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SUMMARY

The scaling of the conventional MOSFETs has led these devices to the
nanoscale to increase both the performance and the number of components per
chip. In this process, the so-called “Short Channel Effects” have arisen as a
limiting factor. To extend the use of the bulk MOSFETs, the most effective
ways of suppressing such effects are the reduction of the gate oxide thickness
and increasing of the channel doping concentration. When the gate oxide
thickness is reduced to a few atomic layers, quantum mechanical tunneling is
responsible of a huge increase in the gate leakage current impairing the normal
operation of MOSFETs. This has made mandatory the use of high permittivity
materials or high-k as gate dielectrics.

Despite the proposed solutions, reduction of the physical dimensions of the
conventional MOSFETSs cannot be maintained. To keep the technological trend,
new MOSFET structures have been suggested such as ultra-thin body Multi-
Gate MOSFETs. In particular, the Double-Gate MOSFETs is considered as a
promising MG structure for its several qualities and advantages in scaling.

This thesis focuses on the modeling of Double-Gate MOSFET and, in particular,
on the modeling of the gate leakage current critically affecting the power
consumption. First we develop a compact quantum model for both the
electrostatic potential and the electric charge in symmetric double-gate
MOSFET with undoped thin body. Then, this quantum model is used to propose
an analytical compact model for the direct tunnelling current with SiO, as gate
dielectric, firstly, and later assuming a dual layer consisting of a SiO, interfacial
layer and a high-k material.

Finally, an accurate method for the calculation of the gate tunnelling current is
developed. It is based on Absorbing Boundary Conditions techniques and, more
specifically, on the Perfectly Mached Layer (PML) method.

This thesis is motivated by the recommendations given by the “International
Technology Roadmap of Semiconductors” (ITRS) about the need for the
modeling and simulation of multi-gate semiconductor structures.






RESUM

L’escalat dels transistors MOSFET convencionals ha portat a aquests dispositius
a la nanoescala per incrementar tant les seves prestacions com el nombre de
components per xip. En aquest process d’escalat, els coneguts “Short Channel
Effects” representen una forta limitaci6. La forma més efectiva de suprimir
aquests efectes 1 aixi estendre 1’us del MOSFET convencional, és la reducci6 del
gruix de I’0xid de porta i I’augment de la concentracié de dopants al canal. Quan
el gruix d’oxid de porta es redueix a unes quantes capes atdmiques, apareix
I’efecte tinel mecano-quantic d’electrons, produint un gran augment en el
corrent de fuita, perjudicant la normal operaci6 dels MOSFETs. Aixo ha fet
obligatori I’ls de materials d’alta permitivitat o materials high-x en els
dieléctrics de porta.

Tot i1 les solucions proposades, la reduccido de les dimensiones fisiques del
MOSFET convencional no pot ser mantinguda de forma indefinida i per
mantenir la tendéncia tecnologica s’han suggerit noves estructures com ara
MOSFETs multi-porta de cos ultra-prim. En particular, el MOSFET de doble
porta és considerat com una estructura multi-porta prometedora per les seves
diverses qualitats i avantatges en ’escalat.

Aquesta tesi s’enfoca en la modelitzacio de dispositius MOSFET de doble porta
i, en particular, en la modelitzaci6 del corrent tinel de porta que afecta
criticamente al consum de poténcia del transistor. Primerament desenvolupem
un model quantic compacte tant per al potencial electrostatic com per a la
carrega eléctrica en el transistor de doble-porta simétric amb cos no dopat.
Després, aquest model quantic s’utilitza per proposar un model analitic
compacte per al corrent tinel directe amb SiO, com dieléctric de porta,
primerament, i després amb una doble capa composta de SiO, com a capa
interfacial i un material “high-x”. Finalment es desenvolupa un metode precis
per calcular el corrent tinel de porta. El meétode es basa en l’aplicacio de
condicions de frontera absorbents i, més especificament, en el meétode PML.

Aquesta tesi estda motivada per les recomanacions fetes pel “International
Technology Roadmap of Semiconductors” (ITRS) sobre la necessitat existent de
modelatge i simulaci6 d’estructures semiconductores multi-porta.
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CHAPTER 1.

Introduction and Background

1.1 CMOS Technology Scaling

Throughout recent history, silicon-based microelectronics has experienced
tremendous growth and performance improvements since the innovative concept
of integrated circuit (IC) was invented by J. Kilby in late 1950’s [1]. The
computational power is enhanced at a tremendous rate with cost reduction,
resulting in incredible reduction of cost-per-computation with higher
computational performance in data processing and memory functions. In 1965,
Gordon Moore made a very famous and important observation: the complexity
of ICs approximately doubles every year (Moore later refined the period to two
years) [2]. This estimation is the well known “Moore’s Law” [3]. Over the past
four decades, the scaling of the conventional metal-oxide-semiconductor field-
effect transistor (MOSFET) has been accomplished with technology innovations
and led the device dimensions well into the nanometer era, allowing a great
integration as shown in Figurel-1.

“Scaling” refers to reduction of the lateral geometric dimensions of devices
and interconnect. This evolution of process technologies has brought new
benefits. However, the performance improvement by scaling the dimension of
conventional bulk MOSFET is approaching a limit.

A MOSFET device is considered to be short when the channel length is the
same order of magnitude as the depletion-layer widths of the source and drain
junction. As the channel length is reduced (scaling) to increase both the
operation speed and the number of component per chip, “Short Channel Effects”
(SCEs) arise as hurdles. In particular some different SCEs can be distinguished:
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1.1 CMOS Technology Scaling

threshold voltage roll-off, subthreshold swing degradation, drain-induced barrier
lowering (DIBL), surface scattering, velocity saturation, impact ionization and
hot electrons.

Moore’s Law - 2005

Transistors
Par Die

10

107
108 Ranium 2 Processor

Itanium ~ Processor
107 Pentium® 4 Processor

Pentium® Il Frocessor
1 Pentium® |l Processor
Pentiem®™ Processor
485™ Frocessor

# 1966 Data [Moore)]
Memory

& Microprocessor

1960 1065 1870 1876 1GE0 1985 1600 19956 2000 HO5 2010

Figure 1-1
Moore's Law has delivered exponential increases in the number of transistors integrated into
microprocessors and other leading platform ingredients. [Source: Intel Corporation]

In conventional bulk MOSFET technologies, the most effective ways of
suppressing SCE are the reduction of the gate oxide thickness (T,,) and the
increase of the channel doping concentration (Ny) [4, 5]. The former is aimed to
increase the gate capacitance, thus enhancing the electrostatic control of the gate
over the channel. The latter is desired to minimize depletion depths of the
source-to-channel and drain-to-channel junctions, preventing the junction
electric fields from penetrating too much into the channel and forming an
undesired leakage path relatively distant from the gate.
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CHAPTER 1. Introduction and Background

Researchers in [6, 7] have shown that the gate oxide scaling to thicknesses
close to a few atomic layers gives rise to quantum mechanical tunneling
producing a sharp increase in gate leakage currents. The gate leakage current is
the current flowing into the gate of the transistor also called the tunneling
current. Other major causes of concern in further reduction of the SiO, thickness
include increased polysilicon gate depletion and gate dopant penetration into the
channel region, which leads to questions regarding dielectric integrity,
reliability, and stand-by power consumption. With scaling, gate leakage has
increased to undesirable values and will continue to increase at a much higher
rate mandating the use of dielectric materials with high electric permittivity or
high-« dielectrics [8]. This allows the actual thickness of the gate dielectric to be
increased while still maintaining the same electric field in the channel.

Specifically, the International Technology Roadmap for Semiconductors
(ITRS) [9] identifies that for 32nm technology node, gate oxide thickness is
nearly to 1nm. The direct tunneling current through the gate oxide of such small
thickness may become more of a problem especially in terms of the stand-by
power consumption [10]. In addition, abnormal degradation of the drive current
has been experimentally observed when the gate oxide thickness is less than
1.3nm [11]. Meanwhile, the channel doping concentration required for SCE
control in sub-32 nm bulk MOSFETs is expected to be a few times 10" cm™ and
above [12, 13]. These extremely high doping levels will lead to i) severe
degradation of the carrier mobility as the impurity scattering becomes dominant,
ii) severe threshold voltage variations because of random microscopic
fluctuations of dopant atoms both in numbers and in placement [14, 15], and iii)
increased junction band-to-band tunneling current [16]. In view of the
fundamental nature of both the gate direct tunneling current and random dopant
fluctuations, it becomes problematic to scale bulk MOSFETs much deeper into
the sub-32 nm technology regime while preserving good immunity to SCEs.

On the other hand, a major portion of semiconductor device production,
nowadays, is devoted to digital logic and one key theme is continued scaling of
the MOSFETs for leading-edge logic technology in order to maintain historical
trends of improved device performance. This scaling is driving the industry
toward a number of major technological innovations, including material and
process changes such as high-k gate dielectric, metal gate electrodes, strained
silicon channels, etc., and in the near future, new structures such as ultra-thin
body fully depleted SOI, multi-gate (MG) MOSFETs (Fig. 1-2), such as
FinFETs and alternate high-mobility channel materials [17] are expected to be
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1.1 CMOS Technology Scaling

incorporated. In particular, the Double-Gate MOSFETs is a promising MG
structure for its several qualities and advantages in scaling which will be
described in the next section. Besides, Double-Gate (DG) MOSFET actually is
the central device studied in this thesis.

] Dran b -]
. . Dirman

Buirsd axice

Buriad axide

Buried oxids
Silican ilican Silicon

4 Drain . Cirailn

Buried gaids

Buried axide

Siliggn Silicainy

Figure 1-2

The different ways in which the gate electrode can be wrapped around the channel region of a
transistor are shown. a, A silicon-on-insulator (SOI) fin field-effect transistor (FinFET). The 'hard
mask' is a thick dielectric that prevents the formation of an inversion channel at the top of the
silicon 'fin'. Gate control is exerted on the channel from the lateral sides of the device. b, SOI
triple-gate (or tri-gate) MOSFET. Gate control is exerted on the channel from three sides of the
device (the top, as well as the left and right sides). ¢, SOI II-gate MOSFET. Gate control is
improved over the tri-gate MOSFET shown in b because the electric field from the lateral sides of
the gate exerts some control on the bottom side of the channel. d, SOI Q-gate MOSFET. Gate
control of the bottom of the channel region is better than in the SOI II-gate MOSFET. The names
IT gate and Q gate reflect the shape of the gates. e, SOI gate-all-around MOSFET. Gate control is
exerted on the channel from all four sides of the device. f, A bulk tri-gate MOSFET. Gate control
is exerted on the channel from three sides of the device (the top, the left and the right). In this case,
there is no buried oxide underneath the device. Ref. [17].

Implementation of fully depleted SOI and multi-gate will be challenging.
Since such devices will typically have lightly doped channels, the threshold
voltage will not be controlled by the channel doping. The problems associated
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CHAPTER 1. Introduction and Background

with high channel doping and stochastic dopant variation in planar bulk
MOSFETs will be alleviated, but numerous new challenges are expected. These
innovations are expected to be introduced at a rapid pace, and hence
understanding, modeling, and implementing them into manufacturing in a timely
manner is expected to be a major issue for the industry [9].

For the long-term, when the transistor gate length is projected to scale below
10 nm and body (fin) thicknesses below 5 nm, the impact of quantum
confinement effects on such thin devices should be well understood.

The numerical modeling and simulation of semiconductor structures by
computer is a useful resource for the study and understanding of several
electronic phenomena, of which would otherwise have an incomplete
knowledge. In fact, in most cases, the simulated devices are ahead of the current
technology. Computer simulation allows, in a fast way, to explore new
geometries and sizes that could be manufactured in the future.

Modeling and simulation in semiconductor technology is one of the few
enabling methodologies that can reduce development cycle times and cost. One
of the topical areas of Modeling and Simulation of the ITRS is the Device
Modeling which presents as a difficult challenge the nanoscale devices
simulation capability: methods, models and algorithms. In particular it is
necessary modeling for gate stacks with ultra-thin/high-x dielectrics for several
channel materials with respect to electrical permittivity, built-in charge,
influence on workfunction by interface interaction with metals, reliability,
carrier transport and tunneling currents. As mentioned before, gate dielectrics
have become so thin that tunneling gate current is today an important design
factor. Therefore, a comprehensive quantum modeling of the entire gate stack
(channel, dielectric and electrode) is needed to represent the behavior of oxides
that are only a few atomic layers thick. Since the adoption of high-k dielectrics
and metals, details of tunneling and charge transport in the dielectric, effective
dielectric constant of complex dielectric stacks, interfaces states and dipoles, and
charge and trap distribution in high-k materials must be included urgently.
Simulations must also be applicable beyond standard planar CMOS.
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1.2 Double-Gate MOSFET

1.2 Double-Gate MOSFET

DG CMOS offers distinct advantages for scaling to very short gate lengths.
Furthermore, adoption of gate dielectrics with permittivity substantially greater
than that of SiO, (high-x materials) may be deferred if a DG architecture is
employed. Recently, through use of delta devices, now commonly referred to as
the FinFET [18], significant advantages in DG device technology and
performance have been demonstrated. Fabrication of FinFET is very close to
that conventional CMOS process, with only minor disruptions, offering the
potential for a rapid deployment to manufacturing. Planar products designs have
been converted to FinFET without disruption to the physical area, thereby
demonstrating its compatibility with today’s planar CMOS design methodology
and automation techniques [19].

CMOS technology scaling has traversed many anticipate barriers over the
past two decades to rapidly progress from 2um to sub 100nm rules, as discussed
in the article by Chuang et.al. [20]. Two obstacles, namely subthreshold and gate
dielectric leakage become the dominant barrier for further CMOS scaling, even
for highly leakage-tolerant applications such as microprocessors.

