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SUMMARY 
 
The scaling of the conventional MOSFETs has led these devices to the 
nanoscale to increase both the performance and the number of components per 
chip. In this process, the so-called “Short Channel Effects” have arisen as a 
limiting factor. To extend the use of the bulk MOSFETs, the most effective 
ways of suppressing such effects are the reduction of the gate oxide thickness 
and increasing of the channel doping concentration. When the gate oxide 
thickness is reduced to a few atomic layers, quantum mechanical tunneling is 
responsible of a huge increase in the gate leakage current impairing the normal 
operation of MOSFETs. This has made mandatory the use of high permittivity 

materials or  high- as gate dielectrics.  
 
Despite the proposed solutions, reduction of the physical dimensions of the 
conventional MOSFETs cannot be maintained. To keep the technological trend, 
new MOSFET structures have been suggested such as ultra-thin body Multi-
Gate MOSFETs. In particular, the Double-Gate MOSFETs is considered as a 
promising MG structure for its several qualities and advantages in scaling. 
 
This thesis focuses on the modeling of Double-Gate MOSFET and, in particular, 
on the modeling of the gate leakage current critically affecting the power 
consumption. First we develop a compact quantum model for both the 
electrostatic potential and the electric charge in symmetric double-gate 
MOSFET with undoped thin body. Then, this quantum model is used to propose 
an analytical compact model for the direct tunnelling current with SiO2 as gate 
dielectric, firstly, and later assuming a dual layer consisting of a SiO2 interfacial 

layer and a high- material. 
Finally, an accurate method for the calculation of the gate tunnelling current is 
developed. It is based on Absorbing Boundary Conditions techniques and, more 
specifically, on the Perfectly Mached Layer (PML) method. 
 

This thesis is motivated by the recommendations given by the “International 
Technology Roadmap of Semiconductors” (ITRS) about the need for the 
modeling and simulation of multi-gate semiconductor structures. 

  



 

 

  



 
 

 

RESUM 

 
L’escalat dels transistors MOSFET convencionals ha portat a aquests dispositius 
a la nanoescala per incrementar tant les seves prestacions com el nombre de 
components per xip. En aquest process d’escalat, els coneguts “Short Channel 
Effects” representen una forta limitació. La forma més efectiva de suprimir 
aquests efectes i així estendre l’ús del MOSFET convencional, és la reducció del 
gruix de l’òxid de porta i l’augment de la concentració de dopants al canal. Quan 
el gruix d’òxid de porta es redueix a unes quantes capes atòmiques, apareix 
l’efecte túnel mecano-quàntic d’electrons, produint un gran augment en el 
corrent de fuita, perjudicant la normal operació dels MOSFETs. Això ha fet 

obligatori l’ús de materials d’alta permitivitat o materials high- en els 
dielèctrics de porta.        
 
Tot i les solucions proposades, la reducció de les dimensiones físiques del 
MOSFET convencional no pot ser mantinguda de forma indefinida i per 
mantenir la tendència tecnològica s’han suggerit noves estructures com ara 
MOSFETs multi-porta de cos ultra-prim. En particular, el MOSFET de doble 
porta és considerat com una estructura multi-porta prometedora per les seves 
diverses qualitats i avantatges en l’escalat. 
 
Aquesta tesi s’enfoca en la modelització de dispositius MOSFET de doble porta 
i, en particular, en la modelització del corrent túnel de porta que afecta 
críticamente al consum de potència del transistor. Primerament desenvolupem 
un model quàntic compacte tant per al potencial electrostàtic com per a la 
càrrega elèctrica en el transistor de doble-porta simètric amb cos no dopat. 
Després, aquest model quàntic s’utilitza per proposar un model analític 
compacte per al corrent túnel directe amb SiO2 com dielèctric de porta, 
primerament, i després amb una doble capa composta de SiO2 com a capa 

interfacial i un material “high-”.  Finalment es desenvolupa un mètode precís 
per calcular el corrent túnel de porta. El mètode es basa en l’aplicació de 
condicions de frontera absorbents i, més especificament, en el mètode PML. 
 

Aquesta tesi està motivada per les recomanacions fetes pel “International 
Technology Roadmap of Semiconductors” (ITRS) sobre la necessitat existent de 
modelatge i simulació d’estructures semiconductores multi-porta. 
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CHAPTER 1.  

Introduction and Background 

1.1  CMOS Technology Scaling 

Throughout recent history, silicon-based microelectronics has experienced 
tremendous growth and performance improvements since the innovative concept 
of integrated circuit (IC) was invented by J. Kilby in late 1950’s [1]. The 
computational power is enhanced at a tremendous rate with cost reduction, 
resulting in incredible reduction of cost-per-computation with higher 
computational performance in data processing and memory functions. In 1965, 
Gordon Moore made a very famous and important observation: the complexity 
of ICs approximately doubles every year (Moore later refined the period to two 
years) [2]. This estimation is the well known “Moore’s Law” [3]. Over the past 
four decades, the scaling of the conventional metal-oxide-semiconductor field-
effect transistor (MOSFET) has been accomplished with technology innovations 
and led the device dimensions well into the nanometer era, allowing a great 
integration as shown in Figure1-1. 

 
 “Scaling” refers to reduction of the lateral geometric dimensions of devices 

and interconnect. This evolution of process technologies has brought new 
benefits. However, the performance improvement by scaling the dimension of 
conventional bulk MOSFET is approaching a limit.  

A MOSFET device is considered to be short when the channel length is the 
same order of magnitude as the depletion-layer widths of the source and drain 
junction. As the channel length is reduced (scaling) to increase both the 
operation speed and the number of component per chip, “Short Channel Effects” 
(SCEs) arise as hurdles. In particular some different SCEs can be distinguished: 
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threshold voltage roll-off, subthreshold swing degradation, drain-induced barrier 
lowering (DIBL), surface scattering, velocity saturation, impact ionization and 
hot electrons. 

 

Figure 1-1 
Moore's Law has delivered exponential increases in the number of transistors integrated into 
microprocessors and other leading platform ingredients. [Source: Intel Corporation] 

 

In conventional bulk MOSFET technologies, the most effective ways of 
suppressing SCE are the reduction of the gate oxide thickness ( ௢ܶ௫) and the 
increase of the channel doping concentration ( ஺ܰ) [4, 5]. The former is aimed to 
increase the gate capacitance, thus enhancing the electrostatic control of the gate 
over the channel. The latter is desired to minimize depletion depths of the 
source-to-channel and drain-to-channel junctions, preventing the junction 
electric fields from penetrating too much into the channel and forming an 
undesired leakage path relatively distant from the gate. 
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Researchers in [6, 7] have shown that the gate oxide scaling to thicknesses 
close to a few atomic layers gives rise to quantum mechanical tunneling 
producing a sharp increase in gate leakage currents. The gate leakage current is 
the current flowing into the gate of the transistor also called the tunneling 
current. Other major causes of concern in further reduction of the SiO2 thickness 
include increased polysilicon gate depletion and gate dopant penetration into the 
channel region, which leads to questions regarding dielectric integrity, 
reliability, and stand-by power consumption. With scaling, gate leakage has 
increased to undesirable values and will continue to increase at a much higher 
rate mandating the use of dielectric materials with high electric permittivity or 

high- dielectrics [8]. This allows the actual thickness of the gate dielectric to be 
increased while still maintaining the same electric field in the channel. 

Specifically, the International Technology Roadmap for Semiconductors 
(ITRS) [9] identifies that for 32nm technology node, gate oxide thickness is 
nearly to 1nm. The direct tunneling current through the gate oxide of such small 
thickness may become more of a problem especially in terms of the stand-by 

power consumption [10]. In addition, abnormal degradation of the drive current 
has been experimentally observed when the gate oxide thickness is less than 
1.3nm [11]. Meanwhile, the channel doping concentration required for SCE 
control in sub-32 nm bulk MOSFETs is expected to be a few times 1018 cm-3 and 
above [12, 13]. These extremely high doping levels will lead to i) severe 
degradation of the carrier mobility as the impurity scattering becomes dominant, 
ii) severe threshold voltage variations because of random microscopic 
fluctuations of dopant atoms both in numbers and in placement [14, 15], and iii) 
increased junction band-to-band tunneling current [16]. In view of the 
fundamental nature of both the gate direct tunneling current and random dopant 
fluctuations, it becomes problematic to scale bulk MOSFETs much deeper into 
the sub-32 nm technology regime while preserving good immunity to SCEs. 

On the other hand, a major portion of semiconductor device production, 
nowadays, is devoted to digital logic and one key theme is continued scaling of 
the MOSFETs for leading-edge logic technology in order to maintain historical 
trends of improved device performance. This scaling is driving the industry 
toward a number of major technological innovations, including material and 
process changes such as high-κ gate dielectric, metal gate electrodes, strained 
silicon channels, etc., and in the near future, new structures such as ultra-thin 
body fully depleted SOI, multi-gate (MG) MOSFETs (Fig. 1-2), such as 
FinFETs and alternate high-mobility channel materials [17] are expected to be 
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incorporated. In particular, the Double-Gate MOSFETs is a promising MG 
structure for its several qualities and advantages in scaling which will be 
described in the next section. Besides, Double-Gate (DG) MOSFET  actually is 
the central device studied in this thesis. 

 

Figure 1-2 
The different ways in which the gate electrode can be wrapped around the channel region of a 
transistor are shown. a, A silicon-on-insulator (SOI) fin field-effect transistor (FinFET). The 'hard 
mask' is a thick dielectric that prevents the formation of an inversion channel at the top of the 
silicon 'fin'. Gate control is exerted on the channel from the lateral sides of the device. b, SOI 
triple-gate (or tri-gate) MOSFET. Gate control is exerted on the channel from three sides of the 
device (the top, as well as the left and right sides). c, SOI Π-gate MOSFET. Gate control is 
improved over the tri-gate MOSFET shown in b because the electric field from the lateral sides of 
the gate exerts some control on the bottom side of the channel. d, SOI Ω-gate MOSFET. Gate 
control of the bottom of the channel region is better than in the SOI Π-gate MOSFET. The names 
Π gate and Ω gate reflect the shape of the gates. e, SOI gate-all-around MOSFET. Gate control is 
exerted on the channel from all four sides of the device. f, A bulk tri-gate MOSFET. Gate control 
is exerted on the channel from three sides of the device (the top, the left and the right). In this case, 
there is no buried oxide underneath the device. Ref. [17]. 

Implementation of fully depleted SOI and multi-gate will be challenging. 
Since such devices will typically have lightly doped channels, the threshold 
voltage will not be controlled by the channel doping. The problems associated 
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with high channel doping and stochastic dopant variation in planar bulk 
MOSFETs will be alleviated, but numerous new challenges are expected. These 
innovations are expected to be introduced at a rapid pace, and hence 
understanding, modeling, and implementing them into manufacturing in a timely 
manner is expected to be a major issue for the industry [9]. 

For the long-term, when the transistor gate length is projected to scale below 
10 nm and body (fin) thicknesses below 5 nm, the impact of quantum 
confinement effects on such thin devices should be well understood. 

The numerical modeling and simulation of semiconductor structures by 
computer is a useful resource for the study and understanding of several 
electronic phenomena, of which would otherwise have an incomplete 
knowledge. In fact, in most cases, the simulated devices are ahead of the current 
technology. Computer simulation allows, in a fast way, to explore new 
geometries and sizes that could be manufactured in the future.  

Modeling and simulation in semiconductor technology is one of the few 
enabling methodologies that can reduce development cycle times and cost. One 
of the topical areas of Modeling and Simulation of the ITRS is the Device 
Modeling which presents as a difficult challenge the nanoscale devices 
simulation capability: methods, models and algorithms. In particular it is 
necessary modeling for gate stacks with ultra-thin/high-κ dielectrics for several 
channel materials with respect to electrical permittivity, built-in charge, 
influence on workfunction by interface interaction with metals, reliability, 
carrier transport and tunneling currents. As mentioned before, gate dielectrics 
have become so thin that tunneling gate current is today an important design 
factor. Therefore, a comprehensive quantum modeling of the entire gate stack 
(channel, dielectric and electrode) is needed to represent the behavior of oxides 
that are only a few atomic layers thick. Since the adoption of high-κ dielectrics 
and metals, details of tunneling and charge transport in the dielectric, effective 
dielectric constant of complex dielectric stacks, interfaces states and dipoles, and 
charge and trap distribution in high-κ materials must be included urgently. 
Simulations must also be applicable beyond standard planar CMOS. 
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1.2  Double-Gate MOSFET 

DG CMOS offers distinct advantages for scaling to very short gate lengths. 
Furthermore, adoption of gate dielectrics with permittivity substantially greater 

than that of SiO2 (high- materials) may be deferred if a DG architecture is 
employed. Recently, through use of delta devices, now commonly referred to as 
the FinFET [18], significant advantages in DG device technology and 
performance have been demonstrated. Fabrication of FinFET is very close to 
that conventional CMOS process, with only minor disruptions, offering the 
potential for a rapid deployment to manufacturing. Planar products designs have 
been converted to FinFET without disruption to the physical area, thereby 
demonstrating its compatibility with today’s planar CMOS design methodology 
and automation techniques [19].  

CMOS technology  scaling has traversed many anticipate barriers over the 
past two decades to rapidly progress from 2µm to sub 100nm rules, as discussed  
in the article by Chuang et.al. [20]. Two obstacles, namely subthreshold and gate 
dielectric leakage become the dominant barrier for further CMOS scaling, even 
for highly leakage-tolerant applications such as microprocessors. 

DG MOSFET is composed of a thin silicon body sandwiched between the 
gate dielectrics and contacts as Figure 1-3 shows. We will consider that the two 
gates of the DG device are shorted giving rise to numerous advantages, such as 
greater control of the gate over the channel thereby reducing SCEs [21, 22]. 
Such SCE limit the minimum channel length at which a FET is electrically well 
behaved. Unlike bulk MOSFETs which require very high channel doping 
(~1018/cm3 for sub-100nm devices), thin body DG MOSFETs show good short-
channel behavior even with undoped silicon as a channel. 

As the channel length of a bulk MOSFET is reduced, the drain potential 
begins to strongly influence the channel potential, leading to an inability to shut 
off the channel current with the gate. This SCE is mitigated by use of thin gate 
oxide (to increase the influence of the gate on the channel) and thin depletion 
depth below the channel to the substrate, to shield the channel from the drain. 
Gate oxide thickness has been reduced to the point where, at sub-100 nm 
CMOS, the power drain from gate leakage is comparable to the power used for 
switching of circuits. Thus, further reduction of the thickness would lead to 
unreasonable power increases. Alternatively, further decrease of the depletion 
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region degrades gate influence on the channel and leads to a slower turn on of 
the channel region. 

 
Figure 1-3 
Cross section scheme of  the symmetrical DG MOSFET considered in this work. 

