euler method

z(t + h) = z(t) + hq(t,z(t)) + O[h?). (2.14)

In the presence of a Langevin equation as (P-]]), one is interested in generating
trajectories z(t) for different values of the random process. There are different nu-
merical algorithms to solve this problem [Sancho ef al., 198%; [Gard, 1987; [Greiney
ef al., 1988, Kloeden and Platen, 1997].

For the stochastic differential equation (R.I]), in the Stratonovich sense, we can
derive the recurrence relation

z(t +h) = z(t) + h'7? g(z(t)) u(t) + h |g(x(?) + %g(rﬂ(t)) g'(x(t)) u(t)2] +O0[h*?,
(2.15)
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which is known as Milshtein method [Milshtein, 1974 [Milshtein, 1978; Bancho ef al]
[ 1987). u(t) are a set of independent Gaussian random variables defined only for the

discrete set of recurrence times, £ = 0,h,2h, ..., of zero mean and variance one
(u(®)) = 0,
w®)?) = 1,

w@)ul)) = 0,t#¢.

There are different numerical methods for generating the independent Gaussian
random variables, based on random numbers uniformly distributed in the interval
(0,1). We follow here the one developed in [[foral and Chakrabarti, 1993].

A modification of (.17) is the “Euler algorithm”

z(t+h) = 2(t) + ' g(z(t)) u(®) +h |q(z(t)) + %g(m(t))g’(fﬂ(t)) +O0[h*/?). (2.16)

This algorithm appears naturally when considering the numerical integration of the
equivalent stochastic differential equation (P-I0) in the It6 formalism.

The same idea of the Runge-Kutta method applied to ordinary differential equa-
tions can be applied to stochastic differential equation. By modifying the Euler
method (B.16) one obtains the Heun method [Gard, 1987]

k = hQ(t7x(t))7
L= h'Pu(t)g(t,2(1)),

d(t+h) = a(t)+ 0 latal) +alt+ha() +E D]+ (217)

hY/2 u(t)
2
In this work, we are interested in the numerical solution of a set of coupled
ordinary differential equations with diagonal noise of the form

dA;(t)

[g(t,z(t)) + g(t + h,z(t) + k+ 1)].

In this case, the Milshtein method reads
Ai(t+h) = Ai(t) + g (Ai() B2 u(t) + (2.19)

@AW + 5 0(A:00) gi(A(0) wilt)?].
While the Heun method is

ki = hq([AQ®)),
L= B () gi([A®)),

Ait+h) = Ait)+ g [ ([AD]) + @ ([A®) + k + )] + (2.20)

h1/2 U; (t)

5 [9:(Ai(t)) + g:(As(t) + ki + 1)) .
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2.2 Potentials and Lyapunov Functions

The evolution of a system (dynamical flow) can be classified into different cate-
gories according to the relationship of the Lyapunovf] potential to the actual equa-
tions of motion [Montagne et al., 1996; ban Miguel et al., 1996].

Classification of Dynamical Systems

Consider a deterministic dynamical flow where the real variables x = (zy,...,zn)
satisfy the general evolution equations

dIEZ' .
= f; =1,...,N. .
dt fZ(X)7 ? 7 7 (2 21)

One is usually interested in finding the fixed points X of the dynamical system,
i.e. those having a zero time derivative. The knowledge of the fixed points and
their stability is usually the first step in the study of a dynamical system. A fixed
point X is said to be stable if for any initial condition sufficiently close to X, the
system remains in the neighbourhood of X as the time evolves. The fixed point is
asymptotically stable if for any initial condition, sufficiently close to X, the system
tends to X with time.

Lyapunov’s stability theorem is useful to determine the stability of a fixed point
[Guckenheimer and Holmes, 1983]. The theorem states that if a function V(x) =
V(z1,...,zN) exists, such that V is bounded from below and dV/dt < 0, then the
minima X of V' are stable fixed points of the dynamics. In this case, V is called a
Lyapunov potential or, simply, the potential.

The description of the behaviour of a dynamical system is greatly simplified if
the Lyapunov potential is known: the system evolves towards the minima of the
Lyapunov and once there it stays nearby when small perturbations act upon the
system. The Lyapunov potential not only tells us about local stability, but also
gives information about global stability. In the case of the comparison between only
two fixed points x( and x? such that V(x(V)) > V(x®), then we can infer that
%@ is the stable fixed point and that (1) is a metastable fixed point. This means
that a sufficiently strong perturbation might take the system out from (V) to x®.
Therefore, to understand the asymptotic dynamics it is of great importance to find
out whether a Lyapunov potential can be found for the dynamical system under
study.

The systems for which a Lyapunov function exists are called in the literature
potential systems and the name non—potential systems is reserved for those systems
which do not have a Lyapunov function. According to these definitions, the following
classification of dynamical systems can be established.

2Some details of the biography of the Russian mathematician Aleksandr Mikhailovich Lyapunov

(1857-1918) can be found in [Lyapunov, 1997].
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(1) Relaxational gradient potential flow

In this case, there exists a function (the potential) V(x) = V (1, ..., x) in terms
of which the evolution equations are written as

= ,=1,...,N. 2.22
dt aIEi, ’ ’ ’ ( )

The fixed points of this dynamical system are the extrema of the potential V' (x).
The trajectories lead to any of the minimum values of V (x) following the lines of
maximum slope (steepest descent). In this case the potential V(x) is a Lyapunov
function (with the additional condition that V' (x) is bounded from bellow). The
proof of this statement is very simple indeed

<0. (2.23)

v X oV d; N /av\?
-5

% - i1 aIEZ dt aIEZ

i=1

(2) Relaxational non—gradient potential flow

There exists again a potential function, V' (x), but in this case the dynamics is
not governed just by V(x), but is given by

dIEZ' N 3V 3

i jZlS” oz, i=1,...,N, (2.24)
where S;;(x) is a real, symmetric and positive definite matrix. The fixed points of
the dynamics are still given by the extrema of V' (x), however the trajectories lead
to the minima of V' (x) but not necessarily through the lines of maximum slope but
instead they can have an orthogonal component due to the fact that the matrix S
is not necessarily diagonal. In this sense, we can say that the transient dynamics is
not governed only by the potential. However, V(x) is still a Lyapunov functional

Vv _XoVde _ X VoV
dat at a5 =0, 2.2

since, by definition, S(x) is a positive definite matrix.

(3) Non-relaxational potential flow

In these systems the asymptotic behaviour is not determined simply by the
minima of the potential, but there exists a residual dynamics once the minima have
been reached. A first category within this class is given by

dz; N oV
= YDy, i=1,...,N. 2.2
dt ]aIEj, ? p p ( 6)

J=1

Here, D;;(x) is an arbitrary matrix. When D;;(x) is split into a symmetric and an
antisymmetric part D(x) = S(x) + A(x), S(x) is a positive definite matrix. Again,
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the fixed points of the dynamics are determined by the extrema of the potential
V(x). V(x) is a Lyapunov potential, i.e.

dv N ovovy X oV oV
av _ Fhada S A — <0, 2.2

where the second sum of this expression is zero due to the antisymmetry of the
matrix A(x).

The second, and more general, category of non-relaxational potential flow is one
in which the dynamical equations can be split into two parts, namely

N
PR O T (229
j=1 axj

Here S(x) is a symmetric, positive definite matrix and v;(x) represents the residual
dynamics after the relaxational part has acted. Since we demand V(x) to be a
Lyapunov potential the residual dynamics must not contribute to its decay

dV N oaveov XV
vy o S —— — ; <0 2.29
dt i,jzzl J aIEZ aIEj Z:ZI v aIEZ ( )

or, since the first term of the r.h.s. is always negative, a sufficient condition is

Zvi% =0. (2.30)

This is the so—called orthogonality condition.

Since the above (sufficient) conditions for a potential flow lead to dV/dt < 0,
one concludes that V(x) (when it satisfies the additional condition of being bounded
from below) is a Lyapunov potential for the dynamical system. In this case, one can
get an intuitive understanding of the dynamics: the fixed points are given by the
extremes of V(x) and the trajectories relax asymptotically towards the surface of
minima of V' (x). This decay is produced by the only effect of the terms containing
the matrix S(x) in Eq. (B.2§), since the dynamics induced by v;(x) conserves the
potential, and v;(x) represents the residual dynamics on this minima surface.

(4) Non—potential flow

For non-potential flows, the splitting (£.28) satisfying (P-30) admits only the
trivial solution V' (x) = 0, v;(x) = fi(x). Notice that for a system to be classified as
non-potential, we have to prove the non-existence of nontrivial solutions of (£-30)
which, of course, is different from not being able to find nontrivial solutions of (£:30).

There are different examples in the literature of systems that can be classified
as above. We only give here the references in order to show the great variety of
fields that can be treated with this formalism. The real Ginzburg-Landau equation
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(also known in the theory of critical dynamics as model A in the classification of
[Hohenberg and Halperin, 1977]) is a relaxational gradient flow. A typical example
of relaxational non-gradient flow is the Cahn-Hilliard model [Cahn and Hilliard]

[ 1958] for spinodal decomposition [Gunton ef al, 1983 or model B in the context of
critical dynamics [Hohenberg and Halperin, 1977. As examples of non-relaxational
potential flows, the nematodynamics equations commonly used to describe the dy-
namics of liquid crystals in the nematic phase [San Miguel and Sagues, 1987 and
the complex Ginzburg-Landau equation |[Descalzi and Graham, 1992 Descalzi and
Graham, 1994 Montagne ef al., 1996 (the classification given above can also be
applied in the case of complex variables, the extension is trivial, and it is presented
in [Ban Miguel et al., 1996]).

Potentials and Stationary Distributions

We now consider dynamical systems where noise is included. We will develop
the relationship between stochastic equations and Lyapunov potentials introduced in
the previous subsection. Consider the dynamical system described by the stochastic
equations (It6 sense) of the form

= 00+ 200 &0, (2.31)

where g;;(x) are given functions and &;(t) are white noise sources: Gaussian random
processes of zero mean and correlations

(&()&;(1) = 2€0;56(t — 1), (2.32)

where € is the intensity of the noise.

In this case, it is not adequate to talk about fixed points of the dynamics, but
consider instead the maxima of the probability density function P(x,t), which sat-
isfies the multivariate Fokker—Planck equation |Risken, 1989; Ban Miguel and Toral]

[ 1997

ant

—fiP+e Z (G P)| , (2.33)

Zj

N
where the matrix G(x) is
G=gyg, (2.34)

and whose general solution is unknown. When the deterministic part of (.31)) is a
potential flow, a closed form for the stationary distribution P (x) can be given in
terms of the potential V' (x) if the following (sufficient) conditions are satisfied

1. The fluctuation—dissipation condition, relating the symmetric matrix S(x) to
the noise matrix g(x),

N
SZ] = Z Gik Gk, S = g: gT- (235)
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2. Si; satisfies
N aSZ]
) B,

J=1

=0, Vi, (2.36)

This condition is satisfied, for instance, for a constant matrix S(x).

3. v;(x) is divergence free,
N avi

PPy} (2.37)

im1 aIEZ

This third condition is automatically satisfied for potential flows of the form (2.26)
with a constant matrix A(x).
Under these circumstances, the stationary probability density function is

Py(x) = Z exp (-@) , (2.38)

where Z is a normalization constant, such that [ Py (x)dx = 1. Conditions (P-35),
(B-36) and (P.37) appear naturally when one substitutes expression (2.3§) into the
Fokker—Planck equation (£:33) and imposes that the derivative with respect to time
of P(x,t) is zero. In some sense, the stationary distribution is still governed by the
minima of the potential, since the maxima of this stationary distribution will be
centered around these minima. The effect of the noise terms on the asymptotic dy-
namics is to introduce fluctuations (governed by the Gibbs type distribution (2.3§))
in the remaining dynamics which occurs in the attractors identified by the minima
of V(x).

A more general result, [[Graham, 1987 [Graham, 1991], states that if conditions
(B-36)) and (B.37) are not satisfied, then the above expression (P.38) for Py (x) is still
valid in the limit € — 0.

By using (B.3§), the mean value in the steady state of a given function f(x) can
be calculated as

(F X))o = [ 1x) Pulx)dx. (2.39)

This is an useful expression because in the presence of noise terms, one can be more
interested in calculating the mean values for different values of the noise terms than
in one single realization of the process.

In chapters [, f and [] we discuss the dynamics of lasers by means of Lyapunov
potential functions.






Capitol 3

Bifurcacions

En aquest capitol es fa un resum d’analisi de bifurcacions que sera utilitzat en
els capitols B i B

Es considera un sistema dinamic del tipus x = f(x), on x = (z1,...,2,) i
f = (fi,..., fn). Les seves solucions es poden visualitzar com a trajectories en
un espai n—dimensional anomenat retrat de fases. L’apariencia de les trajectories
d’aquest retrat de fases és controlada pels punts fixos, f;(z3,...,z%) = 0. Es possible
analitzar 'estabilitat d’un punt fix a partir de linealitzar les equacions al voltant del
punt. Un punt fix es diu estable quan tots els autovalors de la matriu linealitzada
son negatius; és absolutament inestable quan tots els autovalors sén positius; i sella,
quan alguns autovalors sén positius i d’altres negatius.

L’estructura qualitativa del flux pot canviar quan es varien el parametres del
sistema. Aquests canvis qualitatius s’anomenen bifurcacions. La representacié dels
punts o linees on apareixen les bifurcacions en l’espai de parametres déna lloc al
conjunt de bifurcacions.

Hi ha tipus de bifurcacions que apareixen repetidament en molts problemes.
Una possible classificacié de les bifurcacions es basa en conceptes que tenen el seu
origen en la teoria de transversalitat en topologia diferencial. La codimensié d’una
bifurcacié és la menor dimensié en I'espai de parametres que conté la bifurcacié.