DG MOSFET is composed of a thin silicon body sandwiched between the
gate dielectrics and contacts as Figure 1-3 shows. We will consider that the two
gates of the DG device are shorted giving rise to numerous advantages, such as
greater control of the gate over the channel thereby reducing SCEs [21, 22].
Such SCE limit the minimum channel length at which a FET is electrically well
behaved. Unlike bulk MOSFETs which require very high channel doping
(~10"/cm’ for sub-100nm devices), thin body DG MOSFETs show good short-
channel behavior even with undoped silicon as a channel.

As the channel length of a bulk MOSFET is reduced, the drain potential
begins to strongly influence the channel potential, leading to an inability to shut
off the channel current with the gate. This SCE is mitigated by use of thin gate
oxide (to increase the influence of the gate on the channel) and thin depletion
depth below the channel to the substrate, to shield the channel from the drain.
Gate oxide thickness has been reduced to the point where, at sub-100 nm
CMOS, the power drain from gate leakage is comparable to the power used for
switching of circuits. Thus, further reduction of the thickness would lead to
unreasonable power increases. Alternatively, further decrease of the depletion
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CHAPTER 1. Introduction and Background

region degrades gate influence on the channel and leads to a slower turn on of
the channel region.

Tox

y Channel Tsi

T
Vg

Figure 1-3
Cross section scheme of the symmetrical DG MOSFET considered in this work.

In DGs, the longitudinal electric field generated by the drain is better
screened from the source end of the channel due to proximity to the channel of
the second gate, resulting in reduced SCE such as the DIBL and improved
subthreshold swing (S). Therefore, as CMOS scaling becomes limited by
leakage currents, DG offers the opportunity to proceed beyond the performance
of single-gate (SG) bulk-silicon. Figure 1-4 shows MEDICI-predicted DIBL and
subthreshold swing for bulk silicon and (symmetrical) DG devices as a function
of the effective channel length L,f¢. Both the DIBL and subthreshold swing for
the DG device are dramatically improved relative to those of the bulk-silicon
counterpart [19].

From a bulk-silicon device design perspective, increased body doping
concentration could be employed to reduce DIBL; however, at some point it
would also increase the subthreshold swing, thereby requiring higher threshold
voltage to keep the subthreshold current adequately low. Similarly, decreasing
the body doping concentration could improve the subthreshold swing but
degrade DIBL. Hence a compromise is necessary for the bulk-silicon device
design. Note that, for a scaled bulk-silicon device, a highly doped channel must
be used to control severe SCEs, and lower S for extremely short L,¢r could not

be achieved by use of low channel doping.
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Figure 1-4

MEDICl-predicted DIBL and subthreshold swing versus effective channel length for DG and
bulk-silicon nFETs. The DG device is designed with an undoped body and a near-mid-gap gate
material [19].

In Figurel-5 simulations of the drain current Ips of DG and SG MOSFETs
shows the steeper turn on of the DG, which results from the gate coupling
advantage previously discussed. This property enables the use of lower threshold
voltage for the DG for a given off-current. As a direct result, higher drive
currents at lower power-supply voltages Vpp are attainable.

1.3 Thesis Organization

This thesis is organized in the following way: in Chapter 2 a compact quantum
model for both the electrostatic potential and electric charge in thin-film
symmetric double-gate MOSFET is presented. This is done from a classical
model proposed by Taur [23]. That quantum model is used in Chapter 3 to
propose an analytical compact model for the gate tunnelling current with silicon
dioxide as a gate dielectric, relying on a quadratic approximation to the
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CHAPTER 1. Introduction and Background

conduction band profile and the well-known WKB approximation to the
transmission probability. The Chapter 4 is devoted to extend the compact model
presented in Chapter 3 to take account a dielectric stack consisting of a SiO,
interfacial layer and a high permittivity dielectric material (high-k). Up to this
point the electronic states are considered fully bounded, namely, wave function
penetration is not allowed into the gate dielectrics. Finally and thinking in future
research for applied to other MG transistors such as cylindrical gate or quadruple
gate, an accurate method for the calculation of the gate tunnelling in DG
MOSFETs is studied and developed in Chapter 5, which is based on Absorbing
Boundary Conditions techniques and, more specifically, on the Perfectly
Mached Layer (PML) method.
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Figure 1-5

Simulation of DG and single-gate FETs, designed for equal subthreshold current density at Vg =
0V, illustrates the gain in drive current from improved channel control of the DG FET. Both gates
contribute to control of the channel potential in subthreshold, while in the bulk case the gate must
compete with the influence of the substrate [19].
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CHAPTER 2.

Explicit Quantum Potential and
Charge Model for Double-gate
MOSFETS

2.1 Outline

In this chapter, a compact quantum model for both the electrostatic potential
and electric charge in thin-film symmetric double-gate MOSFET with undoped
body is presented. As a novelty, both the resulting potential and charge have
explicit expressions on bias and geometrical parameters. A comparison has been
made between self-consistent numerical solutions of Schrodinger-Poisson
equations and our model results with close agreement. Finally, the range of
validity of the presented model is discussed.

MULTI-GATE  metal-oxide-semiconductor  field-effect  transistors
(MOSFETs), and in particular, DG MOSFETs, are a topic of intense interest in
order to improve the performance of complementary metal-oxide-semiconductor
(CMOS) devices [24]. Theoretically, DG MOSFETs can be scaled to
significantly shorter channel length than bulk MOSFETs for a given oxide
thickness [25] keeping a better control of short channel effects (SCE). Because
of such advantage, these devices are potential candidates as building blocks for
nanoscale circuits in the midterm, thus making the development of computer-
aided-design (CAD) compatible models an important issue. When the gate
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2.2 Classical Potential Model

length is scaled below deep submicron dimensions very large normal electric
fields at the Si/SiO, interface may appear. Therefore a significant bending of the
energy bands at the Si/SiO, interface is produced and the potential well becomes
narrow enough to quantize the motion of inversion layer carriers in the direction
perpendicular to the interface [26]. Due to the quantization, the energy levels are
splitted into subbands and the lowest of the allowed energy levels for electrons
in the well does not coincide with the bottom of the conduction band. On the
other hand, the electron density does not reach its maximum at the Si/SiO,
interface as semiclassical theory predicts [27, 28], but at some distance inside
the semiconductor. Thus, a reliable compact model for DG MOSFETs must take
into account quantum effects. Several works have been devoted to model the
electrostatic features of DG-MOSFETs, which can be categorized as: i) models
relying on a purely classical description [23] and [29-31], which do not treat
QM effects, i7) 1D and 2D self-consistent models which numerically solve the
coupled Schrodinger and Poisson equations [32-34], ideal for quantitative
understanding of the physics behind, but not suitable for compact modeling; iif)
models using a perturbation theory -even in strong inversion region-, for which
the structural confinement is taken into account, but which are not suitable to
deal with the strong field dependence [35, 36]; and iv) models based on a
quantum-mechanical variational approach [37], where the potential depends on
the inversion charge density, and thus requires the solution of an implicit
equation.

In this chapter, we extend the state-of-the-art by proposing a simple model for
the electrostatics of undoped DG-MOSFETs, which reproduces the results
obtained from accurate self-consistent quantum-mechanical (QM) solutions,
showing an explicit dependence with the gate voltage and geometrical
parameters, thus making it suitable for compact modeling.

2.2 Classical Potential Model

This section shows the main features of a classical model for the potential
and charge of the DG-MOSFET developed by Taur [6]. Figure 2-1 illustrates the
geometric parameters such as the silicon thickness Tg; and SiO, dielectric
thickness T,, and the schematic band diagrams of the device. Same voltage is
applied to the two gates having the same work function. At zero gate voltage ,
the position of the silicon bands is largely determined by the gate work function.

30



CHAPTER 2. Explicit Quantum Potential and Charge Model for Double-Gate

This is because as long as the thin silicon is lightly-doped and the depletion
charge is negligible, the bands remain essentially flat throughout the thickness of
the film. Since there is no contact to the silicon body, the energy levels are
referenced to the electron quasi-Fermi level or the conduction band of the n+
source—drain (not shown), represented by the long dotted line in Figure 2-1. As
the gate voltage increases toward the threshold voltage in Figure 2-1b, mobile
charge or electron density becomes appreciable and the conduction band of the
silicon body moves toward the conduction band of the source-drain. The silicon
bands will just float to the position dictated by the gate work function.
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Figure 2-1

Schematic band diagrams of a symmetric, undoped double-gate nMOSFET. At zero gate voltage
(a), the silicon bands are flat for the gate work function (slightly toward n than the midgap work
function) shown in the example. Near the threshold voltage (b), the conduction band of the silicon
body at the surface is bent to near the conduction band of the n source-drain (long dotted line).

By defining the coordinates and potential as in Figure 2-1, one can write
Poisson's equation for the silicon region with only the mobile charge (electron)
density as

2
o _ Lned/Vr (2.1)

2
dx Egi
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2.2 Classical Potential Model

where g is the electronic charge, €; is the permittivity of the silicon, n; is the
intrinsic carrier density, Vp = kgT/q is the thermal voltage with the
Boltzmann’s constant kg and the absolute temperature T. Here, we consider an
nMOSFET with ¢p/V; > 1 so that the hole density is negligible.

Using the symmetry boundary condition d¢p/dx|,—¢ = 0 and integrating
(2.1) twice, the electrostatic potential can be expressed as

d(x) = ¢pg — 2VrIn [cos( /% e¢°/2VTx>l (2.2)

valid for the entire range —Ts;/2 < x < Ty; /2 and where all the potentials are
referenced to the source Fermi level. Here, ¢y = ¢(x = 0) is the potential at the
center of the silicon film, to be solved later as a function of ;.

The surface potential ¢; = ¢p(x = Ty;/2) is then given by

¢s = Po — 2Vrin [cos( A% gbo/2VT %)l (2.3)

2€5iVrT

and it is also related to V; and T,, through the boundary condition at the Si/SiO,
interface:
€gi do
Vy—Ap — s =—T,

ox
€ox dx

T,
= ﬂ\/ZGSiani(e¢s/VT — e¢0/VT)
x

Tsi €
x—z [0)

(2.4)

Here Ag is the work function difference between the gate electrode and
intrinsic silicon. Given V, Eqgs. (2.3) and (2.4) are coupled equations that can be

solved for ¢¢ and ¢,.

The sheet density of mobile charge can be obtained from the Gauss’s law
and Qcp, = 2€4;(dp/dx) =, /> (the factor of two arises from the two surfaces).

Although this is a simple physics-based model for DG, it requires numerical
calculations, Newton-Raphson type, to solve the highly nonlinear Eq. (2.4). On
the other hand, quantum corrections should arise when very thin Si-film is
considered. For instance, Figure 2-2 shows, for two different geometries, the
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Figure 2-2
Comparison between classical [6] and quantum [38] models of the potentials in DG MOSFETs for
(a) Ts; = 5nm, T,, = 1nm; (b) T;; = 10nm, T,,, = 3nm.
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2.2 Classical Potential Model

differences between the potentials (surface and central) when these are
calculated using the classical model described in this section and when those are
calculate by means of a self-consistent 1D Schrédinger-Poisson (SP) solver [38].
Also, Figure 2-3 shows those differences to the mobile charge density Q.; as a
function of V. Clearly, the differences correspond to the quantization or
discretization of electronic states and to the decreasing of the density of states
(DOS). In next section we propose a simple compact model for the potentials
and charge which takes into account the quantum effects present in DG
MOSFETs.
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Figure 2-3
Comparison between classical [6] and quantum [38] models of mobile charge density in DG
MOSFETs.

2.3 Quantum Potential Model

Our model takes the classical potential described in previous section as a
starting point. The potential given by Eq. (2.2) is obtained by solving the
Poisson equation (Eq. (2.1)) in the silicon region with only the classical mobile
charge (electrons) density.
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CHAPTER 2. Explicit Quantum Potential and Charge Model for Double-Gate

Since the angle of the cosine function in Eq. (2.2) cannot exceed /2, the

2 .
central potential ¢ is pinned to an upper bound of Qymar = Vrln (%{;ﬁ“)

sidmi
which gives the saturation values of ¢, in Figure 2-2 and it is the maximum
value that the central potential reaches by increasing the gate voltage. Using this
saturation value for ¢, the classical potential ¢ of the Eq. (2.2) can be rewritten

as follow without loss of generality [23]:

d(x) = ¢y — 2Vrin [cos (Tl e(¢0‘¢0max)/2VTx)] (2.5)
St

Now, in order to correct the classical potential we must add QM effects,

relevant at the nanoscale. We will do it introducing two additional parameters &

and y together with a ¢4, modified parameter in Eq. (2.6) to allow the fitting
of the self-consistent QM numerical solution:

d(x) = Py — %ln [cos (:—5 e(¢°‘¢°max)/2VTx)] (2.6)

St

We can justify the introduction of two parameters because quantum effects
modify both the charge density and its spatial distribution. The main idea and the
simplicity of our model are based on finding compact expressions for the
parameters @gmax> Po, ¥ and &, as we will show.

2.3.1 Maximum central potential ¢¢max-

For the QM case, the maximum central potential is larger than in the
classical case due to the decrease of the charge density. Figure 2-4 shows the
dependence of the maximum central potential with the silicon thickness Ty; for
Tox = 1,2 and 3 nm, which were obtained from simulations using a 1D self-
consistent simulator [38]. Based on these simulations, a semi-empirical formula
can be obtained with a goodness of fit statistics given by R = 1, using a square of
correlation (R-square) metrics:

Pomax = (aTsi + b)/(Tsi + ¢), (2.7

with the values a = 0.4555 (0.4535,0.4574) V, b = 0.1755 (0.1156,
0.2358)nm-V and ¢ = —0.8525 (—0.9366,—0.7683) nm, where the numbers
inside the parenthesis correspond to the confidence bounds. Note that T,, does
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2.3 Quantum Potential Model

not explicitly appear in Eq. (2.7) because ¢@gmqr €xhibits a very weak
dependence on T, for Tg;> 4nm.