  

In DGs, the longitudinal electric field generated by the drain is better 
screened from the source end of the channel due to proximity to the channel of 
the second gate, resulting in reduced SCE such as the DIBL and improved 
subthreshold swing (S). Therefore, as CMOS scaling becomes limited by 
leakage currents, DG offers the opportunity to proceed beyond the performance 
of single-gate (SG) bulk-silicon. Figure 1-4 shows MEDICI-predicted DIBL and 
subthreshold swing for bulk silicon and (symmetrical) DG devices as a function 
of the effective channel length ܮ௘௙௙. Both the DIBL and subthreshold swing for 

the DG device are dramatically improved relative to those of the bulk-silicon 
counterpart [19]. 

From a bulk-silicon device design perspective, increased body doping 
concentration could be employed to reduce DIBL; however, at some point it 
would also increase the subthreshold swing, thereby requiring higher threshold 
voltage to keep the subthreshold current adequately low. Similarly, decreasing 
the body doping concentration could improve the subthreshold swing but 
degrade DIBL. Hence a compromise is necessary for the bulk-silicon device 
design. Note that, for a scaled bulk-silicon device, a highly doped channel must 
be used to control severe SCEs, and lower S for extremely short ܮ௘௙௙ could not 

be achieved by use of low channel doping. 
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Figure 1-4 
MEDICI-predicted DIBL and subthreshold swing versus effective channel length for DG and 
bulk-silicon nFETs. The DG device is designed with an undoped body and a near-mid-gap gate 
material  [19].  

 

In Figure1-5 simulations of the drain current IDS of DG and SG MOSFETs 
shows the steeper turn on of the DG, which results from the gate coupling 
advantage previously discussed. This property enables the use of lower threshold 
voltage for the DG for a given off-current. As a direct result, higher drive 
currents at lower power-supply voltages VDD are attainable. 

 
1.3  Thesis Organization 
 
This thesis is organized in the following way: in Chapter 2 a compact quantum 
model for both the electrostatic potential and electric charge in thin-film 
symmetric double-gate MOSFET is presented. This is done from a classical 
model proposed by Taur [23]. That quantum model is used in Chapter 3 to 
propose an analytical compact model for the gate tunnelling current with silicon 
dioxide as a gate dielectric, relying on a quadratic approximation to the 
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conduction band profile and the well-known WKB approximation to the 
transmission probability. The Chapter 4 is devoted to extend the compact model 
presented in Chapter 3 to take account a dielectric stack consisting of a SiO2 

interfacial layer and a high permittivity dielectric material (high-). Up to this 
point the electronic states are considered fully bounded, namely, wave function 
penetration is not allowed into the gate dielectrics. Finally and thinking in future 
research for applied to other MG transistors such as cylindrical gate or quadruple 
gate, an accurate method for the calculation of the gate tunnelling in DG 
MOSFETs is studied and developed in Chapter 5, which is based on Absorbing 
Boundary Conditions techniques and, more specifically, on the Perfectly 
Mached Layer (PML) method. 

 
Figure 1-5 
Simulation of DG and single-gate FETs, designed for equal subthreshold current density at VGS = 
0 V, illustrates the gain in drive current from improved channel control of the DG FET. Both gates 
contribute to control of the channel potential in subthreshold, while in the bulk case the gate must 
compete with the influence of the substrate  [19]. 
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CHAPTER 2.  

Explicit Quantum Potential and 
Charge Model for Double-gate 

MOSFETs 
 

2.1  Outline 

In this chapter, a compact quantum model for both the electrostatic potential 
and electric charge in thin-film symmetric double-gate MOSFET with undoped 
body is presented. As a novelty, both the resulting potential and charge have 
explicit expressions on bias and geometrical parameters. A comparison has been 
made between self-consistent numerical solutions of Schrödinger-Poisson 
equations and our model results with close agreement. Finally, the range of 
validity of the presented model is discussed. 

MULTI-GATE metal-oxide-semiconductor field-effect transistors 
(MOSFETs), and in particular, DG MOSFETs, are a topic of intense interest in 
order to improve the performance of complementary metal-oxide-semiconductor 
(CMOS) devices [24]. Theoretically, DG MOSFETs can be scaled to 
significantly shorter channel length than bulk MOSFETs for a given oxide 
thickness [25] keeping a better control of short channel effects (SCE). Because 
of such advantage, these devices are potential candidates as building blocks for 
nanoscale circuits in the midterm, thus making the development of computer-
aided-design (CAD) compatible models an important issue. When the gate 
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length is scaled below deep submicron dimensions very large normal electric 
fields at the Si/SiO2 interface may appear. Therefore a significant bending of the 
energy bands at the Si/SiO2 interface is produced and the potential well becomes 
narrow enough to quantize the motion of inversion layer carriers in the direction 
perpendicular to the interface [26]. Due to the quantization, the energy levels are 
splitted into subbands and the lowest of the allowed energy levels for electrons 
in the well does not coincide with the bottom of the conduction band. On the 
other hand, the electron density does not reach its maximum at the Si/SiO2 
interface as semiclassical theory predicts [27, 28], but at some distance inside 
the semiconductor. Thus, a reliable compact model for DG MOSFETs must take 
into account quantum effects. Several works have been devoted to model the 
electrostatic features of DG-MOSFETs, which can be categorized as: i) models 
relying on a purely classical description [23] and [29-31], which do not treat 
QM effects, ii) 1D and 2D self-consistent models which numerically solve the 
coupled Schrödinger and Poisson equations [32-34], ideal for quantitative 
understanding of the physics behind, but not suitable for compact modeling; iii) 
models using a perturbation theory -even in strong inversion region-, for which 
the structural confinement is taken into account, but which are not suitable to 
deal with the strong field dependence [35, 36]; and iv) models based on a 
quantum-mechanical variational approach  [37], where the potential depends on 
the inversion charge density, and thus requires the solution of an implicit 
equation. 

In this chapter, we extend the state-of-the-art by proposing a simple model for 
the electrostatics of undoped DG-MOSFETs, which reproduces the results 
obtained from accurate self-consistent quantum-mechanical (QM) solutions, 
showing an explicit dependence with the gate voltage and geometrical 
parameters, thus making it suitable for compact modeling. 

 
2.2  Classical Potential Model 

This section shows the main features of a classical model for the potential 
and charge of the DG-MOSFET developed by Taur [6]. Figure 2-1 illustrates the 
geometric parameters such as the silicon thickness ௦ܶ௜ and SiO2 dielectric 
thickness ௢ܶ௫ and the schematic band diagrams of the device. Same voltage is 
applied to the two gates having the same work function. At zero gate voltage ௚ܸ, 

the position of the silicon bands is largely determined by the gate work function. 
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This is because as long as the thin silicon is lightly-doped and the depletion 
charge is negligible, the bands remain essentially flat throughout the thickness of 
the film. Since there is no contact to the silicon body, the energy levels are 
referenced to the electron quasi-Fermi level or the conduction band of the n+ 
source–drain (not shown), represented by the long dotted line in Figure 2-1. As 
the gate voltage increases toward the threshold voltage in Figure 2-1b, mobile 
charge or electron density becomes appreciable and the conduction band of the 
silicon body moves toward the conduction band of the source-drain. The silicon 
bands will just float to the position dictated by the gate work function. 

 

 
Figure 2-1 
Schematic band diagrams of a symmetric, undoped double-gate nMOSFET. At zero gate voltage 
(a), the silicon bands are flat for the gate work function (slightly toward n than the midgap work 
function) shown in the example. Near the threshold voltage (b), the conduction band of the silicon 
body at the surface is bent to near the conduction band of the n source-drain (long dotted line). 

By defining the coordinates and potential as in Figure 2-1, one can write 
Poisson's equation for the silicon region with only the mobile charge (electron) 
density as 

ௗమథ

ௗ௫మ
ൌ

௤

ఢೞ೔
݊௜݁

థ/௏೅                       (2.1) 
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where q is the electronic charge, ߳௦௜ is the permittivity of the silicon, ݊௜ is the 
intrinsic carrier density, ்ܸ ൌ ݇஻ܶ/ݍ is the thermal voltage with  the 
Boltzmann’s constant ݇஻ and the absolute temperature ܶ. Here, we consider an 
nMOSFET with ߶/ ்ܸ ≫ 1 so that the hole density is negligible. 

Using the symmetry boundary condition ݀߶/݀ݔ|௫ୀ଴ ൌ 0 and integrating 
(2.1) twice, the electrostatic potential can be expressed as 

߶ሺݔሻ ൌ ߶଴ െ 2்ܸ ݈݊ ቈܿݏ݋ ቆට
௤௡೔

ଶఢೞ೔௏೅
݁థబ/ଶ௏೅ݔቇ቉             (2.2) 

valid for the entire range െ ௦ܶ௜/2 ൑ ݔ ൑ ௦ܶ௜/2 and where all the potentials are 
referenced to the source Fermi level. Here, ߶଴ ≡ ߶ሺݔ ൌ 0ሻ is the potential at the 
center of the silicon film, to be solved later as a function of ௚ܸ. 

The surface potential ߶௦ ≡ ߶ሺݔ ൌ ௦ܶ௜/2ሻ is then given by 

߶௦ ൌ ߶଴ െ 2்ܸ ݈݊ ቈܿݏ݋ ቆට
௤௡೔

ଶఢೞ೔௏೅
݁థబ/ଶ௏೅

்ೞ೔

ଶ
ቇ቉             (2.3) 

and it is also related to ௚ܸ and ௢ܶ௫ through the boundary condition at the Si/SiO2 

interface: 

௚ܸ െ ∆߮ െ ߶௦ ൌ
߳௦௜
߳௢௫

௢ܶ௫

݀߶

ݔ݀
ฬ
௫ୀ

்ೞ೔
ଶ

ൌ
௢ܶ௫

߳௢௫
ඥ2߳௦௜݇ܶ݊௜ሺ݁

థೞ/௏೅ െ ݁థబ/௏೅ሻ 

 (2.4) 

Here ∆߮ is the work function difference between the gate electrode and 
intrinsic silicon. Given ௚ܸ, Eqs. (2.3) and (2.4) are coupled equations that can be 

solved for ߶௦ and ߶଴. 

The sheet density of mobile charge can be obtained from the Gauss’s law 
and ܳ௖௛ ൌ 2߳௦௜ሺ݀߶/݀ݔሻ௫ୀ௧ೞ೔/ଶ (the factor of two arises from the two surfaces).  

Although this is a simple physics-based model for DG, it requires numerical 
calculations, Newton-Raphson type, to solve the highly nonlinear Eq. (2.4). On 
the other hand, quantum corrections should arise when very thin Si-film is 
considered. For instance, Figure 2-2 shows, for two different geometries, the  
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differences between the potentials (surface and central) when these are 
calculated using the classical model described in this section and when those are 
calculate by means of a self-consistent 1D Schrödinger-Poisson (SP) solver [38]. 
Also, Figure 2-3 shows those differences to the mobile charge density ܳ௖௛ as a 
function of ௚ܸ. Clearly, the differences correspond to the quantization or 

discretization of electronic states and to the decreasing of the density of states 
(DOS). In next section we propose a simple compact model for the potentials 
and charge which takes into account the quantum effects present in DG 
MOSFETs. 

 

 
Figure 2-3 
Comparison between classical [6] and quantum [38] models of mobile charge density in DG 
MOSFETs. 

 
2.3  Quantum Potential Model 

Our model takes the classical potential described in previous section as a 
starting point. The potential given by Eq. (2.2) is obtained by solving the 
Poisson equation (Eq. (2.1)) in the silicon region with only the classical mobile 
charge (electrons) density. 
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Since the angle of the cosine function in Eq. (2.2) cannot exceed 2/ߨ, the 

central potential ߶଴ is pinned to an upper bound of ߶଴௠௔௫ ൌ ்ܸ ݈݊  ൬
ଶగమ௏೅ఌೞ೔

ೞ்೔
మ௤௡೔

൰ 

which gives the saturation values of  ߶଴ in Figure 2-2 and it is the maximum 
value that the central potential reaches by increasing the gate voltage. Using this 
saturation value for ߶଴, the classical potential ߶ of the Eq. (2.2) can be rewritten 
as follow without loss of generality [23]: 

߶ሺݔሻ ൌ ߶଴ െ 2்ܸ ݈݊ ቂܿݏ݋ ቀ
గ

்ೞ೔
݁ሺథబିథబ೘ೌೣሻ/ଶ௏೅ݔቁቃ             (2.5) 

Now, in order to correct the classical potential we must add QM effects, 

relevant at the nanoscale. We will do it introducing two additional parameters  

and  together with a ߶଴௠௔௫ modified parameter in Eq. (2.6) to allow the fitting 
of the self-consistent QM numerical solution: 

߶ሺݔሻ ൌ ߶଴ െ
ଶ௏೅

ఊ
݈݊ ቂܿݏ݋ ቀ

గక

்ೞ೔
݁ሺథబିథబ೘ೌೣሻ/ଶ௏೅ݔቁቃ               (2.6) 

We can justify the introduction of two parameters because quantum effects 
modify both the charge density and its spatial distribution. The main idea and the 
simplicity of our model are based on finding compact expressions for the 
parameters ߶଴௠௔௫, ߶଴, ߛ and ߦ, as we will show. 
 

2.3.1  Maximum central potential ࣘ૙࢞ࢇ࢓: 

For the QM case, the maximum central potential is larger than in the 
classical case due to the decrease of the charge density. Figure 2-4 shows the 
dependence of the maximum central potential with the silicon thickness ௦ܶ௜ for 

௢ܶ௫ ൌ 1, 2 and 3 nm, which were obtained from simulations using a 1D self-
consistent simulator [38]. Based on these simulations, a semi-empirical formula 
can be obtained with a goodness of fit statistics given by R = 1, using a square of 
correlation (R-square) metrics: 

߶଴௠௔௫ ൌ ሺܽ ௦ܶ௜ ൅ ܾሻ/ሺ ௦ܶ௜ ൅ ܿሻ,                         (2.7) 

with the values ܽ  ൌ  0.4555  ሺ0.4535, 0.4574ሻ V, ܾ  ൌ  0.1755 ሺ0.1156,

0.2358ሻnm-V and ܿ  ൌ  െ0.8525 ሺെ0.9366,െ0.7683ሻ nm, where the numbers 
inside the parenthesis correspond to the confidence bounds. Note that ௢ܶ௫ does 
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not explicitly appear in Eq. (2.7) because ߶଴௠௔௫  exhibits a very weak 
dependence on ௢ܶ௫  for ௦ܶ௜≥ 4nm.  

 
Figure 2-4 
Maximum central potentials for ௢ܶ௫  ൌ  1, 2 and 3 nm versus the silicon thickness ௦ܶ௜. Data are 

taken from 1D self-consistent simulator. Solid line corresponds to Eq. (2.7). 

The sensitivity of final results respect to small variations on ߶଴௠௔௫ is shown 
in the Figure 2-12. 