El teorema de la varietat central indica una manera per reduir sistematicament
la dimensié de ’espai d’estats que sén necessaris quan s’analitzen bifurcacions d’un
cert tipus. Aquest metode ailla el comportament asimptotic més complex a partir
de localitzar la varietat invariant tangent al subespai generalitzat d’autovectors amb
autovalors imaginaris purs.

Una vegada que s’ha aplicat aquest teorema, s’intenta obtenir transformacions
de coordenades addicionals que simplifiquen les expressions analitiques del camp
vectorial a la varietat central. Els camps vectorials simplificats sén les formes nor-
mals. La dinamica a prop d’una bifurcacié tipicament apareix representada per la
seva forma normal.
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Algunes bifurcacions de codimensi6é un sén les segiients. Una bifurcacié sella—
node és el mecanisme basic per el qual dos punts fixos sén creats o destruits, com es
veu a la figura B.]. En una bifurcacié transcritica, figura B.9, dos punts fixos canvien
la seva estabilitat en el punt de bifurcacié. En una bifurcacié tipus forca, figura B.3,
dos punts fixos apareixen (destrueixen) simeétricament amb D’estabilitat d’un punt
fix que existia abans del punt de bifurcacié i aquest canvia la seva estabilitat.

A més de punts fixos, poden existir altres conjunts invariants en el sistema
dinamic. Un cicle limit és una trajectoria tancada aillada: les trajectories properes
van cap al cicle limit o es fan enfora d’ell en forma d’espiral.

En una bifurcacié de Hopf, tal com apareix a la figura B.6, un punt fix canvia la
seva estabilitat i apareix o desapareix un cicle limit amb la mateixa estabilitat que
la del punt fix abans del punt de bifurcacié. En el punt de bifurcacié existeixen un
parell d’autovalors imaginaris purs.

Existeixen altres formes amb les quals els cicles limits es poden crear o destruir.
En una bifurcacié sella-node de cicles, dos cicles limits es junten i s’aniquilen. En
una bifurcacié de periode infinit, el periode d’oscil-lacié del cicle limit augmenta
fins a fer—se infinit en el punt de bifurcaci6, i dos punts fixos (un sella i un es-
table/inestable) hi apareixen. En una bifurcacié homoclinica, part del cicle limit
s’apropa cada vegada més a un punt sella, fins que en el punt de bifurcacié el cicle
toca el punt sella i es forma una orbita homoclinica.

A més de les bifurcacions indicades fins ara, és possible obtenir bifurcacions locals
de codimensié dos. Un dels I’exemples més tipics d’aquest tipus de bifurcacié és el
cas en queé apareixen un parell d’autovalors imaginaris i un autovalor zero (bifurcacié
Hopf-sella—node). De I’analisi de la seva forma normal, es veu que quatre diferents
tipus de bifurcacions es poden obtenir depenent del valor dels parametres del sistema.
A les figures B.7 a apareixen el conjunt de bifurcacions i el retrats de fases per
cada un dels tipus que sorgeixen.

Un espai de fases bidimensional important és el torus. A damunt aquest torus
poden existir Orbites tancades (resonancies), o la trajectoria pot donar voltes al
voltant del torus sense fi, flux quasiperiodic.

Les projeccions de Poincaré ens poden servir per a estudiar el flux a prop d’orbites
periddiques. Si es considera un sistema n—dimensional x = f(x) i S, una superficie
transversa al flux n — 1-dimensional. La projeccié de Poincaré, xy ;1 = P(xy), és
una relacié de S,, amb ella mateixa, obtinguda a partir d’obtenir les interseccions de
les trajectories amb S,,: xi € S,. Es pot establir un criteri en termes dels autovalors
A; de la projeccié de Poincaré linealitzada: L’orbita tancada sera estable si i només
si |Aj| <1 peratotsj=1,...,n—1. Contrariament, si |\;| > 1 per a algun j,
les pertorbacions al llarg de la direcci6 j creixen i 'orbita és inestable. Un cas limit
ocorr quan l'autovalor més gran té magnitud |);| = 1; aix0 passa en bifurcacions
d’orbites periodiques i cal un analisi nolineal d’estabilitat. Els valors A; s’anomenen
multiplicadors de Floquet de I’0rbita periodica i generalment només es poden obtenir
mitjancant integracié numerica.



Chapter 3

Bifurcations

In this chapter, we summarize some results on bifurcation analysis that will be
used in chapters f and B We follow closely Refs. [Guckenheimer and Holmes, T983;
Hilborn, 1994 Btrogatz, 1994; Polari ef al., 1994).

Let us consider the general dynamical system

x = f(x),
where x = (21,...,%,) and f = (fy,..., fn). Its solutions can be visualized as trajec-
tories flowing through an n—dimensional phase space with coordinates (z1,...,zy,).

A picture which shows all the qualitatively different trajectories of the system is
called a phase portrait. The appearance of the phase portrait is controlled by
the fixed points f;(z},...,z) = 0, for ¢ = 1,...,n, which represent equilibrium
solutions. An equilibrium point is defined to be stable if all sufficiently small per-
turbations away from it damp out in time. Conversely, in unstable fixed points,
peturbations grow in time. For a saddle fixed point some perturbations grow in
time whereas others damp out, depending on the direction chosen near the fixed
point. It is possible to perform a quantitative measure of the stability of a fixed
point by linearizing about it. The eigenvalues of the linearized matrix give informa-
tion of the stability of the fixed point: for positive eigenvalues perturbations grow

in time, for negative eigenvalues perturbations damp out.

The qualitative structure of the flow can change when parameters of the system
are varied. In particular, fixed points can be created or destroyed, or their stability
change. These qualitative changes in the dynamics are called bifurcations, and the
parameter values at which they occur are called bifurcation points. The representa-
tion of the bifurcation points (or lines) in the parameter space will give rise to the
bifurcation set.

What is of particular interest is that there are some kinds of bifurcations which
appear repeatedly in many problems. It would be interesting to have a classification
of bifurcations which produces a specific list of possibilities for each example, starting
with only general considerations such as the number of parameters in the problem,
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the dimension of the phase space, and any symmetries or other special properties
of the system. The classification schemes are based upon concepts of differential
topology. The codimension of a bifurcation is the smallest dimension of a parameter
space which contains the bifurcation, and an unfolding of a bifurcation is a set of
equations which contains the bifurcation in a persistent way.

The center manifold theorem provides a mean for systematically reducing the di-
mension of the state space which needs to be considered when analysing bifurcations
of a given type. This theorem states that it is possible to define manifolds tangent
to the eigenspaces associated to the eigenvalues of a flow. The center manifold is de-
fined as a manifold tangent to the center eigenspace. The local dynamical behaviour
transverse to the center manifold is relatively simple, since it is controlled by the
exponentially contracting (and expanding) flows in the local stable (and unstable)
manifolds. Then, the center manifold method isolates the complicated asymptotic
behaviour by locating an invariant manifold tangent to the subspace spanned by the
(generalized) eigenspace of eigenvalues on the imaginary axis.

Once the center manifold theorem has been applied to a system, it is useful to
find additional coordinate transformations which simplify the analytical expression
of the vector field on the center manifold. The resulting simplified vector fields are
called normal forms. The dynamics close to a bifurcation typically look like the
one represented by its normal form. Moreover, the analysis of the dynamics of the
normal forms yields a qualitative picture of the flows of each bifurcation type.

In real physical systems, the explosive instabilities that can appear when analysing
the normal forms are compensated by the stabilization influence of higher-order
terms.

In the following we will describe some of the bifurcations that will appear in later
chapters.

The saddle-node bifurcation is the basic mechanism by which fixed points are
created or destroyed. As a parameter is varied, two fixed points move toward each
other, collide, and mutually annihilate. The prototypical example of a saddle-node
bifurcation is the first-order system (normal form)

& =—r—2?

where r is a real parameter. In figure B.I one can observe a representation of this
bifurcation. When r < 0, there are two fixed points, one stable and one unstable.
When 7 = 0 (bifurcation point), the fixed points coalesce into a half-stable fixed
point at z* = 0. For r > 0, there are no fixed points at all.

In a transcritical bifurcation, with normal form

& =re— a2,

the two fixed points switch their stability at the bifurcation point r = 0, see Fig.
3.2,
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Figure 3.1: Saddle—node bifurcation. Figure 3.2: Transcritical bifurcation.

Figure 3.3: Pitchfork bifurcation (supercrit- Figure 3.4: Pitchfork bifurcation (supercrit-
ical). ical), including a high order term.

The normal form of a supercritical pitchfork bifurcation is

i =rxz—z

For r < 0 the origin is the only fixed point, and it is stable while for r > 0,
two new stable fixed points appear symmetrically located z* = £4/r and the origin
becomes unstable, see Fig. B.3 A more completed form of the supercritical pitchfork
bifurcation includes a higher order term

i =rr—2° +2°,

and its representation is the one appearing in Fig. B.4.
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In a subcritical pitchfork bifurcation, with normal form
T =rz+a°,

the nonzero fixed points z* = ++/—r are unstable, and exist only below the bifur-
cation (r < 0). The origin is stable for » < 0 and unstable for r > 0, see Fig.

B3,

Figure 3.5: Pitchfork bifurcation (subcritical).

Apart from the fixed points, there can appear other invariant sets in the dynam-
ical system. A limit cycle is an isolated closed trajectory: neighbouring trajectories
are not closed, they spiral toward or away from the limit cycle. If all neighbour-
ing trajectories approach to the limit cycle, the limit cycle is stable or attracting.
Otherwise, the limit cycle is unstable, or in exceptional cases, saddle.

In a Hopf bifurcation, see Fig. B.g, a stable (unstable) fixed point changes its
stability and an stable (unstable) limit cycle appears or disappears. The normal
form is

= pz—y— (2 +y)z,
= z+py— (2" +y)y.

At the bifurcation point, there exist a pair of purely imaginary eigenvalues.

There exist other ways in which limit cycles are created or destroyed. They are
harder to detect because they involve large regions of the phase plane than just the
neighbourhood of a single fixed point. Hence they are called global bifurcations.
For each of the bifurcations, there are characteristic scaling laws that govern the
amplitude and period of the limit cycle as the bifurcation is approached.
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Figure 3.6: Hopf bifurcation.

A bifurcation in which two limit cycles coalesce and annihilate is called a saddle—
node bifurcation of cycles.

In a infinite-period bifurcation (also called Andronov-Leontovich bifurcation),
the oscillation period of a limit cycle lengthens and finally becomes infinity, when a
fixed point appears on the cycle, at the bifurcation point. Varying the bifurcation
parameter, yu, the fixed point splits into a saddle and a node. As the bifurcation is
approached, the amplitude of the oscillation stays O(1) but the period of the cycle
increases like O(u~'/2).

The homoclinic bifurcation is a kind of infinite—period bifurcation. In this sce-
nario, part of a limit cycle moves closer and closer to a saddle point. At the bifur-
cation the cycle touches the saddle point and becomes a homoclinic orbit.

Apart from the local codimension—one bifurcation of flows (as saddle-node, pitch-
fork, transcritical and Hopf bifurcations), it is possible to obtain local codimension—
two bifurcations. These will be found in the bifurcation set as intersection of two
codimension—one bifurcations.

One of the typical examples of codimension—2 bifurcations is the case in which
a pure imaginary pair and a simple zero eigenvalue appear. This is the basis of the
analysis of chapter B, where it is refereed as Hopf-saddle node bifurcation. The
normal form in the reduced planar system is

H1x + azxy,
= pe+ba® -y (3.1)

The fixed points of the system are given in terms of u, ps, a and b. However,
the qualitative features (the stability of the invariant sets in different regions) will
be different depending on the sign of a and b. Consequently, four types of this
bifurcation can be encountered. For a more detailed study of the different types,
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the reader can reference to [[Guckenheimer and Holmes, 1983 where the parameter
region (u1, pe2) is detailed for each part. From that book we have extracted Figs.
B.7 - B.10, were the bifurcation set and the phase portraits for each case are shown.

An important two—dimensional phase space is the torus (this appears when a
periodic orbit suffers a Hopf bifurcation changing its stability). We will illustrate
some general features of flows on the torus. One could imagine a single point tracing
out a trajectory on a torus with coordinates 6, 5. There are two different cases.
The trajectories are closed orbits on the torus, because #; completes p revolutions
in the same time than 6, completes ¢ revolutions. The resulting curves are called
p : q knots (resonances in chapter f). The second possibility is that every trajectory
winds around endlessly on the torus, never intersecting itself and yet never quite
close. Each trajectory is dense in the torus and in this case the flow is said to be
quasiperiodic.

Poincaré maps are useful for studying swirling flows, such as the flow near a
periodic orbit. We consider a n—dimensional system x = f(x) and let S, be a n—1-
dimensional surface transverse to the flow. The Poincaré map P is a mapping from
Sy, to itself, obtained by following trajectories from one intersection with S,, to the
next. If xx € S, denotes the £ intersection, the Poincaré map is xx11 = P(xx).
In supposing a fixed point of P, x*, a trajectory starting at x* returns to x* after
some time 7', and it is therefore a closed orbit for the original system. Moreover, by
looking at the behaviour of P near this fixed point, we can determine the stability
of the closed orbit. The desired stability criterion is expressed in terms of the
eigenvalues A; of the linearized Poincaré map: The closed orbit will be linearly
stable if and only if |A;| < 1 for all j = 1,...,n — 1. Conversely, if |A;| > 1 for
some j, perturbations along the j direction grow and x* is unstable. A borderline
case occurs when the largest eigenvalue has magnitude |A;| = 1; this occurs at
bifurcations of periodic orbits, and a nonlinear stability analysis is required. The
A; are called the characteristic or Floquet multipliers of the periodic orbit and they
can only be found by numerical integration.
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Figure 3.7: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type I case: b =+1, a > 0.
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Figure 3.8: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type II case: b= +1, a < 0.
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Figure 3.9: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type III case: b= —1, a > 0.
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Figure 3.10: Bifurcation set and phase portraits for the unfolding case of a Hopf-saddle-node

bifurcation for the type IV case: b= —1, a < 0.



