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también un recuerdo agradecido para Fran.

Quiero también dar las gracias a los miembros del Departamento de
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Pérez Ramos, que me enseñaron a descubrir la parte más bonita del Álgebra.
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Introduction

The present work contains contributions to the theory of partially sat-
urated formations of finite groups. This theory begins with the concept of
local formation, introduced by Gaschütz in 1963 and it has been enriched
by the results of Baer, Förster, and the school of Shemetkov in Gomel. This
thesis is organised in four chapters, corresponding more or less to the con-
tents of the papers we have written in the subject. After presenting the
preliminary and basic results in Chapter 1, we study the relation between
the known partially saturated formations in Chapter 2. The study of X-local
products of formations is the main aim in Chapter 3. We bring the thesis
into a close by giving the complete description of the factorisations of one-
generated partially saturated formations in Chapter 4. Each chapter begins
with a historical and mathematical introduction motivating the results in-
cluded there. The main bibliographic references are the book of Doerk and
Hawkes ([DH92]) and the one of Ballester and Ezquerro ([BBE06]).
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Chapter 1

X-local formations

1.1 Preliminary concepts

The presentation of our work should begin with the concept of formation.

Definition 1.1.1. A formation is a class of groups satisfying the following
two conditions:

1. If G ∈ F and N is a normal subgroup of G, then G/N ∈ F.

2. If N and M are normal subgroups of G such that G/M , G/N ∈ F,
then G/(M ∩N) ∈ F.

For a non-empty formation F and a group G, the F-residual GF of G is the
smallest normal subgroup N of G such that G/N belongs to F.

If Y is a class of groups, the smallest formation containing Y is denoted
by form(Y). It is well-known that form(Y) = q r0 Y ([DH92; II, 2.2]).

Given two classes Y and Z of groups, a product class can be defined by
setting

YZ = (G ∈ E | there is a normal subgroup N of G

such that N ∈ Y and G/N ∈ Z),

Groups in YZ are sometimes called Y-by-Z-groups.
However this class is not in general a formation when Y and Z are

formations. But there is a way of modifying the above definition to ensure
that the class product of two formations is again a formation. If F and G

are formations, the formation product or Gaschütz product of F and G is the
class F ◦G defined by

F ◦G := (G ∈ E | GG ∈ F).

11



12 CHAPTER 1. X-LOCAL FORMATIONS

The class F ◦ G is again a formation and if F is closed under taking
subnormal subgroups, then FG = F ◦G (see [DH92; IV, 1.7 and 1.8]).

Definition 1.1.2. A formation F is said to be saturated when G/Φ(G) ∈ F

implies that G ∈ F, where Φ(G) denotes the Frattini subgroup of G.

Gaschütz [Gas63] introduced the concept of local formation, which en-
abled him to construct a rich family of saturated formations.

Definition 1.1.3.

• A formation function f assigns to every p ∈ P a (perhaps empty)
formation f(p).

• If f is a formation function, then the local formation LF(f) defined by
f is the class of all groups G such that if H/K is a chief factor of G,
then G/CG(H/K) ∈ f(p) for all p ∈ π(H/K).

• A formation F is said to be local if there exists a formation function f
such that F = LF(f).

The following remarkable theorem characterises local formations. It was
proved by Gaschütz and Lubeseder in the soluble universe and later gener-
alised by Schmid to the general finite one. It is now known as the Gaschütz-
Lubeseder-Schmid theorem.

Theorem 1.1.4 (Gaschütz-Lubeseder-Schmid [DH92; IV, 4.6]). A forma-
tion F is saturated if and only if F is local.

Baer followed another approach to extend the theorem of Gaschütz and
Lubeseder to the finite universe. He used a different notion of local forma-
tion, in which non-abelian chief factors were treated with more flexibility
than abelian ones. This led him to find a new family of formations, the
Baer-local formations, containing the local ones.

Definition 1.1.5.

• A Baer function assigns to every simple group J a class of groups f(J)
such that f(Cp) is a formation for every p ∈ P.

• If f is a Baer function, then the Baer-local formation or Baer for-
mation BLF(f) defined by f is the class of all groups G such that if
H/K is a chief factor of G, then G/CG(H/K) ∈ f(J), where J is the
composition factor of H/K.
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• A formation F is said to be Baer-local if there exists a Baer function f
such that F = BLF(f).

Shemetkov introduced in [She75] the concept of composition formation.
This notion is equivalent to the one of Baer-local formation.

Definition 1.1.6. A formation F is said to be solubly saturated when, for
every group G, the condition G/Φ(GS) ∈ F implies that G ∈ F, where GS

denotes the soluble radical of G.

Baer proved the following theorem:

Theorem 1.1.7 (Baer, [DH92; IV, 4.17]). A formation F is solubly saturated
if and only if F is Baer-local.

The concepts of saturation and soluble saturation can be joined in a
general definition. Other kinds of partially saturated formations appear
naturally.

Definition 1.1.8. Let H be a Fitting class and ω a fixed non-empty set of
primes. We say that a formation F is (ω,H)-saturated if G/Oω(Φ(GH)) ∈ F

always implies that G ∈ F.

The notion of saturated formation appears when H coincides with the
class E of all finite groups and ω is the set P of all primes. When H is
the class of all soluble groups and ω is the set P of all primes, we find the
concept of solubly saturated formation. Let us note other important special
cases.

An (ω,H)-saturated formation F is called

• nilpotently saturated when H = N, the class of all nilpotent groups,
and ω = P.

• p-solubly saturated if H coincides with the class of all p-soluble groups
and ω = P.

• Sp-saturated if H = Sp, the class of all p-groups and ω = P.

• ω-saturated when H = E. We say that F is p-saturated if ω = {p}.

The concept of ω-saturation, where ω is a non-empty set of primes,
has been widely studied, since it is a natural approach to the notion of
saturation. The following question naturally arose:

How can ω-saturated formations be “locally” characterised?
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The initial idea was to use formation functions for this purpose (in
[She84] a formation H was called p-local if the saturated formation gen-
erated by H is contained in Np′H). In the development of this idea, the
following result was proved in [SS95]:

Theorem 1.1.9. For a non-empty formation F, the following condtions are
equivalent:

1. F is ω-saturated.

2. Sp

(
F/Op′,p(F)

)
⊆ F for any p ∈ π(F) ∩ ω, where F/Op′,p(F) =

form(G/Op′,p(G) | G ∈ F) if p ∈ π(F).

3. The saturated formation generated by F is contained in Nω′F.

The aim was to find an explicit function describing an ω-saturated for-
mation. This problem was solved in [BBS97]. The main idea was to use the
new concept of small centraliser. If G is a group, by K(G) we denote the
class of all simple groups which are isomorphic to the composition factors
of G.

Definition 1.1.10. Let H/K be a normal section of a group G. The small
centraliser cG(H/K) of H/K in G is the subgroup generated by all normal
subgroups N of G such that K(NK/K) ∩ K(H/K) = ∅.

In [BBS97], the definition of p-local satellite was introduced:

Definition 1.1.11. Let p be a prime number.

• A function f which associates with each group a formation is called a
p-local satellite if it satisfies the following conditions:

1. f(S1) = f(S2) for any two characteristically simple groups S1 and
S2 such that K(S1) = K(S2).

2. The value of f on any simple group whose order is divided by p
coincides with the formation f(p).

• If f is a p-local satellite, a chief factor H/K of a group G is called
f -central if the following conditions hold:

1. If the order of H/K is divided by p, then G/CG(H/K) ∈ f(p).

2. If H/K is a p′-group, then G/ cG(H/K) ∈ f(H/K).
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It was shown [BBS97] that a non-empty formation F is p-saturated if and
only if it coincides with the class of all groups with f -central chief factors
for some p-local satellite f . The following interesting fact was also obtained:
every non-empty p-saturated formation has a p-local satellite whose values
on non-identity p′-groups coincide. This fact was used as the foundation for
the following definition which is used in works of different authors.

Definition 1.1.12. Let ω be a non-empty set of prime numbers.

• An ω-local satellite f assigns to every element of ω ∪ {ω′} a (perhaps
empty) formation.

• The symbol Gωd is used to denote the largest normal subgroup N of G
such that ω ∩ π(H/K) 6= ∅ for every composition factor H/K of N (if
ω ∩ π

(
Soc(G)

)
= ∅, then we set Gωd = 1).

• If f is an ω-local satellite, then LFω(f) denotes the class of groups G
satisfying the following two conditions:

1. if H/K is a chief factor of G, then G/CG(H/K) ∈ f(p) for every
p ∈ π(H/K) ∩ ω, and

2. G/Gωd ∈ f(ω′).

• A formation F is ω-local when there exists an ω-local satellite f such
that F = LFω(f). In this case, f is called an ω-local satellite of F.

Remark 1.1.13. Note that Condition 1 in the above definition can be
replaced by the following:

• G/Op′,p(G) ∈ f(p) for any p ∈ ω ∩ π(G).

Definition 1.1.14. Let f be an ω-local satellite defining an ω-local forma-
tion F.

1. f is called integrated if F contains f(p) for every p ∈ ω and f(ω′).

2. f is called full if Spf(p) = f(p) for every p ∈ ω.

The next lemma shows that every ω-local formation has a full and inte-
grated ω-local satellite.

Lemma 1.1.15 ([She03; 2.2]). Let F be an ω-local formation defined by an
ω-local satellite f . Then F = LFω(g), where

g(p) = Sp

(
f(p) ∩ F

)
if p ∈ ω,

g(ω′) = f(ω′) ∩ F.

Moreover, g is a full and integrated ω-local satellite of F.
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Theorem 1.1.16 ([SS00]). A formation F is ω-saturated if and only if F is
ω-local.

A proof of this result is presented in [BBE06; Theorem 3.4.2].

1.2 X-local formations

With the aim of presenting a common generalisation of the Gaschütz-
Lubeseder-Schmid and Baer theorems, Förster introduced in [För85] the
concept of X-local formation, for a class X of simple groups such that π(X) =
char X, where

π(X) := {p ∈ P | there exists G ∈ X such that p ∈ π(G)}

and
char X := {p ∈ P | Cp ∈ X}.

This section is devoted to present the basic results of X-local formations,
focusing our attention on some distinguished X-local formation functions
defining them. Part of the results included here appear in Section 3.1 of
[BBE06]. The rest can be found in [BBCSss].

In the rest of this thesis, X will denote a class of simple groups satisfying
the above condition.

Let J denote the class of all simple groups. For any subclass Y of J, we
write Y′ := J \ Y. Denote by e Y the class of groups whose composition
factors belong to Y. It is clear that e Y is a Fitting class, and so each group
G has a largest normal e Y-subgroup, the e Y-radical, denoted either by
Ge Y or by OY(G). A chief factor which belongs to e Y is called a Y-chief
factor. If p is a prime, we write Yp to denote the class of all simple groups
S ∈ Y such that p ∈ π(S). Sometimes it will be convenient to identify the
prime p with the cyclic group Cp of order p.

In the rest of this thesis, X will denote a class of simple groups such that
π(X) = char X.

Definition 1.2.1 ([För85]).

• An X-formation function f assigns to each X ∈ (char X) ∪ X′ a (pos-
sibly empty) formation f(X).

• If f is an X-formation function, then LFX(f) is the class of all groups
G satisfying the following two conditions:

1. If H/K is an Xp-chief factor of G, then G/CG(H/K) ∈ f(p).
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2. If G/L is a monolithic quotient of G such that Soc(G/L) is an X′-
chief factor of G, then G/L ∈ f(E), where E is the composition
factor of Soc(G/L).

Remark 1.2.2. By appealing to the classical theorem of Jordan-Hölder for
operator groups, it is only necessary to consider the Xp-chief factors of a
given chief series of a group G in order to check whether or not G satisfies
Condition 1 of Definition 1.2.1.

Definition 1.2.3. Consider a prime p ∈ char X and a group G. Then the
subgroup CXp(G) is defined to be the intersection of the centralisers of all
Xp-chief factors of G, with CXp(G) = G if G has no Xp-chief factors.

Remark 1.2.4. Consider an X-formation function f and p ∈ char X. If
f(p) 6= ∅, a group G satisfies Condition 1 of Definition 1.2.1 for the prime p
if and only if G/CXp(G) ∈ f(p).

Lemma 1.2.5. Consider a prime p ∈ char X, a group G and a normal
subgroup N of G. Then

CXp(G) ∩N = CXp(N)

Proof. Consider a chief series of G,

1 ≤ G0 ≤ G1 ≤ · · · ≤ N = Gt ≤ Gt+1 ≤ · · · ≤ G. (1.1)

If N does not have Xp-chief factors, then either G does not have Xp-chief
factors or all the Xp-chief factors of G are centralised by N . In both cases,
N = CXp(N) = N ∩ CXp(G).

Assume that N has Xp-chief factors. Hence G also possesses Xp-chief
factors. If H/K is an Xp-chief factor of G below N , by [DH92; A, 4.13] we
have that

H/K = H1/K × · · · ×Hr/K,

where Hi/K is a chief factor of N . Moreover,

CN(H/K) =
r⋂
i=1

CN(Hi/K). (1.2)

Since CXp(N) and CXp(G) do not depend on the considered chief series
of N and G, respectively, and N centralises the chief factors of G above N ,
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we have that

N ∩ CXp(G) = N ∩
⋂
{CG(H/K) | H/K Xp-chief factor of G}

= N ∩
⋂
{CG(H/K) | H/K Xp-chief factor of G, H ≤ N}

=
⋂
{N ∩ CG(H/K) | H/K Xp-chief factor of G, H ≤ N}

=
⋂
{CN(H/K) | H/K Xp-chief factor of G, H ≤ N}

=
⋂
{CN(L/T ) | L/T Xp-chief factor of N} by (1.2)

= CXp(N)

Remark 1.2.6. If N is not a normal subgroup of G, Lemma 1.2.5 is not true
in general. Take, for example, X = (C3), p = 3, G ∼= Σ3 and N ∼= C2. We
have that CXp(N) = N and CXp(G) ∼= C3. Therefore, CXp(G)∩N 6= CXp(N).

Lemma 1.2.7. Consider a prime p ∈ char X, a group G and a normal
subgroup N of G such that N ≤ OX(G). Then

CXp
(
G/Φ(N)

)
= CXp(G)/Φ(N).

Proof. Clearly, we can assume that Φ(N) 6= 1.
Suppose that G does not have Xp-chief factors. Then G/Φ(N) does

not have Xp-chief factors. In this case, CXp(G) = G and CXp
(
G/Φ(N)

)
=

G/Φ(N) and the result holds.
Now assume that G has Xp-chief factors and G/Φ(N) does not have

Xp-chief factors. Then there exists an Xp-chief factor H/K of G such that
H ≤ Φ(N). Since p divides the order of Φ(N), then we have that p also
divides the order of N/Φ(N). It follows that N/Φ(N) has a chief factor
A/B whose order is divisible by p. Since N ≤ OX(G), we can assume that
A/B is an Xp-chief factor of G/Φ(N), contradicting the hypothesis. We have
proved that if G has Xp-chief factors, then so does G/Φ(N).

Take a subgroup A such that

A/Φ(N) = CXp
(
G/Φ(N)

)
.

We have that
Φ(N) ≤ Φ(G) ≤ F(G) ≤ CXp(G).

Therefore, we can consider CXp(G)/Φ(N). Since

CXp(G)/Φ(N) ≤ CXp
(
G/Φ(N)

)
,

we have that CXp(G) ≤ A. We aim to prove that A ≤ CXp(G).
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Consider the formation function f defined by:

f(q) =

{
(1) if q = p,

E if q 6= p.

A can be considered as a group of operators of G by conjugation.
We are going to prove that A acts hypercentrally on N (see [DH92; IV,

6.1]). We will see that A acts hypercentrally on N/Φ(N) in order to apply
[DH92; IV, 6.7]. The theorem of Jordan-Hölder will be used.

Consider an A-composition factor H/K of G between N ∩ A and N .
Since [N,A] ≤ N ∩ A, we have that CA(H/K) = A. Take a chief factor
H/K of G between Φ(N) and N ∩ A such that p divides |H/K|. It follows
that H/K is an Xp-chief factor of G, since N ≤ OX(G). Therefore, H/K
is centralised by A. Since H/K is a minimal normal subgroup of G/K and
H/K ≤ A/K, we have by [DH92; A, 4.13] that

H/K = L1/K × L2/K × · · · × Ls/K,

where Li/K is an A-composition factor of G centralised by A. We can
construct a part of an A-composition series of G between Φ(N) and N such
that every A-composition factor whose order is divided by p is centralised
by A.

Now we aim to see that A centralises every Xp-chief factor of G. Clearly,
A centralises every Xp-chief factor of G above Φ(N). Consider an Xp-chief
factor H/K of G below Φ(N). Since H/K is a minimal normal subgroup of
G/K and H/K ≤ A/K, we have that

H/K = L1/K × L2/K × · · · × Lr/K,

where Li/K is an A-composition factor of G. Since A centralises every Li/K,
we have that A centralises H/K, as we wanted. Therefore, A ≤ CXp(G).

Förster proves in [För85] that the class LFX(f) is a formation. An al-
ternative proof of this result can be found in [BBE06; Theorem 3.1.4]. We
present here a different approach to this proof.

Theorem 1.2.8. Consider an X-formation function f . The class LFX(f) is
a formation.

Proof. We can assume that LFX(f) 6= ∅.
First let us prove that LFX(f) is q-closed. Consider a group G ∈ LFX(f)

and a normal subgroup N of G. If (H/N)
/

(K/N) is an Xp-chief factor of
G/N , then H/K is an Xp-chief factor of G and CG/N

(
(H/N)

/
(K/N)

)
=
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CG(H/K)
/
N . Therefore, we have that (G/N)

/
CG/N

(
(H/N)

/
(K/N)

) ∼=
G
/

CG(H/K) ∈ f(p) and, hence, G/N satisfies Condition 1 of Defini-
tion 1.2.1. Moreover, if (G/N)

/
(L/N) is a monolithic group whose socle

is an X′-chief factor of type E, it follows that (G/N)
/

(L/N) ∼= G/L ∈ f(E).
Now we aim to see that LFX(f) is r0-closed. By [DH92; II, 2.6], it is

enough to prove that if N1 and N2 are minimal normal subgroups of G such
that G/N1 ∈ LFX(f), G/N2 ∈ LFX(f) and N1 ∩ N2 = 1, then G ∈ LFX(f).
Since G/N1 ∈ LFX(f), it is clear that Condition 1 of Definition 1.2.1 holds for
X-chief factors H/K of G such that N1 ≤ K. If N1 is not an X-chief factor
of G, there is nothing to prove. Assume that N1 is not an X-chief factor
of G and let p ∈ π(N1). Since N1N2/N2 is G-isomorphic to N1/N1 ∩ N2

and N1 ∩ N2 = 1, we have that N1N2/N2 is an Xp-chief factor of G above
N2 and CG(N1) = CG(N1N2/N2). Since G/N2 ∈ LFX(f), it follows that
G/CG(N1) = G

/
CG(N1N2/N2) ∈ f(p).

Now consider L E G such that G/L is monolithic and the composition
factor of Soc(G/L) is isomorphic to S ∈ X′. Now we distinguish two cases:

• If f(S) = ∅, then LFX(f) ⊆ e(S)′. Assume that it is not true and
consider a group H in LFX(f) \ e(S)′ of minimal order. By [DH92;
II, 2.5], we have that H is monolithic. Let T be the socle of H. If
T ∈ e(S), we would have that H ∈ f(S). Since f(S) = ∅, then
H ∈ e(S)′, contradicting the choice of G. Therefore, LFX(f) ⊆ e(S)′.

Since G/N1 ∈ LFX(f) ⊆ e(S)′, G/N2 ∈ LFX(f) ⊆ e(S)′ and N1 ∩
N2 = 1, we have that G ∈ e(S)′. This is a contradiction, since the
composition factor of Soc(G/L) is isomorphic to S. This means that
the case f(S) = ∅ is not possible.

• If f(S) 6= ∅, then LFX(f) ⊆ e(S)′ ◦ f(S).

Assume that this is not true and consider a group H of minimal order
in LFX(f) \ e(S)′ ◦ f(S). By [DH92; II, 2.5], H is a monolithic group.
Consider T := Soc(G). If the composition factor of T is isomorphic to
S, then H ∈ f(S) ⊆ e(S)′ ◦ f(S), which is a contradiction. Therefore,
T ∈ e(S)′. Since H/T ∈ e(S)′ ◦ f(S), there exists M E G such that
M/T ∈ e(S)′ and G/T ∈ f(S). Hence M ∈ e(S)′ and we obtain that
H ∈ e(S)′◦f(S). This contradiction shows that LFX(f) ⊆ e(S)′◦f(S).

Since G/N1 ∈ LFX(f) ⊆ e(S)′ ◦ f(S), G/N2 ∈ LFX(f) ⊆ e(S)′ ◦ f(S)
and N1 ∩N2 = 1, it follows that G ∈ e(S)′ ◦ f(S). There exists N E G
such that N ∈ e(S)′ and G/N ∈ f(S). Therefore N ≤ L (otherwise
we would have that NL/L 6= 1 and Soc(G/L) ≤ NL/L ∈ e(S)′).
Therefore, G/L ∈ q f(S) = f(S) and G ∈ LFX(f).
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Definition 1.2.9. A formation F is said to be X-local if there exists an
X-formation function f such that F = LFX(f). In this case we say that f is
an X-local definition of F or that f defines F.

Remarks 1.2.10.

• Each formation F is X-local for X = ∅ because F = LFX(f), where
f(S) = F for all S ∈ J.

• If X = J, then an X-formation function is simply a formation function
and the X-local formations are exactly the local formations.

• If X = P, then an X-formation function is a Baer function and the
X-local formations are exactly the Baer-local ones.

Remark 1.2.11. When X = P, the usage of the expression P-local formation
clashes with Definition 1.1.12 when ω = P. In this thesis, P-local formations
will be understood in the sense of Definition 1.2.9, that is, as a synonymous
of Baer-local formations, unless otherwise stated.

The following lemma turns out to be very useful when we aim to show
that a group belongs to an X-local formation.

Lemma 1.2.12. Consider an X-local formation F = LFX(f). Let G be a
group and N a normal subgroup of G such that G/N ∈ F. If N ∈ e X and
G/CG(N) ∈ f(p) for every p ∈ π(N), then G ∈ F.

Proof. If H/K is an Xp-chief factor of G above N , then G
/

CG(H/K) ∈ f(p)
because G/N ∈ LFX(f). Let H/K be an Xp-chief factor of G below N . Then
CG(N) ≤ CG(H/K) and so G

/
CG(H/K) ∈ q f(p) = f(p). We have that G

satisfies Condition 1 of Definition 1.2.1.
Let K be a normal subgroup of G such that G/K is a monolithic group

with Soc(G/K) ∈ e(S), S ∈ X′. Then, since N ∈ e X, we have that
N ≤ K (otherwise we would have that NK/K 6= 1. This would imply
that Soc(G/K) ≤ NK/K ∼= N/N ∩K, which is a contradiction). Therefore
G/K ∈ f(S) because G/N ∈ LFX(f).

Consequently G ∈ LFX(f).

The intersection of a family of X-local formations is an X-local formation
as the next result exhibits.

Lemma 1.2.13. Consider a family {fi | i ∈ I} of X-formation functions.
Then

⋂
i∈I LFX(fi) = LFX(g), where g(S) =

⋂
i∈I fi(S) for every S ∈

(char X) ∪ X′.
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Proof. Since for every i ∈ I, we have that g(S) ⊆ fi(S) for every S ∈
(char X) ∪ X′, it follows that LFX(g) ⊆ LFX(fi) for every i ∈ I, that is,
LFX(g) ⊆

⋂
i∈I LFX(fi).

Now we prove that
⋂
i∈I LFX(fi) ⊆ LFX(g). If G ∈

⋂
i∈I LFX(fi) and

H/K is an Xp-chief factor of G, then G/CG(H/K) ∈ fi(p) for every i ∈ I.
Therefore, G/CG(H/K) ∈ g(p). If L E G, G/L is monolithic and Soc(G/L)
is an X′-chief factor of G, then G/L ∈ fi(E) for every i ∈ I, where E is
the composition factor of Soc(G/L). Hence G/L ∈ g(E) and, therefore,
G ∈ LFX(g).

Let f1 and f2 be two X-formation functions. We write f1 ≤ f2 if f1(S) ⊆
f2(S) for all S ∈ (char X) ∪ X′. Note that in this case LFX(f1) ⊆ LFX(f2).
The following corollary shows that each X-local formation F has a unique
X-formation function f defining F such that f ≤ f for each X-formation
function f such that F = LFX(f). We say that f is the minimal X-local
definition of F. This X-local formation function will always be denoted by
the use of a “lower bar.”

Corollary 1.2.14. Let F be an X-local formation and {fi | i ∈ I} a family
of X-formation functions defining F, that is, F = LFX(fi) for every i ∈ I.
Then F = LFX(f), where f(S) :=

⋂
i∈I fi(S) for every S ∈ (char X) ∪ X′.

Proof. It follows immediately from Lemma 1.2.13

Moreover if Y is a class of groups, the intersection of all X-local forma-
tions containing Y is the smallest X-local formation containing Y. Such X-
local formation is denoted by formX(Y). If X = J, we also write lform(Y) =
formJ(Y), and if X = P, formP(Y) is usually denoted by bform(Y). Recall
that the formation generated by Y is denoted by form(Y).

Theorem 1.2.15 ([BBE06; Theorem 3.1.11]). Let Y be a class of groups.
Then F = formX(Y) = LFX(f), where

f(p) = form
(
G
/

CG(H/K) | G ∈ Y and H/K is an Xp-chief factor of G
)
,

if p ∈ char X, and

f(S) = form
(
G/L | G ∈ Y, G/L is monolithic, and Soc(G/L) ∈ e(S)

)
,

if S ∈ X′. Moreover f(p) = form
(
G/CXp(G) | G ∈ F

)
for all p ∈ char X

such that f(p) 6= ∅.
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Proof. Let g be an X-formation function such that F = LFX(g). Since
LFX(f) is an X-local formation containing Y, we have F ⊆ LFX(f). Assume
that LFX(f) 6= F. Then LFX(f) \ F contains a group G of minimal order.
Such a G has a unique minimal normal subgroup N by [DH92; II, 2.5] and
G/N ∈ F. If N is an X′-chief factor of G, then G ∈ f(S) for some S ∈ X′.
This implies that G ∈ q r0 Y ⊆ F, a contradiction. Therefore N ∈ e X.
Let p be a prime divisor of |N |. Then G/CG(N) ∈ f(p). Now if X is a

group in Y and H/K is an Xp-chief factor of X, then X
/

CX(H/K) ∈ g(p)
because Y ⊆ F. Therefore f(p) ⊆ g(p), and so G/CG(N) ∈ g(p). Applying
Lemma 1.2.12, G ∈ F, contrary to hypothesis. Consequently F = LFX(f).

Let p ∈ char X and t(p) = form
(
G/CXp(G) | G ∈ F

)
. If G ∈ F and

f(p) 6= ∅, then G/CXp(G) ∈ f(p). Therefore t(p) ⊆ f(p). On the other

hand, if X ∈ Y, then X/CXp(X) ∈ t(p). Hence X
/

CX(H/K) ∈ t(p) for
every Xp-chief factor H/K of X. This means that f(p) ⊆ t(p) and the
equality holds. This completes the proof of the theorem.

Remark 1.2.16. If F is a local formation and f is the smallest local def-

inition of F, then f(p) = q
(
G/Op′,p(G) | G ∈ F

)
for each p ∈ char F

(cf. [DH92; IV, 3.10]). The equality f(p) = q
(
G/Op′,p(G) | G ∈ F

)
does

not hold for X-local formations in general: Let X = (C2) and consider
F = LFX(f), where f(2) = S and f(S) = E for all S ∈ X′. Then Alt(5) ∈ F

and so Alt(5) ∈ q
(
G/O2′,2(G) | G ∈ F

)
. Since f(2) ⊆ S, it follows that

Alt(5) /∈ f(2). Consequently f(2) 6= q
(
G/O2′,2(G) | G ∈ F

)
.

Corollary 1.2.17. Let X and X̄ be classes of simple groups such that X̄ ⊆ X.
Then every X-local formation is X̄-local.

Proof. Let F = LFX(f) be an X-local formation. Since char X̄ ⊆ char X, we

can consider the X̄-formation function g defined by

g(p) = f(p) if p ∈ char X̄,

g(E) = F if E ∈ X̄′.

