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Resum

El reconeixement de patrons �es la tasca que pret�en distingir objectes entre diferents classes.
Quan aquesta tasca es vol solucionar de forma autom�atica un pas crucial �es el com represen-
tar formalment els patrons a l'ordinador. En funci�o d'aquests formalismes, podem distingir
entre el reconeixement estad��stic i l'estructural. El primer descriu objectes com un conjunt
de mesures col�locats en forma del que s'anomena un vector de caracter��stiques. El segon
assumeix que hi ha relacions entre parts dels objectes que han de quedar expl��citament
representades i per tant fa servir estructures relacionals com els grafs per codi�car la seva
informaci�o inherent. Els espais vectorials s�on una estructura matem�atica molt exible que
ha perm�es de�nir diverses maneres e�cients d'analitzar patrons sota la forma de vectors
de caracter��stiques. De totes maneres, la representaci�o vectorial no �es capa�c d'expressar
expl��citament relacions bin�aries entre parts dels objectes i est�a restrigida a mesurar sem-
pre, independentment de la complexitat dels patrons, el mateix nombre de caracter��stiques
per cadascun d'ells. Les representacions en forma de graf presenten la situaci�o contr�aria.
Poden adaptar-se f�acilment a la complexitat inherent dels patrons per�o introdueixen un
problema d'alta complexitat computational, di�cultant el disseny d'eines e�cients per al
proc�es i l'an�alisis de patrons.

Resoldre aquesta paradoxa �es el principal objectiu d'aquesta tesi. La situaci�o ideal per
resoldre problemes de reconeixement de patrons seria el representar-los fent servir estructures
relacionals com els grafs, i a l'hora, poder fer �us del ric repositori d'eines pel processament de
dades del reconeixement estad��stic. Una soluci�o elegant a aquest problema �es la de transfor-
mar el domini dels grafs en el domini dels vectors, on podem aplicar qualsevol algorisme de
processament de dades. En altres paraules, assignant a cada graf un punt en un espai vecto-
rial, autom�aticament tenim acc�es al conjunt d'algorismes del m�on estad��stic per aplicar-los
al domini dels grafs. Aquesta metodologies s'anomena graph embedding.

En aquesta tesi proposem de fer una associaci�o de grafs a vectors de caracter��stiques de
forma simple i e�cient �xant l'atenci�o en la informaci�o d'etiquetatge dels grafs. En particu-
lar, comptem les freq•u�encies de les etiquetes dels nodes aix�� com de les aretes entre etiquetes
determinades. Tot i la seva localitat, aquestes caracter��stiques donen una representaci�o prou
robusta de les propietats globals dels grafs. Primer tractem el cas de grafs amb etiquetes
discretes, on les caracter��stiques s�on sencilles de calcular. El cas continu �es abordat com una
generalitzaci�o del cas discret, on enlloc de comptar freq•u�encies d'etiquetes, ho fem de rep-
resentants d'aquestes. Ens trobem que les representacions vectorials que proposem pateixen
d'alta dimensionalitat i correlaci�o entre components, i tractem aquests problems mitjan�cant
algorismes de selecci�o de caracter��stiques. Tamb�e estudiem com la diversitat de diferents
representacions pot ser explotada per tal de millorar el rendiment de classi�cadors base en
el marc d'un sistema de m�ultiples classi�cadors. Finalment, amb una extensa evaluaci�o ex-
perimental mostrem com la metodologia proposada pot ser calculada de forma e�cient i com
aquesta pot competir amb altres metodologies per a la comparaci�o de grafs.
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Abstract

Pattern recognition is the task that aims at distinguishing objects among di�erent classes.
When such a task wants to be solved in an automatic way a crucial step is how to formally
represent such patterns to the computer. Based on the di�erent representational formalisms,
we may distinguish between statistical and structural pattern recognition. The former de-
scribes objects as a set of measurements arranged in the form of what is called a feature
vector. The latter assumes that relations between parts of the underlying objects need to
be explicitly represented and thus it uses relational structures such as graphs for encoding
their inherent information. Vector spaces are a very exible mathematical structure that has
allowed to come up with several e�cient ways for the analysis of patterns under the form
of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary
relations between parts of the objects and it is restricted to measure the exact same number
of features for each pattern under study regardless of their complexity. Graph-based repre-
sentations present the contrary situation. They can easily adapt to the inherent complexity
of the patterns but introduce a problem of high computational complexity, hindering the
design of e�cient tools to process and analyse patterns.

Solving this paradox is the main goal of this thesis. The ideal situation for solving
pattern recognition problems would be to represent the patterns using relational structures
such as graphs, and to be able to use the wealthy repository of data processing tools from the
statistical pattern recognition domain. An elegant solution to this problem is to transform
the graph domain into a vector domain where any processing algorithm can be applied. In
other words, by mapping each graph to a point in a vector space we automatically get access
to the rich set of algorithms from the statistical domain to be applied in the graph domain.
Such methodology is called graph embedding.

In this thesis we propose to associate feature vectors to graphs in a simple and very
e�cient way by just putting attention on the labelling information that graphs store. In
particular, we count frequencies of node labels and of edges between labels. Although their
locality, these features are able to robustly represent structurally global properties of graphs,
when considered together in the form of a vector. We initially deal with the case of discrete
attributed graphs, where features are easy to compute. The continuous case is tackled
as a natural generalization of the discrete one, where rather than counting node and edge
labelling instances, we count statistics of some representatives of them. We encounter how the
proposed vectorial representations of graphs su�er from high dimensionality and correlation
among components and we face these problems by feature selection algorithms. We also
explore how the diversity of di�erent embedding representations can be exploited in order
to boost the performance of base classi�ers in a multiple classi�er systems framework. An
extensive experimental evaluation �nally shows how the methodology we propose can be
e�ciently computed and compete with other graph matching and embedding methodologies.
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Chapter 1

Introduction

1.1 Overview of Pattern Recognition

According to the dictionary, a pattern is \a particular, recognizable way in which something
is done or organized". Also \a particular physical form or arrangement". Or even \a design
made up of an arrangement of lines or shapes, especially one in which the same shape is
repeated at regular intervals over a surface" [1]. As marked bold face, a basic property of
patterns is that they should be recognizable, this is, one should be able to tell the di�erence
between distinct patterns. Indeed, every day, we encounter such a situation plenty of times.
For example, when the alarm bell wakes us up in the morning and we watch the clock, we
recognize the numbers and are able to tell what time it is. When we open the fridge to
prepare our breakfast, we are able to identify the juice bottle and pick it up instead of, for
instance, a beer can. Also, when we leave home towards work, we can easily tell which is
the key to our entrance door among all keys in our keyring so we can lock the door after us.
Recognizing patterns is thus an activity we do all the time and is actually one of the major
abilities of human beings. In fact, solving the problem of distinguishing and recognizing
patterns is so important for us that our cognitive system has evolved in a very sophisticated
way in order to be able to e�ciently and properly get optimal solutions for its resolution.

Over the years, we have learnt to solve this problem by learning from examples. Facing
the same situation over and over gives us intuitive ways to deal with our daily life and tackle
straightforward problems and so, by eating every day with forks, knifes and spoons, we just
know without making any hard decision which is the object we have to use whenever we need
to cut a steak. What it is not that easy, though, is to methodically formalize the process
under which we recognize the knife and the spoon. In other words, we know the knife is
sharp and the spoon is rounded and so we easily distinguish the tools, but the concepts
of sharp and rounded are not trivially de�ned in an algorithmic manner, so if we wanted
a machine to do this task for us |or any other similar task| we would need to �nd the
optimal ways to tell it how to understand such concepts. And this is far from having a basic
solution.

The pattern recognition community has been trying for the last decades to use machines
for solving tasks similar to the one just described [45]. Regardless of the complexity of
the tackled problems, several successful results have been obtained. Relevant examples
include optical character recognition [5, 77], mail sorting [77, 107], text categorization [85,
148,170], handwritten text recognition [13,105,185], writer identi�cation [143,144], molecular
structure-activity relationship analysis [19, 112], �ngerprint recognition [80, 119, 183], face
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detection in still images [71, 171], and many others. In many of these cases, imitating
our own way of learning from examples, the methods employed are based on feeding the
machine with data so it can be able to generalize and give proper answers to the problem
under consideration.