Capitol 4

Lasers: Fenomens fisics 1 models

En aquest capitol es presenta un breu resum dels fenomens fisics involucrats en els
sistemes laser, aixi com els models que s’utilitzen per descriure el seu comportament.

En un sistema laser una ona electromagnetica interacciona amb el material, i hi
poden océrrer tres processos: emissié espontania, emissié estimulada i absorcié. En
condicions normals el material es comporta com un absorbent. En condicions de no—
equilibri (la poblacié d’un nivell d’energia és major que la poblacié d’un nivell amb
energia més baixa), el material actua com un amplificador i la situacié és d’inversid
de poblacio. Un material actiu és aquell amb inversié de poblacié.

Per poder convertir 'amplificador en un laser cal a més un terme de reali-
mentacié. Aquest efecte es pot obtenir col-locant el material actiu entre dos miralls
altament reflectants, de manera que ’ona electromagnetica sigui amplificada a cada
viatge dins el material actiu. Per poder haver-hi amplificacié es necessita que es ve-
rifiqui un cert llindar: Poscil-lacié (inicialitzada pels fotons emesos espontaniament)
comenca quan el guany del material actiu compensa les perdues dins el laser. Per
extraure un feix 1util del sistema laser es fa un dels dos miralls parcialment trans-
parent.

Aixi que els tres elements basics en un laser sén: a) un medi de guany capag
d’amplificar la radiacié electromagnética que es propaga dins la cavitat, b) una
cavitat optica que proporciona la realimentacié necessaria, i ¢) un mecanisme de
bombeig. Les propietats que caracteritzen els lasers (alta monocromaticitat, cohe-
réncia temporal i espacial, direccionalitat, ...) han fet que els lasers tinguin un gran
ventall d’aplicacions.

La modelitzacié dels sistemes lasers inclou el tractament de processos d’alta
complexitat. Una descripcié completa de la seva dinamica es basa en una des-
cripcié mecanico—quantica de la interaccié radiacié—materia dins la cavitat laser.
No obstant, normalment es fa una descripcié en termes de la teoria semiclassica.
Aquesta teoria ignora la naturalesa mecanico—quantica del camp electromagnétic
(perqueé el nombre de fotons dins un sistema laser és molt més gran que un) utilit-
zant les equacions de Maxwell, mentre que el medi amplificador si que es modela
quanticament com una col-leccié d’atoms de dos nivells a través de les equacions
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de Bloch. Les equacions resultants sén les de Maxwell-Bloch (.3 - £.7), que des-
criuen les variacions temporals de les variables involucrades en el procés: amplitud
complexa lentament variable del camp electric que es propaga dins la cavitat, po-
laritzacié material i inversié de poblacié.

Els lasers es poden classificar segons el ritme de decaiment de les tres variables
del sistema. Els lasers de classe C tenen els ritmes de decaiment dels fotons, por-
tadors i polaritzacié material del mateix ordre, i es requereix el conjunt complet
de les equacions de Maxwell-Bloch per a la seva descripcié. En els lasers de classe
B, la polaritzacié material decau cap a l'estacionari molt més rapidament que les
altres dues variables, i es pot realitzar una eliminacié adiabatica d’aquesta variable.
D’aquesta manera, els lasers de classe B es descriuen mitjancant dues equacions de
balang, una per a la inversié de poblacié (o nombre de portadors) i una altra per
al camp electric. Dels distints lasers de classe B existents, es restringeix ’estudi als
lasers de semiconductor, on les transicions es produeixen entre bandes d’electrons
i forats en comptes d’entre nivells d’energia atomics o moleculars. Per finalitzar,
en els lasers de classe A, tant la inversié de poblacié com la polaritzacié material
decauen a l’estacionari molt més rapidament que el camp electric, es pot fer una
eliminacié adiabatica d’ambdues variables i, és suficient amb 1’equacié pel camp
electric per descriure I'evolucié d’aquests lasers.

Una descripcié més senzilla de les equacions de Maxwell-Bloch es pot fer promit-
jant en la direcci6é de propagacié i considerant emissié en un inic mode. Les equa-
cions resultants sén les equacions de balang, que en el cas dels lasers de classe B
sén les equacions (.8, .9). A Pequacié per a la variacié de 'amplitud lentament
variable del camp electric hi ha una competicié entre els termes de guany i de
perdues; a més, s’introdueix el factor d’increment d’amplada de linia o terme de
disintonia (&) que considera que en els lasers de semiconductor les transicions ocor-
ren entre bandes d’energia i per tant ’espectre de guany és antisimetric. L’equacid
per al nombre de portadors consta de tres termes: el bombeig extern, el terme de
perdues degut a emissié espontania o transicions no radiatives, i el terme d’emissié
espontania. L’efecte de ’emissié espontania com una font radiativa es pot incloure
en les equacions de balang amb la inclusié de termes de renou blanc (.17, £.19).
Quan les equacions s’escriuen en termes de les variables intensitat i fase del camp
electric (f.14 - {.16), a l'equaci6 per la intensitat apareix (en la interpretacié de
It6) un terme de renou d’emissié espontania promig. El terme de disintonia només
apareix en ’equacié per la fase del camp electric. A partir d’aquestes equacions
es poden obtenir les equacions per als lasers de classe A realitzant una eliminacié
adiabatica dels portadors.

Els capitols de la part [[] sén dedicats a ’estudi dels lasers de classe A, mentre
que els lasers de classe B es tracten al llarg de la part [I] de la memoria.



Chapter 4

Lasers: Physical phenomena and
models

In this chapter we present a brief review of lasers, the physical phenomena
involved in these systems and some models used to describe their behaviour. There
exist in the literature a huge amount of papers and books related to this subject.
Some references that we follow in this section are [Bvelto, 1982; Hecht and Zajac]
986, Petermann, 1988; [Homar, 1996].

Laserf] is the acronym of light amplification by stimulated emission of radiation
accounting for the basic mechanism by which a laser works.

Some pioneer works by Einstein in 1917 already described the stimulated emis-
sion process. However, it was not until 1954 when Town succeded with the first
experiment with the maser (microwave amplification by stimulated emission of ra-
diation). In 1958, Schawlow and Townes predict theoretically the existence of laser
systems and in 1960, Theodore H. Maiman announced the first operation of a laser,
namely a ruby laser. Since then, a lot of different lasers have been studied, both
experimentally and theoretically.

4.1 Physical phenomena in lasers

In a laser system an electromagnetic wave interacts with a material and three
processes can occur: a photon can be absorbed by the material or it can be emitted
either spontaneously or by stimulated emission. The simplest way to sketch this
situation is as follows.

Consider a material whose atoms (or molecules) have two energy levels, 1 and 2,
with energies Ey and Fy (Ey > Ej). An atom (or molecule) of the given material
which is initially in level 2 tends to decay spontaneously to level 1 emitting a photon
of frequency v (Planck’s law)

_Ey—E;
= —
!Laser was also a plant with miraculous properties which grew wild over a large area around

Cyrene (in present-day Libya) [Svelto, 1987].

14

(4.1)
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where h is the Planck’s constant. In this process, the photon is emitted in any
direction and with no definite phase relation with that emitted by another atom (or
molecule). However, it may happen that an atom initially in level 2 decays to the
level 1 forced by an incoming photon. This phenomenon is the basis of the laser
operation and it is called stimulated emission. Since the process is forced by the
incident photon, the emitted photon adds in phase to the incoming one and in the
same direction. Finally, an atom in level 1 can undergo a transition from this energy
level to level 2 by absorbing an incident photon.

Once the basic concepts have been given, we can use them to explain the mech-
anisms for the operation of a laser. Let us consider two energy levels as above and
let N; and N, be their respective populations. If a plane wave is travelling along
the material, the three processes explained before (spontaneous emission, stimulated
emission and absorption) can be present. Considering only stimulated emission and
absorption processes, the material behaves as an amplifier if Ny > N; and it behaves
as an absorber if N, < N;. Under ordinary conditions the material behaves as an ab-
sorber [e.g., in the case of thermal equilibrium for which Ny/N; = exp (—%2)]
If a nonequilibrium condition is reached for which Ny > N;, the material will act
as an amplifier and population inversion can be achieved. An active material is a

material with population inversion.

To turn an amplifier into a laser, a suitable positive feedback has to be intro-
duced. In a laser, the feedback is obtained by placing the active material between
two highly reflecting mirrors (e.g., plane—parallel mirrors), such that an electromag-
netic wave traveling in a direction orthogonal to the mirrors bounces back and forth
between the two mirrors and is amplified on each passage through the active mate-
rial. By making one of the two mirrors partially transparent, an useful output beam
can be extracted. A certain threshold condition must be satisfied: the oscillation
(built up from the spontaneous emission) starts when the gain of the active material
compensates the losses in the laser. The photons spontaneously emitted along the
cavity axis initiate the amplification process.

Summarizing, a laser has three basic ingredients: i) a gain medium capable of
amplifying the electromagnetic radiation propagating inside the cavity (typically
gas, liquid, solid state or semiconductor materials), ii) an optical cavity that pro-
vides the necessary feedback (Fabry—Perot or ring cavities, distributed feedback
structures or distributed Bragg reflectors), and iii) a pumping mechanism (electri-
cal discharge, current injection or optical pump). Laser radiation has very useful
properties: a high degree of monochromaticity, temporal and spatial coherence, di-
rectionality, brightness and it can be produced (using different systems) in a broad
range of wavelengths. Likewise, there is a large variety of laser applications. Since its
discovery, lasers have been used in metrology, industrial and medical applications,
trapping and cooling of atoms, detection of gravitational waves, cutting materials,
optical communications, CD players and recorders, printers, etc.
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4.2 Modelling lasers

A complete understanding of laser dynamics is based on a fully quantum-
mechanical description of matter-radiation interaction within the laser cavity. How-
ever, the laser is a system where the number of photons is much larger than one,
thus allowing a semiclassical treatment of the electromagnetic field inside the cavity
through the Maxwell equations. This fact was introduced in the semiclassical laser
theory, developed by Lamb [Camb, 1964; Sargent ef al., 1974] and independently by
Haken [Haken and Sauermann, 1963; Haken, 1983 Haken, 1984 Haken, 1985]]. The
model for the laser dynamics was constructed from the Maxwell-Bloch equations
for a single-mode field interacting with a two-level medium. The semiclassical laser
theory ignores the quantum-mechanical nature of the electromagnetic field, while
the amplifying medium is modelled quantum-mechanically as a collection of two—
level atoms through the Bloch equations. The evolution of the wave electric field
£(Z,t) can be obtained from the wave equation of the electromagnetic theory

- 1 L ,
AE — 0—28 — M()O'Og = ,LL()P (42)

where A represents the Laplace operation, ¢ is the velocity of light in vacuum, ug
is the vacuum magnetic permeability, oy is the electric conductivity of the medium,
and P(Z,t) is the electric polarization of the medium. By assuming a plane-wave
structure, £(Z,t) and P(Z,t) can be expressed as

[é’E(t)ei(kz_Qot) + c.c.] : (4.3)

N[ DN -

[é"P(t)ei(kz_Qot) + c.c.] : (4.4)

where k is the resonator wave vector (it has been taken in the z-direction), € and
¢’ are unit vectors and ) is the laser frequency.

By using these definitions, the Maxwell-Bloch equations, after appropriate rescal-
ing, are

P
OE+ S 0E = 2B+, (4.5)
g 2 2
P = —y(l—ia)P+ygy(14+0%) (N -N,)E, (4.6)
1
ON = C—wN—_(EP'+EP). (4.7)

E is the slowly-varying complex amplitude of the electric field propagating in the
z direction, P is the slowly-varying complex amplitude of the material polarization
and N gives the population inversion.

Eq. (£3) is obtained from the Maxwell’s equations by considering an isotropic
non-magnetic dielectric medium and a single transversal electrically polarized mode
at a given frequency. The other equations are the matter equations that are devel-
oped from quantum mechanics. It is assumed two energy levels for the atoms that
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participate in the interaction with the laser field. The parameters appearing in the
equations are: 7, is the group refractive index of the mode such that c¢/n, is the
group velocity; 7 is the inverse of the photon lifetime or cavity decay rate and it
accounts for internal and mirror losses. In ({.6) 7, is the polarization decay rate,
and it accounts for the collision with other atoms or the interaction with lattice
vibrations; « is the normalized detuning, which takes into account the difference
between the frequency of the transition of the two energy levels and the cavity res-
onant frequency; gy is the differential gain at the lasing frequency (in the simplest
approximation, gy is considered to be constant, but a more realistic model includes
gain saturation through a nonlinear dependence on the modulus of the electric field,
as will be considered later); N, is the population inversion at transparency (value
of the population inversion at which the material is transparent to radiation).

In (f7), C is the rate at which the carriers, electrons and holes are injected into
the active layer due to the external pumping. The second term of this equation,
stands for carrier losses due to spontaneous emission or non-radiative transitions. In
this work, vn (population relaxation parameter due to spontaneous recombinations)
is considered as a constant, although a more general form can be also considered
[Olshansky ef al., 1984]. The third term accounts for the stimulated emission.