It is clear that F ⊆ LFX̄(g). Suppose that F 6= LFX̄(g), and choose a group
Y of minimal order in LFX̄(g) \ F. Then Y has a unique minimal normal
subgroup N , and G/N ∈ F. If N ∈ e(X̄′), then G ∈ F, which contradicts
the choice of G. Therefore N ∈ e X̄ and G/CG(N) ∈ f(p) for each prime p
dividing |N |. Applying Lemma 1.2.12, we conclude that G ∈ F, contrary to
supposition. Hence F = LFX̄(g) and F is X̄-local.

Definition 1.2.18. Let f be an X-formation function defining an X-local
formation F.
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1. f is called integrated if f(S) ⊆ F for all S ∈ (char X) ∪ X′,

2. f is called full if Spf(p) = f(p) for all p ∈ char X.

The following theorem describes a full and integrated X-formation func-
tion defining an X-local formation.

Theorem 1.2.19 ([BBE06; Theorem 3.1.14]). Let F = LFX(f) be an X-local
formation defined by the X-formation function f . Set

f ∗(p) = F ∩Spf(p) for all p ∈ char X,

f ∗(S) = F ∩ f(S) for all S ∈ X′.

Then:

1. f ∗ is an X-formation function such that F = LFX(f ∗).

2. Spf
∗(p) = f ∗(p) for all p ∈ char X.

Proof. 1. It is clear that f ∗ is an X-formation function. Let F∗ = LFX(f ∗)
and let G ∈ F∗. If H/K is an Xp-chief factor of G, then

G
/

CG(H/K) ∈ F ∩Spf(p).

Since, by [DH92; A, 13.6], Op

(
G
/

CG(H/K)
)

= 1, it follows that

G
/

CG(H/K) ∈ f(p).

Now if G/L is a monolithic quotient of G with Soc(G/L) ∈ e(S) for
some S ∈ X′, it follows that G/L ∈ f(S). Therefore G ∈ F. If H/K is
an Xp-chief factor of a group A ∈ F, then A

/
CA(H/K) ∈ q F∩ f(p) ⊆

f ∗(p). If A/L is a monolithic quotient of A with Soc(A/L) ∈ e(S),
S ∈ X′, then A/L ∈ q F∩ f(S) ⊆ f ∗(S). This implies that A ∈ F∗ and
therefore F = F∗.

2. Let G ∈ Spf
∗(p), p ∈ char X. Then G/Op(G) ∈ f ∗(p) and so G ∈

Spf(p) because Op

(
G/Op(G)

)
= 1. Moreover G/Op(G) ∈ F. If H/K

is an Xp-chief factor of G below Op(G), then Op(G) ≤ CG(H/K) by
[DH92; B, 3.12 (b)] and so G

/
CG(H/K) ∈ q f(p) = f(p). If G/L

is a monolithic quotient of G such that Soc(G/L) ∈ e(S), S ∈ X′, it
follows that Op(G) ≤ L. Therefore G/L ∈ q f ∗(p) = f ∗(p) ⊆ F and so
G/L ∈ f(S). This proves that G ∈ F. Consequently G ∈ f ∗(p) and
Spf

∗(p) = f ∗(p).
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It is known (cf. [DH92; IV, 3.7]) that if X = J, then every X-local
formation has a unique integrated and full X-local definition, the canonical
one. This is not true in general. In fact, if ∅ 6= X 6= J, we can find an X-local
formation with several integrated and full X-local definitions.

Example 1.2.20. Let ∅ 6= X 6= J. Then we can consider X ∈ J \ X and
a prime p ∈ char X. The formation F = Sp is an X-local formation which
can be X-locally defined by the following integrated and full X-formation
functions:

f1(S) =

{
Sp if S ∼= Cp,

∅ if S 6∼= Cp,

and

f2(S) =


Sp if S ∼= Cp,

Sp if S ∼= X,

∅ otherwise

for all S ∈ (char X) ∪ X′.

When an X-local formation F is considered, it is often interesting to
work with a special full and integrated X-local definition of F, called the
canonical X-local definition of F. This X-formation function is described in
the following theorem. In order to present a general version of this result,
we assume that F = formX(Y), where Y is a class of groups.

Theorem 1.2.21. Let Y be a class of groups and consider F = formX(Y)
with minimal X-local definition f . Then F = LFX(F ), where F is the
following X-formation function:

F (p) = Spf(p) if p ∈ char X,

F (S) = form(Y) if S ∈ X′.

Moreover, F is full and integrated.

Proof. Since f ≤ F , it follows that F ⊆ LFX(F ). Suppose, by way of
contradiction, that the equality does not hold and let G be a group of
minimal order in LFX(F )\F. Then the group G has a unique minimal normal
subgroup, N say, and G/N ∈ F. Furthermore N ∈ e X because otherwise
G ∈ F (S) for some S ∈ X′ and then G ∈ F, contrary to supposition. Let p be
a prime dividing |N |. Then G/CG(N) ∈ Spf(p) and so G/CG(N) ∈ f(p)

because Op

(
G/CG(N)

)
= 1 by [DH92; A, 13.6 (b)]. Then Lemma 1.2.12

implies that G ∈ F. This contradiction yields LFX(F ) ⊆ F and then F =
LFX(F ). It is clear that F is full. Let p ∈ char X. If possible, choose a group
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G of minimal order in F (p) \ F. We know that G has a unique minimal
normal subgroup N and, since f(p) ⊆ F, Op(G) 6= 1. Hence N is a p-group.
Moreover G/N ∈ F and G/CG(N) ∈ f(p) because Op(G) centralises N . But
then G ∈ F. This contradicts the choice of G, and so we conclude that
F (p) ⊆ F.

Corollary 1.2.22. Let F be an X-local formation with minimal X-local
definition f . Then F = LFX(F ), where F is the following X-formation
function: {

F (p) = Spf(p) if p ∈ char X

F (S) = F if S ∈ X′

Moreover, F is full and integrated.

The X-formation function described above will be identified by the use
of an uppercase letter. Hence if we write F = LFX(F ), we are assuming that
F is the canonical X-local definition of F.

Theorem 1.2.23. Let F be an X-local formation and g an X-local definition
of F. Then F (p) = F ∩Spg(p) for every p ∈ char X.

Proof. Since f ≤ g, it follows that F (p) = Spf(p) ⊆ F ∩Spg(p) = g∗(p) for
all p ∈ char X. Let X be a group in g∗(p) and set W = Cp o X. As above,
denote by B = C\

p the base group of W . Then W/B ∈ g∗(p). Moreover
W/B ∈ F = LFX(g∗) by Theorem 1.2.19. Applying Lemma 1.2.12, we
conclude that W ∈ F. Hence X ∈ F (p) and F (p) = g∗(p).

The following corollary shows that the canonical definition of an X-local
formation F is the maximal integrated X-formation function defining F. This
means that g ≤ f for each integrated X-formation function g such that
F = LFX(g).

Corollary 1.2.24. Let F be an X-local formation and g an integrated X-
formation function defining F. Then g ≤ F .

Proof. Since g is integrated, we have that g(p) ⊆ F ∩Spg(p) = F (p) for all
p ∈ char X. Clearly, g(S) ⊆ F (S) if S ∈ X′. Therefore, g ≤ F .

Corollary 1.2.25. Let F be an X-local formation and f and g two full and
integrated X-formation functions defining F. Then f(p) = g(p) for every
p ∈ char X.

Proof. By Theorem 1.2.23, f(p) = g(p) = F (p) for every p ∈ char X.
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Theorem 1.2.26. Let F = LFX(F ) be an X-local formation. Then F (p) =
(G | Cp oG ∈ F) for every p ∈ char X.

Proof. Let p ∈ char X and let F̄ (p) denote the class (G | Cp o G ∈ F).
If G ∈ F (p), then Cp o G ∈ SpF (p) = F (p) ⊆ F by Theorem 1.2.21.
Hence G ∈ F̄ (p) and so F (p) ⊆ F̄ (p). Now consider a group G ∈ F̄ (p)
and set W = Cp o G. Denote B = C\

p the base group of W and A =⋂
{CW (H/K) | H ≤ B and H/K is a chief factor of W}. Since W ∈ F, it

follows that W/A ∈ F (p). On the other hand, A acts as a group of operators
for B by conjugation and A stabilises a chain of subgroups of B. Applying
[DH92; A, 12.4], we have that A/CA(B) is a p-group. Then A is itself a
p-group because CA(B) = B by [DH92; A, 18.8]. Consequently W ∈ F (p)
and G ∈ qF (p) = F (p). This proves that F̄ (p) = F (p).

Corollary 1.2.27. Let F be an X-local formation and Y ⊆ X. Let F1 and
F2 be the canonical Y-local and X-local definitions of F, respectively. Then
F1(p) = F2(p) for all p ∈ char Y.

Proof. Applying Corollary 1.2.17, we know that F is Y-local. Let p be a
prime in char Y. Then p ∈ char X and by Theorem 1.2.26 we have that
F1(p) = (G | Cp oG ∈ F) = F2(p).

Taking Y = (Cp), p ∈ char X in Corollary 1.2.27 and, applying Theo-
rem 1.2.15 and Theorem 1.2.26, we have:

Corollary 1.2.28. Let F be an X-local formation. If p ∈ char X, then

F (p) = Sp form
(
G
/

CG(H/K) | G ∈ F, H/K is an

abelian p-chief factor of G
)
.

Corollary 1.2.29. If F is an X-local formation, p is a prime in char X and
Cp ∈ K(F), then Sp ⊆ F.

Corollary 1.2.30. Let F = LFX(f) = LFX(F ) and G = LFX(g) = LFX(G)
be X-local formations. Then any two of the following statements are equiva-
lent:

1. F ⊆ G

2. F ≤ G

3. f ≤ g
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Corollary 1.2.31 ([BBCER05; Lemma 4.5]). Let F be a formation and let
{Xi | i ∈ I} be a family of classes of simple groups such that π(Xi) = char Xi

for all i ∈ I. Put X =
⋃
i∈I Xi. If F is Xi-local for all i ∈ I, then F is

X-local.

Proof. First of all, note that π(X) = char X.
Applying Theorem 1.2.21, F = LFXi(Fi), where

Fi(S) =

{
(G | Cp oG ∈ F) if S ∼= Cp, p ∈ char Xi,

F if S ∈ X′i,

for all i ∈ I.
Let f be the X-formation function defined by

f(S) =

{
(G | Cp oG ∈ F) if S ∼= Cp, p ∈ char X,

F if S ∈ X′.

It is clear that F ⊆ LFX(f). Assume that the inclusion is proper and derive
a contradiction. Let G ∈ LFX(f) \ F of minimal order. Then G has a
unique minimal normal subgroup N such that G/N ∈ F. It is clear that
N ∈ e X because otherwise G ∈ F. Hence N ∈ e Xi for some i ∈ I and
G/CG(N) ∈ f(p) = Fi(p) for all p ∈ π(N). Therefore G ∈ LFXi(Fi) = F.
This is a contradiction. Consequently F = LFX(f) and F is an X-local
formation.

When X is the class of all abelian simple groups, we have X =
⋃
p∈P(Cp).

Therefore

Corollary 1.2.32 ([BBCER05; Corollary 4.6]). A formation F is Baer-local
if and only if F is (Cp)-local for every prime p.

Lemma 1.2.33. Let F be an X-local formation and let f be an X-formation
function defining F. If f is integrated, then Spf(p) ⊆ F for every p ∈ char X.

Proof. Consider p ∈ char X and assume that Spf(p) is not contained in F.
Let G be a group of minimal order in Spf(p) \ F. Then G is a group with a
unique minimal normal subgroup N . Clearly, G is a p-group and G/N ∈ F.
Since G/CG(N) ∈ f(p), we can apply Lemma 1.2.12 to deduce that G ∈ F,
which is a contradiction. Therefore, Spf(p) ⊆ F.

The following lemma shows that if F is an X-local formation and we
consider an integrated X-formation function f defining F, a new X-local def-
inition g of F having the same values on the groups of X′ can be constructed.
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Lemma 1.2.34. Let F be an X-local formation and f an integrated X-
formation function defining F. Then F = LFX(f∗), where f∗ is the following
X-formation function:{

f∗(p) = f(p) if p ∈ char X

f∗(S) = form(
⋃
S∈X′ f(S)) if S ∈ X′

Proof. Consider F∗ = LFX(f∗). Since f ≤ f∗, it is clear that F is contained
in F∗. Now assume that F∗ is not contained in F and let G be a group of
minimal order in F∗ \ F. Then G has a unique minimal normal subgroup N
and G/N ∈ F. If N is an X′ chief factor of G, it follows that G ∈ f∗(S),
where S ∈ X′. Since f∗(S) is contained in F, this is a contradiction. Assume
that N is an X-chief factor of G and consider p ∈ π(N). We have that
G/CG(N) ∈ f∗(p) = f(p). By Lemma 1.2.12, we can conclude that G ∈ F,
which is a contradiction. Therefore, F∗ is contained in F.

Therefore, in Definition 1.2.1 we can assume without loss of generality
that an X-formation function has the same value on the groups of X′. Bear-
ing this in mind, Definition 1.2.1 can be modified if X′ 6= ∅.

Definition 1.2.35.

• An X-formation function f assigns to each X ∈ char X ∪ {X′} a (pos-
sibly empty) formation f(X).

• If f is an X-formation function, then LFX(f) is the class of all groups
G satisfying the following two conditions:

1. If H/K is an Xp-chief factor of G, then G/CG(H/K) ∈ f(p).

2. If G/L is a monolithic quotient of G such that Soc(G/L) is an
X′-chief factor of G, then G/L ∈ f(X′).

• A formation F is said to be X-local if there exists an X-formation
function f such that F = LFX(f). In this case we say that f is an
X-local definition of F or that f defines F.

Lemma 1.2.34 ensures us that the X-local formations of Definition 1.2.35
coincide with the ones presented in Definition 1.2.9.

Remark 1.2.36. The concepts of full and integrated X-formation function
(see Definition 1.2.18) are defined analogously. When we work with this new
definition we can also consider the canonical X-formation function F of an
X-local formation F (see Theorem 1.2.21), bearing in mind that, in this case,
F = LFX(F ), where F (p) = Spf(p) if p ∈ char X and F (X′) = F.
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Now we aim to give an interpretation of X-local and ω-local formations as
the classes of groups with generalised central chief factors. In [BBS97], the
word satellite was introduced. The origin was the need of studying arbitrary
formations by functional methods. The main idea, which was developed in
[BBS97] and [She01], is the following:

Let M be a class of finite groups. Consider a function f which assigns
to every group in M a formation. Suppose that there exists a rule (an f -
rule) which decides whether a given chief factor of a group G is f -central or
f -eccentric. We call a chief series f -central if all of its factors are f -central.
We say that a normal subgroup H of G is f -hypercentral if all the G-chief
factors of H are f -central in G. We can consider the class F (f) of all the
groups whose chief series are f -central. If F = F (f), then the function f ,
which is considered together with the mentioned rule, is called a satellite of
F. It is easy to note (see [BBS97] and [She01; Example 1]) that every non-
empty formation has at least one satellite. Hence we can study arbitrary
formations with the help of satellites.

Example 1.2.37. Let f be an X-formation function (Definition 1.2.35). We
extend the definition domain of f in the following way. If X ∈ X and
T ∈ e(X), then we set

f(T ) = f(X) =
⋂

p∈π(X)

f(p).

Now we define an f -rule. We say that a chief factor H/K of a group G is
f -central if one of the following conditions holds:

• H/K ∈ e X and G/CG(H/K) ∈ f(H/K).

• H/K ∈ e X′ and G/ cG(H/K) ∈ f(X′).

Example 1.2.38. Let f be an ω-local satellite. We extend the definition
domain of f in the following way. If T is a group whose order is divided by
a prime p ∈ ω, we set

f(T ) =
⋂

p∈ω∩π(T )

f(p).

Now we define an f -rule. We say that a chief factor H/K of a group G is
f -central if one of the following conditions holds:

• The order of H/K is divided by a prime p ∈ ω and G/CG(H/K) ∈
f(H/K).

• H/K is an ω′-group and G/ cG(H/K) ∈ f(ω′).
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Our purpose is to prove that if F is an X-local formation defined by an
X-formation function f , then F coincides with the class of all groups whose
chief factors are f -central. We need some lemmas.

Lemma 1.2.12 can be also rewritten in the following way:

Lemma 1.2.39. Consider an X-local formation F = LFX(f). Let G be a
group and N a normal subgroup of G such that G/N ∈ F. If N ∈ e X and
N is f -hypercentral, then G ∈ F.

Lemma 1.2.40 ([She01; Lemma 4]). Let F be a formation and Y a subclass
of J. Let M1 and M2 be normal subgroups of a group G such that M1∩M2 =
1. If GFMi/Mi is contained in the small centralizer of every Y′-chief factor
of G/Mi (i = 1, 2), then GF is contained in the small centralizer of every
Y′-chief factor of G.

Lemma 1.2.41. Consider the normal series

1 ≤ T ≤ K ≤ H ≤ G

Then cG(H/K)/T = cG/T
(
(H/T )

/
(K/T )

)
.

Proof. Set R = cG(H/K) and L/T = cG/T
(
(H/T )

/
(K/T )

)
. By Defini-

tion 1.1.10, K(R/K) ∩ K(H/K) = ∅. But then

K
(
(R/T )

/
(K/T )

)
∩ K

(
(H/T )

/
(K/T )

)
= ∅.

From here it follows that R/T ≤ L/T and R ≤ L. On the other hand,
K/T ≤ L/T and

K
(
(L/T )

/
(K/T )

)
∩ K

(
(H/T )

/
(K/T )

)
= ∅.

Therefore, K(L/K) ∩ K(H/K) = ∅ and L ≤ R.

Theorem 1.2.42 ([BBCSss]). Let f be an X-formation function. Let H

be the class of all groups whose chief factors are f -central. Then H is a
formation.

Proof. Let G ∈ H and K EG. Consider a chief series

1 ≤ · · · ≤ K = Gt ≤ · · · ≤ G1 ≤ G0 = G

If Gi−1/Gi is an X-chief factor, it is clear that (Gi−1/K)
/

(Gi/K) is f -central
in G/K. Let Gi−1/Gi be an X′-chief factor. Then G/ cG(Gi−1/Gi) be-
longs to f(X′). Therefore, L = cG(Gi−1/Gi) contains the f(X′)-residual of
G. By Lemma 1.2.41, L/K = cG/K

(
(Gi−1/K)

/
(Gi/K)

)
. It follows that
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(Gi−1/K)
/

(Gi/K) is f -central in G/K. Hence we have proved that H is
q-closed.

Assume that G/Mi ∈ H (i = 1, 2), M1 ∩M2 = 1. Clearly, every X-chief
factor of G is f -central. Assume that X′ 6= ∅ and f(X′) = B. Applying
Lemma 1.2.40, we see that every X′-chief factor of G is f -central. Therefore
we have proved that H is a formation.

Theorem 1.2.43 ([BBCSss]). Let F be an X-local formation and f an X-
formation function defining F. Then F coincides with the class of all groups
whose chief factors are f -central.

Proof. Let H be the class of all groups whose chief factors are f -central. If
H is not contained in F, let G be a group of least order in H\F. Then G is
a monolithic group with socle T = GF. Evidently, cG(T ) = 1. Since G ∈ H,
then T is f -central in G. If T is an e X-group, since G/T ∈ F by minimality
of G, we have that G ∈ F, by Lemma 1.2.39. If T is a e X′-group, then
G ∈ f(X′). Now, applying Definition 1.2.35, we have that G ∈ F. Since this
is a contradiction, we have that H is contained in F.

Now assume that F is not contained in H and let G be a group of least
order in F\H. Then G is a monolithic group with socle T = GH. Suppose
that T ∈ e X′. Then, by Definition 1.2.35, we have that G ∈ f(X′). It
follows that all the X′-chief factors of G are f -central. Now assume that
T ∈ e X. It is clear that T and the other chief e X-factors of G are f -central.
Let H/K be a X′-chief factor of G. Then T ≤ K and, since G/T ∈ H,
we have that (H/T )

/
(K/T ) is an f -central chief factor of G/T . If R/T =

cG/T
(
(H/T )

/
(K/T )

)
, then by Lemma 1.2.41 we have that R = cG(H/K).

Therefore, since (G/T )
/

(R/T ) ∈ f(X′), it follows that G/R ∈ f(X′). Hence,
H/K is f -central in G. We have proved that G ∈ H, which is a contradiction.
Therefore, F is contained in H.

For ω-saturated formations the following analogous result is true.

Theorem 1.2.44 ([BBCSss]). Let F be an ω-local formation and f an ω-
local satellite defining F. Then F coincides with the class of all groups whose
chief factors are f -central.

Lemma 1.2.45 ([She01; Lemma 1]). Let X be a non-empty class of simple
groups and {Si | i ∈ I} the set of all X′-chief factors of a group G. Then⋂

i∈I

cG(Si) = Ge X.
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Remark 1.2.46. We always suppose that the intersection of an empty set
of subgroups of G coincides with G. In particular, in Lemma 1.2.45, the set
I can be empty.

If Y is a class of simple groups, let EcY denote the class of all groups
whose Y-chief factors are central. Clearly, EcY = BLF(f), where f is the
Baer-function defined as f(A) = (1) if A ∈ Y and f(A) = E if A ∈ Y′.
Moreover, EcY is a Fitting formation. We denote by GcY the EcY-radical of
a group G. If Y = (Cp), then EcY is denoted by Ecp and GcY is denoted by
Gcp.

Lemma 1.2.47 ([She01; Lemma 2]). Let Y be a non-empty class of simple
groups, and {Si | i ∈ I} the set of all e Y-chief factors of a group G. Then⋂

i∈I

CG(Si) = GcY.

Bearing in mind Definition 1.2.3, we get this corollary.

Corollary 1.2.48. For a group G, we have that CXp(G) = GcXp.

Combining Theorem 1.2.43 and Lemmas 1.2.45 and 1.2.47 we obtain the
following results.

Corollary 1.2.49. Let F be an X-local formation and let f be an X-
formation function defining F. Then F coincides with the class of all the
groups G which satisfy the following two conditions:

1. G/Ge X ∈ f(X′) if G /∈ e X.

2. G/GcXp ∈ f(p) for any prime p such that Xp ∩ K(G) 6= ∅.

Corollary 1.2.50. Let F be an X-local formation, where X is a class of
abelian simple groups and ω = char X. Let f be an X-formation function
defining F. Then F coincides with the class of all the groups G which satisfy
the following two conditions:

1. G/GSω ∈ f(Y′), if G /∈ Sω.

2. G/Gcp ∈ f(p) for any p in ω such that Cp ∈ K(G).

When we work with the modified definition of X-local formation (see
Definition 1.2.35), we can also consider the minimal X-local definition, since
Lemma 1.2.13 and Corollary 1.2.14 can be adapted to this new definition.
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Lemma 1.2.51. Consider a family {fi | i ∈ I} of X-formation functions.
Then

⋂
i∈I LFX(fi) = LFX(g), where g(S) =

⋂
i∈I fi(S) for every S ∈

(char X) ∪ {X′}.

Corollary 1.2.52. Let F be an X-local formation and {fi | i ∈ I} a family
of X-formation functions defining F, that is, F = LFX(fi) for every i ∈ I.
Then F = LFX(f), where f(S) :=

⋂
i∈I fi(S) for every S ∈ (char X) ∪ {X′}.

The minimal definition of an X-local formation is described in the follow-
ing theorem.

Theorem 1.2.53 ([BBCSss]). Let F be an X-local formation. Then F =
LFX(m), where

m(p) = form(G/GcXp | G ∈ F and Xp ∩ K(G) 6= ∅) if p ∈ char X,

m(X′) = form(G/Ge X | G ∈ F and G 6= Ge X) if X′ 6= ∅.

Moreover, m ≤ f for every X-formation function f such that F = LFX(f).

Proof. Consider M = LFX(m). Clearly, we have that F ⊆M applying Corol-
lary 1.2.49. Consider an X-formation function f such that F = LFX(f). We
aim to prove that m ≤ f . If G is a group in F such that Xp ∩ K(G) 6= ∅
for a prime p ∈ char X, we have that G/GcXp ∈ f(p) by Corollary 1.2.49.
Therefore, m(p) ⊆ f(p). Now if G ∈ F and G 6= Ge X, it follows by Corol-
lary 1.2.49 that G/Ge X ∈ f(X′). Consequently, m(X′) ≤ f(X′) and F ⊆M.
We have also proved that m ≤ f for every X-formation function f such that
F = LFX(f).

1.3 X-saturated formations

Besides the concept of X-local formation, Förster defined a Frattini-like
subgroup Φ∗X(G) for each group G, which enables him to introduce the con-
cept of X-saturation. If our aim is to generalise the concepts of satura-
tion and soluble saturation, we would expect the X-Frattini subgroup of a
group G to be defined as Φ

(
OX(G)

)
, since OX(G) = G when X = J and

OX(G) = GS when X = P. We will see that Förster’s definition does not
coincide with the natural one.

Definition 1.3.1 (Förster). Let G be a group.

• For a prime p, we define Φp
X(G):
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– If Op′(G) = 1,

Φp
X(G) :=

{
Φ(G) if Soc

(
G/Φ(G)

)
and Φ(G) belong to e X,

Φ
(
OX(G)

)
otherwise.

– In general, Φp
X(G) is the subgroup of G such that

Φp
X(G)/Op′(G) = Φp

X

(
G/Op′(G)

)
.

• Finally

Φ∗X(G) := OX(G) ∩

( ⋂
p∈char X

Φp
X(G)

)
.

A full account of the properties of this Frattini-like subgroup can be
found in [BBE06; Proposition 3.2.2]. Nevertheless we give alternative proofs
of some of them.

Definition 1.3.2. Let F be a formation. We say that:

• F is X-saturated (N) if F contains a group G whenever it contains
G/Φ

(
OX(G)

)
.

• F is X-saturated (F) if G ∈ F provided that G/Φ∗X(G) ∈ F.

The following definition can be deduced from [BBE06; Proposition 3.2.2
(2)].

Proposition 1.3.3. If X = J, the class of all simple groups, then Φ∗X(G) =
Φ(G) for every group G.

Proof. We have that

Φ(G) Op′(G)/Op′(G) ≤ Φ
(
G/Op′(G)

)
= Φp

X

(
G/Op′(G)

)
= Φp

X(G)/Op′(G).

Hence Φ(G) ≤ Φp
X(G) for every prime p. Since in this case

Φ∗X(G) =
⋂
p∈P

Φp
X(G),

then Φ(G) ≤ Φ∗X(G).
Now we aim to prove that Φ∗X(G) ≤ Φ(G). Note that Φ∗X(G) is nilpotent,

since for every prime p, we have that

Φ∗X(G)/Φ∗X(G) ∩Op′(G) ∼= Φ∗X(G) Op′(G)/Op′(G) ≤ Φp
X(G) Op′(G)/Op′(G)

= Φp
X(G)/Op′(G) = Φ

(
G/Op′(G)

)
≤ F

(
G/Op′(G)

)
,
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where F
(
G/Op′(G)

)
is a p-group (otherwise, since F

(
G/Op′(G)

)
is p-nilpo-

tent, it would have a non-trivial normal Hall p′-subgroup and so the factor
group Op′

(
G/Op′(G)

)
would be non-trivial). We have seen that Φ∗X(G) ∩

Op′(G) is a normal Hall p′-subgroup of Φ∗X(G) and, therefore, Φ∗X(G) is p-
nilpotent.

Consider a prime p. Let us prove that Op

(
Φ∗X(G)/Φ(G)

)
= 1. Assume

that it is not true and consider a minimal normal subgroup N/Φ(G) of
G/Φ(G) such that N/Φ(G) ≤ Op

(
Φ∗X(G)/Φ(G)

)
. Let M/Φ(G) be a maximal

subgroup of G/Φ(G) such that G = MN . Since |G : M | is a power of p, it
follows that Op′(G) ≤M (otherwise, we would have that G = Op′(G)M and
|G : M | would be a p′-number). Hence M/Op′(G) is a maximal subgroup of
G/Op′(G) and, therefore,

Φp
X(G)/Op′(G) = Φp

X

(
G/Op′(G)

)
= Φ

(
G/Op′(G)

)
≤M/Op′(G).