2.3.2  The central potential ࣘ૙ 

The Central potential is calculated using the approach of Ortiz [39], which to 
portray the behavior of ߶଴ as a function of gate voltage uses the following 
smoothing function, similar to one previously used to model drain saturation 
voltage [40]: 

߶଴ ൌ ܷ െ ඥܷଶ െ ሺ ௚ܸ െ ௙ܸ௕ሻ߶଴௠௔௫                     (2.8) 

ܷ ൌ
ଵ

ଶ
ൣ൫ ௚ܸ െ ௙ܸ௕൯ ൅ ሺ1 ൅  ሻ߶଴௠௔௫൧                     (2.9)ݎ
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Here ௚ܸ is the voltage applied to both gates, ௙ܸ௕ is the flat band voltage and 

 is a smoothing parameter weakly dependent on ௢ܶ௫ and ௦ܶ௜, which may be also ݎ
determined from [39] 

ݎ ൌ ሺܣ ௢ܶ௫ ൅ /ܥሻሺܤ ௦ܶ௜ ൅  ሻ                            (2.10)ܦ

where the constants ܣ ൌ 0.0267 nm-1, ܤ ൌ ܥ ,0.0270 ൌ 0.4526 nm and 
ܦ ൌ 0.0650 are appropriate values for oxide thicknesses below 5nm and film 
channel thicker than 4nm. 

 
2.3.3  The ࢽ parameter 

We have mentioned that the charge density and potential profile are 
modified by the QM effects. We can model the change on the potential profile 
by means of the ߛ  parameter, which is also obtained from the analysis of 1D 
self-consistent simulation, and is nicely modeled by the expression: 

ߛ ൌ ቂ
௞

ሺ்ೞ೔ା௔೚ሻ
మ ൅ ݈ቃ ∗ ሺܩ ௦ܶ௜, ௢ܶ௫ሻ                     (2.11) 

ሺܩ ௦ܶ௜, ௢ܶ௫ሻ ൌ ቀ1 ൅ ݌ݔ݁ ቀ
௙ሺ ೚்ೣሻି்ೞ೔

௔భ
ቁቁ

ିଵ

൅  ଴,             (2.12)ܩ

with  

݂ሺ ௢ܶ௫ሻ ൌ ሺ ଵ݂ ൅ ଶ݂ሻ/2 ൅ | ଵ݂ െ ଶ݂|/2,                        (2.13) 

ଶ݂ ൌ 2 ௢ܶ௫ ൅ ଶ݂
଴                                       (2.14) 

where the combination ݇  ൌ  െ5.9 nm2 , ܽ଴ ൌ 0.078 nm, ݈  ൌ  0.23, ܽଵ ൌ

0.1 nm, ܩ଴ ൌ 10ିସ, ଵ݂ ൌ 5.5 nm, ଶ݂
଴ ൌ 1.5 ݊݉ yields pretty nice results. Factor 

depends strongly on the ratio 2 ܩ ௢ܶ௫/ ௦ܶ௜ which is closed related to the structural 

parameter m defined as ݉ ൌ 2߳௦௜ ௢ܶ௫/߳௢௫ ௦ܶ௜. For values of ௦ܶ௜ where the two 
inverted channels of the DG do not overlap, the  ߛ parameter has two 
different regimes closely related to m. If ௦ܶ௜/2 ௢ܶ௫ ≳ 1 then ߛ ≅
݇/ሺ ௦ܶ௜ ൅ ܽ௢ሻ

ଶ ൅ ݈, otherwise ߛ ≅  ଴. When the two inverted channelsܩ

overlap, i.e for values of ௦ܶ௜ ≲ 5nm and ௢ܶ௫, ߛ ≅  ଴, reflecting a greaterܩ
effect of structural parameter on the electrostatics of the DG. 
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2.3.4  The ࣈ parameter 

The ξ parameter must be obtained after applying the boundary condition at 
the Si/SiO2 interface: 

௚ܸ ൌ ௙ܸ௕ ൅ ߶௦ ൅
ఢೞ೔

ఢ೚ೣ
௢ܶ௫

ௗథ

ௗ௫
ቚ
௫ୀ்ೞ೔/ଶ

,                        (2.15) 

where ߶௦ ൌ ߶ሺݔ ൌ ௦ܶ௜/2ሻ corresponds to the surface potential. By using Eq. 

(2.6), introducing the change of variable  ߚ ൌ ߦ 
గ

ଶ
݁ሺథబିథబ೘ೌೣሻ/ଶ௏೅  , and after a 

simple algebraic manipulation, Eq. (2.15) can be written as:  

݂ሺߚሻ ൌ ݈݊ ሺܿݏ݋ ሺߚሻሻ െ ሻߚሺ ݊ܽݐ ߚ݉ ൅ ܨ ൌ 0.           (2.16) 

Here m is the structural parameter, and ܨ ൌ 2்ܸ/ߛ ∗ ൫ ௚ܸ െ ௙ܸ௕ െ ߶଴൯. Given a 

gate voltage ௚ܸ, Eq. (2.16) cannot be analytically solved for ߚ, and numerical or 

table look-up methods are required. To overcome this limitation, we can adopt a 
three step-method to find out ߚ in a closed and accurate manner (see Appendix 
A for details) [41]. Finally, substitution of the explicit expressions for 
߶଴, ߶௢௠௔௫, ߛ and ߦ into Eq. (2.6) provide a compact model for the electrostatic 
potential and charge including QM effects. 

 

2.4  Quantum Charge Model 

An analytic and continuous expression of the quantum electric charge 
associated with the gate is desirable in circuit simulation to know, for example, 
the gate tunneling current or capacitance to compute the AC and transient 
behavior. 

 
Due to the confinement of electron motion normal to the Si/SiO2 interface, 

the conduction band within the transistor channel is split in several subbands, 
each of which is associated with the corresponding energy eigenvalue. The 
channel charge per unit area may be expressed as 

 

ܳ௖௛ ൌ ݍ ∑ ∑ ௜݈ܰ݃݋௝ ሾ1 ൅ ݁ሺா೑ିா೔ೕሻ/௞்ሿ௜ୀଵ,ଶ                 (2.17) 
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where ݅ and ݆ are subscripts for valleys and subbands respectively, ௜ܰ is the 
density of states in the subband at energy ܧ௜௝ . For silicon <100> cristal 

orientation, two groups of conduction subbands, with degeneracy factor ݃ଵ ൌ 2 
and ݃ଶ ൌ 4, corresponding to the six distinct ellipsoidal constant energy 
surfaces, are considered for the computation of the density of states: 

௜ܰ ൌ
௚೔௠೏೔

∗ ௞்

గ԰మ
                                           (2.18) 

where ݉ௗଵ
∗ ൌ ݉௧,݉ௗଶ

∗ ൌ ඥ݉௟݉௧ are the density-of-states effective masses for 

the low and high energy valleys respectively with ݉௟ ൌ  0.92݉଴ and ݉௧ ൌ

 0.19݉଴ corresponding to the longitudinal and transversal masses. 

It is difficult to find an analytic expression for the subband energies ܧ௜௝  for 

all possible gate voltages. To circumvent this problem we can take advantage of 
the asymptotic behavior of ܳሺ ௚ܸሻ. Specifically, for ௚ܸ ≲   ௧ܸ௛ (where ௧ܸ௛ refers to 

the threshold voltage), the electronic states in a box-like potential well with an 
infinite barrier height are a very good approximation. On the other hand, for 

௚ܸ ≳ ௧ܸ௛, Eq. (2.15) provides a simple relation, through the oxide voltage, 

between the channel charge and surface potential. Hence, we can write the 
following expressions accounting for the asymptotic behavior at low and high 
gate voltages, respectively: 

ܳழ ൌ ∑ݍ ∑ ௜݈ܰ݃݋௝ ሾ1 ൅ ݁ሺா೑ିா೔ೕ
బ ሻ/௞்ሿ௜ୀଵ,ଶ     for    ௚ܸ ≲   ௧ܸ௛   (2.19) 

and 

ܳவ ൌ
ଶఢ೚ೣ

೚்ೣ
൫ ௚ܸ െ ௙ܸ௕ െ ߶௦൯  for   ௚ܸ ≳ ௧ܸ௛                      (2.20) 

where   ܧ௜௝
଴ ൌ

԰మ

ଶ௠೥೔
ቀ
௝గ

்ೞ೔
ቁ
ଶ
൅

ா೒

ଶ
െ   .௦߶ݍ

The factor two in Eq. (2.20) takes into account the contribution to the charge 
from the two gates, and ݉௭௜ refers to the confinement mass for valley ݅th, so 
 ݉௭ଵ ൌ ݉௟, ݉௭ଶ ൌ ݉௧. 

Similarly to one previous model used to calculate the drain saturation 
voltage [40], based on a hyperbolic smoothing function with asymptotic  
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Figure 2-5 
Charge density for ௦ܶ௜ ൌ 5nm and ௢ܶ௫ ൌ  1nm. Solid lines are data from 1D simulator and 
symbols corresponds to our model data. 

 

behavior to ܳழ and ܳவ, the charge density can be composed using the 
expression 

ܳ ൌ ܳ௠ െ ටܳ௠
ଶ െ ܳழܳவ,                             (2.21) 

with ܳ௠ ൌ 0.5ሺܳவ ൅ ߤ ழሻ, andܳߤ ൌ 1.01 being a smoothing parameter that 
controls the distance of the hyperbola from its asymptotes. Figure 2-5 shows the 
behavior of ܳ, Qழ and Qவ as a function of the gate voltage and the Figure 2-6 
shows the difference between the classical and quantum solutions of the charge 
density for comparison purposes.  

Using the mentioned procedure, the charge per unit area can be expressed in a 
compact and explicit form in terms of known variables. 
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Figure 2-6 
Quantum and classical charge density for Tୱ୧ ൌ 5nm and T୭୶ ൌ  1nm.  

2.5  Results 

The model was validated by an extensive comparison with quantum 
numerical simulations from a 1D Poisson-Schrödinger solver  [38]. Specifically, 
we have simulated the surface potentials, central potentials and charge density in 
the silicon channel as a function of ௚ܸ. Additionally, the silicon conduction band 

profiles along the perpendicular direction to the interface Si/SiO2 have been 
computed for comparison.  

Figure 2-7 shows an example of the surface and central potential as a 
function of ௚ܸ with different geometries. The results show that the output of our 

model is in close agreement with the self-consistent solution with a relative error 
less than 5 % in any case. 

Typical silicon conduction band profiles are shown in Figure 2-8a and 
Figure 2-8b, respectively, for several gate voltages. Note that bands are 
essentially flat in the subthreshold region, just up to ௚ܸ 0.4 V identified as the 

threshold voltage. For ௚ܸ ≳ 0.4 V, the surface potential increases linearly, and 

the central potential slightly downshifts until saturation is reached at ௚ܸ 1V, 

identified as the onset of screening effects. Limitations of our model arise when  
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Figure 2-7 
Electrostatic potentials at the center of the channel and the surface versus the gate voltage ௚ܸ. 

Geometrical parameters used here are ௦ܶ௜ ൌ 5nm, ௢ܶ௫ ൌ  1nm and ௦ܶ௜ ൌ 9nm, ௢ܶ௫ ൌ  3nm. The 
flat band voltage is assumed to be ௙ܸ௕ ൌ 0 V. Solid lines correspond to 1D simulations and 

symbols to our model data.   

very thin films are considered. To illustrate this point, Figure 2-9 shows the 
behavior of the central potential as a function of ௚ܸ for DG-MOSFETs with 

different silicon films. For ௦ܶ௜ ≳ 4nm, the central potential shows a saturated 
like behavior above the threshold voltage, indicative of the gate field shielding 
due to the formation of inverted channels on both surfaces. However, for ௦ܶ௜ ≲

4nm and super-threshold operation, the central potential is no longer constant 
but grows almost linearly (݀߶଴/݀ ௚ܸ ൐ 0 ), as can be observed from QM self-

consistent results, suggesting the suppression of the two separated inverted 
channels in favor of volume inversion operation, where the gate field is now 
allowed to penetrate into the silicon film thus taking the control of the central 
potential.  
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Figure 2-8 
Silicon conduction band profiles for (a) ௦ܶ௜ ൌ 5nm, ௢ܶ௫ ൌ  1nm and  (b) ௦ܶ௜ ൌ 9nm, ௢ܶ௫ ൌ  3nm. 
Solid lines are data from 1D simulator and symbols corresponds to our model data. 
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Although we have found that for ௦ܶ௜ ≲ 4nm the ௢ܶ௫ dependence of ߶଴௠௔௫ 
start to be important and our model fails in this range (see Figure 2-4 and Figure 
2-9), it works very well in scales where the effective mass approximation for 
nanoscale system is reasonable and the simulated results are correct. This is, the 
parabolic approximation may be not sufficient for nanoscale systems with 
atomic scale variations and tight-binding band-structure calculation or empirical 
pseudo potentials may be necessary [42, 43].  To highlight the importance of 
introducing a quantum model for the electrostatics on thin DG-MOSFETs, the 
reader should remember Figure 2-2 where the surface and central potentials are 
calculated from our model and compared with the classical model from Taur 
[23]. Note that the difference ߶௦ െ ߶଴, above the threshold voltage, as given by 
the quantum model is significantly larger than the classical result, which should 
be taken into account, for instance, when tunneling gate current needs to be 
calculated. 

 
Figure 2-9 
Electrostatic potentials at the center of the channel versus the gate voltage ௚ܸ for ௦ܶ௜ ൌ 2,3,4 and 5 

nm. Solid lines correspond to the simulations and symbols to our model data. 

Figure 2-10 shows a comparison between our charge model presented in 
Section 2.4 and 1D simulation data for different geometries as a function of the 
gate voltage.  It continuously covers all the operation regions with unique  
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Figure 2-10 
Charge density versus gate voltage for several geometries and flat band voltage ௙ܸ௕ ൌ  0 V. (a) 

Logarithmic scale and (b) linear scale. Solid lines correspond to 1D simulations and symbols to 
our model data. Some curves in (a) have been shifted upwards for the sake of clarity. 
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analytic expressions. A close agreement, in both subthreshold and 
superthreshold regions, proves the correct behavior of our model. Importantly, 
the gate capacitance, defined as ܥ௚ ൌ ݀ܳ/݀ ௚ܸ is well captured by our model 

(Figure 2-11). That is a key parameter when AC and transient simulations are 
required. 

Finally, Figure 2-12 shows, for different geometries, the sensitivity of 
physical variables ߶଴, ߶௦ and Q to small variations of  ߶଴௠௔௫ and ߛ parameters 
included in Eq. (2.6), around the values of  ߶଴௠௔௫

∗  and ߛ∗ calculated from Eqs. 
(2.7) and (2.11), respectively. The sensitivity is quantified using the R-Square 
factor. The inset shows similar results but, in this case, the sensitivity analysis 
refers to the ߛ parameter. Note the ߦ parameter in Eq. (2.6) has not been 
analyzed because is a function of ߛ and ߶଴௠௔௫ through Eq. (2.16). The R-Square 
factor appears to be not very sensitive to small variation of ߶଴௠௔௫ and ߛ 
parameters included in Eq. (2.6). 

 
Figure 2-11 
Gate capacitance versus gate voltage for several geometries and flat band voltage ௙ܸ௕ ൌ  0 V. 

Solid lines correspond to 1D simulations and symbols to our model data. 
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Figure 2-12 
R-Square factor analysis of ߶଴, ߶௦ and Q as a function of ߶଴௠௔௫ relative to ߶଴௠௔௫

∗ . The inset 
shows the R-Square factor of  ߶௦ and Q as a function of ߛ relative to ߛ∗. 
 