Machine learning tries to emulate what we humans have experienced over the years.
Again, back to the same illustrative example, by showing several instances of knifes and
spoons to the machine, one assumes the machine will be able to learn the main character-
istics that makes knifes di�erent from spoons and spoons di�erent from knifes. Formally,
a mathematical formulation that models the learning process is the following. Let X be
the set of all possible objects under consideration |for instance, all utensils we have in our
kitchen drawer|, and let Y = fy1; : : : ; ykg be the �nite discrete set of class labels among
which we aim at distinguishing the patterns in X |let us say, forks, spoons and knifes. In
supervised learning1 a set of pattern examples T together with their corresponding class
label is provided, T = f(xi; yi)gi=1;:::;N . Usually this set is referred to as the training set.
The main goal is to infer a function f : X �! Y that assigns patterns to classes. This is,
a decision rule able to tell whether a given tool is either a fork, a knife or a spoon. The
mapping f is usually called a classifier.

A good classi�er should of course be able to correctly classify all patterns in the training
set. We face the risk, though, that such a classi�er �ts too much to the training data in
the sense that it is not able to assign correctly the category of new or unseen elements
x 2 X n fxigi=1;:::;N , usually known as test elements. Such situation is usually called
as overfitting. The opposite situation, underfitting, is the case where the classi�er is not
discriminative enough for the training patterns and so the boundaries between di�erent
categories are not properly de�ned. Machine learning researchers thus face the problem
of �nding the correct balance between properly classifying training data and being able to
generalize to new unseen patterns.

On top of these things, it is obvious that a key issue in the learning process, and more
particularly, in the design of the classi�ers, is the nature of the space of patterns, this is,
the way in which the space of patterns X is formally and mathematical presented to the
machine. In particular, the way patterns are codi�ed should be able to capture all the
relevant information that makes them distinguishable ones from the others, so that the
evetual classi�er easily detects the inherent characteristics of each pattern category. Based
on how this situation is tackled we may divide the �eld of pattern recognition into two
main branches, namely, statistical pattern recognition where feature vectors are used as the
representational paradigm for patterns and structural pattern recognition where relational
structures like graphs are employed for this purpose.

1.1.1 Statistical Pattern Recognition

The most common way to present the space of patterns to the machine is by using what
are called feature vectors. In particular, a set of n measurements are computed for a given
pattern x 2 X and so each pattern is represented as a point2 x = (x1; : : : ; xn) 2 Rn in
an n-dimensional Euclidean space. For instance, our kitchen utensils could be described as
2-dimensional vectors where components regard a measure of roundness and a measure of

1Other learning strategies are there in the literature. Unsupervised learning is the case where
input data comes without a predefined category and semi-supervised learning is the case where only
some examples are provided together with its class label.

2Note the abuse of the terminology. Mathematically, we would distinguish among points and
vectors in a vector space. For the current discussion and for the construction of the whole pattern
recognition apparatus, these terms are interchangeable.
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(a) String (b) Tree (c) Graph

Figure 1.1: Different relational structures.

sharpness of each utensil, and thus ideally, in such a space, points representing spoons should
be separated from those representing knifes.

Representing patterns as points in a vector space provides us with a very fancy situation
for the comparison of the elements under study. Operations such as the distance between
points, the mean of a set of points or even the variance, are easily defined and are cheap to
compute. More generally, the fact that vector spaces are a very flexible and malleable math-
ematical construction has allowed the research community to come up with many effi cient
and sophisticated algorithms for the problem of pattern analysis [14,45].

In any case, although its popularity and successful results, not everything is completely
convenient when using feature vectors as the representational paradigm of patterns. For
instance, there is a major restriction in the fact that all patterns, regardless of their com-
plexity, should be represented using the same exact number of features. In other words, in
a same problem, a very simple pattern should be measured as many times as a rather more
complicated one, when probably such situation is unnecessary or undesired. A second major
problem is the lack of an explicit relationship among parts of the objects. In many settings,
it would be interesting to describe an inherent structure within the parts of the patterns un-
der consideration — for instance, a relative spatial location between them or, more generally,
whether or not two parts of the object interact with each other— and this is not directly
applicable by the use of feature vectors. Relational structures such as strings, trees or graphs
fit under a representational paradigm that do not suffer from these two described drawbacks
— they actually solve these situations in a straightforward manner— , and pattern analysis
under these scenarios is known as structural pattern recognition.

1.1.2 Structural Pattern Recognition

Graphs are an abstract formalism for data structures, widely used in computer science. A
graph is composed of a finite set of nodes and a set of edges linking these nodes. Nodes
and edges can store numerical or symbolic information called labels, and edges can have a
direction. Strings are a particular case of graphs where a starting node is connected to only
one node, which at the same time is connected to a third node and so forth, until a last
node is reached. Trees are another case of graphs where nodes are connected by exactly only
one path. In this thesis we will not distinguish among these different structures and will
work with general graphs. An example of each of these relational structures are depicted
in Fig. 1.1. For instance, Fig. 1.1(a) shows a string with labelled nodes (each shade degree
is a different label) and undirected and unlabelled edges, Fig. 1.1(b), a tree with unlabelled
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(a) A molecule and its graph representation

(b) A web document as a graph

(c) An image and its segmentation graph

(d) A character and its graph representation

Figure 1.2: Examples of graph-based representations.

nodes and undirected and labelled edges (each line dashed pattern is a different label), and
finally, Fig. 1.1(c), a graph with unlabelled nodes and directed and unlabelled edges.

The power of graphs in terms of their ability to represent patterns has attracted a lot
of attention in the past decades and has been applied to many fields [22, 32, 33, 67, 87]. For
instance, molecular compounds have a natural structure in the form of undirected graphs,
where atoms are represented by nodes labelled with the corresponding atomic element and
edges regard the covalent bonds between atoms and are labelled with the corresponding
covalent number. Fig. 1.2(a) shows the 3D representation of the acetamide molecule and its
corresponding graph representation. Bioinformatics and chemoinformatics have widely used
graphs as the main paradigm for molecule representation with great success [16, 112, 127].
Web documents, the world wide web and, generally, computer networks, are also a good
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example where a graph representation suits perfectly. A standard representation of a web
document as a graph is shown in Fig. 1.2(b) (image taken from [141]). Topics and web
links among them are represented as a graph. Generally, computers constitute nodes of a
graphs and the connections between computers are represented by edges. Exploiting the
information of these graphs is what the web content mining and network analysis �elds
commonly carry out [41,42,141,142]. Computer vision is nowadays one of the major computer
science research lines and it has also served itself of graph-based representations. Image
classi�cation and segmentation are just a few examples of where computer vision may have
served itself of relational structures [44, 50, 68, 110]. Extracted from [68], in Fig. 1.2(c),
an image is shown together with a graph representing its segmentation regions. Finally,
character and symbol recognition has also used graphs as their representational paradigm,
showing pro�table results [34, 106, 138]. As a simple example, in Fig. 1.2(d) a handwritten
character is shown with a typical graph representation where nodes and edges are extracted
along the stroke.

Most recently, there has been a great eruption of interest in using relational structures to
characterize the complexity of certain networks [8,48]. Rather than comparing graph-based
representations of patterns one-to-one, large graphs are used to represent the interaction of
certain entities. For instance, protein-protein interaction networks can be used to compre-
hend the relationship between the function of di�erent biological organisms. The study of
brain connectivity can also take advantage of complexity network characterization as a form
of graph analysis.

Despite the broad applicability of graph-based representations, there is an important
drawback concerning their use. The very same complexity regarding their representational
capabilities is responsible of making the processing and analysis of graphs a hard and costly
task. In particular, just a few mathematical structure is there available in the graph domain.
More precisely, the unordered nature of the nodes in a graph and the fact that the number
of nodes in graphs may di�er from one graph to another in the same problem toughens
the comparison of patterns under graph-based representations. What were straightforward
operations for the case of feature vectors, they now become expensive and arduous tasks.
Notions like the mean or the variance of a set of graphs are far from being trivial to de�ne.