Figure 2-4
Maximum central potentials for T,, = 1,2 and 3 nm versus the silicon thickness T;. Data are

taken from 1D self-consistent simulator. Solid line corresponds to Eq. (2.7).

The sensitivity of final results respect to small variations on ¢4, is shown
in the Figure 2-12.

2.3.2 The central potential ¢

The Central potential is calculated using the approach of Ortiz [39], which to
portray the behavior of ¢, as a function of gate voltage uses the following
smoothing function, similar to one previously used to model drain saturation
voltage [40]:

$o=U-— \/Uz - (Vg - Vfb)d)Omax (2.8)

U =>[(% = Vi) + (1 + ) Pomax] 2.9)
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Here V; is the voltage applied to both gates, V¢, is the flat band voltage and

r is a smoothing parameter weakly dependent on T,, and T;, which may be also
determined from [39]

r = (AT, + B)(C/Ts; + D) (2.10)

where the constants A = 0.0267 nm™, B = 0.0270, C = 0.4526 nm and
D = 0.0650 are appropriate values for oxide thicknesses below 5nm and film
channel thicker than 4nm.

2.3.3 The y parameter

We have mentioned that the charge density and potential profile are
modified by the QM effects. We can model the change on the potential profile
by means of the y parameter, which is also obtained from the analysis of 1D
self-consistent simulation, and is nicely modeled by the expression:

v =g ] 6T o) @.11)
G(Tsi, Tox) = (1 + exp (]C(T"Z—)l_T“))_l + G, (2.12)
with
f(Tox) = (fi + f2)/2 + i = fal/2, (2.13)
fo=2Tox + f2 (2.14)
where the combination k = —5.9nm’ , a, = 0.078 nm, [ = 0.23, a; =

0.1nm, Gy = 107%, f; = 5.5 nm, f,> = 1.5 nm yields pretty nice results. Factor
G depends strongly on the ratio 27, /T,; which is closed related to the structural
parameter m defined as m = 2¢;T,, /€,,Tsi- For values of T,; where the two
inverted channels of the DG do not overlap, the y parameter has two
different regimes closely related to m. If Ty /2T,, =1 then y=
k/(Ts; + a,)? + I, otherwise y = G,. When the two inverted channels
overlap, i.e for values of Ty;; < 5nm and V T,,, y = G,, reflecting a greater
effect of structural parameter on the electrostatics of the DG.
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2.3 Quantum Potential Model

2.3.4 The & parameter

The & parameter must be obtained after applying the boundary condition at
the Si/Si0, interface:

&ip 49
ox s
€ox aAxly=T/2

where ¢g = ¢p(x = T;/2) corresponds to the surface potential. By using Eq.
(2.6), introducing the change of variable g = & %e(‘l’o‘%max)/ 2Vr and after a

simple algebraic manipulation, Eq. (2.15) can be written as:

f(B) =In(cos (B))—mpPtan (f)+F = 0. (2.16)

Here m is the structural parameter, and F = y/2V} * (I{g = Vep — ¢0). Given a
gate voltage V;, Eq. (2.16) cannot be analytically solved for 8, and numerical or
table look-up methods are required. To overcome this limitation, we can adopt a
three step-method to find out £ in a closed and accurate manner (see Appendix
A for details) [41]. Finally, substitution of the explicit expressions for
b0> Pomax> ¥ and & into Eq. (2.6) provide a compact model for the electrostatic
potential and charge including QM effects.

2.4 Quantum Charge Model

An analytic and continuous expression of the quantum electric charge
associated with the gate is desirable in circuit simulation to know, for example,
the gate tunneling current or capacitance to compute the AC and transient
behavior.

Due to the confinement of electron motion normal to the Si/SiO, interface,
the conduction band within the transistor channel is split in several subbands,

each of which is associated with the corresponding energy eigenvalue. The
channel charge per unit area may be expressed as

Qch = q Xiz12 X Nilog [1 + eEr~E/KT] (2.17)
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where i and j are subscripts for valleys and subbands respectively, N; is the
density of states in the subband at energy E;; . For silicon <100> cristal
orientation, two groups of conduction subbands, with degeneracy factor g; = 2
and g, =4, corresponding to the six distinct ellipsoidal constant energy
surfaces, are considered for the computation of the density of states:

_ gimy;kT
mh2

N; (2.18)
where my; = my, my, = /mym, are the density-of-states effective masses for
the low and high energy valleys respectively with m; = 0.92m, and m; =
0.19m, corresponding to the longitudinal and transversal masses.

It is difficult to find an analytic expression for the subband energies E;; for
all possible gate voltages. To circumvent this problem we can take advantage of
the asymptotic behavior of Q (V). Specifically, for V; < V;p, (where Vi, refers to
the threshold voltage), the electronic states in a box-like potential well with an
infinite barrier height are a very good approximation. On the other hand, for
Vy = Vin, Eq. (2.15) provides a simple relation, through the oxide voltage,
between the channel charge and surface potential. Hence, we can write the
following expressions accounting for the asymptotic behavior at low and high
gate voltages, respectively:

Q< = qXic12 %, Nilog [1 + e ED/KT] for VSV, (2.19)

and

__ 2€0x

TOX

Q> (Vy = Vip — s) for Vy = Vi (2.20)

2 im\2
where El-0j= i (E) +E7g—q¢s.

2mg \Ts;

The factor two in Eq. (2.20) takes into account the contribution to the charge
from the two gates, and m,; refers to the confinement mass for valley i, so
Mz = My, My = My.

Similarly to one previous model used to calculate the drain saturation
voltage [40], based on a hyperbolic smoothing function with asymptotic
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Charge density for Ty; = 5nm and T,, = 1nm. Solid lines are data from 1D simulator and
symbols corresponds to our model data.

behavior to Q< and Q, the charge density can be composed using the

expression
Q=Qm~— ‘/sz - Q<Q>, (2.21)

with Q,, = 0.5(Q” + uQ<), and u = 1.01 being a smoothing parameter that
controls the distance of the hyperbola from its asymptotes. Figure 2-5 shows the
behavior of Q, Q< and Q~ as a function of the gate voltage and the Figure 2-6
shows the difference between the classical and quantum solutions of the charge
density for comparison purposes.

Using the mentioned procedure, the charge per unit area can be expressed in a
compact and explicit form in terms of known variables.
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Figure 2-6
Quantum and classical charge density for Tg; = 5nm and Ty = 1nm.

2.5 Results

The model was validated by an extensive comparison with quantum
numerical simulations from a 1D Poisson-Schrodinger solver [38]. Specifically,
we have simulated the surface potentials, central potentials and charge density in
the silicon channel as a function of ;. Additionally, the silicon conduction band
profiles along the perpendicular direction to the interface Si/SiO, have been
computed for comparison.

Figure 2-7 shows an example of the surface and central potential as a
function of V; with different geometries. The results show that the output of our
model is in close agreement with the self-consistent solution with a relative error
less than 5 % in any case.

Typical silicon conduction band profiles are shown in Figure 2-8a and
Figure 2-8b, respectively, for several gate voltages. Note that bands are
essentially flat in the subthreshold region, just up to V;~0.4 V identified as the

threshold voltage. For V; = 0.4 V, the surface potential increases linearly, and
the central potential slightly downshifts until saturation is reached at V;~1V,

identified as the onset of screening effects. Limitations of our model arise when
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Figure 2-7

Electrostatic potentials at the center of the channel and the surface versus the gate voltage V.
Geometrical parameters used here are Ty; = 5nm, T,,, = 1nm and Ty; = 9nm, T,, = 3nm. The
flat band voltage is assumed to be Vs, = 0 V. Solid lines correspond to 1D simulations and
symbols to our model data.

very thin films are considered. To illustrate this point, Figure 2-9 shows the
behavior of the central potential as a function of ; for DG-MOSFETs with
different silicon films. For Ty; 2 4nm, the central potential shows a saturated
like behavior above the threshold voltage, indicative of the gate field shielding
due to the formation of inverted channels on both surfaces. However, for Ty; <
4nm and super-threshold operation, the central potential is no longer constant
but grows almost linearly (d¢o/dV; > 0 ), as can be observed from QM self-
consistent results, suggesting the suppression of the two separated inverted
channels in favor of volume inversion operation, where the gate field is now
allowed to penetrate into the silicon film thus taking the control of the central
potential.
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Silicon conduction band profiles for (a) Tg; = 5nm, T,, = 1nm and (b) Ty; = 9nm, T, = 3nm.
Solid lines are data from 1D simulator and symbols corresponds to our model data.
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Although we have found that for T; < 4nm the T,, dependence of ¢gmax
start to be important and our model fails in this range (see Figure 2-4 and Figure
2-9), it works very well in scales where the effective mass approximation for
nanoscale system is reasonable and the simulated results are correct. This is, the
parabolic approximation may be not sufficient for nanoscale systems with
atomic scale variations and tight-binding band-structure calculation or empirical
pseudo potentials may be necessary [42, 43]. To highlight the importance of
introducing a quantum model for the electrostatics on thin DG-MOSFETs, the
reader should remember Figure 2-2 where the surface and central potentials are
calculated from our model and compared with the classical model from Taur
[23]. Note that the difference ¢ — ¢, above the threshold voltage, as given by
the quantum model is significantly larger than the classical result, which should
be taken into account, for instance, when tunneling gate current needs to be
calculated.

Figure 2-9
Electrostatic potentials at the center of the channel versus the gate voltage V, for Ty; = 2,3,4 and 5
nm. Solid lines correspond to the simulations and symbols to our model data.

Figure 2-10 shows a comparison between our charge model presented in
Section 2.4 and 1D simulation data for different geometries as a function of the
gate voltage. It continuously covers all the operation regions with unique
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Charge density versus gate voltage for several geometries and flat band voltage Vg, = 0 V. (a)

Logarithmic scale and (b) linear scale. Solid lines correspond to 1D simulations and symbols to
our model data. Some curves in (a) have been shifted upwards for the sake of clarity.
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analytic expressions. A close agreement, in both subthreshold and
superthreshold regions, proves the correct behavior of our model. Importantly,
the gate capacitance, defined as C; = dQ/dV, is well captured by our model
(Figure 2-11). That is a key parameter when AC and transient simulations are
required.

Finally, Figure 2-12 shows, for different geometries, the sensitivity of
physical variables ¢, ¢ and Q to small variations of g, and y parameters
included in Eq. (2.6), around the values of ¢g,q, and y* calculated from Egs.
(2.7) and (2.11), respectively. The sensitivity is quantified using the R-Square
factor. The inset shows similar results but, in this case, the sensitivity analysis
refers to the y parameter. Note the ¢ parameter in Eq. (2.6) has not been
analyzed because is a function of y and ¢4, through Eq. (2.16). The R-Square
factor appears to be not very sensitive to small variation of ¢g;4, and y
parameters included in Eq. (2.6).

Figure 2-11
Gate capacitance versus gate voltage for several geometries and flat band voltage Vs, = 0 V.
Solid lines correspond to 1D simulations and symbols to our model data.
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R-Square factor analysis of ¢, ¢ and Q as a function of ¢gpa, relative to @gmax- The inset
shows the R-Square factor of ¢ and Q as a function of y relative to y*.
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2.6 Summary

A simple model for the quantum electrostatic potential and charge of the
undoped long channel DG-MOSFET for thin silicon films has been developed
and assessed. Additionally our model accurately reproduces the gate
capacitance. The model presented here, based on the previously developed
classical model [23], accounts for the Si-film thickness, oxide thickness and gate
voltage dependences. Our model gives a closed form for the potential and charge
(it does not need any iteration) and the results are in close agreement with self-
consistent solutions.

We must emphasize that this model works very well within the range of
validity of the used approximations. That is, for Ty; £ 4nm, T,, < 5nm, sub-
and superthreshold regions. Although Ge’s model [37] describes the quantum
potential profile in a wider range of silicon thickness, their approach is not
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2.6 Summary

useful to obtain the distribution of voltage through the MOS structure because
the potential is referenced to the surface potential; i.e. ¢ = 0 for all V, That is,
our model is able to calculate, completely, the dependence on ¢y, ¢y and Q as a
function of the gate voltage. The presented compact model can be interpreted as
the core of more advanced models including, for instance, short-channel effects,
non-equilibrium effects and tunneling effects.

Next chapter will address the development of an explicit model for the direct
tunneling current in DG structures, using SiO, as gate dielectric material. Such a
model makes extensive use of the electrostatic model presented in this chapter.
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CHAPTER 3.

Explicit Model for the Gate
Tunneling Current in Double-
Gate MOSFETSs

3.1 Outline

In this chapter, an explicit compact quantum model for the gate tunneling
current in double-gate (DG) MOSFET is presented. Specifically, an explicit
closed-form expression is proposed, useful for the fast evaluation of the gate
leakage in the context of electrical circuit simulators. A benchmarking test
against 1D self-consistent numerical solution of Schrédinger-Poisson (SP)
equations has been performed to demonstrate the accuracy of the model.

Like conventional transistors, the scaling rule of DG-MOSFETs for
controlling SCE dictates a reduction of the equivalent oxide thickness together
with the channel length. The increasing gate leakage has to be taken into account
due to its importance in determining the standby power.

Researchers have proposed some models for calculating the gate current in
DG-MOSFETs however, due to the difficulty of solving the coupled SP
equations, certain models have being proposed based on semi-empirical
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3.1 Outline

dependent electric field expressions [44, 45], or purely numerical [46, 32], or
considering only the ground state derived from a triangular approximation for
the electronic confinement [47]. It is therefore valuable to have a compact model
of the gate leakage current for DG-MOSFETSs simply calling an explicit closed-
form expression embedding the dependence on bias and both geometrical and
electrical parameters.

