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Capitol 7

Lasers de Classe B:
Potencial de Lyapunov

En aquest capitol s’estudia la dinamica del laser de classe B (capitol f]), primer
a partir de ’analisi numerica de les equacions i, seguidament aquesta dinamica
s’explica emprant el potencial de Lyapunov (capitol ) que s’obté.

La dinamica d’un laser de classe B es descriu mitjancant dues equacions d’evo-
lucié, una per a 'amplitud lentament variable del camp electric dins la cavitat
laser i I’altra per al nombre de portadors. El camp eléctric es pot escriure en termes
d’intensitat optica i fase. En el tractament que es fa en aquest capitol, es menyspreen
els termes aleatoris, pero es manté el valor mig de ’emissié espontania en 1’equacid
per a la intensitat, Egs. (.1 - [.3). En el cas deterministic, les equacions per a
la intensitat del camp electric i els portadors no depenen de la variable fase del
camp, per tant aquesta variable no es considera en el tractament inicial. L’evolucié
dinamica de la intensitat i portadors és tal que ambdues variables arriben a l’estat
estacionari realitzant oscil-lacions esmorteides amb un periode que decreix en el
temps, Figs. [[.], i .

La dinamica de la intensitat i portadors es pot explicar mitjancant un potencial
de Lyapunov. Un estudi similar s’havia realitzat previament [[Oppo and Politi, 1985,
pero sense considerar ni el terme de saturacié de guany, ni el valor mig del terme
d’emissié espontania. En aquest capitol, s’inclouen aquests dos parametres en el
potencial ([I4)). Observant la seva forma, Fig. [7-4, té un dnic minim, i per tant
una tnica solucié estable. El moviment cap a aquest minim té dues components:
una conservativa que produeix trajectories equipotencials i, una d’esmorteiment que
és la responsable de decréixer el valor del potencial. Aquests dos efectes combinats
condueixen els sistema cap al minim seguint un moviment espiral. Els parametres de
saturacié de guany i emissi6 espontania, inclosos en el tractament potencial, sén els
responsables d’augmentar els coeficients de la part simetrica de la matriu que associa
el potencial i les equacions de moviment, i d’incrementar, com a conseqiiéncia, els
termes de dissipacié.

La fase del camp eléctric, que oscil-la en el temps fins a arribar a un valor
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estacionari, es pot incloure facilment en la descripcié potencial. Aixi, el conjunt
de les tres variables que descriuen el laser de classe B és de tipus flux potencial no
relaxacional (2:26), amb el potencial descrit en el paragraf anterior (només depenent
de la intensitat i el nombre de portadors) i la inclusié de termes addicionals (que
contenen el parametre «) en la matriu antisimeétrica que relaciona el potencial amb
les equacions del sistema, ([7.23).

Cal indicar que el potencial que s’ha obtingut només és valid en el cas determi-
nista, a causa que la matriu que relaciona el gradient del potencial amb les equacions
dinamiques no satisfa la condicié fluctuacié-dissipacié (£-39).

A partir de que el potencial en funcié del temps és aproximadament constant
entre dos pics de la intensitat, Fig. [[.1], es pot estimar el periode de les oscil-lacions
de relaxacié realitzant un simil mecanic i reduint el problema a un d’energia constant.
S’obté una relacié entre el periode i I’energia del sistema ([[.26). Del calcul numeric
d’aquesta expressié, Fig. [7.§, s’observa que el periode decreix quan el valor del
potencial disminueix. Combinant aquest resultat amb el decreixement temporal
del potencial, es pot explicar que el periode de les oscil-lacions disminueix en el
temps. La comparacié dels resultats de 'expressié aproximada i el periode real de
les simulacions és molt acceptable, Fig. [[.7.

De I'expressié aproximada per al periode de les oscil-lacions de relaxacid, és pos-
sible quantificar la seva discrepancia amb el valor exacte a prop de I'estat estacionari.
La freqiiencia exacta de les oscil-lacions de relaxacié a prop de I'estacionari és la part
imaginaria dels autovalors de les equacions d’evolucié linealitzades al voltant de la
solucié estacionaria. Els resultats que finalment es comparen sén les expressions
T2 i 3.

Per poder entendre completament la variacié del periode en el temps, caldria
avaluar la variacié temporal del potencial entre dos pics consecutius d’intensitat.
Aquesta variacié és deguda al termes dissipatius de les equacions de moviment.
Encara que no ha sigut possible obtenir-la exactament, s’ha obtingut una expressi6
simple a partir d’arguments semi-empirics per a la variacié temporal del potencial,
Eq. (F39) i Fig. -8 Adquesta expressi6 es basa en l'evolucié de les variables en
el temps a prop de 'estacionari. La forma resultant pel potencial, combinat amb
que el periode és linealment relacionat amb el potencial, suggereix una expressié
semi—-empirica per a evolucié temporal del perfode, Eq. (7.40). L’expressi6 senzilla
resultant, decaiment exponencial del periode, ajusta no només a ’estacionari, sind
també en el régim transitori, Figs. [[.]1[(.9.



Chapter 7

Class B Lasers: Lyapunov
Potential

In this chapter, we describe the dynamics of class B lasers in terms of a Lyapunov
potential function.

7.1 Model

The dynamics of a typical class B laser, for instance a single mode semiconductor
laser, can be described in terms of two evolution equations, one for the slowly varying
complex amplitude E of the electric field inside the laser cavity and the other for
the carriers number N (or electron-hole pairs), Egs. (f.11)) and (f.17) [Agrawal and
D 080]. These equations include noise terms accounting for the stochastic
nature of spontaneous emission and random non-radiative carrier recombination
due to thermal fluctuations. Both noise sources are usually assumed to be white
Gaussian noise sources.

The equation for the electric field can be written in terms of the optical intensity
I (normalized in such a way that I is equal to the number of photons inside the
cavity) and the phase ¢ by defining E = v/Ie'®. For simplicity, we neglect the
explicit random fluctuations terms and retain, as usual [[Agrawal and Dutfa, 1986,
the mean power of the spontaneous emission. The equations are (£.14 - {.16) without
the explicit fluctuating stochastic terms

% —[G(N,I) =] + 4¢ N, (7.1)
dp 1
w_ - 2
= SalGN, 1)~ 1, (7.2
dN J
— =——9vN —-G(N,I)I. 7.3
G(N, I) is the material gain given by
N —N,
G(N,I):gN( ) (7.4)

1+slI
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Table 7.1: Definitions and typical values of the parameters for semiconductor lasers.

PARAMETERS VALUES
J/e Carriers injected per unit time > threshold
¥ Cavity decay rate 0.5ps~!
YN Carrier decay rate 0.001ps~!
N, Number of carriers at transparency 1.5 x 10®
gnN Differential gain parameter 1.5 x 108 ps!
s Gain saturation parameter 10°8—-1077
€ Spontaneous emission rate 10~ 8ps~!
« Linewidth enhancement factor 3—6

The definitions and typical values of the parameters for some semiconductor lasers
are given in Table [[-I While the first term of Eq. ([7-]) accounts for the stimulated
emission, the second one accounts for the mean value of the spontaneous emission
in the lasing mode. Egs. ([.J] - [(.J) are written in the reference frame in which
the frequency of the on state is zero when spontaneous emission noise is neglected.
The threshold condition for lasing is obtained by setting G(N,I) =, I = 0 and
neglecting spontaneous emission. The number of carriers at threshold is given by
Ng, = Ny + glN, and the threshold current is Jy, = eynNu, and represents the
minimum injection current needed to fully compensate the losses. Eq. ([[.2) shows
that ng is linear with NV and slightly (due to the smallness of the saturation parameter
s, see Table [(.1)) nonlinear with I.

Since in the deterministic case considered henceforth the evolution equations for
I and N do not depend on the phase ¢, we can concentrate only on the evolution
of I and N. One can obtain a set of simpler dimensionless equations by performing
the following change of variables

2gn gN Y
y=—""1I,2="~(N—-N,), 7= —t. 7.5
W z= 2N =N, 7= (7.5
The equations then become
dy z
= = 2 -1 d 7.6
dr <1+§y >y+0z+’ (7.6)
dz 2y
— = a—bz— 7.7
dr a=o 1+35y’ (7.7)
where we have defined
2 J
a = % (——’YNNO), (7 8)
Y
2
— ﬂ,
Y
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1
e = 1€ (7.10)
Y
16 gy N,
d = EL;V,
Y
s = ST
2gn

The injected current, J, which is externally controlled, is contained in a. The effect
of the spontaneous emission term, £, appears in ¢ and d. Equations (f-8, [[-7) form
the basis of our subsequent analysis. The steady states are

1

i = —[2(a— 1+b5 5 , 7.11
Yst 4(1+b§)[ (a—b)+d(1+b5)+cas+ 1] (7.11)
a(l+4 5ys)
7.12
T by, (1403) (7.12)
where the constant v is given by
v = 4(a—0b)*+4d(a+b)(1+b3)+d*(1+b3)>
+ c[8a+4as(a+b)+2das(1+b3)]+c*a’3 (7.13)

For a value of the injected current below threshold (J < Jy, or equivalently to
a — b < 0), ys is very small. This corresponds to the off solution in which the only
emitted light corresponds to the spontaneous emission.

There is another solution for y,; given by Eq. ([.1I)) with a minus sign in front
of v/v which, however, does not correspond to any possible physical situation, since
it yields ys < 0.

In the absence of noise, saturation and stimulated emission terms, the steady
states are: off state, y; = 0, 24 = a/b and on state, y; = a — b, 2z, = 1. Above
threshold, stimulated emission occurs and the laser operates in the on state with
large y,:. In what follows, we will concentrate on the evolution following the laser
switch-on to the on state.

It is known that the dynamical evolution of y and 2 is such that they both
reach the steady state by performing damped oscillations |Agrawal and Dutta, 1986]
whose period decreases with time. This fact is different from the usual relaxation
oscillations that are calculated near the steady state by linearizing the dynamical
equations. The time evolution of y and z is shown in Figs. [(.] and [7.3, while the
corresponding projection in the (y, z) phase-plane is shown in Fig. [[.3
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Figure 7.1: a) Normalized intensity, y (solid line) and normalized carriers number, z/40 (dot—
dashed line) versus time in a class B laser obtained by numerical solution of Eqs. (7.6) and (F.7).
b) Plot of the potential () Parameters: a = 0.009, b = 0.004, 5 = 0.5, ¢ = 3.2 x 1079,
d = 1.44 x 10~8 which correspond to physical parameters in Table @ with J = 1.2 Jyp,. The initial
conditions are taken as y = 5 x 1078 and z = 0.993. Dimensionless units.
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Figure 7.2: Enlargement of Fig. [.1. z (solid line), y (dot-dashed) line and V (dashed line),
(different variables have been rescaled in other to fit the same vertical scale). Same parameters
than in Fig. @
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Figure 7.3: Number of carriers versus intensity (scaled variables), blue line. The vector field and
contour plot (thick lines) are also represented. Same parameters than in Fig. . Dimensionless
units.

7.2 Potential for class B lasers

We are interested in obtaining a Lyapunov potential that can help us to explain
the dynamics observed in the previous section. A similar study was done in Toda
potential [Oppo and Politi, 1987] without considering neither the saturation term
nor the mean value of the spontaneous emission power, and under those conditions
an expression for the period of the transient oscillations was obtained. In our work,
we calculate the period of the oscillations by taking into account these two effects.
However, the potential is only valid in the deterministic case, since we have not
been able to obtain a potential such that the symmetric matrix S, relating the
gradient of the potential to the dynamical equations [see Eq. (P.28)] satisfies the
fluctuation—dissipation relation (2.35).

The period is obtained in terms of the potential, by assuming that the latter has
a constant value during one period. It will be shown that this assumption works
reasonably well and gives a good agreement with numerical calculations. Near the
steady state, the relaxation oscillations can be also calculated in this form, but the
potential is almost constant and consequently is the period.




108 Class B Lasers: Lyapunov Potential

The evolution equations ([7.6, [/.1) can be cast in the form of a non-relaxational
potential flow, Eq. (B.26), with the following Lyapunov potential

1
V(y,2) = a1y +ayy® + asIn(y) + % + 5 B*(y, 2), (7.14)
where
111 L1,
a = 2 2as+bs 4sd(1+bs) 1956
as = Z(1+b§), (7.15)
1 d
@G = - (a—b+(ac+bd)§+§>,
ac+bd
o - loctid
d
Bly,z) = z—1-sy+ 35 145y (7.16)

2y

The corresponding (nonconstant) matrix D is given by

0 =Dy )
D= ( , 7.17
-D12 -D22 ( )
being
4 2
Dy = Y (7.18)

(1+35y)2y+c(1+35y)]

4y[(14+254+b35)y*+by+d+c7
Dy = . 7.19
2 (14+35y) 2y+c(l+5y)? (7.19)

According to the general results of section P.2, it is possible to split the dy-
namics in purely relaxational part plus a conservative part. The conservative part
corresponds to the antisymmetric components of matrix D and, in this case, can be
obtained simply by setting Doy = 0.

The form of the potential appears in Fig. [(.4.

This potential reduces to the one obtained in Ref. [Oppo and Politi, 1985 when
setting ¢ = d = § = 0 (which corresponds to setting the laser parameters € = s = 0).
The potential in this case takes an easier form

1 1
V(y,2) = 5ly = (e = ) In(y)] + 5 (z — 1), (7.20)
with the corresponding matrix

_(0 —2y)
D_(2y ) (7.21)
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Figure 7.4: Potential for a class B laser. Solid line: simulation of Egs. (7.6) and (F.4). Same
parameters than in Fig. @ Dimensionless units.

As expected, non—vanishing values for the parameters s and ¢ increase the dis-
sipative part of the potential (Do) associated with the damping term. This is in
accordance with the result of Lee and Shin |[Lee and Shin, T989| when linearizing
the rate equations around the steady state.

The equipotential lines of ([7.14)) are also plotted in Fig. [.3. It is observed that
there is only one minimum for V' and hence the only stable solution (for this range of
parameters) is that the laser switches to the on state and relaxes to the minimum of
V. The movement towards the minimum of V' has two components: a conservative
one that produces closed equipotential trajectories and a damping that decreases
the value of the potential. The combined effects drives the system to the minimum
following a spiral movement, best observed in Figs. [(.3 and [[.4.

In the absence of saturation and noise, 5 = 0, ¢ = 0, d = 0, the maxima and
minima of the dynamical variable y(¢) occur always at z = 1. This is because the
equipotential lines of V' in the plane (y, z) are symmetric around the line z = 1,
see Eq. ([-20). However, for other nonzero values of 3, ¢, d, the potential changes
slighty its “orientation” in the plane (y,z) and the maxima of y(t) are not at the
previous value of z, but instead satisfy the relationship obtained by cancelling ([.6),



110 Class B Lasers: Lyapunov Potential

see Fig. [[.3.
Let us consider again the potential ([.14). This potential only depends on the
intensity and not on the phase of the electric field. However, the equation for the

phase, in the normalized variables,

can be also deduced from the potential. The full system can be written as

v
gy 0 0 —Dp\ (3
g_f = 0 0 -Du||%]| (7.23)
e Dy Dz Dy %—‘Z/
where
do z___
D13 - _ (dT) _ ((l—l—sy) ) (724)

(%—V) " B(y,?) [1 +E£(1+ §y)] “

and B(y, z) is defined by ([.16). D3 it can be introduced as an antisymmetric term
in the matrix D because the potential does not depend on ¢, so the equation for z
is not modified. In the case s=c=d =0, it is D13 = —a.

An interesting feature of the phase is that it oscillates until it arrives to a sta-
tionary value, see Fig. [[.5. This change in time is due to the extra dependence on
the variable z. This behaviour is different from the one of the class A laser in which
the phase increases or decreases monotonously, see Fig. p.]] (b).
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Figure 7.5: Phase of the electric field versus time in a class B laser obtained by numerical solution
of Egs. (@ - E) Same parameters than in Fig. @ a = 5. Dimensionless units.
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7.2.1 Period of the relaxation oscillations

The time evolution of the potential is plotted in Fig. [/1]. In this figure it can be
seen that the Lyapunov potential is approximately constant between two consecutive
peaks of the relaxation oscillations as it can be also observed with the equipotential
lines of Fig. (however, in the peak of intensity, the potential decreases steeply,
as can be seen in Fig. [.2)). This fact allows us to estimate the relaxation oscillation
period by approximating V(y, z) = E, constant, during this time interval. When
the potential is considered as constant, the period can be evaluated by the standard
method of elementary Mechanics: z is replaced by its expression obtained from ([/.6)
in terms of y and ¢ in V(y, z). Using the condition that V(y, z) = E, we obtain

. _ 2
E=aiy+ay’ +az 1n(y)+a4%+% [y(l—;gsy)] :

(7.25)

From this equation, we can calculate the relaxation oscillation period T, by using

Y= ‘é—’; and integrating over a cycle. This leads to the expression

T:/yb1+§y dy

7.26
o ¥ [2(E-ay—ay?—a3n(y)—ay )]/ (7.26)

where y, and y, are the values of y that cancel the denominator. We stress the
fact that the only approximation used in the derivation of this expression is that
the Lyapunov potential is constant during two maxima of the intensity oscillations.
In other words, we have made a mechanical simile and reduced the problem to one
with constant energy. A numerical evaluation of this integral yields the dependence
of the period, T, with the value of the energy, E =V, as plotted in Fig. [/.g.
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Figure 7.6: Period versus potential for a class B laser obtained with (f.26). Solid line 5§ = 0,
dashed line 5 = 2. Other parameters, same than in Fig. .1l Dimensionless units.
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Equation ([(.2§) reduces, in the case ¢ = d = § = 0, to the one previously
obtained by using the relation between the laser dynamics and the Toda oscillator
derived in |Oppo and Politi, T98F].

According to Fig. [.6, the period T decreases as the potential V' decreases. Since
the Lyapunov potential decreases with time, this explains the fact that the period of
the oscillations in the transient regime decreases with time. In Fig. [[.7, we compare
the results obtained with the expression ([7-2§) for the period with the ones obtained
from numerical simulations of the rate equations (7., [.7). In the simulations we
compute the period as the time between two peaks in the evolution of the variable y.
As seen in this figure, the above expression for the period, when using the numerical
value of the potential V, accurately reproduces the simulation results although it
is systematically lower than the numerical result. The discrepancy is less than one
percent over the whole range of times.

80[ T

75 ":‘\ \~ |

08 L :

6o

Figure 7.7: Period versus time in a class B laser. Solid line has been calculated as the distance
between two peaks of intensity, with triangles plotted at the beginning of each period; dashed
line has been calculated using the expression ([f.26)), with the value of the potential V obtained
also from the simulation; dotted line corresponds to the semi-empirical expression () Same
parameters than in Fig. IE]I We have used 79 = 55.55, coinciding with the position of the first
intensity peak. Dimensionless units.
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It is possible to quantify the difference between the approximate expression ([7.26))
and the exact values near the stationary state.

By considering ([:26) near the steady state with y = y, + 0y, E = Vi + 6V
(Vie = V(yst, 25)) and retaining the lowest terms in dy and 6V, one can perform the
integral analytically, obtaining an approximation for the period of the steady state

27
Ts ap — , 7.27
“ = D JKF— 1 (720
where
2
las a4 1 l_ (d—i—czst)]
K =2[a->a+—5+- |5+ —52] |,
(2 2y§t ygt 2 2y§t
2
1+ 35ys
F = llﬂwl , (7.28)
2yst
g o _[1+c(1+§yst)] [§+(d+c2zst)],
2yst 2yst

and Dig 4 is the coefficient Diy calculated in the steady state.

The result ([.27]) could be obtained starting from the linearization of potential
([-29), expanding this expression near the steady state, and then calculate the period
from the resulting expression.

The period of the relaxation oscillations near the steady state can also be ob-
tained by the standard procedure of linearizing the evolution equations near the
steady state solution. Applying a small perturbation y = y,; + dy and 2z = 2z, + 02
to Egs. ([7-8) and ([.7), one has after linearization

(Sy = a1 (Sy =+ a9 (SZ, (729)
62 = ag Sy + ag 6z, (7.30)

where

Zst
- 9=t
u ((1 + 5yst)? ) ’

2yst
ap = |——+c},
2 <1+§yst )
Zst
Gy = —— 2t 7.31
2 (1+5yq)? (7.31)
yst
= —|b4+ —=1.
22 ( + 1+§yst>

The eigenvalues of the linearized equations ([(.29) and ([7.30) are

A= —giw, (7.32)
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with

o = —(a11+a22), (733)

1
w = 5\/|(a11 - a22)2 + 4a12 a21|. (734)

The frequency w of the relaxation oscillations near the steady state is the imaginary
part of the eigenvalues of the linearized equations ([.29) and ([.30). This yields a
period Ty; = 27 /w which can be rewritten in terms of K, F', H, Diy & and Dy o in
order to have a better comparison with the approximate period ([-27])

27 D§2,st F? i

Ty = 1-—
" Dy VKF - H? D% 4 A(KF — H?)