In contrast to the case of feature vectors where the mathematical exibility of vector
spaces allows to come up with e�cient and powerful machine learning algorithms, in the
case of graphs we are very limited in this sense. In comparison to the statistical domain,
we lack a set of sophisticated tools for the analysis of patterns and this drastically restricts
our endeavour to successfully use graph-based representations for pattern recognition. We
thus encounter a paradoxical situation. We have at our disposal plenty of machinery for the
analysis of patterns represented under feature vectors, but such representations are weak in
terms of they representational power. Then, whenever we �nd another data structure that
is able to overcome the limitations of the feature vectors, we discover that a repository of
tools for the analysis of patterns is missing. This paradox is illustrated in Table 1.1. The
main objective of this thesis is to shed some light on this puzzle by trying to bridge the gap
between the statistical and the structural pattern recognition worlds.

1.1.3 From structural to statistical

The ideal scenario for solving pattern recognition problems would be to represent patterns
under graph-based representations, and further analyse these patterns using any of the sev-
eral machine learning algorithms developed under the rich statistical framework that feature
vectors o�er. Several attempts have been done towards this objective [26]. Two large families
of works can be found in the literature, namely, graph kernels, where graphs are implicitly
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Table 1.1: Statistical vs Structural Pattern Recognition.

Statistical Structural
Pattern Recognition Pattern Recognition

Representational 7 3power

Wealth of 3 7algorithmic tools

mapped into a hidden feature space and similarities between them are expressed in terms
of the scalar product between their corresponding image vectors, and graph embeddings,
where an explicit formulation of such a map is proposed and thus any operation between
graphs can be performed in terms of their corresponding image vectors.

To detail the �rst one, we must describe |although briey| the set of learning algo-
rithms known as kernel machines. Let us go back now into the statistical pattern recognition
world. In many cases, the set of steps that de�ne the algorithm to build up a classi�er need
not to explicitly present the feature vectors themselves but, instead, the similarity between
pairs of patterns in terms of the scalar product between their corresponding feature vec-
tors. Formally, the construction of a classi�er f does not generally depend on feature vector
representations but on a dot product h�; �iX in the pattern vector space, f � f(h�; �iX ).

Together with this property of the classi�er construction, we grab the notion of a kernel
function from the functional analysis domain. A kernel function is a symmetric function
mapping pairs of objects to real numbers, � : X �X ! R. Such a kernel is called valid when
is positive de�nite. It turns out that, for a given valid kernel �, there always exist a Hilbert
space H and a mapping ν : X ! H such that the kernel function between two patterns from
X is equal to the scalar product between the corresponding mappings by ν, this is

�(x1; x2) = hν(x1); ν(x2)iH: (1.1)

Intuitively, kernel functions are the similarity functions in terms of scalar product of some
implicitly embedded patterns in a hidden |in the sense of implicit| space H. This im-
portant theorem allows those mentioned algorithms that only depend on scalar products
between pattern vectors to be kernelized. This is, the scalar product may be substituted by
a valid kernel function and the mathematical foundation of the algorithm steps remain in-
tact. We call these algorithms kernel machines. Examples of kernel machines are the nearest
neighbour rule, principal component analysis, support vector machines, kMeans clustering,
and many others [147,151].

Let us try not to lose the thread. We were describing ways in which statistical-based
machine learning algorithms may be applicable to graph-based representations. As a matter
of fact, although we have explained kernel machines from the statistical pattern recognition
point of view, we have not put any assumption on which should be the space of patterns
under consideration in the de�nition of what a valid kernel is. Consequently, if we are
able to de�ne proper valid kernel functions for graph-based representations, the set of all
kernel machines becomes available for the graph domain. In other words, by de�ning proper
similarity functions between graph instances, we will be able to directly apply kernel machines
to our graph-based representations of patterns. Families of graph kernels will be reviewed
in detail in Section 2.4 of this thesis.

As we mentioned before, there is another group of ways to make machine learning algo-
rithms applicable to the graph domain. This one |known as graph embeddings| is rather
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more intuitive than the one just described. In particular, the goal of graph embeddings is
to extract numerical features from graphs and arrange them in the form of a feature vector.
And that is to say, assign to each graph a point in a vector space. By this methodology,
we clearly get access to all learning algorithms that are available since we do nothing but
converting the situation of graphs into that of feature vectors. Of course, the problem arises
of which graph features should be extracted in order to lose as less structural information as
possible, which is precisely the main bene�t of graph representations with respect to feature
vectors. Section 2.5 will review some attempts to make the described transition. Finally, let
us note that it exists a clear relation between these two manners of resolving the gap between
the statistical and structural worlds. As soon as pattern vectors are assigned to graph-based
representations, any valid kernel on vectorial entities will also de�ne a symmetric positive
de�nite function for graphs.

1.2 Objective of this work

As it will be described in the next chapter, most of the graph embedding methodologies still
su�er from a high computational complexity. Given the richness of the graph representa-
tions, it is of course not a trivial task to e�ciently extract features that regard their whole
representational power. In any case, the e�ort of transiting from graphs to vectors would
not be worth if we would still have to perform costly operations for getting a convenient
vectorial representation of graphs.

The main objective of this thesis is to de�ne ways for embedding graphs into vector
spaces that make the transition within a reasonable number of operations and without los-
ing the abilities of graphs to properly represent structured patterns. In particular, we aim at
describing a way to embed any type of graphs |discrete and continuous attributed ones|
into vector spaces that overcome the e�ciency problem that most of the embedding method-
ologies carry with them and such that classi�cation problems under these representations
are successfully solve. For this to be accomplished, we de�ne embedding features that regard
statistics of labelling information. More precisely, the features proposed in this work check
for the frequency of a certain label to appear as a node label in a given graph and also the
frequency of a certain relation between nodes with two speci�c labels. These measurements
are rather local concerning the topology of the graphs under study, but the arrangement of
all of them in the form of a feature vector makes the proposed methodology, as proven with
an extensive experimental evaluation, a robust way to analyse patterns and to e�ciently
compete with other state-of-the-art approaches for the characterization of graphs in terms
of feature vectors.

1.3 Contributions and organization

The contributions and the rest of this thesis are organized as follows. We will �rst stablish
the notation that is going to be used throughout this work regarding graphs and graph
comparison. We will also go over the main classical graph comparison methodologies |
divided into exact and inexact graph matching|, putting special emphasis on graph edit
distance as its major representative. This particular graph matching approach will serve
us as a comparative baseline in many situations regarding the validation of our embedding
methodology. Finally, as stated above, the literature concerning graph kernels and graph
embeddings will be properly reviewed. These are the contents that constitute the body of
Chapter 2.
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The embedding of graphs into vector spaces will be initially tackled for the case of discrete
attributed graphs. We propose to compute a set of features regarding the occurrence and co-
occurrence of node labels in the graphs. After formalizing the computation of such features,
they will be related to a speci�c form of graph edit distance by which we will start to
discover the bene�ts of our embedding proposal for the problem of graph characterization
and classi�cation. A discussion regarding the metric of the vectorial space where our vectors
life follows this part. We will discuss all these contents in Chapter 3, where we �nally will
try to rede�ne the original features in terms of paths travelled along the graph edges and
then generalize this idea to give more robust and diverse graph embedding representations.

Whenever we encounter graphs whose node labels are continuous attributes, this is,
values from Rd, the previous methodology in not directly applicable since occurrence and
co-occurrence of continuous labels is not feasible. In Chapter 4 we will study the transition
from the discrete methodology proposed in the previous chapter to the case of continuous
attributed graphs. The idea underlying the methodology from then on is to select a set of
representative elements for the node labels of the graphs under study and extract statistics
of these representatives instead of the labels themselves. We will present essentially two
versions of this transition by either a hard assignment or a soft assignment from node labels
to representatives. We will discuss several ways to select the set of representatives that will
eventually lead to a vast and diverse set of vectorial representations of graphs. The metric
of the vectorial space will also be experimentally discussed for the continuous case. We will
then �nish this chapter by experimentally validate the di�erent versions of the proposed
methodologies.

It turns out that some problems regarding high dimensionality, correlation among fea-
tures and redundancy might appear in the feature vectors of our embedding proposal. In
order to tackle these problems, in Chapter 5 we will apply feature selection algorithms to
the embedding representations we propose in the previous chapter. We will experimentally
evaluate which is the e�ect of applying such algorithms for selecting relevant features that
allow to perform on the same classi�cation levels by using only the actual most discriminative
features.