Hence Φp
X(G) ≤M and

N/Φ(G) ≤ Φ∗X(G)/Φ(G) ≤ Φp
X(G)/Φ(G) ≤M/Φ(G),

which is a contradiction. Therefore Op

(
Φ∗X(G)/Φ(G)

)
= 1 for every prime p.

We have proved that Φ∗X(G) = Φ(G) and the proof is complete.

Remark 1.3.4. Let G be a group. Then

Φ∗X(G) = OX(G) ∩

(⋂
p∈P

Φp
X(G)

)
.

Proof. Since Φ∗X(G) ≤ OX(G), it follows that Φ∗X(G) ∈ e X. Therefore, if q
is a prime such that q /∈ char X, q cannot divide the order of Φ∗X(G). Hence
Φ∗X(G) ≤ Oq′(G) ≤ Φq

X(G) and, therefore

Φ∗X(G) ≤ OX(G) ∩

(⋂
p∈P

Φp
X(G)

)
.

The other inclusion is clear.

Proposition 1.3.5.

1. If X ⊆ X, then Φ∗X(G) ≤ Φ∗
X
(G) for every group G.

2. For every group G,

Φ
(
OX(G)

)
≤ Φ∗X(G) ≤ Φ(G)
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Proof. 1. Clearly, if p ∈ P, it follows that

Φp
X

(
G/Op′(G)

)
≤ Φp

X

(
G/Op′(G)

)
,

since e X ⊆ e X. Therefore, Φp
X(G) ≤ Φp

X
(G). Bearing in mind Re-

mark 1.3.4, we have that

Φ∗X(G) = OX(G) ∩

(⋂
p∈P

Φp
X(G)

)
≤ OX(G) ∩

(⋂
p∈P

Φp

X
(G)

)
= Φ∗

X
(G)

2. Applying 1 and Proposition 1.3.3, we obtain that Φ∗X(G) ≤ Φ(G).

Now we aim to prove that Φ
(
OX(G)

)
≤ Φ∗X(G). If p ∈ P, it follows

that

Φ
(
OX(G)

)
Op′(G)/Op′(G) ≤ Φ

(
OX(G) Op′(G)

)
Op′(G)/Op′(G)

≤ Φ
(
OX(G) Op′(G)/Op′(G)

)
≤ Φ

(
OX

(
G/Op′(G)

))
≤ Φp

X

(
G/Op′(G)

)
= Φp

X(G)/Op′(G).

Hence Φ
(
OX(G)

)
≤ Φp

X(G) for every prime p and, therefore,

Φ
(
OX(G)

)
≤ OX(G) ∩

(⋂
p∈P

Φp
X(G)

)
= Φ∗X(G).

When X = P, the class of all abelian simple groups, Φ∗X(G) does not
coincide in general with Φ

(
OX(G)

)
, as the following example shows.

Example 1.3.6. Consider a non-abelian simple group E and a prime p ∈
π(E). Let T denote the group algebra GF(p)E. The structure of T as a T -
module (regular module) leads to an action of E over T . Consider G := [T ]E
and A := T/Rad(T ), the head of T .

We aim to prove that Rad(T ) = Φ(G). In general, we have that
Rad(M) = Φ([M ]H) ∩ M for a group H and a GF(p)H-module M (see
[DH92; B, 3.14]). Therefore, Rad(T ) ≤ Φ(G).

On the other hand, since Φ([A]E)A/A ≤ Φ([A]E/A) = 1, we have that
Φ([A]E) ≤ A. Hence Φ([A]E) = Φ([A]E) ∩ A = Rad(A) = 1.

We have that Φ(G) Rad(T )/Rad(T ) ≤ Φ
(
G/Rad(T )

) ∼= Φ([A]E) = 1.
Hence Φ(G) ≤ Rad(T ) and, therefore, Φ(G) = Rad(T ).

Now let us prove that Φ∗P(G) = Φ(G).
We know that Φp

P(G) = Φ(G), since Op′(G) = 1 and the groups Φ(G)
and Soc

(
G/Φ(G)

)
are soluble.
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If q 6= p, it follows that Φ(G) ≤ T ≤ Oq′(G) ≤ Φq
P(G). Bearing in mind

that Φ(G) ≤ GS, we obtain that Φ∗P(G) = Φ(G).
Since char

(
GF(p)

)
divides the order of E, we have by Maschke’s theorem

that T is not completely reducible as a module and, therefore, Rad(T ) is
non-trivial. Hence Φ(GS) = 1 6= Φ∗P(G).

Förster proved in [För85] the following theorem.

Theorem 1.3.7. A formation is X-saturated (F) if and only if it is X-local.

Remark 1.3.8. If X = J in Theorem 1.3.7, then we obtain as a special
case the Gaschütz-Lubeseder-Schmid theorem (see Theorem 1.1.4). However,
Baer’s theorem cannot be immediately deduced from this result.

Since Φ
(
OX(G)

)
is contained in Φ∗X(G) for every group G, we can deduce

from Förster’s theorem that every X-local formation fulfils the following
property:

A group G belongs to F if and only if G/Φ
(
OX(G)

)
belongs to F. (1.3)

Therefore from the very beginning the following question naturally arises:

Open question 1.3.9. Let F be a formation with the property (1.3). Is F

X-local?

Now we introduce another X-Frattini subgroup which is smaller than
Förster’s one. We will prove that X-local formations are exactly the X-
saturated ones defined using our X-Frattini subgroup. This fact will draw
near the solution of Question 1.3.9.

Definition 1.3.10.

• Let p be a prime number. We say that a group G belongs to the
class AXp(P2) provided there exists an elementary abelian normal p-
subgroup N of G such that

1. N ≤ Φ(G) and G/N is a primitive group with a unique non-
abelian minimal normal subgroup, i. e., G/N is a primitive group
of type 2,

2. Soc(G/N) ∈ e X \ Ep′ , and

3. Ch
G(N) ≤ N , where

Ch
G(N) :=

⋂
{CG(H/K) | H/K is a chief factor of G below N}.



1.3. X-SATURATED FORMATIONS 39

• The X-Frattini subgroup of a group G is the subgroup ΦX(G) defined
as

ΦX(G) :=

{
Φ
(
OX(G)

)
if G /∈ AXp(P2) for all p ∈ char X,

Φ(G) otherwise.

• A formation F is said to be X-saturated if G ∈ F for every group G
such that G/ΦX(G) ∈ F.

Remark 1.3.11. ΦX(G) is a π-group, where π = π(X).

Proposition 1.3.12.

1. If X = J, the class of all simple groups, ΦX(G) = Φ(G) for every group
G. In this case, the concept of X-saturation coincides with the one of
saturation.

2. If X ⊆ P, that is, if X is a class of abelian simple groups, then
ΦX(G) = Φ

(
OX(G)

)
for every group G. In particular, if X = P, then

ΦX(G) = Φ(GS) for every group G and, in this case, the X-saturated
formations are exactly the solubly saturated ones.

Proof.

1. It is clear, since OX(G) = G for every group G if X = J.

2. If X ⊆ P, we have that AXp(P2) = ∅ for every prime p, because if G ∈
AXp(P2), it follows that G/Φ(G) is a primitive group of type 2, that
is, Soc

(
G/Φ(G)

)
is non-abelian. On the other hand, Soc

(
G/Φ(G)

)
∈

e X ⊆ e P = S, implying that it is abelian. Therefore, ΦX(G) =
Φ
(
OX(G)

)
.

If X = P, then Φ
(
OX(G)

)
= Φ(GS).

Definition 1.3.13. Let Y be a class of groups. We define the following
class:

eΦX
(Y) := (G ∈ E | there exists N E G such that

N ≤ ΦX(G) and G/N ∈ Y).

Remark 1.3.14. A formation F is X-saturated if and only if eΦX
(F) = F.

Lemma 1.3.15. If X ⊆ P, that is, if X only contains abelian simple groups,
and Y is a q-closed class of groups, then eΦX

(Y) is also q-closed.
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Proof. Consider a group G ∈ eΦX
(Y) and a normal subgroup M of G. We

aim to prove that G/M ∈ eΦX
(Y). There exists a normal subgroup N of

G such that N ≤ ΦX(G) and G/N ∈ Y. Consider the normal subgroup
NM/M of G/M , which satisfies that

NM/M ≤ ΦX(G)M/M = Φ
(
OX(G)

)
M/M ≤ Φ

(
OX(G)M

)
M/M

≤ Φ
(
OX(G)M/M

)
≤ Φ

(
OX(G/M)

)
= ΦX(G/M)

Moreover, (G/M)
/

(NM/M) ∼= G/NM . Since G/N ∈ Y and Y is q-closed,
It follows that (G/M)

/
(NM/M) ∈ Y. Therefore, G/M ∈ eΦX

(Y).

Lemma 1.3.16. If X and X two classes of simple groups such that X ⊆ X,
then ΦX(G) ≤ ΦX(G) for every group G. Therefore, if a formation F is
X-saturated, then F is X-saturated.

Proof. If ΦX(G) = Φ
(
OX(G)

)
, it follows that ΦX(G) ≤ Φ

(
OX(G)

)
≤ ΦX(G).

If G ∈ AXp(P2) for a prime p ∈ char X, then it is clear that G ∈ AXp
(P2)

and, therefore, ΦX(G) = Φ(G) = ΦX(G).

The following proposition shows that the new X-Frattini subgroup is
smaller than the one defined by Förster.

Proposition 1.3.17. Let G be a group. Then ΦX(G) is contained in Φ∗X(G).

Proof. By Proposition 1.3.5, we have that Φ
(
OX(G)

)
≤ Φ∗X(G). Therefore,

we only need to prove that if G ∈ AXp(P2) for a prime p ∈ char X, then
Φ(G) ≤ Φ∗X(G). In this case, Φ(G) is a p-subgroup of G. We have that
Op′(G) = 1, since Op′(G) ≤ Ch

G

(
Φ(G)

)
. Bearing in mind the definition

of the class AXp(P2), we have that Ch
G

(
Φ(G)

)
≤ Φ(G). Since Φ(G) and

Soc
(
G/Φ(G)

)
belong to e X, it follows that Φp

X(G) = Φ(G). If q ∈ char X

and q 6= p, then Φ(G) ≤ Oq′(G) ≤ Φq
X(G). Therefore, Φ(G) ≤ OX(G) ∩(⋂

p∈char X Φp
X(G)

)
= Φ∗X(G).

In general the subgroups ΦX(G) and Φ∗X(G) do not coincide (see Exam-
ple 1.3.6). Moreover, the following example shows that for every class X of
simple groups such that X 6= ∅ and X 6= J, there exists a group G such that
ΦX(G) < Φ∗X(G).

Example 1.3.18. Let X be a class of simple groups different from ∅ and
J. First note that there exists a non-abelian simple group E and a prime
p ∈ π(E) such that E ∈ X′ and p ∈ char X.

• If char X = P, take E ∈ X′, which is non-abelian. Moreover, if p ∈
π(E), we have that p ∈ char X.
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• If char X 6= P, take a prime p ∈ char X and a prime q such that q /∈
char X. Consider E = Alt(p+ q), the alternating group of degree p+ q,
which is a non-abelian simple group. We have that p ∈ (char X)∩π(E).
Moreover, E ∈ X′, because otherwise, since q ∈ π(E), we would have
that q ∈ char X.

Now consider G = [T ]E (see Example 1.3.6). We know that Φ(G) =
Rad(T ). In this case, Φ∗X(G) = Φ(G), bearing in mind that Φ(G) and
Soc
(
G/Φ(G)

)
belong to the class e X. Note that G /∈ AXp(P2), since

G/Φ(G) ∼= [A]E, which is not a primitive group of type 2. Clearly, given
a prime q ∈ char X different from p, G does not belong to AXq(P2). Hence
ΦX(G) = Φ

(
OX(G)

)
= Φ(T ) = 1. Therefore, ΦX(G) < Φ∗X(G).

There exist groups G satisfying that Φ
(
OX(G)

)
is a proper subgroup of

ΦX(G), since Example 1.3.20 (suggested by John Cossey [Cos04]) shows. We
need the following lemma.

Lemma 1.3.19. Let G be a group and let X be a primitive group of type 2,
that is, a monolithic primitive group whose socle is non-abelian. Then X oG,
the regular wreath product of X with G, is a primitive group of type 2.

Proof. Consider W = X oG and let S denote the direct product of |G| copies
of Soc(X), considered as a subgroup of the base group B of W . By [DH92;
A, 18.5(a)], we have that S is a minimal normal subgroup of W .

Next we prove that CW (S) = 1. Take w = tg ∈ CW (S), where t ∈ B and
g ∈ G. Consider Si = Soc(Xi), where Xi is the copy number i of X in B.
It follows that Si = Swi = Stgi = Sgi = Sig, implying that g = 1. Therefore,
t ∈ CB(S) = 1 and we have that w = 1. Consequently, CW (S) = 1. Hence
W is a monolithic group and Soc(W ) = S. Since S 6≤ Φ(W ), there exist a
maximal subgroup M of W not containing S. It follows that CoreW (M) = 1.
By [DH92; A, 15.2], W is a primitive group of type 2.

Example 1.3.20. Consider X =
(
Alt(5), C2, C3, C5

)
.

Consider the alternating group Alt(5) of degree 5. There exist a group X
having an elementary abelian minimal normal subgroup F of order 53 such
that F = Φ(X), CX(F ) = F and X/F ∼= Alt(5) (see [GS78; Example 1 and
Proposition 2]). Since 5 divides 11 − 1, C5 possesses a faithful irreducible
module V of dimension 1 over GF(11). Let S denote the corresponding
semidirect product, which is a non-abelian group of order 55. Consider
Y := X o S. Let B be the base group of Y . It is clear that A = BV is a
normal subgroup of Y of index 5. Now consider a cyclic group C of order
25 and D its subgroup of index 5. Now we construct a subdirect product



42 CHAPTER 1. X-LOCAL FORMATIONS

1×D

K ×D

�
�
�
�
�
�
�
�
�

@
@
@�

�
�
�
�
�
�
�
�

1

@
@
@
A×D

A× 1

K × 1@
@
@

G ≤ Y × C

Figure 1.1: Group considered in Example 1.3.20

of Y and C with amalgamated factor group Y/A ∼= C/D ∼= C5 (see [DH92;
A, 19.2]). G can be seen as a subgroup of the direct product Y × C (see
diagram 1.1). By [DH92; A, 19.1], G/(1×D) ∼= Y and G/(A× 1) ∼= C.

Next we study Φ(G). By [DH92; A, 18.8], we have that A ∼= X5 o V ,
where X5 the direct product of 5 copies of X. Let K denote the direct
product of all the copies of F in B. We shall prove that K×1 ≤ Φ(G). Note
that F × 1 ≤ Φ(X). Hence K × 1 ≤ Φ(B) by [DH92; A, 9.4]. Consequently,
K × 1 ≤ Φ(G) by [DH92; A, 9.1].

The next step is to prove that 1×D ≤ Φ(G). Assume that it is not true.
There exist a maximal subgroup M of G such that (1×D)M = G. It follows
that

M ∼= M
/(
M ∩ (1×D)

) ∼= M(1×D)/(1×D) = G/(1×D) ∼= Y.

Take quotients by A× 1. We have that(
(1×D)(A× 1)/(A× 1)

)(
M(A× 1)/(A× 1)

)
= G/(A× 1).

Since (1 × D)(A × 1)/(A × 1) ∼= C5 y G/(A × 1) ∼= C25, it follows that
M(A×1)/(A×1) ∼= C25. We conclude that M

/(
(A×1)∩M

) ∼= C25, that is,
M ∼= Y has a quotient which is isomorphic to C25. We shall see that this is
not possible. Bearing in mind that X is perfect, by [DH92; A, 18.4] it follows
that Y ′ = BS ′ = BV = A. Hence Y/Y ′ ∼= C5 and Y cannot have a quotient
which is isomorphic to C25. This contradiction shows that 1×D ≤ Φ(G).
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Next we prove that Φ(G) = K ×D. We have seen that K ×D ≤ Φ(G).
Now we shall prove that Φ

(
G/(K ×D)

)
= 1. We have that G/(K ×D) ∼=

Y/K and, by [DH92; A, 18.2], Y/K ∼= Alt(5) o S. Applying Lemma 1.3.19,
Alt(5) oS is a primitive group of type 2. In particular, Φ

(
Alt(5) oS

)
= 1 and,

therefore, Φ
(
G/(K ×D)

)
= 1. It follows that Φ(G) = K ×D.

Now we analyse Φ
(
OX(G)

)
. It is clear that B ×D ≤ OX(G). Moreover,

OX

(
G/(B×D)

) ∼= OX(S) = 1. Hence OX(G) = B×D and Φ
(
OX(G)

)
= K.

We shall prove that G ∈ AX5(P2). On one hand, Φ(G) = K × D is
5-elementary abelian. On the other hand, we have that G/Φ(G) ∼= Alt(5) oS
is a primitive group of type 2. Moreover, Soc

(
G/Φ(G)

)
is a direct prod-

uct of copies of Alt(5). Hence it belongs to eX \Ep′ . Next we prove that
Ch
G

(
Φ(G)

)
≤ Φ(G). Since F is a minimal normal subgroup of X and F is

not central in X, by [DH92; A, 18.5] it follows that K is a minimal normal
subgroup of Y . If K × 1 were not a minimal normal subgroup of G, there
would exist a minimal subgroup T × 1 of G strictly contained in K × 1.
Hence (T ×D)/(1×D) would be a minimal normal subgroup of G/(1×D)
strictly contained in (K × D)/(1 × D). It would follows that K is not a
minimal normal subgroup of Y , which is a contradiction. Therefore, K × 1
is a minimal normal subgroup of G. Moreover, CG(K × 1) = K ×D, since
CY (K) = K because CX(F ) = F . It follows that Ch

(
Φ(G)

)
= Φ(G). Hence

G ∈ AX5(P2) and, consequently, ΦX(G) = Φ(G) and ΦX(G) is a proper
group of Φ

(
OX(G)

)
.

1.4 A generalisation of the Gaschütz-Lubese-

der-Schmid-Baer theorem

We have introduced the concepts of X-saturation (N), X-saturation (F)
and X-saturation. In this section the relation between these types of satura-
tion is studied. Since Φ

(
OX(G)

)
≤ ΦX(G) ≤ Φ∗X(G) (see Propositions 1.3.5

and 1.3.17), it is clear that the family of X-saturated formations contains
the family of X-saturated(F) ones and it is contained in the family of X-
saturated(N) ones. Since there exist groups G such that ΦX(G) < Φ∗X(G),
the following question arises.

Open question 1.4.1. If F is an X-saturated formation, is F an X-local
formation?

The main goal of this section is to prove that the answer is positive.
We can deduce from Theorem 1.3.7 that every X-local formation is X-

saturated. Here a direct proof is given.
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Theorem 1.4.2. If F is an X-local formation, then F is X-saturated.

Proof. Consider an X-formation function f such that F = LFX(f) and a
group G. Assume that G/ΦX(G) ∈ F. We distinguish two cases:

1. If G ∈ AXp(P2), where p ∈ char X, it follows that ΦX(G) = Φ(G).
Hence G/Φ(G) ∈ F. Next we prove that G ∈ F. We have that Φ(G)
is p-elementary abelian, G/Φ(G) is a primitive group of type 2 and
Soc(G/Φ(G)) is an Xp-chief factor of G. Therefore,

G/CG

(
Soc
(
G/Φ(G)

))
= G/Φ(G) ∈ f(p)

and hence G/CG

(
Φ(G)

)
∈ q f(p) = f(p). Applying Lemma 1.2.12, we

can conclude that G ∈ F.

2. If there does not exist p ∈ char X such that G ∈ AXp(P2), we have
that G/Φ

(
OX(G)

)
∈ F. Next we prove that G ∈ F.

If H/K is an Xp-chief factor of G below Φ
(
OX(G)

)
, then p divides∣∣OX(G)/Φ

(
OX(G)

)∣∣, since p divides
∣∣Φ(OX(G)

)∣∣. Therefore, G has an
Xp-chief factor above Φ

(
OX(G)

)
and f(p) 6= ∅. By Lemma 1.2.7, it

follows that

G/CXp(G) ∼= G/Φ
(
OX(G)

)/
CXp(G)/

(
OX(G)

)
= G/Φ

(
OX(G)

)/
CXp

(
G/Φ

(
OX(G)

))
∈ f(p).

Therefore, G
/

CG(H/K) ∈ f(p).

If L E G, G/L is monolithic and Soc(G/L) is an X′-chief factor of G, it
follows that Φ

(
OX(G)

)
≤ L and, therefore, G/L ∈ F. We can conclude

that G ∈ F.

The following series of lemmas on X-saturated formations is needed to
prove the main result of this section. It can be found in [BBCER05].

Lemma 1.4.3. Let F be an X-saturated formation, X a group, and p a
prime in char X. If there exists a faithful X-module M over GF(p) such that
[M ]X ∈ F, then [N ]X ∈ F for every irreducible GF(p)X-module N .

Proof. We can argue as in [DH92; IV, 4.1], bearing in mind that the Hartley
group used in the proof is a p-group and hence it belongs to e X.

Lemma 1.4.4. Let F be an X-saturated formation, G a group and let p be a
prime in char X. If Cp ∈ F and N is a normal elementary abelian p-subgroup
of G such that and [N ](G/N) ∈ F, then G ∈ F.
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Proof. Analogous to [DH92; IV, 4.15], noting that the Hartley group is a
p-group as in the previous lemma.

Lemma 1.4.5. Let F be an X-saturated formation and p a prime in char X.
If X ∈ r0

(
G/CG(H/K) | G ∈ F and H/K is an Xp-chief factor of G

)
, then

[N ]X ∈ F for every irreducible GF(p)X-module N .

Proof. By Lemma 1.4.3, it is enough to find a faithful X-module M over
GF(p) such that [M ]X ∈ F.

Since

X ∈ r0

(
G/CG(H/K) | G ∈ F and H/K is an Xp-chief factor of G

)
,

there exist a natural number n and normal subgroups Xi of X, for i =
1, 2, . . . , n, such that

⋂n
i=1Xi = 1 and X/Xi

∼= Gi/CGi(Hi/Ki), where Gi ∈
F and Hi/Ki is an Xp-chief factor of Gi.

Assume that Hi/Ki is non-abelian for some i = 1, 2, . . . , n. Then G :=
Gi/CGi(Hi/Ki) is a primitive group of type 2. Consider the maximal Frat-
tini extension E of G corresponding to the prime p ([DH92; B, 11.8]). Then
E has a elementary abelian normal p-subgroup Ap(G), the Frattini p-module
of G, such that E/Ap(G) ∼= G. Ap(G) can be regarded as a GF(p)G-module

and so viewed we have that Ker
(
G on Soc

(
Ap(G)

))
= Op′,p(G) (cf. [DH92;

Appendix β]). In this case Op′,p(G) = 1 and, therefore, there exists an
irreducible GF(p)G-submodule of Ap(G), say T , such that CG(T ) = 1.

Note that E ∈ AXp(P2). This means that ΦX(E) = Φ(E) = Ap(G) and,
therefore, E/ΦX(E) ∼= G ∈ F. Since F is X-saturated, it follows that E ∈ F.
We have that T is an abelian Xp-chief factor of E such that E/CE(T ) ∼= G
and E ∈ F. Hence we can assume that Hi/Ki is abelian for all i.

By [DH92; IV, 1.5], it follows that [Hi/Ki]
(
Gi/CGi(Hi/Ki)

)
∈ F. Con-

sequently, [Hi/Ki](X/Xi) ∈ F.

Consider now W := [Hi/Ki]X. We have that W
/

(Hi/Ki) ∈ F and
W/Xi ∈ F. Therefore W ∈ r0 F = F.

Write M := (H1/K1)×(H2/K2)×· · ·×(Hn/Kn). We have that Hi/Ki is a
faithful Gi/CGi(Hi/Ki)-module over GF (p). Since Gi/CGi(Hi/Ki) ∼= X/Xi,
we obtain that Hi/Ki is a GF (p)X-module and CX(Hi/Ki) = Xi. Since⋂n
i=1Xi = 1, it follows that M is a faithful X-module over GF (p). Moreover,

[M ]X ∈ r0 F = F, as desired.

Theorem 1.4.6 ([BBCER05; Theorem 3.4]). If F is an X-saturated forma-
tion, then F is X-local.
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Proof. Let f be the X-formation function defined as

f(X) =


q r0

(
G/CG(H/K) | G ∈ F and H/K is an Xp-chief factor of G

)
if X = p ∈ char X,

F if X ∈ X′.

It is clear that F ⊆ LFX(f). Suppose that F 6= LFX(f) and take a minimal
group in LFX(f) \ F. Clearly, G is a monolithic group and N := Soc(G) is
an abelian X-chief factor of G. Let p be the prime dividing the order of N .
Thus, f(p) 6= ∅ and we can take a group

Y ∈ r0

(
G/CG(H/K) | G ∈ F and H/K is an Xp-chief factor of G

)
.

Consider the trivial GF(p)Y -module V . By Lemma 1.4.5, we have that
[V ]Y ∼= V × Y ∈ F and thus Cp ∼= V ∈ F.

Now we distinguish two cases:

• If CG(N) = N , we have that G/N ∈ f(p). Therefore there ex-
ist X ∈ r0

(
G/CG(H/K) | G ∈ F and H/K is an Xp-chief factor of G

)
and T E X such that G/N ∼= X/T .

N can be regarded as an irreducible GF(p)G-module and as an irre-
ducible GF(p)X-module. By Lemma 1.4.5, we have that [N ]X ∈ F.
This means that [N ](X/T ) and [N ](G/N) also belong to F. We can
now apply Lemma 1.4.4 to obtain that G ∈ F, a contradicction.

• Assume now that N < CG(N). By [DH92; IV, 1.5], the group B :=
[N ](G/N) belongs to LFX(f).

Consider M := CB(N) ∩ (G/N). Since M 6= 1, the minimality of G
implies that B/M ∈ F. Moreover, since B/N ∈ F and M ∩N = 1, we
have that B ∈ r0 F = F. By Lemma 1.4.4, we obtain that G ∈ F, a
contradiction.

We have proved that LFX(f) ⊆ F and, thus, F = LFX(f).

Förster’s main result ([För85]) and Theorem 1.4.6 can be combined to
get the following theorem:

Theorem 1.4.7. Let F be a formation and X a class of simple groups. The
following statements are pairwise equivalent:

1. F is X-local.

2. F is X-saturated (F).
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3. F is X-saturated.

The equivalence shown in Theorem 1.4.7 will be used in the rest of the
thesis without further reference.

Corollary 1.4.8. A formation F is X-saturated if and only if F is Xp-
saturated for every p ∈ char X. In particular, a formation F is solubly
saturated if and only if F is (Cp)-saturated for every prime p.

Proof. It follows from Theorem 1.4.6 and Corollary 1.2.31.

Corollary 1.4.9. Let F be a formation. The following statements are
equivalent:

• F is solubly saturated

• F is nilpotently saturated

Proof. If F is solubly saturated, it is clear that F is nilpotently saturated,
since Φ

(
F(G)

)
≤ Φ(GS) for every group G.

Assume that F is nilpotently saturated. Then for every prime number p
and every group G, it follows that G ∈ F whenever G/Φ

(
Op(G)

)
∈ F, since

Φ
(
Op(G)

)
≤ Φ

(
F(G)

)
. Therefore, F is (Cp)-saturated for every prime p. By

Corollary 1.4.8, F is solubly saturated.

Lemma 1.4.10. Let G be a group and M a minimal normal subgroup of G.
Then there exists a normal subgroup N of G such that N ∩M = 1 and G/N
is monolithic with socle MN/N .

Proof. Consider the family

TM := {T E G | T ∩M = 1} 6= ∅

Take an element N of TM of maximal order. Next we prove that G/N is
monolithic. Clearly, MN/N is a minimal normal subgroup of G/N . Now
assume that T/N is a minimal normal subgroup of G/N and T 6= MN .
If T ∩M 6= 1, we would have that M ≤ T and then MN/N ≤ T/N and
T = MN , which is a contradiction. Therefore, T ∈ TM , contradicting the
choice of N .