In this work, we further extend the state-of-the-art by proposing a simple
model for the electron conduction band (ECB) direct tunneling current of
undoped DG-MOSFET, which is the dominant mechanism contributing to the
gate leakage [48]. Our results are compared with those obtained from accurate
self-consistent quantum-mechanical (QM) solutions resulting in excellent
agreement for both moderate and strong inversion regimes, thus making it
suitable for compact modeling.

Figure 3-1
Energy-band diagram along a perpendicular cut to the channel, where the direct gate tunneling
flow is marked with thick arrows.
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3.2 Model Development

In this section, modeling of quantum mechanical effects in an undoped
silicon layer, considered as the active layer of the transistor, and subsequent
direct tunneling current for a symmetric DG geometry are presented. Figure 3-1
shows a representative energy-band diagram along a vertical cut, where E.
represents the silicon conduction band edge, Ej, is the intrinsic Fermi energy,
and V,, is the potential drop at the gate oxide. Also represented are the surface
potential ¢_and the central potential ¢, both referred to the Fermi level at the
source. Also shown in Figure 3-1 are some of the quantized electron energy
subbands and the direct gate tunneling flow of electrons from the Si substrate
towards the metal gate.

Because of structural and/or electrostatic confinement in nanoscale DG-
MOSFETs, quantization of the carrier energy in the Si layer is a relevant effect
to be considered, generally, for any operation regime. Quantum effects result in
a spatially wider carrier density as compared to the classical prediction. A
common approach to tackle quantum effects consists of solving the coupled SP
equations in a fully self-consistent manner. This method is accurate, but time
consuming.

What we propose here is an efficient method in terms of computational time.
Simplification of the complexity is possible using a quadratic approximation for
the electron conduction band in the active layer as a perturbation to the box-like
potential well created by the SiO,/Si/SiO, structure. Our model starts from the
1D classical modified potential to include quantum effects described in Chapter
2 and published in Ref. [49]. As demonstrated in Figure 2-7, both the surface
and central potentials are well reproduced as compared with self-consistent SP
simulations, where, to remember, the surface potential takes the form

bs = po — %ln [COS ("?feq@o—%max)/zw)] 3.1)

where the meaning of parameters (gmax> Po, ¢ and y were previously
discussed. It is worth noting that these quantities can be explicitly computed and
numerical calculations are not required.
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Figure 3-2
Scheme of the transit time for electrons moving through the perpendicular direction to the channel.
Also shown are the quantities defined in Eq. (3.7).

Next, for simplicity, we assume a parabolic shape for the 1D electrostatic
potential across the channel nicely fitting both ¢, and ¢y

P(x) = o + 4(Pps — Po)x? /TS (3.2)

Using the 2D density of states (DOS) and Fermi-Dirac statistic, the channel
charge per unit area contributed per subband can be expressed as

Ny = q (55) 9imes In[1 + eEr~Einn] (33)

Based on perturbation methods [50], the energy level E;; (referred to the
minimum of the conduction band at the surface E.;) could be split into:

E;; = Ejj + E}; (3.4)
where
0o _ K2 (E 2
Efy = 5 Tsi) (3.5)

corresponds to the eigenvalues of the non-perturbed Hamiltonian (box-like
potential well with infinite barriers) and
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1 1

+1) (6

Um? = 3

Tsi/2 =~ *
B = [T pPGOE ol (1) dx = 20 (

is the correction of the eigenvalues due to the perturbed Hamiltonian (quadratic
potential approximation given by Eq. (3.2)). The -eigenfunction 1/)](-’ (x)
corresponds to the wave function coming from the non-perturbed Hamiltonian
and is equal to MSin(jn/Tsi(x+Tsi/2)). Note that 1/1](-)* refers to the
complex conjugate and is equal to l/J](-). For expressing Eq. (3.6), we have used

the following conventions (see Figure 3-2):

E. (x) =E g /2 — qp(x) Conduction band relative to the Fermi level
at the source electrode.
+Tg; Conduction band at the Si/SiO, interface.
Es = Ec( 2 )

E., = E.(0) Conduction band at the center of Si layer.
AE,, = E., — E Difference between the center and surface
potential.

EC (x) = E.(x) — E, Conduction band relative to E
= AE,s(1 — 4x%/T2) (3.7)

As we are interested in a simple expression for direct tunneling current at both
low and high supply voltage regimes, we chose a modified WKB method to
calculate the electron transmission probability [51]. Within the mass effective
approximation, transmission probability of electrons with energy E;; can be

written in the form:
P;j = Pygp * Pp, (3.8)

where Py xp = exp (—2 fOT‘”‘ kox,;j(x)dx") is the usual WKB tunneling
probability [52], valid for smoothly varying potentials. Here a change of

coordinate has been made such that x' = x — Ty;/2. The term Py is a correction
accounting for reflections due to potential discontinuities [5S1]. The momentum
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3.2 Model Development

entering in the integral can be calculated by using a Franz-type dispersion
relation for the gate oxide [53], namely

i Foxi
U —p.. . =F ..[1-—-22 3.9
2oy Nij ox,ij Egox (3.9

1 (275
Voxij = = ’ 3.10
ox,ij 11\ Mox > ( )

where m,, is the electron effective mass within the SiO, oxide, Eg,x is the
oxide band gap ~ 9 eV for SiO,, v,y ;; refers to the group velocity of electrons

Ui On the other hand Eoxij(x") is the

ox,ij

in the oxide, and néj is defined as

magnitude of the electron energy relative to the oxide conduction band edge
given by ®g — E;; — qV,xx'/Tox , where @g is the discontinuity between the Si
and SiO, conduction bands (~ 3.15 eV), and V,, is the oxide voltage drop equal
to Q TOX

2€0x

charge (Q) that is controlled by each gate.

, Where the factor 2 in the denominator comes from the half of the total

To go ahead both Pyypand Pr for electrons with energy Ej; can be
expressed, respectively, as

EgTox/2Mox ’ L1
Pyks = exp ngTox(znij\/nij + Eg sin 177ij)

on,ij(xl=0)
on,ij(x’=Tox)

(3.11)

_ 4v5i,ij(E)vox,ij(on,ij|x,:0) 4‘USi,ij(E+qV0x)U0x,ij(on,ij|xl=Tox>
R =

=Tox)
(3.12)

2 2 . 2 2
Vsi,ij(E)+vox,ij(E0x.l] |xr=0) Usi_l-j(E+CIVox)+on,ij(on,ij|xr

where vg; ;; is the perpendicular (normal to the interface) component of electron
group velocity. Both P, and Py kp are quantities depending on the transversal
m; and longitudinal m,; electron effective masses. The group velocity for
electrons in the substrate is computed as
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CHAPTER 3. Explicit Model for the Gate Tunneling Current (SiO;)

= (3.13)

Mgi

Usiij =

In addition to the eigenvalues and transmission probabilities, the “lifetime”
T;; of the electrons in the ij™ electronic state flowing toward the gates from the

silicon layer is needed to calculate the leakage current. A useful model for this
parameter comes from [32]:

1 Pl]
T-- Tij

|- Py +3PE (3.14)

where 7;; is the classical transit time of an electron between Si/SiO, interface
and the classical turning point x;;;, P;; is the transmission probability of Eq.

(3.8) and Py, is the tunneling probability through the conduction band. Note that
the time elapsed for tunneling through the barrier in the silicon region has been
neglected in Eq. (3.14).

The transit time is defined as the integral of the inverse of the group velocity

Tjj = 2 fxisl‘]/ 2 v~ 1(x)dx, which could be analytically calculated yielding

[Fsil? |z gy = Mzi AE°S+ 50 ) 3.15)
xtl] Z(EU Ec(x)) Tsi ZAEos EU—AEosl '

ij S AEs and Ejj > AE,g cases. A

physical interpretation of the transit time is sketched in Figure 3-2.

This expression is valid for both E;;

The tunneling probability P, for electrons with energies between
E., and E_; to cross the conduction band can be calculated with the help of a
simplified WKB approximation in the form

P, = exp {—2 f_x;t”u\/zzzﬂ [Eij — E.(x)] dx} (3.16)

Inserting Egs. (3.4) to (3.7) into Eq. (3.16) and, after some manipulations, P,
could be written as a simple closed-form expression
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3.2 Model Development

myim2TE
Pb =exp|— W(AEOS — Eij) for Es<E<Ey (3.17)

It is worth noting that Tiu ~ P;j/(21;;) for energy levels such as E;; > AE,

for which P, = 1. Conversely, for energies deep in the potential well formed by

. 1 -
the electrostatic confinement, then P, ~0 and — ~P;;/7;; similar to the case of a
t

very thick semiconductor, which is equivalent to bulk diodes connected by the
common substrate.

The proposed semi-classical model for the electron lifetime given by Eq.
(3.14) yields similar results as compared with the half-with of the resonant state
method [54, 55] as well as the method of quasi-bounded states with absorbing
boundary conditions [56, 57]. However is computationally more efficient.

Finally, combining the results from Egs. (3.3), (3.8), (3.14) and (3.17), we
can readily obtain the total gate direct tunneling current density by adding the
contribution of every subband:

J =24 Nij/Tij = 2ijlij (3.18)

3.3 Results

The model described in this chapter considers as fundamental quantities Ej;,
N;j, and T;j. In this section we check the accuracy of these quantities and
therefore of the proposed compact model. To illustrate the model outcome we
only consider the first three states, which contribute the most to the gate direct
tunneling current. We also have assumed a flat band voltage Vf;, equal to zero,
corresponding to a midgap gate. The results below show that the model output is
in close agreement with the self-consistent solution in all operation regions and
for wide range of silicon layer and gate oxide thicknesses, representative of the
design window for nanoscale DG-MOSFETs.

The behavior of the ground state energy E;,, E;, and E,; as a function of
the gate voltage is shown in Figure 3-3a. As expected, the energy states increase
as T; is reduced due to the structural confinement. Below the threshold voltage,
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(a) Subband energies versus gate voltage for different geometries; (b) Charge densities of the three
first states and total charge density (Ny);

the band bending is negligible, and the band diagram looks like a square
potential well. Beyond the threshold voltage, the electric field strength induces
an electrostatic confinement of carriers, resulting in a semi-quadratic potential
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3.3 Results

well. Figure 3-3b represents the total charge density and the charge densities
Ny1, N1, and Ny, as a function of the gate voltage. Here, we see that the Ey;
level contributes significantly to the charge density because its degeneracy and
density of states effective mass, despite having a higher energy than the other
two levels (see Figure 3-3a).
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(a) Transmission probability of the E;; state through the oxide barrier; (b) Electron lifetime of the
E, ij state.
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Gate current density where the inset shows the gate current density as a function of the oxide
thickness. Symbols: model; Solid lines: SP simulations.

Figure 3-4a and Figure 3-4b show the transmission probability P;; and
lifetime T;;, respectively. Here, we can appreciate the strong dependence of the
tunneling with the oxide thickness (see also the inset of Figure 3-5). In general,
the transmission probability increases and the lifetime is reduced with the gate
voltage as a result of the electric confinement in the inversion layer. However

this effect is smaller when the body is thinner because the confining electric
field is reduced [58].

Combining the fundamental quantities, following Eq. (3.18), we have finally
calculated the gate current density for several geometries. The result is shown in
Figure 3-5 and the inset shows the expected exponential character of the
tunneling current with the thickness of the barrier oxide.

In absence of experimental data in the literature (to our knowledge), our results
are comparable with those reported in works where the self-consistent
simulations take into account the electronic wave function penetration in the
metal gate [46, 58].
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3.4 Summary

An explicit compact model of the gate direct tunneling current for the
symmetric undoped DG-MOSFET has been developed and assessed.
Specifically the model was checked via comparison with self-consistent SP
simulations. Our model is accurate within the range of validity of the used
approximations. That is, for Ty; = 4nmand T,, < 5nm. All the quantities
taking part in the model are explicit closed-form expressions that permit to
calculate the dependence of the gate direct tunneling current as a function of the
gate voltage.

This model makes possible the fast evaluation of the gate leakage in
aggressive scaled DG-MOSFETs and could be incorporated into a general
compact model as a building block of electrical circuit simulators.

Although the present model for the direct tunneling works for silicon dioxide as
gate dielectric material, when the SiO, thickness is scaled roughly to 1nm very
large gate current density is observed. Figure 3-5 shows that the gate current
density exceeds 1A/cm” for gate voltage values larger than 0.5 V, which are too
high for low power applications [9]. The introduction of high-x dielectric
materials as gate insulators is a key solution to solve the gate tunneling leakage
current issue because for a given equivalent oxide thickness (EOT) the leakage
is much smaller for high-x than for oxi-nitride gate dielectric. Next chapter
proposes an extension of the model presented in this chapter, where dual layer
stacks including high-x insulators are considered in the calculation of the direct
tunneling current.
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CHAPTER 4.

Explicit Model for Direct
Tunneling Current in Double-
Gate MOSFETs Through a
Dielectric Stack

4.1 Outline

In this chapter an extension to the model presented in the previously chapter
is presented. In this case, an explicit compact quantum model for the direct
tunneling current through dual layer SiO,/high-x dielectrics in Double Gate
structures is proposed. Specifically, an explicit closed-form expression is
proposed, useful to study the impact of dielectric constants and band offsets in
determining the gate leakage, allowing to identify materials to construct these
devices, and useful for the fast evaluation of the gate leakage in the context of
electrical circuit simulators. A comparison with self-consistent numerical
solution of Schrodinger-Poisson (SP) equations has been performed to
demonstrate the accuracy of the model. Finally, a benchmarking test for
different gate stacks have been proposed searching to fulfill the gate tunneling
limits as projected by the ITRS.
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4.1 Outline

Similar to the conventional transistors, the scaling rule of DG-MOSFETs
dictates a reduction of the oxide thickness together with the channel length,
causing a large increase of the gate leakage current [9]. This is critical in
determining power dissipation of circuits, especially those used in low-power
electronic systems such as cell phones, lap-tops etc. Similarly to the bulk
MOSFET, a way to overcome this limitation is to use high-k materials deposited
over a thin SiO, layer to form the gate insulator.