(7.35)

The difference between ([.27) and ([[.39) vanishes with Dgy o (i.e. Dayo in the
stationary state). Since K F — H? is always a positive quantity, our approximation
will give, at least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variation of the period with
time, we need to compute the time variation of the potential V(1) between two
consecutive intensity peaks. This variation is induced by the dissipative terms in
the equations of motion. Although we were not able to derive an expression for the
variation of the potential (see [Oppo and Politi, 1985 for an approximate expression
in a simpler case), we found that a semi—empirical argument can yield a very simple
law which is well reproduced by the simulations. We start by studying the decay to
the stationary state in the linearized equations. After expanding around the steady
state, the dynamical equations ([-29) and ([7-30]) show that the variables decay to
the steady state as

dy(7),62(T) eXp(—gT), (7.36)
where g, ([.33), can be rewritten as

0= Dot F. (7.37)

In the case of 3 = 0, ¢ = 0 and d = 0 (neither saturation term nor spontaneous
emission term are considered) ¢ = a.

Expanding V (y, z) around the steady state (ys and z, correspond to extrema
of the potential), it is found that

V — Ve o 042,022, 6y dz. (7.38)
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Using ([(.36) and taking the initial condition at an arbitrary 7, we find an expression
for the decay of the potential

V(1) = Vie = [V(10) — Vg exp (—o (T — 7)) - (7.39)

In Fig. [[-§ we plot In[V (1) — V4] versus time and compare it with the approximation
([:39). One can see that it fits In[V'(7) — V4] reasonably well not only near the steady
state (where it was derived), but also during the transient dynamics. The value of
To, being a free parameter, was chosen at the time at which the first peak of the
intensity appeared. Although other values of 7y might produce a better fit, the one
chosen here has the advantage that it can be calculated analytically by following
the technique of Ref. [Balle ef al, T991]). It can be derived from Eq. ([-26) that the
period T depends linearly on the potential V. This fact, combined with the result
of Eq. ([39), suggests the semi-empirical law for the evolution of the period

T(r) = Toe = [T(10) — Tut] exp (—o (7 — 70)) - (7.40)

This simple expression fits well the calculated period not only near the steady state,
but also in the transient regime, see Figs. .1 and [.9. The small differences observed
near the steady state are due to the fact that the semi-empirical law, Eq. ([-40),
is based on the validity of Eq. ([.26) between the period and the potential. As it
was already discussed above, that expansion slightly underestimates the asymptotic
(stationary) value of the period. By complementing this study with the procedure
given in |Balle ef al., T991] to describe the switch—on process of a laser, and valid
until the first intensity peak is reached, we can obtain a complete description of the
variation of the oscillations period in the dynamical evolution following the laser
switch—on.

6] 200 400 600 800

Figure 7.8: Logarithm of the potential difference versus time in a class B laser (solid line),
compared with the theoretical expression in the steady state ) (dashed line). Same parameters
than in Fig. .1 and 7y as in Fig. f.4. Dimensionless units.
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Figure 7.9: Logarithm of the period difference versus time in a class B laser. Triangles correspond
to the period calculated from the simulations as the distance between two consecutive intensity
peaks, at the same position than in Fig. E The solid line is the semi—empirical expression Eq.
(F-40). Same parameters than in Fig. .1 and 7y as in Fig. [.7. Dimensionless units.



Capitol 8

Estructura de resonancies en un
laser de classe B amb senyal
injectat

En aquest capitol es descriu la dinamica qualitativa i el conjunt parcial de bi-
furcacions (capitol f) per a un laser de classe B amb senyal injectat amb termes de
disintonia petits. El treball d’aquest capitol completa una série d’estudis (veure la
seccié [[.9) sobre bifurcacions en lasers amb senyal injectat en la proximitat de la
singularitat Hopf-sella-node.

Les equacions de balang (capitol f]) en un sistema de referéncia que gira a la
freqiiéncia del senyal injectat sén les (B.1) per al camp eléctric, E, i el nombre de
portadors, W. El camp injectat esta caracteritzat per 'amplitud 3, i la freqiiéncia
7. Per al tractament que es fa en aquest capitol s’agafa un valor pel parametre de
disintonia amb el qual les equacions queden tipus II de la bifurcacié Hopf-sella—node.

En les distintes seccions d’aquest capitol es van introduint a poc a poc els distints
conjunts invariants del sistema i les seves bifurcacions a causa de la complexitat del
conjunt complet de bifurcacions. S’han seleccionat distints colors per a cada tipus
de bifurcacions. El conjunt final obtingut és el de la figura B.22.

La bifurcaci6 sella—node (punts vermells) i la bifurcacié de Hopf (punts blaus)
dels punts fixos de les equacions, es poden calcular analiticament (8.4 - B.6). La seva
interseccié déna el punt Hopf-sella—node. Aquestes bifurcacions separen les regions
de Vespai de parametres (8, 7) segons V'estabilitat dels punts fixos A, B i C, Fig.
B.J. A laregié 1, A és estable, B inestable i C' sella; un parell d’aquests punts fixos
s’aniquilen quan es creua els costats del triangle: cap a la regi6é 4, B i C col-lapsen;
cap a les regions 6, 31 3', A i B s’aniquilen deixant en aquestes regions el punt
C. Un punt fix estable existeix en les regions 1, 4 i 5, que correspon, en termes
fisics, a tenir una freqiiencia de sortida sintonitzada amb la d’entrada. El punt fix C'
correspon a l'estat del laser apagat, i en totes les regions d’interés és un punt sella.

La bifurcacié de Hopf (primaria) ocorr o bé en el punt fix A 0 B, creant una
orbita periodica transversal, T', al pla W = 0. Realitzant un circuit tancat al voltant
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del punt Hopf-sella-node: de 1 a 5, el punt B inestable torna sella i es crea I’orbita
T inestable. Aquesta orbita existeix fins a la regié 3, alla sofreix una bifurcacié de
Hopf (secundaria) quan passa a la regié 3/, creant un torus transversal inestable,
Fig. B.3. L’orbita T estable continua existint en la regié 2, i mor en la bifurcacié
de Hopf (primaria) amb el punt fix A. L’0rbita T té un periode que divergeix per a
valors de 8 petits (Fig. B.10), desapareixent a ’drbita homoclinica a C, Fig. B.2.

Per completar el conjunt d’invariants en les regions 3 i 3', cal incloure una orbita,
periodica longitudinal, L, que és aproximadament coplanar al pla W = 0. Aquesta
orbita, estable a 3 pero inestable a 3', té un periode que divergeix a la bifurcacié
sella-node (bifurcacié d’Andronov, Fig. B21)).

Els punts fixos A i B, juntament amb ’orbita 7' corresponen a ’escenari Hopf—
sella-node tipus II. L’orbita L és una part integral del conjunt de bifurcacions,
i la interaccié de les bifurcacions que sofreixen aquestes dues oOrbites organitza
Pestructura de resonancies. La bifurcacié de Hopf secundaria s’interrompeix en
una illa de bifurcacions de periode doble d’orbites periodiques (cercle blau figura
B-2) i acaba en una bifurcacié sella-node d’orbites periodiques (triangle rosa).

El moviment quasi-periodic pot sofrir fenomens de resonancia i generar orbites
periodiques. Aquestes orbites poden ésser classificades per un nombre p de voltes
seguint l’orbita primaria, T, i ¢ que denota el nombre de voltes fetes al voltant
I’orbita primaria abans de tancar-se. A la figura B.4, es veu l'estructura de re-
sonancies per distints valors de ¢. Les linies en color rosa corresponen a bifurca-
cions sella—node d’orbites periodiques. Per a ¢ > 4 es comporten com l’estructura
estandard de llengiies d’Arnold i es van acumulant cap el punt Hopf-sella—node.

L’estructura de les orbites periodiques dins cada resonancia és bastant similar.
Com exemple s’estudia la resonancia 3, Fig. B-9. A la figura (a), es veu que per
a 8 a prop de la bifurcacié de Hopf secundaria de T', una orbita periodica inestable
i una sella neixen i tornen a col-lapsar en un valor de S més gran a la bifurcacié
sella—node revers. Per a un valor de  més baix, Fig. B.1I( (b), la branca inestable
té un periode que divergeix i s’originen dues bifurcacions homocliniques (cercle verd
de la figura B.g). El tall de la figura B.I0 (c) indica que ’0rbita periddica resonant
es junta amb I’orbita L. Aquest procés d’unié de les resonancies transversal en la,
solucié de 1’orbita periodica s’observa a totes les resonancies. A prop del procés
d’unié s’observa que l'orbita L també bifurca en una Hopf secundaria (linies negres
per valors de 8 grans), que té aixi mateix té resonancies 1/2 (cercles color blau
corresponents a bifurcacions de periode doble).

Les resonancies fortes (¢ < 4) tenen una estructura més complicada que la indi-
cada. En particular, les bifurcacions sella-node de les llengiies no ocorr en el torus.
El torus pot créixer quan els parametres canvien i col-lisionar amb una orbita reso-
nant. Aix0 corresponen a una bifurcacié homoclinica a una orbita periodica amb la
destruccié final del torus (diamands negres). Els punts d’interseccié d’aquestes ho-
mocliniques, les Hopf secundaries i les resonancies corresponen a singularitat tipus
Takens-Bogdanov, Fig. B.13.

Entre les resonancies transversals indicades, s’han obtingut altres resonancies,
Fig. B.I§, encara que una classificacié de les mateixes és prou complicada.



Chapter 8

Resonance structure in a class B
laser with injected signal

In this chapter, we describe the qualitative dynamics and bifurcation set for a
laser with injected signal for small cavity detunings by using the definitions included
in chapter

The work presented in this chapter completes the above series of studies of bifur-
cations of a laser with injected signal in the neighbourhood of the Hopf-saddle-node
(HSN) singularity, as it was reviewed in section [.3. We numerically analyse the
weak cavity detuning regime for a fixed value of the detuning parameter # = 0.5 (in
adequate units), where type II Hopf-saddle-node is expected. The small-detuning
case is particularly relevant for applications, since a natural ambition when con-
structing laser cavities is to obtain low detunings. Long-time behaviour depending
on the amplitude and the frequency shift of the applied signal is studied. The main
bifurcation structure consists of a (secondary) Hopf bifurcation on the periodic orbit
associated to the Hopf-saddle-node bifurcation. We have analysed in detail the res-
onance structure which reveals a rich interaction with other bifurcations not present
in the usual Hopf-saddle—node scenario.

In the next section we review the representative equations for a laser with injected
signal, together with the unfolding of the Hopf-saddle node bifurcation. In Sec.
B.9, the resonance structure is described, while Sec. discusses the Andronov
global bifurcation occurring in this laser, and its interaction with other bifurcations.
Finally, a global outlook and discussion is given in Sec. B.4]

8.1 Equations for the laser with injected signal

The model for a laser system is given in terms of the Maxwell-Bloch equations,
chapter fll. In a great variety of lasers, the decay times associated with the population
inversion and the electric field have different time scales, allowing for the adiabatic
elimination of the fast decaying polarization variable (class B) [Bolari and Oppo]
[994]. The dimensionless rate equations in a reference frame that rotates with the
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injected signal may be written as

dE
dw
Pl A? — xW(1+g|E]*) - |EP, (8.1)

where FE is the complex envelope of the electric field and W is proportional to the
population inversion. f represents the detuning between the atomic and the nearest
eigenfrequency of the cavity, A is proportional to the amount of pumped atoms,
x > 0 is proportional to the inverse of the decay time of the population inversion and
g is inversely proportional to 1+62. For typical lasers,  is small. 7 is the detuning of
the perturbation frequency and the unperturbed laser operating frequency and 8 > 0
is the intensity of the injected signal. The relationship between the parameters used
in this model and the parameters in the Maxwell-Bloch equations can be found in
[Bolari and Oppo, 1994]. The model can be justified for small signal intensity ratio,
B/A? < 1, although it has been argued that it can be successfully applied beyond
this limit [Oppo ef al., 198¢]. Our present study centers in this limit and in some
cases we have explored a region beyond this limit in order to understand the fate
of some invariant sets. The set of equations (B.I]) can be obtained from Egs. ([.11))
and (£.12), in the absence of noise terms and without injected signal, by performing
the suitable change of variables.

Solari and Oppo [1994] performed a reduction of the three—equations model by
averaging over the fast relaxation oscillation motion, reducing the dynamics to a
two—equations system. In this way, the difficulty of finding analytic expressions
for most of the local bifurcations is simplified. A close analysis of the singularities
of this model, reveals that the system organizes around the codimension-2 Hopf-
saddle-node local bifurcation. One finds that after a suitable change of coordinates
one may arrive to its normal form representation (B.I]) [[Guckenheimer and Holmes]

[ 1989

v = (ut+av)r+ O(3),
Vo= v+br? =0+ 0(3), (8.2)
¢ = c+av+0(2),

where @, b, € # 0 and p and v are the bifurcation parameters, all function of the
laser parameters. The signs of @ and b classify different types of flows: type I for
(@ >0, b>0), type Il for (@ < 0, b > 0), type III for (@ > 0, b < 0), type IV for
(@<0,b<0).

One of the main achievements of the Solari and Oppo average model is that they
have established that the actual laser with injected signal operation is controlled by
the cavity detuning parameter 6 in the following way:

type IL0< 6 <1,
type I 1 < 6 < /3,
type III: /3 < 6.
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We refer the reader to [Zimmermann ef al., 2007]] for a detailed account of the normal
form computations for the three-dimensional laser with injected signal equations
(B1]), where the above results are validated up to order O(x?), for

i) = 1494070 "V L op),

46
i) = ~( 49y o),
e = V2A+0(x), (8.3)

u(B,m) = 9<1f92_,60\/>1<+792>’
v(B,m) = 2(%)

The main characteristics of each type of flow may be summarized as follows. A
saddle-node bifurcation occurs for v = vy, = 0, where a pair of saddlefocus fixed
points are born at (r,v) = (£4/v,0). These fixed points may as well bifurcate in
a Hopf bifurcation along a parabola in parameter space, v = vuqpr = p?/a®. The
periodic orbit will be at vaeps = —p/@ and its radius is given by r§,,; = (4*/a>—v)/b.
The main differences between type I-III, lie in the region of existence and stability
of the periodic orbit. In type III the periodic orbit always co—exists with the fixed
points (v > p?/a? > 0), while in type I the periodic orbit exists before the creation of
the fixed points (for v < 0, rmopr > 0). Type II is similar to type I, but the stability
of the periodic orbit may change. A degenerate (secondary) Hopf bifurcation occurs
on the semiaxis p = 0,v < 0, where the periodic orbit becomes a center. Addition
of appropriate third order terms to the normal form (B:3) breaks, in general, this
degeneracy resulting in a bifurcation to a torus. The fate of the torus will depend
on the perturbation applied to (B.9) and results concerning this type are unknown.
Kirk [Kirk, T9971] has analysed these kind of perturbations for type III, where the
secondary Hopf bifurcation occurs in the semiaxis y = 0,v > 0, coexisting with
the fixed points. In her analysis she found that the torus breaks—up in Arnold

tongues [Arnold, 1983], which in turn ends up as resonances of another secondary
Hopf bifurcation. Below a similar scenario will be found.

In this work we investigate the small detuning regime 0 < # < 1 correspond-
ing to type II, a case not studied in complete detail in previous works. In terms
of bifurcations and periodic orbit organization, the most prominent feature is the
(secondary) Hopf bifurcation of periodic orbits associated to the Hopf-saddle-node
singularity. This will be one of our main objects of study, where we will discuss
the interaction of its resonances with other bifurcations not present in the (local)
normal form analysis.
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8.2 Bifurcation set for small detuning

We have integrated numerically equations (B-I) with fixed parameters A = 1,
x = 0.3 and g = 0f] Most computations were done with the AUTO97 [Doede]
ket al., 1997] continuation package, in the parameters (8,7) and 0 < # = 0.5 < 1. In
general, the locus in parameter space of a particular bifurcation will be presented
as points, representing the actual computation performed. To guide the reader we
have selected different colours for each type of bifurcation.

Given the complexity of the full bifurcation set found, we will introduce in steps
the different invariant sets and their bifurcations. Readers not interested in the
technical details of the calculation may refer to Fig. B.29 for the full bifurcation set
discussed in this chapter.

8.2.1 Invariant sets close to the Hopf—saddle—node bifurca-
tion

We begin our numeric exploration with the locus of the saddle-node, Hopf and
Hopf-saddle—node bifurcations of fixed points. These may be explicitly computed,
with the relevant equations being:

1. The fixed point equation may be reduced to,

(1+6%)Y3 — 2[4%(1 + 6% + xnd)Y?
+ [A*(1+6%) +24%m0 + X*n°)Y — X282 =0, (8.4)

a cubic polynomial in Y = |E|2.

2. The saddle-node condition, i.e., when one of the eigenvalues of the Jacobian
is zero,

3(140%)Y? — 4[A*(1 + 0°) + xnf]Y + A*(1 + 6°) + 24°xnmf + x*n* = 0.(8.5)

3. The Hopf condition (i.e., when two (complex conjugated) eigenvalues of the
Jacobian are pure imaginary) reads

(14 6%)Y3 — [34%(1 + 6%) + x2(6* — 3) + 2nx0]Y?
+ [34%(1 4 6%) + A2[(0% — 5)x% + 4nx0) + 2x* + 0x*n + *X2] Y (8.6)
— [(1+6%) A% +24%(nx0 — x*) + A*(°x* + x")] = 0.

The fixed point equation reveals that there are regions of one or three fixed
points, separated by saddlenode bifurcations. The simultaneous solution of (§-4)
and (B.9) (the fixed point equation will then have a double root) gives the locus of

'In real lasers g € [0, 1]. However, the qualitative features of the bifurcations around the Hopf-
saddle—node bifurcation will not change if g is kept small. In [fimmermann et al., 2001 it is found
to slightly modify the second—order coefficients in the Hopf—-saddle-node normal form.
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the saddle-node curve, while solution of (B.4) with (B.6) gives the locus of the Hopf
curve. When all three equations are simultaneously satisfied there is a tangency
point where the Hopf-saddle—node occurs [fimmermann ef al., 2001],

1+ 62 1 9
nhsn(e) = _( ;0 ) (1 - 4 92 A2 X ) X+ O(X)47
AV1+62 1+ 6?
/Bhsn(e) = To—i_ (1 - (ZL;_TJ X2> X+ O(X)4' (87)

A typical bifurcation set displaying these bifurcations is shown in Fig. B.1]. Inside
the “triangle” shaped region, three fixed points exist, while outside this region only
one fixed point remains. Let us label the fixed points in region 1 as: A stable, B
unstable and C saddle. A pair of the above fixed points are annihilated crossing
the sides of the triangle: moving into region 4, B and C collide, while entering
region 6 or (3, 3'), A and B annihilates leaving in these regions only the fixed point
C.B In physical terms, locking behaviour (output frequency tuned to that of the
injected signal) occurs whenever the laser is operated in any of the regions (1, 4,
5), where a stable fixed point exists. On the other hand, fixed point C exists in all
regions except 4 in Fig. and is approximately situated in (|E|,W) ~ (0, A?/x)
for f < 1, which corresponds to the laser—off state. In all regions of interest it is a
saddle fixed point.

3.5J |
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Figure 8.1: Numerical bifurcation set in parameters (8,n) for type II. Red line: saddle-node of
fixed points (SN FP). Blue line: Hopf bifurcation of fixed points (HOPF FP). The secondary Hopf
bifurcation of transversal periodic orbits (HOPF T) separates region 3 and 3’.

2Notice that choosing a path far out from the “triangle” shaped region, we have to identify
fixed point C in regions (6, 3, 3') with fixed point A in region 4.
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The (primary) Hopf bifurcation occurs on either fixed point A or B, creating
a periodic orbit transversal to the W = 0 plane, which will be referred to as T in
what follows. This orbit corresponds to the undamped relaxation oscillation [van

Tartwitk and Lenstra, 1995, whose main characteristic is that the phase of the

electric field remains bounded. A close inspection in parameter space around the
Hopf-saddle-node point reveals that moving from region 1 to region 5, the unstable
node B becomes a saddle and creates an unstable T orbit. This orbit exists up to
region 3, where it suffers a (secondary) Hopf bifurcation when crossing to region
3/, creating an unstable transversal torus. The remaining stable 7' periodic orbit
continues to exist up to region 2, when it dies in a (primary) Hopf bifurcation with
fixed point A.