As we will observe, both the length of the considered paths in the discrete attributed
graphs and the size of the set of representatives for the case of continuous attributed graphs
are parameters that o�er some diversity in the embedding representations. Based on such
diversity we will be able to construct di�erent base classi�ers. In Chapter 6 we will use
these base classi�ers and combine them in a multiple classi�er systems framework in order
to extract the best of our vectorial representations and eventually boost the performance of
the classi�cation problem.

A rigorous experimental evaluation will be carried out in Chapter 7. In particular,
we will put our methodologies in comparison to classical graph matching approaches and
to a another graph embedding algorithm. The problems of graph classi�cation and graph
clustering will be successfully and e�ciently solved. In this chapter we will present the
results we have obtained.

Chapter 8 will conclude this thesis by summarizing the main contributions of the work
presented hereafter. It will also points out the future research directions that this thesis may
open. Several datasets of graphs will be used along this work. Some of them are publicly
available and some others have been created by ourselves. Appendix A carefully describes
all of them. Finally, Appendixes B and C will present �gures that result from the validation
of some stages of this work.



Chapter 2

Graph Matching

In the previous introduction of this thesis we have stressed the main advantages of graph
representations over feature vectors in terms of their representational power. In this chapter,
we formalize the de�nition of graph and subgraph and review the common ways of graph
comparison. Based on how the assignment of nodes of one graph are matched to nodes of
the other graph, these ways are divided into two main categories, namely, exact and inexact
graph matching. The former wants to answer whether two graphs are equivalent both at the
structure and at the labelling levels. The latter tries to �nd an assignment between nodes
that is able to cope with structural errors. We also review modern approaches for graph
processing, such as graph kernels, where similarity measures between graphs are sought, and
graph embeddings, where an explicit feature vector representation of graphs is de�ned.

2.1 Graphs and subgraphs

There exist several ways to de�ne a graph. The following one is general enough to include
all types of graphs used in this thesis and all discussions concerning related works.

De�nition 2.1 (Graph) Let LV and LE be two labelling sets. A graph g is a 4-tuple
g = (V;E; �; �), where V is a finite set of nodes, E � V �V the set of edges, � : V ! LV the
node labelling function assigning a label from LV to each node in the graph and � : E ! LE
the edge labelling function assigning a label from LE to each edge in the graph.

The number of nodes of a graph g is denoted by jgj. Edges of a graph are usually
identi�ed by the nodes they link. An edge e 2 E can thus be represented by e = (u; v) where
u; v 2 V . Edges may be de�ned in a directed way and then u is called the source node and v
the target node. In this case the graph is called directed. A graph is called undirected when
such direction of edges is not really de�ned, or technically, when for all e = (u; v) 2 E there
always exist e′ = (v; u) 2 E such that �(e) = �(e′). All graphs considered in this work are
undirected.

Based on the de�nitions of the labelling sets and the labelling functions we also have
di�erent types of graphs. For instance, a graph whose labelling sets are sets of discrete
attributes1 is called a discrete attributed graph. Whenever LV and LE are subsets of Rd for
any d � 1, we call the graph continuously attributed. The labelling sets can also include a

1The words label and attribute are used indistinctly throughout all chapters of this thesis.

9
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(a) Graph (b) Induced subgraph (c) Non-induced subgraph

Figure 2.1: A graph and two subgraphs.

special attribute εcalled the null label. If all nodes and edges are labelled with this attribute
the graph is called unattributed. Combinations of these settings can also occur. For instance,
a graph with continuous attributed nodes and unlabelled edges or with discrete attributed
nodes and continuous attributed edges. In this thesis we will work with different types of
graphs, each dataset used is thoroughly described in Appendix A.

An important related concept is that of subgraph of a graph. Intuitively, a subgraph is a
part of a graph preserving the structure and the labelling information.

Definition 2.2 (Subgraph) Let g1 = (V1, E1, µ 1, ν1) and g2 = (V2, E2, µ 2, ν2) be two
graphs. The graph g1 is a subgraph of g2, and we denote g1 ⊆ g2 if the following condi-
tions hold

• V1 ⊆ V2,

• E1 = E2 ∩(V1 × V1),

• µ 1(u) = µ 2(u), for all u∈V1

• ν1(e) = ν2(e), for all e∈E1

From this definition, a subgraph of a graph can be understood as the graph resulting of
removing some nodes (V2 \V1) of the graph and all their incident edges. In this case the
subgraph is called induced. If, however, the second condition of the definition is substituted
by E1 ⊆ E2, not only the incident edges to the deleted nodes are removed but also some
other edges can be removed. In this case the subgraph is called non-induced. In Fig. 2.1 we
depict these cases. A graph is shown (2.1(a)) together with an induced subgraph (2.1(b))
and a non-induced subgraph (2.1(c)).

2.2 Exact Graph Matching

The process of evaluating the similarity between two graphs is usually known as graph
matching. In particular, exact graph matching aims at deciding whether two graphs —
or parts of two graphs— are identical in both the topology or structure and the labelling
information. As in all subfields of mathematics the equality of two entities is established
through a bijection between them. In this case, we refer to this bijective function as graph
isomorphism and define it as follows.

Definition 2.3 (Graph isomorphism) Let g1 = (V1, E1, µ 1, ν1) and g2 = (V2, E2, µ 2, ν2)
be two graphs. A graph isomorphism between g1 and g2 is a one-to-one correspondence
between the node sets of the two graphs f : V1 → V2 such that the labels of nodes are
preserved under the bijection, this is,
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� �1(u) = �2(f(u)) for all u 2 V1,

and, in both directions of the mapping, the adjacency of nodes is also preserved together with
the labelling, this is

� for all edge e = (u; v) 2 E1 there exists an edge e′ = (f(u); f(v)) 2 E2 between the
images of the nodes by the mapping such that �1(e) = �2(e′),

� and for all edge e = (u; v) 2 E2 there exists an edge e′ = (f−1(u); f−1(v)) 2 E1

between the inverses of the nodes by the mapping such that �2(e) = �1(e′).

Two graphs are called isomorphic if there exists a graph isomorphism between them.

Isomorphic graphs share the exact same structure and labelling information. In order
to check whether two graphs are isomorphic, one has to �nd a one-to-one mapping between
the node sets of both graphs so that the topology is preserved and the node and edge label
correspondences are coherent.

Tree search algorithms are typically used for checking the graph isomorphism condition.
The search tree is organized in such a way that mappings of nodes of the �rst graph to
nodes of the second graph are explored until either the edge structure does not match or the
labelling constraints are not ful�lled. Whenever all nodes of the �rst graph can be mapped
to all nodes of the second graph without infringing the topology and labelling restrictions,
these two graphs are deemed isomorphic. Examples of this strategy with their particular
variants are [34{36,100,145,164]. The main problem of all of them is its high computational
complexity, which is usually exponential in the number of nodes of the involved graphs.
A di�erent and interesting approach for graph isomorphism veri�cation is based on the
algebraic group theory. For each graph, the automorphism group is built and characterized
in terms of a canonical form. By checking the equality of these canonical forms one is able
to tell whether the graphs are isomorphic or not [115].

Particularly related to the problem of graph isomorphism is that of subgraph isomor-
phism. Intuitively, the problem of subgraph isomorphism is that of �nding an isomorphism
between a graph and a subgraph of it.

De�nition 2.4 (Subgraph isomorphism) Let g1 = (V1; E1; �1; �1) and g2 = (V2; E2; �2; �2)
be two graphs. An injective function between the node sets of the two graphs f : V1 ! V2 is
called a subgraph isomorphism from g1 to g2 if there exist a subgraph g � g2 such that f is
a graph isomorphism between g and g1.

In plain words, a subgraph isomorphism indicates whether a graph is contained as a
subgraph of a larger graph. The tree search approaches described above for the problem of
graph isomorphism are also applicable to the problem of subgraph isomorphism.