 

2.6  Summary 

A simple model for the quantum electrostatic potential and charge of the 
undoped long channel DG-MOSFET for thin silicon films has been developed 
and assessed. Additionally our model accurately reproduces the gate 
capacitance. The model presented here, based on the previously developed 
classical model [23], accounts for the Si-film thickness, oxide thickness and gate 
voltage dependences. Our model gives a closed form for the potential and charge 
(it does not need any iteration) and the results are in close agreement with self-
consistent solutions. 

We must emphasize that this model works very well within the range of 
validity of the used approximations. That is, for ௦ܶ௜ ≳ 4nm, ௢ܶ௫ ൑ 5nm, sub- 
and superthreshold regions. Although Ge’s model [37] describes the quantum 
potential profile in a wider range of silicon thickness, their approach is not 
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useful to obtain the distribution of voltage through the MOS structure because 
the potential is referenced to the surface potential; i.e. ߶௦ ൌ 0 for all Vg. That is, 
our model is able to calculate, completely, the dependence on ߶௦, ߶଴ and Q as a 
function of the gate voltage. The presented compact model can be interpreted as 
the core of more advanced models including, for instance, short-channel effects, 
non-equilibrium effects and tunneling effects. 

Next chapter will address the development of an explicit model for the direct 
tunneling current in DG structures, using SiO2 as gate dielectric material. Such a 
model makes extensive use of the electrostatic model presented in this chapter. 
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CHAPTER 3.  

 

Explicit Model for the Gate 
Tunneling Current in Double-

Gate MOSFETs 
 

3.1  Outline 

In this chapter, an explicit compact quantum model for the gate tunneling 
current in double-gate (DG) MOSFET is presented. Specifically, an explicit 
closed-form expression is proposed, useful for the fast evaluation of the gate 
leakage in the context of electrical circuit simulators. A benchmarking test 
against 1D self-consistent numerical solution of Schrödinger-Poisson (SP) 
equations has been performed to demonstrate the accuracy of the model. 

Like conventional transistors, the scaling rule of DG-MOSFETs for 
controlling SCE dictates a reduction of the equivalent oxide thickness together 
with the channel length. The increasing gate leakage has to be taken into account 
due to its importance in determining the standby power. 

Researchers have proposed some models for calculating the gate current in 
DG-MOSFETs however, due to the difficulty of solving the coupled SP 
equations, certain models have being proposed based on semi-empirical 
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3.2  Model Development 

In this section, modeling of quantum mechanical effects in an undoped 
silicon layer, considered as the active layer of the transistor, and subsequent 
direct tunneling current for a symmetric DG geometry are presented. Figure 3-1 
shows a representative energy-band diagram along a vertical cut, where ܧ௖ 
represents the silicon conduction band edge, ܧ௜௡  is the intrinsic Fermi energy, 
and ௢ܸ௫ is the potential drop at the gate oxide. Also represented are the surface 
potential 

௦  and the central potential 
଴
, both referred to the Fermi level at the 

source. Also shown in Figure 3-1 are some of the quantized electron energy 
subbands and the direct gate tunneling flow of electrons from the Si substrate 
towards the metal gate. 

Because of structural and/or electrostatic confinement in nanoscale DG-
MOSFETs, quantization of the carrier energy in the Si layer is a relevant effect 
to be considered, generally, for any operation regime. Quantum effects result in 
a spatially wider carrier density as compared to the classical prediction. A 
common approach to tackle quantum effects consists of solving the coupled SP 
equations in a fully self-consistent manner. This method is accurate, but time 
consuming.  

What we propose here is an efficient method in terms of computational time. 
Simplification of the complexity is possible using a quadratic approximation for 
the electron conduction band in the active layer as a perturbation to the box-like 
potential well created by the SiO2/Si/SiO2 structure. Our model starts from the 
1D classical modified potential to include quantum effects described in Chapter 
2 and published in Ref. [49]. As demonstrated in Figure 2-7, both the surface 
and central potentials are well reproduced as compared with self-consistent SP 
simulations, where, to remember, the surface potential takes the form  

߶௦ ൌ ߶଴ െ
ଶ௞்

௤ఊ
݈݊ ቂܿݏ݋ ቀ

గక

ଶ
݁௤ሺథబିథబ೘ೌೣሻ/ଶ௞்ቁቃ                (3.1) 

where the meaning of parameters ߶଴௠௔௫, ߶଴, ߦ and ߛ were previously 
discussed. It is worth noting that these quantities can be explicitly computed and 
numerical calculations are not required.  
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௜௝ܧ  
ଵ ൌ ׬ ߰௝

଴ሺݔሻܧ෨௖ሺݔሻ߰௝
଴∗ሺݔሻ݀ݔ ൌ 2Δܧ୭ୱ

்ೞ೔/ଶ

ି்ೞ೔/ଶ
ቀ

ଵ

ሺ௝గሻమ
൅

ଵ

ଷ
ቁ    (3.6) 

is the correction of the eigenvalues due to the perturbed Hamiltonian (quadratic 

potential approximation given by Eq. (3.2)). The eigenfunction ߰௝
଴ሺݔሻ 

corresponds to the wave function coming from the non-perturbed Hamiltonian 

and is equal to ඥ2/ ௦ܶ௜sinሺ݆ߨ/ ௦ܶ௜ሺݔ ൅ ௦ܶ௜/2ሻሻ. Note that ߰௝
଴∗ refers to the 

complex conjugate and is equal to ߰௝
଴. For expressing Eq. (3.6), we have used 

the following conventions (see Figure 3-2): 

ሻݔ௖ሺܧ ൌ ௚/2ܧ െ  ሻ Conduction band relative to the Fermi levelݔሺ߶ݍ
at   the source electrode. 

௖௦ܧ ൌ ௖ܧ ൬
േ ௦ܶ௜

2
൰ 

Conduction band at the Si/SiO2 interface. 

௖௢ܧ ൌ  .௖ሺ0ሻ Conduction band at the center of Si layerܧ

Δܧ୭ୱ ൌ ௖௢ܧ െ  ௖௦ Difference between the center and surfaceܧ
potential. 

ሻݔ෨௖ሺܧ ൌ ሻݔ௖ሺܧ െ  ௖௦ܧ

         ൌ Δܧ୭ୱሺ1 െ /ଶݔ4 ௦ܶ௜
ଶ ሻ 

Conduction band relative to ܧ௖௦ 

(3.7) 

 

   As we are interested in a simple expression for direct tunneling current at both 
low and high supply voltage regimes, we chose a modified WKB method to 
calculate the electron transmission probability [51]. Within the mass effective 
approximation, transmission probability of electrons with energy ܧ௜௝ can be 

written in the form: 

௜ܲ௝ ൌ ௐܲ௄஻ ∙ ோܲ,                                       (3.8) 

where ௐܲ௄஻ ൌ exp ሺെ2׬ ݇௢௫,௜௝ሺݔ′ሻ݀ݔ′
೚்ೣ

଴
ሻ is the usual WKB tunneling 

probability [52], valid for smoothly varying potentials. Here a change of 

coordinate has been made such that ݔ ′ ൌ ݔ െ ௦ܶ௜/2. The term ோܲ is a correction 
accounting for reflections due to potential discontinuities [51]. The momentum 
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entering in the integral can be calculated by using a Franz-type dispersion 
relation for the gate oxide [53], namely 

԰మ௞೚ೣ,೔ೕ
మ

ଶ௠೚ೣ
ൌ ௜௝ߟ ൌ ௢௫,௜௝ܧ ൬1 െ

ா೚ೣ,೔ೕ

ா೒,೚ೣ
൰                   (3.9) 

௢௫,௜௝ݒ ൌ
ଵ

ఎ೔ೕ
′ ට

ଶఎ೔ೕ

௠೚ೣ
 ,                                 (3.10) 

where ݉௢௫ is the electron effective mass within the SiO2 oxide, ܧ௚,௢௫ is the 

oxide band gap ൎ 9 eV for SiO2, ݒ௢௫,௜௝ refers to the group velocity of electrons 

in the oxide, and ߟ௜௝
′  is defined as 

ௗఎ೔ೕ

ௗா೚ೣ,೔ೕ
. On the other hand  ܧ௢௫,௜௝ሺݔ′ሻ is the 

magnitude of the electron energy relative to the oxide conduction band edge 
given by Φ୆ െ ௜௝ܧ െ ݍ ௢ܸ௫ݔ′/ ௢ܶ௫ , where Φ୆  is the discontinuity between the Si 

and SiO2 conduction bands ( 3.15 eV), and ௢ܸ௫ is the oxide voltage drop equal 

to ܳ ೚்ೣ

ଶఢ೚ೣ
, where the factor 2 in the denominator comes from the half of the total 

charge (ܳ) that is controlled by each gate. 

To go ahead both ௐܲ௄஻ and ோܲ for electrons with energy  ܧ௜௝ can be 

expressed, respectively, as 

ௐܲ௄஻ ൌ ݌ݔ݁ ൥
ா೒ ೚்ೣඥଶ௠೚ೣ

ସ԰௤௏೚ೣ
൫2ߟ௜௝

′
ඥߟ௜௝ ൅ ඥܧ௚ sin

ିଵߟ௜௝
′ ൯ฬ

ா೚ೣ,೔ೕሺ௫
ᇲୀ ೚்ೣሻ

ா೚ೣ,೔ೕሺ௫
′ୀ଴ሻ

൩   

(3.11) 

  ோܲ ൌ
ସ௩ೄ೔,೔ೕሺாሻ௩೚ೣ,೔ೕቀா೚ೣ,೔ೕหೣᇲసబ

ቁ

௩ೞ೔,೔ೕ
మ ሺாሻା௩೚ೣ,೔ೕ

మ ቀா೚ೣ,೔ೕหೣᇲసబ
ቁ
 
ସ௩ೄ೔,೔ೕሺாା௤௏೚ೣሻ௩೚ೣ,೔ೕ൬ா೚ೣ,೔ೕหೣᇲస೅೚ೣ

൰

௩ೞ೔,೔ೕ
మ ሺாା௤௏೚ೣሻା௩೚ೣ,೔ೕ

మ ൬ா೚ೣ,೔ೕหೣᇲస೅೚ೣ
൰
  

(3.12) 

where ݒௌ௜,௜௝ is the perpendicular (normal to the interface) component of electron 

group velocity. Both ோܲ and ௐܲ௄஻ are quantities depending on the transversal 
݉௧ and longitudinal ݉௟ electron effective masses. The group velocity for 
electrons in the substrate is computed as 
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ௌ௜,௜௝ݒ ൌ ට
ଶா೔ೕ

௠೥೔
                                     (3.13) 

In addition to the eigenvalues and transmission probabilities, the “lifetime” 

௜ܶ௝ of the electrons in the i,jth electronic state flowing toward the gates from the 

silicon layer is needed to calculate the leakage current. A useful model for this 
parameter comes from [32]: 

ଵ

்೔ೕ
ൌ

௉೔ೕ

ఛ೔ೕ
ቂሺ1 െ ௕ܲሻ ൅

ଵ

ଶ ௕ܲ
ଶቃ                            (3.14) 

where ߬௜௝ is the classical transit time of  an electron between Si/SiO2 interface 

and the classical turning point ݔ௧,௜௝, ௜ܲ௝ is the transmission probability of Eq. 

(3.8) and ௕ܲ is the tunneling probability through the conduction band. Note that 
the time elapsed for tunneling through the barrier in the silicon region has been 
neglected in Eq. (3.14).  

The transit time is defined as the integral of the inverse of the group velocity 

߬௜௝ ൌ ׬2 ݔሻ݀ݔଵሺିݒ
்ೞ೔/ଶ

௫೟,೔ೕ
, which could be analytically calculated yielding  

߬௜௝ ൌ ׬2 ට
௠೥೔

ଶሺா೔ೕିா෨೎ሺ௫ሻሻ

்ೞ೔/ଶ

௫೟,೔ೕ
ݔ݀ ൌ ௦ܶ௜ට

௠೥೔

ଶΔா౥౩
lnቌ

ඥΔா౥౩ାඥா೔ೕ

ටหா೔ೕିΔா౥౩ห
ቍ  (3.15) 

This expression is valid for both ܧ௜௝ ൑ Δܧ୭ୱ and ܧ௜௝ ൐ Δܧ୭ୱ cases. A 

physical interpretation of the transit time is sketched in Figure 3-2.  

The tunneling probability ௕ܲ for electrons with energies between 
 ௖௦ to cross the conduction band can be calculated with the help of aܧ ௖௢ andܧ
simplified WKB approximation in the form 

௕ܲ ൌ ݌ݔ݁ ቊെ2׬ ට
ଶ௠೥೔

԰మ
௜௝ܧൣ െ ሻ൧ݔ෨௖ሺܧ

௫೟,೔ೕ
ି௫೟,೔ೕ

 ቋ        (3.16)ݔ݀

Inserting Eqs. (3.4) to (3.7) into Eq. (3.16) and, after some manipulations, ௕ܲ 
could be written as a simple closed-form expression 
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௕ܲ ൌ ݌ݔ݁ ቆെට
௠೥೔గ

మ
ೞ்೔
మ

ଶ԰మΔா౥౩
ሺΔܧ୭ୱ െ  ௜௝ሻቇ for  Ecs < E < Ec0        (3.17)ܧ

It is worth noting that 
ଵ

்೔ೕ
  ௜ܲ௝/ሺ2߬௜௝ሻ for energy levels such as ܧ௜௝ ൐ Δܧ୭ୱ, 

for which ௕ܲ ൌ 1. Conversely, for energies deep in the potential well formed by 

the electrostatic confinement, then ௕ܲ 0 and 
ଵ

்೔ೕ
  ௜ܲ௝/߬௜௝ similar to the case of a 

very thick semiconductor, which is equivalent to bulk diodes connected by the 
common substrate. 

The proposed semi-classical model for the electron lifetime given by Eq. 
(3.14) yields similar results as compared with the half-with of the resonant state 
method [54, 55] as well as the method of quasi-bounded states with absorbing 
boundary conditions [56, 57]. However is computationally more efficient.  

Finally, combining the results from Eqs. (3.3), (3.8), (3.14) and (3.17), we 
can readily obtain the total gate direct tunneling current density by adding the 
contribution of every subband: 

ܬ ൌ ∑ ௜ܰ௝/ ௜ܶ௝௜௝ ൌ ∑ ௜௝௜௝ܬ                                (3.18) 

 
3.3  Results 

The model described in this chapter considers as fundamental quantities ܧ௜௝, 

௜ܰ௝, and ௜ܶ௝. In this section we check the accuracy of these quantities and 

therefore of the proposed compact model. To illustrate the model outcome we 
only consider the first three states, which contribute the most to the gate direct 
tunneling current. We also have assumed a flat band voltage ௙ܸ௕ equal to zero, 

corresponding to a midgap gate. The results below show that the model output is 
in close agreement with the self-consistent solution in all operation regions and 
for wide range of silicon layer and gate oxide thicknesses, representative of the 
design window for nanoscale DG-MOSFETs. 