To complete the main invariant sets present in region 3 and 3', we have to include
another periodic orbit. For sufficiently small § we find from (B.1)) that for W = 0,
|E| ~ A and the phase arg(E(t)) = 7 t, which corresponds to the cw (continuous-
wave) laser solution [van Tartwijk and Lenstra, 1997] with an unbounded electric
field phase. As this orbit lies approximately coplanar to the W = 0 plane, it will
be referred to as L, the longitudinal orbit. For sufficiently small (5, 8), this orbit
can be easily shown to be stable. However we find that the period of L diverges
at the saddlenode bifurcation of fixed point, where the orbit disappears. This
global bifurcation is known as Andronov or saddle node infinite-period bifurcation
[Kuznetsov, 1997, and will be addressed in more detail in Sec. B.J. We remark that
the stability of L close to the Andronov bifurcation depends on the stability of the
saddle-node fixed point, thus on which side of the Hopf-saddle node point one is
located: in region 3’ the orbit is unstable, while in region 3 it is stable. From this,
it is clear that at least a local bifurcation to L is required. Below we will show that
a new secondary Hopf bifurcation on L occurs inside region 3'.

In summary, we find that fixed points A and B together with the transversal
periodic orbit T correspond to the type II Hopf-saddle—node scenario proposed by
the normal form analysis in the previous section. The periodic orbit L is also an
integral part of the bifurcation set of a laser with injected signal, and we will show
in the next section how the interaction of bifurcations between these two periodic
orbits organize the resonance structure.

8.2.2 Bifurcations of transversal periodic orbits

We begin with a general observation for the existence boundary of transversal
T orbit born at the the Hopf bifurcation of fixed points. For a fixed value of 7,
we find for the continuation of this orbit for decreasing 3, its period diverges at a
critical 8 = 0.05, for an interval of 5 close to 0, where a homoclinic orbit to fixed
point C occurs. Figure shows the locus of this global bifurcation in parameter
space, while Figs. and B.IT] show the typical period versus § behaviour. This
bifurcation is found not to depend on #, and was found up to type III regime. We
leave for Sec. the discussion of how this bifurcation is related to the Andronov
bifurcation producing L.
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Figure 8.2: Partial numerical bifurcation set showing the homoclinic to C fixed point and the first
resonances of the transversal secondary Hopf bifurcation. Saddle-node bifurcation of transversal
periodic orbits (SN T) and period doubling bifurcation of transversal periodic orbits (PD T) are
indicated.

In Fig. B3 (a) we display the main invariant sets for the parameter region
bounded by the homoclinic to C and the secondary Hopf bifurcation. We have the
stable longitudinal orbit L (which lies approximately on |E| ~ A = 1,W = 0),
together with the unstable transversal orbit 7. This orbit has a large variation in
the population inversion W, and a bounded electric field phase (the phase does not
make a complete turn as L does). Crossing the secondary Hopf bifurcation 7" and
entering region 3', we find that 7' becomes stable and an unstable invariant torus is
created. Figure (b) shows the invariant sets, where only the intersections of the
quasiperiodic orbit with the W = 0 plane are shown. A time series of the intensity
|E|? on this solution is shown in Fig. 4.

It is well known that in generic systems quasiperiodic motion may suffer reso-
nance phenomena. Local analysis [Arnold, 1983 around the Hopf bifurcation reveals
that whenever the ratio of the two competing frequencies is rational, the quasiperi-
odic motion may disappear and periodic orbits arise. These orbits may be classified
by an integer number of p turns following the primary or bifurcating orbit (7' in
this case), and another integer number ¢ which denotes the number of turns made
around the primary orbit, before closing on itself. Precisely on the (secondary) Hopf
bifurcation the nontrivial Floquet multipliers are on the unit circle at e*27/4. A
general result shows that in the weak resonances case ¢ > 4 these periodic orbits
are born in saddle node pairs, and in a two-parameter space they trace a 'tongue’
(known as Arnold tongue) with the tip lying on the (secondary) Hopf bifurcation.
In phase space the periodic orbits are phase locked solution on the torus. On the
other hand the case ¢ < 4 are known as strong resonances and do not correspond
to ’strict’” Arnold tongues. The details of each strong resonance in a general study
may be found in [Kuznetsov, 1997




7.2 Potential for class B lasers 111

7.2.1 Period of the relaxation oscillations

The time evolution of the potential is plotted in Fig. [/1]. In this figure it can be
seen that the Lyapunov potential is approximately constant between two consecutive
peaks of the relaxation oscillations as it can be also observed with the equipotential
lines of Fig. (however, in the peak of intensity, the potential decreases steeply,
as can be seen in Fig. [.2)). This fact allows us to estimate the relaxation oscillation
period by approximating V(y, z) = E, constant, during this time interval. When
the potential is considered as constant, the period can be evaluated by the standard
method of elementary Mechanics: z is replaced by its expression obtained from ([/.6)
in terms of y and ¢ in V(y, z). Using the condition that V(y, z) = E, we obtain

. _ 2
E=aiy+ay’ +az 1n(y)+a4%+% [y(l—;gsy)] :

(7.25)

From this equation, we can calculate the relaxation oscillation period T, by using

Y= ‘é—’; and integrating over a cycle. This leads to the expression

T:/yb1+§y dy

7.26
o ¥ [2(E-ay—ay?—a3n(y)—ay )]/ (7.26)

where y, and y, are the values of y that cancel the denominator. We stress the
fact that the only approximation used in the derivation of this expression is that
the Lyapunov potential is constant during two maxima of the intensity oscillations.
In other words, we have made a mechanical simile and reduced the problem to one
with constant energy. A numerical evaluation of this integral yields the dependence
of the period, T, with the value of the energy, E =V, as plotted in Fig. [/.g.
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Figure 7.6: Period versus potential for a class B laser obtained with (f.26). Solid line 5§ = 0,
dashed line 5 = 2. Other parameters, same than in Fig. .1l Dimensionless units.
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Equation ([(.2§) reduces, in the case ¢ = d = § = 0, to the one previously
obtained by using the relation between the laser dynamics and the Toda oscillator
derived in |Oppo and Politi, T98F].

According to Fig. [.6, the period T decreases as the potential V' decreases. Since
the Lyapunov potential decreases with time, this explains the fact that the period of
the oscillations in the transient regime decreases with time. In Fig. [[.7, we compare
the results obtained with the expression ([7-2§) for the period with the ones obtained
from numerical simulations of the rate equations (7., [.7). In the simulations we
compute the period as the time between two peaks in the evolution of the variable y.
As seen in this figure, the above expression for the period, when using the numerical
value of the potential V, accurately reproduces the simulation results although it
is systematically lower than the numerical result. The discrepancy is less than one
percent over the whole range of times.
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Figure 7.7: Period versus time in a class B laser. Solid line has been calculated as the distance
between two peaks of intensity, with triangles plotted at the beginning of each period; dashed
line has been calculated using the expression ([f.26)), with the value of the potential V obtained
also from the simulation; dotted line corresponds to the semi-empirical expression () Same
parameters than in Fig. IE]I We have used 79 = 55.55, coinciding with the position of the first
intensity peak. Dimensionless units.
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It is possible to quantify the difference between the approximate expression ([7.26))
and the exact values near the stationary state.

By considering ([:26) near the steady state with y = y, + 0y, E = Vi + 6V
(Vie = V(yst, 25)) and retaining the lowest terms in dy and 6V, one can perform the
integral analytically, obtaining an approximation for the period of the steady state

27
Ts ap — , 7.27
“ = D JKF— 1 (720
where
2
las a4 1 l_ (d—i—czst)]
K =2[a->a+—5+- |5+ —52] |,
(2 2y§t ygt 2 2y§t
2
1+ 35ys
F = llﬂwl , (7.28)
2yst
g o _[1+c(1+§yst)] [§+(d+c2zst)],
2yst 2yst

and Dig 4 is the coefficient Diy calculated in the steady state.

The result ([.27]) could be obtained starting from the linearization of potential
([-29), expanding this expression near the steady state, and then calculate the period
from the resulting expression.

The period of the relaxation oscillations near the steady state can also be ob-
tained by the standard procedure of linearizing the evolution equations near the
steady state solution. Applying a small perturbation y = y,; + dy and 2z = 2z, + 02
to Egs. ([7-8) and ([.7), one has after linearization

(Sy = a1 (Sy =+ a9 (SZ, (729)
62 = ag Sy + ag 6z, (7.30)

where

Zst
- 9=t
u ((1 + 5yst)? ) ’

2yst
ap = |——+c},
2 <1+§yst )
Zst
Gy = —— 2t 7.31
2 (1+5yq)? (7.31)
yst
= —|b4+ —=1.
22 ( + 1+§yst>

The eigenvalues of the linearized equations ([(.29) and ([7.30) are

A= —giw, (7.32)
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with

o = —(a11+a22), (733)

1
w = 5\/|(a11 - a22)2 + 4a12 a21|. (734)

The frequency w of the relaxation oscillations near the steady state is the imaginary
part of the eigenvalues of the linearized equations ([.29) and ([.30). This yields a
period Ty; = 27 /w which can be rewritten in terms of K, F', H, Diy & and Dy o in
order to have a better comparison with the approximate period ([-27])

27 D§2,st F? i

Ty = 1-—
" Dy VKF - H? D% 4 A(KF — H?)

(7.35)

The difference between ([.27) and ([[.39) vanishes with Dgy o (i.e. Dayo in the
stationary state). Since K F — H? is always a positive quantity, our approximation
will give, at least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variation of the period with
time, we need to compute the time variation of the potential V(1) between two
consecutive intensity peaks. This variation is induced by the dissipative terms in
the equations of motion. Although we were not able to derive an expression for the
variation of the potential (see [Oppo and Politi, 1985 for an approximate expression
in a simpler case), we found that a semi—empirical argument can yield a very simple
law which is well reproduced by the simulations. We start by studying the decay to
the stationary state in the linearized equations. After expanding around the steady
state, the dynamical equations ([-29) and ([7-30]) show that the variables decay to
the steady state as

dy(7),62(T) eXp(—gT), (7.36)
where g, ([.33), can be rewritten as

0= Dot F. (7.37)

In the case of 3 = 0, ¢ = 0 and d = 0 (neither saturation term nor spontaneous
emission term are considered) ¢ = a.

Expanding V (y, z) around the steady state (ys and z, correspond to extrema
of the potential), it is found that

V — Ve o 042,022, 6y dz. (7.38)
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Using ([(.36) and taking the initial condition at an arbitrary 7, we find an expression
for the decay of the potential

V(1) = Vie = [V(10) — Vg exp (—o (T — 7)) - (7.39)

In Fig. [[-§ we plot In[V (1) — V4] versus time and compare it with the approximation
([:39). One can see that it fits In[V'(7) — V4] reasonably well not only near the steady
state (where it was derived), but also during the transient dynamics. The value of
To, being a free parameter, was chosen at the time at which the first peak of the
intensity appeared. Although other values of 7y might produce a better fit, the one
chosen here has the advantage that it can be calculated analytically by following
the technique of Ref. [Balle ef al, T991]). It can be derived from Eq. ([-26) that the
period T depends linearly on the potential V. This fact, combined with the result
of Eq. ([39), suggests the semi-empirical law for the evolution of the period

T(r) = Toe = [T(10) — Tut] exp (—o (7 — 70)) - (7.40)

This simple expression fits well the calculated period not only near the steady state,
but also in the transient regime, see Figs. .1 and [.9. The small differences observed
near the steady state are due to the fact that the semi-empirical law, Eq. ([-40),
is based on the validity of Eq. ([.26) between the period and the potential. As it
was already discussed above, that expansion slightly underestimates the asymptotic
(stationary) value of the period. By complementing this study with the procedure
given in |Balle ef al., T991] to describe the switch—on process of a laser, and valid
until the first intensity peak is reached, we can obtain a complete description of the
variation of the oscillations period in the dynamical evolution following the laser
switch—on.

6] 200 400 600 800

Figure 7.8: Logarithm of the potential difference versus time in a class B laser (solid line),
compared with the theoretical expression in the steady state ) (dashed line). Same parameters
than in Fig. .1 and 7y as in Fig. f.4. Dimensionless units.
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Figure 7.9: Logarithm of the period difference versus time in a class B laser. Triangles correspond
to the period calculated from the simulations as the distance between two consecutive intensity
peaks, at the same position than in Fig. E The solid line is the semi—empirical expression Eq.
(F-40). Same parameters than in Fig. .1 and 7y as in Fig. [.7. Dimensionless units.



Capitol 8

Estructura de resonancies en un
laser de classe B amb senyal
injectat

En aquest capitol es descriu la dinamica qualitativa i el conjunt parcial de bi-
furcacions (capitol f) per a un laser de classe B amb senyal injectat amb termes de
disintonia petits. El treball d’aquest capitol completa una série d’estudis (veure la
seccié [[.9) sobre bifurcacions en lasers amb senyal injectat en la proximitat de la
singularitat Hopf-sella-node.

Les equacions de balang (capitol f]) en un sistema de referéncia que gira a la
freqiiéncia del senyal injectat sén les (B.1) per al camp eléctric, E, i el nombre de
portadors, W. El camp injectat esta caracteritzat per 'amplitud 3, i la freqiiéncia
7. Per al tractament que es fa en aquest capitol s’agafa un valor pel parametre de
disintonia amb el qual les equacions queden tipus II de la bifurcacié Hopf-sella—node.

En les distintes seccions d’aquest capitol es van introduint a poc a poc els distints
conjunts invariants del sistema i les seves bifurcacions a causa de la complexitat del
conjunt complet de bifurcacions. S’han seleccionat distints colors per a cada tipus
de bifurcacions. El conjunt final obtingut és el de la figura B.22.

La bifurcaci6 sella—node (punts vermells) i la bifurcacié de Hopf (punts blaus)
dels punts fixos de les equacions, es poden calcular analiticament (8.4 - B.6). La seva
interseccié déna el punt Hopf-sella—node. Aquestes bifurcacions separen les regions
de Vespai de parametres (8, 7) segons V'estabilitat dels punts fixos A, B i C, Fig.
B.J. A laregié 1, A és estable, B inestable i C' sella; un parell d’aquests punts fixos
s’aniquilen quan es creua els costats del triangle: cap a la regi6é 4, B i C col-lapsen;
cap a les regions 6, 31 3', A i B s’aniquilen deixant en aquestes regions el punt
C. Un punt fix estable existeix en les regions 1, 4 i 5, que correspon, en termes
fisics, a tenir una freqiiencia de sortida sintonitzada amb la d’entrada. El punt fix C'
correspon a l'estat del laser apagat, i en totes les regions d’interés és un punt sella.

La bifurcacié de Hopf (primaria) ocorr o bé en el punt fix A 0 B, creant una
orbita periodica transversal, T', al pla W = 0. Realitzant un circuit tancat al voltant
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del punt Hopf-sella-node: de 1 a 5, el punt B inestable torna sella i es crea I’orbita
T inestable. Aquesta orbita existeix fins a la regié 3, alla sofreix una bifurcacié de
Hopf (secundaria) quan passa a la regié 3/, creant un torus transversal inestable,
Fig. B.3. L’orbita T estable continua existint en la regié 2, i mor en la bifurcacié
de Hopf (primaria) amb el punt fix A. L’0rbita T té un periode que divergeix per a
valors de 8 petits (Fig. B.10), desapareixent a ’drbita homoclinica a C, Fig. B.2.

Per completar el conjunt d’invariants en les regions 3 i 3', cal incloure una orbita,
periodica longitudinal, L, que és aproximadament coplanar al pla W = 0. Aquesta
orbita, estable a 3 pero inestable a 3', té un periode que divergeix a la bifurcacié
sella-node (bifurcacié d’Andronov, Fig. B21)).

Els punts fixos A i B, juntament amb ’orbita 7' corresponen a ’escenari Hopf—
sella-node tipus II. L’orbita L és una part integral del conjunt de bifurcacions,
i la interaccié de les bifurcacions que sofreixen aquestes dues oOrbites organitza
Pestructura de resonancies. La bifurcacié de Hopf secundaria s’interrompeix en
una illa de bifurcacions de periode doble d’orbites periodiques (cercle blau figura
B-2) i acaba en una bifurcacié sella-node d’orbites periodiques (triangle rosa).

El moviment quasi-periodic pot sofrir fenomens de resonancia i generar orbites
periodiques. Aquestes orbites poden ésser classificades per un nombre p de voltes
seguint l’orbita primaria, T, i ¢ que denota el nombre de voltes fetes al voltant
I’orbita primaria abans de tancar-se. A la figura B.4, es veu l'estructura de re-
sonancies per distints valors de ¢. Les linies en color rosa corresponen a bifurca-
cions sella—node d’orbites periodiques. Per a ¢ > 4 es comporten com l’estructura
estandard de llengiies d’Arnold i es van acumulant cap el punt Hopf-sella—node.

L’estructura de les orbites periodiques dins cada resonancia és bastant similar.
Com exemple s’estudia la resonancia 3, Fig. B-9. A la figura (a), es veu que per
a 8 a prop de la bifurcacié de Hopf secundaria de T', una orbita periodica inestable
i una sella neixen i tornen a col-lapsar en un valor de S més gran a la bifurcacié
sella—node revers. Per a un valor de  més baix, Fig. B.1I( (b), la branca inestable
té un periode que divergeix i s’originen dues bifurcacions homocliniques (cercle verd
de la figura B.g). El tall de la figura B.I0 (c) indica que ’0rbita periddica resonant
es junta amb I’orbita L. Aquest procés d’unié de les resonancies transversal en la,
solucié de 1’orbita periodica s’observa a totes les resonancies. A prop del procés
d’unié s’observa que l'orbita L també bifurca en una Hopf secundaria (linies negres
per valors de 8 grans), que té aixi mateix té resonancies 1/2 (cercles color blau
corresponents a bifurcacions de periode doble).

Les resonancies fortes (¢ < 4) tenen una estructura més complicada que la indi-
cada. En particular, les bifurcacions sella-node de les llengiies no ocorr en el torus.
El torus pot créixer quan els parametres canvien i col-lisionar amb una orbita reso-
nant. Aix0 corresponen a una bifurcacié homoclinica a una orbita periodica amb la
destruccié final del torus (diamands negres). Els punts d’interseccié d’aquestes ho-
mocliniques, les Hopf secundaries i les resonancies corresponen a singularitat tipus
Takens-Bogdanov, Fig. B.13.

Entre les resonancies transversals indicades, s’han obtingut altres resonancies,
Fig. B.I§, encara que una classificacié de les mateixes és prou complicada.



Chapter 8

Resonance structure in a class B
laser with injected signal

In this chapter, we describe the qualitative dynamics and bifurcation set for a
laser with injected signal for small cavity detunings by using the definitions included
in chapter

The work presented in this chapter completes the above series of studies of bifur-
cations of a laser with injected signal in the neighbourhood of the Hopf-saddle-node
(HSN) singularity, as it was reviewed in section [.3. We numerically analyse the
weak cavity detuning regime for a fixed value of the detuning parameter # = 0.5 (in
adequate units), where type II Hopf-saddle-node is expected. The small-detuning
case is particularly relevant for applications, since a natural ambition when con-
structing laser cavities is to obtain low detunings. Long-time behaviour depending
on the amplitude and the frequency shift of the applied signal is studied. The main
bifurcation structure consists of a (secondary) Hopf bifurcation on the periodic orbit
associated to the Hopf-saddle-node bifurcation. We have analysed in detail the res-
onance structure which reveals a rich interaction with other bifurcations not present
in the usual Hopf-saddle—node scenario.

In the next section we review the representative equations for a laser with injected
signal, together with the unfolding of the Hopf-saddle node bifurcation. In Sec.
B.9, the resonance structure is described, while Sec. discusses the Andronov
global bifurcation occurring in this laser, and its interaction with other bifurcations.
Finally, a global outlook and discussion is given in Sec. B.4]

8.1 Equations for the laser with injected signal

The model for a laser system is given in terms of the Maxwell-Bloch equations,
chapter fll. In a great variety of lasers, the decay times associated with the population
inversion and the electric field have different time scales, allowing for the adiabatic
elimination of the fast decaying polarization variable (class B) [Bolari and Oppo]
[994]. The dimensionless rate equations in a reference frame that rotates with the
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injected signal may be written as

dE
dw
Pl A? — xW(1+g|E]*) - |EP, (8.1)

where FE is the complex envelope of the electric field and W is proportional to the
population inversion. f represents the detuning between the atomic and the nearest
eigenfrequency of the cavity, A is proportional to the amount of pumped atoms,
x > 0 is proportional to the inverse of the decay time of the population inversion and
g is inversely proportional to 1+62. For typical lasers,  is small. 7 is the detuning of
the perturbation frequency and the unperturbed laser operating frequency and 8 > 0
is the intensity of the injected signal. The relationship between the parameters used
in this model and the parameters in the Maxwell-Bloch equations can be found in
[Bolari and Oppo, 1994]. The model can be justified for small signal intensity ratio,
B/A? < 1, although it has been argued that it can be successfully applied beyond
this limit [Oppo ef al., 198¢]. Our present study centers in this limit and in some
cases we have explored a region beyond this limit in order to understand the fate
of some invariant sets. The set of equations (B.I]) can be obtained from Egs. ([.11))
and (£.12), in the absence of noise terms and without injected signal, by performing
the suitable change of variables.