Graph and subgraph isomorphisms are a rather restrictive way for matching graphs.
They either answer whether two graphs are identical or not, but do not account for partial
similarities between the two involved entities. In other words, two graphs |or a graph and
a part of it| must be identical in terms of their structure and labels, when for instance, two
graphs with most, but not all, of their nodes and structure being equal should be considered
similar to some extent. Consider for instance the case where two graphs are exactly the same
but only di�er in the label of one node. Under the isomorphism paradigm these two graphs
are not considered similar since a one-to-one correspondence is not possible to be established
between the nodes of the graphs and thus this methodology fails to account for the obvious
similarity there exists between these two graphs.

These de�ciencies gave birth to the concepts of the largest common subgraph and the
minimum common subgraph of two graphs. The maximum common subgraph of two graphs
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is the common subgraph of two graphs with the maximum number of nodes. Clearly, the
larger the maximum common subgraph mcs(g1; g2) between two graphs is, the more similar
the graphs are. The maximum common subgraph of graphs g1 and g2 can be understood
as the intersection between the two graphs. Analogously, the union of the graphs de�nes
the minimum common supergraph of two graphs, MCS(g1; g2). Intuitively, it is the smaller
graph containing both g1 and g2 as subgraphs. Plenty of work is there available concerning
the computation and the use of the maximum common subgraph and the minimum common
supergraph for graph matching, and particularly, for de�ning several distance metrics on
graphs [20, 23, 104, 114, 174]. In particular, a distance metric can be de�ned by relating the
size of the maximum common subgraph of two graphs and the size of the largest one [27],

d(g1; g2) =
jmcs(g1; g2) j
max(jg1j; jg2j)

; (2.1)

or by relating the sizes of the minimum common supergraph and the maximum common
subgraph [52],

d(g1; g2) = jMCS(g1; g2) j � jmcs(g1; g2) j: (2.2)

In pattern recognition problems, the graph extraction process usually leads to graph-
based representations of patterns encoding some level of distortion. In particular, graph
labels and topology may be a�ected in such a way that the underlying represented objects
have very di�erent representations even if they belong to the same category. In these cases,
not even the graph similarity measures induced by the maximum common subgraph and
the minimum common supergraph are adequate since they require the graphs to have, at
some extent, identical parts to regard high similarity values. This situation has led the
structural pattern recognition community to devote quite some e�ort to come up with graph
matching methodologies that are tolerant to structural and labelling di�erences in the graphs.
These inexact or error-tolerant graph matching approaches calibrate the possibilities of the
assignment of nodes between graphs under a wider perspective. We review them in the next
section.

2.3 Error-tolerant Graph Matching

In order to allow the graph matching framework to cope with real world problems where
graph-based representations usually su�er from distortion, one should tolerate |to a certain
degree| errors in the matching of nodes and edges. In particular, instead of just demanding
whether or not two node labels are the same, we would better check the similarity between
these labels and permit some degree of dissimilarity. In this case, mappings between nodes
and edges whose labels di�er become possible. The main idea here would be to assign a
high penalty to those mappings that link nodes with di�erent labels and a low penalty to
those linking similar nodes. This can also be applied for the topology of the graphs, and
allow the mappings to disregard the edge structure of graphs by penalizing in a higher degree
those cases where the edge structure is preserved at a lower degree. Thus, generally speaking,
error-tolerant graph matching approaches aim at �nding mappings between graphs such that
these penalties or costs are minimized.

Di�erent families of inexact graph matching are there in the literature. For instance, tree
search algorithms are also applicable to cope with structural errors. In contrast to the exact
graph matching situation, in this case the search is usually directed by the cost of the partial
matching obtained at each time and by a heuristic estimate of the matching of the remaining
nodes [32]. Relevant examples of this methodology are [10{12, 46, 150]. Genetic algorithms
can also be applicable to graph matching [6, 38, 156, 160, 175]. Their main advantage over
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other techniques is that they can handle huge search spaces by encoding possible solutions
of the node assignments in the forms of chromosomes. Nevertheless, their non-deterministic
solutions make them not suitable in many cases. Spectral approaches have also been used
to treat this problem [28,95,109,110,153,165,179]. The idea behind these methods is based
on the fact that an eigendecomposition of any matrix regarding the topology of graphs |for
example, the adjacency or the Laplacian matrices| is invariant under node permutations.
Then, similar graphs are assumed to have similar eigenvectors and eigenvalues, and they
are used for graph comparison. Relaxation labelling techniques cast the problem of graph
matching as a non-linear optimization problem [30, 54, 66, 76, 92, 117, 180]. In particular, it
is formulated as a labelling problem, where Gaussian probabilities model the compatibility
between the assignment of each node of one graph to all the nodes of the other graphs, which
at their time are expressed in terms of a set of labels. Other approaches have also been used
for the problem of inexact graph matching. Arti�cial neural networks [51, 56, 81, 159], the
Expectation Maximization algorithm [53, 108], random walks on graphs [62, 135] or even
approximate least-squares [167,168] are some examples among many other.

Graph edit distance is an error-tolerant graph matching approach that can deal with
arbitrary graphs and has been proved to achieve robust results in many applications [4,119,
136]. Because of these reasons, in many places of this thesis, it will serve as a reference
method to compare the proposed methodologies with. We devote the next section to explain
this approach in detail.

2.3.1 Graph Edit Distance

The main idea of graph edit distance is to de�ne a dissimilarity measure between two given
graphs by taking into account the minimum number of structural transformations that are
needed to convert one graph into the other. Basic edit operations are de�ned in terms of
insertion, deletion and substitution of nodes and edges. The concept of edit distance was
originally proposed for the case of string matching [103, 173]. It was then generalized �rst
to trees [149] and �nally to graphs [21,47,139,163].

Formulation

Given two graphs g1 and g2, the edit distance methodology, seeks for a sequence of edit
operations e1; e2; : : : ; en, consisting of the deletion of some nodes and edges of the �rst graph
g1, substituting some other nodes and edges of g1 by those of g2, and maybe also inserting
the nodes and edges that are needed to obtain the second graph g2. Such a sequence of
operations is called an edit path and there is obviously an in�nite number of edit paths
that transform graph g1 into graph g2. For instance, one could always remove all nodes
and edges of the �rst graph and then insert all nodes and edges of the second graph. This
procedure is in fact an edit path transforming g1 into g2, but it might not be regarding the
actual structural similarity between both graphs in a proper way. In Fig. 2.2 we show an edit
path between two graphs that consists on a node deletion (with the corresponding deletion

Figure 2.2: An edit path between two graphs. Node labels are represented by
di�erent colors.
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of its adjacent edges), a node substitution, another node deletion (again together with the
deletions of its adjacent edges), a node insertion and �nally a node substitution.

In order to �nd the most appropriate edit path out of all existing ones, edit costs are
assigned to each of the edit operations, corresponding to the strength of each operation.
Such edits costs are usually given in terms of a cost function. De�ning such a function is
a key issue in the application of graph edit distance and several ways have been proposed
to tackle the problem [120, 121]. The basic idea is to de�ne them in such a way that there
exists an inexpensive edit path between two similar graphs and an expensive one between
two dissimilar graphs. Formally, the edit distance between two graphs is thus de�ned as the
cost of the edit path that has the minimum cost among all the existing paths, this is,

De�nition 2.5 (Graph Edit Distance) Given two graphs g1 = (V1; E1; �1; �1) and g2 =
(V2; E2; �2; �2), the edit distance between g1 and g2 is defined as

d(g1; g2) = min
e∈E(g1;g2)

n∑
i=1

c(ei) (2.3)

where e = (e1; : : : ; en) is an edit path from the set E(g1; g2) of all existing edit paths from g1

to g2, and c(ei) indicates the cost of the edit operation ei.

Computation

Computing the edit distance between two graphs is a problem of high computational com-
plexity. Typical solutions are based on exploring all possible mappings from the sets of
nodes and edges of one graph to those of the other graph [21,139]. Such procedures have an
exponential complexity in the number of nodes of the graphs and thus they are restricted to
graphs with just a small number of nodes. Suboptimal methods for computing the edit dis-
tance of graphs have been widely studied and they allow larger graphs as input. Commonly,
suboptimal methods are based on local search in the graphs reducing the search space of
possible node-to-node mappings [15, 158]. In [86], the distance between graphs with unla-
belled edges can be e�ciently computed by a linear programming approach. Moreover, in
order to speed up the edit distance computation, two modi�cations of an optimal algorithm
are presented in [123]. The idea is to split the graphs into smaller subgraphs and transform
the problem into that of �nding an optimal match between the sets of subgraphs by dynamic
programming.