To calculate the gate leakage current in DG-MOSFETs it would strictly be
necessary to solve the coupled Schrodinger-Poisson (SP) equations in a fully
self-consistent manner considering a quasi-bound system. This method is
accurate, but time consuming. Researchers have proposed some analytical
models for calculating the gate current in DG-MOSFETs including high-k
dielectrics. However those models have being proposed based on semi-empirical
dependent electric field expressions [44, 59] and do not consider the
quantization of the energy levels. On the other hand there are some purely
numerical models solving the SP equations self-consistently [32, 46] not useful
for a fast evaluation of device performances in circuits simulators. It is therefore
valuable to have a compact model of the gate tunneling current for DG-
MOSFETs with dielectrics including high-k materials, simply calling an explicit
closed-form expression that takes into account relevant quantum effects. Such
models are essential to understand the scaling limits of DG-MOSFETs.

We introduce a compact model of the direct tunneling current mechanism of
symmetric undoped DG-MOSFETs considering a SiO,/high-k hetero-structure
as gate oxide based on the previous model of the Chapter 3 where only SiO,
dielectric was used and reported in Ref. [60].

Direct tunneling is known to be the dominant contribution to the gate
leakage current [61]. Our results are compared with those obtained from
accurate self-consistent quantum-mechanical (QM) solutions, resulting in
excellent agreement for both moderate and strong inversion regimes. Both
accuracy and simplicity of the model makes it suitable for circuit simulators.
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Figure 4-1
Schemes of (a) DG-MOSFET structure and (b) the energy-band diagram across the channel.

4.2 Model Development

To model the direct tunneling current of a symmetric DG-MOS capacitor
(Figure4-1a) we have assumed fully bound states, meaning that the electron
wave function does not penetrate through the gate oxide. Fig. 1b shows an
energy-band diagram considering volume inversion, where E, represents the
silicon conduction band edge, E;;, is the intrinsic Fermi energy, and V, and V.
are the potential drops at the SiO, and high-k dielectrics, respectively. Again, the
surface and central potentials ¢p; and ¢, are both referred to the Fermi level at
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4.2 Model Development

the source. The electron direct gate tunneling current goes from the Si substrate
to the metal gate passing through the dielectric stacks.

In this chapter we propose a suitable method in terms of computational time.
Again, it relies on a quadratic approximation for the electron conduction band in
the silicon layer acting as a perturbation to the box-like potential well created by
the high-x/Si0,/S1/Si0y/high-k structure (see Figure 4-1b). Our model starts
from a 1D classical potential expression, modified to include QM effects [49],
which was proposed for a DG structure using SiO, as gate dielectric with
thickness T,, and potential drop V,,. It can be easily adapted to our purposes,

only replacing T,, by the Equivalent Oxide Thickness EOT = T}, + 3—: * T., and

V,, would be now the sum of the potential drops in each layer V}, and V., so
V. = V, + V.. The k term is the high-k material dielectric constant. By making
those changes the full model described in Chapter 2 and published under Ref.
[49] can be used to calculate the band profile. As shown in Figure 4-2, where the
DG with Si0,/HfO, as dielectric stack is considered, both the surface and central
potentials are well replicated as compared with self-consistent SP simulations,
where the surface potential takes the form

bs = Po — qu_yT In [COS (%feq@o—%max)/zw)] 4.1)

It is worth remembering that ¢g,,qx, Po » € and y can be explicitly computed
and iterative numerical calculations are not required.

Next, we assume a parabolic shape for the 1D electrostatic potential across
the channel nicely fitting both ¢¢ and ¢

P(x) = po + 4(s — Po)x?/TE (4.2)

Using the 2D density of states (DOS) and Fermi-Dirac statistic, the channel
charge per unit area contributed per sub-band can be expressed as

= %gimgi ln[l + e(Ef‘EU)/kT] (4.3)

where g; and my; are the degeneracy and the DOS effective mass of the ith
valley respectively, and E;; is the energy level of the jth sub-band in the ith

valley, referred to the minimum of the conduction band at the surface E;.
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Figure 4-2
Surface and central potentials of a DG-MOS capacitor considering a SiO,/HfO, gate stack, where
SiO, has a physical thickness T, = 0.7nm. Lines correspond to 1D SP self-consistent simulation
and symbols correspond to the model.

Based on perturbation methods [50], the energy level E;; could be split into:

E;j = E; + E}; (4.4)

where
E0 = ("—”)2 45
U 2mg \Tyg (4.5)

corresponds to the eigenvalues of the non-perturbed Hamiltonian (box-like
potential well with infinite barriers) and

1 1

+3) @6

Tsi/2 i *
B = [0 WP GE v (x)dx = 28Ees (5 + 3

is the correction of the perturbed Hamiltonian (quadratic potential
approximation given by Eq. (4.2)). The -eigenfunctions lp](-)(x) = 1/)1(-’* =
v 2/Tgisin(jm /Ty (x + Tg;/2)) correspond to the wave function coming from

the non-perturbed Hamiltonian. We have used the same convention of Eq. (3.7)
to express Eq. (4.6) (see Figure 4-3).
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To calculate the direct tunneling current we chose a modified WKB method
to compute the electron transmission probability through the dielectric stack
[62]. Within the mass effective approximation, transmission probability of
electrons with energy E;; can be written in the form:

P;j = Pyexp [—25, — 25.], 4.7)

where
S, = f;lz kp(x)dx and S, = f;; Ko (x)dx (4.8)

are the usual WKB tunneling probabilities, valid for smoothly varying
potentials. Here, we have defined x; = %,xz = % +Tp and x3 = % + T, +
T.. The P, term is a correction accounting for reflections due to potential

discontinuities in the dual layer barrier [62]:

64vqVpoVh1VcoVc1Vd

(Va2 +vpo?](Wp1+vco) 2 [Ver 2 +v4?]

where a, b, ¢ and d regions are shown in Figure 4-3. For simplification, the
electron wave functions in the a (silicon) and d (metal) regions can be expressed
as travelling planes waves allowing a simple expression for the electron group

velocity, so v, = /2E;j/m,; and vy = \/Z(Eij + Ecs + qVy)/mg where V;is the
gate voltage and m; is the free electron mass. The imaginary part k of the wave

vector in the barrier region entering in Eq. (4.8) and the corresponding group
velocity can be calculated by using a Franz-type dispersion relation for each

oxide layern = b, c [63], namely

h2Kk3 _ _ Eoxn
Zmn - nn - on,n (1 Eg,n (410)
1 2Nn
v, =— [— 4.11
n NMn\ Mn ( )
dnn

where Ej,, is the oxide band gap in the n-layer, n,, is defined as and

ox,n

Eoxn(x) = @, — Ejj — qVp(x — hy) /Ty, is the magnitude of the electron energy
relative to the oxide conduction band edge in the n-layer. In this case hy, = x;
and h, = x,. Also ®@,, and V,, represent the discontinuity between Si and the n-

66



CHAPTER 4. Explicit Model for the Gate Tunneling Current (SiO,+high-k)

conduction band and the voltage drop at the n-layer respectively. The latter can
be expressed in terms of the total voltage drop Vi in the double layer as:

Tn Tn
Vo = T_befg Vr =10 T2 (V, =V —@s), n=bc (412
€p Ec €p EL‘

where Vg, is the flat band voltage.

Considering expressions (4.10) and (4.11), the integrals in (4.8) can be
carried out to yield the following analytical solution

T V - '
Sn_ 4th (Znn Nn + / n Sin 1nn)

Eoxn(Xn)

Eoxn(Xn+Tn)

(4.13)

In addition to the eigenvalues and transmission probabilities, the “lifetime”
T}; of the electrons in the i,jth electronic state flowing toward the gates from the
silicon layer is needed to calculate the leakage current. A useful model for this
parameter comes from [32]:

PU

|- Py) +3PE] (4.14)

Tij  Tij

Figure 4-3
Scheme of the transit time for electrons moving perpendiculary to the channel. Also shown are a,
b, c and d regions discussed in the text.
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4.2 Model Development

where 7;; is the classical transit time of an electron between Si/SiO, interface
and the classical turning point x;;; and Py is the tunneling probability through
the conduction band.

Taking the usual definition of the transit time as the integral of the group
velocity inverse, namely 7;; =2 fxT:‘/ 2 v~ 1(x)dx, it can be analytically
)

calculated to yield

TSl/Z _T Myi 1 VAEos + | Eij
si n| ————
xtl] Eij E (x)) 2AEq ,lEij _AEos|

ij S AEys and Ejj > AE,g cases. A

physical interpretation of the transit time is sketched in Figure 4-3.

(4.15)
This expression is valid for both E;
The tunneling probability P, for electrons with energies between

E., and E_; to cross the conduction band can be calculated with the help of a
simplified WKB approximation in the form

P, = exp{ 2 fx;:’” \/Z;n;i [Eij — E.(x)] dx} (4.16)

After some manipulations, P, could be written as a simple closed-form
expression

mZLn

P, = exp <— TV Mt T (AE,s — Eij)> for E <E<E,

(4.17)

It is worth noting that Tiu ~ P;j/(27;;) for energy levels such as E;; > AE,

for which P, = 1. Conversely, for energies deep in the potential well formed by

. 1 -
the electrostatic confinement, then P, ~0 and P ~P;;/7;; similar to the case of a
ij

very thick semiconductor.
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Finally, combining the results from Egs. (4.3), (4.7), (4.14) and (4.17), we
can readily obtain the total gate direct tunneling current density by adding the
contribution of every sub-band:

] =2ijJij = Xij Nij/Tij (4.18)

where, again, N;; (Eq. (4.3)) and T;; (Eq. (4.14)) are the channel charge per unit
area and the electron lifetime in the it/ valley and jth sub-band, respectively.

4.3 Results

To calculate the gate current density we have identified Ejj, N;j,

fundamental quantities. In this section we check the accuracy of these quantities

and Pl] as

and therefore of the proposed compact model. To illustrate the model outcome
we only consider the first three states, which contribute the most to the gate
direct tunneling current. We also have assumed a flat band voltage V', equal to
zero, corresponding to a midgap gate. The results below show that the model
output is in close agreement with the 1D self-consistent SP solution in all
operation regions and for wide range of silicon layer and equivalent oxide
thicknesses EOT, representative of the design window for nanoscale DG-
MOSFETs according to the ITRS document [9].

The location of the energy states E 4, E;, and E,4 as a function of the gate
voltage is shown in Fig. 4a. In this figure and hereafter solid lines represent self-
consistent SP data and symbols are the results of our model. As expected, the
energy states values increase as Ty; is reduced due to the structural confinement.
Below the threshold voltage, the band bending is negligible, and the band
diagram looks like a square potential well. Beyond the threshold voltage, the
electric field strength induces an electrostatic confinement of carriers, resulting
in a semi-quadratic potential well. Fig. 4b represents the total charge density and
the charge densities N;; N;, and N;; as a function of the gate voltage for a DG
capacitor with 5nm silicon thickness and EOT = 1nm. Here, we see that the E,4
level contributes significantly to the charge density because its degeneracy and
density of states effective mass, despite having a higher energy than the other
two levels (see Figure 4-4a). Although we considered only the three states in our
model the comparison with numerical results are in very good agreement.
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(a) Sub-band energies versus gate voltage as calculated from the model (symbols) and 1D self-
consistent SP simulator (solid lines); (b) Charge densities of the first states and total charge density
(Nr);
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Transmission probability of the E;; state through a single-layer of SiO, and a SiOy/HfO, dual
layer gate oxide.

Figure 4-5 shows the transmission probability P;; as a function of the gate
voltage considering as a first case a single layer of SiO, as gate oxide and a
second case consisting of a SiO,/HfO, dual layer. Here, we can appreciate the
strong dependence of the tunneling with the EOT value and its difference with
the single-layer SiO, case at the same EOT. In general, the transmission
probability increases with the gate voltage as a result of the electric confinement
in the inversion layer. However this effect is smaller when the body is thinner
because the confining electric field is reduced.

The direct tunneling current density for different dual layer combinations of
Si0,/high-Kk materials as a function of the gate voltage has been plotted in Figure
4-6a,b. These results have been obtained using the material related parameters
given in Table 4-1. We can see that the SiO,/HfO, combination exhibits the
smaller tunneling current. Here the physical thickness of the high-k layer plays a
dominant role, since for the same EOT a higher dielectric constant (25 for HfO2)
means a thicker layer, therefore a lower gate current.
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4.3 Results

Table 4-1
Parameters for calculation of the direct tunneling gate leakage current considering different high-k
materials.
High-« @, (eV) K Egc(eV) m,/my
SizNg 2.0 7.0 53 0.3
ZrO, 1.4 25 5.8 0.2
Al,O3 2.8 9 8.8 0.3
Ta,0s 1.1 25 4.4 0.25
HfO, 1.5 25 5.75 0.18
SiO, 3.15 3.9 9 0.5

Next we deal with the dependence of the gate leakage current on the
thickness of interfacial SiO, layer for the SiO,/HfO, hetero-structure keeping
constant the EOT. As shown in Figure 4-6¢ the leakage current can be
considerably reduced by keeping the SiO, layer as thin as technologically
possible.