Solari and Oppo [1994] performed a reduction of the three—equations model by
averaging over the fast relaxation oscillation motion, reducing the dynamics to a
two—equations system. In this way, the difficulty of finding analytic expressions
for most of the local bifurcations is simplified. A close analysis of the singularities
of this model, reveals that the system organizes around the codimension-2 Hopf-
saddle-node local bifurcation. One finds that after a suitable change of coordinates
one may arrive to its normal form representation (B.I]) [[Guckenheimer and Holmes]

[ 1989

v = (ut+av)r+ O(3),
Vo= v+br? =0+ 0(3), (8.2)
¢ = c+av+0(2),

where @, b, € # 0 and p and v are the bifurcation parameters, all function of the
laser parameters. The signs of @ and b classify different types of flows: type I for
(@ >0, b>0), type Il for (@ < 0, b > 0), type III for (@ > 0, b < 0), type IV for
(@<0,b<0).

One of the main achievements of the Solari and Oppo average model is that they
have established that the actual laser with injected signal operation is controlled by
the cavity detuning parameter 6 in the following way:

type IL0< 6 <1,
type I 1 < 6 < /3,
type III: /3 < 6.
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We refer the reader to [Zimmermann ef al., 2007]] for a detailed account of the normal
form computations for the three-dimensional laser with injected signal equations
(B1]), where the above results are validated up to order O(x?), for

i) = 1494070 "V L op),

46
i) = ~( 49y o),
e = V2A+0(x), (8.3)

u(B,m) = 9<1f92_,60\/>1<+792>’
v(B,m) = 2(%)

The main characteristics of each type of flow may be summarized as follows. A
saddle-node bifurcation occurs for v = vy, = 0, where a pair of saddlefocus fixed
points are born at (r,v) = (£4/v,0). These fixed points may as well bifurcate in
a Hopf bifurcation along a parabola in parameter space, v = vuqpr = p?/a®. The
periodic orbit will be at vaeps = —p/@ and its radius is given by r§,,; = (4*/a>—v)/b.
The main differences between type I-III, lie in the region of existence and stability
of the periodic orbit. In type III the periodic orbit always co—exists with the fixed
points (v > p?/a? > 0), while in type I the periodic orbit exists before the creation of
the fixed points (for v < 0, rmopr > 0). Type II is similar to type I, but the stability
of the periodic orbit may change. A degenerate (secondary) Hopf bifurcation occurs
on the semiaxis p = 0,v < 0, where the periodic orbit becomes a center. Addition
of appropriate third order terms to the normal form (B:3) breaks, in general, this
degeneracy resulting in a bifurcation to a torus. The fate of the torus will depend
on the perturbation applied to (B.9) and results concerning this type are unknown.
Kirk [Kirk, T9971] has analysed these kind of perturbations for type III, where the
secondary Hopf bifurcation occurs in the semiaxis y = 0,v > 0, coexisting with
the fixed points. In her analysis she found that the torus breaks—up in Arnold

tongues [Arnold, 1983], which in turn ends up as resonances of another secondary
Hopf bifurcation. Below a similar scenario will be found.

In this work we investigate the small detuning regime 0 < # < 1 correspond-
ing to type II, a case not studied in complete detail in previous works. In terms
of bifurcations and periodic orbit organization, the most prominent feature is the
(secondary) Hopf bifurcation of periodic orbits associated to the Hopf-saddle-node
singularity. This will be one of our main objects of study, where we will discuss
the interaction of its resonances with other bifurcations not present in the (local)
normal form analysis.
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8.2 Bifurcation set for small detuning

We have integrated numerically equations (B-I) with fixed parameters A = 1,
x = 0.3 and g = 0f] Most computations were done with the AUTO97 [Doede]
ket al., 1997] continuation package, in the parameters (8,7) and 0 < # = 0.5 < 1. In
general, the locus in parameter space of a particular bifurcation will be presented
as points, representing the actual computation performed. To guide the reader we
have selected different colours for each type of bifurcation.

Given the complexity of the full bifurcation set found, we will introduce in steps
the different invariant sets and their bifurcations. Readers not interested in the
technical details of the calculation may refer to Fig. B.29 for the full bifurcation set
discussed in this chapter.

8.2.1 Invariant sets close to the Hopf—saddle—node bifurca-
tion

We begin our numeric exploration with the locus of the saddle-node, Hopf and
Hopf-saddle—node bifurcations of fixed points. These may be explicitly computed,
with the relevant equations being:

1. The fixed point equation may be reduced to,

(1+6%)Y3 — 2[4%(1 + 6% + xnd)Y?
+ [A*(1+6%) +24%m0 + X*n°)Y — X282 =0, (8.4)

a cubic polynomial in Y = |E|2.

2. The saddle-node condition, i.e., when one of the eigenvalues of the Jacobian
is zero,

3(140%)Y? — 4[A*(1 + 0°) + xnf]Y + A*(1 + 6°) + 24°xnmf + x*n* = 0.(8.5)

3. The Hopf condition (i.e., when two (complex conjugated) eigenvalues of the
Jacobian are pure imaginary) reads

(14 6%)Y3 — [34%(1 + 6%) + x2(6* — 3) + 2nx0]Y?
+ [34%(1 4 6%) + A2[(0% — 5)x% + 4nx0) + 2x* + 0x*n + *X2] Y (8.6)
— [(1+6%) A% +24%(nx0 — x*) + A*(°x* + x")] = 0.

The fixed point equation reveals that there are regions of one or three fixed
points, separated by saddlenode bifurcations. The simultaneous solution of (§-4)
and (B.9) (the fixed point equation will then have a double root) gives the locus of

'In real lasers g € [0, 1]. However, the qualitative features of the bifurcations around the Hopf-
saddle—node bifurcation will not change if g is kept small. In [fimmermann et al., 2001 it is found
to slightly modify the second—order coefficients in the Hopf—-saddle-node normal form.
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the saddle-node curve, while solution of (B.4) with (B.6) gives the locus of the Hopf
curve. When all three equations are simultaneously satisfied there is a tangency
point where the Hopf-saddle—node occurs [fimmermann ef al., 2001],

1+ 62 1 9
nhsn(e) = _( ;0 ) (1 - 4 92 A2 X ) X+ O(X)47
AV1+62 1+ 6?
/Bhsn(e) = To—i_ (1 - (ZL;_TJ X2> X+ O(X)4' (87)

A typical bifurcation set displaying these bifurcations is shown in Fig. B.1]. Inside
the “triangle” shaped region, three fixed points exist, while outside this region only
one fixed point remains. Let us label the fixed points in region 1 as: A stable, B
unstable and C saddle. A pair of the above fixed points are annihilated crossing
the sides of the triangle: moving into region 4, B and C collide, while entering
region 6 or (3, 3'), A and B annihilates leaving in these regions only the fixed point
C.B In physical terms, locking behaviour (output frequency tuned to that of the
injected signal) occurs whenever the laser is operated in any of the regions (1, 4,
5), where a stable fixed point exists. On the other hand, fixed point C exists in all
regions except 4 in Fig. and is approximately situated in (|E|,W) ~ (0, A?/x)
for f < 1, which corresponds to the laser—off state. In all regions of interest it is a
saddle fixed point.

3.5J |

<«———SN FP

u ,«— HSN

o5 s |
Z ¥ 2 HOPF FP
N /

-151 HOPF T

0 0.5 1 15 2 2.5 3 3.5

Figure 8.1: Numerical bifurcation set in parameters (8,n) for type II. Red line: saddle-node of
fixed points (SN FP). Blue line: Hopf bifurcation of fixed points (HOPF FP). The secondary Hopf
bifurcation of transversal periodic orbits (HOPF T) separates region 3 and 3’.

2Notice that choosing a path far out from the “triangle” shaped region, we have to identify
fixed point C in regions (6, 3, 3') with fixed point A in region 4.
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The (primary) Hopf bifurcation occurs on either fixed point A or B, creating
a periodic orbit transversal to the W = 0 plane, which will be referred to as T in
what follows. This orbit corresponds to the undamped relaxation oscillation [van

Tartwitk and Lenstra, 1995, whose main characteristic is that the phase of the

electric field remains bounded. A close inspection in parameter space around the
Hopf-saddle-node point reveals that moving from region 1 to region 5, the unstable
node B becomes a saddle and creates an unstable T orbit. This orbit exists up to
region 3, where it suffers a (secondary) Hopf bifurcation when crossing to region
3/, creating an unstable transversal torus. The remaining stable 7' periodic orbit
continues to exist up to region 2, when it dies in a (primary) Hopf bifurcation with
fixed point A.

To complete the main invariant sets present in region 3 and 3', we have to include
another periodic orbit. For sufficiently small § we find from (B.1)) that for W = 0,
|E| ~ A and the phase arg(E(t)) = 7 t, which corresponds to the cw (continuous-
wave) laser solution [van Tartwijk and Lenstra, 1997] with an unbounded electric
field phase. As this orbit lies approximately coplanar to the W = 0 plane, it will
be referred to as L, the longitudinal orbit. For sufficiently small (5, 8), this orbit
can be easily shown to be stable. However we find that the period of L diverges
at the saddlenode bifurcation of fixed point, where the orbit disappears. This
global bifurcation is known as Andronov or saddle node infinite-period bifurcation
[Kuznetsov, 1997, and will be addressed in more detail in Sec. B.J. We remark that
the stability of L close to the Andronov bifurcation depends on the stability of the
saddle-node fixed point, thus on which side of the Hopf-saddle node point one is
located: in region 3’ the orbit is unstable, while in region 3 it is stable. From this,
it is clear that at least a local bifurcation to L is required. Below we will show that
a new secondary Hopf bifurcation on L occurs inside region 3'.

In summary, we find that fixed points A and B together with the transversal
periodic orbit T correspond to the type II Hopf-saddle—node scenario proposed by
the normal form analysis in the previous section. The periodic orbit L is also an
integral part of the bifurcation set of a laser with injected signal, and we will show
in the next section how the interaction of bifurcations between these two periodic
orbits organize the resonance structure.

8.2.2 Bifurcations of transversal periodic orbits

We begin with a general observation for the existence boundary of transversal
T orbit born at the the Hopf bifurcation of fixed points. For a fixed value of 7,
we find for the continuation of this orbit for decreasing 3, its period diverges at a
critical 8 = 0.05, for an interval of 5 close to 0, where a homoclinic orbit to fixed
point C occurs. Figure shows the locus of this global bifurcation in parameter
space, while Figs. and B.IT] show the typical period versus § behaviour. This
bifurcation is found not to depend on #, and was found up to type III regime. We
leave for Sec. the discussion of how this bifurcation is related to the Andronov
bifurcation producing L.
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Figure 8.2: Partial numerical bifurcation set showing the homoclinic to C fixed point and the first
resonances of the transversal secondary Hopf bifurcation. Saddle-node bifurcation of transversal
periodic orbits (SN T) and period doubling bifurcation of transversal periodic orbits (PD T) are
indicated.

In Fig. B3 (a) we display the main invariant sets for the parameter region
bounded by the homoclinic to C and the secondary Hopf bifurcation. We have the
stable longitudinal orbit L (which lies approximately on |E| ~ A = 1,W = 0),
together with the unstable transversal orbit 7. This orbit has a large variation in
the population inversion W, and a bounded electric field phase (the phase does not
make a complete turn as L does). Crossing the secondary Hopf bifurcation 7" and
entering region 3', we find that 7' becomes stable and an unstable invariant torus is
created. Figure (b) shows the invariant sets, where only the intersections of the
quasiperiodic orbit with the W = 0 plane are shown. A time series of the intensity
|E|? on this solution is shown in Fig. 4.

It is well known that in generic systems quasiperiodic motion may suffer reso-
nance phenomena. Local analysis [Arnold, 1983 around the Hopf bifurcation reveals
that whenever the ratio of the two competing frequencies is rational, the quasiperi-
odic motion may disappear and periodic orbits arise. These orbits may be classified
by an integer number of p turns following the primary or bifurcating orbit (7' in
this case), and another integer number ¢ which denotes the number of turns made
around the primary orbit, before closing on itself. Precisely on the (secondary) Hopf
bifurcation the nontrivial Floquet multipliers are on the unit circle at e*27/4. A
general result shows that in the weak resonances case ¢ > 4 these periodic orbits
are born in saddle node pairs, and in a two-parameter space they trace a 'tongue’
(known as Arnold tongue) with the tip lying on the (secondary) Hopf bifurcation.
In phase space the periodic orbits are phase locked solution on the torus. On the
other hand the case ¢ < 4 are known as strong resonances and do not correspond
to ’strict’” Arnold tongues. The details of each strong resonance in a general study
may be found in [Kuznetsov, 1997
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Figure 8.3: Phase portrait in (E, = Re(E), E; = Im(E)) of periodic orbits in the neighbourhood
of the (secondary) Hopf bifurcation of T'. Solid lines: stable orbits, dot lines: unstable trajectories.
n=—1. (a) 8 =10.24, (b) 8 = 0.28. The torus created is an unstable one.
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Figure 8.4: Intensity (|E|?) versus time for the unstable transversal torus created in the Hopf
bifurcation of T periodic orbits. n = —1, 8 = 0.28.



8.2 Bifurcation set for small detuning 127

2 M 2 b)‘
1 1r
= Of =0
—1 —1
—2 —2
—2 —1 0 1 2 -2 —1 0 1 2
EI‘ Er

Figure 8.5: Projections in the plane (E,., E;) of the orbits that exist in each side of the period
doubling bifurcation. Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are
not represented. 5 = —0.8. (a) § = 0.2, (b) § = 0.23.
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Figure 8.6: Projections in the plane (E,, E;) of the orbits that exist in different regions of Fig.
. Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are not represented.
7 = —1.2. (a) Region B, 8 = 0.19, (b) Region F, § = 0.192, (c) Region G, 8 = 0.1939, (d) Region
H, 8 = 0.1942. The bifurcations between the different regions are: from B to F a saddle-node
bifurcation, from F to G a Hopf bifurcation of periodic orbits, and from G to H a homoclinic of
periodic orbits.
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In Fig. B.] we display the resonance structure for 1/¢,q = 1,..,12, where the
saddle-node of the resonant periodic orbits have been continued in parameter space.
Of course in general one expects a countable number of tongues, one for each rational
p/q. We will show below the location of other resonances with p # 1. We find that
the tongues corresponding to ¢ > 4 behave like standard Arnold tongues, while
qg =1,2,3,4 behave in a different way as expected. Resonance ¢ = 4 is well known
not to finish in a cusp singularity (compare with [K 091]]), while resonance
g = 3 does not even finish in a cusp bifurcation (see below for a detailed description
of this resonance). For lower 7, resonance ¢ = 2 arises whenever the nontrivial
Floquet multipliers of the primary periodic orbit (T') collide in a doubly degenerate
—1 eigenvalue. In this case, we find in parameter space the Hopf bifurcation is
interrupted by an “isola” of period doubling bifurcations (PD T in Fig. B.7), see
Fig. B.3. For even lower 5 we find that the Hopf bifurcation is finally interrupted
when the two nontrivial Floquet multipliers become degenerate at 4+1. In this case
a saddle-node bifurcation of periodic orbits occurs (SN 7' in Fig. B.7), see Fig. B.6,
and in fact a Takens-Bogdanov [Kuznetsov, 1997 singularity takes place. In Sec.
B.2.4 we discuss this with more detail.
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Figure 8.7: Resonance structure for the transversal and longitudinal Hopf bifurcations, together
with the homoclinic bifurcation to fixed point C. Period doubling bifurcations of longitudinal
orbits (PD L) and Hopf bifurcations of longitudinal orbits (HOPF L) are displayed.
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Figure 8.8: Secondary Hopf bifurcation and its resonances p/qg = {1/2,1/3,1/4, ..} from an esti-
mation of the Hopf-saddle—node normal form (E) using the laser with injected signal parameters
(8,7n). The dashed line is the saddle—node of fixed points while the vertical line is the secondary
Hopf bifurcation. Compare with Fig. E (A=1,68=0.5,x=0.3).

The organization of the tongues in parameter space shows that for increasing
g, the resonances appear to accumulate towards the Hopf-saddle-node singularity.
This may be easily understood by a simple analysis from the Hopf-saddle-node
normal form. Truncating the normal form (B.2), the eigenvalues of the Hopf periodic
orbit (corresponding to T') at the (degenerate) secondary Hopf bifurcation p = 0,v <
0 are A\ = 44 w; = +iv/2av. Using the expression of @() and ¢ in (B3J) we may
estimate the position of the resonances in parameter space solving

pC = qui (v), (8.8)

for each pair of p, g. It is clear that moving on the secondary Hopf and approaching
the Hopf-saddle-node singularity (v — 0), the typical secondary frequency w; goes
to zero, so a larger ¢ is required to satisfy the resonance condition. Figure B.§
shows the result of this estimation of the resonance condition using the approximate
reparametrization of the laser with injected signal (8,n) parameters in terms of
Hopf-saddle-node parameters (B.3):

(1+60%) (v —2)x _ V146%
(=26 + (1 + 62)° =20+ p(1462)

The resonance structure is very similar to the one identified by Kirk [Kirk, 1991],
but for type III Hopf-saddlenode. The main difference is that in this type the
invariant torus coexists with the two fixed point solutions, and the possible ho-
moclinic/heteroclinic between them. Her main result was that the Arnold tongues
accumulated for increasing winding number towards this homoclinic/heteroclinic
bifurcation present for this particular type. In our case we observe that the ac-
cumulation of the tongues saddle-nodes is onto the Andronov global bifurcation,
occurring at the saddle-node of fixed points.

Bu,v)

M) = 5 (59
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Figure 8.9: Partial numerical bifurcation set around the 1/3 resonance. The horizontal lines are
constant— parameter cuts shown in Fig. B.10.

8.2.3 Structure and truncation of Arnold tongues

A closer look at how the periodic orbits are organized inside each resonance
g > 2 is very interesting. To fix ideas we take resonance ¢ = 3 shown in Fig. B.3.
We have performed three constant-7 parameter cuts displayed in Fig. B.10, where
the period of the orbits as a function of 3 is shown. In each panel the unstable T
periodic orbit is seen to born at 8 = 0.05 (with diverging period) in a homoclinic
bifurcation to C, becoming stable at 8 = 0.30 in the (secondary) Hopf bifurcation.
Also for low 8 we observe the stable L orbit which suffers a number of saddle-node
and Hopf bifurcations as § increases, and finally its period diverge as it approaches
at § = 0.60 the saddle-node infinite-period (Andronov) bifurcation.

In Fig. (a), close to the Hopf bifurcation of 7', a saddle and unstable periodic
orbit are born in a saddle node bifurcation and collide at a higher 8 in a reverse
saddle—node bifurcation. Both bifurcations corresponds to the resonance boundaries
shown in Fig. B:9. For a slightly lower constant-7 cut [Fig. (b)], we find that
the periof of the unstable branch of the resonant periodic orbits “explotes” and two
homoclinic bifurcations to C originate. These global bifurcations correspond to the
isola of homoclinics to C observed in Fig. B.9. Finally, in a cut further away from
the ¢ = 3 resonances of the Hopf of T' [Fig. B-IJ (c)], the homoclinics to C' disappear
and with the aid of another saddle-node bifurcation, the resonant periodic orbits
“merge” with the L periodic orbit. Notice in Fig. (a) that resonance ¢ = 4
already merged to L. The above merging process of transversal resonances into the
longitudinal periodic solution is observed for all resonances 1/¢q, ¢ > 2.
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The ¢ = 2 resonance reveals a more complex structure due to the fact that it
interacts with the period doubling bifurcation of periodic orbits. In Fig. B.11, the
period of the orbits as a function of 8 for different values of 5 in this resonance is
shown.

One may wonder if there is a topological restriction for the merging process, as
the transversal orbit (and its associated resonances) are linked in phase space to
the longitudinal orbit L, as shown in Fig. B3 For this, in Fig. BI3 (a)-(c) we
illustrate a continuation of L, T and a resonant orbit in order to show how the link
of a transversal orbit remains as it merges to a longitudinal orbit.

In fact, close to the merging process, the longitudinal orbits L also bifurcates in
a secondary Hopf bifurcation. Figure (a) illustrates the unstable L longitudinal
orbit born at the Andronov bifurcation, bifurcating in a secondary Hopf bifurcation
and creating a new unstable longitudinal torus around L [Fig. (b)]. Notice also
that the electric field intensity time series Fig. B.I4 is also quite different of that of
Fig. B4.