Finally, in [133], a suboptimal algorithm based on bipartite graph matching is presented.
An approximate solution of graph edit distance is provided by means of solving the assign-
ment problem of nodes of one graph to nodes of the other in the following way. A cost matrix
regarding the substitution of the local structure of every node of the source graph by the
local structure of every other node in the target graph is built. Then the optimal assignment
is extracted by the Munkres' algorithm [116] and thus an edit path can be inferred. This
suboptimal approach has been proved to obtain results similar to the optimal edit distance
while reducing the computation time from exponential to cubic. As already said above, in
several parts of this thesis, graph edit distance will act as a baseline methodology. All graph
edit distance computations that are reported hereafter will be done by using this suboptimal
approach.

2.4 Graph Kernels

Graph kernels are a rather modern form for graph processing. Similarity measures between
graphs are sought in terms of positive de�nite symmetric functions. Plenty of work has been
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done towards the de�nition of valid kernel functions for the purpose of graph comparison. In
particular, we can split the literature into di�erent broad families, namely, di�usion kernels,
dissimilarity-based kernels, convolution kernels and substructure �nding kernels.

Di�usion kernels are those graph kernels that are de�ned in terms of a base similarity
measure between the input graphs in order to build a kernel matrix [88, 94, 98, 99, 157,
169]. In fact, such methodology does not require patterns to be represented by graph-based
representations, but as long as a symmetric similarity measure for graphs is provided, this
can also be applied to graphs. Let G be a set of N graphs and � : G � G ! R a symmetric
similarity measure de�ned on this set of graphs. The matrix � = (�ij)N×N of the similarities
of all pairs of graphs in G can be converted into a positive de�nite kernel matrix by the use
of the exponential di�usion kernel [94]

K =

∞∑
k=0

1

k!
�k�k = exp(��); (2.4)

or the use of the von Neumann di�usion kernel [88]

K =

∞∑
k=0

�k�k: (2.5)

The main idea behind di�usion kernels is to take pro�t of the base similarity measure by
considering not only pairs of similar graphs, but also all those graphs that are similar to a
given pair. With regard to their computation, the weighting factor �k makes similarities for
a large enough k to be insigni�cant and thus their computation is not necessary.

Related to the di�usion kernels are those kernel functions that take advantage of having a
dissimilarity measure between graphs and turns them into a similarity function. For instance,
given a dissimilarity function such as the edit distance d : G�G ! R, one is tempted to turn
the dissimilarity values by a monotonically decreasing transformation. For instance, being
d(g1; d2) the edit distance of graphs g1 and g2, a similarity measure may be de�ned by [122]

�(g1; g2) = exp(� � d(g1; g2)): (2.6)

where  > 0. This similarity measure is generally not positive de�nite, but in some works, it
has been suggested that non-valid kernel functions are also usable in conjunction with kernel
machines if some conditions are ful�lled [65,122].

Convolution kernels are a family of kernels that try to infer similarity measures between
graphs by decomposing the graphs into smaller parts for which a similarity measure can be
computed. The assumption behind these kernel functions is that these similarity measures
for simpler parts of the graphs are easier to infer than those for the whole graphs. Once the
similarities between the simpler parts are computed, convolution operations may turn them
into a valid kernel function for graphs [70,176,177].

The next and last family of graph kernels is the broader one and it is based on how similar
the distribution of di�erent types of substructures between two graphs are. A �rst approach
is the random walk kernel, originally proposed in [58], where the idea is to measure the
similarity of graphs by counting the number of random walks two graphs share in common.
Other types of substructures are also proposed for the sake of graph similarity. For instance,
shortest paths in graphs [18], subtrees [128], cycles [73, 74] or even simple subgraphs called
graphlets [59, 152].

The novelty of the random walk idea is the fact that it has a straightforward computation
in terms of the product graph between two graphs. The product graph of two graphs is the
graph whose node set is the subset of the cartesian product of the two corresponding sets of
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nodes, composed by those pairs of nodes sharing the same label. Two nodes of the product
graph are linked with an edge if the corresponding nodes were also linked in the original
graphs. Clearly, a walk in the product graph of two graphs is a common walk between
them. Thus, evaluating the number of common walks of two graphs turns into evaluating
the number of walks of a single graph. If we let A× be the adjacency matrix of the product
graph G× = (V×; E×; �×; �×) of graphs g1 and g2, the random walk kernel can be computed
by

�(g1; g2) =

|V×|∑
i;j=1

[
∞∑
n=0

�nAn×

]
ij

(2.7)

since exponentiating the adjacency matrix A of any graph turns into a matrix An telling how
many walks of length n are there between each pair of nodes of the graph. Some extensions
and modi�cations has been made to this idea in order to increase the expressiveness and
ease the computation of the random walk kernel. In [17], the kernel is extended to graphs
with continuous labels and allows walks to be matched in terms of a similarity measure and
not just when they share the exact same label sequence. Also, a probability-based approach
is proposed in [89], where the probabilities of each label sequence to be generated by a
random walk constitute the implicit features of the hidden feature space in which graphs are
mapped. Outstanding works summarizing the main ideas and approaches of graphs kernels
are [57,172].

2.5 Graph Embeddings

As already stated in the introductory chapter of this thesis, graph embedding methodologies
aim at de�ning a set of numerical features by which every graph in an arbitrary domain of
graphs is assigned to a point in a vector space. Formally, a graph embedding is a mapping
ν : G ! Rn from the set of graphs into an n-dimensional Euclidean space. In this section,
we review the literature concerning graph embedding methodologies in order to picture the
general framework where our proposal belongs to.

The major work on graph embedding in vector spaces can be found in the �eld of spec-
tral graph theory [31]. This �eld tries to characterize the structure of graphs in terms of
the eigenvectors of matrices regarding their topology |for instance, the adjacency or the
Laplacian matrices|. For instance, in [110], the authors extract embedding features from
the leading eigenvectors |eigenmodes| of the adjacency matrix of graphs. In particular,
unary and binary features are computed in terms of, for example, the leading eigenvalues or
the eigenmode volumes and the entries of the intermode adjacency matrix or the intermode
distances. Features are arranged in the form of a feature vectors and principal component
analysis [82], independent component analysis [78] and multidimensionality scaling [37] are
applied for the purpose of graph clustering and graph visualization. Spectral features from
the Laplacian matrix are proposed in [179]. In particular, elementary symmetric polyno-
mials are sampled on the eigenmodes of the Laplacian matrix and thus node permutation
invariant features are obtained and arranged in the form of pattern vectors. A rather recent
work is the one in [130]. The Ihara zeta function |which characterizes graphs in terms of
their prime cycles| is used to extract informative features. In this work, the Ihara zeta
function is proved to be the quasi characteristic polynomial of the adjacency matrix of the
associated oriented line graph of a given graph, and the coe�cients of such polynomial are
used as features for the eventual embedding representation, which lead to remarkable clus-
tering results. Other interesting spectral approaches can be found in [28, 95, 153]. Spectral
approaches present some disadvantages. First of all, the eigen-decomposition of the related
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matrices is very sensitive to structural errors, leading to potential confusions in the embed-
ding representations. On top of that, since these approaches only account for the structure
of the graphs, they are restricted to work with node-unlabelled graphs.

Related to the spectral approaches, miscellaneous works are also available. For instance,
using di�erential geometry concepts, in [137] the relationship between the Laplace-Beltrami
operator and the graph Laplacian is used to embed the nodes of a graph into a Riemannian
manifold. Inspired in Isomap [162], in [181] geodesic distances between nodes of a given tree
are computed and multidimensionality scaling is applied in order to embed such nodes in a
vector space where spectral methods are eventually used.