Remark 1.4.11. Note that the group found in Example 1.3.20 is not mono-
lithic. Bearing this in mind, it would be a nice idea to modify the definition
of the subgroup ΦX(G) of a group G in the following way:

ΦX(G) :=


Φ(G) if G ∈ AXp(P2) for a prime p ∈ char X

and G is monolithic,

Φ
(
OX(G)

)
otherwise.
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This new X-Frattini subgroup would be different from ΦX(G) and closer
to Φ

(
OX(G)

)
, as Example 1.3.20 proves. This remark is devoted to show

that the X-saturated formations (with the new definition) are also X-local
formations. This is the approach presented in [BBE06; Section 3.2]. We only
need to confirm that Lemma 1.4.5 still holds, since there the definition of
ΦX(G) was used.

In the proof of Lemma 1.4.5 we found a group E in AXp(P2) having a
minimal normal subgroup T such that T ≤ Ap(G) and CG(T ) = 1. If E
is not monolithic, by Lemma 1.4.10 there exists a normal subgroup N of
E such that N ∩ T = 1 and E := E/N is monolithic with socle NT/N .
Moreover, N ≤ CE(T ) = Ap(G) = Φ(E). Therefore, Φ(E) = Φ(E)/N and
hence Φ(E) is p-elementary abelian. Moreover, E/Φ(E) ∼= E/Φ(E) is a
primitive group of type 2. Since CG(T ) = 1, we have that CG(NT/N) = 1
and, therefore, CE(NT/N) = Φ(E). Consequently, E is a monolithic group
in the class AXp(P2) and the proof can be continued by using E instead
of E.

Considering the modified definition of ΦX(G), we have that ΦX(G) =
Φ
(
OX(G)

)
if G /∈ AXp(P2) for p ∈ char X or G is not monolithic. However,

we do not know whether in monolithic groups belonging to AXp(P2) for some
p ∈ char X the above equality holds. This raises the following question:

Open question 1.4.12. Let X be a class of simple groups such that char X =
π(X) and let p ∈ char X. If G ∈ AXp(P2) and G is monolithic, is it true that
Φ(G) = Φ

(
OX(G)

)
?



Chapter 2

Relation between X-saturated
and ω-saturated formations

2.1 General results

The concepts of X-local formation and ω-local formation have been de-
fined in Chapter 1. They are both an approach to the notion of local for-
mation. The main aim of this chapter is to give a detailed account of the
relation between these two kinds of partial saturation. The first results that
we present can be found in [BBCER03].

Let us start with this lemma:

Lemma 2.1.1. Let ω be a set of primes. If F is an ω-saturated formation,
then F is Xω-saturated, where Xω is the class of all simple ω-groups.

Proof. Consider a group G such that G/ΦXω(G) ∈ F. Clearly, ΦXω(G) ≤
Φ(G). Moreover, ΦXω(G) ≤ Oω(G), since char(Xω) = ω. This implies that
ΦXω(G) ≤ Φ(G) ∩ Oω(G) and, hence, G/Φ(G) ∩ Oω(G) ∈ q

(
G/ΦXω(G)

)
⊆

q(F) = F. Since F is ω-saturated, we conclude that G ∈ F. Therefore, F is
Xω-saturated.

However, the family of Xω-saturated formations does not coincide with
the one of ω-saturated formations in general. This follows from the fact that
there exist Baer formations which are not ω-saturated for any ω ⊆ P, as
Example 2.1.2 shows.

Example 2.1.2. Let us consider the formation F = EY, where Y =
(
Alt(n) |

n ≥ 5
)
, i. e., the formation of all finite groups whose composition factors are

isomorphic to an alternating group of degree n ≥ 5. Next we prove that F is a
Baer formation, that is, a solubly saturated formation (see Theorem 1.1.7).

49
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If G is a group such that G/Φ(GS) ∈ F, it follows that GS = Φ(GS)
(otherwise, G/Φ(GS) would have abelian chief factors, contradicting the
fact that G/Φ(GS) ∈ F). Therefore, GS = 1 and G ∈ F. Hence F is a Baer
formation. In particular, F is X-saturated for every X ⊆ P.

Assume that F is p-saturated for a prime p. If p ≥ 5, set k = p; otherwise,
set k = 5. As p divides |Alt(k)|, by [DH92; B, 11.8] there exists a group E
with a normal elementary abelian p-subgroup A 6= 1 such that A ≤ Φ(E)
and E/A ∼= Alt(k). We have that E/

(
Op(E) ∩ Φ(E)

)
= E/

(
Op(E) ∩ A

)
=

E/A ∈ F. Therefore E ∈ F, a contradiction.
Therefore F is not ω-saturated for any set ω of primes. Moreover, by

setting X = (C2) and ω = {2}, we have that F is X-saturated, but not
2-saturated.

From the above discussion, the following question naturally arises:

Let ω ⊆ P. Is it possible to ensure the existence of a class X(ω) of
simple groups such that ω ⊆ char X(ω) = π

(
X(ω)

)
satisfying that

a formation is ω-saturated if and only if it is X(ω)-saturated?

The following example shows that the answer is negative.

Example 2.1.3. Consider the formation

F = (G | all abelian composition factors of G are isomorphic to C2).

Next we prove that F is X-saturated exactly for the classes X such that
X ⊆ P.

1. F is solubly saturated. Therefore, F is X-saturated for the classes X

such that X ⊆ P.

If G/Φ(GS) ∈ F, we have that GS/Φ(GS) is a 2-group, since its
composition factors are abelian. Therefore, GS is a 2-group and hence
every abelian composition factor of G is isomorphic to C2.

2. If X is a class of simple groups such that F is X-saturated, then X only
contains abelian simple groups.

Suppose that F is X-saturated for a class X containing a non-abelian
simple group E and π(X) = char X. There exists a prime p 6= 2
dividing the order of E. Hence p ∈ X. Since E ∈ F, it follows that
f(p) 6= ∅. Therefore Cp ∈ F, a contradiction.

Since F is clearly 2-saturated, if we assume the existence of a class X(2)
fulfilling the property, it follows that X(2) ⊆ P. This implies that the
formation considered in Example 2.1.2 is 2-saturated, but we have proved
that this is not true.
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However, inside the ω-separable universe, the situation is clearer.

Lemma 2.1.4. Consider a set of primes ω and a formation F. If G is a
group of minimal order satisfying that G/

(
Φ(G) ∩ Oω(G)

)
∈ F and G /∈ F,

then G is monolithic.

Proof. If A is a minimal normal subgroup of G, we have that G/
(
Oω(G)A∩

Φ(G)A
)
∈ q F = F. Therefore, (G/A)

/((
Oω(G)A/A

)
∩
(
Φ(G)A/A

))
∈ F.

Since Oω(G)A/A ≤ Oω(G/A) and Φ(G)A/A ≤ Φ(G/A), it follows that
(G/A)

/(
Oω(G/A) ∩ Φ(G/A)

)
∈ q F = F. By the choice of G, we have that

G/A ∈ F. If B is a minimal normal subgroup of G different from A, we can
argue the same way to obtain that G/B ∈ F. Therefore, G ∼= G/(A ∩ B) ∈
r0 F = F, contradicting the minimality of G.

Theorem 2.1.5. Let ω be a set of primes and let Xω be the class of all
simple ω-groups. If F is an Xω-saturated formation composed of ω-separable
groups, then F is ω-saturated.

Proof. Consider an Xω-formation function f such that F = LFXω(f).
If F is not ω-saturated, there exists a group G such that G/

(
Φ(G) ∩

Op(G)
)
∈ F but G /∈ F for a prime p ∈ ω. We choose one of minimal order.

By Lemma 2.1.4, G has a unique minimal normal subgroup N . It follows
that G/N ∈ F and N ≤ Φ(G) ∩ Op(G). Note that if p divides the order of
a chief factor H/K of G, then H/K is an (Xω)p-chief factor of G, since G is
ω-separable. Therefore, the intersection of the centralisers of the (Xω)p-chief
factors of G is, in this case, Op′,p(G) (see [DH92; A, 13.8]).

Since G/N ∈ F, we obtain that G/N
/

Op′,p(G/N) ∈ f(p) (note that
p ∈ π(G/N) and hence f(p) 6= ∅). Since N ≤ Φ(G), it follows by [Hup67;
VI, 6.3] that Op′,p(G/N) = Op′,p(G)/N and, therefore, G/Op′,p(G) ∈ f(p).
In particular, we have that G/CG(N) ∈ f(p). By Lemma 1.2.12, this implies
that G ∈ F, contradicting the choice of G.

Corollary 2.1.6. Let F be a formation composed of ω-separable groups.
Then F is ω-saturated if and only if F is Xω-saturated, where Xω is the class
of all simple ω-groups.

The following theorem shows that an X-local formation always contains
a largest ω-local formation for ω = char X. It appears in [BBE06; Chapter 3]
and [BBCSss].

Theorem 2.1.7. Let X be a class of simple groups such that ω = char X =
π(X). Let F = LFX(F ) be an X-local formation. Then the ω-local formation
Fω = LFω(f), where f(p) = F (p) for every p ∈ ω and f(ω′) = F, is the
largest ω-local formation contained in F.
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Proof. Suppose, for a contradiction, that Fω is not contained in F. Let G
be a group of minimal order in Fω \ F. Then, as usual, G has a unique
minimal normal subgroup N , and G/N ∈ F. If Gωd = 1, we would have
that G ∈ f(ω′) = F, contradicting the choice of G. Assume that Gωd 6= 1.
Then N is contained in Gωd. This means that there exists a prime p ∈ ω
dividing |N |. Hence G/CG(N) ∈ f(p) = F (p). If N is a p-group, it follows
that N is an X-chief factor of G. By Lemma 1.2.12, we conclude that
G ∈ LFX(F ) = F, against the choice of G. Hence N is non-abelian and so
CG(N) = 1 and G ∈ F (p). Since F (p) = Spf(p) and Op(G) = 1, it follows
that G ∈ f(p) ⊆ F. This contradiction proves that Fω ⊆ F.

Now let G = LFω(g) be an ω-local formation contained in F. Suppose,
if possible, that G is not contained in Fω and let A be a group of minimal
order in the supposed non-empty class G \ Fω. Then A has a unique min-
imal normal subgroup B, and A/B ∈ Fω. Since A ∈ G ⊆ F, we have that
A/Aωd ∈ F = f(ω′). Suppose that p ∈ ω ∩ π(B). If B is an X-chief factor
of A, it follows that A/CA(B) ∈ F (p) = f(p). If B is an X′-chief factor
of A, then B is non-abelian and A ∼= A/CA(B) ∈ g(p). Then Op(A) = 1
and so, by [DH92; B, 10.9], A has a faithful irreducible representation over
GF(p). Let M be the corresponding module and G = [M ]A the correspond-
ing semidirect product. Let us see that G ∈ G. Since M is contained in Gωd,
it follows that G/Gωd ∈ g(ω′) because A/Aωd ∈ g(ω′). Moreover, we have
that G/CG(M) ∼= A ∈ g(p). We conclude that G ∈ G and, consequently,
G = [M ]A ∈ F. This implies that A ∼= G/CG(M) ∈ f(p). Now we can
state that A ∈ Fω, contradicting the choice of A. Therefore G is contained
in Fω.

As an immediate application of Theorem 2.1.7, we find an alternative
proof of Theorem 2.1.5.

Corollary 2.1.8. Let ω be a set of primes and let Xω be the class of all
simple ω-groups. If F is an Xω-local formation composed of ω-separable
groups, then F is ω-local.

Proof. Suppose that F is an Xω-local formation. According to Theorem 2.1.7,
F = LFXω(F ) contains a largest ω-local formation Fω = LFω(f), where
f(p) = F (p) for every p ∈ ω and f(ω′) = F. Suppose that the inclusion
is proper, and let G be a group of minimal order in F \ Fω. Then G has
a unique minimal normal subgroup N , and G/N ∈ Fω. It is clear that
G/Gωd ∈ f(ω′) = F. If p ∈ π(N) ∩ ω, it follows that N is an ω-group,
since G is ω-separable. Hence, N is an Xω-chief factor of G and, therefore,
G/CG(N) ∈ F (p) = f(p). Taking into account that G/N ∈ Fω, we conclude
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that G ∈ Fω by Lemma 1.2.12. This contradiction proves that F = Fω is
ω-local.

The following consequence of Theorem 2.1.7 is of interest.

Corollary 2.1.9 ([Sal83; Satz 5.6]). Every Baer-local formation contains a
maximal local formation with respect to inclusion.

There exist formations not containing a maximal local formation as Ex-
ample 2.1.10 shows:

Example 2.1.10. [Sal83] Let F be the class of all soluble groups G such
that the Sylow subgroups of G corresponding to different primes permute.
By [Hup67; VI, 3.2], F is a formation. Let q be a prime and consider the
formation function fq given by fq(p) = S{p,q} for every p ∈ P. Then the
local formation Fq = LF(fq) is contained in F by [Hup67; VI, 3.1]. Let q1

and q2 be two different primes and let Fq1,q2 be the smallest local formation
containing Fq1 and Fq2 . Then Cq1 × Cq2 ∈ F (p) for every p ∈ P, where
F is the canonical local definition of Fq1,q2 . This is due to the fact that
Cq1 ∈ Fq1(p) and Cq2 ∈ Fq2(p), where Fq1 and Fq2 are the canonical local
definitions of Fq1 and Fq2 , respectively. Let q3 be a prime, q3 6= q1, q2. By
[DH92; B, 10.9], Cq1 × Cq2 has an irreducible and faithful module M over
GF(q3). Let G = [M ](Cq1 × Cq2) be the corresponding semidirect product.
Then G ∈ Fq1,q2 , but G /∈ F. This shows that F does not contain a maximal
local formation with respect to the inclusion.

The following example shows that the converse of Corollary 2.1.9 does not
hold, that is, Baer-local formations are not characterised as the formations
containing a maximal local formation.

Example 2.1.11. Consider the formation H = F ◦G, where F is the forma-
tion d0

(
1,Alt(5)

)
composed of all groups that are direct products of copies of

Alt(5) together with the trivial group and G = S2. It is shown in [Sal83; 6.1]
that H is not a Baer-local formation. However S2 is the maximal saturated
formation contained in H.

A natural question arising from the above results is the following:

What are the precise conditions to ensure that an X-local forma-
tion is ω-local for ω = char X?

The next result, which appears in [BBCSss], gives the answer.

Theorem 2.1.12. Let F = LFX(f) be an X-local formation and ω = char X.
The following conditions are pairwise equivalent:
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1. F is ω-local.

2. G/ cG(H/K) ∈ f(p) for every G ∈ F and every X′-chief factor H/K
of G such that p ∈ π(H/K) ∩ ω.

3. f(S) ⊆ f(p) for every S ∈ X′ and p ∈ π(S) ∩ ω.

4. Spf(S) ⊆ F for every S ∈ X′ and p ∈ π(S) ∩ ω.

Proof. 1 implies 2. Suppose that F is ω-local. Then, by Theorem 2.1.7,
F = LFω(f), where {

f(p) = Spf(p) if p ∈ ω,

f(ω′) = F.

Assume that a group G ∈ F has a chief factor H/K such that H/K ∼=
S × · · · × S, where S ∈ X′ and the order of S is divisible by a prime
p ∈ ω. Evidently, S is non-abelian. Set C = cG(H/K). It is clear that
HC/C ∼= H/K. Since cG(HC/C) = C, we have by Lemma 1.2.41 that
cG/C(HC/C) = 1. Hence the socle of G = G/C is a direct product of
non-abelian minimal normal subgroups:

Soc(G) = H0 ×H1 × · · · ×H t,

where H i ∈ e(S) for any i (the case t = 0 is possible). Since all H i are
f -central in G, then

G/CG(H i) ∈ f(p) = Spf(p).

Since Op(H i) = 1, it follows that actually G/CG(H i) ∈ f(p). But then

G/D ∈ f(p), where D =
⋂
i CG(H i). The subgroup D centralizes Soc(G),

and since F(G) = 1, we have that D = 1 by the well-known Schmid’s
theorem (see [Sch72]). We have that G = G/C belongs to f(p).

2 implies 3. Consider S ∈ X′ and p ∈ π(S) ∩ ω. By Theorem 1.2.15,

f(S) = form
(
G/L | G ∈ F, G/L is monolithic, and Soc(G/L) ∈ e(S)

)
.

Let G be a group in F and let L be a normal subgroup of G such that G/L is
monolithic and T/L := Soc(G/L) ∈ e(S). We have that G/ cG(T/L) ∈ f(p).
Clearly, cG(T/L) = L and, therefore, G/L ∈ f(p). We have proved that
f(S) ⊆ f(p).

3 implies 4. Let S ∈ X′ and p ∈ π(S) ∩ ω. Then Spf(S) ⊆ Spf(p) =
F (p) ⊆ F.
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4 implies 1. Applying Theorems 2.1.7 and 1.2.21, it is known that Fω =
LFω(f), where {

f(p) = Spf(p) if p ∈ ω,

f(ω′) = F.

is the largest ω-local formation contained in F. Suppose, by way of contradic-
tion, that F is not ω-local. Then Fω 6= F. Let G be a group of minimal order
in F\Fω. By a familiar argument, G has a unique minimal normal subgroup
N , and G/N ∈ Fω. It is clear that G/Gωd ∈ F. If π(N) ∩ ω = ∅, we would
have that G ∈ Fω, since G/N ∈ Fω. Therefore π(N) ∩ ω 6= ∅. Let p be a
prime in π(N)∩ω. If N is an Xp-chief factor of G, G/CG(N) ∈ f(p) ⊆ f(p).
Assume that N is an X′-chief factor of G and N ∈ e(S). Then S is non-
abelian and so Op(G) = 1. By [DH92; B, 10.9], G has an irreducible and
faithful module M over GF(p). Let Z = [M ]G be the corresponding semidi-
rect product. Since G ∈ f(S), it follows that Z ∈ Spf(S) ⊆ F. This implies
that G ∼= Z/CZ(M) ∈ f(p) ⊆ f(p). Consequently G/CG(N) ∈ f(p) for
every p ∈ π(N) ∩ ω and G ∈ Fω. This contradicts our initial supposition.
Therefore F = Fω and F is ω-local.

As an application of Theorem 2.1.12, we prove that the formation con-
sidered in Example 2.1.2 is not p-local for any prime p.

Example 2.1.13. Consider the formation F = EY, where Y =
(
Alt(n) |

n ≥ 5
)
, i. e., the formation of all finite groups whose composition factors

are isomorphic to an alternating group of degree n ≥ 5. It is clear that F is
a Baer formation, since it is closed under taking extensions by the Frattini
subgroup of the soluble radical. In particular, F is (Cp)-local for every prime
p. Let us see that F is not p-local for any prime p. By Corollary 1.2.28,

F (p) = form
(
G/CG(H/K) | G ∈ F and

H/K is an abelian p-chief factor of G
)
.

In this case, F (p) = ∅, since the groups in F do not have abelian chief
factors. We have that f(p) ⊆ Spf(p) = F (p) and, therefore, f(p) = ∅.
Consider n ≥ 5 such that p divides |Alt(n)|. We have that Alt(n) ∈ X′ and

Alt(n) ∈ f
(
Alt(n)

)
= form

(
G/L | G ∈ F, G/L is monolithic,

and Soc(G/L) ∈ e
(
Alt(n)

))
.

Therefore, f
(
Alt(n)

)
6= ∅. Since f

(
Alt(n)

)
6⊆ f(p), we can apply Theo-

rem 2.1.12 to conclude that F is not a p-local formation.
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Now additional information about X-saturated formations will be ob-
tained and some results from [She97] will be deduced. The following results
are included in [BBCER05].

In the rest of this chapter, π will denote π(X) = char X.

Theorem 2.1.14. Let F be a formation.

1. If formX(F) ⊆ Eπ′F, then F is X-saturated.

2. If X is a class of abelian simple groups and F is X-saturated, then Nπ′F

is X-saturated.

Proof. 1. Assume that G/ΦX(G) ∈ F. Since G ∈ formX(F) ⊆ Eπ′F, there
exists a normal π′-subgroup M of G such that G/M ∈ F. Since ΦX(G)
is a π-group, it follows that M ∩ ΦX(G) = 1 and so G ∈ F. Hence F is
X-saturated.

2. Assume that Nπ′F is not X-saturated and let G be a group of min-
imal order satisfying G/ΦX(G) ∈ Nπ′F and G /∈ Nπ′F. If M is a
normal subgroup of G, we have that (G/M)

/
ΦX(G/M) ∈ Nπ′F, since

ΦX(G)M/M ≤ ΦX(G/M). This means that G is a monolithic group.
Since N := Soc(G) ≤ ΦX(G), we have that N is a π-group.

Let M be a normal subgroup of G such that M/ΦX(G) ∈ Nπ′ and(
G/ΦX(G)

)/(
M/ΦX(G)

) ∼= G/M ∈ F.

Since M is nilpotent by [Hup67; VI, 6.3], we have that M = ΦX(G)×
M , where M is a normal Hall π′-subgroup of M . Since Oπ′(G) = 1, it
follows that M = ΦX(G) and G/ΦX(G) ∈ F. Therefore G ∈ F ⊆ Nπ′F,
a contradiction.

Corollary 2.1.15. Assume that X is a class of abelian simple groups and
let F be a formation. The following statements are pairwise equivalent:

1. F is X-saturated,

2. Nπ′F is X-saturated, and

3. formX(F) ⊆ Nπ′F

Theorem 2.1.16. Let F be a formation and let σ be a set of primes. Denote
by Y := J ∩ Eσ, the class of all simple σ-groups. The formation NσF is Y-
saturated and it can be defined by the following Y-formation function:

f(p) = Fif p ∈ σ,

f(E) = NσFif E ∈ Y′.
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Proof. Clearly, NσF ⊆ LFY(f).

Assume that LFY(f) \NσF 6= ∅ and consider a group G of least order in
LFY(f) \ NσF. Then G is a monolithic group whose socle N is a p-group
for a prime p ∈ σ. We have that G/CG(N) ∈ f(p) = F. Moreover, since
G/N ∈ NσF, there exists a normal subgroup M of G such that N ≤ M ,
M/N ∈ Nσ and G/M ∈ F. We observe that M is a σ-group. If N ≤ Φ(G),
we would obtain that M is nilpotent and, therefore, G ∈ NσF. This could
not be possible. Therefore N is complemented in G and CG(N) = N . In
particular, G belongs to NσF, a contradiction. Consequently LFY(f) ⊆ NσF,
as desired.

Corollary 2.1.17. Let F be a formation. If F is X-saturated, then Nπ′F is
X-local, where X := (X ∩ P) ∪ (J ∩ Eπ′). In particular, Nπ′F is a Baer-local
formation.

Proof. Since F is X-saturated, we have that F is also (X ∩ P)-local. By
Theorem 2.1.14, it follows that Nπ′F is (X ∩ P)-local, since char(X ∩ P) =
char X = π. Moreover, by Theorem 2.1.16, we have that Nπ′F is (J ∩ Eπ′)-
local. Now, by Corollary 1.2.31, we obtain that Nπ′F is X-local. Since
char(X) = P, we have that Nπ′F is, in particular, a Baer-local formation.

Corollary 2.1.18. Let F be a formation and X a class of abelian simple
groups. Then bform(F) ⊆ Nπ′F if and only if F is X-saturated.

If we take X = (Cp) in Corollary 2.1.18, we obtain Shemetkov’s main
result in [She97] (Theorem 3.2).

Lemma 2.1.19. Let ω be a set of primes and F an ω-saturated formation.
Then Nω′F is also ω-saturated.

Proof. Assume that the result is not true and consider a group G of minimal
order satisfying G/Oω(G) ∩ Φ(G) ∈ Nω′F and G /∈ Nω′F. Note that G is a
monolithic group whose socle is an ω-group. There exists a normal subgroup
N1 of G such that G/N1 ∈ F and N1/Oω(G) ∩ Φ(G) ∈ Nω′ . Since N1 is
nilpotent by [Hup67; VI, 6.3], we have that N1 =

(
Oω(G)∩Φ(G)

)
×N2, where

N2 is a normal Hall ω′-subgroup of N1. Since Oω′(G) = 1, it follows that
N2 = 1 and, hence, G/Oω(G)∩Φ(G) ∈ F. This implies that G ∈ F ⊆ Nω′F.
This contradiction completes the proof.

Corollary 2.1.20. Let ω be a set of primes and let F be an ω-saturated
formation. Then bform(F) is ω-saturated.
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Proof. Assume that the result is false and consider a group G of least order
such that G/Oω(G) ∩ Φ(G) ∈ bform(F) and G /∈ bform(F). We have that
G is a monolithic group whose socle is an ω-group. We know that F is
Xω-saturated by Lemma 2.1.1, where Xω is the class of all simple ω-groups.
By Corollary 2.1.17, Nω′F is a Baer-local formation. Therefore G/Oω(G) ∩
Φ(G) ∈ Nω′F, since bform(F) ⊆ Nω′F . By Lemma 2.1.19, it follows that
Nω′F is ω-saturated and, hence, G ∈ Nω′F. Bearing in mind that Oω′(G) =
1, we conclude G ∈ bform(F), a contradiction.

As a particular case of Corollary 2.1.20, taking ω = {p}, we get a result
proved by Shemetkov [She97; Theorem 3.1].

2.2 Some remarks on a result of Shemetkov

In this section, the contents of which appear in [BBCSss], we give an
extension of a result of Shemetkov on p-local formations (the main result
of [She03]). In that paper, Shemetkov studies direct decompositions of the
finite-dimensional FG-module, where F is a field of characteristic p > 0 and
G is a group. He introduces the concept of f -centrality in the following way:

Definition 2.2.1. Let F be a non-empty p-local formation and let f be a
p-local satellite of F. Let V be a finite-dimensional FG-module, where G is
a finite group and F is a field of characteristic p > 0. A composition factor
R/S of V is called

• f -central if G/Ker(G onR/S) ∈ f(p).

• f -eccentric if R/S is not f -central.

Shemetkov proves the following theorem:

Theorem 2.2.2 ([She03; Theorem 4.1]). Let V be a finite-dimensional FG-
module, where F is a field of characteristic p > 0 and G is a finite group
in F = LFp(f). Then V can be represented as the direct sum V = V1 ⊕ V2,
where the modules V1 and V2 posses the following properties:

1. Every factor of a composition series of V1 is f -central.

2. Every factor of a composition series of V2 is f -eccentric.

Theorem 2.2.2 is a consequence of a more general result:
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Theorem 2.2.3. Let V be a finite-dimensional FG-module, where F is a
field of characteristic p > 0 and G is a finite group. Let N be a normal
p′-subgroup of G. Then V can be represented as the direct sum V = V1⊕ V2,
where the modules V1 and V2 possess the following properties:

1. Ker(N onV1) = N .

2. Every FG-composition factor R/S of V2 satisfies that

Ker(N onR/S) 6= N.

Proof. Regard V as an FN -module. By Maschke’s theorem (see [DH92; B,
4.5]), VN is a completely reducible module. Consider the following sums:

V1 =
∑
{U | U is an irreducible FN -submodule of VN

and Ker(N onU) = N}

and

V2 =
∑
{U | U is an irreducible FN -submodule of VN

and Ker(N onU) 6= N}.

Let us see that V1 and V2 are FG-submodules of V . Assume that V1, V2 6= 0.
If U is an irreducible FN -submodule of VN such that Ker(N onU) = N
and g ∈ G, it follows that Ug is an irreducible FN -module of VN and it is
isomorphic to the conjugate FN -module U g−1

by [DH92; B, 7.2]. As it is
observed in [DH92; B, 7.6], we have that Ker(N onUg) = Ker(N onU g−1

) =(
Ker(N onU)

)g
= N g = N . Therefore, we have that Ug ≤ V1 and V1 is a

FG-submodule of V . Now consider an irreducible FN -submodule U of VN
such that Ker(N onU) 6= N and g ∈ G. It follows that Ker(N onUg) 6= N ,
because otherwise we would have by [DH92; B, 7.2 and 7.6] that

Ker(N onU) =
(
Ker(N onU g−1

)
)g−1

=
(
Ker(N onUg)

)g−1

= N g−1

= N,

contradicting the choice of U . We have proved that Ug ≤ V2 and, hence, V2

is a FG-submodule of V .
Let R/S be an FG-composition factor of V1. By [DH92; B, 7.1], it follows

that R/S = A1 ⊕ A2 ⊕ · · · ⊕ An, where Ai, 1 ≤ i ≤ n, is an irreducible FN -
module. Moreover, by virtue of the Jordan-Hölder theorem, Ai is isomorphic
to an irreducible FN -submodule of V1. This implies that Ker(N onAi) = N
for every i ∈ {1, 2, . . . , n} and, therefore, Ker(N onR/S) = N . Since V1 is a
direct sum of irreducible FN -submodules, it follows that Ker(N onV1) = N .
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Now assume that R/S is an FG-composition factor of V2. We know that
R/S = A1 ⊕ A2 ⊕ · · · ⊕ An, where Ai, 1 ≤ i ≤ n, is an irreducible FN -
module such that Ker(N onAi) 6= N . Therefore, Ker(N onR/S) 6= N .