The remarkable feature is the organization in parameter space of the above bi-
furcations. We have found that all 1/¢ transversal resonances, end up in a cusp
bifurcation with another saddlenode bifurcation. The latter bifurcation is the re-
sponsable for the merging described above, and on this branch a 1/¢' = 1/1 sec-
ondary Hopf bifurcation occurs on L. Continuation of the new Hopf bifurcation
reveals that it suffers a 1/2 resonance (with a period doubling isola), before it ends
at another 1/¢' = 1/1 resonance, corresponding to a transversal tongue 1/(¢ — 1).
This sequence of bifurcations is seen to occur for all the transversal 1/q resonances
found.

The complete structure of the phase diagram of Fig. B.7 has now been described
and reveals a high organization which repeats as we approach to the Hopf-saddle-
node point. Several bifurcations not present in the local description of Hopf-saddle—-
node take part of the dynamics: (a) we have the Arnold tongues which for increasing
g accumulate to the Andronov bifurcation, (b) the secondary longitudinal Hopf
bifurcation connecting subsequent transversal resonances, and (c) the homoclinic
bifurcations to C' (the off state). The latter global bifurcations have a winding
number in correspondence with the resonance to which it belongs. Thus in the limit
close to Hopf-saddle—node one expects an accumulation of homoclinic orbits to C' of
diverging winding number. Furthermore, most turns would follow the smaller loop
T, as we approach Hopf-saddle node. This argument points to the possibility that
another global connection between the Hopf-saddle node fixed point and the laser
off state C' exists. This has not been explored in detail and deserves further study

(see Sec. below).

8.2.4 Homoclinics to periodic orbits

As mentioned above, all strong resonances are known to posses more bifurcation
structures than those that we have pointed out. In particular, it is well known that
unlike what happens in weak resonances, the saddle-node bifurcations of the tongues
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Figure 8.10: Period versus 8 of periodic orbits inside the resonance ¢ = 3. (a) n = —0.645: the
two saddle—node bifurcations forms an “isola” for the resonant periodic orbits close to the HOPF
T bifurcation. (b) 7 = —0.670: the saddle branch of the isola “explodes” in period, creating two
homoclinic bifurcations to C. (c¢) n = —0.725: the resonant branch of ¢ = 3 periodic orbits merges
with the L branch. Merging of the ¢ = 4 resonance is also observed in (a). Solid line: stable orbit,
dotted line: unstable orbit, dashed line: saddle orbit, squares: saddle-node bifurcations of periodic
orbits, diamonds: Hopf bifurcations of periodic orbits.



8.2 Bifurcation set for small detuning 133

C e> |

20 — |

< — | ;
9 B m‘ |
3 - | :
A 10 E
0L | | |
20— : > {
so] . i
o ~ | | |
5 ok ;//M — E
O T e X m = = = - - = = j

) ,

L C> |

20 — ]

U 3 —
o ~ |
5 E -- |
o 10 - E
e X= = = = = - = 7

| a
20— > {

< — ;
| | n
£ - |
n, 10— & |
T © ;

) a

L a) |

20 — ]

< — o ;
o r ) ”X |
A 10 v
S -- RS L ,

C : :

oL ‘ | | ‘ 7

o~ s 03 0.4 0.5 o

Figure 8.11: Period of the orbits versus § for different values of n: (a) n = —-1.2, (b) n = -1,
(¢) n =-0.9, (d) n = —0.85, (e) n = —0.8. Solid line: stable orbit, dotted line: unstable orbit,
dashed line: saddle orbit, squares: saddle—node bifurcations of periodic orbits, diamonds: hopf
bifurcations of periodic orbits, crosses: period doubling bifurcations of periodic orbits.
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Figure 8.12: Phase portraits of resonance orbits, together with 7' and L. Each row shows a
continuation of a transversal 1/¢ resonance on the right column, ending in a longitudinal 1/¢’
orbit on the right column. For a clear visualization only the first row displays the whole resonance
orbit, while only its intersections with W = 0 are shown in the subsequent rows. Resonance 1/2
(n,B): (al) (-0.77,0.32), (bl) (—0.83,0.40), (c1) (—1,0.41). Resonance 1/3: (a2) (-0.66,0.32),
(b2) (—0.70,0.38), (¢2) (—0.75,0.44). Resonance 1/4: (a3) (—0.565,0.32), (b3) (—0.60,0.38), (c3)
(4,—-0.64,0.43). Solid lines: stable orbits, dot lines: unstable trajectories. Saddle orbits are not
represented.
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Figure 8.13: Projections in the plane (E,., E;) of the orbits that exist in each side of the Hopf
bifurcation of L periodic orbits. Solid lines: stable orbits, dot lines: unstable trajectories. n = —0.8.
(a) 8 =0.485, (b) 8 = 0.477. The torus created is unstable.
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Figure 8.14: Intensity versus time for the torus created at the Hopf bifurcation of L periodic
orbits. n = —0.8, § = 0.477.
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do not occur on the torus. Instead the invariant torus may grow as parameters
change and eventually collide with one of the resonant periodic orbits. This would
correspond to a homoclinic bifurcation to a periodic orbit, with the final destruction
of the torus.

One example may be found in the intersection point of all 1/1 resonance points
with the saddle—node bifurcation of periodic orbits. At this point one may ex-
pect a Takens-Bogdanov singularity [Kuznetsov, 1997 which is well known to have
such a global bifurcation. Figure B.13 shows an enlargement of the 1/1 resonance
of the transversal 7' and longitudinal L orbits, where the diamonds indicate the
approximate values where a homoclinic tangency was observed by direct numeric
computation.
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Figure 8.15: Blowup of 1/1 resonance of transversal T' and longitudinal L orbits. Diamonds
show the locus of homoclinic tangencies to T and L orbits.

A close loop around the Takens—Bogdanov point in Fig. B.15 describes the main
features, see Fig. for the orbits in the parameter space. Moving from region B
to F' two periodic orbits are created, one saddle and one unstable. From F' to G
the secondary Hopf bifurcation creates an unstable torus, and the unstable periodic
orbit becomes stable. In region G the radius of the torus grows as one approaches
region H, and finally collides in a homoclinic bifurcation to the saddle periodic
orbit. In Fig. B.If we illustrate a numeric computation of the stable and unstable
manifold of the periodic orbit 7', showing clearly a homoclinic bifurcation. Notice
that one expects homoclinic tangencies as one departs from the Takens-Bogdanov
point. Finally, moving from H to B, the remaining periodic orbits disappear in a
saddle-node bifurcation.
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An analogous scenario holds for the Takens—Bogdanov point on the longitudinal
orbits seen in Fig. B.15, denoted homoclinic to L. In general, we also find Takens—
Bogdanov bifurcation points in all 1/¢’ = 1/1 resonances of L described above.
We emphasize that this is only an approximate view since at the Takens-Bogdanov
point many other bifurcations originate (see |[Hirschberg and Laing, 1995)).

A different homoclinic bifurcation to a periodic orbit is the one encountered
inside the 1/3 resonance, see Fig. BI7. This is a well established result from the
normal form analysis of this bifurcation [Arnold, 1983 [Kuznetsov, 1997|. The torus
is found between the secondary Hopf and the homoclinic tangency. In this case,
the torus grows and collides to a saddle period ¢ = 3 orbit, which exists in an
neighbourhood of the T resonance point.
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Figure 8.16: Phase portraits of the Poincaré section W = 0 for the homoclinic bifurcation of the
1/1 transversal resonance, in the neighbourhood of the homoclinic tangency. The saddle periodic

orbit is at the square, and next we computed the stable and unstable manifolds. (n = —1.20)
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Figure 8.17: Homoclinic bifurcation in 1/3 resonance. Diamonds account for the homoclinic to
the saddle T periodic orbit.
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8.2.5 Full resonance structure

In general one expects a countable number of resonances for the breakup of
quasiperiodic motion, one for each rational p/q. These may be organized following
the Farey sequence [[Aronson ef al., 1987, where between resonances p/q and p'/¢'
one always finds resonance (p + p')/(¢ + ¢'). A full classification of all these res-
onances is quite complicated so we show the locus of two resonances with p > 1.
In Fig. we display two resonances in between the strong 1/1 and 1/2 of the
transversal torus. They show basically the same structure, including the isola of
homoclinic bifurcations to C' and homoclinic bifurcations to the T. One of them,
the transversal 5/8 resonance, becomes a weak resonance in the neighbourhood of
the L torus. The other, a transversal 2/3 resonance becomes a strong 1/2 resonance
in the neighbourhood of the L torus. Notice also the homoclinic bifurcations to L
and T periodic orbits found in this resonance.

-0.95F HOMOCLINIC ¢ ' . b

105} b
!
HOPF L |
,."
¢
-11f £
* 3,
Y}Qﬁ,}% "“'\,e/
* " s
HOMOCLINIC * xS
TOoC ) /
-1.15} . .
*
* %0
}o o 00 PD L
HOMOCLINIC TO L
-12f .0 ]

*
1 1 1 1 1 1 1 .t 1 1 1 1

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

Figure 8.18: Higher order resonance structure between 1/2 and 1/3 transversal resonance.
Transversal resonance 2/3 becomes 1/2 resonant to orbit L, while transversal 5/8 resonance be-
comes a weak resonance to L.
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8.3 Andronov bifurcation

We now describe with some more detail the Andronov bifurcation found in
the laser with injected signal. In Fig. B.I9 we illustrate the phase portraits of
the unfolding of this bifurcation in a one parameter cut. They correspond to the
Andronov-Leontovichf] [Kuznefsov, 1997 bifurcation: a periodic orbit in the region
of no fixed point collides in a homoclinic orbit with the saddle-node (SN) fixed
point. At the bifurcation point, there exists an orbit leaving the central manifold,
and returning after some finite time through the other central manifold of the saddle-
node fixed point.

@ N (b) sl

L

Figure 8.19: One—parameter unfolding of Andronov bifurcation. Note that the stable manifold
of the fixed points in (b) and (c) are two—dimensional in a laser with injected signal.

This bifurcation is quite representative in a laser with injected signal and has
been confirmed in several parameters regimes. The standard Adlers equation [vanl
[Iartwijk and Lenstra, 1995 is a one-dimensional example displaying this bifurca-
tion. Also the two—dimensional averaged model of [Solari and Oppo, 1994, displays
this bifurcation at the SN bifurcation of fixed points. This in fact motivated previous
studies in global bifurcations, for in generic three-dimensional systems one expects
that the global connection connecting the saddlenode to itself should break.

Results for type IITin [Zimmermann et al., 1997 show that the Andronov global
bifurcation exists for sufficiently small (3, 7), but become degenerate at a point close
to the Hopf-saddle-node singularity, where a new codimension-2 bifurcation known
as Shilnikov—saddle—node, occurs. At the bifurcation, the homoclinic orbit leaves
through the central manifold the neighbourhood of the saddle-node fixed point,
but now returns through the stable manifold of the degenerate fixed point. Results
for type I (1 < < +/3) show that the Andronov bifurcation exists for the whole
interval between (3,7) = (0,0) up to the Hopf-saddle—node point. However on the
other side of the codimension-2 point, homoclinic tangencies to T' occur near the
SN bifurcation of fixed points [fimmermann et al., 2001].

For type II we display in Fig. B.21 a continuation in parameter space of the
Andronov bifurcation, approximated by continuation of a very high period L orbit.
The locus of this global bifurcation starts at (8,7) = (0,0) and extends past the
Hopf-saddle-node point. The stability of the periodic orbit depends on the stable

3In fact this bifurcation was studied by Andronov in 2-dimensions, while the n—dimensional
case was solved by [Sil’nikov, 1966]. However we keep the term Andronov bifurcation to the generic
case.
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or unstable direction of the degenerate fixed point at the SN bifurcation. Therefore
for |n| small the stability of L is stable (region 3 in Fig. B.1]), while for values on the
other side of the Hopf-saddle node point, L becomes unstable (region 3’ in Fig. B1]).
In phase space, orbits born at this global bifurcation display a number of transversal
oscillation (“bumps”) in the region of phase space where the saddle-node fixed point
(SN) disappeared. The number of these oscillations diverge as we approach from
below the Hopf-saddle-node bifurcation point, for in the neighbourhood of this
singular point there are two directions with extremely slow dynamics. Moving away
from the saddle—node bifurcation, the transversal oscillations are observed to grow in
phase space. We have shown in Sec. how this periodic orbit is found in general
to suffer saddle-node bifurcations corresponding to the resonance boundaries of the
Arnold tongues, or a secondary Hopf bifurcation. This clarifies the integral role of
the Andronov bifurcation in the complete bifurcation structure close to the Hopf-
saddle-node bifurcation point.

A new global bifurcation was found involving the Andronov bifurcation. For suf-
ficiently negative 5, the homoclinic orbit makes a global excursion which approaches
the C fixed point. In parameter space, we find that the Andronov bifurcation collides
at a point with the branch of homoclinic bifurcations to C. At the collision point a
heteroclinic cycle between the saddle-node (SN) and C fixed point was found. That
is, there is a heteroclinic connection leaving through the central manifold of SN
and enters C' through the stable one-dimensional manifold, and another connection
which leaves through the two-dimensional unstable manifold of ', and enters back
to SN through its two-dimensional stable(-center) manifold (see Fig. B.20). This
cycle is reminiscent to the T—point bifurcations found for two non—degenerate fixed
points [Glendinning and Sparrow, 1986; Bykov, 1993 Zimmermann and Natiello]

[ 199§]. So far, this degenerate heteroclinic system has not been studied in detail.

4 T T I T I T

Figure 8.20: T-point bifurcation: phase portrait of heteroclinic cycle between fixed point C
and saddle-node fixed point (SN) at (8,n7) = (—1.117,0.91595). The stable manifold W*(C) is
one—dimensional while the unstable manifold W*(C) is two—dimensional. W¢ (SN) denotes the
central manifold of the SN fixed point.
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Figure 8.21: Locus of homoclinic bifurcation to C fixed point, T—point, and Andronov bifurcation
at the saddle—node of fixed points.

8.4 Discussion

In this work a study of the partial bifurcation set around the type II regime of
the Hopf-saddle node singularity in a laser with an injected signal has been per-
formed in order to contribute to the study of this system. It has been performed a
careful analysis for one of the regimes not considered before in so detail. Secondary
Hopf bifurcations to a transversal and longitudinal (to the W = 0 plane) periodic
orbits dominate the periodic motion in a region of parameter space where non—
locking solutions exists. The former periodic orbit is well described by the unfolding
of the Hopf-saddle—node bifurcation, and corresponds to undamped relaxation os-
cillations, while the latter arises as a saddle-node infinite—period (Andronov) global
bifurcation. Our results show how the Arnold tongues arising from the transversal
torus are “truncated” in parameter space by resonances of the longitudinal torus.
Thus in phase space the periodic orbits are observed to deform continuously from
transversal into longitudinal orbits. A partial bifurcation set displaying our main
result is shown in Fig. B.23.

In chapter [, it was described the bifurcation set for a class A laser with injected
signal. The main difference between class A and class B lasers from the dynamical
point of view is the number of variables that one works with. For class A lasers
two variables suffice and the full bifurcation set can be described. For class B
lasers, a three-dimensional system, a more complex variety of phenomena has been
described. However, it has to be noticed that part of the bifurcation structure of
class B lasers is already present in class A lasers. Hopf-Saddlenode and Takens—
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Figure 8.22: Partial numerical bifurcation set for type IT Hopf-saddle—node in laser with injected
signal.

Bogdanov singularities and Andronov global bifurcation were also present in the
class A case.

Our work also extends [Bolari and Oppo, 1994 results on the averaged laser
with injected signal equations. The averaged system displays: (a) an Andronov
bifurcation creating a longitudinal orbit, (b) a secondary longitudinal Hopf bifurca-
tion on this orbit, which originates from the Hopf-saddle node point in parameter
space, and (c) the characteristic transversal secondary Hopf bifurcation of the type IT
Hopf-saddle-node singularity. However, Solari and Oppo observed as well singular
behaviour (orbits going to infinity) when continuing the resulting tori in parame-
ter space. The reason for this is the topological restriction to the deformation of
transversal into longitudinal tori in a two-dimensional phase space.

In the three-dimensional setting of laser with injected signal equations we have
found instead a family of homoclinic orbits to the off state fixed point, arranged in
isolas in parameter space inside each Arnold tongue of the corresponding transversal
torus. The off state fixed point appears to be at infinity in the averaged equations
(due to the change of coordinates), and hence we can conjecture that the singular
behaviour observed in the average model results from “bifurcations with infinity”
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[Bparrow and Swinnerton-Dyer, 1995, as we move between both tori. A more de-
tailed study of the averaged equations would be desirable to test this conjecture.

Our present work is also related to a recent work on solid-state lasers with optical
injection |[Yeung and Strogatz, 199§, where a complicated bifurcation diagram close
to the saddle node bifurcation was found. The rate equations studied may be shown
to be rescaled to laser with injected signal equations (B.1]) with # = 0 (provided that
g # 0). This particular detuning was shown by Solari and Oppo to be somewhat
more delicate, but type II Hopf-saddle node was preserved. Yeung and Strogatz
studied the attractors in a parameter cut with constant detuning 7, and increasing 3
approaching the saddle node bifurcation. Their diagrams showed periodic windows,
interspeded by orbits with a large intensity, reminiscent of the homoclinic orbit to
the off state found in our work. The most remarkable difference, is that the self-
similar structure of periodic windows is reported to accumulate at the saddle node
of fixed points. Instead our work shows that (at least for # = 0.5 > 0), a finite
number of resonances are crossed by constant-n cuts in the bifurcation diagram
while approaching the saddlenode bifurcation. Nevertheless, it appears that the
number of crossed resonances diverges as 7 approaches the codimension-2 value.
Further work should confirm how the secondary Hopf bifurcation we found moves
in parameter space as 8 — 0.

Despite the complicated bifurcation set presented, we emphasize that most of
this structure remains out of the hand of standard experimental setups due to noise
terms that appear in experiments. Nevertheless we would like to point out that
a partial confirmation of this bifurcation set should be possible, by following the
stable cw solution in parameter space, and looking for stable undamped relaxation
oscillations. The region of existence of these two stable invariant sets is bounded
by the secondary Hopf bifurcation, and by locating the locking region, this may
validate the basic features of the type IT Hopf-saddle—node scenario.

Finally, we would like to emphasize the possible implications of the homoclinic
bifurcations to the laser off state found above. The sequence of homoclinics bi-
furcations for each of the infinite number of resonances accumulating towards the
Hopf-saddle-node singularity is a remarkable result which needs further detailed
study. This phenomenon suggests that the Hopf-saddle-node singularity may have,
on top of the saddle-node infinite-period global bifurcation, another pair of hetero-
clinic orbits to the Hopf-saddle-node fixed point, forming a cycle. So far, we are no
longer surprised by the bizarre global bifurcations found in this laser, which provide
stimulating motivation for further research.







Capitol 9

Resonancies principals en lasers de
semiconductor modulats

En aquest capitol es calculen els dominis d’existencia de les resonancies princi-
pals en lasers de semiconductor directament modulats, veure Sec. [.3. Els resul-
tats que s’obtenen numericament al integrar directament les equacions es comparen
amb els resultats d’aplicar la teoria quasi—conservativa. En el model es consideren
explicitament els termes de saturacié de guany i d’emissié espontania.