Different types of lasers can be classified according to the decay rate of the pho-
tons, carriers and material polarization. Arecchi et al. [[Arecchi et al., 1984 Trediccd
et al., 19853] were the first to give a classification scheme: class C lasers have all
the decay rates of the same order, and therefore the full set of three nonlinear dif-
ferential equations is required for a satisfactory description of the electric field, the
population inversion and the material polarization. For class B lasers, the polar-
ization decays towards the steady state much faster than the other two variables,
and it can be adiabatically eliminated. Class B lasers, of which semiconductor lasers
Agrawal and Dutta, 19864] are an example, are then described by two rate equations
for the atomic population inversion (or carriers number) and the electric field. Other
examples of class B lasers are CO, lasers and solid state lasers [Weiss and Vilaseca]

[ 1991]. From now on, when studying class B lasers, we will restrict ourselves to
semiconductor lasers. The main characteristic of these lasers is that the transitions
occur between electron and hole bands instead of atomic or molecular energy lev-
els [[Agrawal and Dutta, 1986; [Pefermann, 1988; Wilson and Hawkes, 1989, Faleh
and Teich, 1991]. Finally, in class A lasers population inversion and material po-
larization decay much faster than the electric field. Both material variables can be
adiabatically eliminated, and the equation for the electric field is enough to describe
the dynamical evolution of the system. Some properties of class A lasers, like a dye
laser, are studied in [[Herndndez-Garcia ef al., T990; [Ciuchi ef al., T991].

A description simpler than (f.J - f.7) can still be obtained when averaging
over the z direction and considering single-mode emission (longitudinal, lateral and
transversal mode emission). This simple set of equations is called rate equations
[Btatz and deMars, 1960; [lang et al., 1963]. As already pointed out, in semicon-
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ductor lasers, and after eliminating the polarization, one ends up with only two
equations that describe the slowly varying amplitude of the electric £ and the num-
ber of carriers N. By taking 4¢ = 0 in (@) and changing E — Eexp (iayt/2),
Egs. (.3) and (f.7) become

(1+ia)

= (G- B, (48)

. J
N = Z“—ywN-G|EP, (4.9)
€

where G = G(N) = gy (N — N,), J accounts for the injection current, and e is the
electronic charge (e = 1.6 x 1071°C).

In Eq. (£-8), there is a competition between the gain, G, and the losses, vy, terms.
However, the previous expression for G is incomplete since it does not account for
some effects as the spectral and spatial hole burning [Agrawal, 1987 or carrier
heating [Kressel and Tppen, 1987]. A more general expression for G considering
these factors yields [Agrawal and Dutta, 1984]

N—N,

G = G(N7 |E|2) =gn W:

(4.10)
where s is the saturation coefficient and gy is a constant.

For semiconductor lasers, « is called the linewidth enhancement factor and is
defined as the ratio between the derivatives of the real and imaginary parts of the
carrier-dependent susceptibility with respect to the carrier density [Henry, 1989]. It
considers the fact that, in semiconductor lasers, the lasing transitions occur between
energy bands instead of energy levels, giving an asymmetry in the gain spectrum.

In Egs. (£.8) and (f.9), the effect of spontaneous emission, as a source of radi-
ation, has to be included. This can be treated quantum mechanically, via quantum
Langevin equations, or via the density matrix equations. In previous works [Henry]
1987; Henry, 198]] the effect of spontaneous emission was incorporated in the rate
equations in the form of noise terms and the resulting equations, interpreted in the
It6 sense, are

: l+ia

£ o= UG, 1) ) B + V2N 6(0), (@11)
- J

N = —-wN-G, |E[*) |E]? = V2e N (E*€p(t) + E£5(1) +  (4.12)

\/2’)’]\/’ NEN(t)

¢ is the spontaneous emission rate. £(t) is a complex Langevin noise term account-
ing for the stochastic nature of spontaneous emission and £y(t) describes random
non-radiative carrier recombination due to thermal fluctuations. They are consid-
ered as Gaussian noise terms of zero mean and correlations

(€ilt) &(t)) = 655 0(t — 1), (4.13)
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where &;,£; denote Re(€g), Im(ér) and Ey.
Equations (4.11)) and (B.12) can be written in terms of the intensity and phase,
E = /T exp (i¢) such that

I = [G(N,I)—~]I +4e N +V8e NI&(t), (4.14)

- %a[G(N,I)—’y]—i— 2EIN§¢(t), (4.15)

¢
N = %—'yNN—G(N,I)I—\/SENIEI(t)—i—\/?yNNfN(t), (4.16)

where £7(t), €5(t) and En(t) are real gaussian noise terms of zero mean and correla-
tions

(&(0) &(t) = 0 6(t — 1)), (4.17)

where 7, 7 denote I, ¢ and N. 4eN represents the mean power spontaneously emitted
in the lasing mode.

The equations we have described are for semiconductor lasers (class B lasers).
To obtain a set of equations for a class A laser, we can adiabatically eliminate N by
setting N = 0 in (f9) and obtain N as a function of E. The resulting equation for
the electric field after replacing in Eq. (£.§) is

o TanUfe— N/
E=(1+ia) T+ (s gv) B 2 E. (4.18)

We will devote the chapters of part [ to the study of class A lasers. In part [T we
will study class B lasers.
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Lasers de Classe A






Capitol 5

Lasers de Classe A:
Potencial de Lyapunov

En aquest capitol es presenta un exemple d’utilitzacié del potencial de Lyapunov
(introduit en el capitol P]) en un sistema dinamic. El sistema que es considera és el
d’un laser de classe A (capitol ff]).

La dinamica del laser de classe A es descriu en termes de 'amplitud complexa
lentament variable del camp electric, que es pot descompondre en les seves parts
real i imaginaria. Les equacions resultants sén les (b.3) i (p.4)), que es tracten en
aquest capitol.

En primer lloc es considera el sistema determinista, menyspreant els termes de
renou. El resultat de les simulacions es pot veure a les figures ip.2. Comencant
d’'una condicié inicial a prop de ’estat apagat, la intensitat es va atracant al seu
estat estacionari, mentre que les parts real i imaginaria del camp electric oscil-len
en el temps fins també arribar a un valor constant. En el pla definit per les parts
real i imaginaria del camp, els sistema realitza una oscil-lacié en forma d’espiral. El
valor camp eléctric no depén del parametre de disintonia (), i I'inica dependéncia
amb el parametre o apareix en la velocitat angular (o equivalentment en la fase del
camp eléctric).

Les equacions del laser de classe A constitueixen un flux potencial (5-I0), on el
parametre de disintonia no hi és inclos. La matriu que relaciona les derivades del
potencial amb les equacions de la dindmica es designa com D, (B.11)). Els punts fixos
de la dinamica determinista sén els extrems del potencial. Per a un valor del guany
fixat de manera que el laser estigui ences, la forma del potencial és del tipus capell
mezica (Fig. p.3), té un maxim central i una corba de minims que ’envolten. En la
dinamica transitoria, la part simetrica de D és la responsable de dur el sistema cap
als minims del potencial, seguint les linies de maxim pendent. La part antisimetrica
(que és proporcional a «) indueix el moviment ortogonal a la direccié de variacié
maxima del potencial. Aquests dos efectes combinats (corresponents a les parts
simetrica i antisimetrica del camp vectorial) produeixen la trajectoria espiral, abans
esmentada, en el pla definit per les parts real i imaginaria del camp electric, amb
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una velocitat angular proporcional a «, Fig. p.6. A partir del camp vectorial dels
lasers de classe A, Figs. b.715.9, es pot observar que la direcci6 de rotacié (per a un
« donat) és diferent entre la part interna i la part externa de les linies de potencial
minim.

La dinamica de les equacions en presencia de renou és tal que les caracteristiques
qualitatives de la dindmica transitoria (a part de petites oscil-lacions degudes al re-
nou) s6n les mateixes que el cas determinista. Ara bé, les diferéncies més importants
apareixen a prop de la situacié estacionaria, a causa que ’estat final no té un valor
constant per a la fase, siné que la fase varia amb el temps, Figs. p.1(i p.11. En
el cas de considerar les equacions amb renou és de gran utilitat considerar valors
mitjos. El valor mig de la fase del camp eléctric varia, per a « # 0, linealment amb
el temps en l'estat estacionari, Fig. p.13, efecte que anomenam flux sostingut per
renou.

Aquestes caracteristiques de la dinamica amb renou es poden explicar mitjancant
el potencial de Lyapunov, que s’havia obtingut per a la dinamica determinista. La
funcié densitat de probabilitat estacionaria ve donada a partir del potencial, Eq.
(B38), ja que la matriu D verifica les condicions corresponents. En termes de les
variables intensitat i fase del camp eléctric, aquesta funcié es pot escriure com a
funcions independents de cadascuna de les variables. La funcié densitat de proba-
bilitat de la intensitat (5.17), té el seu maxim al valor minim del potencial, que
coincideix amb el valor estacionari de la dinamica determinista (Fig. [.14), i és
asimeétrica al voltant d’aquest maxim, Fig. b.15. Amb aquesta funcié densitat
es poden calcular valors mitjos de les variables a ’estacionari. El valor mig de la
intensitat a I’estacionari, que no depen del parametre «, es pot calcular analiticament
(p-19), el seu valor augmenta aixi com s’incrementa el valor del parametre de renou,
Fig. b.16.

El fet que la fase del camp electric fluctui al voltant d’un valor mig que can-
via linealment amb el temps també es pot explicar amb el potencial de Lyapunov.
L’origen d’aquest flux sostingut per renou es pot entendre de la segiient manera: els
termes que indueixen rotacié, els proporcionals a «, sén zero a la linia de minims de
potencial, i per tant no actuaven a l’estat estacionari determinista. No obstant, les
fluctuacions, que ara s’inclouen, permeten que el sistema explori regions de I’espai
definit per les parts real i imaginaria del camp electric on el potencial ja no té el seu
valor minim. La part antisimétrica de D (que conté el parametre «) és la respon-
sable de la rotacié a I’espai de fases. A causa que el valor mig de la intensitat és més
gran que el valor deterministic de ’estat estacionari, el sistema passa més temps,
en valor mig, en la part externa del minim del potencial que en la part interna, i
és per aquest motiu que hi ha una contribucié distinta de zero al termes rotacionals
produint la velocitat de fase observada. El valor mig de la velocitat de rotacié es
pot calcular a partir de la funcié densitat de probabilitat (5.23). La rotaci6 mitja
és zero quan el terme de disintonia és zero o en el cas determinista; i a més, aquesta
rotacid té un sentit oposat al que es tenia en la dinamica transitoria quan es partia
de V’estat apagat. El canvi d’aquest valor mig de la freqiiencia amb el renou es veu

en la figura p.17.



Chapter 5

Class A Lasers: Lyapunov
Potential

In this chapter, a first example of the use of Lyapunov potentials in a dynamical
system is presented. The system we consider is a class A laser.

5.1 Model
For class A lasers, such as He-Ne laser, the dynamics of can be described in
terms of the slowly varying complex amplitude E of the electric field B 084,

Eq. (£.18). The noise term is simply additive, as it is usually taken in this kind of
lasers. The resulting equation is

E=(1+ia) (ng—f;) E +¢(0), (5.1)

where «, ¥, I' and k are real parameters. & is the cavity decay rate; I' the gain
parameter; ¥ the saturation-intensity parameter, and « is the detuning parameter.
Their relationship with the variables of class B lasers ([.§) and ({.9) are:

P =g (L= o) /@), m=1/2, 9 = (g + 7).

Another widely used model expands the nonlinear term to give a cubic dependence
on the field (third order Lamb theory [Sargent ef al., 1974]), but this is not necessary
here. Eq. (b.I) is written in a reference frame in which the frequency of the on
steady state is zero (and the trivial solution has frequency (I' — k)« [Ciuchi ef al]
1991])). ¢(t) is a complex Langevin source term accounting for the stochastic nature
of spontaneous emission. It is taken as a Gaussian white noise of zero mean and
correlations

(€C(t) () =4A6(t - 1), (5:2)

where A measures the strength of the noise.
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By writing the complex variable £ as £ = z; + iz2 and introducing a new
dimensionless time such that ¢ — k¢, the evolution equations become

B = (Lq) (21 — azs) + &(2), (5.3)

b+ x2 + 23

:tQ = (m - 1) (CV T+ IEQ) -+ fQ(t), (54)

where a = I'/(k¥) and b = 1/9. £(t) and &(¢) are white noise terms with zero
mean and correlations given by equation (£:33) with € = A/k.
5.2 Class A lasers: Deterministic case

In this section, we consider the reduced equations for a class A laser in the

absence of noise, i.e. in the case € = 0,

b+ z7 + 23

& = (L - 1) (21 — axs), (5.5)
by = (Lq) (@) + 22). (5.6)

b+ z7 + 23
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Figure 5.1: Simulation of Eqs. (5.§) and (5.6). (a) Dynamical evolution of z; (solid line), 25
(dashed line) and z? + 22 (dotted line) with time. (b) Phase evolution with time. Parameters:
a=2,b=1, a =5. Initial conditions: z; = 1075, x5 = 10~5. Dimensionless units.
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Performing the change of variables
I=1}+13 and ¢ = arctan (zo/1,), (5.7)

one obtains a set of equations

i = 2(bzl—1) 1, (5.8)
$ = (bjl—1) . (5.9)

Ql

The steady state solutions of (p.§) and (b.9) give rise to two fixed points, one
corresponding to the laser off (I = 0), and the other to the steady state of the
system: I,, = a — b and ¢ = 0 (fixed intensity and arbitrary phase).

Numerical simulations have been performed using a Runge-Kutta method (ex-
plained in chapter [J). When starting with an initial condition close to the off state,
the intensity I monotonically approaches the steady state value I, while the real
and imaginary parts of the electric field (z; and z3) oscillate in time until they reach
a constant value, see Fig. 5.1 (a). In Fig. B.1] (b), it can be seen that the continuous
phase (defined between —oco and oo) increases until it arrives to a constant value.
Fig. B.9 shows that the imaginary part versus the real part of the field spirals to
the fixed point.
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Figure 5.2: z, versus z; for Egs. (b.5) and (f.6). Parameters: a = 2, b = 1, a = 5. Initial
conditions: z; = 1075, 5 = 107%. Dimensionless units.
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05 ]

| | | |
-1.0 -0.5 0.0 0.5 1.0
Xy

Figure 5.3: 2, versus z; for Eqs. (5.§) and
(b.6). Parameters: a =2, b=1. a =5 (solid
line), a = 1 (dotted line), a = 0 (dashed line).
Initial conditions: z; = 1075, zy = 1073,
Dimensionless units.
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Figure 5.4: 2, versus z; for Eqs. (5.5) and
(B.6). Parameters: a = 2,b=1. a =0
(dashed line), a = —1 (dotted line), « = —5
(solid line). Initial conditions: z; = 107°,
2o = 1073, Dimensionless units.