A rather di�erent family of graph embedding approaches is the one based on (dis)similarity
measures of graphs. Given a dissimilarity matrix between every pair of graphs in a given set
of graphs, a naive approach for graph embedding would be to apply multidimensionality scal-
ing to this matrix in order to obtain those vectors that best reproduce the original distance
between them. Related to this, in [84], graph features are extracted out of a dissimilarity
matrix obtained by comparisons of node signatures of graphs [83]. The most relevant work
in this family is the one proposed in [134]. Based on the dissimilarity representation formal-
ism [124, 125], a graph is embedded into a vector space where each component is regarding
the (edit) distance to a given graph prototype. This methodology can be easily related to the
graph edit distance since bounds between the corresponding distances are straightforward
to derive. Moreover, it can handle arbitrary graphs since graph edit distance is able to do so
and it has been reported remarkable results on graph classi�cation and clustering problems.
Nevertheless, the fact that this methodology depends on a computationally hard task such
as the edit distance and that selecting the suitable set of prototypes is of major importance
makes the methodology an arduous task to be validated.

A �nal family of approaches |slightly related to the embedding methodology we pro-
pose in this thesis| is that of computing frequencies of substructures as features for the
eventual vectorial representation. For the problem of symbol recognition, [154,155] propose
to compute the frequency of certain substructures that are found in some training data.
Also, in the �eld of chemoinfomatics, the works [79, 96] assign to every molecule a feature
vector whose components are the frequencies of appearance of speci�c knowledge-dependent
substructures in the graph. The embedding methodology proposed in this theses is rather
more general and simpler than these ones since it does not impose any domain dependency
and it is based on counting substructures of order 1 and 2 |nodes and edges of the graphs|
based on the labelling information they store.

2.6 Discussion

Along this chapter we have visited several ways for the comparison of graph structures.
Classically, graphs are compared by seeking an assignment of nodes of one graph to node of
the other. Exact techniques aim at perfect match between nodes and edges of the involved
graphs thus restricting their use for real world problems. At most, only distance measures are
possible to de�ne by the use of the maximum common subgraph and the minimum common
supergraph. Error-tolerant graph matching methodologies allow node-to-node assignments
to cope with real world problems by lightening the labelling and topological constraints and
permitting non-isomorphic graphs to be deemed as highly similar. The main problem all
these approaches exhibit is |besides their restricted use as we have discussed| their com-
putational complexity, which is usually exponential in the number of nodes of the compared
graphs.

Modern ways to compare graphs are kernels and embeddings. They try to evaluate how
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similar graphs are by either implicitly mapping graphs into hidden vector spaces where the
scalar product can be regarded as a kernel function or by explicitly representing graphs as
feature vectors where comparisons can be made by the use of all statistical-based analysis
tools. We also observe some drawbacks in these approaches. As it happens in the graph
matching methodologies, some of them are still of high computational complexity |for in-
stance, computing the edit distance to a set of graph prototype| or they are restricted to be
use on rather simple graphs |eigen-decompositions do not care about labelling information
of nodes|. In the forthcoming chapters of this thesis we try to propose a graph embedding
methodology that is capable to process as much types of graphs as possible, and to do it in
a very e�cient and natural way.



Chapter 3

Embedding of Discretely Attributed
Graphs via Label Frequencies

In this chapter, we propose a set of graph features for discretely attributed graphs. They
constitute the embedding components of the proposed methodology and will inspire the
features for the continuously attributed case. We initially formalize their computation and
then relate these features to a speci�c form of graph edit distance that will reveal how well
the embedding methodology is able to reproduce the original distances between graphs in
the graph domain if certain conditions are ful�lled. We also discuss the metric that should
be use for these vectorial representations of graphs and, �nally, give some hints on how the
proposed features could be generalized to obtain more structurally global representations.

3.1 Embedding of Graphs via Label Frequencies

In this section, we start by outlining the main ideas underlying the proposed embedding
methodology and give a formal description of the computation of the corresponding embed-
ding features for discretely attributed graphs. In particular, we de�ne the embedding of a
graph into a vector space in terms of occurrences and co-occurrences of node labels.

3.1.1 Basic Procedure

Given a discretely attributed graph g = (V;E; �) without edge attributes and with node
alphabet LV = fl1; l2; : : : ; lng, a simple vectorial representation of g is, for instance, the one
that takes, as each component of the vector, the number of times each node label appears
in the graph, i.e.,

xg = (#(l1; g);#(l2; g); : : : ;#(ln; g)) ; (3.1)

where #(li; g) refers to the frequency that li happens to be the label of a node in graph g.
For example, both graphs g1 and g2 in Fig. 3.1 have node alphabets LV = fA;B;Cg and
they both have two labels A, one B and one C. Their respective vectorial representation in
this form would be xg1 = xg2 = (2; 1; 1).

In the simple example of Fig. 3.1, one gets the same vectorial representation from both
graphs, although the graphs di�er in their edge structure. Thus, more components should
be added to the vectors in order to make this representation more discriminative. This can
be achieved by considering not only the node labelling frequencies but also the frequencies
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Figure 3.1: Two non-isomorphic graphs with the same vectorial representation
counting node label appearances.

of the structural links between any two different nodes according to their corresponding
attributes. More precisely, the vector representation (3.1) is enriched by O(n2) components
of the form

#(li ↔ lj , g), (3.2)

counting how many edges between every pair of node labels occur in a given graph. With
this information at hand, the vectors xg1 and xg2 in the example above will no longer be
equal because the features #(A ↔ B, g) and #(A ↔ C, g) are, in fact, different. In the
following order,

xg = (#(A, g),#(B, g),#(C, g),

#(A ↔ A, g),#(A ↔ B, g),#(A ↔ C, g),

#(B ↔ B, g),#(B ↔ C, g),#(C ↔ C, g)), (3.3)

the vectors xg1 and xg2 become

xg1 = (2, 1, 1, 1, 2, 1, 0, 1, 0),

xg2 = (2, 1, 1, 1, 1, 2, 0, 1, 0).

Obviously, these two vectors are now a more proper representation of the graphs in Fig. 3.1.
With respect to the complexity of the construction of such a vector, it is worth mentioning

the fact that all features that are being considered can be obtained by just visiting the nodes
of the graph and their respective entries in the adjacency matrix. In fact, given a graph
with n nodes and m edges, the complexity of constructing such a vectorial representation
is only O(n + m). By contrast, other embedding methods look for paths or cycles in the
graphs with the same label sequence [79, 96] and these procedures — and others based on
finding substructures in the graphs— require for more expensive operations. In particular,
the embedding based on (3.1) and (3.2) can be seen as a simple particular case of them,
in which we look for paths of length 0 (labels of the nodes) and paths of length 1 (edges
between nodes with specific labels).

3.1.2 Adding Edge Attributes

The example given above is built on graphs whose edges are unattributed. Let us now
assume that graphs have discrete labels on their edges and that the edge alphabet is LE =
{ a, b, ..., z } . In this situation, we should take into account those edges that are attributed
with different labels but link nodes with the same attributes. In the example of Fig. 3.2,
both graphs have only two nodes and one edge. The topology and their node labels are the
same, but the edge labels differ.
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BA BA
a b

Figure 3.2: Two edges with different attributes joining equally labelled nodes.

Consequently, the relation #(A ↔ B, g) between nodes with labels A and B should be
redefined so as to distinguish between different labels of the corresponding edges. The edge
on the left graph of Fig. 3.2 will count as an appearance of the relation between nodes with
labels A and B, having edge label a, this is

# ([A ↔ B]a, g) ,

while the edge on the right graph will count for the relation between nodes with label A and
B, having edge label b, this is

# ([A ↔ B]b, g) .

3.1.3 Formal Definition

To formalize the distinction of edges with different labels, consider a set of graphs G =
{ g1, ..., gN } , with gi = (Vi, Ei, µ i, νi) being the ith graph in the set with labelling alphabet
LVi for the nodes and LEi for the edges. We assume that all graphs in G have the same
labelling alphabets, this is LVi = LVj and LEi = LEj for all i, j ∈{ 1, ...,N } . We do not
assume, however, that each node and edge label occurs in each graph. Let LV = { α1, ..., αp }
and LE = { ω 1, ..., ω q } be the common labelling alphabets.