Proof of Theorem 2.2.2. If f(p) = ∅, we can take V1 = 0 and V2 = V .
Suppose that f(p) 6= ∅.

First assume that f is a full and integrated p-local satellite of F. Since
G/Op′,p(G) ∈ f(p), we have that N := Gf(p) is a p′-group. Consider
the decomposition V = V1 ⊕ V2 given in Theorem 2.2.3. If R/S is a
composition factor of V1, it follows that Ker(N onR/S) = N . Therefore,
N ≤ Ker(G onR/S) and G/Ker(G on R/S) ∈ f(p). If R/S is a composi-
tion factor of V2, R/S is f -eccentric, because otherwise we would have that
N ≤ Ker(G onR/S). This would imply that N = Ker(N onR/S) and this is
not possible.

Now let f be any p-local satellite of F. If R/S is a composition factor
of V1, we have proved that G/Ker(G on R/S) ∈ Sp(f(p) ∩ F), bearing
in mind Lemma 1.1.15. Since Op(G) ≤ Ker(G on R/S), it follows that
G/Ker(G on R/S) ∈ f(p) ∩ F ⊆ f(p). If R/S is a composition factor of
V2, we have that G/Ker(G on R/S) /∈ Sp(f(p) ∩ F). This implies that
G/Ker(G on R/S) /∈ f(p) ∩ F. Since G ∈ F, we can conclude that R/S is
an f -eccentric composition factor of V2.



Chapter 3

Products of formations of finite
groups

It is well known that the formation product of two local formations
is again a local formation (see [DH92; IV, 3.13 and 4.8]). However, the
formation product of two X-local formations is not in general an X-local
formation, as it is shown in Example 3.1.3. Taking this into account, the
following question arises:

Which are the precise conditions on two X-local formations F and
G to ensure that F ◦G is an X-local formation?

This question was studied by Salomon in [Sal83] for Baer-local formations.
We present a complete answer in Section 3.1. We prove that the formation
product of a local formation and an X-local one is X-local. In particular,
[DH92; IV, 3.13 and 4.8] follow from our results. In Section 3.2, which is
independent of Section 3.1, we study when the product of two arbitrary
formations F and G is X-local.

On the other hand, Shemetkov posed the following question in The
Kourovka Notebook ([MK90]):

Question 10.72 (Shemetkov). To prove indecomposability of Sp,
p a prime, into a product of two non-trivial subformations.

This question was solved positively by Shemetkov and Skiba in [SS89]. In
Section 3.3 we deal with ω-saturated formations and we prove a general
version of this conjecture as a corollary of a more general result. The contents
of this chapter are the ones of [BBCER06].
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3.1 Products of X-local formations

We begin with the following definition.

Definition 3.1.1. If K is a class of groups and p ∈ char X, denote

KX(p) := Sp form
(
G/CG(H/K) | G ∈ K

and H/K is an Xp-chief factor of G
)
,

taking into account that KX(p) = ∅ if there does not exist any group G ∈ K

with an Xp-chief factor.

Lemma 3.1.2. Consider p ∈ char X. If K is a quotient-closed class of
groups, then

KX(p) := Sp form
(
G/CG(N) | G is monolithic, G ∈ K

and N = Soc(G) ∈ e Xp

)
.

Proof. Consider a group L ∈ K and let M/N be an Xp-chief factor of L.
Take R maximal among the normal subgroups of L such that M ∩ R = N .
Then the quotient group G = L/R ∈ K is monolithic and its minimal normal
subgroup is V = MR/R ∼= M/M∩R = M/N (see Lemma 1.4.10). Moreover,
R ≤ CL(M/N) and L/CL(M/N) ∼= G/CG(V ).

The following example shows that the formation product of two X-local
formations is not in general an X-local formation.

Example 3.1.3 ([Sal83]). Consider F = d0

(
1,Alt(5)

)
, the formation com-

posed of all groups that are direct products of copies of Alt(5) together with
the trivial group, and G = S2. It is clear that F and G are Baer formations,
that is, X-local where X = P. Assume that H = F ◦G is a P-local formation.
By Theorem 1.2.21, we have that H = LFP(H), where{

H(p) = HP(p) if p ∈ P,

H(E) = H if E ∈ P′.

Since G ⊆ H, it follows that H(2) 6= ∅. Consider G = SL(2, 5). Then
G/Z(G) ∈ H and G/CG

(
Z(G)

)
∈ H(2). Applying Lemma 1.2.12, we have

that G ∈ H. This is not true. Hence H is not a Baer-local formation.

Taking the above example into account, it is natural to study conditions
on two non-empty X-local formations F and G to ensure that F ◦ G is an
X-local formation.
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In the following F and G are non-empty formations and H =
F ◦G.

The next theorem provides an X-local definition of formX(H). We use the
notation introduced in 3.1.1.

Theorem 3.1.4. Assume that H = F ◦ G, where F and G are non-empty
formations, and F is an X-local formation. Then the smallest X-local forma-
tion formX(H) containing H is X-locally defined by the X-formation function
h given by

h(p) =

{
FX(p) ◦G if Sp ⊆ F,

GX(p) if Sp 6⊆ F,
when p ∈ char X;

h(S) = H when S ∈ X′.

Proof. We know by Theorem 1.2.21 that formX(H) = LFX(H), where H is
the X-formation function defined by{

H(p) = HX(p) if p ∈ char X,

H(S) = H if S ∈ X′.

If we prove that H(p) = h(p) for every p ∈ char X, then the result is clear.
By Lemma 3.1.2, we have that

H(p) := Sp q r0

(
G/CG(N) | G is monolithic, G ∈ H,

and N = Soc(G) ∈ e Xp

)
.

Assume that G is a monolithic group in H, where N = Soc(G) ∈ e Xp,
and consider A = GG. If A = 1, it follows that G ∈ G. If Sp ⊆ F, then
h(p) = FX(p) ◦ G and, therefore, G ∈ h(p). If Sp 6⊆ F, then G/CG(N) ∈
GX(p) = h(p). Now suppose that A 6= 1. Since N ≤ A, applying [DH92;
A, 4.13], it follows that N = V1 × · · · × Vn, where Vi is a minimal normal
subgroup of A, 1 ≤ i ≤ n. Since A ∈ F, it follows that A/CA(Vi) ∈ FX(p),

for all i ∈ {1, . . . , n}, and p divides |N |. Consequently
(
G/CG(N)

)G ∼=
A/CA(N) ∈ r0 FX(p) = FX(p) and so G/CG(N) ∈ FX(p) ◦ G = h(p) for all
p divides |N |. It follows that H(p) = HX(p) ⊆ Sp q r0 h(p) = h(p).

Now we prove that h(p) ⊆ H(p) = HX(p). If Sp 6⊆ F, then clearly
h(p) = GX(p) ⊆ HX(p). Suppose that Sp ⊆ F, that is, h(p) = FX(p) ◦
G. Consider a group G ∈ FX(p) ◦ G. Then the wreath product Cp o G ∈
Sp(FX(p) ◦ G) ⊆ SpFX(p) ◦ G. By Theorem 1.2.21 and Lemma 1.2.33, we
know that SpFX(p) ⊆ F and, hence, Cp oG ∈ F ◦G = H ⊆ formX(H). Then
Theorem 1.2.26 shows that G ∈ HX(p). This proves that h(p) ⊆ H(p).
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The following definition was introduced in [Sal83] for Baer-local forma-
tions.

Definition 3.1.5. Consider H = F ◦ G, where F and G are non-empty
formations. We say that the boundary b(H) of H is XG-free if every group
G ∈ b(H) such that Soc(G) is a p-group for some prime p ∈ char X satisfies
that G/CG

(
Soc(G)

)
/∈ GX(p).

Remark 3.1.6. Note that in Example 3.1.3, b(H) is not PG-free.

Lemma 3.1.7. If K is a formation, G ∈ b(K)∩ formX(K), and N = Soc(G),
then N is an abelian p-group for a prime p ∈ char X.

Proof. According to Theorem 1.2.21, formX(K) = LFX(K), where K is the
following X-formation function:{

K(p) = KX(p) if p ∈ char X,

K(E) = K if E ∈ X′.

Clearly, N is a minimal normal subgroup of G. If N were an X′-group, we
would have that G ∈ K(E) for some E ∈ X′. This would imply that G ∈ K,
contrary to supposition. Hence N is an X-chief factor of G. Let p be a prime
dividing |N |. Since p ∈ char X, it follows that G/CG(N) ∈ K(p). Since
K(p) = KX(p) ⊆ SpK and Op

(
G/CG(N)

)
= 1 , it follows that G/CG(N) ∈

K. Therefore, CG(N) 6= 1 and so N is an abelian p-group.

The next result provides a test for X-locality of H in terms of its bound-
ary.

Theorem 3.1.8. Assume that H = F ◦ G, where F and G are non-empty
formations, and F is X-local. Then H is an X-local formation if and only if
b(H) is XG-free.

Proof. Suppose that H is X-local. Then H = LFX(H), where H is the
canonical X-local definition of H. Let G be a group in b(H) such that
Soc(G) is a p-group for some p ∈ char X. If G/CG

(
Soc(G)

)
were in GX(p),

then we would have that G/CG

(
Soc(G)

)
∈ HX(p) = H(p), since G ⊆ H. By

Lemma 1.2.12, it would imply that G ∈ H. This would be a contradiction.
Therefore G/CG

(
Soc(G)

)
/∈ GX(p) and b(H) is XG-free.

Conversely, suppose that b(H) is XG-free. By Theorem 3.1.4, formX(H) =
LFX(h), where

h(p) =

{
FX(p) ◦G if Sp ⊆ F,

GX(p) if Sp 6⊆ F,
for p ∈ char X;

h(S) = H for S ∈ X′.
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We shall prove that H = formX(H). Assume that this is not the case and
choose a group G of minimal order in formX(H) \ H. Then G ∈ b(H) and,
according to Lemma 3.1.7, N = Soc(G) is an abelian p-group for a prime
p ∈ char X. Therefore, G/CG(N) ∈ h(p). Assume that Sp is not contained
in F. Then h(p) = GX(p). We conclude that b(H) is not XG-free. This
contradiction shows that Sp is contained in F. Then G/CG(N) ∈ FX(p) ◦G.
It follows that GG/CGG(N) ∈ FX(p). Since GG/N ∈ F, we can apply
Lemma 1.2.12 to conclude that GG ∈ F, that is, G ∈ H. This contradiction
shows that formX(H) is contained in H and, therefore, H is X-local.

Example 3.1.9. Let S be a non-abelian simple group with trivial Schur
multiplier. Consider F = d0(1, S), the formation of all groups which are a
direct product of copies of S together with the trivial group. Let X be a
class of simple groups such that π(X) = char X and S /∈ X. Note that F is
X-local. Let G be any formation. Suppose that G ∈ b(H), N = Soc(G) is
the minimal normal subgroup of G, and N is a p-group for some p ∈ char X.
If G/CG(N) ∈ GX(p), then N ≤ Z(GG) because 1 6= GG ≤ CG(N). Since
G/N ∈ H, it follows that GG/N ∈ F. Assume that GG 6= N . This implies
that GG/N , a direct product of copies of S, has non-trivial Schur multiplier,
contrary to [Suz82; Exercise 4 (c), page 265]. Thus GG = N and then
G ∈ formX(G) by Lemma 1.2.12 and Theorem 1.2.21. Assume, in addition,
that formX(G) ⊆ Np′G for all primes p ∈ char X. It follows then that G ∈ G

and this contradicts our choice of G. Hence, b(H) is XG-free and H is X-local
by Theorem 3.1.8. Consequently, H is X-local for all formations G satisfying
that formX(G) ⊆ Np′G for all primes p ∈ char X.

We bring this section to a close with an application of Theorem 3.1.8 and
some consequences.

Theorem 3.1.10. Consider H = F ◦ G, where F and G are non-empty
formations, F is X-local and one of the following two conditions is satisfied:

1. G is X-local.

2. SpG = G when p ∈ char X and FX(p) = ∅.

Assume also that

if p ∈ char X, FX(p) = ∅, and Sp ⊆ G, then F ⊆ Ep′ . (3.1)

Then H is X-local.

Proof. By Theorem 3.1.8, it suffices to prove that b(H) is XG-free. Consider
G ∈ b(H) such that N = Soc(G) is a p-group for a prime p ∈ char X and
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assume that G/CG(N) ∈ GX(p). Consider K = GG. Since GX(p) ⊆ SpG

and Op

(
G/CG(N)

)
= 1, it follows that G/CG(N) ∈ G, which implies that

K ≤ CG(N). If K = 1, then G ∈ G ⊆ H, which contradicts the fact that
G ∈ b(H). Therefore K 6= 1 and, hence, N ≤ K.

Now we aim to verify the hypotheses of (3.1). Since G/N ∈ H, it fol-
lows that K/N ∈ F. If FX(p) 6= ∅, then K/CK(N) = 1 ∈ FX(p) and
Lemma 1.2.12 implies that K ∈ F, which means that G ∈ H, contradicting
the choice of G. Therefore FX(p) = ∅. Since G/CG(N) ∈ GX(p), it is clear
that GX(p) 6= ∅ so, if Condition 1 holds, it follows that Sp ⊆ G. On the
other hand, if Condition 2 holds, then SpG = G and hence Sp ⊆ G. Now
we can deduce that F ⊆ Ep′ .

We know that K/N ∈ F, so K/N is a p′-group and it follows from
the Schur-Zassenhaus theorem ([DH92; A, 11.3]) that K has a subgroup Y
which complements N . Since K ≤ CG(N), this means that K = N × Y
and Y = Op′(K) E G. Moreover, G is monolithic, so we deduce that
Y = 1 and K = N . This means that G/N ∈ G. Since G/CG(N) ∈ GX(p),
if Condition 1 holds, then it follows from Lemma 1.2.12 that G ∈ G. If
Condition 2 holds, then G ∈ SpG = G. Thus in both cases G ∈ G ⊆ H,
which gives the final contradiction.

Since local formations are X-local for every class of simple groups X (see
Theorem 1.2.17), we obtain as a special case of Theorem 3.1.10 the following
results:

Corollary 3.1.11. Suppose that either of the following conditions is fulfilled:

1. F is local and G is X-local.

2. F is local and SpG = G for all p ∈ char X such that FX(p) = ∅.

Then H is an X-local formation.

Proof. If F is local and p ∈ π(F), then FX(p) 6= ∅. Therefore, Condition (3.1)
in Theorem 3.1.10 is satisfied.

Corollary 3.1.12 ([DH92; IV, 3.13 and 4.8]). The formation H is local if
either of the following conditions is satisfied:

1. F and G are both local.

2. F is local and SpG = G for all primes p such that FJ(p) = ∅.
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3.2 X-local products of formations

Example 3.1.9 shows that there are many cases in which a product of an
X-local formation and a non X-local formation is X-local. This observation
leads to the following question:

Are there X-local products of non X-local formations?

The local version of the above question is the one appearing in The Kourovka
Notebook ([MK90]) as Question 9.58. It was posed by Shemetkov and Skiba
and answered affirmatively in several papers (see [BBPR98, Ved88, Vor93]).

The above question has a affirmative answer when |char X| ≥ 2, as the
next example shows.

Example 3.2.1 ([BBPR98]). Assume that p and q are different primes in
char X. Consider the formations F = SpAq ∩ AqSp and G = SqAp, where
Ar denotes the formation of all abelian r-groups for a prime r. F is not
(Cq)-local and G is not (Cp)-local. Therefore, by Corollary 1.2.17, F and G

are not X-local. However H = F ◦G is local and so it is X-local.

Bearing in mind Example 3.2.1, the following question naturally arises:

Which are the precise conditions on two non-empty formations F

and G to ensure that H = F ◦G is X-local?

Our next results answer this question.

Theorem 3.2.2. Let K be a non-empty formation. Then K is X-local if and
only if the following conditions hold:

1. KX(p) ⊆ K for all p ∈ char X.

2. If G ∈ b(K), N = Soc(G) ∈ Sp with p ∈ char X, and K is the natural
semidirect product [N ]

(
G/CG(N)

)
, then K ∈ b(K).

Proof. Assume that K is an X-local formation. Then K = LFX(K), where K
is the X-formation function defined in Theorem 1.2.21. Consider a prime p ∈
char X. By Theorem 1.2.21, it follows that KX(p) ⊆ K so Condition 1 holds.
Suppose that G ∈ b(K), where N = Soc(G) is a p-group with p ∈ char X and
consider K = [N ]

(
G/CG(N)

)
. If K ∈ K, we would have that K/CK(N) ∈

KX(p) and, therefore, G/CG(N) ∈ KX(p). Since G/N ∈ K, this would imply
by Lemma 1.2.12 that G ∈ LFX(K) = K. This contradiction proves that
K /∈ K. On the other hand, since N ≤ CG(N), it is clear that G/CG(N) ∈ K.
Therefore, K/N ∈ K. Since K is monolithic, it follows that K ∈ b(K) and
Condition 2 holds.
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To prove the sufficiency, assume that K satisfies Conditions 1 and 2. We
will obtain a contradiction by supposing that formX(K) \K contains a group
G of minimal order. Such a G has a unique minimal normal subgroup N , and
G/N ∈ K. This is to say that G ∈ b(K). According to Lemma 3.1.7, N is an
abelian p-group for a prime p ∈ char X. We have that K = [N ]

(
G/CG(N)

)
∈

b(K). Since G ∈ formX(K), G/CG(N) ∈ KX(p). Consequently, K/N ∈
KX(p) and K ∈ SpKX(p) = KX(p). Since Condition 1 states that KX(p) ⊆
K, it follows that K ∈ K, which is a contradiction.

Remark 3.2.3. If X = J, then Condition 1 implies Condition 2 in the above
theorem.

Proof. Assume that K satisfies Condition 1. Consider G ∈ b(K), where
N = Soc(G) is a p-group with p ∈ char X and K = [N ]

(
G/CG(N)

)
.

Suppose that Φ(G) = 1. Then G is a primitive group, CG(N) = N , and
G is isomorphic to K = [N ](G/N). Therefore, K ∈ b(K). Now assume
that Φ(G) 6= 1. Consider T/N := Op′(G/N). Since T/N is p-nilpotent
and N ≤ Φ(G), we have by [Hup67; VI, 6.3] that T is p-nilpotent. This
implies that T = N because otherwise we would find a non-trivial normal
p′-subgroup of G. Hence, Op′(G/N) = 1. Consequently, G/N ∈ KX(p) by
[DH92; IV, 3.7] and, hence, G ∈ SpKX(p) = KX(p). By Condition 1 we
conclude that G ∈ K, which contradicts our supposition.

Here we recall a well-known result, due to Bryant, Bryce and Hartley.

Theorem 3.2.4 ([DH92; IV, 1.14]). Let U be a subgroup of a group G such
that G = UN for some nilpotent normal subgroup N of G. If G belongs to a
formation F, then U belongs to F.

The following proposition will be useful for later applications.

Proposition 3.2.5. Let F be a non-empty formation and let G be a group.
If N is normal subgroup of G, then we have:

1. (G/N)F = GFN/N .

2. If U is a subgroup of G = UN , then UFN = GFN .

3. If N is nilpotent and G = UN , then UF is contained in GF.

Proof. 1. Denote R/N = (G/N)F. It is clear that G/R ∈ F. Hence GFN
is contained in R. Moreover G/GFN ∈ F. It implies that the factor group
(G/N)

/
(GFN/N) ∈ F and so R/N ≤ GFN/N . Therefore R = GFN .
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2. Let θ denote the canonical isomorphism from G/N = UN/N to

U/(U ∩ N). Then
(
(G/N)F

)θ
=
(
U/(U ∩ N)

)F
, which is equal to UF(U ∩

N)/(U ∩ N) by Statement 1. Hence UFN/N = (G/N)F = GFN/N and
UFN = GFN .

3. We have G/GF = (UGF/GF)(NGF/GF) ∈ F. Applying Theorem 3.2.4,
it follows that UGF/GF ∈ F. Therefore UF is contained in U ∩GF.

If Y is a class of groups, denote YG = (Y G | Y ∈ Y). The following
lemma can be deduced from the proof of [BBPR98; Theorem A].

Lemma 3.2.6. Consider two non-empty formations F and G and H = F◦G.
If T is a group such that T /∈ G and Sp(T ) ⊆ H for some prime p, then
Sp(T

G) ⊆ F.

Proof. Let Z be a group in Sp(T
G). Then Z has a normal subgroup P such

that P is a p-group and Z/P is isomorphic to TG 6= 1. Assume that ps is
the exponent of the abelian p-group P/P ′. Consider Q = P onat H, where
H = 〈(1, 2, . . . , ps)〉 is a cyclic group of order ps regarded as a subgroup of
the symmetric group of degree ps. Here the wreath product is taken with
respect to the natural permutation representation of H of degree ps. Set
D = {(a, . . . , a) | a ∈ P} the diagonal subgroup of P \, the base group of Q.
Since ap

s ∈ P ′, we have that D is contained in [P \, H] by [DH92; A, 18.4].
In particular D is contained in Q′. Let Y = Q o T be the regular wreath
product of Q with T . Since Y ∈ Sp(T ) ⊆ H, it follows that Y ∈ H. Therefore
Y G ∈ F. Now, by Proposition 3.2.5, we know that Y G = (B ∩Y G)TG, where
B = Q\ is the base group of Y . Now, by [DH92; A, 18.8], BTG is isomorphic
to (Qn)oTG, where n = |T : TG| and C ′ ≤ [C, TG], for C = (Qn)\, by virtue of
[DH92; A, 18.4]. This implies that B′ = [B, TG] ≤ [B, Y G] ≤ B ∩Y G. Hence
B′TG is contained in Y G. Applying Theorem 3.2.4, B′TG ∈ F. Therefore(
(Q′)n

)
o TG ∈ F. Since P is isomorphic to a subgroup of Q′, it follows that

P n o TG ∈ F by Theorem 3.2.4. Since P can be regarded as a subgroup of
P n, we have that P o TG is a subgroup of P n o TG supplementing the Fitting
subgroup of P n oTG. Applying again Theorem 3.2.4, we have that P oTG ∈ F.
By [DH92; A, 18.9], Z is isomorphic to a subgroup of P o TG supplementing
the Fitting subgroup of P oTG. Therefore Z ∈ F by virtue of Theorem 3.2.4.
This completes the proof of the lemma.

Lemma 3.2.7. Suppose that H = F ◦G, where F and G are non-empty for-
mations. Consider p ∈ char X. Then the following conditions are equivalent:

1. HX(p) ⊆ H.

2. HX(p)G ⊆ F.
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3. HX(p) ⊆ G or SpHX(p)G ⊆ F.

Proof. It is clear that Conditions 1 and 2 are equivalent. Now assume that
Condition 1 is satisfied. If HX(p) 6⊆ G, take a group T ∈ HX(p)\G. We have
that Sp(T ) ⊆ SpHX(p) = HX(p) ⊆ H. Hence, by Lemma 3.2.6, we have that
Sp(T

G) ⊆ F. Now consider a group G in SpHX(p)G. Then G has a normal
p-subgroup N such that G/N ∼= RG, where R ∈ HX(p). If RG 6= 1, we have
just proved that Sp(R

G) ⊆ F and, therefore, G ∈ F. If RG = 1, then G ∈ Sp.
Consider the group K := G × TG. We have that K ∈ Sp(T

G) ⊆ F and,
therefore, G ∈ q(F) = F. We conclude that SpHX(p)G ⊆ F and Condition 3
holds.

Now suppose that Condition 3 is satisfied. If HX(p) ⊆ G, it is clear that
HX(p) ⊆ H and Condition 1 holds. If SpHX(p)G ⊆ F, then HX(p)G ⊆ F and
Condition 2 is satisfied.

The following theorem follows from Theorem 3.2.2 and Lemma 3.2.7.

Theorem 3.2.8. Suppose that H = F ◦ G, where F and G are non-empty
formations. Then H is X-local if and only if the following conditions hold:

1. If p ∈ char X, then HX(p) ⊆ G or SpHX(p)G ⊆ F.

2. If G ∈ b(H), N = Soc(G) ∈ Sp with p ∈ char X, and K is the natural
semidirect product [N ]

(
G/CG(N)

)
, then K ∈ b(H).

Note that if Conditions 1 and 2 hold for H = F ◦ G, then it is easy to
deduce that b(H) is XG-free. However it seems harder to prove directly that
if F is X-local and b(H) is XG-free, then Conditions 1 and 2 are satisfied.

Corollary 3.2.9 ([BBPR98; Theorem A]). A formation product H of two
non-empty formations F and G is local if and only if H satisfies the following
condition:

If p is a prime, then HX(p) ⊆ G or SpHX(p)G ⊆ F.

When a product H of two non-empty formations F and G is X-local, the
formation G has a very nice property.

Corollary 3.2.10. If H = F ◦ G is X-local, then formX(G) ⊆ Np′G for all
primes p ∈ (char X) \ π(F).

Proof. Let p ∈ (char X) \ π(F). By Theorem 3.2.8, we have that HX(p) ⊆
G. Consider the canonical X-formation function G defining formX(G) (see
Theorem 1.2.21). Suppose that formX(G) is not contained in Np′G, and let
G ∈ formX(G) \ Np′G be a group of minimal order. Then G has a unique
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minimal normal subgroup, N say. Since G ∈ formX(Np′G) ∩ b(Np′G), it
follows form Lemma 3.1.7 that N ∈ Sq for a prime q ∈ char X. Assume
that Φ(G) = 1. Then G is a primitive group and N = CG(N). Therefore
G ∈ G(q). If p 6= q, then G ∈ Np′G because G(q) ⊆ SqG and if p = q,
then G ∈ SpHX(p) = HX(p) ⊆ G. In both cases, we reach a contradiction.
Hence N is contained in Φ(G). If p 6= q, then the Fitting subgroup F(G) of
G is a p′-group and G/F(G) ∼= (G/N)

/
F(G/N) ∈ G. Hence, G ∈ Np′G,

contrary to supposition. Assume that p = q. Then, since G/N ∈ Np′G,
it follows that (G/N)G = GG/N is a p′-group. Thus GG/N is contained
in Op′(G/N) = 1 by [Hup67; VI, 6.3]. Hence N = GG. Since G ∈ H, we
have that GG = N ∈ F and p ∈ π(F). This final contradiction proves that
formX(G) ⊆ Np′G.

If X = J, we have:

Corollary 3.2.11 ([She84]). If H = F◦G is local, then lform(G) is contained
in Np′G for all primes p /∈ π(F) (in other words, G is p-local for all primes
p /∈ π(F)).

3.3 p-saturated products of formations

Here we study when the formation product of two formations is a p-
saturated formation.

The following lemma gives a characterization of p-saturated formations.

Lemma 3.3.1. Let K be a non-empty formation. Then K is p-saturated if
and only if KJ(p) ⊆ K.

Proof. Suppose that K is a p-saturated formation, where p is a prime. Then
lform(K) ⊆ Np′K by Theorems 1.1.9 and 1.1.16. By Theorem 1.2.21, we
know that KJ(p) ⊆ lform(K) and, therefore, KJ(p) ⊆ Np′K. This implies
that KJ(p) ⊆ K.

Now suppose that K is not p-saturated and KJ(p) ⊆ K. Let G be a group
of minimal order satisfying G/

(
Φ(G) ∩Op(G)

)
∈ K and G /∈ K. Then G

is a monolithic group and N := Soc(G) ≤ Φ(G) ∩ Op(G). We have that
Op′,p(G/N) = Op′,p(G)/N , since N ≤ Φ(G). Moreover, G/N ∈ K and,
therefore, G/Op′,p(G) ∈ KJ(p), bearing in mind that p ∈ π(G/N). Since
Op′,p(G) = Op(G), G ∈ KJ(p) ⊆ K. This is not possible.

Theorem 3.3.2. Suppose that H = F ◦ G, where F and G are non-empty
formations, and let p be a prime. Then the following statements are equiva-
lent:
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1. H is a p-saturated formation.