It is worth noting that the final value I;; does not depend on ¢, and the only
dependence on « appears in the angular velocity (or equivalently in the phase), as it
is shown in Figs. p.3 and p.4. In these figures, it can be seen that when « increases
the rotation speed increases in the (z,z2) plane, and when the sign of & changes,
the rotation sense inverts. Here we have used large values of the parameter oe. With
these values of «, the influence of this parameter in the dynamical equations can be
clearly seen.

Equations (5.3) and (p.6) constitute a potential flow of the form (B-26) where
the potential V' (x) is given by ([Haken, 1983])

1
V(zy,z2) = 5 (27 + 23 — a In(b + 2% + z3)] (5.10)

and the matrix D(x) (split into symmetric and antisymmetric parts)

10 0 —«
D_S+A_<0 1>+<a A ) (5.11)
A simpler expression for the potential is given in [Risken, 1989] and [Haken, 1984

valid for the case in which the gain term is expanded in Taylor series.
When writing the potential in terms of I and ¢, it appears to be independent of
the phase (rotational symmetry in the plane (z1,z5)),

1
V(I,¢) = g[l—aln(b—l—l)]. (5.12)
By using this potential, one can obtain the fixed points of the set of equations
and also the transient dynamics.
According to our discussion of chapter [, the fixed points of the deterministic
dynamics are the extrema of the potential V (x): for a > b there is a maximum at
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(21, z2) = 0 (corresponding to the laser in the off state) and a curve of minima given
by z? + 22 = a — b (see Fig. p.5). The asymptotic stable situation, then, is that the
laser switches to the on state reaching an intensity I = |E|? = 22 + 25 = a — b. For
a < b the only (stable) fixed point is the off state I = 0. In this case, the shape of
the potential is not the one appearing in Fig. p.§ but V' is paraboloidal.
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Figure 5.5: Potential for a class A laser, Eq. (p.1() with the parameters: a = 2, b = 1.
Dimensionless units.
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Figure 5.6: Potential for a class A laser, Eq. (p.10)) with the parameters: ¢ = 2, b = 1. Solid
line: simulation of Eqs. (f.5) and (5.6) (same as in Figs. .] and .9, o = 5). Initial conditions:
z1 = 1075, x5 = 1075, Dimensionless units.
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Figure 5.7: Vector field for a class A laser. Thick solid line: simulation of Egs. (5.5) and (f.6).
Thin lines are the equipotential curves of Eq. (5.1() and the arrows indicate the sense of the flow.
Parameters: a = 2, b= 1, a = 5. Initial conditions: z; = 1072, 25 = 1075, Dimensionless units.

In the transient dynamics, the symmetric matrix S is responsible for driving the
system towards the minima of V following the lines of maximum slope of V. The
antisymmetric part A (which is proportional to «) induces a movement orthogonal
to the direction of maximum variation of V(x). The combined effects of S and
A produce a spiraling trajectory in the (zi,z;) plane, with an angular velocity
proportional to «, see Figs. b.g and p.7}.

Asymptotically, the system tends to one of the minima in the line I = a — b, the
exact location depending on the initial conditions. The potential decreases in time
until it arrives at its minimum value: V(2% + 23 =a —b) = 3 [a — b — a In(a)] (see

Fig. b.§).

The different rotation speeds and directions that one could observe in Figs. p.3
and p.4 can be explained with the antisymmetric part of the equations. This can be
seen by comparing Figs. p.7 and p.9 where we have taken different signs of the value
of «. In the case of & = 0 the antisymmetric part is zero, and there is no rotation
in the plane (z1, ) (Fig. p-12).

Another interesting feature that has to be mentioned here is that the direction
of rotation for a given « is different for the internal part of the lines of minimal
potential and the external part, see Figs. p.7 and p.9. This implies, for o > 0, that
the trajectories starting near the off state will rotate counterclockwise, while those
starting with an intensity larger than the equilibrium value, I > I, will rotate
clockwise. This difference in the direction of rotation will have an interesting effect
in the presence of noise, as discussed in the next section.
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Figure 5.8: Simulation of Eqs. (5.5) and (F.§). (a) Dynamical evolution of the intensity 2% + 3
with time. (b) Evolution of the potential given by Eq. (5.10) with time. Parameters: a = 2, b =1,
o = 5. Initial conditions: z; = 1072, 25 = 1075. Dimensionless units.
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Figure 5.9: Vector field for a class A laser. Thick solid line: simulation of Egs. (5.5) and (b.6).
Thin lines are the equipotential curves of Eq. (f.1(]) and the arrows indicate the sense of the flow.
Parameters: a =2, b= 1, @ = —5. Initial conditions: z; = 1075, 25 = 1075. Dimensionless units.
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5.3 Class A lasers with noise

In this section, we consider the set of equations for class A laser in the presence
of noise:

b+ i+ 23

B = (L - 1) (21 — azs) + & (1), (5.13)

:tQ = (m — 1) (CV T + IEQ) + EQ(t) (514)

In the presence of moderate levels of noise, the qualitative features of the tran-
sient dynamics remain the same as in the deterministic case. The most important
differences appear near the stationary situation.

We have performed simulations of Egs. (f.13) and (5.14) using the Heun method
(B-20) explained in chapter P. In this case, one can take initial conditions in (z; =
0,22 = 0) and the small fluctuations, induced by noise terms, take the system away
from the “off” state. The transient dynamics, see Fig. p.1(, is quite similar to that
in the deterministic case (compare with Fig. [.7). However, the final state does
not have a constant phase but it changes in time. The direction in which the phase
changes is not constant but varies in time, see Fig. p.T1].

Xy

Figure 5.10: Vector field for a class A lasers. Thick solid line: simulation of Egs. ) and
(F-14). Thin lines are the equipotential curves of Eq. (p.10) and the arrows indicate the sense
of the flow. Parameters: a = 2, b = 1, a = 5, ¢ = 0.001. Initial conditions: z; = 0, z2 = 0.
Dimensionless units.
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Figure 5.11: Phase evolution with time from the simulation of Eqs. (5.13) and (f.14). Pa-
rameters: ¢ = 2, b = 1, a = 5, ¢ = 0.001. Initial conditions: z; = 0, zz = 0. Dimensionless
units.

Therefore, for a # 0 the real and imaginary parts of E oscillate not only in the
transient dynamics but also in the steady state. The frequency of the oscillations
still depends on « (as well as €), while the amplitude of the oscillations depends on
the noise strength e.
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Figure 5.12: Vector field for a class A lasers. Thick solid line: simulation of Egs. () and
(@) Thin lines are the equipotential curves of Eq. (b.10) and the arrows indicate the sense
of the flow. Parameters: ¢ = 2, b =1, a = 0, ¢ = 0.001. Initial conditions: z; = 0, zz = 0.
Dimensionless units.
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For @ = 0 there is only phase diffusion around the circumference 2+ 2 =a—b

that represents the set of all possible deterministic equilibrium states
[ 1997 (compare Figs. and p.13 which cover the same simulation time).

A small value of the parameter € has been considered in these figures, allowing
only a small deviation of the dynamical evolution in the plane (z1,z2) around the
deterministic steady state (intensity is almost constant). When e increases, the
range of values available around the steady state also increases. As the final value
of the intensity is approached, and for « # 0, the phase rotation speed slows down
and the mean value of the phase ¢, of the electric field E, changes linearly with time
also in the steady state, see Fig. b.13.

Figure 5.13: Time evolution of the mean value of the phase ¢ in a class A laser, in the case
a=2,b=1, e=0.1. For « = 0 (dashed line) there is only phase diffusion and the average value is
0 for all times. When a =5 (solid line) there is a linear variation of the mean value of the phase.
Error bars are included for some values. The dot—dashed line has the slope given by the theoretical
prediction Eq. () The initial condition is taken as z; = 2 = 0 and the results were averaged
over 10000 trajectories with different realizations of the noise. Initial conditions: z; = 0, zo = 0.
Dimensionless units.
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We can understand these aforementioned features of the noisy dynamics using
the deterministic Lyapunov potential V' (z1,z2). Since conditions (2.33), (£.36) and
(B37) are satisfied, the stationary probability distribution is given by (B-38) with
V(z1, zo) given by (b.10). By changing variables to intensity and phase, we find that
the probability density functions for I and ¢ are independent functions (due to the
form of the potential (5.19))

Py(I,¢) = Pu(I) Pur(9), (5.15)
where 1
P = — 5.16
(6) = 5- (516)
is a constant and
Py(I) = Z7 e /29 (p 4 )9/(29) (5.17)
where the normalization constant is given by
Z=(@eFH s T | L 41 b (5.18)
2¢  2¢)’

and I'(z,y) is the incomplete Gamma function. From this expression, we see that,
independently of the value of €, Py(I) has its maximum at the deterministic sta-
tionary value I,, = a — b, and by increasing e the shape of the distribution becomes
more asymmetric, see Figs. p.14 and p.15

0.0 0.5 1.0 1.5 2.0

Figure 5.14: Probability distribution function for I = z2 + 22 in a class A laser, in the case
a=2,b=1, ¢ =0.001l. Dots correspond to the histogram obtained with the simulation of Eqgs.
(F-13) and (5.14). The solid line correspond to Eq. (f.17). Dimensionless units.
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Figure 5.15: Probability distribution function for I = z2 + 3 in a class A laser, in the case a = 2,
b=1, e = 0.1. Dots correspond to the histogram obtained with the simulation of Eqs. (5.13) and
(b.14). The solid line correspond to Eq. (p.17). Dimensionless units.

Starting from a given initial condition corresponding, for instance, to the laser
in the off state, the intensity fluctuates around a mean value that increases mono-
tonically with time. In the stationary state, the intensity fluctuates around the
deterministic value I, = a — b but, since the distribution (.17) is not symmetric
around I,,, the mean value (I),, is larger than the deterministic value. By using
(p-17) and (B.39) one can easily find that

exp(—b/2¢) (b/2¢)ze ™
r(i+1,2i€)

The evolution of this mean value in terms of the parameter € is plotted in Fig.
6.16. The mean value of I,; increases as the noise strength increases. In the deter-
ministic case one obtains the value corresponding to the minimum of the potential.

An expression for the mean value of the intensity in the steady state was also
given in [R 089, valid for the case in which the saturation terms in the
dynamical equations are expanded to third order in the field amplitude.

(I)y = (a—b) +2¢ |1+ (5.19)

As mentioned before, in the steady state of the stochastic dynamics, the phase
¢ of the electric field fluctuates around a mean value that changes linearly with
time. Since any value of ¢ can be mapped into the interval [0, 27), this is consistent
with the fact that the stationary distribution for ¢ is uniform, Eq. (5.16). We can
easily understand the origin of this noise sustained flow: the rotation inducing terms,
proportional to « in the equations of motion, are zero at the line of minima of the
potential V and, hence, do not act in the deterministic steady state. Fluctuations
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Figure 5.16: Evolution of < I >, with €. Solid line, with Eq. (b.19). Points correspond to the
mean values obtained by different simulations of Egs. (5.13) and (5.14). a = 2 and b = 1.

allow the system to explore regions of the configuration space (z1,z2) where the
potential is not at its minimum value. The antisymmetric part of the matrix D
(which contains the parameter «) is then the responsible for the rotation in the
plane (z,z2). According to Eq. (p.I9) the mean value of I is not at the minimum
of the potential because there is, on average, a nonzero contribution of the rotational
terms producing the observed phase drift.

The rotation speed can be calculated by writing the evolution equation for the
phase of the electric field. After a change of variables in Egs. (p-I3 - p.I4) to
intensity and phase, £, + iz, = v/Te*, the evolution equations become (It6 sense)

j:(b%q) 9T +4e+2VIE®), (5.20)
b= (HLI — 1) -+ %f(t), (5.21)

where £(t) is a white noise term with zero mean value and correlations given by
(B.32). In these equations one can see that apart from the stochastic noise terms,
in the first equation it appears an extra term corresponding to the mean number of
photons spontaneously emitted. Hence, the steady state is not (I)ss = a — b but it
has a corrective term depending on e as shown in (5.19).

By taking the average value of (f.21]) and using the rules of the It6 calculus (the
mean value of the last term of that equation is zero), one gets

<¢)=a<bil—1>- (5.22)
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By using the distribution (5.17) and the expression (£.39), one obtains the stochastic
frequency shift

exp(—b/2¢) (b/2¢€)7<

o :
b
M(&+1,2)
Notice that this average rotation speed is zero in the case of no detuning (o = 0) or
for the deterministic dynamics (e = 0) and that, due to the minus sign, the rotation
speed is opposite to that of the deterministic transient dynamics when starting from
the off state. These results are in excellent agreement with numerical simulations
of the rate equations in the presence of noise (see Fig. p.I3). The evolution of the
mean value of the frequency with € is plotted in Fig. p.17. One can see the phase
drift is negligible for a small values of e.

(@)ar = — (5.23)

The noise sustained flow we have obtained in this laser system implies that the
laser frequency will be shifted with respect to the deterministic one in the pres-
ence of noise. It would be interesting to check experimentally the existence of this
noise induce phase drift. However, according to our results, the noise intensity re-
quired for an observable phase drift is much larger than the typical noise intensity in
experiments. Nevertheless, this necessary extra noise could be externally induced.
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Figure 5.17: < ¢ > versus € as given by ( Points correspond to the mean values obtained

by simulating Egs. (5.13) and (5.14). a =2, b=1and a = 5.