In these types of structures four gate tunneling mechanisms could occur,
depending on the location of the specific energy level respect to the conduction
band of the dual-layer insulator: (a) direct tunneling in both SiO, and high-x
dielectrics (Figure 4-7a); (b) direct tunneling in SiO, oxide and Fowler-
Nordheim tunneling in the high-x dielectric (Figure 4-7b); (c) direct tunneling
through the interfacial oxide (Figure 4-7c); (d) Fowler- Nordheim tunneling
through the interfacial layer (Figure 4-7d). However, given the fact that the most
of the inversion charge is embedded in the first two or three states (Figure 4-4b),
it is easy to verify that for gate voltages and materials considered in this work,
the dominant tunneling mechanism is the direct tunneling in both layers (Figure
4-7a), for which the condition ®, — qV; > E;; must be fulfilled. For instance,
using values for HfO, ( lower @) from Table 1 with V;~1.5V and T,~1nm,
T.~4nm, then ®; — qV.~1.2V and E;; < 0.4V (Figure 4-4a).
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(a,b) Direct tunneling gate current density as a function of the gate voltage for different high-x
materials with: (@) EOT =1nm, T, = 0.5nmandTy; = 5nm; (b) EOT =15nm, T, =
0.7 nm and Tg; = 8 nm. (c) Direct tunneling gate current density as a function of the gate voltage
for HfO, as high-k dielectric with EOT = 1.1 nm and Tg; = 6 nm.

According to the ITRS 2009 edition, in future technologies the use DG-
MOSFETs could start in 2015 with EOT around 1.1nm requiring a maximum
gate leakage current density (Jim;) of 0.19 A/em’ at Vg =Vaq =1V for low
standby power applications [9]. Figure 4-8 shows the gate current density given
by our model, for different high-x materials, as a function of the SiO, layer
thickness (73) setting EOT = 1.1nm, V, = 1/ and using the parameters given in
Table 4-2. In general, the gate current limit could be satisfied in dependence of
the SiO, layer thickness. For stacks with high-k material such as Ta,Os, HfO,
and ZrO, thickness of SiO, roughly lower than 0.7 nm could be needed. On the
other hand, materials with lower dielectric constant (K) such as Si;N4 and Al,O3
could not satisfy the gate current limit requirement. The negative slope exhibited
by the Si;N4 means that the dominant dielectric in this double layer is the silicon
dioxide.
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4.4 Summary

The gate leakage current is of major concern for nanoscale device operation.
For both single-gate and DG-MOSFETs the solution to this problem is to use
high-ik dielectrics in gate oxides. In this work the direct tunneling current
(dominant process in determining the gate leakage current) through interfacial
SiO, and high-k gate stacks have been analytically modeled for symmetric
undoped DG-MOSFETs through both layers. It is clear from Figure 4-6a,b that
the gate current is reduced for SiO,/HfO, dual layer structure as compared to
other SiO,/high-k combinations having the same EOT. The tunneling in
Si0,/HfO, structure decreases about five orders of magnitude as compared with
pure SiO, films of the same EOT. For the same EOT a reduced thickness of
interfacial layer is beneficial to keep the gate leakage current under control.

The model was checked via comparison with self-consistent SP simulations.
All the quantities taking part in the model are explicit closed-form expressions
that permit to calculate the dependence of the gate direct tunneling current as a
function of the voltage. Because a simple 1D formulation for the electrostatic
has been considered in our work, the model can be applied within the validity of
the long-channel hypothesis [6]. The presented model makes possible the fast
evaluation of the gate leakage current in aggressive scaled DG-MOSFET, being
useful in order to find guidelines for the search of an appropriate high-x
dielectric material according to the projections of the ITRS and could be
incorporated into general compact model as a building block of future electrical
circuit simulators.
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Direct tunneling current as a function of the silicon dioxide thickness for several high-« dielectric
materials compared with the maximum gate leakage current density established by the ITRS 2009
edition at EOT = Inm and V, = IV.

On the other hand, as mentioned in the introduction of this work, the evolution
of the CMOS technology toward the use of Multiple-gate transistors in
nanoscale makes mandatory studies on non planar structures such as triple gate,
pi-gate, omega-gate, quadruple-gate and surrounding gate. These researches
should include accurately the 1D or 2D nature of those devices and particularly
to propose models that take into account the electronic wave functions
penetration in the gate electrode (metal) to the calculation of the gate tunneling
currents. The next chapter describes a numerical model for the description of the
gate leakage current of the DG MOSFET based on the Schrédinger-Poisson
coupled equations solution, where the electronic wave functions are allowed to
penetrate into the metal gate (quasi bound states). For this purpose, the Perfectly
Matched Layer (PML) method is embedded in each iteration of the SP solver.
The PML method has been adopted because the feasibility to adapt it to devices
with non planar geometries.
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CHAPTER 5.

Accurate Calculation of Gate
Tunneling Current in Double-
Gate and Single-Gate SOI
MOSFETs Through Gate
Dielectric Stacks

5.1 Qutline

In this chapter, an accurate description of tunneling in Ultra Thin body
Double-Gate and Single-Gate MOSFETs devices through layers of high-x (HK)
dielectrics, which relies on the precise determination of quasi-bound states, is
developed. For this purpose the Perfectly Matched Layer method (PML) is
embedded in each iteration of a 1D Schrodinger-Poisson solver by introducing a
complex coordinate stretching which allows applying artificial absorbing layers
in the boundaries.

Similarly to the bulk MOSFET, a way to overcome the limitation imposed
by the leakage current is the use of HK materials over a thin SiO, interfacial
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layer (IL) to form the dual layer gate insulator, keeping a good control of the
short-channel effects (SCE) [17]. The IL is either created unintentionally during
processing or intentionally deposited to improve the interface quality with the
silicon. However, to fully profit from the advantages of HK materials in MOS
capacitors with dual layer, the reduction in this IL thickness, at constant EOT
(increase of the physical HK thicknees), is desirable [64, 65]. From this point of
view two factors favor the scaled toward zero of the IL thickness in the dielectric
stacks (DS): the reduction of the direct tunneling current and the improvement of
the breakdown-related reliability. Strictly, scaled MG MOSFETSs behave as open
boundary systems where the electron wave function penetrates the DS and
propagates to the metal without reflections. This effect is expected to be
highlighted when the IL thickness tends to zero because usually the conduction-
band offset or barrier height is inversely proportional to the dielectric constant x
[66]. Therefore in MG MOSFETs the electron states are quasi-bound states
(QBS) characterized by complex eigenvalues with the real part corresponding to
the energy state and the imaginary part related to the lifetime of the carriers [67].

Hence, accurate models should capture quantum mechanical effects such as
discrete QBS and its tunneling to the metal gate through a DS in MG MOS
structures. Section 5.2 of this work addresses some lifetime based models used
for the calculation of the gate tunneling current, highlighting their validity and
applicability. These models are (1) the close boundary based method, (2) the
transverse resonant method (TRM) and (3) the method used in this chapter,
based on absorbing boundary conditions known as the Perfectly Matched Layer
(PML) method. Section 5.3 shows and discusses results of the PML applied to
Ultrathin Body Double-Gate (UTBDG) and Ultra Thin Body Single-Gate
(UTBSG) with DS consisting of IL/HK, where the IL is assumed to be SiO, (see
Figure 5-1). Section 5.4 concludes this chapter.

5.2 Models For Gate Tunneling Calculation

The transmission coefficient is a well defined quantity for continuous
tridimensional states, where the traveling carriers impact the potential barrier
and result in a reflected and transmitted plane wave. However, this concept is
not properly defined for localized carrier states. When the silicon body
dimensions reach the nanoscale in MG MOSFETS, carriers remain in discrete
energy levels and a continuous of energies cannot be considered anymore. It is
the same effect that occurs in the inversion layer of a bulk MOSFET forcing a
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2D nature of the carriers. Therefore, as Figure 5-2(b) shows, due to the finite
barrier height in the DS and to the decreasing of the EOT, the carriers are able to
leave these states by tunneling to the gate metal after some time. These states are
called, in the presence of leakage current, quasi-bound states (QBS). The
average time that a carrier stays in the QBS is called the carrier lifetime in the
state. The lifetime concept in a QBS replaces the transmission coefficient of
traveling states.
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Figure 5-1

(a) Double-Gate (UTBDG) and (b) Single-Gate (UTBSG) MOSFET cross-sections and
energy band diagrams. The channel is assumed to be undoped for UTBDG and UTBSG
devices.

Indeed, coupling between 2D states at the channel and 3D states in the metal
gate through a finite thin gate stack, results in an energy broadening of subbands
(Figure 5-2(b)). The energy broadening is inversely proportional to the lifetime
of carriers in each subband. The transparency of the barrier is directly reflected
in the energy broadening and lifetime concepts. The transparency of a barrier is
connected to the height and thickness of that barrier. For a relatively transparent
barrier, low or thin, the energy broadening is high and the lifetime is short. In
others words, the carriers leave the QBS through a tunnel process with a rather
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5.2 Models For Gate Tunneling Calculation

fast rate and the structure behaves as an open boundary system. On the contrary,
for a thick or high barrier, the lifetime is long and energy broadening is
negligible, which means that the carriers stay longer on QBS and the tunneling
rate is low. In this latter case we can say that QBS transform into bound states
and the structure behaves as a closed boundary system.

o0 (w ]
Bound states Quasi-Bound states
AE =0 \ AE finite
i

At finite

(a) (b)

Figure 5-2
(a) Bound (closed boundary) and (b) quasi-bound (open boundary) states in the channel
layer of an UTBSG MOS.

5.2.1 Closed boundary based method

Some authors propose to solve the Schrodinger equation applying closed
boundary conditions which force the wave function to vanish at either the
substrate/dielectric or dielectric/metal interface. Solving the Schrodinger
equation with closed boundary conditions leads to discrete bound states with
sharp energies E; ;, but at the same time this implies that no current could be
carried by these states due to vanishing wave functions. The QBS and lifetime
concepts explain this paradox and describe the real nature of the 2D carriers. In a
quasi-classical approximation, impact frequencies of carriers on the barrier and
transmission coefficient are used for the calculation of carrier’s lifetime [51, 60,
68]. Here, the lifetime of the carriers located at the /” subband of the i valley

with energy E; ;, is defined as

J

1

— =T(E;;)f(Ei;) 5.1

Ti,j

where f (Ei‘ j) and T(El-' j) are the impact frequency of carriers and transmission

coefficient of the barrier, respectively (see Figure 5-3).
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The impact frequency of the carrier indicates how many times a carrier hits
the barrier per unit time and transmission coefficient is the ratio of successful
impacts to the total number of impacts. The impact frequency is related to the

kinetic energy and location length of carriers on each subband and can be
expressed as follows [68]:

1

_ Tsi/2 1 _ (Tsi/2
G 2 fxt,ij v (0)dx = fxw \/Zmi,j/ (El-,j - Ec(x)) dx (5.2)

where v;; is the group velocity of carriers in the subband, x;;; refers to the
classical turning points of carriers, E. is the substrate conduction band, T; the
substrate thickness and m; ; is the effective mass. The transmission coefficient
of a DS barrier takes the form

Tij = Poexp [_ZSIL - Zshk] (53)
where
S = f;lz ki (x)dx and  Sp = f;; Kne(x)dx  (54)
/| NV
i \I
El'.-
e
te o
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-li_:-!q- T:r
Figure 5-3

Scheme of the conduction band of an UTBDG. Also the impact frequency f;; and
classical turning points x,;; are showed.
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are the usual WKB tunneling probabilities. The P, is a correction term
accounting for reflections due to potential discontinuities in the DS barrier [62].
The WKB approximation is widely used for the calculation of the transmission
probability. Transfer matrix methods as well as expressions in terms of Airy
functions are also applied to the calculation of the transmission probability.
However, the aforementioned transmission probability is well defined for 3D
states assuming plane waves for incident, reflected and transmitted wave
functions, but its application for 2D states is questionable.

Finally, using a close boundary based method, the gate current density of every
bound-state can be calculated as J;; = N; j(Ei j) /Ti. j(Ei j) where N;; is the
channel charge per unit area of every subband, and calculated solving the
Schrédinger-Poisson  (SP) coupled equations. Although this is a fast
computational method it can result in inaccuracies depending on the correction
term of Eq. (5.3) and the dispersion relations used to evaluate Eq. (5.4).

5.2.2 Transverse resonant method

A direct calculation of the lifetime without using the transmission coefficient
concept was suggested by Lo ef al. [10], based on the close analogy between the
confined electrons in a varying potential and electromagnetic waves in a
waveguide with varying refractive index. This analogy allows the utilization of
the transverse resonant method (TRM) [69], commonly used for finding the
eigenvalues of inhomogeneously filled waveguides and dielectric resonators. To
apply this method the structure is divided into intervals of width d of a 1D grid
along the direction perpendicular to the substrate/dielectric interface. The TRM
defines the intrinsic impedance 1; = m;/k;, where m; is the carrier effective

mass and k; is the wave number, and the terminal impedances of each interval Z 1

and Z 1» where the arrows indicate the impedance looking to the left or right.
Considering an interval in the silicon layer and applying the transmission-line

transformations as shown in Eq. (5.5) repeatedly, Z ; and Z ; could be expressed

. « < < - - =3 .
interms of Z;,Z,, ..., Z;_1 and Z; 4, ..., Zy_2, Zy_4 respectively.

< 7+ —jn.. tan(k,,d
Zm:n m-—1 JNMm (m m) m=2,3,...,l.