2. Either HJ(p) ⊆ G or SpHJ(p)G ⊆ F.

Proof. It is clear applying Lemma 3.3.1 and Lemma 3.2.7 for X = J.

Theorem 3.3.2 also confirms a more general version of the abovemen-
tioned conjecture of Shemetkov concerning the non-decomposability of the
formation of all p-groups (p a prime) as a formation product of two non-
trivial subformations.

Corollary 3.3.3. Suppose that H = F ◦ G, where F and G are non-empty
formations, and H is p-saturated. If F ⊆ Sp and F 6= Sp, then H = G.

Proof. If HJ(p) = ∅, it follows that H ⊆ Ep′ . In this case, we have that H ⊆
Ep′ ∩ (SpG). Therefore, H ⊆ G. If HJ(p) 6= ∅, we have that H ⊆ Ep′HJ(p)
by Remark 1.2.16. If HJ(p) is contained in G, then H ⊆

(
Ep′HJ(p)

)
∩

(SpG) ⊆ (Ep′G) ∩ (SpG) = G and the result holds. Suppose that HJ(p) is
not contained in G. Then SpHJ(p)G is contained in F by Theorem 3.3.2. In
particular, Sp ⊆ F, and we have a contradiction.



Chapter 4

Factorisations of one-generated
formations

4.1 A question of Skiba

The formation product of two formations does not normally yield a sat-
urated formation (see [BBPR98]). In fact, if F and G are formations such
that F ◦ G is saturated, then G is p-saturated for all primes p not dividing
the order of any group in F (see [She84]).

In [MK92], Skiba asked the following question:

If H = F ◦G is a one-generated Baer formation, where F and G

are non-trivial formations, is F a Baer formation?

In the 1999 edition of the same book [MK99], it is announced that Skiba
has answered the question negatively. The reader is referred to [Guo00; page
224] for a detailed example.

We note that in the known examples of that situation, the equalities
H = G and H = SpH for a prime p hold, where Sp denotes the class of all
p-groups. Consequently the following question still remains open:

Assume that H = F ◦ G is a Baer formation generated by a
group G, where F and G are non-trivial formations. Is F a Baer
formation provided that H 6= G or H 6= SpH for every prime p?

In this section an affirmative answer to this question is given. The result
has been published in [BBCER03].

Note that an analogous result was proved by Vishnevskaya in [Vis00]
for p-saturated formations. She shows that the p-saturated formation H

generated by a finite group cannot be the Gaschütz product F ◦ G of two

73
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non-p-saturated formations provided H 6= G. This motivates us to present
the most general version of our result by using X-saturated formations. Al-
though in general there does not exist a class of simple groups X such that
the X-saturated formations are exactly the ω-saturated formations (see Ex-
ample 2.1.3), the arguments used in the proof of our result still hold for
ω-saturated formations. It leads to an alternative proof of Vishnevskaya’s
result.

Definition 4.1.1. A formation F is said to be a one-generated X-local for-
mation if there exists a group G such that F is the smallest X-local formation
containing G.

Lemma 4.1.2. Let G be a group and p a prime. The class Sp of all p-groups
is not contained in the class s

(
form(G)

)
.

Proof. Consider the class

E(e) :=
(
X ∈ E | Exp(X) ≤ e

)
,

where e = Exp(G), the exponent of G. It is clear that E(e) is closed under
taking direct products, quotients, and subgroups. In particular, E(e) is a
subgroup-closed formation. Since G ∈ E(e), it follows that form(G) ⊆ E(e)
and so s

(
form(G)

)
⊆ E(e). On the other hand, we know by [Hup67; III,

15.3] how to construct a p-group P such that Exp(P ) > e. The result is
then proved.

The following result of Skiba [Ski92; Lemma 1] will be applied several
times in this chapter.

Lemma 4.1.3. Let G = A o B = [K]B, where K = A\ =
∏

b∈B A
b
1 is the

base group of G and let A1 be the first copy of A in K. If L is a normal
subgroup of G contained in K and M is the projection of L into A1, then
(A1/M) oB ∈ q(G/L).

Theorem 4.1.4 ([BBCER03; Theorem 1]). Let X be a class of simple groups
such that π(X) = char X. Let H = F ◦ G be an X-local formation generated
by a group G. If F and G are non-trivial and H 6= G or SpH 6= H for all
primes p ∈ char X, then F is X-saturated.

Proof. It is known that N form(G), where N is the class of all nilpotent
groups, is a saturated formation ([DH92; IV, 3.4(b)]). Therefore N form(G)
is X-saturated and so H is contained in N form(G).

Assume, arguing by contradiction, that F is not X-saturated. Then there
exists a group A /∈ F and a normal subgroup N of A such that E = A/N ∈ F

and N ≤ ΦX(A) ≤ Φ(A) ∩OX(A).
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Step 1: For any group 1 6= U ∈ G, the group (E o U)G is not subdirectly
contained in the base group of E oU , the regular wreath product of E with U .

Let 1 6= U ∈ G and denote D = E oU . Then DG is contained in K = E\,
the base group of D. Suppose that DG is subdirect in K. Then DG ∈ F

because K ∈ F.

Consider now D1 = A o U , and if A0 ≤ A, we write A\0 = {(a1, . . . , a|U |) |
ai ∈ A0, 1 ≤ i ≤ |U |} ≤ A\ = K1. Denote R = N \. By [DH92; A, 18.2],
we have that D1/R is isomorphic to D. Assume that ΦX(A) = Φ

(
OX(A)

)
.

In this case, OX(K1) =
(
OX(A)

)\
and Φ

(
OX(K1)

)
=
(

Φ
(
OX(A)

))\
. This

means that R is contained in ΦX(D1).

Suppose now that ΦX(A) = Φ(A). Then there exists a prime p such
that A ∈ AXp(P2), that is, A has an elementary abelian normal p-subgroup
T such that T ≤ Φ(A), A/T is primitive of type 2, Soc(A/T ) ∈ e X \ Ep′

and Ch
A(T ) ≤ T . Since A/T is a primitive group of type 2, it follows that

(A/T ) o U ∼= (A o U)/T \ = D1/T
\ is a primitive group of type 2 by [DH92;

A, 18.5]. It is clear that T \ is an elementary abelian normal p-subgroup
of D1 contained in Φ(D1). Moreover Soc(D1/T

\) ∼= Soc(A/T )\. Therefore
Soc(D1/T

\) ∈ e X \ Ep′ . Assume that there exists x ∈ D1 such that x
centralises all chief factors of D1 below T \. Let H/K be a chief factor of
A below T such that H/K 6≤ Z(A/K). Then (H/K)\ is a chief factor of
D1 below T \ and so x centralises (H/K)\. In particular, each component
of x centralises the corresponding component of (H/K)\. This implies that
x ∈ T \. Consequently Ch

D1
(T \) ≤ T \. Therefore we have proved that D1 ∈

AXp(P2). In this case, ΦX(D1) = Φ(D1) and so R ≤ Φ(A)\ ≤ Φ(D1). Since
H is X-saturated, it follows that D1 ∈ H. This implies that DG

1 ∈ F. Since
D1/R ∼= D, we have that DG is isomorphic to DG

1 R/R. It follows that DG
1

is subdirect in K1. But hence A is an epimorphic image of DG
1 . Therefore

A ∈ F, a contradiction.

Step 2: If Cq were the unique simple group in F, we would have SqG = G

and H = G. This would be a contradiction if q ∈ char X. Therefore there
does not exist any prime q ∈ char X such that Sq is contained in G.

First of all, we prove that EG 6= E. Assume that EG = E. Since E ∈ F,
it follows that E ∈ H and, therefore, A ∈ H. We have that EG = AGN/N =
A/N . Consequently AGN = A and AG = A, since N ≤ Φ(A). Therefore we
obtain that A ∈ F, which is a contradiction.

Now assume that Cq is the only simple group in F and let F be a maximal
normal subgroup of E such that EG ≤ F . We have that E/F ∼= Cq. Since
E/F ∈ q(E/EG), it follows that Cq ∈ G.

Now let B be a group of minimal order in SqG \G. Hence C = Soc(B)
is a minimal normal q-subgroup of B and 1 6= B/C ∈ G.
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Consider the group D = E o(B/C). From Step 1, we know that DG is not
subdirect in the base group K of D. Let E1 be the first copy of E in K and
let F be the projection of DG in E1. Then F is a proper normal subgroup of
E1. Let E0 be a maximal normal subgroup of E1 such that F ≤ E0. Then
E1/E0 is a simple group in F. Consequently E1/E0

∼= Cq. It is clear that

K0 = E\
0 is a normal subgroup of D and D/K0

∼= Cq o (B/C) by [DH92; A,
18.2]. On the other hand, by Lemma 4.1.3, we have that (E1/F ) o (B/C)
is a quotient of D/DG. It follows then that Cq o (B/C) ∈ G. Therefore
C o (B/C) ∈ r0

(
Cq o (B/C)

)
⊆ G. Applying [DH92; A, 18.9 and IV, 1.14],

B belongs to q r0

(
Cq o (B/C)

)
⊆ G, a contradiction. Therefore SqG = G.

Let G ∈ H, and assume that T = GG 6= 1. Hence Oq(T ) < T . Therefore
G/Oq(T ) ∈ SqG = G, a contradiction. It follows that T = 1 and so G ∈ G.
Consequently H = G and so SqH = SqG = G = H, a contradiction if
q ∈ char X.

Assume now that there exists a prime q ∈ char X such that Sq ⊆ G.
Since F 6= (1), there exists a simple group S ∈ F. Assume S 6∼= Cq. Let G1

be an arbitrary q-group. Then S oG1 ∈ H ⊆ N form(G). If S is not abelian,
then S oG1 ∈ form(G), and so G1 ∈ form(G). Assume now that S is abelian,
then S is isomorphic to Cr for a prime r 6= q. Then G1 ∈ form(G). In both
cases, Sq ⊆ form(G), a contradiction by Lemma 4.1.2. Therefore Cq is the
only simple group in F and the conclusion holds.

Step 3: G has a composition factor in X.

Denote by K the class of composition factors of G and assume that
K∩X = ∅. Consider the class e K of finite groups whose composition factors
belong to K. Let L be a formation contained in e K. Then it is rather easy
to see that L is X-saturated. Since form(G) ⊆ e K we have that form(G) is
X-saturated. Therefore F◦G = form(G). By [Guo00; 4.5.8], it follows that F

consists of nilpotent groups. Since F is subgroup-closed by [DH92; IV, 1.16],
we have that F ⊆ H ⊆ e K. It follows that F is X-saturated, a contradiction.

Step 4: Final contradiction.

Let q be a prime dividing the order of a composition factor of G in X.
It follows that Sq ⊆ H because H is X-saturated by Corollary 1.2.29. By
Step 2, we have that Sq is not contained in G. By [BBPR98; Corollary] and
Step 2, we have that Sq ⊆ F. Moreover, by Step 1 and [Ski92; Lemma 3],
there exists a prime p such that Sp ⊆ s G, that is, given a group P ∈ Sp,
there exists a group G(P ) in G such that P ≤ G(P ).

Assume that p 6= q. Consider XP = Cq o G(P ) ∈ H ⊆ N form(G). We
have that TP = XP/F(XP ) ∈ form(G). But F(XP ) is a q-group. It follows
that form(G) contains a group TP with a subgroup isomorphic to P . This is
a contradiction by Lemma 4.1.2. Therefore p = q.
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On the other hand, by Step 2 we know that there exists a simple group
S in F such that S 6∼= Cq. We have that S oG(P ) ∈ F ◦G = H ⊆ N form(G).
If S is not abelian, then G(P ) ∈ form(G), that is, Sp ⊆ s

(
form(G)

)
. This

is a contradiction by Lemma 4.1.2. Therefore S ∼= Cr for a prime r 6= q.
Let Y = Cr o G(P ). Then Y ∈ H ⊆ N form(G). Moreover, F(Y ) is an r-
group and Y/F(Y ) ∈ form(G). It follows that form(G) contains a subgroup
isomorphic to P . It is not possible by Lemma 4.1.2.

When X = P, the class of all abelian simple groups, the X-saturated
formations are exactly the Baer formations. Therefore we have:

Corollary 4.1.5. Let H be the Baer formation generated by a group G. If
H = F ◦G for non-trivial formations F and G, and H 6= G or SpH 6= H for
all primes p, then F is a Baer formation.

The above result also seems to be the answer of the problem 18 of Guo’s
book [Guo00]. Note that there is an obvious misprint in the statement
of that problem, because the example in page 224 answers that question
negatively.

The same arguments to those used in the proof of Theorem 4.1.4 re-
placing ΦX(G) by Φ(G) ∩ Op(G) give an alternative proof of the result of
Vishnevskaya for p-saturated formations. Moreover a second condition could
be added to that result: G 6= SpG. Taking into account that the ω-saturated
formations are exactly the p-saturated ones for all p ∈ ω, the main result of
[Vis00] can be improved in the following way:

Theorem 4.1.6. Let ω be set of primes. Let H = F ◦ G be an ω-saturated
formation generated by a group G. If F and G are non-trivial and H 6= G or
SpH 6= H for all primes p ∈ ω, then F is ω-saturated.

4.2 A characterisation of factorised one-gen-

erated X-local formations

Now we aim to give a complete description of the factorisations of a one-
generated X-local formation. These results appear in [BBC]. We will need
the following lemmas:

Lemma 4.2.1 ([GS03; Lemma 3.11]). Let F be a Fitting formation such
that F = FF and K a non-empty class of groups. If G is a group such that
G ∈ form(K) and GF = 1, then G ∈ form(A/AF | A ∈ K).
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Lemma 4.2.2. Consider a prime p ∈ char X and a group G such that
Op(G) = 1. Let W denote the wreath product Cp o G and B = C\

p the base

group of W . Then CXp(W ) = B.

Proof. CXp(W ) can be regarded as a group of operators for B, acting by
conjugation. Consider a chief series of W passing through B:

1 = T0 E T1 E · · · E Tn = B E Tn+1 E · · · E Tm = W.

Then CXp(W ) stabilises the following series of B:

1 = T0 E T1 E · · · E Tn = B.

Since B is a p-group, we can apply [DH92; A, 12.4] in order to deduce
that CXp(W )/CCXp (W )(B) is a p-group. We can conclude that CXp(W ) is

a p-group, since CCXp (W )(B) = CW (B) ∩ CXp(W ) = B ∩ CXp(W ) is a p-

group. The result now follows, bearing in mind that B ≤ CXp(W ) and
Op(G) = 1.

The following lemma is a generalisation of [Ski92; Lemma 3].

Lemma 4.2.3. Consider two non-empty formations F and G, G 6= (1), and
the formation product H = F ◦ G. Let n be a natural number. Assume that
there exists a group A ∈ F such that for every B ∈ G satisfying that |B| > n,
(A o B)G is not subdirectly contained in the base group of A o B. Then there
exists a prime p ∈ π(H) such that each p-group is isomorphic to a subgroup
of a G-group.

Proof. Note that G contains groups of order greater than n. If B ∈ G and
|B| > n, consider the wreath product B1 = AoB and the base group B2 = A\

of B1. Let AB be the first copy of A in B2 and AB the projection of BG
1

in AB. Since BG
1 is not subdirectly contained in B2, it follows that AB is

strictly contained in AB.
Now let D be a group in G such that |D| > n. Denote T1 = (AD/AD) oD.

By Lemma 4.1.3, we have that T1 ∈ G. Moreover, |T1| > n. Now consider
T2 = (AT1/AT1) oT1. Following the sequence, denote Tt = (ATt−1/ATt−1) oTt−1.
Clearly, Ti ∈ G and |Ti| > n for every index i. Since π(A) is finite, there
exists a prime p such that for every natural number i, there exists an index
αi > i such that p ∈ π(ATαi/ATαi ).

Consider the sequence G0 = Cp, G1 = Cp o Cp, . . . , Gi = Cp o Gi−1. We
prove that, for every natural number i, there exists a natural number k such
that Gi is isomorphic to a subgroup of Tk. By induction, assume that Gi−1 is
isomorphic to a subgroup of Tj. There exists t > j such that p ∈ π(ATt/ATt).
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Since Tj is isomorphic to a subgroup of Tt, it follows that Gi−1 is isomorphic
to a subgroup S of Tt. By [DH92; A, 18.2], we have that Cp oTt is isomorphic
to a subgroup of (ATt/ATt) o Tt = Tt+1. Let T be the base group of Cp o Tt.
We have that TS is isomorphic to a subgroup of Tt+1. By [DH92; A, 18.8],
TS ∼= Cm

p o Gi−1, where m = |Tt : S|. Therefore, Cm
p o Gi−1 is isomorphic to

a subgroup of Tt+1. Applying [DH92; A, 18.2], we have that Gi = Cp o Gi−1

is isomorphic to a subgroup of Tt+1.
Now let P be a p-group of order pn. Let L be a normal subgroup of P of

order p. Then |P/L| = pn−1. Assume inductively that P/L is isomorphic to
a subgroup T of Gi. Consider Gi+1 = Cp o Gi and let M be the base group
of Gi+1. By [DH92; A, 18.8], MT ∼= Cm

p o T , where m = |Gi : T |. Therefore,
Cm
p o T is isomorphic to a subgroup of Gi+1. Applying [DH92; A, 18.2], we

have that L o (P/L) is isomorphic to a subgroup of Gi+1. By [DH92; A, 18.9],
Lo(P/L) contains a subgroup isomorphic with P . Therefore, P is isomorphic
to a subgroup of Gi+1.

In the sequel, π denotes the characteristic of X.

Definition 4.2.4. We say that a group G is π-nilpotent when it is p-
nilpotent for all primes p ∈ π.

Definition 4.2.5. A formation F is said to be nilpotent (respectively π-
nilpotent, abelian, . . . ) whenever F is contained in the class of all nilpotent
(respectively π-nilpotent, abelian, . . . ) groups.

Theorem 4.2.6. Let H be a one-generated formation. Suppose that H =
F ◦G for some non-trivial formations F and G. Assume also that H 6= G or
SpH 6= H for all primes p ∈ π(F). Put π = char X.

Then:

1. Every simple group in F is abelian.

2. Every primitive monolithic group in F is abelian-by-nilpotent.

3. F is metanilpotent and π-local.

4. KA(G) ∩ X ⊆ F, where KA(G) is the class of all abelian composition
factors of groups in G.

5. HX(p) = FX(p) ◦G for every prime p ∈ π.

6. If F is not π-nilpotent, then G is abelian and one-generated.

7. If A ∈ F and B ∈ G, then π
(
A/CXp(A)

)
∩ π(B) = ∅ for every p ∈ π.
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8. If F = Sp, the class of all p-groups, p ∈ π, then

G/Op(G) := form(X/Op(X) | X ∈ G)

is a one-generated formation.

9. If F is π-nilpotent, |π(F)| > 1 and π(F) ⊆ π, then G is one-generated.

Proof. To fix ideas, let us suppose that H is the X-local formation generated
by a group G.

1. Assume that it is not true and consider a non-abelian simple group
S ∈ F. Let B be a group in G such that |B| > |G| and consider
the wreath product X := S o B. Then X ∈ H. It is known that
N form(G), where N is the class of all nilpotent groups, is a local
formation ([DH92; IV, 3.4(b)]). Therefore, N form(G) is X-local and
so H is contained in N form(G). It follows that X ∈ N form(G). Since
F(X) = 1, X ∈ form(G). By [DH92; A, 18.5], the base group S\ of X
is a minimal normal subgroup of X. Therefore, S\ is isomorphic to a
chief factor of G, which is a contradiction.

2. Suppose that A is a monolithic primitive group in F. We prove that
Soc(A) is abelian and A/ Soc(A) is nilpotent. Assume that the asser-
tion is false. Then either Soc(A) is not abelian or Soc(A) is abelian
and A/ Soc(A) is not nilpotent. Let B be a group in G such that
|B| > |G| and consider the wreath product D := A o B. Suppose
that Soc(A) is not abelian. In this case, A is a primitive group of
type 2. By Lemma 1.3.19, D is also a primitive group of type 2 and
Soc(D) = Soc(A)\. Since Soc(D) is not contained in F(D), it follows
that F(D) = 1. Now suppose that Soc(A) is abelian but A/ Soc(A)
is not nilpotent. Since CA

(
Soc(A)

)
= Soc(A) and A/ Soc(A) 6= 1,

we have that Soc(A) is not contained in Z(A). By [DH92; A, 18.5],
Soc(A)\ is a minimal normal subgroup of D. Clearly, Soc(A)\ is con-
tained in F(D) and, since CD

(
Soc(A)\

)
= Soc(A)\, it follows that

F(D) = Soc(A)\.

Assume that D ∈ H. Then D/F(D) ∈ form(G), because H is con-
tained in N form(G). If F(D) = 1, we would have that D ∈ form(G).
Then Soc(D) = Soc(A)\ would be a chief factor of D, which is iso-
morphic to a chief factor of G. This is a contradiction. If Soc(A) is
abelian and A/ Soc(A) is not nilpotent, it follows that D/ Soc(A)\ ∈
form(G). Consider a chief factor H/K of A such that Soc(A) ≤ K
and Z(H/K) 6= A/K. By [DH92; A, 18.5], it follows that (H/K)\ is
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a minimal normal subgroup of (A/K) o B isomorphic to (A o B)/K\.
Therefore (H/K)\ is a chief factor of D/ Soc(A)\. This means that
(H/K)\ is isomorphic to a chief factor of G, which is not possible.

We have proved that for every group in B in G such that |B| > |G|,
the wreath product D := A o B does not belong to H, which means
that DG is not subdirectly contained in A\, the base group of D. By
Lemma 4.2.3, there exists a prime q such that Sq, the class of all
q-groups, is contained in s G, the class of all subgroups of groups in G.

On the other hand, consider a group C in G such that |C| > |G| and
the wreath product E := A o C. We know that EG is not subdirect in
the base group A\ of E. Let A1 be the first copy of A in A\ and let M
be the projection of EG in A1. Then M is a proper normal subgroup
of A1. By 4.1.3 , we have that (A1/M) o C is a quotient of E/EG. Let
A0 be a maximal normal subgroup of A1 containing M . Then A1/A0

is isomorphic to Cp for a prime p by Statement 1. By [DH92; A, 18.2],
(A1/A0) oC is a quotient of (A1/M) oC ∈ G. Therefore Cp oC ∈ G. Let
N be the diagonal subgroup of the base group C\

p of Cp o C. Then N
is a central minimal normal subgroup of Cp o C isomorphic to Cp. We
can apply [DH92; IV, 1.5] to deduce that Cp ∈ G.

Now suppose that p 6= q and consider a q-group Q. We know that
there exists a group G(Q) in G such that Q is contained in G(Q).
Let X = Cp o G(Q) be the corresponding wreath product. Since X ∈
H ⊆ N form(G), it follows that X/F(X) ∈ form(G). Since F(X) is a
p-group, we have that X/F(X) has a subgroup isomorphic to Q. This
is a contradiction by Lemma 4.1.2. Therefore, p = q.

Now let us prove that SpG = G. If it is not true, we can consider
a group U ∈ SpG \ G of minimal order. Then V = Soc(U) is a
p-group and it is a minimal normal subgroup of U . Since Cp ∈ G,
it follows that U/V 6= 1. Consider the group W = A o (Um/V m),
where m = |G|. We know that (Um/V m)G is not subdirect in the base
group A\ of W . Arguing as above, we have that Cp o (Um/V m) ∈ G.
Thus V m o (Um/V m) ∈ q r0

(
Cp o (Um/V m)

)
⊆ G. Applying [DH92;

A, 18.9 and IV, 1.14], Um belongs to q r0

(
V m o (Um/V m)

)
⊆ G. This

contradiction shows that SpG = G.

Suppose, arguing by contradiction, that H is not equal to G and take
a group X ∈ H \ G of minimal order. Then XG is a minimal normal
subgroup of X and XG ∈ F. By Statement 1, XG is an r-group for
some prime r. Since SpG = G, it follows that r is different from p.
Considering the wreath product CroG(Q) of Cr with G(Q), where G(Q)
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is a group in G containing the p-group Q, we have that every p-group
is isomorphic to a subgroup of a group in the formation generated by
G. This is a contradiction by Lemma 4.1.2. Consequently H = G and
so SpH = SpG = G = H. This final contradiction shows that A is
abelian-by-nilpotent.

3. Suppose that F is not metanilpotent and among the F-groups Z which
are not metanilpotent, we take a group U of minimal order. It follows
that U is a monolithic primitive group as the class of all metanilpotent
groups is a saturated formation. By Statement 2, U is abelian by
nilpotent. This contradicts the choice of U . Hence F is a metanilpotent
formation.

By Theorem 4.1.4, we have that F is an X-local formation. Since F is
composed by soluble groups, F is a π-local formation.

4. Consider Cp ∈ KA(G) ∩ X. Since Cp ∈ KA(H) and H is X-local, we
have that Sp ⊆ H by Corollary 1.2.29. If Sp ⊆ F, then Cp ∈ F, as we
wanted. Suppose that Sp 6⊆ F. Since F is X-local, this implies that
there does not exist any p-group in F by Corollary 1.2.29 again. Take
a p-group P . Since P ∈ H, we obtain that PG ∈ F. Thus PG = 1.
Therefore P ∈ G. It follows that Sp ⊆ G. Consider a prime q 6= p
such that Cq ∈ F and W = Cq o P , where P is a p-group. Clearly,
W ∈ H and, hence, W/F(W ) ∈ form(G). Since F(W ) is a q-group,
P ∈ form(G). We have proved that Sp ⊆ form(G), which is not
possible by Lemma 4.1.2. Therefore, KA(G) ∩ X ⊆ F.

5. Consider a prime p ∈ π. If Sp is not contained in H, then Sp is
not contained in F either, and we have that HX(p) = FX(p) = ∅.
Now suppose that Sp is contained in H. If Sp ⊆ F, we can apply
Theorem 3.1.4 to obtain that HX(p) = FX(p) ◦G. If Sp 6⊆ F, it follows
that Cp ∈ KA(G). Since KA(G) ∩ X ⊆ F, we have that Cp ∈ F, a
contradiction.

6. Assume that there exists a prime p ∈ π such that F is not p-nilpotent.
If H/K is a p-chief factor of a group U ∈ F, then U/CU(H/K) is a
nilpotent p′-group by Statement 3. This means that FX(p) ⊆ SpNp′ ,
where Np′ is the class of all nilpotent p′-groups. If FX(p) = Sp, we
would have that every p-chief factor of F is central. Since this is not
possible, we have that FX(p) 6= Sp and we may consider a prime q 6= p
such that Cq ∈ FX(p).

Suppose that G is not abelian and take a non-abelian G-group, B
say. Assume that q ∈ π(B) and let L be a subgroup of B of order



4.2. CHARACTERISATION 83

q. Let m be a natural number with m > |G| and W = Cq o Bm.
Clearly, W ∈ FX(p) ◦G = HX(p). Since H ⊆ N form(G), it follows that
HX(p) ⊆ Sp form(G) and, hence, W ∈ form(G). Consider (Cq)

\Lm ≤
W . By [DH92; A, 18.8], (Cq)

\Lm ∼= ((Cq)
|Bm:Lm| o Lm). Therefore,

Cq o Lm ∈ q
(
(Cq)

\Lm
)

and hence the nilpotent class, cl(Cq o Lm), of
Cq o Lm is less or equal than nilpotent class of the Sylow q-subgroups
of G. But cl(Cq oLm) ≥ m+ 1, so we have reached a contradiction. We
have proved that q /∈ π(B).

Consider the algebraic closure F of the field of q-elements and the
regular module FB. By Maschke’s theorem, FB = V1 ⊕ V2 ⊕ · · · ⊕ Vr,
where Vi is an irreducible FB-module for i = 1, 2, . . . , r. If dimVi = 1
for every i ∈ {1, 2, . . . , r}, then B/CB(Vi) is abelian and, hence, B′ ≤⋂

CB(Vi) = 1. This is not possible, since B is not abelian. Therefore,
there exists an irreducible FB-module V such that dimV ≥ 2. By

[DH92; B, 5.23], V⊗
(m)
· · · ⊗V is an irreducible FBm-module. Applying

[DH92; B, 5.14], there exists an irreducible GF (q)Bm-module W such

that WF contains V⊗
(m)
· · · ⊗V as a submodule. Then the corresponding

semidirect product R = [W ]Bm belongs to FX(p) ◦ G. It follows that
R ∈ form(G) and, hence, W is isomorphic to a chief factor of G. Since
dimF (W ) ≥ 2m, this is a contradiction. Therefore G is an abelian
formation.