Capitol 6

Lasers de Classe A amb senyal
injectat: Conjunt de bifurcacions i
potencial de Lyapunov

En aquest capitol es descriu el conjunt de bifurcacions (capitol B) per a un laser
de classe A amb senyal injectat, en termes de 'amplitud, p, i freqiiéncia, 7, del
senyal que s’aplica. A més, s’explica el comportament dinamic d’aquests tipus de
lasers, en els casos que es possible, en termes del potencial de Lyapunov (capitol ).

El sistema que es considera és el d’un laser de classe A (capitol fl) amb un camp
optic monocromatic aplicat. La dinamica del sistema ve donada per la variacié
temporal del camp electric, Eq. (p.]]). Escrivint les equacions en el sistema de
referencia que rota amb la freqiiencia del camp aplicat, les equacions que s’obtenen
per a les parts real i imaginaria del camp electric sén les que es tracten en aquest
treball, (6.3 — p.4) (Els punts fixos d’aquestes equacions corresponen, en el sistema
de referéncia inicial (B.]]), a una solucié per a les variables que oscil-la a la mateixa
freqiiéncia del camp aplicat).

La dinamica del sistema és tal que, per a valors petits de 7 el sistema oscil-la
en el pla definit per les parts real i imaginaria del camp eléctric fins arribar a un
punt fix. Quan s’augmenta el valor de la freqiiencia per damunt d’un cert valor, 5y,
la intensitat del camp electric té un valor aproximadament constant, pero la fase
evoluciona linealment amb el temps.

Per a valors més grans de 7 i depenent del valor de p, la dinamica és més com-
plexa i apareixen distints possibles estats estacionaris. En la seccié .2, es descriu
el conjunt de bifurcacions complet, format per les distintes regions de l'espai de
parametres (p, 7), amb diferent comportament qualitatiu a V’estat estacionari. El
conjunt de bifurcacions obtingut és el que apareix a la figura f.2, i les distintes re-
gions senyalades tenen punts fixos i orbites periodiques amb ’estabilitat que apareix
a la Taula B.I. En la bifurcacié sella-node, linea solida, dos punts fixos col-lapsen
a Pespai de fases i desapareixen (per exemple de la regi6é 5 a la 1). A la bifurcacié
de Hopf, linees a trossos curts, un punt fix canvia la seva estabilitat i es crea una
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orbita periodica (com passant de la regi6 2 a la 3). En les orbites homocliniques
(linees de punts), I’orbita periodica va augmentant el seu periode fins arribar a in-
finit en la corba homoclinica i alla desapareix, per exemple acostant-—se de la regié
3 cap a la 4. La interseccié entre les bifurcacions sella—node, Hopf i homoclinica
és una singularitat Takens-Bogdanov [els dos punts gruixuts de la figura .3 (a)].
Les zones de coincidéncia entre les corbes sella—node i orbites homocliniques, corres-
ponen a bifurcacions Andronov-Leontovich: una orbita periodica en la regié on no
hi ha punts fixos col-lisiona a ’0rbita homoclinica amb el punt fix sella-node. Cal
notar que hi existeixen aquest tipus de bifurcacions a cada una de les branques de
la bifurcacié sella-node. En linies a trossos llargs apareix la bifurcacié sella-node
d’orbites periodiques: passant de la regié 6 a la 7 dues orbites periodiques de distinta
estabilitat col-lisionen i es destrueixen.

En la seccié p.3, apareix el potencial (6.23) en el cas de considerar un camp real,
n = 0. Té la forma de capell mezica inclinat, Fig. p.9 La dinamica transitoria
del sistema va cap a l’estacionari seguint una trajectoria espiral, igual que en el cas
p = 0, capitol . A causa de la inclinacié del potencial, es romp la simetria de
fase pel sistema, i 1’estat final és fixat per a la intensitat i la fase. La bifurcacié
sella-node en la linia n = 0 es pot obtenir partint que el potencial és més inclinat
per a valors més grans de p, i en aquesta bifurcacié els punts fixos sella i inestable
desapareixen.

En el cas p =0, n # 0, el sistema es pot escriure en termes d’un flux potencial,
(B:2G). El potencial és el mateix que en el cas sense injecci6 (B.10), i el terme residual
(B-27) conté el terme de la freqiiéncia. El cas determinista es pot entendre com el
moviment damunt la superficie del potencial cap al minim. En el minim, la part
residual actua donant el moviment harmonic de freqiiéncia la d’injeccié.

La forma qualitativa del potencial en alguna regié del cas general (p # 0, n # 0)
es pot inferir a partir del potencial en els dos casos limits descrits. Per a un valor
de p # 0, es va augmentant 7 partint de n = 0. Inicialment el potencial té la forma
del potencial inclinat en una direccid; quan s’augmenta 7, el potencial es deforma
de manera que els punts minim i sella es van apropant, fins a desapareixer en la
bifurcacié sella—node. Apareixeria un conjunt de minims en forma d’el-lipse, on els
termes residuals serien els responsables del moviment periodic en ’estat estacionari.
L’el-lipse de minims es deformaria continuament en la regié 9 fins arribar a ser, quan
es va disminuint p, el capell mexica en la linia p = 0.

En presencia de renou, la funcié densitat de probabilitat estacionaria es pot
obtenir a partir del potencial (en el cas pp = 0), (F33). La intensitat fluctua
al voltant del valor determinista, pero com la funcié densitat de probabilitat no
és simetrica, el valor mig de la intensitat és major que el valor determinista, Fig.
617 La fase del camp electric també fluctua al voltant de un valor mig que canvia
linealment en el temps, Fig. p.12. Les fluctuacions permeten que el sistema explori
regions fora del minim i, després, els termes rotacionals (proporcionals a «) actuen.
El valor mig es pot calcular a partir de 'expressié (6.33), i aquest fluz sostingut per
renou depeén del camp aplicat i del valor del renou, Fig. B.13.



Chapter 6

Class A lasers with injected signal:
Bifurcation set and
Lyapunov—potential function

In this chapter, we describe the bifurcation set for a class A laser with an
injected signal in terms of the amplitude and the frequency of the applied field by
using the concepts introduced in chapter . We explain the dynamical behaviour of
this kind of lasers in terms of a Lyapunov potential (chapter f]) in the case where
such a description is possible. In particular, a full description for the deterministic
and nondeterministic dynamics can be given by using the Lyapunov potential for
some particular values of the external parameters. This represents an extension of
the work performed in chapter ] for class A lasers without injection. Depending
also on the value of these parameters, the phase of the electric fields drifts also with
time in the stochastic case, as it was found in the non-injected laser (section p.3).

The chapter is organized as follows. In Sec. B.]], we present the model equations
for a class A laser with injected signal used in remaining sections. In Sec. [.J,
the bifurcation set in terms of the amplitude and frequency of the injected signal is
determined. While a portion of the lines presented in this bifurcation set can be an-
alytically calculated, the rest of the bifurcation set has been numerically computed.
In Sec. 6.3, we describe the laser dynamics in terms of a potential function, valid
for the case of a zero-detuning injected signal, and discuss its relevance both in the
deterministic and stochastic dynamics.

6.1 Model

We consider a class A laser [B 087 whose dynamics can be described in
terms of the slowly varying complex amplitude E of the electric field (p-1]). The
physical electric field is given by £(t) = [E(t)e®! + c.c.]/2. The laser is injected
with a monochromatic optical field E,e®® of amplitude E, and frequency 2. The
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resulting evolution equation is [Haken, 1984 fan der Graaf, 1997

E(t) = (1 + i) (H%W — /4;) E + gE.e” ™ + ((t), (6.1)

where 77 = {2y — Q) is the detuning between the external field and the free running
laser frequency Qg. k, I', ¥ and « are (real) intrinsic parameters defined in Sec.
6.]. o is the injection coupling, proportional to the inverse of the round—trip time
Tim- C(t) is a complex Langevin source term accounting for the stochastic nature
of spontaneous emission. It is taken as a Gaussian white noise of zero mean and
correlations

()¢ () = 4Ad(t — 1), (6.2)
where A measures the strength of the noise.

By writing the complex variable E as E = (z; + iz2)e” " (i.e. (z1,72) are the
real and imaginary parts of the electric field E in the reference system that rotates
with frequency —7), and introducing a new dimensionless time xt — ¢, the evolution
equations become

i = (ﬁ*) (21 = ) + p — 13 + 4 (2) cos(nt) — &(t) sin(nt),
8 = (ﬁ—l) (s +22) + 11 + & (£) sin(t) + Ex(2) cos(ont)
1 2

where a = T'/(kB), b = 1/8, p = 0E,/k and n = 7j/k, and ((t) = &1(t) + i&2(t)
introduces real white noise processes, & and &;, with zero mean and correlations
given by (B32) with e = A/k. The statistical properties that follow from this set of
equations are contained in the Fokker-Planck equation (B.33) for the time evolution
of the probability density function [R 089]. A simpler, yet equivalent set of
equations, in the sense that they give rise to the same Fokker-Planck equation, is
Hernandez-Garcia et al., 1990

. a
s (bi +af+a3 1) (21 — az2) + p = nz2 + &1(8), (6.3)
. a
= (bi +af + a3 1) (a1 + m2) + 021 + &a(t). (6.4)

These equations can be written in terms of the intensity I and phase ¢, by making
the change of variables 71 = v/T cos(#) and o = /I sin(¢),

Ccll_i = 2 [b-;—LI — 1] I +2pVT cos(¢) + 2V &(2), (6.5)
% = « [ZF;LI — 1] — %sin(qﬁ) +n+ % (1), (6.6)

where £7(t) and &y() are white noise processes of mean zero and correlations (P-32).
The multiplicative terms of these equations have to be understood in the Stratonovich

sense [Risken, 1989].
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In the next sections, the system of equations (.3 — p.4) is studied. For conve-
nience, we will switch between the descriptions (.3 —.4) and (6.5 — b.6) whenever
it simplifies the discussion.

6.2 Bifurcation set

We consider throughout this section the deterministic version of Egs. (f-3) and
(B.4), i.e. the case e = 0. It is easy to observe that any trajectory remains bounded
in the (z1, %) plane. This comes from the asymptotic form of Eq. (B.9) in the limit
I — oo, namely I = —21, which shows that trajectories with a large intensity I are
restored towards the origin. Consequently, the only asymptotic behaviour of Egs.
(63 — B-4) can be either a fixed point or a periodic orbit. As Egs. (6.3 — B.4)) are
written in the reference frame that rotates with frequency —n, a fixed point solution
represents a situation in which the frequency of the laser electric field E equals that
of the injected field. We are interested in finding the locking range, i.e. the set
of parameters (p,n) for the injected field such that there exist stable fixed point
solutions, also called locking solutions.

6.2.1 The fixed point solutions

The intensity I, and phase ¢, of the fixed points are found by setting I= ng =0
in (6.5 — B.6). The resulting equations can be rewritten as

2
2 = T L_1] 1+a?)+2 Is[ a —1] Ln? 6.7
p A w2 (1+ )+ 2an bl + L7, (6.7)
n = \/’}_\/1+a2sin(¢s+arctan(a)). (6.8)

We consider henceforth the case a > b (corresponding to the lasing mode of operation
I' > k). For given (p,n), the third degree—polynomial equation (f.7]) can have either
one or three real (always nonnegative) solutions for the intensity I, see Fig. B.1.
Particularly, in the case p = 0, the two fixed solutions for the intensity suffer a
transcritical bifurcation, Fig. B.9, at @ = b. By multiplying Eq. (B.7) by (1 + o?),
one gets

2 2 2
p*(1+a?) [( @ ) 2 2
= —-1)(1 . 6.9
I il (1+e%) +nal +1 (6.9)
From this equation, it is straightforward to show that for any point of those solutions
the condition p
< 1 2 6.10
< Jevita (6.10)

is always satisfied, hence ensuring that there will be the corresponding solution for
¢5 obtained from Eq. (B.8).

The lines separating the one fixed point solution region from the three fixed point
solutions region can be found by using standard methods of algebra. These lines
form the so—called saddle—node curve (solid line in Figs. 6.9 (a), (b) and B.3).
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Figure 6.1: Fixed points for the intensity for a class A laser with injected signal, Eq. (B.7), versus
a. Solid line: stable fixed point, dashed line: saddle point, dotted line: unstable point. a = 2.
b=1. (a) p=0, (b.l) p=04, (b.2) p=0.6, (b.3) p=10..8.

It turns out that the three fixed points region is a connected set enclosing region
labelled 2, 3, 4, 5, 8, 10 shown in Fig. p.3 (a) for a typical case a =2,b=1, a = 2.
In regions 1, 6, 7, 9 only one fixed point exists. For moderate values of the intensity
p, there is a range of values for the frequency 1 € (11, 72) for which three fixed points
exist, whereas for very large intensity, only one fixed point exists for all values of 7.
A similar scenario occurs for a = 0, see Fig. where the three fixed points region
is labelled as 5, and only one fixed point appears in regions 1, 7, 9.

6.2.2 The periodic orbit solutions

At the saddlenode curve, a saddle point and another fixed point merge and
disappear. In some cases this gives rise to a periodic orbit through an Andronov—
Leontovich bifurcation. Near the bifurcation, it is possible to obtain approximately
the evolution equation for the angle variable ¢(¢) by assuming that the intensity
of the periodic orbit is constant. This approximation, which can be obtained via
perturbation theory on the laser equations to lowest order [Zimmermann ef al.]
ROOT], is derived here heuristically by neglecting fluctuations in the intensity, setting
I =0 in Eq. (p.4), but allowing for a time dependent phase in Eq. (p.6)) for ¢.
Setting I = I, constant in Eq. (B.5) and replacing in Eq. (f.6) we obtain

d=mn— pg.\l/_}i;a sin(¢ + arctan(a)). (6.11)
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The next approximation is to consider that I, is the intensity of the field at the
nearest point (p,7) in the saddle-node curve with the same value of the external
field amplitude p. Hence, I, is computed as the double root of Eq. (B.7) taking the
adequate value n = 1, or n = ns.