" NMm _jZm—ltan(kmdm)
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= Zm+1 _jnm+1 tan(km+1dm+1)

Zm = NMm+1 S
Nm+1 —J Zm+11tan(km+1dm+1)

m=N-2,N-3,..,1L
(5.5)

Under resonant conditions the terminal impedances to the left and right

should satisfy Z  + Z ; = 0. This condition would be satisfied with a complex
energy € = E — jI', whose imaginary part I is related to the energy broadening
of leaky QBS. This information allows the carrier’s lifetime on each subband to
be determined as follows:

h

T = E (5.6)
Some authors [10, 70] use a SP solver with closed boundary conditions to
generate the potential profile and then the TRM to find the complex energies and
to calculate the gate tunneling current. This procedure may result in inaccuracies
especially with the aggressive scaling of the EOT in MG devices. On the other
hand, in order to calculate the complex energy with the resonant conditions,
complicated nonlinear equations must be solved, requiring the use of iterative
methods hindering the application of the TRM on non-planar MG MOSFETs,
such as the SOI FinFETs, SOI Tri-Gate, SOI Pi-Gate, SOI gate-all-around or

bulk Tri-Gate [17].

5.2.3 Perfectly Matched Layer Method

In the present work a method based on absorbing boundary conditions for
Schrodinger’s equation, which is often used in electromagnetic waves with
unbounded domains, has been applied to determine the energy levels and the
lifetime broadening of QBS in UTBDG and UTBSG MOSFETs with HK
materials as gate dielectrics. It is known as the Perfectly Matched Layer (PML)
method [71]. In contrast to the TRM, here all the QBS are calculated in one step
and no iteration procedures are needed. In addition, the PML method can be
extended to 2D and even 3D regions with different geometries [72] making it
suitable for non- planar MG MOSFETs. This technique accounts for the wave
function penetration into the metal gate, thus allowing a more accurate
estimation of the electrostatic potential, quasi-bound states, charge and carrier
lifetime [67].
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The PML method is based in the addition of non-physical absorbing layers
at the boundary of the simulating regions of interest [73] (see Figure 5-4). An
absorbing boundary layer is a layer of a simulated artificial absorbing material
that is placed adjacent to the edges of the grid. When a wave penetrates the
absorbing layer, it is attenuated by the absorption and decays exponentially. The
problem with this approach is that, whenever there are transitions from one
material to another, waves generally reflect, and the transition from non-

‘b)‘ Boundary of truncated region

o R T T

wiewal

Figure 5-4

(a) Schematic of a typical leakage current problem, in which there is some finite region
of interest (silicon + DS), from where some electron wave functions escape to the metal.
(b) The same problem where the space has been truncated to a finite computational
region. An absorbing layer is placed adjacent to the edges of the computational region —a
perfect absorbing layer would absorb outgoing waves without reflections from the edge
of the absorber.

absorbing to absorbing material is not an exception so, instead of having
reflections from the grid boundary, now there are reflections from the absorber
boundary. However, Berenger [73] showed that a special absorbing medium
could be constructed so that waves do not reflect at the interface: a perfectly
matched layer, or PML. Although PML was originally derived for
electromagnetism (Maxwell’s equations), the same ideas are immediately
applicable to electron wave functions (Schrodinger’s equation). The QBS
(eigenstates of the open system) are determined by the eigenvalues of the non-
Hermitian Hamiltonian of the system which admits complex eigenvalues
e =FE —jI. The QBS lifetimes are related to the imaginary parts of the
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eigenvalues as T = h/2I". To implement the PML-absorber regions, complex
stretched coordinates X are defined by a stretching factor s, for the coordinate x:

x= f;csx(x')dx’ (5.7)
resulting in
d 1 0
ax sx(x)a (5-8)

In particular, the stretching function s, (x) can be defined, with good result
[67], as:

5, (x) = { 1 +1(a + jB)x? ffor the PML'region' (5.9)
or the physical region

where x is a normalized variable, being x = 0 at the interface between the
physical and the PML regions and x = 1 at the end of the PML region, and
parameters a and f are explained below. Because of the integral form Eq. (5.7)
the coordinate gradually is transformed and so the wave functions decay to zero
(Figure 5-5).

Assuming a constant potential within the PML region, the wave function can
be written as a plane wave ¥ (x) = Poexp (jk,x) with the wavevector k, =
k,/s,. Considering two points in the PML region x; and x, = x; + dx the
wavevector at the point x, can be approximated as

k() ~ 22 ke (11) = 1+ (a + jR)dx (5.10)

Therefore, the parameter o scales the phase velocity of the plane wave,
while f acts as a damping parameter. Since this damping coefficient is greater
than zero in the absorbing region, the envelope of the wave function decay to
zero, as can be seen in Figure 5-5. These parameters, as well as the thickness of
the absorbing layer can be varied over a wide range with virtually no influence
on the results, as long as there are no reflections at the boundaries. However, to

achieve this goal, the complex stretching function and its first derivative have to
be continuous.
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5.3 Gate Tunneling Current using the PML
method

Due to the confinement of electrons in planar structures such as those
considered in Figure 5-1, quantum mechanical tunneling has significant effects
on their electric characteristics. The main mechanism for tunneling of electrons
through the DS is represented by QBS. In this section the numerical estimation
of the gate tunneling current is obtained for devices considered in Figure 5-1.
Physical parameters defining the structures are Ty;, T,, (When the SiO; is the
only gate dielectric) and Tj;, Ty, (for dual layer gate dielectrics). A workfunction
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Figure 5-5

Ground state squared wave function (red solid line) and electron conduction band (blue
solid line) of an UTBSG MOSFET along the whole simulation domain. The inset shows
the oscillations of the wave function in the metal and its decay in the PML region.

difference between the silicon body and the gate metal producing a flatband
voltage Vg, = —0.31 eV has been assumed. Note that we have considered an

undoped body. We first solve the 1D SP equations self-consistently, where
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electron wave function is allowed to penetrate to the gate metal through the DS
(see Figure 5-5) via the implementation of the PML method in each iteration.
Similarly to Ref. [67], in Eq. (5.9) @ = 1 and 8 = 1.4 have been assumed, with
good results. From this solution, we obtain the potential profile, the complex
eigenvalues g;; = E;; — jI';; and the eigenstates 1;; (complex wave functions)
of the ij™ state. The effective-mass Schrdinger equation, Eq. (5.11), is solved in
the silicon, gate dielectric(s), metal and PML regions whereas the Poisson
equation (Eq. (5.12)) is solved in the silicon and gate dielectric(s) regions:

h1d 1 1 i+V(X)_8ij]1pij(x)=O (5.11)

2 5, (x) dx Mgi(x) Sy (x) dx

and
e & o0 = LInto —pC) + N7 =Nzl 512

where s, is the stretching function as given in Eq. (5.9), m; is the electron
effective mass in the i valley, V is the potential energy, and N; and N} are the
ionized acceptor and donor concentration, respectively, assumed to be zero for
the undoped devices examined in this work. The potential energy V(x) in Eq.
(5.11) is related to the electrostatic potential ¢(x) in Eq. (5.12) as V(x) =
—q¢p(x) + AE.(x), where AE.(x) is the energy barrier difference produced by
the band offset between silicon and every dielectric layer. The wave function
¥;;(x) in Eq. (5.11) and the electron density n(x) in Eq. (5.12) are related by

n(x) = (5) iy gimy In[1 + eEr B/ Ty, Gol* (5.13)
where g; and mj; are the degeneracy and the DOS effective mass of the i
valley respectively (Table 5-1). For [100] silicon m; = 0.92my and m; =
0.19m,, where my is the free electron mass [67]. Also, the values used in our
numerical calculations related to the dielectric regions are taken from Ref. [66]
and summarized in Table 5-2.

Table 5-1
Parameters for [100] silicon.
i" valley gi my; m;

2 4 Jmemy me

87



5.3 Gate Tunneling Current using the PML method

Table 5-2
Parameters for calculation of the direct tunneling gate leakage current considering different high-k
materials.

High-x AE.(eV) K =¢€/€ey my,/m,

SiO, 3.15 3.9 0.45
SizNg 2.0 7.0 0.5
Y203 23 15 0.25
HfO, 1.5 25 0.18

Then, the total tunneling current density can be obtained by adding currents
due to each energy level according to

J=2ilij=a (%) Zij% In[1 + eEr-E/kT] (5,14

Next, the simulator developed in this work is compared against the
measurement and simulation results from [58]. The device under test is an
UTBSG MOSFET with several SiO, thicknesses T,, and no HK dielectric layer
has been included. Figure 5-6 shows that the gate current density values closely
follows the results from Ref. [58] where the simulations were made with the
TRM described in Section 5.3 and experimental data are reported.

Figure 5-7 illustrates, for an UTBSG MOSFET, the energy difference for the
ground state E;; considering open or closed boundary conditions as a function
of the gate voltage V. Even for SiO, thicknesses T, values as thin as 0.3 nm,
without a HK dielectric, that difference is just in the order of 10 meV for gate
voltages as high as 2V. Important differences could arise, however, when low
barrier height insulators are considered. This is illustrated in Figure 5-8 showing
the effect of the wave function penetration in the metal for the ground state over
four different dielectric materials (Hypothetical SiO, where the barrier height is
virtually changed, HfO,, Y,O; and Si;N4). In all cases the IL is absent.
Hypothetical SiO, means a dielectric with SiO, properties, except the band
offset energy, which is arbitrarily modified to display the E;; decreasing effect.
The results show that the difference in energy could be as high as 100meV for
the HfO, case, which has the lower barrier height of oxides considered in this
analysis. Differences much smaller than 10meV are expected when an IL is
included.
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Figure 5-6
Comparison of our results (PML method) with those of Ref. [58], where TRM based
simulations and experimental data were reported. Here we used T;; = 10nm.

A comparison of the gate current between an UTBSG and an UTBDG as a
function of the channel charge density for several SiO, thicknesses (without HK
dielectric) is shown in Figure 5-9, revealing that for the same charge density the
gate current in the UTBSG is larger than in the UTBDG. For UTBSG and
UTBDG MOSFETs, the gate current is reduced respect to the bulk MOSFET,
due to the smaller vertical electric field near the bottom of the inversion layer, as
discussed in Ref. [58]. This reduces the electrical confinement, which lowers the
QBS energy, thus resulting in smaller tunneling probability and an increased
lifetime of each QBS. Only the SiO, faces the problem of very large gate current
densities (J = 1A/cm?). For this reason, alternative HK dielectrics have been
considered to overcome the large increase of the gate leakage current
accompanying the scaling.
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Figure 5-7
Energy difference AE;; of the ground state with and without considering the wave
function penetration in the metal gate through a SiO, layer as a function of the gate
voltage V.

Next, we have performed simulations of the gate current for both UTBSG
and UTBDG devices (see Figure 5-10). Different gate DS using HK materials
from Table 5-2 have been considered. We found again that the gate current in
UTBSG devices is larger than in the UTBDG for the same charge density.

In structures with DS consisting of dual layer (IL+HK), given a gate voltage
value, four gate tunneling mechanisms could appear, depending on the location
of the specific energy level respect to the conduction band of insulators: (a)
direct tunneling in both IL and HK (DT-DT); (b) direct tunneling in the IL and
Fowler-Nordheim tunneling in the HK (DT-FN); (c) direct tunneling through the
IL (DT) and (d) Fowler-Nordheim tunneling through the IL (FN). For the
materials and voltage range considered in this work only mechanisms (a) and (b)
are relevant (see Figure 5-11).
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Energy difference AE;; of the ground state with and without considering the wave
function penetration in the metal gate as a function of the barrier height. No IL has been
considered (only one gate dielectric) and EOT = (3.9/k)Tpy, -

From Figure 5-10 we can see that the SiO,/HfO, and SiO,/Y,0;
combinations prevent the gate leakage as compared to other material
combinations. For V, values smaller than roughly 1V, the HfO, reduces more
strongly the gate current than the Y,0s;. This is because for EOT = 1nm the
HfO, thickness is 3.2nm while the Y,0; thickness is 1.92nm. Besides, in both
cases the QBS that contain most of the charge (lowest energy levels) experience
a potential so high that can be considered infinite (Figure 5-11(a)). However,
when 1, = 1V, for the SiO/HfO, case, the gate tunneling suffers a huge
increase because the lowest QBS start to feel a finite potential and the HK
barrier height becomes a relevant parameter (see Figure 5-10(b) and Figure 5-
11(b)). This condition is given when the charge density is approximately 10"
cm? in UTBSG and 2*10" c¢cm™® in UTBDG. Then, when the gate voltage
increases up to ~2V, any of the QBS tunnels through the SiO,/HfO, via DT-DT
mechanism (Figure 5-11(d)). On the contrary, for the SiO,/Y,0; system the
lowest QBSs tunnel via DT-DT due to the larger HK barrier height (Figure 5-
11(c)). We can conclude that not only the physical thickness of the HK layer
plays an important role, but also the barrier height is crucial in determining the
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gate tunneling current. Notice that for the same EOT a higher dielectric constant
(25 for HfO,) means a thicker layer and therefore a lower gate current. Other
tunneling effects via either DT or FN mechanism could appear whenever the
body is made very thin (energy levels go up) or the gate voltage is high enough.

S0,

T =1nm
ax

=le= UTBD :derﬂﬂnm;u
UTBSG 1Tmr=5nm]

0.5 1 15 2 25
Channel Charge Density (cm™) x 10"
Figure 5-9
Gate current density in both UTDSG and UTBDG MOS structures through a SiO, layer
as a function of the channel charge density.