Now let us see that G is contained in form(G). If this is not true,
consider a group U ∈ G\form(G) of minimal order. It follows that U is
an abelian monolithic group and so U is an r-group, where r is a prime.
Consider the wreath product W = Cq o U . Then W ∈ FX(p) ◦ G =
HX(p). It follows that W ∈ form(G) and, hence, U ∈ form(G), which
contradicts the choice of U .

Since F is soluble and G is abelian, it follows that H is soluble. Hence
G is a soluble group. By [DH92; VII, 1.6], G contains finitely many
subformations. Consider the series (1) = G0 ⊆ G1 ⊆ · · · ⊆ Gn−1 ⊆
Gn = G, where Gi is a maximal subformation of Gi+1. Clearly, G =
form(Gn−1, Gn−1), where Gn−1 is a group in G \ Gn−1. Moreover,
Gn−1 = form(Gn−2, Gn−2), where Gn−2 ∈ Gn−1 \ Gn−2. Repeating
this process, we obtain that G = form(G0, G1, . . . , Gn−1), where Gi ∈
Gi+1 \Gi. Therefore, G = form(G0 ×G1 × · · · ×Gn−1).

7. Consider a prime p ∈ π. Let q be a prime in π
(
A/CXp(A)). Since

A is metanilpotent and F(A) is contained in CXp(A), we have that
A/CXp(A) is nilpotent. Moreover, Op

(
A/CXp(A)

)
= 1 and, therefore,
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p /∈ π
(
A/CXp(A)

)
. This means that p 6= q. Since A/CXp(A) ∈ FX(p)

and A/CXp(A) ∈ N, it follows that Cq ∈ FX(p). Arguing as in 6, we
can prove that q /∈ π(B). Consequently, π

(
A/CXp(A)

)
∩ π(B) = ∅.

8. Let A be a group in G. Then T := Cp o
(
A/Op(A)

)
∈ F ◦ G = H. By

Lemma 4.2.2, it follows that CXp(T ) = C\
p, the base group of T . There-

fore, we have that A/Op(A) ∼= T/C\
p ∈ form

(
G/CXp(G)

)
by Theo-

rem 1.2.15. Hence G/Op(G) is contained in form(G/CXp(G)
)
. On the

other hand, since G ∈ H = SpG, we have that GG ∈ Sp. Therefore
G/Op(G) ∈ G. Since Op(G) ≤ CXp(G) and G/Op(G) ∈ G/Op(G), we
obtain that G/CXp(G) ∈ G/Op(G). Consequently, form

(
G/CXp(G)

)
is contained in G/Op(G) and so G/Op(G) is a one-generated forma-
tion.

9. Consider two primes p and q such that p 6= q and Cp, Cq ∈ F. By
Theorem 1.2.15, h(p) and h(q) are one-generated formations. Take two
groups A and B such that h(p) = form(A) and h(q) = form(B). Since
F is p-nilpotent for every prime p ∈ π and π(F) ⊆ π, it follows that F

is nilpotent. Therefore, h(p) and h(q) are contained in G. This implies
that A and B belong to G and, hence, form(A×B) ⊆ G. Assume that
G is not contained in form(A×B) and consider a group D of minimal
order in G \ form(A × B). It follows that D is a monolithic group.
Consider R = Soc(D). It is clear that either Op(D) = 1 or Oq(D) = 1.
Suppose that Op(D) = 1 and consider the wreath product W = Cp oD.
Since W ∈ F ◦ G = H and CXp(W ) = C\

p by Lemma 4.2.2, we have
that D ∼= W/C\

p ∈ h(p) = form(A) ⊆ form(A × B). If Oq(D) = 1, we
obtain that D ∈ h(q) = form(B) ⊆ form(A × B). This contradiction
shows that G = form(A×B).

Our next aim is to prove that the converse of the above theorem holds
provided that π(F) ⊆ π. We need the following lemma:

Lemma 4.2.7. Let F be an X-local formation. Assume that F has an
integrated X-formation function f such that:

• f(p) = ∅ except for a finite number of primes p ∈ char X.

• If f(p) 6= ∅, there exists a group Gp such that f(p) = form(Gp).

• There exists a group H such that for every E ∈ X′, f(E) = form(H).

Then F is a one-generated X-local formation.
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Proof. Let {p1, p2, . . . , pn} be the set of primes p such that f(p) 6= ∅. Con-
sider the group

X = H×
(
Cp1 o

(
Gp1/Op1(Gp1)

))
× · · ·×

(
Cpn o

(
Gpn/Opn(Gpn)

))
.

We will prove that F = formX(X). Consider an X-formation function g such
that formX(X) = LFX(g). If E is a group in X′, we have that H ∈ f(E) ⊆ F.
On the other hand, by Lemma 1.2.33, Cpi o

(
Gpi/Opi(Gpi)

)
∈ Spi form(Gpi) ⊆

F for every i ∈ {1, . . . , n}. Therefore, we have that X ∈ F. Since F is X-local,
we obtain that formX(X) ⊆ F.

If F is not contained in formX(X), we may consider a group G of min-
imal order in F \ formX(X). It follows that G is monolithic and G/N ∈
formX(X), where N = Soc(G). If N is an X′-chief factor of G, then
G ∈ form(H) ⊆ form(X) ⊆ formX(X), which is a contradiction. Now assume
that N is an X-chief factor of G. If p ∈ π(N), we have that G/CG(N) ∈
f(p) = form(Gp). Since Op

(
G/CG(N)

)
= 1, it follows that G/CG(N) ∈

form
(
Gp/Op(Gp)

)
, by Lemma 4.2.1. Let Tp = Cp o

(
Gp/Op(Gp)

)
. We have

that Tp ∈ form(X) ⊆ formX(X) and CXp(Tp) = C\
p by Lemma 4.2.2. There-

fore, Gp/Op(Gp) ∼= Tp/C
\
p ∈ g(p). We obtain that form

(
Gp/Op(Gp)

)
⊆ g(p)

and, hence, G/CG(N) ∈ g(p). By Lemma 1.2.12, it follows that G ∈ LFX(g),
contradicting the choice of G. Consequently, F = formX(X).

Theorem 4.2.8. Let H = F◦G be an X-local formation which is the product
of the non-trivial formations F and G. Put π = char X. Assume that the
following conditions hold:

1. F is metanilpotent and a one-generated π-local formation.

2. KA(G) ∩ X ⊆ F, where KA(G) is the class of all abelian composition
factors of groups in G.

3. HX(p) = FX(p) ◦G for every prime p ∈ π.

4. If A ∈ F and B ∈ G, then π
(
A/CXp(A)

)
∩ π(B) = ∅ for every p ∈ π.

5. If F is not π-nilpotent, then G is abelian and one-generated.

6. If F is π-nilpotent, then G is one-generated or

G/Op(G) := form(G/Op(G) | G ∈ G)

is one-generated for every p ∈ π.

If π(F) ⊆ π, then H is a one-generated X-local formation.
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Proof. First of all, applying Lemmas 1.2.34 and 1.2.53, we have that H =
LFX(h), where

h(p) = h(p) if p ∈ π,

h(E) = form(H/He X | H ∈ H) for every E ∈ X′.

On the other hand, since F is a one-generated π-local formation and G is
one-generated or G/Op(G) := form(G/Op(G) | G ∈ G) is one-generated for
every p ∈ π, it follows that π(H) is finite. Therefore h(p) = ∅ except for a
finite number of primes of π. Let p ∈ π(H)∩ π. Since H is X-local, it follows
that Cp ∈ H and h(p) = h(p) 6= ∅. Consequently, Cp ∈ F or Cp ∈ G. In both
cases, we have that Cp ∈ F, since KA(G) ∩ X ⊆ F. It implies that G/Op(G)
is contained in h(p) as the wreath product Cp oX, for each X ∈ G such that
Op(X) = 1, belongs to H by Lemma 4.2.2.

Assume that F is not π-nilpotent. In this case, G is abelian and one-
generated. We shall prove that that h(p), where p ∈ π and h(p) 6= ∅, and
h(E), where E ∈ X′, contain finitely many subformations.

Consider a prime p ∈ π such that h(p) 6= ∅. Bearing in mind that
HX(p) = FX(p)◦G for every prime p ∈ π, we deduce that h(p) ⊆ f(p)◦G. In
addition, f(p) is one-generated by Theorem 1.2.15. Since F is metanilpotent,
it follows that f(p) is nilpotent. On the other hand, π(f(p)) ∩ π(G) = ∅
by Condition 4. By [Ski83], f(p) ◦ G is a one-generated formation. Since
f(p) ◦ G is soluble, it follows by [DH92; VII, 1.6] that it contains only
finitely many subformations and so does h(p). Now let H ∈ H = F ◦ G.
Since HG ∈ F and F ⊆ e X because F is soluble and π(F) ⊆ π, it follows
that HG ≤ He X. Therefore, H/He X ∈ G. Consequently, h(E) ⊆ G for every
E ∈ X′. Applying [DH92; VII, 1.6], G contains finitely many subformations
and so does h(E).

If M is an X-local subformation of H, we know that M = LFX(m), where

m(p) = m(p) if p ∈ π,

m(E) = form(M/Me X |M ∈M) for every E ∈ X′.

Observe that m(p) ⊆ h(p) for every p ∈ π and m(E) ⊆ h(E) for every
E ∈ X′. Therefore, there are only finitely many X-local subformations M of
H. Consider the series (1) = H0 ⊆ H1 ⊆ · · · ⊆ Hn−1 ⊆ Hn = H, where Hi is
a maximal X-local subformation of Hi+1. Clearly, H = formX(Hn−1, Gn−1),
where Gn−1 is a group in H \ Hn−1. Moreover, Hn−1 = formX(Hn−2, Gn−2),
where Gn−2 ∈ Hn−1 \ Hn−2. Repeating this process, we obtain that H =
formX(G0, G1, . . . , Gn−1), where Gi ∈ Hi+1 \ Hi. Therefore, H = formX(G0 ×
G1 × · · · ×Gn−1) and H is a one-generated X-formation.
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Now suppose that F is π-nilpotent. Since π(F) ⊆ π, F is actually a
nilpotent formation.

Let p be a prime in π such that h(p) 6= ∅. Then

h(p) = h(p) = form(H/CXp(H) | H ∈ H) ⊆ G.

Hence h(p) = G/Op(G), as Op

(
H/CXp(H)

)
= 1 for every group H ∈ H.

Now, if G is one-generated, then so is G/Op(G) by Lemma 4.2.1. Conse-
quently, h(p) is one-generated for all p ∈ π.

Next we prove that h(E) is a one-generated formation for E ∈ X′. We
have that h(E) ⊆ G, because if H ∈ H, it follows that HG ∈ F ⊆ e X and,
hence HG ≤ He X.

Assume that G is a one-generated formation and consider a group T
such that G = form(T ). Let us prove that h(E) = form(T/Te X). Consider
a group H ∈ H. We know that H/He X ∈ G. This implies, by Lemma 4.2.1,
that H/He X ∈ form(T/Te X). Therefore, h(E) ⊆ form(T/Te X). On the other
hand, T ∈ G ⊆ H. Hence T/Te X ∈ h(E) and form(T/Te X) ⊆ h(E).

Suppose that G/Op(G) = form(T ). We aim to prove that h(E) =
form(T/Te X). If H ∈ H, then H/He X ∈ G. Since (H/He X)e X = 1, we
have by Lemma 4.2.1 that H/He X ∈ form(T/Te X). On the other hand, since
T ∈ G ⊆ H, it follows that T/Te X ∈ h(E) and form(T/Te X) ⊆ h(E).

Now we can apply Lemma 4.2.7 to conclude that H is a one-generated
X-local formation.

The following result arises as a combination of Theorems 4.2.6 and 4.2.8.

Theorem 4.2.9. Let X be a class of simple groups such that π = π(X) =
char X. Let H = F ◦G be an X-local formation such that π(F) ⊆ π. Assume
that F and G are non-trivial and H 6= G or SpH 6= H for all primes p ∈ π.

Then H is a one-generated X-local formation if and only if the following
conditions hold:

1. F is metanilpotent and a one-generated local formation.

2. KA(G) ∩ X ⊆ F, where KA(G) is the class of all abelian composition
factors of groups in G.

3. HX(p) = FX(p) ◦G for every prime p ∈ π.

4. If A ∈ F and B ∈ G, then π
(
A/CXp(A)

)
∩ π(B) = ∅ for every p ∈ π.

5. If F is not π-nilpotent, then G is abelian and one-generated.
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6. If F is π-nilpotent, then G is one-generated or

G/Op(G) := form(G/Op(G) | G ∈ G)

is one-generated for every p ∈ π.

Proof. Assume that H is the X-local formation generated by a group G.
By Theorem 4.2.6, F is π-local. Since π(F) ⊆ π, it is clear that F is a
local formation. Since F is metanilpotent, we obtain that f(p) is nilpotent.
Applying [DH92; IV, 1.16], it follows that f(p) is s-closed. Now, by [DH92;
IV, 3.14], we have that F is an s-closed formation. Therefore, F ⊆ H =
formX(G) ⊆ lform(G). By [BBS97], lform(G) has only many finitely s-closed
subformations and so does F. Consider the series (1) = F0 ⊆ F1 ⊆ · · · ⊆
Fn−1 ⊆ Fn = F, where Fi is a maximal s-closed local subformation of Fi+1.
Since every local subformation of F is s-closed, we have that Fi is a maximal
local subformation of Fi+1. Clearly, F = lform(Fn−1, Gn−1), where Gn−1 is a
group in F\Fn−1. Moreover, Fn−1 = lform(Fn−2, Gn−2), where Gn−2 ∈ Fn−1\
Fn−2. Repeating this process, we obtain that F = lform(G0, G1, . . . , Gn−1),
where Gi ∈ Fi+1 \ Fi. Therefore, F = lform(G0 ×G1 × · · · ×Gn−1).

The converse is clear by Theorem 4.2.8, bearing in mind that if F is a
one-generated local formation, it can be also seen as a one-generated π-local
formation, since π(F) ⊆ π.

Remarks 4.2.10.
1. The main result of [Ski83] is Theorem 4.2.9 for the class X of all simple

groups, and the main result of [GS01] is our Theorem 4.2.9 for the class X

of all abelian simple groups.
2. A representation of a non-trivial formation H as the product H =

H1◦· · ·◦Ht, where H1, . . . , Ht are formations, is called irreducible if H 6= H1◦
· · ·◦Hi−1Hi+1◦· · ·◦Ht for all i = 1, 2, . . ., t. Assume that H is a one-generated
X-local formation. If H = H1 ◦ · · · ◦ Ht is an irreducible representation of
H, t ≥ 4, and π(Hi) ⊆ π for all i = 1, 2, 3, it follows that H1 ◦ H2 ◦ H3 is
a metanilpotent one-generated local formation. Applying the main result of
[Ski92], H1 and H2 are nilpotent, H3 is abelian and H2 ∩H3 = (1). Moreover
|π(H1)| > 1 by Theorem 4.2.9. This is impossible by considering suitable
non-trivial groups A ∈ H1, B ∈ H2, C ∈ H3 and the wreath product A o (B o
C). Therefore, t ≤ 3. Assume that t = 3 and H = H1◦H2◦H3. Since H3 6= H,
it follows that H1 ◦H2 is a metanilpotent one-generated formation. If H1 ◦H2

were nilpotent, we would have that either H1 ◦ H2 = H2 or H1 ◦ H2 ⊆ H1 by
[BBPR98; Corollary A.2]. Clearly H1 ◦H2 = H2 contradicts the irreducibility
of the factorisation. Hence H1 ◦ H2 ⊆ H1. On the other hand, if H1 is
not nilpotent, then H2 ◦ H3 is abelian by Theorem 4.2.9. It implies that
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H2 ◦ H3 = H3 or H2 ◦ H3 ⊆ H2 ⊆ H2 ◦ H3 since H2 is nilpotent. This is
not possible as the factorisation is irreducible. Hence H1 is nilpotent and so
H1 = H1 ◦H2, another contradiction. Consequently, H1 ◦H2 is not nilpotent.
Applying Theorem 4.2.9, H3 is abelian. Suppose that H1 is not nilpotent.
Then H2 ◦ H3 is abelian. This is not possible, since we can consider a prime
p such that Cp ∈ H2, take a group X ∈ H3, X 6= 1, and construct the wreath
product Cp oX, which belongs to H2 ◦H3 and is not abelian. Therefore H1 is
not nilpotent. Assume finally that H2 is not nilpotent and let X be a non-
nilpotent group in H2 of minimal order. Then Soc(X) = F(X) is a q-group.
Let p 6= q be a prime dividing the order of X/F(X) and consider T = Cp oX.
By Theorem 4.2.9, Cp ∈ H1 and so T ∈ H1 ◦ H2. It is clear that T is not
metanilpotent. Consequently H2 is nilpotent. Now assume that q ∈ π(H2).
Let p 6= q be a prime such that Cp ∈ H1. Then if A = Cp o Cq ∈ H1H2, it
follows that A/CXp(A) ∼= Cq. By Theorem 4.2.9, q /∈ π(H3).
Therefore we have:
Theorem 4.2.11. If H = H1◦· · ·◦Ht is an irreducible factorisation of a one-
generated X-local formation and π(Hi) ⊆ π for all i = 1, 2, 3, then t ≤ 3, and
if t = 3, then H1 and H2 are nilpotent, H3 is abelian and π(H2)∩ π(H3) = ∅.
Consequently Theorems 4.2.9 and 4.2.11 extend the main results of [Ski92]
and [GS03].
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[Sal83] E. Salomon. Über lokale und Baerlokale Formationen endlicher
Gruppen. Master’s thesis, Johannes Gutenberg-Universität
Mainz, Mainz, Germany, 1983.
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Apèndix A

Resum

Tots els grups considerats al llarg del treball són finits. Les principals
referències bibliogràfiques són el llibre de Doerk i Hawkes ([DH92]) i el de
Ballester i Ezquerro ([BBE06]).

La tesi s’emmarca dins de la teoria de formacions de grups. Una formació
és una classe de grups que compleix les dues següents propietats:

• Si G ∈ F i N E G, aleshores G/N ∈ F.

• Si G/N , G/M ∈ F, aleshores G/(M ∩N) ∈ F.

Diem que una formació F és saturada si, per a cada grup G, la condició
G/Φ(G) ∈ F implica que G ∈ F, on Φ(G) és el subgrup de Frattini de G.

Una funció formació f associa a cada nombre primer p una formació
f(p), que pot ser buida. Si f és una funció formació, aleshores la formació
local LF(f) definida per f és la clase de tots els grups G que satisfan la
següent propietat:

• Si H/K és un factor principal de G, aleshores G/CG(H/K) ∈ f(p) per
a tot p ∈ π(H/K).

Una formació F és local si existeix una funció formació f tal que F = LF(f).
Gaschütz va introduir aquest concepte a [Gas63], la qual cosa li permetia
construir una gran famı́lia de formacions saturades. De fet, el teorema de
Gaschütz-Lubeseder-Schmid, que és un dels resultats més rellevants en teo-
ria de formacions, afirma que amb el mètode anterior es poden obtenir totes
les formacions saturades. Aquest teorema va ser provat per Gaschütz i Lu-
beseder en l’univers resoluble. Posteriorment, Schmid va provar que aquesta
restricció és innecessària.

Baer va generalitzar de manera diferent el teorema anterior en l’univers
finit. Va fer servir un concepte diferent de formació local, tractant els factors
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principals no abelians amb més flexibilitat que els abelians. Açò el va portar
a trobar una famı́lia de formacions, la de les formacions Baer-locals, que
conté les locals. Aquestes dues famı́lies coincideixen en l’univers resoluble.
Una funció de Baer associa a cada grup simple J una classe de grups f(J),
de forma que f(Cp) és una formació per a tot nombre primer p. Si f és
una funció de Baer, aleshores la formació Baer-local o formació de Baer
BLF(f) definida per f és la classe de tots els grups G que satisfan la següent
propietat:

• Si H/K és un factor principal de G, aleshores G/CG(H/K) ∈ f(J),
on J és el factor de composició de H/K.

Les formacions Baer-locals també van ser estudiades per Shemetkov (ve-
geu [She75]), sota el nom de formacions de composició (composition forma-
tions). Diem que una formació F és resolublement saturada si, per a cada
grup G, la condició G/Φ(GS) ∈ F implica que G ∈ F, on GS és el radical
resoluble de G. Baer va provar que una formació és resolublement saturada
si, i només si, és Baer-local.

Amb el propòsit de presentar una generalització comú dels teoremes de
Gaschütz-Lubeseder-Schmid i de Baer, Förster va introduir en [För85] el con-
cepte de formació X-local, on X és una classe de grups simples que compleix
que π(X) = char X, on

π(X) := {p ∈ P | existeix G ∈ X tal que p ∈ π(G)}

i

char X := {p ∈ P | Cp ∈ X}.

Anomenem J a la classe de tots els grups simples. Si Y és una subclasse de
J, Y′ denota la classe J \ Y. Fem servir e Y per denotar la classe de tots
els grups els factors de composició dels quals es troben en Y. Tot grup G
posseeix un subgrup normal que pertany a e Y i que conté tots els subgrups
normals de G en e Y, és a dir, un e Y-radical. Per referir-nos-hi escrivim
OY(G) o bé Ge Y. Si H/K és un factor principal d’un grup G i H/K ∈ e Y,
diem que H/K és un Y-factor principal de G. Escrivim Yp per denotar la
classe dels grups simples de Y l’ordre del qual és divisible per p, on p és un
nombre primer. Si Y és una classe de grups, la menor formació que conté Y

es denota per form(Y).
Una X-funció formació f és una aplicació que associa una formació,

possiblemente buida, a cada grup simple del conjunt (char X) ∪ X′. Si f és
una X-funció formació, LFX(f) es defineix com la classe de tots els grups G
que satisfan les dues següents propietats:
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1. Si p ∈ char(X) i H/K és un Xp-factor principal de G, aleshores
G
/

CG(H/K) ∈ f(p).

2. Si L E G, G/L és monoĺıtic i Soc(G/L) és un X′-factor principal de G,
aleshores G/L ∈ f(E), on E és el factor de composició de Soc(G/L).

Förster demostra en [För85] que la classe LFX(f) és una formació. Una
formació F de grups finits és X-local si existeix una X-funció formació f tal
que F = LFX(f). Si Y és una classe de grups, la menor formació X-local que
conté Y es denota per formX(Y).

Si X és la classe de tots els grups simples, les formacions X-locals són
exactament les formacions locals. Si X és la classe dels grups simples abe-
lians, es demostra que les formacions X-locals coincideixen amb les Baer-
locals. Al caṕıtol 1 de la tesi, presentem resultats bàsics de formacions
X-locals i caracteritzem aquestes formacions com les classes de grups amb
factors principals centrals generalitzats. Si f és una X-funció formació, defi-
nim el concepte de factor principal f -central i provem el següent teorema:

Teorema ([BBCSss]). Considerem una formació X-local F i una X-funció
formació f que definisca F. Aleshores F coincideix amb la classe dels grups
els factors principals dels quals són f -centrals.

Förster també va introduir a [För85] un subgrup X-Frattini Φ∗X(G) per a
cada grup G. Va definir el concepte de X-saturació de la manera natural i
va provar que les formacions X-saturadas són exactament les X-locals. Tot
i que els teoremes de Gaschütz-Lubeseder-Schmid i Baer es dedueixen del
teorema de Förster, la definició que fa servir de X-saturació no és la més
natural i la demostració del teorema de Baer no es dedueix fàcilment del seu
resultat. A la segona secció del caṕıtol 1, introdüım un nou subgrup de tipus
Frattini ΦX(G) per a cada grup G associat a la classe X. Es defineix de la
següent manera:

• Considerem un nombre primer p. Diem que un grup G pertany a la
classe AXp(P2) si es compleix:

1. Φ(G) és p-elemental abelià.

2. G/Φ(G) és un grup primitiu amb un únic subgrup normal mini-
mal no abelià, és a dir, G/Φ(G) és un grup primitiu de tipus 2.

3. Soc
(
G/Φ(G)

)
∈ e X \ Ep′

4. Ch
G

(
Φ(G)

)
≤ Φ(G), on

Ch
G

(
Φ(G)

)
:=
⋂
{CG(H/K) | H/K és un factor principal de G

tal que H ≤ Φ(G)}
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• El subgrup X-Frattini de G, ΦX(G), es defineix com

ΦX(G) :=

{
Φ
(
OX(G)

)
si G /∈ AXp(P2) per a tot p ∈ char(X),

Φ(G) en un altre cas.

• Una formación F es diu X-saturada si G/ΦX(G) ∈ F sempre implica
que G ∈ F.

Aquest subgrup X-Frattini proporciona una definició de X-saturació més
senzilla que la de Förster i més propera a la definició natural. Al final del
caṕıtol provem que les formacions X-saturades, amb aquesta nova definició
de X-saturació, també coincideixen amb les formacions X-locals de Förster
([BBCER05]).

Shemetkov i Skiba van introduir el concepte de formació ω-local, on ω
és un conjunt de nombres primers. Un ω-satèl.lit local f associa a cada
element de ω ∪ {ω′} una formació, que pot ser buida. El śımbol Gωd denota
el subgrup normal més gran N de G tal que ω ∩ π(H/K) 6= ∅ per a tot
factor de composició H/K de N (si ω ∩ π

(
Soc(G)

)
= ∅, definim Gωd = 1).

Si f és un ω-satèl.lit local, aleshores LFω(f) denota la classe de grups G que
satisfan les dues següents condicions:

1. Si H/K és un factor principal de G i p ∈ π(H/K) ∩ ω, aleshores
G/CG(H/K) ∈ f(p).

2. G/Gωd ∈ f(ω′).

Hom diu que una formació F és ω-local si existeix un ω-satèl.lit local f
tal que F = LFω(f). En aquest cas, es diu que f és un ω-satèl.lit local de F.
Si p és un nombre primer, es diu que una formació F és p-saturada si G ∈ F

sempre que G/Op(G) ∩ Φ(G) ∈ F. Si ω és un conjunt de primers, diem que
F és ω-saturada si F és p-saturada per a cada primer p ∈ ω.

A [SS00] es prova el següent teorema:

Teorema. Una formación F és ω-saturada si, i només si, F és ω-local.

Si ω és el conjunt de tots els nombres primers, les formacions ω-locals
són exactament les locals, per la qual cosa la idea de formació ω-local és un
altre apropament al concepte de formació local. Al segon caṕıtol estudiem
la relació entre les formacions X-locals i les formacions ω-locals. Els primers
resultats del caṕıtol apareixen en [BBCER03]. Si ω és un conjunt de nombres
primers i F una formació ω-saturada, se segueix que F és Xω-saturada, on Xω

és la classe dels ω-grups simples. Tanmateix, la famı́lia de les formacions Xω-
saturades no coincideix en general amb la de les formacions ω-saturades. Açò
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se segueix del fet que existeixen formacions de Baer que no són ω-saturades
per a cap conjunt no buit ω de primers. La següent pregunta sorgeix de
manera natural:

Considerem un conjunt de nombres primers ω. Es pot asse-
gurar l’existència d’una classe X(ω) de grups simples tal que
char

(
X(ω)

)
= π

(
X(ω)

)
que complisca que una formació és ω-

saturada si, i només si, és X(ω)-saturada?

Provem mitjançant un exemple que la resposta és negativa. En el següent
resultat, que apareix en [BBE06; Chapter 3] i [BBCSss], provem que una
formació X-local F sempre conté una formació ω-local, on ω = char X, que
té la propietat de ser la formación ω-local més gran continguda en F.

Teorema. Considerem una classe de grups simples X tal que ω = π(X) =
char X. Considerem una formació X-local F = LFX(F ). Aleshores la forma-
ció ω-local Fω = LFω(f), on f(p) = F (p) per a tot p ∈ ω i f(ω′) = F, és la
formación ω-local més gran continguda en F.

Com a corol.lari, obtenim els següents resultats:

Corol.lari. Considerem un conjunt de primers ω i una formació F composta
de grups ω-separables. Aleshores F és ω-local si, i només si, F és X(ω)-local.

Corol.lari. Tota formació Baer-local conté una formació local maximal res-
pecte de la inclusió.

A més a més, donem condicions per assegurar que una formació X-local
és ω-local per a ω = char X, com mostra el següent resultat. En l’enunciat,
f denota la X-función formación més petita que defineix F.