Eq. (B-I1) is known as Adler’s equation [[Ad 04d] and it can be easily ana-
lyzed by writing it as

(6.12)

using the potential function

U(y) = —ny, cos(¢ + arctan(c)) — 1o, (6.13)

where we have introduced
py/ (1 + 02

The dynamics of ¢ can be explained in terms of relaxation in the potential U. For
In| < mr the potential has local minima and the phase eventually stops in one
of them. This is a fixed point solution which has been discussed in the previous
subsection. A periodic orbit solution is obtained only in the case |n| > 7z where the
phase ¢ varies monotonically with time. The explicit solution is

$(t) = 2arctan [n%f tan (nift) + %l — arctan(a) — 7t, (6.15)

2
where n.; = /7% — 7.

Therefore, within this approximation, the line separating a fixed point from a
periodic orbit solution is given by |n| = nr. Notice that our derivation of this relation
is different from the usual one in which one derives it by demanding that Eq. (p.10)
is satisfied. We have shown that Eq. (6.10) is indeed satisfied for all values of 7 and
p and that the condition |n| = 5z, determining the locking range is an approximated
one. By using Eq. (B.7) this condition can be rewritten as

a b
= - . 6.16
Pl e~ T (6.16)

The range of validity of this approximation has to be checked numerically. In Fig.
B3 (c) we compare the exact result with the approximate one in the typical case
a=2,b=1, a=2. It can be seen that the approximation is quite good for small
values of p but it worsens as the intensity p is increased.

When crossing the saddlenode curve, for example crossing from region 9 or 1
to region 5 in Fig. .4 (a), the periodic orbit disappears. As a precursor of this
disappearance, the period of the periodic orbit, T, grows in regions 1, 9 until it
finally diverges at the saddle node curve. The divergence can be fitted, for a fixed
value of 7 to the law T ~ (p, — p)~'/? [Btrogatz, 1994], being p, the value of p where
the bifurcation occurs, see Fig. £.4.




80

Class A lasers with injected signal

0.0 0.20 0.30 0.35 040 0.49
P



6.2 Bifurcation set 81

\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\1‘\\\\

00 0o 10 1o 20
P

Figure 6.2: Bifurcation set for a class A lager with an injected signal fora =2,b=1and a = 2.
In (a) and (b) the solid line is the saddle-node curve separating regions 1, 6, 7, 9 with one fixed
point solution from regions 2, 3, 4, 5, 8, 10 with three fixed point solutions; the short—dashed lines
separating the pairs of regions 8 — 10, 2 — 3, 7 — 9 and 1 — 6, are Hopf bifurcation, as given by
Eq. (@, where a periodic orbit is created; the dotted lines are homoclinic bifurcation where
the periodic orbits of regions 4 and 10 disappear when going to region 5, and one periodic orbit
in 3 disappears when going to region 4; the coincidence of the curve of homoclinic orbits with
the saddle—node curve mark the existence of Andronov-Leontovich bifurcation where the periodic
orbit of 9 and 1 disappears when crossing to 5; the long—dashed line is a saddle—node bifurcation of
periodic orbits and going from 7 to 6 two periodic orbits of different stability are created; the two
big solid dots are Takens—-Bogdanov points. There also exist homoclinic saddle-node codimension—
2 points, in the intersection between the saddle-node curves and the homoclinic orbits (squares
and triangle). In (c¢) we indicate the different regions of stability: in L, one fixed point is the stable
solution; in NL, one periodic orbit is the stable solution; in C there is coexistence of a stable fixed
point and a periodic orbit; finally, in B there are two stable fixed points. The dotted line is the
approximate locking range given by Eq. (p.16).
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Figure 6.3: Bifurcation set for a class A lagser with an injected signal for a = 2,5 =1 and a = 0.
The solid line is the saddle—node curve separating regions 1, 7, 9 with one fixed point solution from
region 5 with three fixed point solutions. The dotted lines separating the pairs of regions 7—9 and
7 — 1, are Hopf bifurcation, as given by Eq. (), where a periodic orbit is created. The locking
range is formed by regions 5, 7 where a single fixed point is the only stable solution. In 1 and 9
the stable solution is a periodic orbit.
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Figure 6.4: Period of the stable periodic orbit of region 9 of diagram of Fig. E versus p. = 0.5
(diamonds). Solid line: 5.4/+/p, — p, with p, = 0.272.
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6.2.3 Unfolding the bifurcation set

In the following we will perform the stability analysis of the different fixed
points and the periodic orbit solutions. The fixed points for I are given by (B.7)
and an equation that can have either one or three real roots depending on p and 7.
The stability of these fixed points defines the different regions of interest. Stability
properties can be established in terms of the eigenvalues of the linearization matrix
(Jacobian) of Egs. (B.3— B.4)) at the fixed points, see chapter . The local bifurcation
takes place when the real part of some eigenvalue crosses zero.

The results of the stability analysis depend on the value of the parameter . For
a = 0, the only possibility is to have regions in which either a stable fixed point or a
stable periodic orbit exist, see Fig. f.3. However, for o > 0 a much richer behaviour
appears. We summarize the results for the typical case a = 2, b =1, « = 2 shown in
Fig. b.2: In regions 5, 7 there exists only one locking (stable fixed point) solution.
In region 8 there exist two locking solutions with different intensity. In regions 1,
2, 9 there exists one stable periodic orbit solution. Finally, in regions 3, 4, 6 and
10 one locking solution coexists with a stable periodic orbit solution. While some
of the lines of this bifurcation set shown in Fig. can be evaluated analytically,
others have to be obtained numerically. We now give details of the calculations of
those lines.

6.2.3.a Saddle—node bifurcation

A saddle-node bifurcation occurs when two fixed points are created /annihilated.
The saddle-node curve separates, in this case, a region with one fixed point from
another with three fixed points. On the saddle—node curve, two fixed points coincide
(or equivalently, one of the eigenvalues of the Jacobian is zero). From another point
of view, the saddle-node bifurcation curve can be obtained as the lines in the (p,7)
plane in which the third degree equation (B.4) has a double root. In this case, the
equation for the fixed points can be written in the form

u(I — I)(I = I,)? = 0. (6.17)

Comparing this expression with the one for the fixed points (f.7) and equating the
different orders of I, a system of equations is obtained

po= (1+0%) —2an+7%
—u(h +2L) = —2anb+ 2bn? — 2(1 + o/(a — b) + 2an(a — b) — p?,
p(I3 +2I1L) = (a—b)*1+o?) + 2anb(a — b) + b*n® — 2bp?,
pl I = b?p°

(6.18)

From this system, the variables y, I; and I; can be obtained, and an expression that
relates p to i can be found. The resulting saddle-node bifurcation curve is indicated

by a solid line in Figs. B.2 (a), .4 (b) and .3
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6.2.3.b Hopf bifurcation

In a Hopf bifurcation of a two—dimensional system such as ours, a fixed point
changes its stability (from stable to unstable, or vice versa) and a periodic orbit with
opposite stability to the coexistent fixed point is born/disappears. At the bifurca-
tion point, the eigenvalues of the Jacobian matrix J associated to the deterministic
system (6-3) and (p-4)) [or equivalently and somewhat easier (p-7) and (p.6)] are com-
plex conjugated and pure imaginary. This condition can be written as Tr(J) = 0,
Det(J) > 0. Hence,

(b+I{a—b—1I)—al =0. (6.19)

This equation combined with the one for the fixed points (B.7) leads to the Hopf
bifurcation curve,

Foam(fi-) (- 0o 2 o

also shown in Fig. p.2 (a), F-3 (b) (short-dashed line). From regions 8 to 10, 7
to 9, 1 to 6 and from 2 to 3 a periodic orbit is born and a fixed point changes
its stability. The disappearance of those periodic orbits will be explained in the
following subsections.

6.2.3.c Takens—Bogdanov singularities

At the points (pms, 7ms) where the Hopf and the saddle-node bifurcation curves
intersect the eigenvalues of the Jacobian matrix are strictly equal to zero. This
condition gives

b
prs = \/2b (\/%—1)3\/1—1-042(\/14-042:&04). (6.22)

nwe = =+ ( °_ 1) V172, (6.21)

For the parameters considered in Fig. (a=2,b=1and o =2),itis (pus, Mus) =
(0.274,—-0.926) and (pus,nms) = (1.160,0.926). At these intersection points, the
Jacobian matrix is different from zero, and its normal form is

( - ) . (6.23)

These points correspond to Takens—Bogdanov singularities [Kuznetsov, 1997. At
these intersection points, indicated in the figure, a homoclinic orbit is also born.
These orbits have been found numerically and they are discussed in the next sub-
section.
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6.2.3.d Homocliniec orbits

When (some branch of) the stable and unstable manifolds of a saddle point
coincide we are in the presence of a homoclinic orbit. Homoclinic orbits have
been obtained numerically using the program AUTO97 [Doedel et al, 1997| as the
“infinite-period limit” of periodic orbits. The resulting curves of homoclinic orbits
are displayed as dotted lines in Fig. p.2 (a), p.3 (b). Their location in parameter
space coincides partially with the saddlenode curve.

The intersections of the saddle-node curve and a homoclinic bifurcation occur at
codimension-2 points. There exist intersection homoclinic saddle-node codimension—-
2 points (SH) at each of the saddle node branches, see Fig. b.9 and B.6. The bifur-
cation structure near to these points was described in [Schecfer, 1987]. Note that
the location of these codimension—2 points cannot be completely exact due to the
fact that the homoclinic orbits are obtained numerically (considering an orbit of
large period but not infinite). The bifurcation branch emerging from these points
with coincidence of the curve of homoclinic orbits with the saddle-node curve is an
Andronov-Leontovich bifurcation.

6.2.3.e Saddle—node of periodic orbits

Besides the bifurcation curves described so far, there exists yet another curve
of saddle-node bifurcations of periodic orbits. This is indicated by the the long—
dashed curve in Fig. p.2 (a), f.9 (b) which has been obtained also numerically.
When crossing this curve, the two periodic orbits of region 6 disappear. The point
were the saddle—node of periodic orbits, the homoclinic and the neutral saddle curve
intersect is a codimension—2 point, labelled as F, in Fig. p.6. This point is not found
exactly at Fig. (b) due to numerical evaluation. The presence of this point gives
rise to a small region, labelled as 11, where two periodic orbits, and three fixed
points exist, see Fig. f.§ and p.7. For w &~ —5 [not shown in the scale of Fig. p.2
(a)] the Hopf bifurcation and the saddle-node of periodic orbits collide and regions
1 and 7 are directly separated by the Hopf bifurcation.

6.2.3.f Different regions separated by the bifurcation set

We summarize in Table .1 the results of the previous subsections concerning the
different regions separated by the bifurcation lines. In Fig. p.5, the phase portrait
of different regions is shown, namely regions 3 — 4 — 5 — 6. In the first line, from
left to right the transition from region 4 to 5 is shown. In the first column, one
can observe the transition form region 4 to 3 through an homoclinic orbit. The
transition from region 3 to 6, as a saddle-node bifurcation, appears in the last line.
In the diagonal [Figs. B.5 (a), .3 (e) and B.5 (i)] one can observe the transition
through an Andronov bifurcation. The saddlenode of periodic orbits is reflected in
Fig. (f). In Fig. p.7, appears the phase portraits in region 11.

Many of the bifurcation features found in this system are present in other stud-
ies, as in the book by Kuznetsov [Kuznetsov, 1997 where a bifurcation diagram




86 Class A lasers with injected signal

topologically equivalent to ours is displayed in connection with the analysis of a
predator-prey model by Bazykin.

These results allow us to identify the stability regions indicated in Fig. (c):
in L, one fixed point is the only stable solution; in NL, one periodic orbit is the
only stable solution; in C there is coexistence of a stable fixed point and a periodic
orbit; finally, in B there are two stable fixed points.

Table 6.1: Different regions in the bifurcation set for a class A laser with injected
signal. We use the notation: f.p. = fixed point, p.o. = periodic orbit, St. = stable
and Unst. = unstable.

1 — 1 fp. Unst., 1 p.o. St.

2 — 2 f.p. Unst., 1 f.p. Saddle, 1. p.o. St.

3 — 1fp. Unst., 1fp. Saddle, 1 f.p. St., 1 p.o. St., 1 p.o. Unst.

4 — 1f.p. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o St.

5 — 1fp. Unst., 1 fp. Saddle, 1 f.p. St.

6 — 1fp. St.,1p.o. St., 1 p.o. Unst.

7 1fp. St.

8 — 2f.p. St., 1fp. Saddle

9 — 1 f.p. Unst., 1 p.o. St.

10 — 1 f.p. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o. St.

11 — 1 fp. Unst., 1 f.p. Saddle, 1 f.p. St., 1 p.o. St., 1 p.o. Unst.
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Figure 6.5: Phase portraits in different regions. Triangle: stable fixed point, square: unstable
fixed point, cross: saddle point. Solid line: stable orbit, dashed line: unstable orbit. Points:
trajectories. (a) Region 4: (p,n) = (0.33,—1); (b) Near homoclinic 4 — 5: (p,n) = (0.33,—-0.95);
(c) Region 5: (p,n) = (0.33,—-0.9); (d) Close to homoclinic 3 — 4: (p,n) = (0.33, —1.03); (e) Close
to Andronov bifurcation 4 — 6: (p,n) = (0.34,—1); () Close to the saddle-node of periodic orbits
6—7: (p,n) = (0.352,—-1); (g) Region 3: (p,n) = (0.33, —1.05); (h) Close to the saddle-node 3 — 6:
(p,m) = (0.33,—1.065,); (i) Region 6: (p,n) = (0.345, —1).
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Figure 6.6: Sketch of the partial bifurcation set for a class A laser with injected signal. Different
regions and intersection points detailed in Fig. .2 and Table p.]. SH: homoclinic saddle-node
codimension—2 points. F: intersection of the saddle-node bifurcation of periodic orbits, the homo-
clinic orbit and the continuation of the Hopf bifurcation (dotted line, which is not a bifurcation).