The behavior of the ground state energy ܧଵଵ,  ܧଵଶ and ܧଶଵ as a function of 
the gate voltage is shown in Figure 3-3a. As expected, the energy states increase 
as ௦ܶ௜ is reduced due to the structural confinement. Below the threshold voltage,  
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Figure 3-3 
(a) Subband energies versus gate voltage for different geometries; (b) Charge densities of the three 
first states and total charge density (்ܰ); 

the band bending is negligible, and the band diagram looks like a square 
potential well. Beyond the threshold voltage, the electric field strength induces 
an electrostatic confinement of carriers, resulting in a semi-quadratic potential 
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well. Figure 3-3b represents the total charge density and the charge densities 

ଵܰଵ,  ଵܰଶ and ଶܰଵ as a function of the gate voltage. Here, we see that the ܧଶଵ 

level contributes significantly to the charge density because its degeneracy and 
density of states effective mass, despite having a higher energy than the other 
two levels (see Figure 3-3a). 

 

Figure 3-4 
(a) Transmission probability of the ܧ௜௝ state through the oxide barrier; (b) Electron lifetime of the 

 .௜௝ stateܧ



CHAPTER 3.  Explicit Model for the Gate Tunneling Current (SiO2) 
 

 
59 

 
Figure 3-5 
Gate current density where the inset shows the gate current density as a function of the oxide 
thickness. Symbols: model; Solid lines: SP simulations. 

Figure 3-4a and Figure 3-4b show the transmission probability ௜ܲ௝  and 

lifetime ௜ܶ௝, respectively. Here, we can appreciate the strong dependence of the 

tunneling with the oxide thickness (see also the inset of Figure 3-5). In general, 
the transmission probability increases and the lifetime is reduced with the gate 
voltage as a result of the electric confinement in the inversion layer. However 
this effect is smaller when the body is thinner because the confining electric 
field is reduced [58].  

Combining the fundamental quantities, following Eq. (3.18), we have finally 
calculated the gate current density for several geometries. The result is shown in 
Figure 3-5 and the inset shows the expected exponential character of the 
tunneling current with the thickness of the barrier oxide.  

In absence of experimental data in the literature (to our knowledge), our results 
are comparable with those reported in works where the self-consistent 
simulations  take into account the electronic wave function penetration in the 
metal gate [46, 58]. 



 

 
60 

 
3.4  Summary 

An explicit compact model of the gate direct tunneling current for the 
symmetric undoped DG-MOSFET has been developed and assessed. 
Specifically the model was checked via comparison with self-consistent SP 
simulations. Our model is accurate within the range of validity of the used 
approximations. That is, for ௦ܶ௜ ≳ 4݊݉ and  ௢ܶ௫ ൑ 5݊݉. All the quantities 
taking part in the model are explicit closed-form expressions that permit to 
calculate the dependence of the gate direct tunneling current as a function of the 
gate voltage.   

This model makes possible the fast evaluation of the gate leakage in 
aggressive scaled DG-MOSFETs and could be incorporated into a general 
compact model as a building block of electrical circuit simulators. 

Although the present model for the direct tunneling works for silicon dioxide as 
gate dielectric material, when the SiO2 thickness is scaled roughly to 1nm very 
large gate current density is observed. Figure 3-5 shows that the gate current 
density exceeds 1A/cm2 for gate voltage values larger than 0.5 V, which are too 

high for low power applications [9]. The introduction of high- dielectric 
materials as gate insulators is a key solution to solve the gate tunneling leakage 
current issue because for a given equivalent oxide thickness (EOT) the leakage 

is much smaller for high- than for oxi-nitride gate dielectric. Next chapter 
proposes an extension of the model presented in this chapter, where dual layer 

stacks including high- insulators are considered in the calculation of the direct 
tunneling current. 
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CHAPTER 4.  

 

Explicit Model for Direct 
Tunneling Current in Double-

Gate MOSFETs Through a 
Dielectric Stack 

 

4.1  Outline 

In this chapter an extension to the model presented in the previously chapter 
is presented.  In this case, an explicit compact quantum model for the direct 

tunneling current through dual layer SiO2/high- dielectrics in Double Gate 
structures is proposed. Specifically, an explicit closed-form expression is 
proposed, useful to study the impact of dielectric constants and band offsets in 
determining the gate leakage, allowing to identify materials to construct these 
devices, and useful for the fast evaluation of the gate leakage in the context of 
electrical circuit simulators. A comparison with self-consistent numerical 
solution of Schrödinger-Poisson (SP) equations has been performed to 
demonstrate the accuracy of the model. Finally, a benchmarking test for 
different gate stacks have been proposed searching to fulfill the gate tunneling 
limits as projected by the ITRS. 
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Similar to the conventional transistors, the scaling rule of DG-MOSFETs 
dictates a reduction of the oxide thickness together with the channel length, 
causing a large increase of the gate leakage current [9]. This is critical in 
determining power dissipation of circuits, especially those used in low-power 
electronic systems such as cell phones, lap-tops etc. Similarly to the bulk 

MOSFET, a way to overcome this limitation is to use high- materials deposited 
over a thin SiO2 layer to form the gate insulator. 

To calculate the gate leakage current in DG-MOSFETs it would strictly be 
necessary to solve the coupled Schrödinger-Poisson (SP) equations in a fully 
self-consistent manner considering a quasi-bound system. This method is 
accurate, but time consuming. Researchers have proposed some analytical 

models for calculating the gate current in DG-MOSFETs including high- 
dielectrics. However those models have being proposed based on semi-empirical 
dependent electric field expressions [44, 59] and do not consider the 
quantization of the energy levels. On the other hand there are some purely 
numerical models solving the SP equations self-consistently [32, 46] not useful 
for a fast evaluation of device performances in circuits simulators. It is therefore 
valuable to have a compact model of the gate tunneling current for DG-

MOSFETs with dielectrics including high- materials, simply calling an explicit 
closed-form expression that takes into account relevant quantum effects. Such 
models are essential to understand the scaling limits of DG-MOSFETs.  

We introduce a compact model of the direct tunneling current mechanism of 

symmetric undoped DG-MOSFETs considering a SiO2/high- hetero-structure 
as gate oxide based on the previous model of the Chapter 3 where only SiO2 
dielectric was used and reported in Ref. [60]. 

Direct tunneling is known to be the dominant contribution to the gate 
leakage current [61]. Our results are compared with those obtained from 
accurate self-consistent quantum-mechanical (QM) solutions, resulting in 
excellent agreement for both moderate and strong inversion regimes. Both 
accuracy and simplicity of the model makes it suitable for circuit simulators. 
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the source. The electron direct gate tunneling current goes from the Si substrate 
to the metal gate passing through the dielectric stacks. 

In this chapter we propose a suitable method in terms of computational time. 
Again, it relies on a quadratic approximation for the electron conduction band in 
the silicon layer acting as a perturbation to the box-like potential well created by 

the high-/SiO2/Si/SiO2/high- structure (see Figure 4-1b). Our model starts 
from a 1D classical potential expression, modified to include QM effects [49], 
which was proposed for a DG structure using SiO2 as gate dielectric with 
thickness ௢ܶ௫ and potential drop Vox. It can be easily adapted to our purposes, 

only replacing ௢ܶ௫ by the Equivalent Oxide Thickness ܱܶܧ ൌ ௕ܶ ൅
ଷ.ଽ

఑
∗ ௖ܶ, and 

௢ܸ௫ would be now the sum of the potential drops in each layer ௕ܸ  and ௖ܸ, so 

௢ܸ௫ ൌ   ௕ܸ ൅ ௖ܸ. The ߢ term is the high- material dielectric constant. By making 
those changes the full model described in Chapter 2 and published under Ref. 
[49] can be used to calculate the band profile. As shown in Figure 4-2, where the 
DG with SiO2/HfO2 as dielectric stack is considered, both the surface and central 
potentials are well replicated as compared with self-consistent SP simulations, 
where the surface potential takes the form  

߶௦ ൌ ߶଴ െ
ଶ௞்

௤ఊ
݈݊ ቂܿݏ݋ ቀ

గక

ଶ
݁௤ሺథబିథబ೘ೌೣሻ/ଶ௞்ቁቃ             (4.1) 

It is worth remembering that ߶଴௠௔௫, ߶଴ , ߦ and ߛ can be explicitly computed 
and iterative numerical calculations are not required. 

Next, we assume a parabolic shape for the 1D electrostatic potential across 
the channel nicely fitting both ߶௦ and ߶଴  

߶ሺݔሻ ൌ ߶଴ ൅ 4ሺ߶௦ െ ߶଴ሻݔ
ଶ/ ௦ܶ௜

ଶ                         (4.2) 

Using the 2D density of states (DOS) and Fermi-Dirac statistic, the channel 
charge per unit area contributed per sub-band can be expressed as 

௜ܰ௝ ൌ
௤௞்

గ԰మ
݃௜݉ௗ௜

∗ lnቂ1 ൅ ݁൫ா೑ିா೔ೕ൯/௞்ቃ                    (4.3) 

where ݃௜ and ݉ௗ௜
∗  are the degeneracy and the DOS effective mass of the ith 

valley respectively, and ܧ௜௝ is the energy level of the jth sub-band in the ith 

valley, referred to the minimum of the conduction band at the surface ܧ௖௦.  
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To calculate the direct tunneling current we chose a modified WKB method 
to compute the electron transmission probability through the dielectric stack 
[62]. Within the mass effective approximation, transmission probability of 
electrons with energy ܧ௜௝ can be written in the form: 

௜ܲ௝ ൌ ଴ܲexp ሾെ2ܵ௕ െ 2ܵ௖ሿ,                              (4.7) 

where 

ܵ௕ ൌ ׬ ݔሻ݀ݔ௕ሺߢ
௫మ
௫భ

  and    ܵ௖ ൌ ׬ ݔሻ݀ݔ௖ሺߢ
௫య
௫మ

          (4.8) 

are the usual WKB tunneling probabilities, valid for smoothly varying 

potentials. Here, we have defined ݔଵ ൌ
்ೞ೔

ଶ
, ଶݔ ൌ

்ೞ೔

ଶ
൅ ௕ܶ and ݔଷ ൌ

்ೞ೔

ଶ
൅ ௕ܶ ൅

௖ܶ. The ௢ܲ term is a correction accounting for reflections due to potential 
discontinuities in the dual layer barrier [62]:  

଴ܲ ൌ
଺ସ௩ೌ௩್బ௩್భ௩೎బ௩೎భ௩೏

ሾ௩ೌ
మା௩್బ

మሿሺ௩್భା௩೎బሻ
మሾ௩೎భ

మା௩೏
మሿ

                           (4.9) 

where a, b, c and d regions are shown in Figure 4-3. For simplification, the 
electron wave functions in the a (silicon) and d (metal) regions can be expressed 
as travelling planes waves allowing a simple expression for the electron group 

velocity, so ݒ௔ ൌ ඥ2ܧ௜௝/݉௭௜ and ݒௗ ൌ ඥ2ሺܧ௜௝ ൅ ௖௦ܧ ൅ ݍ ௚ܸሻ/݉଴ where ௚ܸis the 

gate voltage and ݉଴ is the free electron mass. The imaginary part ߢ of the wave 
vector in the barrier region entering in Eq. (4.8) and the corresponding group 
velocity can be calculated by using a Franz-type dispersion relation for each 
oxide layer ݊  ൌ  ܾ, ܿ [63], namely 

԰మ௞೙
మ

ଶ௠೙
ൌ ௡ߟ ൌ ௢௫,௡ܧ ൬1 െ

ா೚ೣ,೙

ா೒,೙
൰                       (4.10) 

௡ݒ ൌ
ଵ

ఎ೙
′ ට

ଶఎ೙

௠೙
                                          (4.11) 

where ܧ௚,௡ is the oxide band gap in the n-layer, ߟ௡
′  is defined as 

ௗఎ೙

ௗா೚ೣ,೙
 and 

ሻݔ௢௫,௡ሺܧ ൌ Φ௡ െ ௜௝ܧ െ ݍ ௡ܸሺݔ െ ݄௡ሻ/ ௡ܶ  is the magnitude of the electron energy 

relative to the oxide conduction band edge in the n-layer. In this case ݄௕ ൌ  ଵݔ
and ݄௖ ൌ -ଶ. Also Φ௡  and ௡ܸ represent the discontinuity between Si and the nݔ
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where ߬௜௝ is the classical transit time of  an electron between Si/SiO2 interface 

and the classical turning point ݔ௧,௜௝ and ௕ܲ is the tunneling probability through 

the conduction band. 

 Taking the usual definition of the transit time as the integral of the group 

velocity inverse, namely ߬௜௝ ൌ ׬2 ݔሻ݀ݔଵሺିݒ
்ೞ೔/ଶ

௫೟,೔ೕ
, it can be analytically 

calculated to yield 

߬௜௝ ൌ 2න ඨ
݉௭௜

2ሺܧ௜௝ െ ሻሻݔ෨௖ሺܧ

்ೞ೔/ଶ

௫೟,೔ೕ

ݔ݀ ൌ ௦ܶ௜ඨ
݉௭௜

2Δܧ୭ୱ
ln

ۉ

ۇ
ඥΔܧ୭ୱ ൅ ඥܧ௜௝

ටหܧ௜௝ െ Δܧ୭ୱหی

 ۊ

(4.15) 

This expression is valid for both ܧ௜௝ ൑ Δܧ୭ୱ and ܧ௜௝ ൐ Δܧ୭ୱ cases. A 

physical interpretation of the transit time is sketched in Figure 4-3. 

The tunneling probability ௕ܲ for electrons with energies between 
 ௖௦ to cross the conduction band can be calculated with the help of aܧ ௖௢ andܧ
simplified WKB approximation in the form 

௕ܲ ൌ ݌ݔ݁ ቊെ2׬ ට
ଶ௠೥೔

԰మ
௜௝ܧൣ െ ሻ൧ݔ෨௖ሺܧ

௫೟,೔ೕ
ି௫೟,೔ೕ

 ቋ          (4.16)ݔ݀

After some manipulations, ௕ܲ could be written as a simple closed-form 
expression 

௕ܲ ൌ ݌ݔ݁ ቆെට
௠೥೔గ

మ
ೞ்೔
మ

ଶ԰మΔா౥౩
ሺΔܧ୭ୱ െ  ௜௝ሻቇ   for    Ecs < E < Ecoܧ

(4.17) 

It is worth noting that 
ଵ

்೔ೕ
  ௜ܲ௝/ሺ2߬௜௝ሻ for energy levels such as ܧ௜௝ ൐ Δܧ୭ୱ, 

for which ௕ܲ ൌ 1. Conversely, for energies deep in the potential well formed by 

the electrostatic confinement, then ௕ܲ 0 and 
ଵ

்೔ೕ
  ௜ܲ௝/߬௜௝ similar to the case of a 

very thick semiconductor. 
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Finally, combining the results from Eqs. (4.3), (4.7), (4.14) and (4.17), we 
can readily obtain the total gate direct tunneling current density by adding the 
contribution of every sub-band: 

ܬ ൌ ∑ ௜௝௜௝ܬ ൌ ∑ ௜ܰ௝/ ௜ܶ௝௜௝                              (4.18) 

where, again, ௜ܰ௝ (Eq. (4.3)) and ௜ܶ௝ (Eq. (4.14)) are the channel charge per unit 

area and the electron lifetime in the ith valley and jth sub-band, respectively. 