Teorema ([BBCSss]). Siga F = LFX(f) una formació X-local i ω = char X.
Les següents condicions són equivalents:

1. F és ω-local.

2. G/ cG(H/K) ∈ f(p) per a cada G ∈ F i cada X′-factor principal H/K
de G tal que p ∈ π(H/K) ∩ ω.

3. f(S) ⊆ f(p) per a cada S ∈ X′ i p ∈ π(S) ∩ ω.

4. Spf(S) ⊆ F per a cada S ∈ X′ i p ∈ π(S) ∩ ω.
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Donades dues classes de grups Y i Z, es pot definir la classe producte de
la següent manera:

YZ = (G ∈ E | existeix un subgrup normal N de G

tal que N ∈ Y i G/N ∈ Z).

Tanmateix, aquesta classe no és en general una formació quan Y i Z

són formacions. Es pot modificar la definició anterior per assegurar que açò
śı ocòrrega, és a dir, que la classe producte de dues formacions és de nou
una formació. Si F i G són formacions, el producte formació o producte de
Gaschütz de F i G és la classe F ◦G aix́ı definida:

F ◦G := (G ∈ E | GG ∈ F).

És conegut el fet que el producte formació de dues formacions locals
és de nou una formació local (vegeu [DH92; IV, 3.13 i 4.8]). Tanmateix, el
producte formació de dues formacions X-locals no és en general una formació
X-local. Per tant, és natural preguntar-se el següent:

Quines condicions podem exigir a dues formacions F i G per
assegurar que F ◦G és una formació X-local?

Aquesta qüestió, que ja va ser estudiada per Salomon en [Sal83] per a
formacions Baer-locals, és el centre del caṕıtol 3 de la tesi. Els nostres
resultats han sigut publicats en [BBCER06].

Si K és una classe de grups i p ∈ char X, definim la classe

KX(p) := Sp form
(
G/CG(H/K) | G ∈ K

i H/K és un Xp-factor principal de G
)
.

Tinguem en compte que KX(p) = ∅ si no existeix cap grup G ∈ K que tinga
algun Xp-factor principal.

El primer resultat del caṕıtol afirma que si H = F ◦ G, on F i G són
formacions no buides i F és una formació X-local, aleshores la formació X-
local més petita formX(H) que conté H es pot definir mitjançant la X-funció
formació h donada per:

h(p) =

{
FX(p) ◦G if Sp ⊆ F,

GX(p) if Sp 6⊆ F,
si p ∈ char X;

h(S) = H si S ∈ X′.

Considerem H = F ◦G, on F i G són formacions no buides. Diem que la
frontera b(H) de H és XG-lliure si cada grup G ∈ b(H) tal que Soc(G) és un
p-grup per a algun primer p ∈ char X comple que G/CG

(
Soc(G)

)
/∈ GX(p).

El següent teorema és un dels resultats centrals del caṕıtol.
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Teorema. Considerem H = F ◦ G, on F i G són formacions no buides i
F és X-local. Aleshores H és una formació X-local si, i només si, b(H) és
XG-lliure.

Com a conseqüència d’aquest resultat obtenim condicions sota les quals
la formació producte H = F ◦G és X-local.

Teorema. Considerem H = F ◦G, on F i G són formacions no buides, F és
X-local i es compleix una de las dues condicions següents:

1. G és X-local.

2. SpG = G si p ∈ char X i FX(p) = ∅.

Suposem, a més a més, que si p ∈ char X, FX(p) = ∅ i Sp ⊆ G, aleshores
F ⊆ Ep′. Aleshores H és X-local.

Com que les formacions locals són les formacions X-locals quan X és la
classe de tots els grups simples, obtenim els següents resultats com a corol-
laris al teorema anterior:

Corol.lari. Suposem que se satisfà alguna de les condicions següents:

1. F és local i G és X-local.

2. F és local i SpG = G per a tot p ∈ char X tal que FX(p) = ∅.

Aleshores H és una formació X-local.

Corol.lari ([DH92; IV, 3.13 y 4.8]). La formació H és local si se satisfà
alguna de les següents condicions

1. F i G són locals.

2. F és local i SpG = G per a tot primer p tal que FJ(p) = ∅.

A la secció següent ens plantegem la següent pregunta:

Quines condicions cal imposar a les formacions F i G per poder
assegurar que H = F ◦G és X-local?

Amb el següent resultat responem a la qüestió:

Teorema. Considerem una formació no buida K. Hom té que K és X-local
si, i només si, se satisfan les condicions següents:

1. KX(p) ⊆ K per a tot p ∈ char X.
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2. Si G ∈ b(K), N = Soc(G) ∈ Sp on p ∈ char X i K es el producte
semidirecte natural [N ]

(
G/CG(N)

)
, aleshores K ∈ b(K).

Per acabar, estudiem quan el producte de dues formacions és una forma-
ció p-local. Obtenim el següent teorema:

Teorema. Considerem H = F ◦G, on F i G són dues formacions no buides,
i un primer p. Les següents afirmacions són equivalents:

1. H és una formació p-local.

2. HJ(p) ⊆ G o SpHJ(p)G ⊆ F.

Shemetkov va proposar la següent questió en The Kourovka Notebook
([MK90]):

Qüestió 10.72 (Shemetkov). Proveu la indescomponibilitat de la
formació dels p-grups, Sp, on p és un primer, com a producte de
dues subformacions no trivials.

Shemetkov i Skiba van provar la conjectura a [SS89]. Como a conseqüència
del teorema anterior, en demostrem a la fi del caṕıtol 3 una versió més
general.

Diem que una formació F és una formació X-local 1-generada si existeix
un grup G tal que F és la formació X-local més petita que conté G. El
punt de partida del caṕıtol 4 és la pregunta següent, plantejada per Skiba a
[MK92].

Si H = F ◦G és una formació de Baer 1-generada, on F i G són
formacions no trivials, és F una formació de Baer?

El mateix Skiba va donar una resposta negativa a la pregunta, però la
següent qüestió encara quedava oberta:

Suposem que H = F ◦G és la formació de Baer generada per un
grup G, on F i G són dues formacions no trivials. És F una
formació de Baer si es compleix que H 6= G o H 6= SpH per a tot
primer p?

En aquest caṕıtol donem resposta afirmativa a una pregunta més general,
ja que plantegem el problema en termes de formacions X-locals. El primer
resultat és el següent:
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Teorema ([BBCER03; Teorema 1]). Suposem que H = F◦G és una formació
X-local generada per un grup G. Si F i G són no trivials i H 6= G o SpH 6= H

per a tot primer p ∈ char X, aleshores F és X-saturada.

Tot seguit donem una descripció completa de les factoritzacions d’una
formació X-local 1-generada. Els resultats apareixen a [BBC].

Teorema. Considerem una formació X-local H = F ◦ G tal que π(F) ⊆ π.
Suposem que F i G són formacions no trivials i H 6= G o SpH 6= H per a tot
primer p ∈ π.

Aleshores H és una formació X-local 1-generada si, i només si, se satisfan
les propietats següents:

1. F és i una formació local 1-generada metanilpotent.

2. KA(G)∩X ⊆ F, on KA(G) és la classe de tots els factors de composició
dels grups de G.

3. HX(p) = FX(p) ◦G per a tot primer p ∈ π.

4. Si A ∈ F i B ∈ G, aleshores π
(
A/CXp(A)

)
∩π(B) = ∅ per a tot p ∈ π.

5. Si F no és π-nilpotent, aleshores G és abeliana i 1-generada.

6. Si F és π-nilpotent, aleshores G és 1-generada o

G/Op(G) := form(G/Op(G) | G ∈ G)

és 1-generada per a tot p ∈ π.

Si X és la classe de tots els grups simples, obtenim el principal resultat
de [Ski83] com a corol.lari al nostre teorema. Per a la classe X de tots els
grups simples abelians, es dedueix el teorema central de [GS01].

Una factorització d’una formació no trivial H com a producte H = H1 ◦
· · · ◦ Ht, donde H1, . . . , Ht són formacions, s’anomena irreductible si H 6=
H1 ◦ · · · ◦ Hi−1Hi+1 ◦ · · · ◦ Ht per a tot i = 1, 2, . . ., t. Com a culminació
al caṕıtol, estudiem com són les factoritzacions irreductibles d’una formació
X-local 1-generada. Obtenim el següent teorema i estenem els principals
resultats de [Ski92] i [GS03].

Teorema. Si H = H1 ◦ · · · ◦ Ht és una factoritzación irreductible d’una
formació X-local 1-generada i π(Hi) ⊆ π per a tot i = 1, 2, 3, aleshores t ≤ 3,
i si t = 3, aleshores H1 i H2 són nilpotents, H3 és abeliana i π(H2)∩π(H3) =
∅.
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Apéndice B

Resumen

Todos los grupos considerados a lo largo del trabajo son finitos. Las prin-
cipales referencias bibliográficas utilizadas son el libro de Doerk y Hawkes
([DH92]) y el de Ballester y Ezquerro ([BBE06]).

La tesis se enmarca dentro de la teoŕıa de formaciones de grupos. Una
formación es una clase de grupos que cumple las dos siguientes propiedades:

• Si G ∈ F y N E G, entonces G/N ∈ F.

• Si G/N , G/M ∈ F, entonces G/(M ∩N) ∈ F.

Decimos que una formación F es saturada si, para cada grupo G, la
condición G/Φ(G) ∈ F implica que G ∈ F, donde Φ(G) es el subgrupo de
Frattini de G.

Una función formación f asocia a cada número primo p una formación
f(p), que puede ser vaćıa. Si f es una función formación, entonces la for-
mación local LF(f) definida por f es la clase de todos los grupos G que
satisfacen la siguiente propiedad:

• Si H/K es un factor principal de G, entonces G/CG(H/K) ∈ f(p)
para todo p ∈ π(H/K).

Una formación F es local si existe una función formación f tal que F =
LF(f). Gaschütz introdujo este concepto en [Gas63], lo que le permit́ıa cons-
truir una gran familia de formaciones saturadas. De hecho, el teorema de
Gaschütz-Lubeseder-Schmid, que es uno de los resultados más relevantes en
teoŕıa de formaciones, afirma que con el método anterior se pueden obtener
todas las formaciones saturadas. Este teorema fue probado por Gaschütz y
Lubeseder en el universo resoluble. Posteriormente, Schmid probó que esta
restricción es innecesaria.
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106 APÉNDICE B. RESUMEN

Baer generalizó de distinta manera el teorema anterior en el universo
finito. Usó un concepto diferente de formación local, tratando los factores
principales no abelianos con más flexibilidad que los abelianos. Esto lo llevó a
encontrar una familia de formaciones, la de las formaciones Baer-locales, que
contiene a las locales. Estas dos familias coinciden en el universo resoluble.
Una función de Baer asocia a cada grupo simple J una clase de grupos
f(J), de forma que f(Cp) es una formación para todo número primo p. Si
f es una función de Baer, entonces la formación Baer-local o formación de
Baer BLF(f) definida por f es la clase de todos los grupos G que satisfacen
la siguiente propiedad:

• Si H/K es un factor principal de G, entonces G/CG(H/K) ∈ f(J),
donde J es el factor de composición de H/K.

Las formaciones Baer-locales también fueron estudiadas por Shemetkov
(véase [She75]), bajo el nombre de formaciones de composición (composition
formations). Decimos que una formación F es resolublemente saturada si,
para cada grupo G, la condición G/Φ(GS) ∈ F implica que G ∈ F, donde GS

es el radical resoluble de G. Baer probó que una formación es resolublemente
saturada si, y sólo si, es Baer-local.

Con propósito de presentar una generalización común de los teoremas
de Gaschütz-Lubeseder-Schmid y de Baer, Förster intodujo en [För85] el
concepto de formación X-local, donde X es una clase de grupos simples que
cumple que π(X) = char X, donde

π(X) := {p ∈ P | existe G ∈ X tal que p ∈ π(G)}

y
char X := {p ∈ P | Cp ∈ X}.

Llamamos J a la clase de todos los grupos simples. Si Y es una subclase
de J, Y′ denota la clase J \ Y. Utilizamos e Y para denotar la clase de
todos los grupos cuyos factores de composición están en Y. Todo grupo G
posee un subgrupo normal que pertenece a e Y y que contiene a todos los
subgrupos normales de G en e Y, es decir, un e Y-radical. Para referirnos
a él escribimos OY(G) o bien Ge Y. Si H/K es un factor principal de un
grupo G y H/K ∈ e Y, decimos que H/K es un Y-factor principal de G.
Escribimos Yp para denotar la clase de los grupos simples de Y cuyo orden
es divisible por p, donde p es un número primo. Si Y es una clase de grupos,
la menor formación que contiene a Y se denota por form(Y).

Una X-función formación f es una aplicación que asocia una formación,
posiblemente vaćıa, a cada grupo simple del conjunto (char X) ∪ X′. Si f es
una X-función formación, LFX(f) se define como la clase de todos los grupos
G que satisfacen las dos siguientes propiedades:
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1. Si p ∈ char(X) y H/K es un Xp-factor principal de G, entonces
G
/

CG(H/K) ∈ f(p).

2. Si L E G, G/L es monoĺıtico y Soc(G/L) es un X′-factor principal
de G, entonces G/L ∈ f(E), donde E es el factor de composición de
Soc(G/L).

Förster demuestra en [För85] que la clase LFX(f) es una formación. Una
formación F de grupos finitos es X-local si existe una X-función formación f
tal que F = LFX(f). Si Y es una clase de grupos, la menor formación X-local
que contiene a Y se denota por formX(Y).

Si X es la clase de todos los grupos simples, las formaciones X-locales
son exactamente las formaciones locales. Si X es la clase de los grupos sim-
ples abelianos, se demuestra que las formaciones X-locales coinciden con las
Baer-locales. En el caṕıtulo 1 de la tesis, presentamos resultados básicos de
formaciones X-locales y caracterizamos estas formaciones como las clases de
grupos con factores principales centrales generalizados. Si f es una X-función
formación, definimos el concepto de factor principal f -central y probamos el
siguiente teorema:

Teorema ([BBCSss]). Consideremos una formación X-local F y una X-
función formación f que defina a F. Entonces F coincide con la clase de los
grupos cuyos factores principales son f -centrales.

Förster también introdujo en [För85] un subgrupo X-Frattini Φ∗X(G) para
cada grupo G. Definió el concepto de X-saturación de la manera natural y
probó que las formaciones X-saturadas son exactamente las X-locales. A
pesar de que los teoremas de Gaschütz-Lubeseder-Schmid y Baer se deducen
del teorema de Förster, la definición que utiliza de X-saturación no es la más
natural y la demostración del teorema de Baer no se deduce fácilmente de
su resultado. En la segunda sección del caṕıtulo 1, introducimos un nuevo
subgrupo de tipo Frattini ΦX(G) para cada grupo G asociado a la clase X.
Se define de la siguiente manera:

• Consideremos un número primo p. Decimos que un grupo G pertenece
a la clase AXp(P2) si se cumple:

1. Φ(G) es p-elemental abeliano.

2. G/Φ(G) es un grupo primitivo con un único subgrupo normal
minimal no abeliano, es decir, G/Φ(G) es un grupo primitivo de
tipo 2.

3. Soc
(
G/Φ(G)

)
∈ e X \ Ep′
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4. Ch
G

(
Φ(G)

)
≤ Φ(G), donde

Ch
G

(
Φ(G)

)
:=
⋂
{CG(H/K) | H/K es un factor principal de G

tal que H ≤ Φ(G)}

• El subgrupo X-Frattini de G, ΦX(G), se define como

ΦX(G) :=

{
Φ
(
OX(G)

)
si G /∈ AXp(P2) para todo p ∈ char(X),

Φ(G) en otro caso.

• Una formación F se dice X-saturada si G/ΦX(G) ∈ F siempre implica
que G ∈ F.

Este subgrupo X-Frattini proporciona una definición de X-saturación más
sencilla que la de Förster y más cercana a la definición natural. Al final del
caṕıtulo probamos que las formaciones X-saturadas, con esta nueva defini-
ción de X-saturación, también coinciden con las formaciones X-locales de
Förster (véase [BBCER05]).

Shemetkov y Skiba introdujeron el concepto de formación ω-local, donde
ω es un conjunto de números primos. Un ω-satélite local f asocia a cada
elemento de ω ∪ {ω′} una formación, que puede ser vaćıa. El śımbolo Gωd

denota el mayor subgrupo normal N de G tal que ω ∩ π(H/K) 6= ∅ para
todo factor de composición H/K de N (si ω ∩ π

(
Soc(G)

)
= ∅, definimos

Gωd = 1). Si f es un ω-satélite local, entonces LFω(f) denota la clase de
grupos G que satisfacen las dos siguientes condiciones:

1. Si H/K es un factor principal de G y p ∈ π(H/K) ∩ ω, entonces
G/CG(H/K) ∈ f(p).

2. G/Gωd ∈ f(ω′).

Se dice que una formación F es ω-local si existe un ω-satélite local f tal
que F = LFω(f). En este caso, se dice que f es un ω-satélite local de F. Si
p es un número primo, se dice que una formación F es p-saturada si G ∈ F

siempre que G/Op(G) ∩ Φ(G) ∈ F. Si ω es un conjunto de primos, decimos
que F es ω-saturada si F es p-saturada para cada primo p ∈ ω.

En [SS00] se prueba el siguiente teorema:

Teorema. Una formación F es ω-saturada si, y sólo si, F es ω-local.
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Si ω es el conjunto de todos los números primos, las formaciones ω-
locales son exactamente las locales, por lo que la idea de formación ω-local
es otro acercamiento al concepto de formación local. En el segundo caṕıtulo
estudiamos la relación entre las formaciones X-locales y las formaciones ω-
locales. En él se incluyen algunos resultados de [BBCER03]. Si ω es un
conjunto de números primos y F una formación ω-saturada, se sigue que F

es Xω-saturada, donde Xω es la clase de los ω-grupos simples. Sin embargo, la
familia de las formaciones Xω-saturadas no coincide en general con la de las
formaciones ω-saturadas. Esto se sigue del hecho de que existen formaciones
de Baer que no son ω-saturadas para ningún conjunto no vaćıo ω de primos.
La siguiente pregunta surge de forma natural:

Consideremos un conjunto de números primos ω. ¿Se puede ase-
gurar la existencia de una clase X(ω) de grupos simples tal que
char

(
X(ω)

)
= π

(
X(ω)

)
que cumpla que una formación es ω-

saturada si, y sólo si, es X(ω)-saturada?

Probamos mediante un ejemplo que la respuesta es negativa. En el si-
guiente resultado, que aparece en [BBE06; Chapter 3] y [BBCSss], probamos
que una formación X-local F siempre contiene una formación ω-local, don-
de ω = char X, que tiene la propiedad de ser la mayor formación ω-local
contenida en F.

Teorema. Consideremos una clase de grupos simples X tal que ω = π(X) =
char X. Consideremos una formación X-local F = LFX(F ). Entonces la
formación ω-local Fω = LFω(f), donde f(p) = F (p) para todo p ∈ ω y
f(ω′) = F, es la mayor formación ω-local contenida en F.

Como corolario, obtenemos los siguientes resultados:

Corolario. Consideremos un conjunto de primos ω y una formación F

compuesta de grupos ω-separables. Entonces F es ω-local si, y sólo si, F es
X(ω)-local.

Corolario. Toda formación Baer-local contiene una formación local maxi-
mal respecto a la inclusión.

Además, damos condiciones para asegurar que una formación X-local
es ω-local para ω = char X, como muestra el siguiente resultado. En el
enunciado, f denota la menor X-función formación que define F.

Teorema ([BBCSss]). Sea F = LFX(f) una formación X-local y ω = char X.
Las siguientes condiciones son equivalentes:
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1. F es ω-local.

2. G/ cG(H/K) ∈ f(p) para cada G ∈ F y cada X′-factor principal H/K
de G tal que p ∈ π(H/K) ∩ ω.

3. f(S) ⊆ f(p) para cada S ∈ X′ y p ∈ π(S) ∩ ω.

4. Spf(S) ⊆ F para cada S ∈ X′ y p ∈ π(S) ∩ ω.

Dadas dos clases de grupos Y y Z, se puede definir la clase producto de
la siguiente manera:

YZ = (G ∈ E | existe un subgrupo normal N de G

tal que N ∈ Y y G/N ∈ Z).

Sin embargo, esta clase no es en general una formación cuando Y y Z

son formaciones. Se puede modificar la definición anterior para asugurar que
esto śı ocurre, es decir, que la clase producto de dos formaciones es de nuevo
una formación. Si F y G son formaciones, el producto formación o producto
de Gaschütz de F y G es la clase F ◦G aśı definida:

F ◦G := (G ∈ E | GG ∈ F).

Es conocido el hecho de que el producto formación de dos formaciones
locales es de nuevo una formación local (véase [DH92; IV, 3.13 y 4.8]).
Sin embargo, el producto formación de dos formaciones X-locales no es en
general una formación X-local. Por tanto, es natural preguntarse lo siguiente:

¿Qué condiciones podemos exigir a dos formaciones F y G para
asegurar que F ◦G es una formación X-local?

Esta cuestión, que ya fue estudiada por Salomon en [Sal83] para forma-
ciones Baer-locales, es el centro del caṕıtulo 3 de la tesis. Nuestros resultados
han sido publicados en [BBCER06].

Si K es una clase de grupos y p ∈ char X, definimos la clase

KX(p) := Sp form
(
G/CG(H/K) | G ∈ K

y H/K es un Xp-factor principal de G
)
.

Tengamos en cuenta que KX(p) = ∅ si no existe nungún grupo G ∈ K que
tenga algún Xp-factor principal.

El primer resultado del caṕıtulo afirma que si H = F ◦ G, donde F y G

son formaciones no vaćıas y F es una formación X-local, entonces la menor
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formación X-local formX(H) que contiene a H se puede definir mediante la
X-función formación h dada por:

h(p) =

{
FX(p) ◦G if Sp ⊆ F,

GX(p) if Sp 6⊆ F,
si p ∈ char X;

h(S) = H si S ∈ X′.

Consideremos H = F◦G, donde F y G son formaciones no vaćıas. Decimos
que la frontera b(H) de H es XG-libre si cada grupo G ∈ b(H) tal que Soc(G)
es un p-grupo para algún primo p ∈ char X cumple que G/CG

(
Soc(G)

)
/∈

GX(p).
El siguiente teorema es uno de los resultados centrales del caṕıtulo.

Teorema. Consideremos H = F◦G, donde F y G son formaciones no vaćıas
y F es X-local. Entonces H es una formación X-local si, y sólo si, b(H) es
XG-libre.

Como consecuencia de este resultado obtenemos condiciones bajo las que
la formación producto H = F ◦G es X-local.

Teorema. Consideremos H = F ◦ G, donde F y G son formaciones no
vaćıas, F es X-local y se cumple una de las dos condiciones siguientes:

1. G es X-local.

2. SpG = G si p ∈ char X y FX(p) = ∅.

Supongamos además que si p ∈ char X, FX(p) = ∅ y Sp ⊆ G, entonces
F ⊆ Ep′. Entonces H es X-local.

Como las formaciones locales son las formaciones X-locales cuando X

es la clase de todos los grupos simples, obtenemos los siguientes resultados
como corolarios al teorema anterior:

Corolario. Supongamos que se cumple alguna de las siguientes condiciones:

1. F es local y G es X-local.

2. F es local y SpG = G para todo p ∈ char X tal que FX(p) = ∅.

Entonces H es una formación X-local.

Corolario ([DH92; IV, 3.13 y 4.8]). La formación H es local si se cumple
alguna de las siguientes condiciones
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1. F y G son locales.

2. F es local y SpG = G para todo primo p tal que FJ(p) = ∅.

En la siguiente sección nos planteamos la siguiente pregunta:

¿Qué condiciones hay que imponer a las formaciones F y G para
poder asegurar que H = F ◦G es X-local?

Con el siguiente resultado respondemos a la cuestión:

Teorema. Consideremos una formación no vaćıa K. Se tiene que K es X-
local si, y sólo si, se cumplen las siguientes condiciones:

1. KX(p) ⊆ K para todo p ∈ char X.

2. Si G ∈ b(K), N = Soc(G) ∈ Sp donde p ∈ char X y K es el producto
semidirecto natural [N ]

(
G/CG(N)

)
, entonces K ∈ b(K).

Por último, estudiamos cuándo el producto de dos formaciones es una
formación p-local. Obtenemos el siguiente teorema:

Teorema. Consideremos H = F ◦ G, donde F y G son dos formaciones no
vaćıas, y un primo p. Las siguientes afirmaciones son equivalentes:

1. H es una formación p-local.

2. HJ(p) ⊆ G o SpHJ(p)G ⊆ F.

Shemetkov propuso la siguiente cuestión en The Kourovka Notebook
([MK90]):

Cuestión 10.72 (Shemetkov). Probar la indescomponibilidad de
la formación de los p-grupos, Sp, donde p es un primo, como
producto de dos subformaciones no triviales.

Shemetkov y Skiba probaron la conjetura en [SS89]. Como consecuencia del
teorema anterior, demostramos al final del caṕıtulo 3 una versión más general
de la misma.

Decimos que una formación F es una formación X-local 1-generada si
existe un grupo G tal que F es la menor formación X-local que contiene a
G. El punto de partida del caṕıtulo 4 es la siguiente pregunta, planteada por
Skiba en [MK92].

Si H = F ◦ G es una formación de Baer 1-generada, donde F y
G son formaciones no triviales, ¿es F una formación de Baer?
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El propio Skiba dio una respuesta negativa a la pregunta, pero la siguien-
te cuestión todav́ıa quedaba abierta:

Supongamos que H = F◦G es la formación de Baer generada por
un grupo G, donde F y G son dos formaciones no triviales. ¿Es
F una formación de Baer si se cumple que H 6= G o H 6= SpH

para todo primo p?

En este caṕıtulo damos respuesta afirmativa a una pregunta más general,
ya que planteamos el problema en términos de formaciones X-locales. El
primer resultado es el siguiente:

Teorema ([BBCER03; Teorema 1]). Supongamos que H = F ◦ G es una
formación X-local generada por un grupo G. Si F y G son no triviales y
H 6= G o SpH 6= H para todo primo p ∈ char X, entonces F es X-saturada.

A continuación damos una descripción completa de las factorizaciones de
una formación X-local 1-generada. Los resultados aparecen en [BBC].

Teorema. Consideremos una formación X-local H = F◦G tal que π(F) ⊆ π.
Supongamos que F y G son formaciones no triviales y H 6= G o SpH 6= H

para todo primo p ∈ π.

Entonces H es una formación X-local 1-generada si, y sólo si, se cumplen
las siguientes propiedades:

1. F es una formación local 1-generada metanilpotente.

2. KA(G) ∩ X ⊆ F, donde KA(G) es la clase de todos los factores de
composición de los grupos de G.

3. HX(p) = FX(p) ◦G para todo primo p ∈ π.

4. Si A ∈ F y B ∈ G, entonces π
(
A/CXp(A)

)
∩π(B) = ∅ para todo p ∈ π.

5. Si F no es π-nilpotente, entonces G es abeliana y 1-generada.

6. Si F es π-nilpotente, entonces G es 1-generada o

G/Op(G) := form(G/Op(G) | G ∈ G)

es 1-generada para todo p ∈ π.
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Si X es la clase de todos los grupos simples, obtenemos el principal resul-
tado de [Ski83] como corolario a nuestro teorema. Para la clase X de todos
los grupos simples abelianos, se deduce el teorema central de [GS01].

Una factorización de una formación no trivial H como producto H =
H1 ◦ · · · ◦ Ht, donde H1, . . . , Ht son formaciones, se llama irreducible si
H 6= H1 ◦ · · · ◦Hi−1Hi+1 ◦ · · · ◦Ht para todo i = 1, 2, . . ., t. Como culminación
al caṕıtulo, estudiamos cómo son las factorizaciones irreducibles de una for-
mación X-local 1-generada. Obtenemos el siguiente teorema y extendemos
los principales resultados de [Ski92] y [GS03].

Teorema. Si H = H1 ◦ · · · ◦ Ht es una factorización irreducible de una
formación X-local 1-generada y π(Hi) ⊆ π para todo i = 1, 2, 3, entonces
t ≤ 3, y si t = 3, entonces H1 y H2 son nilpotentes, H3 es abeliana y
π(H2) ∩ π(H3) = ∅.
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