Figure 6.7: Phase portrait at region 11 of the bifurcation set. a) (p,w) = (0.34,—0.9713),
Triangle: stable fixed point, square: unstable fixed point, cross: saddle point. b) Sketch of the
phase portrait: arrows indicate the sense of the flow.
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6.3 Lyapunov potential

We now look for a description of the dynamical equations in terms of a Lyapunov
potential, see Sec. P.2. Equations (6.3) and (p.4) can be written as

2 av 2

j=1 J j=1

where the function V' is [Haken, 1983

1 p
V(z1,2e) = 5 [ + 22 —aln(b+ 22 + 23)] — m(:ﬁ — axq), (6.25)
or, written in terms of intensity and phase,
1 oI
VI,p) == —aln(b+I)] — ——=rcos (¢ + arctan «). 6.26
(1¢) = 5[~ atn(o-+ D] = 2 cos 9 . (620

The matrices D and g, and the vector v are

. _ (1 0 0 -« (1 0 [ =Nz
D‘S+A‘(0 1)+(a 0)’ g‘(o 1)’ "‘(nxl)' (6.27)

6.3.1 Deterministic Dynamics

In the deterministic dynamics (e = 0), Egs. (F:24) show that V(z1,2,) is a
Lyapunov potential, i.e. a function that monotonically decreases along trajectories,
V <0, provided that the residual terms (v, ve) satisfy the orthogonality condition
(B-30)

oV ov

Mz T P 0my

It turns out that this orthogonality condition is satisfied if np = 0. This means

that a Lyapunov function description of the dynamics using (£.25)) is valid along the

coordinate axis 7 = 0 and p = 0. Notice that the case p = 0, n # 0 corresponds to

a situation in which there is no applied field but the reference system rotates at an
arbitrary frequency 7.

The equation for the intensity (B.7) can have one or three (positive) real roots
depending on the parameters. In Fig. .8, the stationary solutions are plotted for
a case in which a > b. The stability of these solutions follows immediately from the
analysis in terms of the potential and it is described in the figure caption. The value
at which the saddle and unstable solutions disappear corresponds to the saddle—node
bifurcation value for = 0 (see Fig. p-2).

In the transient dynamics towards the stationary states, the combined effects
of S and A produce in general a spiral-like trajectory in the (z1,z2) plane. The
angular velocity of this movement is proportional to . Finally, the residual term
(v1,v2) induces a movement which does not decrease the value of the potential and

0. (6.28)
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Figure 6.8: Upper figure: Fixed points of Eq. (b.7]) versus p. Lower figure: Value of the
potential, Eq. (), evaluated at the different fixed points versus p. 7 = 0. a =2, b = 1 and
a = 2. Dimensionless units.

it is responsible for any dynamics after the line of minima of the potential has been
reached. We now analyze the different possibilities for the extrema of V.

In the case p = 0, the potential function was given in chapter fl. The potential
does not depend on the phase ¢ of the electric field and it can adopt two qualitatively
different shapes:

(i) For a < b the potential has a single minimum at z; = 3 = 0 and no maxima.
Therefore, the only fixed point is the off state I = 0, which is stable.

(ii) For a > b, the potential has the shape of a Mexican hat, see Fig. (a). The
residual dynamics &; = v; gives a periodic harmonic movement in the minima of the
potential with frequency 7. This corresponds to the periodic orbits represented in
Fig. b.3.

In the case of zero-detuning injected signal, i.e. p > 0, = 0, the potential,
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(a) p=10, (b) p=0.8. In (a) we also indicate the projection of the line of minima of V' and the

Figure 6.9: Potential for a class A laser with an injected signal with the same frequency of the
corresponding line is plotted in (b).

unperturbed laser, Eq. (), with the parameters a = 2, b = 1, a = 2. Dimensionless units.
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which depends now explicitly on the phase ¢, is tilted in a preferred direction. In
the case a < b the location of the minimum changes and the asymptotic state
has a nonzero light intensity, that is proportional to p. In the case a > b, the
Mexican hat is tilted as well in a preferred direction. For small p the inclination
is small and the effect is that the maximum still remains a maximum, although its
location varies slightly. The tilt breaks the symmetry amongst the line of degenerate
minima and an absolute minimum is selected. At the same time, one of the previous
minima becomes a maximum in the direction orthogonal to the tilt and a saddle
point is born. Increasing p, the maximum of the Mexican hat and the saddle point
disappear (corresponding to the saddlenode curve of figure p.3) and the potential
has only one minimum at a preferred phase direction, see Fig. (.9 (b). Therefore,
the asymptotically stable situation, in this case of p > 0, » = 0 and a > b is that the
laser switches to an on state with a well defined intensity and phase, in agreement
with the results shown in Fig. (.2

It is an open question the validity of a Lyapunov potential description in the
general case, pn # 0, and we have not been able to find an analytical expression for
the potential V' in this general case. However, since we do not expect qualitative
changes in the dynamical features near the coordinate axis, we speculate that a
Lyapunov potential description continues to be valid, at least for small values of np.

Assuming the validity of this Lyapunov potential description we can understand
the transition from locking to non-locking states. Let us consider a given value of
p > 0 and increase the detuning frequency starting from n = 0. For n = 0, the
potential is tilted and there are no residual terms, see Fig. .9 (b). As 7 increases,
the shape of the potential deforms, the minimum of the potential and the saddle
point approach through the deterministic circumference of minima of the system
without optical injection, p = 0 (region 5 of Fig. p.2). Moreover, the residual terms,
proportional to 7 increase, but they are not big enough to overcome the tilt of the
potential and to induce a rotation movement. For a value of 7 (corresponding to
the saddlenode bifurcation) these two points (minimum and saddle) collapse and
a periodic motion appear induced by the residual terms (corresponding to region 9
of Fig. 6.9).

Similarly, starting at a point 7 > 0 and increasing the intensity of the applied
fields, p, a similar scenario appears. For p = 0, the potential has a line of degenerate
minima, [ = a — b, and trajectories are circumferences in the (z1,z2) plane induced
by the residual terms. Increasing p, the line of minima deviate from the circum-
ference due to the change of shape of the potential and it becomes an ellipse, the
periodic orbit solution is also induced by the residual terms of the dynamics, which
are proportional to 7. In fact, it can be shown that the solution in the steady state
for very small values of p has the form

A
(1) = ,
Q 1+ pvD? + F2sin(¢(t) + 7)
which represents an ellipse with a time dependent phase. This dependence is of the
form

(6.29)

o(t) =gt — pv B2 4+ C?sin(o(t) + 72). (6.30)
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The values of A, B, C, D, £ have been obtained by using equations (f.5) and (f.6)
and small values of p. The resulting expressions are

A = a-b, (6.31)
B - _ [4(a — b)? + n*a® + 2aan(a — b)]
nva — b[4(a — b)? + n%a?]
_1\3/2
¢ — e (a —b) ,
1 a0 + ]

D — 4ar/a — b

~ 4(a — b)2 + n2a?’
r 2v/a — ba®n

4(a — )% + n2a?(a —b)’
v = arctan (—=D/F),
v = arctan (—B/C).

Increasing p even further, the potential deforms continuously until arriving to the
saddle-node bifurcation.

6.3.2 Stochastic effects

In the presence of low—to—moderate levels of noise, € > 0, the qualitative fea-
tures of the transient dynamics remain the same as in the deterministic case. The
most important differences appear near the stationary situation and show up as
fluctuations of the intensity and phase of the electric field. While the intensity sim-
ply oscillates around its mean value, one can observe in some cases an additional
phase drift which shows up as a variation in the frequency of the emitted light. The
potential picture developed in the previous section helps us to understand the origin
of this noise-induced frequency shift, as well as to compute its magnitude.

Let us look at the potentials depicted in Fig. [6.9. First consider the case p = 0.
The deterministic movement is such that the line of minima (shown as a projection in
the (z1,z2) plane) is ran at a constant frequency 7. On top of that movement there
are fluctuations which allow frequent excursions beyond the minima of the potential
V. Away from the minima, the antisymmetric part of the dynamics (governed by the
matrix A in equation (B.27) and proportional to «) gives a nonzero contribution of
the rotation terms producing the observed phase drift. For 5 = 0, p # 0, when only
one minimum of the potential exists, the fluctuations make the system to explore
regions outside this minimum allowing the rotation terms to act again, see Fig.
6.10. Depending on the value of p and e the rotation term can be strong enough to
produce the phase flow.

After these qualitative arguments, we now turn to a more quantitative calcula-
tion. In those cases in which a Lyapunov potential V' (x;, z2) exists and the matrices
D and g of (6.24) satisfy the fluctuation—dissipation relation (£.33), the station-
ary probability distribution is given by equation (B.3§). This relation is exact if the
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Figure 6.10: Vector field for a class A lasers with injected signal. Thick solid line: simulation of
Eqgs. (B.3) and (p.4). Thin lines are the equipotential curves of Eq. (6.25) and the arrows indicate
the sense of the flow. Parameters: a = 2, b =1, a =2, n =0, p = 0.05. ¢ = 0.01. Initial
conditions: z; = 0, 2 = 0. Dimensionless units.

residual terms v satisfy the orthogonality condition (f.28) and if they are divergence—
free (£-37) (as they are in our case). In other cases, it has to be understood as an
approximation valid in the limit of small noise ¢ — 0.

By changing variables to intensity and phase, we find that the probability density
function is

Pou(I,¢) = Z T e T/% (b + )9/ exp (\/% cos(¢ + arctan(a))), (6.32)
€ o

and the marginal probability density function for I is

. VI
Pst(I) -7 16 I/2€(b+I)a/2€IO (ﬁ , (633)

where Z is the Bessel function of the first kind and order 0. Expression (p.33)
reduces to (p.17) for p = 0.
The maximum of the probability density function, I,,, is given by
(b+Im)p Ti(p)
VIV1T+ a2 Zo(p)’
where p = pv/I,/(ev' 1+ o?) and Z; is the Bessel function of the first kind and order
1. For € = 0, deterministic case, Z,(p)/Zo(p) = 1 and the equation is reduced to

(B-7) with n = 0.

b+ I, =a+ (6.34)
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Figure 6.11: Mean value of the intensity in the steady state in a class A laser with zero—detuning
(n = 0) injected signal for ¢ = 2, b = 1 and a = 2. The solid line corresponds to p = 0 and has
been computed using the analytical result Eq. (5.19), the dotted line (p = 0.6) and the dashed
line (p = 0.8) have been computed numerically using Eq. (6.33).

The steady state average value for the intensity (I);; = [dI IP4(I) can be
analytically computed in the case p = 0 with the result (5-19). In the most general
case, for p # 0, the mean value can be computed numerically by using (£.33)). In
Fig. B.11], this mean value is plotted versus e, for fixed value of p. The mean value
is always larger than the deterministic (e = 0) case.

As mentioned before, in the steady state of the stochastic dynamics, the phase of
the electric field ¢ fluctuates around a mean value that changes linearly with time.
This is clearly seen in the numerical simulations (see Fig. p.1J) and it physically
corresponds to a change Aw in the emission frequency of the laser.

_ This frequency shift can be computed as the average value of the phase derivative
(¢). In the case that the steady state is a periodic orbit of period T', one needs to
subtract from this value the intrinsic frequency 27 /7. By taking the average value
of Eq. (B.6) and using the rules of the stochastic calculus, one arrives to

Aw=Z"a /0°° e~ /% (b + I)%/ [(“ ;i; Dy, (ﬁ;%) +VIL (6\/%” dlI.

(6.35)
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Figure 6.12: Time evolution of the mean value of the phase ¢ in a class A laser without injected
signal p = 0 (line A) and zero—detuning injected signal p = 0.6, n = 0 (line B), in the case a = 2
there is a linear variation of the mean value of the phase at late times. For a@ = 0 ( line C) there is
only phase diffusion and the average value is 0 for all times. The solid lines have the slope given
by the theoretical prediction Eq. (@) Line D: time evolution of < ¢ >z —2nt/T, being T the
period of the periodic orbit in the deterministic case, for p = 0.5, = 1. In all the curves: a = 2,
b=1and e =0.1.

Notice that this stochastic frequency shift is zero in the case o = 0 or for the
deterministic dynamics (e = 0). In the case p = 0 this expression analytically
reduces to (p.23).

For p # 0, one needs to evaluate the expression (f.33) numerically. In all cases,
the results are in excellent agreement with numerical simulations of the rate equa-
tions in the presence of noise. In Fig. B.I3, we plot the stochastic frequency shift as
a function of the noise intensity for several values of p. For a fixed value of p, |Aw|
increases as € increases, since a larger value of € can induce larger fluctuations and
larger excursions in phase space (x1,Z2) away from the minima of the potential. For
fixed €, |Aw| decreases as p increases. This result can be understood by noticing
that when p is increased, the inclination of the potential increases and the trajectory
becomes more confined around a fixed value.

In the case p # 0 and n # 0, the stochastic frequency shift is also present, see
Fig. (line D), although it is not possible to compute its magnitude because we
do not have an explicit expression for the Lyapunov potential.
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Figure 6.13: Stochastic frequency shift Aw = (¢) in a class A laser for a=2,b=1and a = 2.
For p = 0 (solid line) the explicit result Eq. (5.23) is used, whereas for p = 0.6 (dotted line) and
p = 0.8 (dashed line) (6.35) has been numerically evaluated.