 
4.3  Results 

To calculate the gate current density we have identified ܧ௜௝, ௜ܰ௝, and ௜ܲ௝ as 

fundamental quantities. In this section we check the accuracy of these quantities 
and therefore of the proposed compact model. To illustrate the model outcome 
we only consider the first three states, which contribute the most to the gate 
direct tunneling current. We also have assumed a flat band voltage Vfb equal to 
zero, corresponding to a midgap gate. The results below show that the model 
output is in close agreement with the 1D self-consistent SP solution in all 
operation regions and for wide range of silicon layer and equivalent oxide 
thicknesses EOT, representative of the design window for nanoscale DG-
MOSFETs according to the ITRS document [9]. 

The location of the energy states ܧଵଵ,  ܧଵଶ and ܧଶଵ as a function of the gate 
voltage is shown in Fig. 4a. In this figure and hereafter solid lines represent self-
consistent SP data and symbols are the results of our model. As expected, the 
energy states values increase as ௦ܶ௜ is reduced due to the structural confinement. 
Below the threshold voltage, the band bending is negligible, and the band 
diagram looks like a square potential well. Beyond the threshold voltage, the 
electric field strength induces an electrostatic confinement of carriers, resulting 
in a semi-quadratic potential well. Fig. 4b represents the total charge density and 
the charge densities ଵܰଵ,  ଵܰଶ and ଶܰଵ as a function of the gate voltage for a DG 

capacitor with 5nm silicon thickness and EOT = 1nm. Here, we see that the ܧଶଵ 
level contributes significantly to the charge density because its degeneracy and 
density of states effective mass, despite having a higher energy than the other 
two levels (see Figure 4-4a). Although we considered only the three states in our 
model the comparison with numerical results are in very good agreement. 
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Figure 4-4 
(a) Sub-band energies versus gate voltage as calculated from the model (symbols) and 1D self-
consistent SP simulator (solid lines); (b) Charge densities of the first states and total charge density 
(NT); 
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Figure 4-5 
Transmission probability of the ܧ௜௝ state through a single-layer of SiO2  and a SiO2/HfO2 dual 

layer gate oxide. 

Figure 4-5 shows the transmission probability ௜ܲ௝ as a function of the gate 

voltage considering as a first case a single layer of SiO2 as gate oxide and a 
second case consisting of a SiO2/HfO2 dual layer. Here, we can appreciate the 
strong dependence of the tunneling with the EOT value and its difference with 
the single-layer SiO2 case at the same EOT. In general, the transmission 
probability increases with the gate voltage as a result of the electric confinement 
in the inversion layer. However this effect is smaller when the body is thinner 
because the confining electric field is reduced.  

The direct tunneling current density for different dual layer combinations of 

SiO2/high- materials as a function of the gate voltage has been plotted in Figure 
4-6a,b. These results have been obtained using the material related parameters 
given in Table 4-1. We can see that the SiO2/HfO2 combination exhibits the 

smaller tunneling current. Here the physical thickness of the high- layer plays a 
dominant role, since for the same EOT a higher dielectric constant (25 for HfO2) 
means a thicker layer, therefore a lower gate current. 
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Table 4-1 
Parameters for calculation of the direct tunneling gate leakage current considering different high- 
materials.  

High- ઴ࢉ ሺ܄܍ሻ K ࢉ,ࢍࡱ (eV) ࢓/࢔࢓૙ 

Si3N4 2.0 7.0 5.3 0.3 

ZrO2 1.4 25 5.8 0.2 
Al2O3 2.8 9 8.8 0.3 
Ta2O5 1.1 25 4.4 0.25 
HfO2 1.5 25 5.75 0.18 
SiO2 3.15 3.9 9 0.5 

 

Next we deal with the dependence of the gate leakage current on the 
thickness of interfacial SiO2 layer for the SiO2/HfO2 hetero-structure keeping 
constant the EOT. As shown in Figure 4-6c the leakage current can be 
considerably reduced by keeping the SiO2 layer as thin as technologically 
possible. 

In these types of structures four gate tunneling mechanisms could occur, 
depending on the location of the specific energy level respect to the conduction 

band of the dual-layer insulator: (a) direct tunneling in both SiO2 and high- 
dielectrics (Figure 4-7a); (b) direct tunneling in SiO2 oxide and Fowler-

Nordheim tunneling in the high- dielectric (Figure 4-7b); (c) direct tunneling 
through the interfacial oxide (Figure 4-7c); (d) Fowler- Nordheim tunneling 
through the interfacial layer (Figure 4-7d). However, given the fact that the most 
of the inversion charge is embedded in the first two or three states (Figure 4-4b), 
it is easy to verify that for gate voltages and materials considered in this work, 
the dominant tunneling mechanism is the direct tunneling in both layers (Figure 
4-7a), for which the condition Φ௖ െ ݍ ௖ܸ ൐  ,௜௝ must be fulfilled. For instanceܧ

using values for HfO2 ( lower Φ௖) from Table 1 with ௚ܸ~1.5 ܸ and  ௕ܶ~1݊݉,

௖ܶ~4݊݉, then  Φ௖ െ ݍ ௖ܸ~1.2ܸ and ܧ௜௝ ൏ 0.4ܸ (Figure 4-4a). 
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Figure 4-6  
(a,b) Direct tunneling gate current density as a function of the gate voltage for different high- 
materials with: (a) ܱܶܧ ൌ 1 nm, ௕ܶ ൌ 0.5 nm and  ௦ܶ௜ ൌ 5 nm; (b) ܱܶܧ ൌ 1.5 nm, ௕ܶ ൌ

0.7 nm and  ௦ܶ௜ ൌ 8 nm. (c) Direct tunneling gate current density as a function of the gate voltage 

for HfO2 as high- dielectric with ܱܶܧ ൌ 1.1 nm  and  ௦ܶ௜ ൌ 6 nm. 

According to the ITRS 2009 edition, in future technologies the use DG-
MOSFETs could start in 2015 with EOT around 1.1nm requiring  a maximum 
gate leakage current density (Jlimit) of 0.19 A/cm2 at  ௚ܸ ൌ ௗܸௗ ൌ 1 ܸ for low 

standby power applications [9]. Figure 4-8 shows the gate current density given 

by our model, for different high- materials, as a function of the SiO2 layer 
thickness (Tb) setting EOT = 1.1nm, Vg = 1V and using the parameters given in 
Table 4-2. In general, the gate current limit could be satisfied in dependence of 

the SiO2 layer thickness. For stacks with high- material such as Ta2O5, HfO2 
and ZrO2 thickness of SiO2 roughly lower than 0.7 nm could be needed. On the 
other hand, materials with lower dielectric constant (K) such as Si3N4 and Al2O3 
could not satisfy the gate current limit requirement. The negative slope exhibited 
by the Si3N4 means that the dominant dielectric in this double layer is the silicon 
dioxide. 
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Figure 4-7  
Various gate tunneling processes. (a) DT-DT (b) DT-FN (c) DT (d) FN. 

4.4  Summary 

The gate leakage current is of major concern for nanoscale device operation. 
For both single-gate and DG-MOSFETs the solution to this problem is to use 

high- dielectrics in gate oxides. In this work the direct tunneling current 
(dominant process in determining the gate leakage current) through interfacial 

SiO2 and high- gate stacks have been analytically modeled for symmetric 
undoped DG-MOSFETs through both layers. It is clear from Figure 4-6a,b that 
the gate current is reduced for SiO2/HfO2 dual layer structure as compared to 

other SiO2/high- combinations having the same EOT. The tunneling in 
SiO2/HfO2 structure decreases about five orders of magnitude as compared with 
pure SiO2 films of the same EOT. For the same EOT a reduced thickness of 
interfacial layer is beneficial to keep the gate leakage current under control. 

The model was checked via comparison with self-consistent SP simulations. 
All the quantities taking part in the model are explicit closed-form expressions 
that permit to calculate the dependence of the gate direct tunneling current as a 
function of the voltage. Because a simple 1D formulation for the electrostatic 
has been considered in our work, the model can be applied within the validity of 
the long-channel hypothesis [6]. The presented model makes possible the fast 
evaluation of the gate leakage current in aggressive scaled DG-MOSFET, being 

useful in order to find guidelines for the search of an appropriate high- 
dielectric material according to the projections of the ITRS and could be 
incorporated into general compact model as a building block of future electrical 
circuit simulators.  
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Figure 4-8 
Direct tunneling current as a function of the silicon dioxide thickness for several high- dielectric 
materials compared with the maximum gate leakage current density established by the ITRS 2009 
edition at EOT = 1nm and Vg = 1V. 

On the other hand, as mentioned in the introduction of this work, the evolution 
of the CMOS technology toward the use of Multiple-gate transistors in 
nanoscale makes mandatory studies on non planar structures such as triple gate, 
pi-gate, omega-gate, quadruple-gate and surrounding gate. These researches 
should include accurately the 1D or 2D nature of those devices and particularly 
to propose models that take into account the electronic wave functions 
penetration in the gate electrode (metal) to the calculation of the gate tunneling 
currents. The next chapter describes a numerical model for the description of the 
gate leakage current of the DG MOSFET based on the Schrödinger-Poisson 
coupled equations solution, where the electronic wave functions are allowed to 
penetrate into the metal gate (quasi bound states). For this purpose, the Perfectly 
Matched Layer (PML) method is embedded in each iteration of the SP solver. 
The PML method has been adopted because the feasibility to adapt it to devices 
with non planar geometries. 
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CHAPTER 5.  

 

Accurate Calculation of Gate 
Tunneling Current in Double-

Gate and Single-Gate SOI 
MOSFETs Through Gate 

Dielectric Stacks 
 

5.1  Outline 

In this chapter, an accurate description of tunneling in Ultra Thin body 

Double-Gate and Single-Gate MOSFETs devices through layers of high- (HK) 
dielectrics, which relies on the precise determination of quasi-bound states, is 
developed. For this purpose the Perfectly Matched Layer method (PML) is 
embedded in each iteration of a 1D Schrödinger-Poisson solver by introducing a 
complex coordinate stretching which allows applying artificial absorbing layers 
in the boundaries. 

Similarly to the bulk MOSFET, a way to overcome the limitation imposed 
by the leakage current is the use of HK materials over a thin SiO2 interfacial 
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layer (IL) to form the dual layer gate insulator, keeping a good control of the 
short-channel effects (SCE) [17]. The IL is either created unintentionally during 
processing or intentionally deposited to improve the interface quality with the 
silicon. However, to fully profit from the advantages of HK materials in MOS 
capacitors with dual layer, the reduction in this IL thickness, at constant EOT 
(increase of the physical HK thicknees), is desirable [64, 65]. From this point of 
view two factors favor the scaled toward zero of the IL thickness in the dielectric 
stacks (DS): the reduction of the direct tunneling current and the improvement of 
the breakdown-related reliability. Strictly, scaled MG MOSFETs behave as open 
boundary systems where the electron wave function penetrates the DS and 
propagates to the metal without reflections. This effect is expected to be 
highlighted when the IL thickness tends to zero because usually the conduction-
band offset or barrier height is inversely proportional to the dielectric constant  

[66]. Therefore in MG MOSFETs the electron states are quasi-bound states 
(QBS) characterized by complex eigenvalues with the real part corresponding to 
the energy state and the imaginary part related to the lifetime of the carriers [67].   

Hence, accurate models should capture quantum mechanical effects such as 
discrete QBS and its tunneling to the metal gate through a DS in MG MOS 
structures. Section 5.2 of this work addresses some lifetime based models used 
for the calculation of the gate tunneling current, highlighting their validity and 
applicability. These models are (1) the close boundary based method, (2) the 
transverse resonant method (TRM) and (3) the method used in this chapter, 
based on absorbing boundary conditions known as the Perfectly Matched Layer 
(PML) method. Section 5.3 shows and discusses results of the PML applied to 
Ultrathin Body Double-Gate (UTBDG) and Ultra Thin Body Single-Gate 
(UTBSG) with DS consisting of IL/HK, where the IL is assumed to be SiO2 (see 
Figure 5-1). Section 5.4 concludes this chapter. 

5.2  Models For Gate Tunneling Calculation 

The transmission coefficient is a well defined quantity for continuous 
tridimensional states, where the traveling carriers impact the potential barrier 
and result in a reflected and transmitted plane wave. However, this concept is 
not properly defined for localized carrier states. When the silicon body 
dimensions reach the nanoscale in MG MOSFETs, carriers remain in discrete 
energy levels and a continuous of energies cannot be considered anymore. It is 
the same effect that occurs in the inversion layer of a bulk MOSFET forcing a 
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are the usual WKB tunneling probabilities. The ௢ܲ is a correction term 
accounting for reflections due to potential discontinuities in the DS barrier [62]. 
The WKB approximation is widely used for the calculation of the transmission 
probability. Transfer matrix methods as well as expressions in terms of Airy 
functions are also applied to the calculation of the transmission probability. 
However, the aforementioned transmission probability is well defined for 3D 
states assuming plane waves for incident, reflected and transmitted wave 
functions, but its application for 2D states is questionable.  

Finally, using a close boundary based method, the gate current density of every 

bound-state can be calculated as ܬ௜௝ ൌ ௜ܰ,௝൫ܧ௜௝൯/߬௜,௝൫ܧ௜௝൯ where ௜ܰ,௝ is the 

channel charge per unit area of every subband, and calculated solving the 
Schrödinger-Poisson (SP) coupled equations. Although this is a fast 
computational method it can result in inaccuracies depending on the correction 
term of Eq. (5.3) and the dispersion relations used to evaluate Eq. (5.4). 

 
5.2.2  Transverse resonant method 

A direct calculation of the lifetime without using the transmission coefficient 
concept was suggested by Lo et al. [10], based on the close analogy between the 
confined electrons in a varying potential and electromagnetic waves in a 
waveguide with varying refractive index. This analogy allows the utilization of 
the transverse resonant method (TRM) [69], commonly used for finding the 
eigenvalues of inhomogeneously filled waveguides and dielectric resonators. To 
apply this method the structure is divided into intervals of width d of a 1D grid 
along the direction perpendicular to the substrate/dielectric interface. The TRM 
defines the intrinsic impedance ߟ௟ ൌ ݉௟/݇௟, where ݉௜ is the carrier effective 

mass and ݇௟ is the wave number, and the terminal impedances of each interval ശܼ௟ 

and Ԧܼ௟, where the arrows indicate the impedance looking to the left or right. 
Considering an interval in the silicon layer and applying the transmission-line 

transformations as shown in Eq. (5.5) repeatedly, ശܼ௟ and Ԧܼ௟ could be expressed 

in terms of ശܼଵ, ശܼଶ, … , ശܼ௟ିଵ and Ԧܼ௟ାଵ, … , Ԧܼேିଶ, Ԧܼேିଵ respectively. 