Les equacions per al laser de semiconductor (P1)) i (B:2) es tracten amb termes
de modulacié. Primerament es consideren modulacions en el terme de bombeig de
tipus sinusoidal (P-3) amb amplitud relativa J,, i freqiiéncia wy,. La dinamica de les
equacions amb aquesta dimensié addicional esdevé molt més complexa que en el cas
de bombeig constant (capitol []). Per caracteritzar la resposta del sistema es mira el
valor maxim de la intensitat optica I, (Ij;qz), quan es modula el laser. Per a valors
petits de Jp, 1 wy,, €l sistema es comporta de manera similar a un oscil-lador lineal
amb termes d’esmorteiment: oscil-la periodicament amb la freqiiéncia d’entrada
W, 1 1a resposta I,,,, t€ un maxim a la freqiiencia de les oscil-lacions de relaxacié
wg. Per a valors grans d’amplitud, apareixen efectes no lineals importants. El
maxim de I,,,; ja es no troba a wy siné que desplacat cap a una freqiiéncia menor,
Fig. P.J. A més d’aquesta resposta amb la mateixa freqiiencia de modulacié 1T,
també poden apareixer altres respostes amb altres freqiiencies. Aix0 déna lloc a
un comportament molt complex amb regions amb multiestabilitat. Les possibles
respostes es poden classificar com n/l, on n i [ s6n nombres sensers sense factors
comuns, de manera que la resposta té una freqiiéncia lw,,/n. Les respostes n/1
també s’anomenen n1" ates que el periode del senyal resultant és n vegades el periode
del senyal de modulacié. L’existéncia d’aquestes respostes es veu a la Fig. P.1], on
s’ha dibuixat I,,,, de les respostes estables en funcié de w,,. Anant augmentant el
valor de J,,,, es veu com van apareixen les distintes respostes nT. A la figura p.9
apareixen les evolucions temporals per a distints valors de w,, per a les respostes
1T i1 2T. A més d’aquesta estructura basica, cadascuna de les respostes poden,
aixi mateix sofrir bifurcacions de periode doble, Fig. P.I (d), i en qualque cas
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donar lloc a comportament caotic. Cada resposta n/l té un maxim, en wy,, per a
un valor fixat de J,,: aquest maxim és la resondncia n/l. En aquest treball ens
centram en les resonancies nT’, que s’anomenen resonancies principals o resonancies
primeres sella-node ja que coincideixen amb les bifurcacions sella-node on I'orbita
estable esdevé inestable (Fig. P.1]). Les corbes al pla (wp,/wo, Jim) que uneixen els
punts de les resonancies nT s’anomenen corbes “esquelet” per a la resonancia nT.
L’objectiu d’aquest treball és obtenir les corbes esquelet per a les resonancies nT,
Fig. P.3. Aquesta descripcié és d’interes per a treballs experimentals perqueé permet
determinar la freqiiencia en la qual es té una resposta maxima per a una amplitud
d’injecci6 fixada. Els resultats obtinguts han ajustat amb els resultats indicats en
treballs experimentals |[Liu and Ngai, 1993]. El terme de saturacié de guany no
canvia el comportament dinamic ni la localitzacié de les corbes esquelet de ma-
nera qualitativa, Fig. P.4. Per a un valor fixat de wy,, cal un valor més gran de
Jm per obtenir la resposta Optima, compatible amb que aquest terme augmenta la
dissipacié. El terme d’emissié espontania canvia drasticament el comportament de
la dinamica del sistema per a valors de wy, petits, Figs. p.5iP.6. Aquest efecte pot
ser causa d’un fons de fotons que evita que la intensitat del camp eléctric disminueixi
per davall d’un cert valor, donant lloc a una resposta independent de la freqiiencia.

Els resultats obtinguts numericament es poden explicar mitjancant la teoria
quasi—conservativa. Aquesta teoria, que utilitza la forma potencial per al sistema,
obtinguda en el capitol [], assumeix que les orbites periodiques es poden aproximar,
a prop de la resonancia, per orbites conservatives amb un valor del potencial. Els
resultats de la figura 0.7 indiquen que la teoria reprodueix els resultats numerics en
el cas de tenir un terme d’emissié espontania nul. En presencia de termes d’emissié
espontania, la prediccié teorica reprodueix qualitativament els resultats numerics,
Figs. P.§1P.9. No obstant, la teoria prediu un augment molt més acusat per a
I’amplitud optima de modulacié que 'obtinguda numericament, a causa de la forma
del periode de les solucions conservatives en funcié de ’energia per a valors grans
de I'energia.

El cas de modulacié al terme de perdues també s’estudia. Els resultats de la
teoria quasi—conservativa ajusten bastant bé amb els resultats numerics, Figs. 9.10,
Pp17ip.I2

Finalment, s’obté en una relacié entre I’efecte produit per la modulacié al bombeig
ila modulacié al terme de pérdues, (9:29). La validesa d’aquesta equivaléncia apareix
en les figures P.131P.14. Aquesta relaci indica que la modulacié al terme de pérdues
és més eficient a I’hora de tenir bifurcacions i comportament caotic que la modulacié
al bombeig (cal un valor de 'amplitud de modulacid, en el cas de les pérdues, molt
menor que en el cas de la modulacié al bombeig, per obtenir els mateixos efectes).




Chapter 9

Main resonances in directly
modulated semiconductor lasers

In this chapter, we undertake numerical and analytical calculations in the frame-
work of the single mode rate equation model (chapter f]) including a modulation term
for the injection current with the aim of determining the parameter domains of the
basic instabilities involved. The work presented in this chapter completes the above
series of studies of directly modulated semiconductor lasers, as it was reviewed in
section [[.3.

Domains of existence of the main resonances in directly modulated semiconductor
lasers are obtained by application of the quasi—conservative theory. The predictions
are compared with numerical results coming from a direct integration of the model
equations and with experimental observations reported by other groups. In both
cases we find a good qualitative agreement. We consider a model that contains
explicitly the gain saturation and spontaneous emission terms and we focus mainly
on the effect that these terms have in the regime of large amplitude of modulation.

The chapter is organized as follows. In section P.I], we describe qualitatively the
response obtained for a diode laser, as described by a single-mode rate equation
model, in the presence of pump modulation. In Sec. P.9, the quasi—conservative
theory is used to obtain relations that allow the calculation of the primary saddle-
node bifurcations, both for the case of modulation in the pump or in the losses. In
Sec. P.3, the theoretical estimations are compared with numerical results coming
from a direct integration of the model equations. The effects of gain saturation and
spontaneous emission terms in these bifurcations are explored in detail. In Sec. P.4,
we compare our results to previous experimental works reported by other groups.
Finally, in Sec. P.3, we discuss the main obtained results.

9.1 Dynamical behaviour
The dynamics of a single mode semiconductor laser was discussed in detail in

chapter []. As the evolution equations for I and N do not depend on the phase ¢,
we can concentrate only in the evolution of the former variables. The equations that
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give the corresponding dynamics are equations ([[.I)) and ([7.3):
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Typical values of the parameters involved in the equations were presented in Table
[[-J]. The dynamics of the equations for constant J > Jy, is such that both I and N
relax to their steady states by performing damped oscillations. The frequency wy of
these oscillations close to the steady state can be calculated linearizing the equations
of motion (237, for the simplest case s = ¢ = 0, wy = {/gn(J — Jin)/e = 25ns™!
for parameter values of Table .1l and J = 1.23.Jy, .

The purpose of this work is to study the dynamics of Egs. (P-1]) and (P.2) under
modulation. In particular, we will consider modulations mainly in the pump current
J and also in the losses 7, which would be an option in distributed Bragg reflection
or multisection lasers. In order to be more specific, we describe now the qualitative
features of the behaviour when the pump is modulated at a given frequency wy,.
More explicitly, we consider

9.2)

J(t) = Jy[1 + Jom cos(wmd)], (9.3)

where J, is a fixed value of the current (bias current), such that J, > Jy. In our
simulations we choose J, = 1.23.J; and values for the relative amplitude of the
modulation J, < 1 (to satisfy the physical constraint that the total current has
to be positive). When J becomes time dependent, the dynamics are more complex
than in the case of constant J, and a very rich dynamical structure can appear
depending on the values of J,, and wy,.

For small values of J,, and for w,, smaller than —3dB modulation bandwidth
frequency, the system behaves almost as a forced linear oscillator with damping
terms; the optical intensity I oscillates periodically with the same frequency wy,
of the input current. To characterize the response of the system we look at the
maximum value of I (I,,,,) when we modulate the laser. It is well known that, under
small signal modulation, the optical response I,,,,, has a maximum at the relaxation
oscillation frequency wy [dotted line of Fig. P.1 (a)]. This is an example of the well
known phenomenon of linear resonance |Agrawal and Dutta, 1986; Jackson, 1989].

In contrast to the small signal response just described, large amplitude modu-
lation, i.e. large values of J,,, give rise to strong nonlinear behaviours, since the
nonlinear terms become relevant in the dynamics of the system. The maximum re-
sponse (maximum value of I,,,,) is not located anymore at the relaxation oscillation
frequency wy but it is shifted to a smaller frequency (soft spring oscillator)f]. This
fact can be seen in Fig. P.1 where the response of the system, for different values of
Jm, 18 shown. In this case we have taken s = 0 and ¢ = 0 in Egs. (P-I)) and (P-3). In

1The nonlinear terms of hard spring oscillators make the maximum response to be shifted to a
bigger frequency than wy.
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this nonlinear regime, in addition to a response at the same frequency of modulation
wm, other frequencies can be excited for sufficiently high modulation amplitudes J,,.
This fact gives rise to a more complex diagram for the response of the system, lead-
ing even to the phenomenon of multistability (several stable responses for the same
value of the input parameters). The different possible responses of the system can
be classified as n/l where n and [ are integer numbers with no common factors, such
that the response frequency is lwy,/n [Jackson, 1989].

In this work, we will be mainly interested in primary resonances of the type
n/1. Our interest in these responses is based on the fact that they usually yield
the maximum output power. These n/1 resonances are also called nT—periodic
responses because the period of the resulting signal is n times larger that 7,,, where
Tm = 27 /wy, is the period of the external modulation. Different types of stable n/I
responses (amplitude I,,,, versus the modulation frequency w,,) are shown in Fig.
D.] for different values of the modulation amplitude J,,; while in Fig. P.2, the time
evolution for the intensity is plotted for different values of the frequency w,, and the
common value J,,, = 0.2. The qualitative picture described is now detailed:

- For small modulation amplitude, see Fig. P.J (a) (J,, = 0.01, dotted line),
the linear approximation applies and there are only single main resonances whose
maximum lies approximately at the relaxation frequency.

- For larger modulation amplitudes, Fig. (b), the stable 17" resonances desta-
bilize themselves via a saddle—node type instability. This allows a hysteresis cycle
with discontinuous transitions between the different 17 responses. This saddle-node
instability is interesting since we have observed that the maximum response appears
just before the solution becomes unstable. (We will come back to this point later).
When multistability is possible, and for those moderate levels of the amplitude of
the modulation, the larger output intensity I,,,, always corresponds to the 17" re-
sponse. Other n/l responses, with [ # 1 can be generated for small frequencies but
they have a much smaller output power and they will not be considered in this work.

- After a further increase of J,, (Fig. P-J] (c), corresponding to J,, = 0.2) the 2T
response appears continuously, when decreasing wy, (starting, in our example, from
Wy /we = 3.0), as a period doubling bifurcation of the 17 response (see Fig. P.9 for
temporal trajectories). When w,, is decreased even further, there appears a range
of values of w,, for which the 17T and 27T responses are both stable, hence allowing a
hysteresis cycle in this bistable region as well as a discontinuous transition between
the 17T and the 27 responses. The 17 response, solid line, gives a smaller output
that the 27 response for the whole frequency range of existence of the 27T response,
namely for wy,/wy € [0.968,2.118]. The 1T response does not exist (is unstable) in
the frequency interval [1.761,2.118]. For even smaller w,, the 2T response finally
disappears through a saddle-node instability. The 27 response around wy, /wy = 2.0
is the first subharmonic resonance (parametric resonance [Jackson, 1989)).

- For larger values of J,, [Fig. P-J(d)] other nT responses with n > 2 appear. Each
of these nT responses exist for a given range of values of w,, and are unconnected
to the previous 17 and 27 responses. At both ends of its frequency range, they
disappear through saddle-node bifurcations.
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Figure 9.1: Responses, I;4z, versus the normalized external frequency wy, /wq for different values
of the modulation pump amplitude in the case J, = 1.23Jy,, s = 0, € = 0. Other parameters as
indicated in the text. (a) dotted line: J,,, = 0.01, solid line: J,,, = 0.02, (b) J,,, = 0.1, (¢) J,, = 0.2
and d) J,, = 0.3. The 2* and 3* responses correspond to further period doubling bifurcations.
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Figure 9.2: Intensity versus time for different values of wy, /wy for J,, = 0.2 corresponding to
some points of the curve of Fig. @ (©). (a) wmfwo = 0.43, (b) wy/woe = 0.97, (¢) wy,/wo = 2.08,
(d) wifwo = 2.11, (€) wp/wo = 2.12. Same parameters as in Fig. . T = 27wy,



152 Resonances in modulated semiconductor lasers

Besides this general framework, all the existing nT responses can, at a given value
of the modulation amplitude, suffer different types of period doubling bifurcation,
period four, etc, or even chaos, following the Feigenbaum route to chaos [Jackson]

[ 1989 or the route period doubling followed by period four, eight, period tripling,
etc., as in references |Lamela ef al., TO98H; Lamela ef al., TO98a]|. These are indicated
with dashed lines in the corresponding diagram [Fig. B.1 (d)] and are denoted as 2*
responses, being k£ an indication of the number of period doubling bifurcation that
the orbit has suffered. The same meaning applies for the 3* responses.

In Fig. we plot, for a fixed value of the modulation amplitude [J,, = 0.2,
corresponding to the diagram in Fig. P.1 (c)], time evolutions for the intensity I(t)
for several values of the frequency wy,/wy. Case (a) corresponds to wy,/wy = 0.43
where, according to Fig. B.1 (c), the 1T type solution with maximum intensity
appears. Case (b) corresponds to a frequency wy,/wy = 0.97 where the 27" solution
begins to exist. We note that at this frequency, the 27 signal has a maximum
spectral component in the first harmonic, allowing for a clean time trace of the
optical intensity, with no additional peaks, as shown in Fig. (b). As the frequency
increases, Figs. P.2 (c) and (d), the 2T response deteriorates in the sense that
the maximum intensity decreases and extra peaks develop in the time series. Finally,
for wy,/we = 2.12 the 1T response is recovered. However, and in accordance with
Fig. P.J] (c), the maximum intensity is now much smaller that the one of the optimal
1T response shown in Fig. (a).

For fixed modulation amplitude J,,, each n/l response has its maximum at a
given value of the modulation frequency. This maximum is called the n/l resonance.
In this work, we are mainly interested in the 7n/1 resonances (or nT resonances)
because they usually yield the maximum output power. In the literature, they
are also known as main resonances. These resonances are indicated by solid dot
symbols in Fig. P.1. The curves in the (wy,/wq, J;,) plane joining the points at
which nT resonances occur are called the skeleton curves for the nT' resonances.
Our main effort will be directed to finding the skeleton lines for each main resonance
of the nT type. This description can be of interest to the experimentalists since it
allows determination of the resonance frequency at which the maximum response is
obtained for a given external amplitude of the injection current.

With this aim in mind, we have performed intensive numerical simulations to ob-
tain the maximum responses of the system for different J,, and w,,/wy. In principle,
for a given J,,, one should find the value of w,,/wy that maximizes the response at
each nT resonance. However, this is a very lengthy procedure that can be avoided by
finding, instead, the value of wy,/wy where a saddle-node bifurcation is born, since,
as we have already said, we have observed that the maximum response appears just
before the solution becomes unstable. Due to this fact the main resonances are also
called primary saddle-node resonances. This allows us to identify the position of the
maximum response in the (wy,/wy, J,) plane with the position of the bifurcation.
The procedure of finding such bifurcation is easier to implement using nonlinear
dynamical tools than to perform whole simulations of the rate equations [Doed
et al., 1997].
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In Fig. P.3 the primary saddle-node bifurcation are shown (thick solid lines) in
the case s = 0 and € = 0 for the 1T, 2T and 3T resonances. We show in some cases
that the location of the saddle node bifurcation coincides, with great accuracy, with
that of the maximum I,,,,,. The latter have been obtained by numerical simulations
of the laser equations and are indicated by symbols in the figure. Notice, however,
that the line of the saddle-node bifurcation do not reach the linear limit w,,/wy =1
corresponding to very low amplitude of the modulation, because for small values of
modulation amplitude there is no saddle node bifurcation. We also plot in the same
figure some additional lines that correspond to domains of existence of the above
mentioned nT resonances. Within these domains, besides the “pure” nT solutions,
there exist a rich variety of bifurcated solutions (period doubling, period 4, and so
on, indicating the route to chaos described previously). The 17 solution only exists
below the thin solid line of Fig. P.3. The 2T solution is limited to the region below
the thick solid line of 27" and the dashed line and it only exists within this limit.
Finally, the 3T solution is limited to the region below the thick solid line of 37" and
the dot-dashed line of the figure. In what follows, we will restrict ourselves to the
thick lines denoting the maximum of each resonance.
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Figure 9.3: Maxima of main resonances in the plane (wy, /wq, Jm), solid thick lines. Thin solid
line: Period doubling bifurcation of the 17" resonance to 2' (coincides with the limit of existence
of resonance 17T'), dashed line: lowest limit for the existence of the 2T resonance, dot—dashed line:
lowest limit for the existence of the 37" resonance.
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We now describe the effect of the gain saturation term. We plot in Fig. P4,
the changes on the line of main resonances (given in Fig. for s = ¢ = 0)
in the case s # 0 (but still & = 0). It can be seen clearly that the saturation
term does not change qualitatively, neither the location of the lines nor the overall
dynamical behaviour of the system. The only difference is that, for a fixed frequency,
a larger value of J,, is needed to obtain the optimal periodic response. This is clearly
compatible with the fact that the main effect of the saturation term is to increase
the dissipation.
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Figure 9.4: Maxima of main resonances in the plane (wy,/wo, Jm). Solid line: s =0, dotted line:
5 =6 x 1079, dashed line: s = 3 x 1078, & = 0. Other parameters as in Fig. P.1.
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On the contrary, the effect of the spontaneous emission term strongly changes
the response of the system. In Fig. .5, the lines of I,,4; in the (wy,/wo, Jm) plane
are shown for the case € # 0 and s = 0. One can observe the dramatic change in
the behaviour of the response of the system for small frequencies with respect to
that observed for € = 0 (solid line). When increasing the modulation amplitude we
find a steep response that indicates that the frequency w,, for the optimal response
Inaq is less sensitive to the amplitude of the external modulation, .J,,. We speculate
that this effect might be due to that for € # 0 there is a background of photons
preventing the intensity decreasing below a certain value, so yielding a frequency—
independent response. For the case s # 0 and £ # 0 we observe combined the same
qualitative results as those shown in Fig. P.4 and Fig. P.5. It is important to point
out that values of s and ¢ different from zero yield chaos suppression, a fact that
has been already pointed out both numerically and experimentally [lang and Wang]
1987]. Naively, one could expect that the gain saturation parameter plays a more
important part in the dynamics. However, we observe that in some situations the
main resonances can be affected more strongly by the spontaneous emission factor
than by the gain saturation factor.
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Figure 9.5: Maxima of main resonances in the plane (wy,/wo, Jm). Solid line: &€ = 0, dotted line:
e=62x10""ps, e =23 x 10710ps 1,
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Figure 9.6: Responses, 4z, versus the normalized external frequency wy, /wq for different values
of the modulation amplitude. J, = 1.23Js,. s = 0, € = 6.2 x 10~ ps~!. Other parameters as
indicated in the text. (a) J,, = 0.033, (b) J,, = 0.2 and (c¢) J,, = 0.3.

In the absence of spontaneous emission, € = 0, the tendency to decrease the main
resonance frequency with increasing amplitude of modulation can be explained using
a Toda-like potential function ([[:I4]). Physically, it means that a maximum number
of photons in the cavity is available for modulation and this number is not limited
from below. However, in the presence of spontaneous emission terms, this is not true
anymore and the Toda potential as a function of the intensity changes, becoming
more symmetric and steeper for very low intensities. A spontaneous emission back-
ground is created and during the modulation period the number of photons can not
be smaller than this value and, consequently, the response is maintained basically
unchanged at any smaller frequency. As soon as the intensity of the laser reaches
this background level, the dynamics changes and at low frequencies a non-resonant
regime of gain switching (with no dependence on frequency in some modulation
frequency interval observed) dominates. In Fig. 0.6, we plot the maxima intensity
responses I,,,, against frequency w,, for different values of J,,, in the case £ # 0.
Compared with Fig. P.I], we notice that at small modulation amplitude [J,,, = 0.033,
Fig. P.g (a)] the response for small value of wy, does not change qualitatively and
very little quantitative with respect to that of Fig. P.I (a). However, for large
values of J,,, the effect of £ becomes more evident. At J,, = 0.2 [Fig. p.g (b)] the
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maximum response for the resonance 17" is now at a larger frequency than in Fig.
B.1 (c) and, moreover, the corresponding value of I, is much smaller. Increasing
Jy, even further [J,, = 0.3 in Fig. P.g (c)], we find that the maximum response for
the resonance 17T (thick line) is much smaller than in the case of Fig. P.1 (d), and
corresponds to a much larger frequency. It has to be mentioned that in this case, the
value of w,,/wy that maximizes the 17" response presents larger differences with the
location of the saddle-node than in previous cases [Notice the difference between the
maximum and the end of the solid line in Fig. P.g (c)]. In Fig. P.§ (c) we also plot
other responses for smallest values of w,,. These responses, while having a larger
output than the 17T responses, can either have a period larger than 17T or, while still
being 17T, have extra peaks in the time series. They include responses of period 17,
2T, ..., being an example of the structure also reported in |[Tang and Wang, 1986].
We also point out that there exists an almost flat response for some range of values
of Wy, /wp.