Nevertheless, according to the ITRS 2009 edition [9] future technologies
using MG as the Double-Gate MOSFETs could start to be in production by 2015
with EOT around 1.1 nm, requiring a maximum gate leakage current density
(Jg timir) of 0.19 Alem’ at Vg =Vaq = 1V for low standby power applications.
Figure 5-12 shows the gate current density predicted by our calculations, for
different HK materials, as a function of the IL thickness setting EOT = 1.1nm,
Ve =1V and using the parameters given in Table 5-2. In general, the gate current
limit could be satisfied depending on the IL thickness. For DS with HK
materials such as Y,0; and HfO,, IL thicknesses roughly lower than 0.7nm
could be needed. On the other hand, materials with lower dielectric constants
such as Si3N, could not satisfy the gate current limit requirement.
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Figure 5-10
Gate current in both UTBSG and UTBDG MOS structures through several DS as a
function of: (a) the channel charge density; (b) the gate voltage.
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Various gate tunneling mechanisms through a DS in UTBSG MOS and location of the
lowest energy levels respect to the conduction band.

5.4 Summary

Multi-gate MOSFETs in combination with high-k materials as gate dielectrics
have been investigated as a successors of the single-gate MOSFET for the next
technology nodes. Three different models for the calculation of the gate
tunneling current have been presented and benchmarked, including some
discussion about the eventual application of these models to non-planar SOI
MOSFETs. The PML method is explained and developed allowing an accurate
calculation of the gate tunneling current in UTBSG and UTBDG MOSFETs
with dual layer gate dielectrics. We have found that the introduction of the PML
method is recommended to accurately capture the eigenergies of QBS in low
barrier height materials. Remarkably, a close agreement between our simulations
and experimental results for UTBDG MOSFETs reported in the literature has
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been obtained. Finally, we found that HK materials, such as Y,0; and HfO,, in
combination with an IL with thickness roughly lower than 0.7 nm could be
needed to satisfy the gate current limit projected by the ITRS 2009.
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Figure 5-12
Direct tunneling current in UTBDG MOS as a function of the IL thickness for several
HK materials compared with the maximum gate leakage current density projected by the
ITRS at EOT = 1.1 nm and V, = 1V.
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APPENDIX A

Analytical Solution for &
Parameter

In this Appendix, we describe a three step method to solve Eq. (2.16) in
analytic way.

Before presenting a method for the solution in more detail, it is convenient
to make the following replacement f = arctan (z). Thus, the Eq. (2.16)
changes and the problem can be redefined as finding out z from

f(z;m,F) = %ln(l +z3)+mzarctan(z) —F =0 (Al

1. Compose a continuous starting function as the initial
approximation.

The first step gives a rough estimation of the surface potential as an explicit
continuous function of gate voltage, quasi-Fermi potential, etc. It is the most
important step and the determinant factor of the method. The function should not
be too complicated but must be close enough to the exact implicit solution. The
feasibility of this general method lies on whether we can find a proper starting
function. If the implicit equation can be largely simplified in the region well
above or below threshold, the asymptotic limits can be easily obtained. Using an
appropriate smoothing function to join two asymptotic behaviors, we may
achieve an ideal initial approximation.
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The starting function (z;) can be obtained from the asymptotic behavior of z

F 2F
z—\/% (asz — 0); z=— (as z » ) (A2)

and using the following smoothing function to connect them:

8 F 2F\2 8
2 = 2m?2 (1 + \/%) t (E) - n2m?2 (A3)

2. Modify the starting function with a high-order
correction.

The starting function is just a crude estimation and is far from accurate. To
achieve accuracy, a third-order correction is used in [41] to modify the starting
function. Although the third-order correction in [41] is described in a concrete
manner and applicable to the specific equation, it is easy to reorganize to satisfy
our purposes. Assume that we are going to solve the implicit equation
f(z;m,F) = 0, where z is to be solved, and m and F are independent variables.
Initially z is approximated by z, (m, F).

The f function can be expanded into Taylor series to the third order near z;
to yield:

f(zzmF) = fo+ fih + fh* + f3h3 = 0 (A4)

19"f
where fn = ;az_" ,

) forn = 0,1,23and h =z — z,.

=z

The cubic equation has exact solutions. However, considering that h a small
quantity, the solution should be approximately simplified into a rational form for
the purpose of efficiency. It is well known that arithmetic operations are much

faster that the square root and cubic root. Following the steps in [74], we can
obtain a possible rational solution for (A4) and it can be expressed as:

fo fofz | fo’(3f2%—fif3)
hy=-2[14+ 2024 | AS
1 fi 2fi? 6f1* (A3)

Because the third order results in accurate calculations we do not attempt to
work at higher orders. Hence, a first solution to Eq. (Al) is z; = z; + hy.
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3. Make another correction to improve accuracy.

Although a rough estimation evolves into an accurate one through the last
step, another correction may be needed to further improve the accuracy to reach
a prescribed accuracy. Then we apply one more step, which is similar to the last
one.

To refine previous solution (z,) we apply the outlined procedure yielding

Z3 = Zy + h,, where h, corresponds to the second correction and in this case
1 9nf

In = n!ozn Z=ZZ.

2 2 _
h, = _@[1 1 9002 | 90 (392 49193)] (A6)
91 201 691

Finally, the above procedure provides an explicit expression for £* (and &),
which is an approximate solution of Eq. (2.16):

f* — ’8* %e_Q(d’o_d’Omax)/ZkT (A7)

where

B* = arctan(z; + hy + h,) (A8)
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APPENDIX B

Predictor-Corrector
Algorithm to Solve SP
Equations with PML

In this Appendix a fast and robust iterative method for obtaining self-
consistent solution to the coupled system of the Schrodinger’s and Poisson’s
equation, considering the metal oxide semiconductor structure as an open
system, is presented. The iterative method is based on a previous work
developed by A. Trellakis [75, 76] that uses a predictor-corrector procedure for
the solution of the coupled system of differential equations. As a novelty, the
Perfectly Matched Layer (PML) method is embedded in each iteration to permit
the penetration of the electronic wave functions into the metal electrode and thus
to obtain electron lifetime information relevant in the calculation of the gate
tunneling current. It should be noted that both the predictor-corrector technique
as well as the PML method have been adopted in this work by their efficiency
and stability, together with the ability to tackle two-dimensional quantum
structures.
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1. Physical Model

The physical model used for the description of quasi bound states (QBS) in
the perpendicular direction to the channel of a DG structure consists of a
nonlinear Poisson equation for the electrostatic potential ¢

V[eVp] = —pl¢p] = —q[— n[¢] + p[¢] + N5 [¢] — Ny [¢]]
B1)

coupled with an eigenvalue problem for Schrédinger’s equation,

H\lpn = _ﬁiv [,;%Vllin ] + (Vh - Q¢))7~/)n = nlpn (B2)
where € is the dielectric constant, ¢ is the unit electric charge, m* the effective
electron mass, p the total charge density, n and p electron and hole
concentrations, N and N; ionized doner and acceptor concentrations, A the
Hamiltonian operator, 1, the wave function belonging to the energy level E,,,
Vi, the hetero-junction step potential and finally ¢ the complex stretching
function. On the other hand, for device applications the most interesting quantity
is the quantum electron density,

Ef—E
— 2 f~hn
qu - Nq anlpnl Tk( kT ) (B3)
where T denotes the temperature, & the Boltzmann’s constant, E; the Fermi level
and F) is the complete Fermi-Dirac integrals of order k. These integrals are
usually defined as

1 o tkat
:Fk(x) T I(k+1) fO et=%41’ k>-1 (B4)
and they have the interesting property
a
ETk(x) = Fr-1(x) (B5)

which allows an analytical continuation to any k < —1. In this work we
consider a DG MOS structure, which is characterized by 1D confinement of
carriers. Then k = 0 and we can write accordingly,
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B. Predictor-Corrector Algorithm to Solve SP Equations with PML

Ny = —ki’;‘fln (B6)
Fo(x) =In[1 + e*] (B7)

2.  Approximation of the Quantum Electron Density

The electrostatic potential enters the quantum electron density ng[¢]
through the energy levels E, [¢] and complex wave functions Y, [¢]:

ng[¢] = No Zultnl[9]1? 7 (o) (B3)

A perturbation,

¢ > P+5¢ (B9)

is introduced modifying both the Hamiltonian of the Schrédinger’s equation,
namely:

~

H- H-q8¢, (B10)
and the quantum electron density ng[¢] given as
nglgl = ngld + 6¢] = ngld] + dnqle, 661 ®BID

Using the derivative property (Eq. B5) of Fermi-Dirac integrals then dng
can be written as

5rqlh, 5] = an (6] < [¢]>55 (6,61

-E,
+ 2Nq z l/)n [Qb]&vbn [d)' 6¢]:Fk <TW>

(B12)

Utilizing first order perturbation theory we can calculate both 6E,,[¢, 5¢]
and 61, [, 5¢] assuming that 1, is nondegenerate,
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En [d)' 6¢] = _Q<¢n|6$|¢n>r

5l 68] = —q Tpun i 9128, @13
where we have introduced these expressions back into §ng[¢, 6¢]:
an[¢> §¢]
—E
an ¢ Fis ( e ad >(¢n|6¢|¢n>
(Wil6@lvn) . (Er — Enlgl
- 2quZ ;wnw]ij] AR ( P )
(B14)

The sum as well as the scalar product in the second term is symmetric in j
and n. Using this property it is possible to symmetrize the above expression as

Er — E,
Snql,69] = an f“(f T [¢>(¢n|6¢|wn>

- quZZ% D1, 1915 ]n)

n jn
(59 (15719

X

E,[¢] — Ej[¢]
(B15)

The double sum in the above formula is rather undesirable for numerical
purpose. Besides, (B15) is only valid for nondegenerate levels E, and it is
difficult to generalize for accidental degeneracies as is possible in systems with
two quantization directions. Seeking to improve (Eq. B15), while retaining as
much of its accuracy as possible, Trellakis has proposed to approximate the
differential quotient by a derivative:

Ef — En[¢] Er — Ejl¢]
Tk<f kT )—Tk<_f kT )N_i? E; — En[o]
E,[¢] — E;[$] Tkt kT )

(B16)
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Inserting (B16) into dng, the following approximation for 87 can be

written, namely:

maw) 5¢]
- E,
an T“( e [¢>(¢n|6¢>l¢n)

zwn B1F ( )Zw, 16515ln).

J¥n

(B17)

Next, we will take into account the completeness and orthonormality of the
wave functions 1, in the Hilbert space, that is

> 10116 ln) = 5061 — BN |5B]10n).
j*n

(B18)

Substituting this formula into (B17) all the terms containing scalar products
cancel to yield the following expression:

Ef - En[¢] q5¢
kT kT

67519, 591 = Ny ) 2[9] Fis (
" (B19)

An approximation 7ig(¢) for ng(¢p) itself can be obtained from the

following relationship

ngl$, 6¢] = ngle] + 6nglp, 5], (B20)

and applying the derivative property of Fermi-Dirac integrals (B5), the
following final result arises:

Ef— En[¢]+q5¢)

figle, 6] = Ny X Y3 [ 9] Tk( - (B21)

Comparing this formula to the original quantum electron density (BS), we
can observe that the only change corresponds to a modified set of energy levels
E,, due to the change in the electrostatic potential, namely
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En[¢] - En[¢] - q6¢- (B22)

3. Schrodinger-Poisson Solution Using a Predictor-

Corrector Approach

Now, it is possible to detail how to solve the system of coupled partial
differential equations using a predictor-corrector approach. The main feature
here is the solution of a nonlinear Poisson equation,

VIeve] = q [mgle] — ple] — Nile] + Nilel|  (B23)

where the potential independent quantum electron density nq is replaced by the
potential dependent predictor,

E, —E® — ¢
r“la[cp]:Nqu,ﬁ")ka(f i LA )),

kT
(B24)
where superscript (k) denote quantities obtained in the previous outer iteration

step. The electrostatic potential ¢**+1) obtained from Poisson’s equation (B23)
is the one used within the Schrédinger’s equation (corrector),

AL 111 _ (k41 k1 k+1) , (k+1
5oV s T | (= ag ) = B,
(B25)
to calculate a corrected update of ng, namely
(k+1)
k+1 k+1)2 Ef—E
n$D = Ny Bt 7 (2 —). (B26)

The above algorithm is summarized as follows:
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CONCLUSIONS

The main contributions of this thesis are in the field of compact and
numerical modeling of the gate tunneling in Double-Gate MOSFETs in the

scaling context of CMOS technology and can be summarized in the following

items:

1.

A simple compact quantum model for the electrostatic potential,
electric charge and gate capacitance in thin-film symmetric DG
MOSFET with undoped body has been developed and assessed. As a
novelty, this model presents closed explicit expressions on bias and
geometrical parameters avoiding numerical iterations. The results are in
close agreement with self-consistent solutions [P1].

An explicit compact quantum model for the gate tunneling current in
DG MOSFET with SiO, as gate dielectric has been developed and
assessed. Specifically, an explicit closed-form expression is proposed,
useful for the fast evaluation of the gate leakage in the context of
electrical circuit simulators [P2].

An extension to the model for the gate tunneling current in DG
MOSFET with SiO, as gate dielectric has been developed. Specifically,
an explicit compact quantum model for the direct tunneling current
through dual layer SiOy/high-x dielectrics is proposed. The explicit
closed-form expression of this model is useful to study the impact of
dielectric constants and band offsets in determining the gate leakage and
useful for the fast evaluation of the gate leakage in the context of
electrical circuit simulators [P3].

A numerical accurate description of tunneling in Double-Gate and
Single-Gate MOSFETs devices through layers of high-x (HK)
dielectrics, which relies on the precise determination of quasi-bound
states and their penetration in the gate metal, has been developed. For
this purpose the Perfectly Matched Layer method (PML) is embedded in
each iteration of a 1D Schrodinger-Poisson solver [P4].
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5. Our numerical modeling by adopting the PML method can be extended
to 2D and even 3D regions with different geometries making it suitable
for non- planar MG MOSFETs such as the SOI FinFETs, SOI Tri-Gate,
SOI Pi-Gate, SOI gate-all-around or bulk Tri-Gate.
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