ശܼ
௠ ൌ ௠ߟ

ശܼ
௠ିଵ െ ௠ߟ݆ tanሺ݇௠݀௠ሻ

௠ߟ െ ݆ ശܼ௠ିଵtanሺ݇௠݀௠ሻ
        ݉ ൌ 2,3, … , ݈. 
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Ԧܼ
௠ ൌ ௠ାଵߟ

Ԧܼ
௠ାଵ െ ௠ାଵߟ݆ tanሺ݇௠ାଵ݀௠ାଵሻ

௠ାଵߟ െ ݆ Ԧܼ௠ାଵଵtanሺ݇௠ାଵ݀௠ାଵሻ
       ݉ ൌ ܰ െ 2,ܰ െ 3,… , ݈. 

(5.5) 

Under resonant conditions the terminal impedances to the left and right 

should satisfy ശܼ௟ ൅ Ԧܼ
௟ ൌ 0. This condition would be satisfied with a complex 

energy ε ൌ ܧ െ ݆Γ, whose imaginary part Γ is related to the energy broadening 
of leaky QBS. This information allows the carrier’s lifetime on each subband to 
be determined as follows: 

߬ ൌ
԰

ଶΓ
                                               (5.6) 

Some authors [10, 70] use a SP solver with closed boundary conditions to 
generate the potential profile and then the TRM to find the complex energies and 
to calculate the gate tunneling current. This procedure may result in inaccuracies 
especially with the aggressive scaling of the EOT in MG devices. On the other 
hand, in order to calculate the complex energy with the resonant conditions, 
complicated nonlinear equations must be solved, requiring the use of iterative 
methods hindering the application of the TRM on non-planar MG MOSFETs, 
such as the SOI FinFETs, SOI Tri-Gate, SOI Pi-Gate, SOI gate-all-around or 
bulk Tri-Gate [17]. 
 

5.2.3  Perfectly Matched Layer Method 
In the present work a method based on absorbing boundary conditions for 

Schrödinger’s equation, which is often used in electromagnetic waves with 
unbounded domains, has been applied to determine the energy levels and the 
lifetime broadening of QBS in UTBDG and UTBSG MOSFETs with HK 
materials as gate dielectrics. It is known as the Perfectly Matched Layer (PML) 
method [71]. In contrast to the TRM, here all the QBS are calculated in one step 
and no iteration procedures are needed. In addition, the PML method can be 
extended to 2D and even 3D regions with different geometries [72] making it 
suitable for non- planar MG MOSFETs. This technique accounts for the wave 
function penetration into the metal gate, thus allowing a more accurate 
estimation of the electrostatic potential, quasi-bound states, charge and carrier 
lifetime [67]. 
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eigenvalues as ߬ ൌ ԰/2Γ. To implement the PML-absorber regions, complex 
stretched coordinates ݔ෤ are defined by a stretching factor ݏ௫ for the coordinate x: 

෤ݔ ൌ ׬ ′ݔሻ݀′ݔ௫ሺݏ
௫

଴
                                    (5.7) 

resulting in 

డ

డ௫෤
ൌ

ଵ

௦ೣሺ௫ሻ

డ

డ௫
                                       (5.8) 

In particular, the stretching function ݏ௫ሺݔሻ can be defined, with good result 
[67], as: 

ሻݔ௫ሺݏ ൌ ൜
1 ൅ ሺߙ ൅ ଶ    for the PML regionݔሻߚ݆

             1                        for the physical region
        (5.9) 

where ݔ is a normalized variable, being ݔ ൌ 0 at the interface between the 
physical and the PML regions and ݔ ൌ 1 at the end of the PML region, and 
parameters ߙ and ߚ are explained below. Because of the integral form Eq. (5.7) 
the coordinate gradually is transformed and so the wave functions decay to zero 
(Figure 5-5). 

Assuming a constant potential within the PML region, the wave function can 

be written as a plane wave ߰ሺݔሻ ൌ ߰଴exp ሺ݆ ෨݇௫ݔሻ with the wavevector ෨݇௫ ൌ
݇௫/ݏ௫. Considering two points in the PML region ݔଵ ܽ݊݀ ݔଶ ൌ   ଵݔ ൅  the ݔ݀
wavevector at the point x2 can be approximated as 

݇௫ሺݔଶሻ ൎ
௦ೣሺ௫మሻ

௦ೣሺ௫భሻ
݇௫ሺݔଵሻ ൌ 1 ൅ ሺߙ ൅  (5.10)               ݔሻ݀ߚ݆

Therefore, the parameter α scales the phase velocity of the plane wave, 
while β acts as a damping parameter.  Since this damping coefficient is greater 
than zero in the absorbing region, the envelope of the wave function decay to 
zero, as can be seen in Figure 5-5. These parameters, as well as the thickness of 
the absorbing layer can be varied over a wide range with virtually no influence 
on the results, as long as there are no reflections at the boundaries. However, to 
achieve this goal, the complex stretching function and its first derivative have to 
be continuous.  
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electron wave function is allowed to penetrate to the gate metal through the DS 
(see Figure 5-5) via the implementation of the PML method in each iteration. 
Similarly to Ref. [67], in Eq. (5.9) ߙ ൌ 1 and ߚ ൌ 1.4 have been assumed, with 
good results. From this solution, we obtain the potential profile, the complex 
eigenvalues ε௜௝ ൌ ௜௝ܧ െ ݆Γ௜௝ and the eigenstates ߰௜௝ (complex wave functions) 

of the ijth state. The effective-mass Schrödinger equation, Eq. (5.11), is solved in 
the silicon, gate dielectric(s), metal and PML regions whereas the Poisson 
equation (Eq. (5.12)) is solved in the silicon and gate dielectric(s) regions: 

ቂെ
԰

ଶ

ଵ

௦ೣሺ௫ሻ

ௗ

ௗ௫

ଵ

௠೥೔ሺ௫ሻ

ଵ

௦ೣሺ௫ሻ

ௗ

ௗ௫
൅ ܸሺݔሻ െ ε௜௝ ቃ ߰௜௝ሺݔሻ ൌ 0       (5.11) 

and 

ௗ

ௗ௫
ቂ߳ሺݔሻ

ௗ

ௗ௫
ቃ ߶ሺݔሻ ൌ

௤

ఢబ
ሾ݊ሺݔሻ െ ሻݔሺ݌ ൅ ஺ܰ

ି െ ஽ܰ
ାሿ,        (5.12) 

where sx  is the stretching function as given in  Eq. (5.9), ݉௜ is the electron 
effective mass in the ith valley, ܸ is the potential energy, and ஺ܰ

ି and  ஽ܰ
ା are the 

ionized acceptor and donor concentration, respectively, assumed to be zero for 
the undoped devices examined in this work. The potential energy V(x) in Eq. 
(5.11) is related to the electrostatic potential ߶ሺݔሻ in Eq. (5.12) as ܸሺݔሻ ൌ
െݍ߶ሺݔሻ ൅ Δܧ௖ሺݔሻ, where Δܧ௖ሺݔሻ is the energy barrier difference produced by 
the band offset between silicon and every dielectric layer. The wave function 
߰௜௝ሺݔሻ in Eq. (5.11) and the electron density n(x) in Eq. (5.12) are related by 

݊ሺݔሻ ൌ ቀ
௞்

గ԰మ
ቁ∑ ݃௜݉ௗ௜

∗
௜௝  lnሾ1 ൅ ݁൫ா೑ିா೔ೕ൯/௞்ሿห߰௜௝ሺݔሻห

ଶ
       (5.13) 

where ݃௜ and ݉ௗ௜
∗  are the degeneracy and the DOS effective mass of the ith 

valley respectively (Table 5-1). For [100] silicon ݉௟ ൌ 0.92݉଴ and ݉௧ ൌ

0.19݉଴, where ݉଴ is the free electron mass [67]. Also, the values used in our 
numerical calculations related to the dielectric regions are taken from Ref. [66] 
and summarized in Table 5-2. 

Table 5-1 
Parameters for [100] silicon.  

ith valley ࢏ࢊ࢓ ࢏ࢍ
∗  ࢏࢓  

1 2 ݉௧ ݉௟ 
2 4 ඥ݉௧݉௟ ݉௧ 
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Table 5-2 
Parameters for calculation of the direct tunneling gate leakage current considering different high- 
materials.  

High- ઢࢉࡱ ሺ܄܍ሻ ࡷ ൌ ࣕ/ࣕ૙ ૙࢓/࢏ࢠ࢓

SiO2 3.15 3.9 0.45 

Si3N4 2.0 7.0 0.5 

Y2O3 2.3 15 0.25 

HfO2 1.5 25 0.18 

Then, the total tunneling current density can be obtained by adding currents 
due to each energy level according to  

ܬ ൌ ∑ ௜௝௜௝ܬ ൌ ݍ ቀ
௞்

గ԰మ
ቁ∑

௚೔௠೏೔
∗

ఛ೔,ೕ൫ா೔ೕሺ௠೔ሻ൯
௜௝  lnሾ1 ൅ ݁൫ா೑ିா೔ೕ൯/௞்ሿ      (5.14) 

Next, the simulator developed in this work is compared against the 
measurement and simulation results from [58]. The device under test is an 
UTBSG MOSFET with several SiO2 thicknesses  ௢ܶ௫ and no HK dielectric layer 
has been included.  Figure 5-6 shows that the gate current density values closely 
follows the results from Ref. [58] where the simulations were made with the 
TRM described in Section 5.3 and experimental data are reported. 

Figure 5-7 illustrates, for an UTBSG MOSFET, the energy difference for the 
ground state ܧଵଵ considering open or closed boundary conditions as a function 
of the gate voltage ௚ܸ. Even for SiO2 thicknesses ௢ܶ௫ values as thin as 0.3 nm, 

without a HK dielectric, that difference is just in the order of 10 meV for gate 
voltages as high as 2V. Important differences could arise, however, when low 
barrier height insulators are considered. This is illustrated in Figure 5-8 showing 
the effect of the wave function penetration in the metal for the ground state over 
four different dielectric materials (Hypothetical SiO2 where the barrier height is 
virtually changed, HfO2, Y2O3 and Si3N4). In all cases the IL is absent. 
Hypothetical SiO2 means a dielectric with SiO2 properties, except the band 
offset energy, which is arbitrarily modified to display the ܧଵଵ decreasing effect.  
The results show that the difference in energy could be as high as 100meV for 
the HfO2 case, which has the lower barrier height of oxides considered in this 
analysis. Differences much smaller than 10meV are expected when an IL is 
included. 
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been obtained. Finally, we found that HK materials, such as Y2O3 and HfO2, in 
combination with an IL with thickness roughly lower than 0.7 nm could be 
needed to satisfy the gate current limit projected by the ITRS 2009. 

 

 
Figure 5-12 

Direct tunneling current in UTBDG MOS as a function of the IL thickness for several 
HK materials compared with the maximum gate leakage current density projected by the 
ITRS at EOT = 1.1 nm and Vg = 1V. 
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APPENDIX A 

Analytical Solution for  
Parameter 

 

In this Appendix, we describe a three step method to solve Eq. (2.16) in 
analytic way.  

Before presenting a method for the solution in more detail, it is convenient 
to make the following replacement ߚ ൌ  ሻ. Thus, the Eq. (2.16)ݖሺ ݊ܽݐܿݎܽ
changes and the problem can be redefined as finding out ݖ from 

݂ሺݖ;݉, ሻܨ ൌ
ଵ

ଶ
݈݊ሺ1 ൅ ଶሻݖ ൅ ሻݖarctanሺ ݖ ݉ െ ܨ ൌ 0       (A1) 

1. Compose a continuous starting function as the initial 
approximation.  

The first step gives a rough estimation of the surface potential as an explicit 
continuous function of gate voltage, quasi-Fermi potential, etc. It is the most 
important step and the determinant factor of the method. The function should not 
be too complicated but must be close enough to the exact implicit solution. The 
feasibility of this general method lies on whether we can find a proper starting 
function. If the implicit equation can be largely simplified in the region well 
above or below threshold, the asymptotic limits can be easily obtained. Using an 
appropriate smoothing function to join two asymptotic behaviors, we may 
achieve an ideal initial approximation. 
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The starting function (ݖଵ) can be obtained from the asymptotic behavior of ݖ 

ݖ ൌ ට
ி

௠
  ሺas ݖ → 0ሻ; ݖ    ൌ

ଶி

గ௠
   ሺas ݖ → ∞ሻ            (A2) 

and using the following smoothing function to connect them: 

ଵݖ ൌ ඨ
଼

గమ௠మ
ቆ1 ൅ ට

ி

௠
ቇ ൅ ቀ

ଶி

గ௠
ቁ
ଶ

െ
଼

గమ௠మ
                  (A3) 

2. Modify the starting function with a high-order 
correction.  

The starting function is just a crude estimation and is far from accurate. To 
achieve accuracy, a third-order correction is used in [41] to modify the starting 
function. Although the third-order correction in [41] is described in a concrete 
manner and applicable to the specific equation, it is easy to reorganize to satisfy 
our purposes. Assume that we are going to solve the implicit equation 
݂ሺݖ;݉, ሻܨ ൌ 0, where ݖ is to be solved, and ݉ and ܨ are independent variables. 
Initially ݖ is approximated by ݖଵሺ݉,  .ሻܨ

The ݂ function can be expanded into Taylor series to the third order near ݖଵ 
to yield: 

݂ሺݖ;݉, ሻܨ ൎ ଴݂ ൅ ଵ݂݄ ൅ ଶ݂݄
ଶ ൅ ଷ݂݄

ଷ ൌ 0                (A4) 

where ௡݂ ൌ
ଵ

௡!

డ೙௙

డ௭೙
ቚ
௭ୀ௭ଵ

 for ݊  ൌ  0,1,2,3 and ݄ ൌ ݖ െ    .ଵݖ

The cubic equation has exact solutions. However, considering that ݄ a small 
quantity, the solution should be approximately simplified into a rational form for 
the purpose of efficiency. It is well known that arithmetic operations are much 
faster that the square root and cubic root. Following the steps in [74], we can 
obtain a possible rational solution for (A4) and it can be expressed as: 

݄ଵ ൌ െ
௙బ

௙భ
ቂ1 ൅

௙బ௙మ

ଶ௙భ
మ ൅

௙బ
మ൫ଷ௙మ

మି௙భ௙య൯

଺௙భ
ర ቃ                         (A5) 

Because the third order results in accurate calculations we do not attempt to 
work at higher orders. Hence, a first solution to Eq. (A1) is  ݖଶ ൌ ଵݖ ൅ ݄ଵ. 
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3. Make another correction to improve accuracy. 

Although a rough estimation evolves into an accurate one through the last 
step, another correction may be needed to further improve the accuracy to reach 
a prescribed accuracy. Then we apply one more step, which is similar to the last 
one. 

To refine previous solution (ݖଶ) we apply the outlined procedure yielding 
ଷݖ ൌ ଶݖ ൅ ݄ଶ, where ݄ଶ corresponds to the second correction and in this case 

݃௡ ൌ
ଵ

௡!

డ೙௙

డ௭೙
ቚ
௭ୀ௭ଶ

. 