9.2 (Quasi—conservative theory

Equations (f.1, [.3) [or equivalently Egs. (.1, P.Z)] were reduced to a set of
dimensionless equations in chapter [|. These evolution equations can be cast in the
form of a potential function (.14)) with the relating matrix D ([.17) to the equations
of motion (E:26). The decrease of the Lyapunov potential is due to the function
Dy (y, z) ([[.1I9) appearing in the evolution equation. Therefore, in the dynamical
equations we can identify the conservative terms (those proportional to Dj,) and
the dissipative terms (those proportional to Dyy). If the dissipative terms were not
present, i.e. if Dy = 0, the potential would take a constant value £ = V (y, z) and
we would have a conservative system with periodic orbits. The frequency w = 27 /T
(T is the corresponding period) of such an orbit of the conservative system is a
function of the potential, i.e. w = w(F), that can be obtained, using standard
methods of Mechanics ([.26). Notice that the periodic orbits, that we write as
[yo(T — 70, E), 20(T — 70, E)], depend on an initial time 7y and on the value of the
Lyapunov potential E.

9.2.1 Pump Modulation

We now include the modulation terms. We first consider the case of modulation
in the pump as given in (0.3). In terms of the rescaled variables, y and z [related to
the initial variables by ([7.3)], the equations become

dy oV
2 = Dip— 4
dr 29,7 (9-4)
dz 151% 151%
O e DL — Do+ Ay cos(@mT), .
= 12 3y 25 + cos(WpmT) (9.5)
with 907 J 0
A, = M, By = — Wi (9.6)

ey’ g
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We look for nT responses, i.e. periodic solutions [y(™ (1), 2(™(7)] of equations (P.4)
and (9.3) with a frequency w,, = @, /n, or, equivalently, with a period T,, = nT,, =
n27 /@y, In this case, the potential function V(y,z) is no longer a constant of

motion. However, for a periodic orbit, it is still true that the integral of
dv = l—y + —z|dr (9.7)
Y z

over a period is equal to zero. By using this property and after replacing in the
previous expression y and Z coming from (0.4, P.J), we obtain that the periodic
solutions must satisfy the condition

Th
An dr Vz(y(") (1), 2 (7)) cos(wp,T) =

[ dr Do), 20 () V. (), O )P 99

where V, stands for 9V/0z. The quasi—conservative theory assumes that the periodic
orbits [y™ (), 2™ ()] can be approximated, near the resonance, by conservative
orbits [yo(T — 79, Ey), 20(T — 7o, Ey)], corresponding to the value of the potential E,
that yields the desired frequency, w, = w(E,). Substitution of this ansatz in the
above equation leads to

An [ A Valuo(r, Ba), 20(r, En)) cos(@m(r + 1)) =
/OTn d7 Das(yo(7, Ep), 20(T, En))[Va (wo (7, En), 20(1, En))]?. (9.9)

By defining R,,, S,, 6, by

Ro = [ dr Dualunlr, B a(r ) Va(on(r: B ol B
S.sin(6n) = /0 " dr Vi(yo(T, En), 20(7, Ew)) sin (@), (9.10)

Th
S, cos(6n) = / 7V, (4o (7, En), 70(7, En)) cos(@m7),
0

we arrive at

Ay cos(@y 1o + 0y,) = & (9.11)

Sn

According to this equation, for given A,, and @, there exist at most 2n different
orbits of period nT,,. They correspond to the functions [yo(7 — 70, En), 20(7 —
To, By)] for the 2n values of 19 = (o + k7)) /0, £ = 0,...,2n — 1 and «,, =
arccos(R,/(SpAm)) — 6,. It turns out that n of these solutions are unstable, while
the remaining stable ones correspond in fact to trivial translations by a time amount
T, of the same basic solution (pulse position multistability [Gallagher ef al., 1985,
Chizhevsky and Turovets, 1993]). Therefore, for a given value of A,, and &, there
is just one corresponding stable orbit of the conservative system.
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Alternatively, we can look at the previous equation as a condition for the own
existence of periodic orbits. For given modulation frequency @, there will exist
periodic orbits of period nT,, if the amplitude of the modulation verifies A,, >
R, /S,. Since resonances almost coincide in this case with the limit of existence of
periodic orbits (see Fig. P-1 and the discussion of the previous section), this criterion
implies that the skeleton curves for the n7T resonance are

Ay =22 (9.12)

In practice, it is difficult to find solutions of the conservative motion [yo(7, E),
2o(T, E)] analytically and one performs a numerical integration of the conservative
system (putting by hand Dy = 0) in order to find the quantities R, S,. However,
in the simple case of s = 0 and ¢ = 0, Eq. (P.9) can be simplified by replacing

V. = 1o/ (2y0) with help of (B.4) and (7.21), yielding
Th T . E 2
Ay [ dria(r, By cos(@n(r + 7)) = [ dr b+ yesp(zo(r, 5,))] 2 E
0 0
(9.13)
where o = In (yo/yst), Yst = @ — b is the steady state value of y in the absence of
modulation, and x; is a periodic function of frequency w,, that can be written as a
Fourier series in the form

Qo &

zo(T, Ep) = 5 ]; Qr, cos[kwy, (T + px,)]- (9.14)

Using this expression, and after a simple algebra, the integrals of (9:13) can be
performed, giving rise to

i Gk’
nQn

As discussed earlier, the nT resonances are obtained for sin[nwy, (u, — 70)] = 1, i.e.

4 9, TR QIR
nQn

2
This expression has the advantage that the contribution of each coefficient in the
Fourier series of xy appears explicitly. In particular, it shows that the n7T resonance
may be excited by a finite amplitude of the external modulation only if the n — th
harmonic of the conservative solution is different from zero. Therefore, this effect
can be considered as harmonic locking of the fundamental relaxation oscillation by
an external modulation.

In the case s # 0 and € # 0 it is also possible to use a series expansion for the
variable zy. However, the resulting expression is so complicated, in the sense that
in the denominator different coefficients of the Fourier expansion contribute, that
we find simpler instead to use (9.12) to obtain the theoretical skeleton curve.

Ay sin[nwn, (tn, — T0)] = Zwy, (9.15)

N2

(9.16)
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9.2.2 Loss modulation

Let us turn now to loss modulation. We consider Egs. (0.1) and (D.2) with a
fixed value of the current J but modulated loss term

¥ = Y [1 4 Ym cos(wmt)]. (9.17)

The reduced equations for y and z can be written as

dy oV _
g—T = Dy a—zav— 2YVm Cao‘i(me)y
z
— = —Djog— — Dog—. 1
dr 12 oy 29, (9.18)

It is straightforward now to extend the quasi—conservative theory to this case. Pro-
ceeding as in the case of pump modulation we arrive at

Ry,
Vrm, €O (Wrto + 0),) = 5 (9.19)

n

where (V}, stands for 9V/dy), and

Roo= [ dr Dol Bl ) VGl B, ol BT
S'sin(@) = —2 /OT" 47V, (yo(7, En), 20(T, Bn)) sin @)1 (T, En), (9.20)

Tn
S cos(0l) = —2 /0 dr V,,(yo (7, En), 20(7, En)) cos(@m)yo(T, En)-

The skeleton curves are then given by

R,

T = (9.21)

In the case s = 0 and € = 0, an expression in terms of Fourier series, similar to
(P.1g) can be derived,

_ e, Qi

=5 g,

This expression is equivalent to the one obtained in [Famson and Turovets, 1987

where a laser with periodic modulation of losses, but neglecting the spontaneous

emission and gain saturation terms, is studied in detail. Again for s and ¢ different

from zero we need to solve Eq. (P-2I) numerically.

(9.22)
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9.3 Numerical results

9.3.1 Pump modulation

We compare in figures P.7 and P.§ the predictions of the quasi—conservative
theory, as given by (D.13) with the numerical simulations of Sec. P.I. In order
to perform this comparison, the skeleton curves have been plotted in terms of the
original variables J,,, and wy, by using ([.§) and (0.6). Figure .7 gives evidence that
the theoretical predictions coincide with the numerical results with a great degree
of accuracy in the case s = 0 and ¢ = 0. This figure also shows that a similar
agreement between the theory and simulations can be observed for the case of s # 0
but still ¢ = 0. In this case, the role of the gain saturation parameter s is such that,
for a fixed value of the frequency w,,, a larger value of modulation amplitude J,, is
needed to obtain the optimal periodic response for each main resonance. The effect
is quantitatively more important for higher order resonances, n > 1.

More dramatic is the effect of the spontaneous emission term €. In figure P.§ we
can see that very small values of the noise rate ¢ strongly modify the skeleton curves
for modulation frequencies w;, smaller than a cut—off value w, (marked with an arrow
in in the figure), whereas they remain basically unchanged for w,, > w.. For small
wp, the effect of € is such that much larger values of the modulation amplitude J,,
are needed in order to find the optimal response for a given value of w,,.

The theoretical prediction behaves qualitatively in the same way and predicts
correctly the cut—off frequency w.. However, it predicts a much sharper increase
of the optimal modulation amplitude. This could be explained as follows: while
the period of the conservative solutions always increases when the energy increases
in the absence of spontaneous emission terms, as it can be seen from Eq. ([.26),
the presence of the spontaneous emission noise terms introduces a maximum in the
resulting expression of the period as function of the energy. This fact forbids the
conservative orbits with a frequency smaller than the cut—off frequency. This means
that the conservative orbit we are using can be very different from the orbit followed
by the modulated system. For smaller values of € the boundary approaches to the
one for the case ¢ = 0, as expected. Finally, in Fig. P.9, the combined effect of s and
¢ is shown. The same qualitative effect that was already explained also appears for
other values of the bias current J,. For J, > 1.23.J;;, the same boundaries appear
but for larger values of J,. This effect was already reported in |Liu and Ngail
1993] where it is indicated that higher order bifurcations are more likely to occur
for smaller dc bias levels than for higher ones.

9.3.2 Loss Modulation

For the case of loss modulation the analytical and numerical results coincide for
s =0 and € = 0, and for the case s # 0 and £ = 0, analogously to that of the pump
modulation case (see Fig. P.I0). However, when the spontaneous emission term
is introduced, the boundaries obtained numerically also depart from the analytical
predictions, see Figs. P.11 and P.13.
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Figure 9.7: Maxima of main resonances in the plane (wy, /wq, Jm) for pump modulation. Effect
of s. Analytical results (9.1): s = 0 (solid line), s = 6 x 10° (dotted line), s = 3 x 1078 (dashed
line). Numerical results: s = 0 (triangles), s = 6 x 107% (squares), s = 3 x 1078 (circles). € = 0.
Other parameters as in Fig. p.1.
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Figure 9.8: Maxima of main resonances in the plane (wy, /wo, Jy,) for pump modulation. Effect of
e. Analytical results (0.12): € = 0 (solid line), £ = 6.2x10"11ps~! (dotted line), £ = 2.2x1070ps~!
(dashed line). Numerical results: £ = 6.2 x 10~ ps~! (squares), ¢ = 2.2 x 107%ps—! (circles).
s = 0. Other parameters as in Fig. @ Marked with an arrow the cut-off value w,.
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Figure 9.9: Maxima of main resonances in the plane (wy, /wq, Jn) for pump modulation. Com-
bined effect of € and s. Analytical results (9.19): € = 0, s = 0 (solid line), & = 6.2 x 10~ ps~1,
s = 0 (dotted line), ¢ = 6.2 x 107 ps~!, s = 6 x 107° (dashed line). Numerical results:
£=6.2x10"ps™!, s =6 x 1079 (circles). Other parameters as in Fig. p.1.
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Figure 9.10: Maxima of main resonances in the plane (wy, /wq, Jm) for loss modulation. Effect
of s. Analytical results (B.21): s = 0 (solid line), s = 6 x 10~ (dotted line), s = 3 x 10~® (dashed
line). Numerical results: s = 0 (triangles), s = 6 x 107° (squares), s = 3 x 10~8 (circles). € = 0.
Other parameters as in Fig. .1
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Figure 9.11: Maxima of main resonances in the plane (wy, /wo, Jr,) for loss modulation. Effect of
e. Analytical results (D.21)): £ = 0 (solid line), & = 6.2x10~ 1ps—! (dotted line), & = 2.2x10~0ps~!
(dashed line). Numerical results: £ = 6.2 x 10~ ps~! (squares), ¢ = 2.2 x 107 %ps—! (circles).
s = 0. Other parameters as in Fig. p.1]
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Figure 9.12: Maxima of main resonances in the plane (wy, /wo, Jm) for loss modulation. Combined
effect of € and s. Analytical results (@) € = 0, s = 0 (solid line), ¢ = 6.2 x 107 1ps—1,
s = 0 (dotted line), ¢ = 6.2 x 107 !1ps—, s = 6 x 107° (dashed line). Numerical results: € =
6.2 x 10~11ps~1, s = 6 x 107° (circles). Other parameters as in Fig. .1
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It is possible to obtain an interesting relation between the effect produced by loss
modulation and pump modulation. The relation can be obtained more clearly if we
write the evolution equation for the variable z = In(y/y), defined in terms of the
stationary value y,; of the variable y in the absence of modulation. For small ¢, s,
it is ¥y, ~ a — b. It turns out that the resulting equations in the case of modulation
in the pump or in the losses take basically the same form, namely

i+ 3*Gy(z) + 1Ga(z) + G3(z) = Fpr(z,7), (9.23)

Gi1(z), Ga(z), and Gs(x) are given functions of z whose detailed expressions are not
needed here. The only difference is in the right hand side of this equation which for
the case of modulation in the pump is

Fp(z,7) = Amcoséme) Fi(x),
c

Fi(z + , 9.24
(@) 1+ 5ysexp(z)  yore® (9-24)
while in the case of modulation in the losses it is:
Fr(x,2,7T) = 2vm@m sin(@mT) — 2¥m cos(0n,7) Fo(z, ), (9.25)
s 23 2 2z 1 5 s z\2
Fy(, ) = b+ —PtOPE@) e + (1 + 5ye”) . (9.26)

+z
1 + 5y, exp(x) (1 4 Syse®)[2yse® + ce®®(1 + Syse7)]

It is easy to see that the term containing Fj is negligible compared to the first
contribution to Fy,(z, &, 7). In fact, if we consider the value of F; in the steady state
in the absence of modulation, x = £ = 0, we obtain F5, ~ a. A typical value is
a =~ 0.01 while the product v,,&, is of order 1 for wy, ~ wy. If we replace now Fi(z)
by its steady state value Fi(0), approximate the term 1 + 5y, ~ 1 and neglect the
term proportional to ¢ , we arrive at

Fp = 2A,, cos(@,T), (9.27)
Fr, & 29,0 SI0 (@0, 7). (9.28)

Therefore, we conclude that the role of the modulation in the pump is equivalent to
the modulation in the losses, besides a trivial phase shift, if A,, = ¥,,@,,. In terms
of the physical parameters, this is equivalent to

ve

Jm = YmWm —3

} 9.29
anJy (9.29)

This result shows that modulation in the pump or in the losses produce equiv-
alent results if the respective modulation amplitudes are conveniently rescaled. It
is possible to arrive at this result directly, in the case s = ¢ = 0, by comparing the
expressions in terms of Fourier coefficients (9.16) and (0.29). The validity of this
equivalence of modulation in the pump and in the losses is shown in Figs. and
D.14, where we compare, for typical values of s and ¢, the skeleton lines in the case
of pump and loss modulation after the latter have been rescaled according to (P.29).
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It is clear from these figures that the proposed equivalence after parameter rescaling
works well in the cases that have been shown. A similar agreement is observed for
other boundaries and values of the parameters.

Since relation (9.29) implies, for typical values of the parameters, that J,,, > vy,
we recover the known results that loss modulation is more efficient to get bifurcations
and chaos. This relation can be applied in the large modulation signal regime
(nonlinear regime), and hence it can be considered as an extension of previous
analytical results in the case of the linear regime [Iredicce ef al., T985H).
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Figure 9.13: Maxima of main resonances in the plane (wy,/wo, Jy,). Numerical results. Pump
modulation: s = 0 (solid line) (equivalent to theoretical results), s = 3 x 10~8 (filled circles). Loss
modulation multiplied by factor of Eq. (P.29): s = 0 (triangles), s = 3 x 1072 (circles). € = 0,
Jy = 1.23J;..
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Figure 9.14: Maxima of main resonances in the plane (wy, /wo, Jm). Numerical results. Pump
modulation: € = 0 (solid line), & = 2.2 x 10~%ps~—! (filled circles). Loss modulation multiplied by
factor of Eq. (P.29): e = 2.2 x 10719571 (circles). s =0, J, = 1.23.J.

9.4 Comparison to experiments

The fingerprints of nT" resonance regimes, which discern from non-resonance
nT periodic windows in chaos, is a dominant w,,/n component in microwave spec-
tra. In particular, w,/2 component in microwave spectra was dominating in the
observations of Refs. [[iu and Ngai, 1993; Bennett et al., 1997 Matsui ef al., 1998;
Wada ef al., T998|, pointing out the resonance 27 regime, that in time domain leads
to sharp spikes like the ones presented in Fig. B.3 (b) (no intermediate spikes at
interval 27;,). A direct example of resonant 27" regime observation and possible
applications to all-optical clock division can be found in [Yang and Liu, 2007].

According to our predictions, resonant regimes with n > 2 also exist in the
system. However, they are dynamical isolas that cannot be observed with smooth
sweeping of modulation parameters, besides the special cases of pulse excitation
[Samson ef al., 1990; [Chizhevsky and Turovets, 1993; [Chizhevsky, 200(| or chaotic
crisis on the basic 17 periodic branch leading to switching to a 37" branch as it was
observed in [Liu and Ngai, 1993 and explained in [Lamela et al., T998d; [Lamelq
let_al., 1998H]. Particularly relevant to our work is the paper by Liu and Ngai [Lig
pnd Ngai, 1993] where the response of a single mode distributed feedback laser
subjected to current modulation is considered experimentally. We summarize the
observations they obtain when changing the modulation frequency and amplitude
of the radio frequency signal and compare them to our results:

a) For small modulation frequency there is only a 17" period response for any
signal amplitude. This behaviour also appears in our system, as it was visualized in
Fig. P17 for wy, /we < 0.2, for J,, < 1.

b) For intermediate modulation frequency there is a transition from 17" to 2T
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responses when increasing the modulation amplitude. This fact could be seen in Fig.
D.7 in the region 0.2 < wy,/wy < 2., for the corresponding values of J,,. A further
transition from 27 back to 17T is experimentally, but nor numerically, observed.
¢) 3T and 4T solutions appear for large enough modulation frequency and am-
plitude. We find these solutions also in the case of large enough values of the
modulation frequency and amplitude, see Figs. P.1, P.§ and P.9. The 4T solution
would appear for larger values of the amplitude not plotted in the figure. We have
checked that for s = 0 and € = 0 the corresponding 47 boundary for pump mod-
ulation would have its minimum value at wy,/wy ~ 2.3 and J,, ~ 0.4. However,
identification of the 37T branch observed in [[Liu and Ngai, 1993; Bennett ef al.]
[ 1997) is still hard to make as resonant due to the fact that the microwave spectra
gives a dominate modulation component at wy,, but not at the subharmonic wy,/3
as it might be expected for a purely resonant regime.

9.5 Discussion

We have undertaken a numerical and analytical study to identify the optimal
responses of a semiconductor laser subjected to an external periodic modulation
in the pump of relative amplitude J,, and frequency w,,. We have computed the
lines in the (wm/wo, Jm) plane that give a maximum response for each type of nT
resonance (skeleton lines) and compared them to the numerical results. The influ-
ence of saturation and spontaneous emission terms on the dynamics has also been
examined. We have found that these specific laser diode parameters increase the
thresholds of instabilities in the system, a fact that can be interpreted as an effect
of the increase in the damping of relaxation oscillations. A qualitative comparison
with experiments has also been performed, our results qualitatively agree in part
with the experimental observations with 1.55um InGaAs distributed lasers [Liu and
Ng . The analytical results we have obtained by an application of the quasi—
conservative theory allow us to explain satisfactorily the effect of the saturation
term. The role of the gain saturation parameter is such that, for a fixed value of the
frequency w,,, a larger value of modulation amplitude J,,, is needed to obtain the
optimal periodic response for each main resonance. This effect is more important
for higher order resonances. However, the effect of the spontaneous emission term
in the skeleton lines has not been completely explained by the analytical results and
the discrepancy between the numerical and analytical results is due to the form of
the conservative solution.

Loss modulation has also been considered and analytical and numerical results
are in reasonable agreement. Furthermore, we have obtained a relation that shows
the equivalence between pump and loss modulation. This equivalence relation, hav-
ing a large validity for the numerical boundaries, allows to compute the boundary
limits for pump (or loss) modulation if the loss (pump) boundaries are known. We
have explain the experimental results that loss modulation is more efficient to get
bifurcation and chaos than pump modulation.
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Conclusions 1 possibles extensions

En aquest treball s’ha estudiat la dinamica dels lasers de classe A i de classe B
en termes del potencial de Lyapunov. En el cas que s’injecti un senyal al laser o
es modulin alguns dels parametres, apareix un comportament molt més complex i
s’estudia el conjunt de bifurcacions.

1) Als lasers de classe A, la dinamica determinista s’ha interpretat com el movi-
ment damunt el potencial de Lyapunov, i s’han identificat els termes relaxacionals
i conservatius en les equacions de la dinamica. L’efecte combinat d’aquests dos ter-
mes produeix una trajectoria espiral en el pla definit per les parts real i imaginaria
del camp electric, amb una velocitat angular proporcional al terme de disintonia.

En la dinadmica estocastica (quan termes de renou additiu s’inclouen en les equa-
cions) s’obté un flux sostingut per renou per a la fase del camp eléctric, que prové
de la interaccié dels termes conservatius i els termes de renou. Aquest flux en la fase
es manifesta com un corriment de la freqiiencia intrinseca d’emissié de la llum laser.
Una expressié analitica permet calcular I’evolucié de la fase. Encara que seria inte-
ressant comprovar experimentalment I'existéncia d’aquest corriment de freqiiencia
induit per renou, cal recalcar que d’acord amb els nostres resultats, la intensitat
del renou que es requereix per obtenir un corriment de freqiiencia observable és
molt més gran que la intensitat de renou tipica en els experiments. No obstant,
aquest renou extra necessari podria ésser induit externament. A més, el corriment
de freqiiéncia, obtingut en els lasers de classe A, apareix en altres tipus de lasers,
com en els lasers de classe B, encara que en aquest cas s’hauria de desenvolupar
una teoria apropiada. Caldria resaltar la importancia d’aquest flux induit per re-
nou. Aquest podria apareixer en altres sistemes, i seria en particular interessant
considerar un simil mecanic del potencial de Lyapunov que s’ha obtingut.

2) Per als lasers de classe A amb senyal injectat, s’ha descrit el conjunt de
bifurcacions complet (de forma analitica i numerica) i s’ha determinat el conjunt
d’amplituds (p) i freqiiéncies (1) en el qual el laser respon ajustant la seva freqiiéncia
a la del camp extern. Aquest resultat apareix resumit a la Fig. B-J (c) on s’ha
identificat regions on la resposta no és a la mateixa freqiiéncia de la d’injeccié (in-
dicades amb NL a aquella figura). A dins les regions on el laser respon a la mateixa
freqiiéncia que la d’injeccié es pot distingir entre una regié on hi ha una unica re-
sposta estable (L), regions de coexisténcia de la solucié a la mateixa freqiiéncia de la



172 Conclusions i possibles extensions

d’injeccié amb una a distinta freqiiéncia (C), i finalment un a regié on hi coexisteixen
dues solucions a la mateixa freqiiencia que la freqiiencia d’injeccié pero amb distinta
intensitat (B). S’han descrit qualitativament les caracteristiques observades en la
dinamica determinista en termes del potencial de Lyapunov, identificant els termes
relaxacionals, conservatius i els residuals en les equacions dinamiques. Encara que
aquesta descripcid és estrictament valida només en el cas de senyal injectat amb
freqiiencia zero, les caracteristiques qualitatives no canvien quan el producte pn és
petit.

A la dinamica estocastica (quan el renou additiu que prové de ’emissié espontania
es considera explicitament en les equacions), s’ha utilitzat la imatge del potencial de
Lyapunov per explicar la presencia del corriment de freqiiéncia estocastic del llum
laser igual com s’havia fet en els lasers de classe A sense injeccié. El mateix poten-
cial permet realitzar un calcul quantitatiu d’aquest efecte. Els resultats s’ajusten a
les simulacions numeriques de les equacions model i esperam que serveixin de guia
per a futurs experiments en I'observacié en sistemes lasers reals, tot i que s’hauran
de tenir en compte les limitacions experimentals i termes de renou a 1’hora de fer
comparacions.

3) En el cas dels lasers de class B, s’ha obtingut un potencial de Lyapunov
només valid en el cas determinista, quan les fluctuacions de renou es menyspreen.
La dinamica és del tipus no relaxacional amb una matriu D no constant. El
punt fix corresponent a que el laser es troba a l’estat d’ences s’ha interpretat
com el minim del potencial. La relaxacié cap a aquest minim es realitza a través
d’oscil-lacions esmorteides. A partir de 'observacié que el valor del potencial és
quasi bé constant entre dos pics consecutius d’intensitat, durant el procés transitori
de relaxacié cap a l’estat estacionari, s’ha pogut obtenir una expressié aproximada
per al periode d’aquestes oscil-lacions. A més, I’expressié que relaciona el periode de
les oscil-lacions al valor del potencial ens ha permes obtenir una relacié semiempirica
que ajusta (sense cap parametre ajustable i amb gran exactitud) el periode de les
oscil-lacions des del regim no lineal fins a les oscil-lacions de relaxacié a prop de
Pestat estacionari.

4) Hem realitzat un estudi del conjunt de bifurcacions parcial al voltant del
regim tipus II de la singularitat Hopf-sella—node en un laser de classe B amb senyal
injectat, a causa de que existia una falta d’estudi detallat al voltant d’aquest tipus
en la literatura existent. Els parametres de bifurcacié que s’han considerat sén la
intensitat del senyal injectat i la disintonia entre la freqiiencia de la pertorbacié i la
freqiiencia d’operacié del laser sense injeccié. El centre d’organitzacié principal és
una bifurcacié Hopf-sella-—node des d’on s’origina una bifurcacié secundaria d’orbites
periodiques, i neix un torus a aquella bifurcacié. Es veu que la solucié laser estable
que existeix per a valors d’injeccié baixos, també sofreix una bifurcacié de Hopf
secundaria, creant—se un altre torus. Aquests tours tenen resonancies per alguns dels
valors dels parametres: poden existir orbites tancades damunt els torus. L’estructura
de resonancies dels dos torus interacciona, i a més s’obtenen orbites homocliniques
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a 'estat apagat a dins de cada una de les llengiies d’Arnold. Un dels resultats més
importants és 'acumulacié de totes les resonancies cap a la singularitat Hopf-sella—
node, que indica ’existéncia d’una bifurcacié global altament degenerada en el punt
de codimensié—2.

Es pot comparar el conjunt de bifurcacions obtingut pel laser de classe B amb
senyal injectat amb el del laser de classe A amb senyal injectat. La diferéncia
principal entre els dos tipus de lasers des del punt de vista dinamic és el nombre
de variables amb queé es treballa. Pels lasers de classe A és suficient amb dues
variables i es pot descriure el conjunt complet de bifurcacions. Pels lasers de classe
B cal considerar tres equations, i és per aquest motiu que una varietat de fenomens
molt més complexa pot apareixer. Encara que part de I'estructura de bifurcacions
dels lasers de classe B ja estava present en els lasers de classe A (esencialment les
tres corbes corresponents a les bifurcacions sella—node de punts fixos), la dindmica
completa del laser de classe B és extremadament complicada. Hem vist que la
presencia del punt Hopf-sella—node és molt important en els lasers de classe B i que
distints tipus de comportaments es poden obtenir. En canvi, la interseccié de les
bifurcacions Hopf i sella—node de punts fixos en el cas de classe A no pot ser dels
tipus Hopf-sella-node siné que es tracta de singularitats Takens-Bogdanov. No
obstant, aquests singularitats ja eren presents (encara que de distinta manera) en
els lasers de classe B incloent—hi bifurcacions d’orbites periodiques enlloc de punts
fixos. Les bifurcacions d’Andronov globals també s’han obtingunt en ambdés tipus
de lasers. El conjunt de bifurcacions per als lasers de classe A per a = 0 és molt
més senzill que el del cas « # 0, i aquest darrer es pot obtenir a partir del cas o = 0
realitzant alguns canvis. Aquesta situacié torna a ser reminiscent del cas del laser
de classe B.

5) S’han identificat les respostes Optimes pels lasers de semiconductor sotmesos
a modulacié periodica externa. S’han obtingut les corbes que donen la resposta
maxima per cada tipus de resonancia nT en el pla definit per 'amplitud rela-
tiva, de modulacié i la freqiiéncia de modulacié. Aquests dominis d’existéncia de
les resonancies principals s’han obtingut mitjancant ’aplicacié de la teoria quasi—
conservativa. Les prediccions han estat comparades amb els resultats numerics
obtinguts a partir de la integracié directa d’equacions model, aixi com amb ob-
servacions experimentals descrites per altres grups. En ambdds casos s’obté una
concordancia qualitativa. S’ha considerat un model que conté explicitament els ter-
mes de saturacié de guany i els termes d’emissié espontania. Els termes d’emissié
espontania modifiquen en gran mesura el comportament qualitatitu dels limits de
les inestabilitats, mentre que el terme de saturacié de guany déna lloc a un simple
corriment dels limits. Els resultats que s’obtenen teoricament reprodueixen aquest
comportament qualitatiu. Finalment, s’observa que la modulacié en el bombeig i la
modulacié en les perdues produeixen resultats equivalents si les respectives ampli-
tuds de modulacié es reescalen de manera adequada. Aquesta relacié d’equivaléncia
permet calcular limits d’existéncia per a la modulacié al bombeig (o a les pérdues)
a partir dels limits a les pérdues (o al bombeig). Es recupera el resultat conegut que
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la modulacié al terme de perdues és més eficient que la modulacié al bombeig per
obtenir bifurcacions i caos.

Algunes posssibles extensions d’aquest treball inclourien:

Estudiar la dinamica del laser en presencia de renou en el parametre de
bombeig. En general, degut a la dinamica lenta dels portadors, el renou no es
considerara blanc, siné que de manera més realista es modelitzara com un re-
nou de color. Aquesta font de renou afecta principalment a les caracteristiques
espectrals del lasers. Si es pogués obtenir un potencial de Lyapunov, satis-
fent la relacié de fluctuacié—dissipacié es podria calcular qualsevol valor mig
d’interes a 1’estat estacionari.

Obtenir una forma explicita pel potencial de Lyapunov pel laser amb un camp
extern injectat. En el cas del laser de classe A en tenim l'expressié en alguns
casos particulars, i a partir d’ella, podem inferir la forma qualitativa general.
En el cas del laser de classe B es tractaria d’un problema nou.

Obtenir el potencial de Lyapunov que té en compte la pulsacié auto-sostinguda
en alguns lasers de semiconductor. En aquests sistemes, el nombre de fotons i
les densitats d’electrons no sén constants a 1’estat estacionari siné que oscil-len
en el temps. Es pot especular que en aquest cas el potencial seria similar a
Pobtingut per al laser de classe B pero en aquest cas ’estat estacionari no
es tractaria d’'un punt fix siné d’un cicle limit, que es podria obtenir a partir
d’una dinamica residual.

El corriment de freqiiencia induit per renou en els lasers de classe A també
s’ha obtingut numericament en alguns tipus de lasers de classe B. Per als
lasers de classe A és possible obtenir una expressié analitica per al corriment
de freqiiéncia estocastic ja que la descripcié mitjancant la funcié de Lyapunov
de la dinamica és tal que la relacié fluctuacié—dissipacio es satisfa. No obstant,
encara que ha estat possible obtenir una funcié de Lyapunov per als lasers de
classe B, la relacié fluctuacié—dissipacié no es satisfa per a aquest tipus de lasers
i la funcié de Lyapunov no pot donar una descripcié completa de la distribucié
estacionaria en el cas estocastic. Per tant, és un problema obert obtenir una
descripcié teorica satisfactoria per al corriment de freqiiencia induit per renou
per als lasers de classe B.

En aquest treball s’ha obtingut part del conjunt de bifurcacions en el cas del
laser de classe B amb senyal injectat. Es podria continuar amb aquesta analisi
i cercar altres bifurcacions en el mateix espai de parametres. Seria interessant
relacionar les distintes bifurcacions que es troben per als distints tipus de la
bifurcacié Hopf-sella—node. A més, en el nostre estudi s’ha restringit ’analisi
a la regi6 a prop del centre organitzatiu Hopf-sella-node, i es podria realitzar
I’estudi en regions allunyades d’aquest punt.
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In this work we have studied the dynamics of both class A and class B lasers
in terms of Lyapunov potentials. In the case of an injected signal or when some
laser parameteres are modulated, and more complex behaviour is expected, the
bifurcation set is studied. The main results are the following:

1) For class A lasers, the deterministic dynamics has been interpreted as a move-
ment on the potential landscape, and the relaxational and conservative terms in
the dynamical equations of motion have been identified. The combined effects of
these two terms produce an spiraling trajectory in the plane defined by the real and
imaginary parts of the electric field, with an angular velocity proportional to the
detuning parameter.

In the stochastic dynamics (when additive noise is included in the equations)
we have found a noise sustained flow for the phase of the electric field. It arises
from the interaction of the conservative terms with the noise terms. This phase flow
manifests as an intrinsic frequency shift of the laser light. An analytical expression
allows the calculation of the phase evolution. Although it would be interesting to
check experimentally the existence of this noise induce phase drift, we have to stress
that, according to our results, the noise intensity required for an observable phase
drift is much larger than the typical noise intensity in experiments. Nevertheless,
this necessary extra noise could be externally induced. Moreover, this phase drift,
obtained for class A lasers, is also present in other types of lasers as, e.g., class
B lasers, although for the latter an appropriate theory should be developed. We
believe that this is an important and new effect that could appear in other laser
systems. It would be interesting to develop a mechanical simile of the Lyapunov
potential obtained, that could help us to relate the phenomenon predicted here with
other cases of noise sustained flow well documented in the literature.

2) For class A lasers with an injected signal, we have been able to describe
the whole bifurcation set of this system (by using analytical and numerical tools)
and to determine the locking range, i.e. the set of amplitudes (p) and (detuning)
frequencies (7) for which the laser responds adjusting its frequency to that of the
external field. This result is summarized in Fig. .9 (c¢) in which we can identify
non-locking regions (labelled NL in that figure). Within the locking range one finds
a region with a single stable laser response (L), regions of coexistence of a locking
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solution with a non—locking solution (C), as well as a region of coexistence of two
locking solutions of different light intensity (B). We have described qualitatively the
observed features of the deterministic dynamics in terms of a Lyapunov potential
function. We have identified the relaxational, conservative and residual terms in the
dynamical equations of motion. Although this description is strictly valid only in the
case of a zero-detuning injected signal, the qualitative features remain unchanged
when the product pn is small.

In the stochastic dynamics (when the additive noise coming from the sponta-
neous emission is explicitly considered in the equations) we have used the Lyapunov
potential image to explain the presence of a stochastic frequency shift of the laser
light. The same potential function allows a quantitative calculation of this effect.
The results are in good agreement with numerical simulations of the model equa-
tions and we hope that they can be a guide for future experiments in observing this
effect in laser systems.

3) In the case of class B lasers, we have obtained a Lyapunov potential only valid
in the deterministic case, when noise fluctuations are neglected. We have found that
the dynamics is non-relaxational with a nonconstant matrix D. Hence, the fixed
point corresponding to the laser in the on state has been interpreted as a minimum
in this potential. Relaxation to this minimum is reached through damped oscilla-
tions. The observation that the potential is nearly constant between two consecutive
intensity peaks during the transient relaxation process towards the steady state, has
allowed us to obtain an approximate expression for the period of these oscillations.
Moreover, an expression relating the period of the oscillations to the value of the po-
tential has allowed us to find a semi—empirical relation that fits (with no adjustable
parameters and with a high degree of accuracy) the period of the oscillations from
the nonlinear regime up to the relaxation oscillations near the steady state.

4) We have performed a study of the partial bifurcation set around the type II
regime of the Hopf-saddle-node singularity in a class B laser with injected signal.
Such a detailed study around this regime was missing in the previous literature. The
bifurcation parameters we have considered are the intensity of the injected signal
and the detuning of the perturbation frequency and the unperturbed laser operat-
ing frequency. The main organizing center of the system is the Hopf-saddlenode
bifurcation from where a secondary Hopf bifurcation of a periodic orbit originates,
and a torus is born at this latter bifurcation. We show that the laser’s stable cw
solution existing for low injections also suffers a secondary Hopf bifurcation and
another torus is created. These tori have resonances for some values of the parame-
ters, in the sense that close orbits on the tori can appear. The resonance structure
of both tori interact and homoclinic orbits to the off state are found inside each
Arnold tongue. A connection between different resonances in the parameter space
has also been obtained. One of the main results is the accumulation of all the above
resonances towards the Hopf-saddle node singularity points to the occurrence of a
highly degenerate global bifurcation at the codimension—-2 point.
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We can compare the bifurcation set obtained for a class B laser with injected
signal with the one obtained for a class A laser with injected signal. From the
dynamical point of view, the main difference between the two kinds of lasers is
the number of variables involved. For class A lasers two variables suffice and the
full bifurcation set can be described. For class B lasers, a three—equations system, a
more complex variety of phenomena can appear and the system can also show chaotic
behaviour. Although part of the bifurcation structure of class B lasers is already
present in class A lasers (essentially the tree curves of saddle-node bifurcations of
fixed points), the overall dynamics of the former becomes extremely complicated. We
have seen that the presence of the Hopf-saddlenode point has a crucial importance
for class B lasers and different types of flows can be obtained. Note as contrast
that the intersection of Hopf and saddle—node bifurcations of fixed points in class A
lasers cannot be of Hopf-saddle node types but are Takens-Bogdanov singularities
instead. Such singularities are also present (in a different form) in class B lasers,
not involving bifurcations of fixed points but of periodic orbits. Andronov global
bifurcations have also been found in both types of lasers. The bifurcation set for a
class A laser in the case o = 0 is much simpler than the one found for o # 0 although
the former can be obtained by suitable reduction of the latter. This situation is again
reminiscent of the class B laser case.

5) We have identified the optimal responses of a semiconductor laser subjected
to an external periodic modulation. The lines that give a maximum response for
each type of nT resonance (skeleton lines) are obtained in the plane defined by the
relative amplitude modulation and frequency modulation. The domains of existence
of the main resonances are obtained by application of the quasi—conservative theory.
The predictions are compared with numerical results coming from a direct integra-
tion of the model equations and with experimental observations reported by other
groups. In both cases we find a good qualitative agreement. We have considered a
model that contains explicitly the gain saturation and spontaneous emission terms
and we have focused mainly on the effect that these terms have in the regime of
large amplitude modulation. We find that the spontaneous emission qualitatively
modifies the behaviour of the instabilities boundaries, while the gain saturation
leads to a simple quantitative shift of boundaries. Our theoretical results reproduce
this overall behaviour. We also find that modulation in pump or losses produce
equivalent results if the respective modulation amplitudes are conveniently rescaled.
This equivalence relation allows to compute the boundary limits for pump (or loss)
modulation if the loss (pump) boundaries are know. We have recovered the re-
sults that loss modulation is more efficient to get bifurcations and chaos than pump
modulation.

Some possible extensions of this work include:

e To study laser dynamics in the presence of noise in the pump parameter. In
general, and due to the slower dynamics of the carriers variable, the noise
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should not be considered as white but more realistically it should be modelled
as a colored noise. This noise source mainly affects the spectral characteristics
of the lasers. If a Lyapunov Potential, satisfying the fluctuation-dissipation
relation could be obtained then any mean value of interest in the steady state
could be calculated.

To obtain a complete Lyapunov potential for lasers in the presence of an
external field. For class A lasers this has been done for some particular cases
and it was possible to infer the qualitative form of the potential in the most
general case. For class B lasers with injected signal it would be interesting to
perform the description of its dynamics in terms of a Lyapunov potential.

To obtain a Lyapunov potential that accounts for the self-sustained pulsation
phenomena that occurs in some semiconductor lasers. In these systems, the
photon number and electron densities are not constant in the steady state but
oscillate in time. We speculate that in this case, the potential would be quite
similar to that obtained for class B lasers, but the steady state will not be a
fixed point, but a limit cycle instead, which could be obtained as a residual
dynamics.

The noise frequency shift obtained in class A lasers has also been found nu-
merically in some class B lasers. For class A lasers it is possible to reach a
complete understanding of this stochastic frequency shift since the Lyapunov
function description of the dynamics is such that the fluctuation—dissipation
relation is satisfied. However, although we have been able to find a Lyapunov
function for class B lasers, the fluctuation—dissipation relation is not satisfied
for this kind of lasers and the Lyapunov function can not give us a complete
description of the stationary distribution in the stochastic case. Therefore, it
is an open problem to obtain a satisfactory theoretical description of the noise
induced frequency shift for class B lasers.

We have obtained a subset of the bifurcation set in the case of a class B laser
with injected signal. It would be interesting to follow the analysis of this
bifurcation set and look for other bifurcations. The important point should be
to relate the bifurcations encountered for one type of the Hopf-saddlenode
bifurcation to another. Moreover, the analysis of the bifurcation set has been
restricted to a region in the space of parameters near the Hopf-saddle-node
organizing center, it would be interesting to perform an study in a region far
of that center.
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