݄ଶ ൌ െ
௚బ

௚భ
ቂ1 ൅

௚బ௚మ

ଶ௚భ
మ
൅

௚బ
మ൫ଷ௚మ

మି௚భ௚య൯

଺௚భ
ర

ቃ                    (A6) 

Finally, the above procedure provides an explicit expression for ߚ∗ (and ∗), 
which is an approximate solution of Eq. (2.16): 

∗ߦ ൌ ∗ߚ
ଶ

గ
݁ି௤ሺథబିథబ೘ೌೣሻ/ଶ௞்                             (A7) 

where  

∗ߚ ൌ arctanሺݖଵ ൅ ݄ଵ ൅ ݄ଶሻ                                (A8) 
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APPENDIX B 

Predictor-Corrector 
Algorithm to Solve SP 
Equations with PML 

 

In this Appendix a fast and robust iterative method for obtaining self-
consistent solution to the coupled system of the Schrödinger’s and Poisson’s 
equation, considering the metal oxide semiconductor structure as an open 
system, is presented. The iterative method is based on a previous work 
developed by A. Trellakis [75, 76] that uses a predictor-corrector procedure for 
the solution of the coupled system of differential equations. As a novelty, the 
Perfectly Matched Layer (PML) method is embedded in each iteration to permit 
the penetration of the electronic wave functions into the metal electrode and thus 
to obtain electron lifetime information relevant in the calculation of the gate 
tunneling current. It should be noted that both the predictor-corrector technique 
as well as the PML method have been adopted in this work by their efficiency 
and stability, together with the ability to tackle two-dimensional quantum 
structures. 
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1. Physical Model 

The physical model used for the description of quasi bound states (QBS) in 
the perpendicular direction to the channel of a DG structure consists of a 
nonlinear Poisson equation for the electrostatic potential ߶ 

ሿ߶׏ሾ߳׏ ൌ െߩሾ߶ሿ ൌ െݍሾെ ݊ሾ߶ሿ ൅ ሾ߶ሿ݌ ൅ ஽ܰ
ାሾ߶ሿ െ ஺ܰ

ିሾ߶ሿሿ 
(B1) 

coupled with an eigenvalue problem for Schrödinger’s equation, 

෡߰௡ܪ ≡ െ
԰

ଶ

ଵ

σ
׏ ቂ

ଵ

௠∗

ଵ

σ
௡ ቃ߰׏ ൅ ሺ ௛ܸ െ ሻ߰௡߶ݍ ൌ  ௡߰௡       (B2)ܧ

where ߳ is the dielectric constant, q is the unit electric charge, ݉∗ the effective 
electron mass, ߩ the total charge density,  ݊ and ݌ electron and hole 

concentrations, ஽ܰ
ା and ஺ܰ

ି ionized doner and acceptor concentrations, ܪ෡ the 
Hamiltonian operator, ߰௡ the wave function belonging to the energy level ܧ௡, 

௛ܸ the hetero-junction step potential and finally σ the complex stretching 
function. On the other hand, for device applications the most interesting quantity 
is the quantum electron density, 

݊୯ ൌ ୯ܰ ∑ |߰௡|
ଶ

௡ ࣠௞ ቀ
ா೑ିா೙

௞்
ቁ                          (B3) 

where T denotes the temperature, k the Boltzmann’s constant, ܧ௙ the Fermi level 

and ࣠௞ is the complete Fermi-Dirac integrals of order k. These integrals are 
usually defined as  

࣠௞ሺݔሻ ൌ
ଵ

Γሺ௞ାଵሻ
׬

௧ೖௗ௧

௘೟షೣାଵ
,

∞

଴
   ݇ ൐ െ1                  (B4) 

and they have the interesting property  

ௗ

ௗ௫
࣠௞ሺݔሻ ൌ ࣠௞ିଵሺݔሻ                              (B5) 

which allows an analytical continuation to any  ݇ ൑ െ1. In this work we 
consider a DG MOS structure, which is characterized by 1D confinement of 
carriers. Then ݇ ൌ 0 and we can write accordingly, 
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୯ܰ ൌ
௞்௠೏೙

∗

గ԰మ
                                       (B6) 

࣠଴ሺݔሻ ൌ lnሾ1 ൅ ݁௫ሿ                               (B7) 

2. Approximation of the Quantum Electron Density 

The electrostatic potential enters the quantum electron density ݊୯ሾ߶ሿ 

through the energy levels ܧ௡ሾ߶ሿ and complex wave functions ߰௡ሾ߶ሿ: 

݊୯ሾ߶ሿ ൌ ୯ܰ ∑ |߰௡ሾ߶ሿ|
ଶ

௡ ࣠௞ ቀ
ா೑ିா೙ሾథሿ

௞்
ቁ                   (B8) 

A perturbation, 

߶ → ߶ ൅  (B9)                                         ߶ߜ

is introduced modifying  both the Hamiltonian of the Schrödinger’s equation, 
namely: 

෡ܪ → ෡ܪ െ  ෠,                                      (B10)߶ߜݍ

and the quantum electron density ݊୯ሾ߶ሿ given as 

݊୯ሾ߶ሿ → ݊୯ሾ߶ ൅ ሿ߶ߜ ൌ ݊୯ሾ߶ሿ ൅ ,߶୯ሾ݊ߜ  ሿ        (B11)߶ߜ

Using the derivative property (Eq. B5) of Fermi-Dirac integrals then ݊ߜ୯ 

can be written as 

,߶୯ሾ݊ߜ ሿ߶ߜ ൌ െ
୯ܰ

݇ܶ
෍߰௡

ଶሾ߶ሿ

௡

࣠௞ିଵ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ ,߶௡ሾܧߜ ሿ߶ߜ

൅ 2 ୯ܰ෍߰௡ሾ߶ሿ߰ߜ௡ሾ߶, ሿ࣠௞߶ߜ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ

௡

. 

(B12)   

Utilizing first order perturbation theory we can calculate both ܧߜ௡ሾ߶,  ሿ߶ߜ
and ߰ߜ௡ሾ߶,  ,ሿ assuming that ߰௡ is nondegenerate߶ߜ
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,߶௡ሾܧߜ ሿ߶ߜ ൌ െݍൻ߰௡หߜ߶෠ห߰௡ൿ,  

,߶௡ሾ߰ߜ ሿ߶ߜ ൌ െݍ∑ ߰௝ሾ߶ሿ
ൻటೕหఋథ෡หట೙ൿ

ா೙ሾథሿିாೕሾథሿ
௝ஷ௡ ,               (B13) 

where we have introduced these expressions back into ݊ߜ୯ሾ߶,  :ሿ߶ߜ

,߶୯ሾ݊ߜ ሿ߶ߜ

ൌ
ݍ ୯ܰ

݇ܶ
෍߰௡

ଶሾ߶ሿ

௡

࣠௞ିଵ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ ൻ߰௡หߜ߶෠ห߰௡ൿ

െ ݍ2 ୯ܰ෍෍߰௡ሾ߶ሿ߰௝ሾ߶ሿ
ൻ߰௝หߜ߶෠ห߰௡ൿ

௡ሾ߶ሿܧ െ ௝ሾ߶ሿܧ
࣠௞ ቆ

௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ

௝ஷ௡௡

. 

(B14) 

The sum as well as the scalar product in the second term is symmetric in j 
and n. Using this property it is possible to symmetrize the above expression as  

,߶୯ሾ݊ߜ ሿ߶ߜ ൌ
ݍ ୯ܰ

݇ܶ
෍߰௡

ଶሾ߶ሿ

௡

࣠௞ିଵ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ ൻ߰௡หߜ߶෠ห߰௡ൿ

െ ݍ ୯ܰ෍෍߰௡ሾ߶ሿ߰௝ሾ߶ሿൻ߰௝หߜ߶෠ห߰௡ൿ

௝ஷ௡௡

ൈ
࣠௞ ൬

௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
൰ െ ࣠௞ ൬

௙ܧ െ ௝ሾ߶ሿܧ

݇ܶ
൰

௡ሾ߶ሿܧ െ ௝ሾ߶ሿܧ
. 

(B15) 

The double sum in the above formula is rather undesirable for numerical 
purpose. Besides, (B15) is only valid for nondegenerate levels ܧ௡ and it is 
difficult to generalize for accidental degeneracies as is possible in systems with 
two quantization directions. Seeking to improve (Eq. B15), while retaining as 
much of its accuracy as possible, Trellakis has proposed to approximate the 
differential quotient by a derivative: 

࣠௞ ൬
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
൰ െ ࣠௞ ൬

௙ܧ െ ௝ሾ߶ሿܧ

݇ܶ
൰

௡ሾ߶ሿܧ െ ௝ሾ߶ሿܧ
ൎ െ

1

݇ܶ
࣠௞ିଵ ቆ

௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ. 

(B16) 
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Inserting (B16) into ݊ߜ୯, the following approximation for ݊ߜ୯෦ can be 

written, namely: 

,߶୯෦ሾ݊ߜ ሿ߶ߜ

ൌ
ݍ ୯ܰ

݇ܶ
෍߰௡

ଶሾ߶ሿ

௡

࣠௞ିଵ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ ൻ߰௡หߜ߶෠ห߰௡ൿ

൅
ݍ ୯ܰ

݇ܶ
෍߰௡ሾ߶ሿ࣠௞ିଵ ቆ

௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ෍߰௝ሾ߶ሿൻ߰௝หߜ߶෠ห߰௡ൿ

௝ஷ௡௡

. 

(B17) 

Next, we will take into account the completeness and orthonormality of the 
wave functions ߰௡ in the Hilbert space, that is  

෍߰௝ሾ߶ሿൻ߰௝หߜ߶෠ห߰௡ൿ

௝ஷ௡

ൌ ௡ሾ߶ሿ߰߶ߜ െ ߰௡ሾ߶ሿൻ߰௡หߜ߶෠ห߰௡ൿ. 

(B18) 

Substituting this formula into (B17) all the terms containing scalar products 
cancel to yield the following expression: 

,߶୯෦ሾ݊ߜ ሿ߶ߜ ൌ ୯ܰ෍߰௡
ଶሾ߶ሿ

௡

࣠௞ିଵ ቆ
௙ܧ െ ௡ሾ߶ሿܧ

݇ܶ
ቇ
߶ߜݍ

݇ܶ
 

(B19) 

An approximation ݊୯෦ሺ߶ሻ for ݊୯ሺ߶ሻ itself can be obtained from the 

following relationship 

 ݊୯෦ሾ߶, ሿ߶ߜ ൌ ݊୯෦ሾ߶ሿ ൅ ,߶୯෦ሾ݊ߜ  ሿ,                     (B20)߶ߜ

and applying the derivative property of Fermi-Dirac integrals (B5), the 
following final result arises: 

݊୯෦ሾ߶, ሿ߶ߜ ൌ ୯ܰ ∑ ߰௡
ଶሾ߶ሿ௡ ࣠௞ ቀ

ா೑ିா೙ሾథሿା௤ఋథ

௞்
ቁ            (B21) 

Comparing this formula to the original quantum electron density (B8), we 
can observe that the only change corresponds to a modified set of energy levels 
 ௡ due to the change in the electrostatic potential, namelyܧ
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௡ሾ߶ሿܧ → ௡ሾ߶ሿܧ െ  (B22)                            .߶ߜݍ

3. Schrödinger-Poisson Solution Using a Predictor-

Corrector Approach 

Now, it is possible to detail how to solve the system of coupled partial 
differential equations using a predictor-corrector approach. The main feature 
here is the solution of a nonlinear Poisson equation, 

ሿ߶׏ሾ߳׏ ൌ ݍ ቂ݊୯෦ሾ߶ሿ െ ሾ߶ሿ݌ െ ஽ܰ
ାሾ߶ሿ ൅ ஺ܰ

ିሾ߶ሿቃ,        (B23) 

where the potential independent quantum electron density ݊୯ is replaced by the 

potential dependent predictor,  

݊୯෦ሾ߶ሿ ൌ ୯ܰ෍߰௡
ሺ௞ሻଶ

௡

࣠௞ ൭
௙ܧ െ ௡ܧ

ሺ௞ሻ
൅ ߶൫ݍ െ ߶ሺ௞ሻ൯

݇ܶ
൱, 

(B24) 

where superscript (k) denote quantities obtained in the previous outer iteration 

step. The electrostatic potential  ߶ሺ௞ାଵሻ obtained from Poisson’s equation (B23) 
is the one used within the Schrödinger’s equation (corrector), 

െ
԰

2

1

σ
׏ ൤

1

݉∗

1

σ
௡߰׏

ሺ௞ାଵሻ
 ൨ ൅ ൫ ௛ܸ െ ሺ௞ାଵሻ൯߰௡߶ݍ

ሺ௞ାଵሻ
ൌ ௡ܧ

ሺ௞ାଵሻ
߰௡
ሺ௞ାଵሻ

, 

(B25) 

to calculate a corrected update of ݊୯, namely 

݊୯
ሺ௞ାଵሻ

ൌ ୯ܰ ∑ ߰௡
ሺ௞ାଵሻଶ

௡ ࣠௞ ൬
ா೑ିா೙

ሺೖశభሻ

௞்
൰.                (B26) 

The above algorithm is summarized as follows: 
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CONCLUSIONS 
 

The main contributions of this thesis are in the field of compact and 
numerical modeling of the gate tunneling in Double-Gate MOSFETs in the 
scaling context of CMOS technology and can be summarized in the following 
items: 

 
1.  A simple compact quantum model for the electrostatic potential, 

electric charge and gate capacitance in thin-film symmetric DG 
MOSFET with undoped body has been developed and assessed. As a 
novelty, this model presents closed explicit expressions on bias and 
geometrical parameters avoiding numerical iterations. The results are in 
close agreement with self-consistent solutions [P1]. 
 

2. An explicit compact quantum model for the gate tunneling current in 
DG MOSFET with SiO2 as gate dielectric has been developed and 
assessed. Specifically, an explicit closed-form expression is proposed, 
useful for the fast evaluation of the gate leakage in the context of 
electrical circuit simulators [P2]. 

 

3. An extension to the model for the gate tunneling current in DG 
MOSFET with SiO2 as gate dielectric has been developed. Specifically, 
an explicit compact quantum model for the direct tunneling current 

through dual layer SiO2/high- dielectrics is proposed. The explicit 
closed-form expression of this model is useful to study the impact of 
dielectric constants and band offsets in determining the gate leakage and 
useful for the fast evaluation of the gate leakage in the context of 
electrical circuit simulators [P3]. 
 

4. A numerical accurate description of tunneling in Double-Gate and 

Single-Gate MOSFETs devices through layers of high- (HK) 
dielectrics, which relies on the precise determination of quasi-bound 
states and their penetration in the gate metal, has been developed. For 
this purpose the Perfectly Matched Layer method (PML) is embedded in 
each iteration of a 1D Schrödinger-Poisson solver [P4]. 
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5. Our numerical modeling by adopting the PML method can be extended 
to 2D and even 3D regions with different geometries  making it suitable 
for non- planar MG MOSFETs such as the SOI FinFETs, SOI Tri-Gate, 
SOI Pi-Gate, SOI gate-all-around or bulk Tri-Gate. 
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