For each graph g = (V,E, µ , ν)∈G, we define p unary features measuring the number of
times each label in LV appears in the graph, this is

Ui = #(α i, g) = | { v ∈V | α i = µ (v)} | . (3.4)

For the edges we will distinguish two different scenarios. We will construct features in
the case where edges of the graphs remain unattributed and features in the case of attributed
edges. Binary features for edge unattributed graphs are defined by

Bij = #(α i ↔ α j , g)

= | { e = (u, v)∈E | α i = µ (u)∧α j = µ (v)} | , (3.5)

and binary features for edge attributed graphs are defined by

Bkij = # ([α i ↔ α j ]ωk , g)

= | { e = (u, v)∈E | α i = µ (u)∧α j = µ (v)∧ω k = ν(e)} | . (3.6)

Note that, since graphs are undirected, in both cases the features are symmetric, this is,
Bij = Bji and Bkij = Bkji for all i, j ∈{ 1, ..., p } . We can then just consider half of them and
always assume that i ≤ j. This results in defining 1

2
· p · (p+ 1) binary features for the edge

unattributed case and 1
2
· q · p · (p+ 1) for the edge attributed one.

These two sets of edge features — based on whether we consider the attributes on edges
or not— give rise to two different vectorial representations of a given graph from G.
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De�nition 3.1 (Graph Embedding) Given a graph g 2 G, let 'n(g), '1
e(g) and '2

e(g)
be the vectors

'n(g) =
(
fUig1≤i≤p

)
; (3.7)

'1
e(g) =

(
fBijg1≤i≤j≤p

)
; (3.8)

'2
e(g) =

({
Bkij

}1≤k≤q

1≤i≤j≤p

)
: (3.9)

where Ui, Bij and Bkij are defined in Eqs. (3.4), (3.5) and (3.6), respectively. For the edge
unattributed case, the embedding of a graph g 2 G into a vector space is defined as the vector

'1(g) = ['n(g) '1
e(g) ]; (3.10)

and for the edge attributed case as

'2(g) = ['n(g) '2
e(g) ]: (3.11)

Clearly, the embedding features we have de�ned in Eqs. (3.4), (3.5) and (3.6) are quite
local regarding the topology of graphs. In particular, they describe the local structure
of every graph in terms of how frequent a simple substructure |a node with a certain
label or an edge with a given label between two given node labels| occurs in the graph.
Bringing together all these pieces of local information in the form of a large feature vector
will eventually lead to potentially good descriptors of the global structure of graphs.

3.1.4 Node-based vs Edge-based Features

In De�nition 4.1 we gather together in the same vectorial representation both the node-
based features (Eq. (3.4)) and the edge-based ones (Eqs.(3.5) or (3.6)). This is, both sets
of features are assumed to have the same impact in the embedding representation. Such
an assumption might be too hard in some cases. For instance |and as we will see later in
some situations|, the edge topology of certain graphs is less relevant than the node labelling
information, although the structural side of graphs still needs to be considered for a proper
embedding characterization.

This situation can be tackled using a weighting factor that balances the strength of node-
based features in the representation with respect to that of the edge-based ones. We thus
introduce the weighted version of the embedding methodology in the following de�nition.

De�nition 3.2 (Weighted Graph Embedding) Given a graph g 2 G, let 'n(g), '1
e(g)

and '2
e(g) be defined as in Eqs. (3.7), (3.8) and (3.9), respectively. For the edge unattributed

case, the weighted version of the embedding of a graph g 2 G into a vector space is defined
as the vector

'�1 (g) = [ (1� �) � 'n(g) � � '1
e(g) ]; (3.12)

and for the edge attributed case as

'�2 (g) = [ (1� �) � 'n(g) � � '2
e(g) ]: (3.13)

where � 2 [0; 1]. This is, we concatenate the node-based features and the edge-based features
with a weighting factor for each of the components.

With respect to the computation of the distance between two graphs g1 and g2 under
this weighted version of the embedding, let us note that we could either use any vectorial
distance between vectors '�1 (g1) and '�1 (g2) or, equivalently, we could �rst measure the same
vectorial distance between the corresponding parts, 'n(g1) with 'n(g2) and '1

e(g1) with
'1
e(g2) and �nally weight the resulting distances1. Formally, given d( � ; � ) any (component-

1Obviously, the same holds for ϕ2
e.
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D
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A B
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g1 g2

Figure 3.3: Two graphs for which the L1 distance on the node-based features is
equivalent to the edit distance when neither edge costs nor node substitutions are
considered.

wise) vectorial distance, we are saying that

D(g1; g2) = d('�1 (g1); '�1 (g2))

= (1� �) � d('n(g1); 'n(g2)) + � � d('1
e(g1); '1

e(g2)): (3.14)

3.2 On the Correlation with Edit Distance

A desired property of any generic graph embedding scheme is that it should be able to
reproduce the original distribution of patterns in the graph domain. In other words, distances
between objects in the graph domain should be preserved in the corresponding embedding
space. For instance, for the dissimilarity space embedding proposed in [134] it has been
shown that the graph edit distance between two graphs is an upper bound of the Euclidean
distance between the corresponding vectorial maps. Similarly, in [130], the Ihara coe�cients
have been experimentally shown to be a set of features with distances that correlate linearly
with the edit distance.

In this section we experimentally check how distances between the embedding represen-
tations de�ned in the previous sections are able to reproduce the corresponding distances
in the graph domain, in particular to those of graph edit distance. Our starting point is
motivated by the following observation. Using an edit cost function in the edit distance
computation that disregards both node substitutions |and force instead node insertions
and deletions| and assumes null cost for edge operations, the resulting edit path turns into
that of deleting nodes of the source graph that are not present in the target graph and
inserting nodes of the target graph that are not present in the source graph. This particular
edit path translates into checking the di�erence in the number of each node label between
the two graphs. This is, the L1 distance between vectors 'n(g1) and 'n(g2). We recall here
that for two vectors x; y 2 Rn, the L1 distance is de�ned as

dL1(x; y) =

n∑
i=1

jxi � yij: (3.15)

See, for example, the graphs in Fig. 3.3. Assuming the set of node labels is LV =
fA;B;C;Dg, we have the following node-based embedding features,

� 'n(g1) = (2; 1; 0; 2),

� 'n(g2) = (2; 1; 1; 0),

and thus the corresponding L1 distance is

� dL1('n(g1); 'n(g2)) = 0 + 0 + 1 + 2 = 3.
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Note that this would be the case of computing the distance between the whole embedding
representations (Eq. (3.14)) for the case of � = 0.

For the case of the edit distance, with an edit cost function as the one described above,
this is, assigning cost 1 to node insertions and deletions, a much higher cost to node sub-
stitutions and null cost to edge operations, we would have the following edit path and the
corresponding edit distance

Edit operation Cost

� Deletion of the central node with label D in g1 1
� Deletion of its adjacent edges 0
� Deletion of the top-right node with label D in g1 1
� Deletion of its adjacent edges 0
� Insertion of the top-right node with label C in g2 1
� Insertion of its adjacent edges 0

�! Total cost (edit distance) 3

We see how, under such an edit cost function, the edit distance is equivalent to the L1

distance of the node-based embedding part of the whole embedding representation. In the
following sections, we will see how the correlation of the embedding distances as a function of
� behaves with respect to a general formulation of this way of computing the edit distance,
where edge costs are also taken into account. We �rst formalize the edit cost function and
then present some results.

3.2.1 Edit Cost Function

As stated above, we want now to work with an edit cost function that penalizes substitu-
tions of nodes and edges with di�erent labels, forcing the (sub)optimal path found by the
edit distance computation to, �rst, delete the source node (or edge) and then insert the
target node (or edge). Formally, deleting or inserting a given node (or edge) has cost 1,
while substituting them has at least twice that cost if the corresponding labels are di�erent.
We assume null cost of substituting two nodes (or edges) with the same label. In order to
weight the node operations against those on the edges usually one introduces a parameter
� 2 [0; 1] and multiply the node costs by 1 � � and the edge ones by �. The resulting cost
function is summarized as follows:

� Edit costs for nodes:

c(u! �) = c(�! v) = 1� �

c(u! v) =

{
0; if �(u) = �(v)

2 � (1� �); otherwise

� Edit costs for edges:

c(e1 ! �) = c(�! e2) = �

c(e1 ! e2) =

{
0; if �(e1) = �(e2)

2 � �; otherwise

The motivational example introducing this section corresponds to the case where edge
costs were disregarded, this is, when � = 0. In particular, we have observed that whenever
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edge costs are disregarded (� = 0) in the edit distance computation and when only the node-
based embedding features are considered in the embedding distance computation (� = 0)
these two ways of computing the distance between graphs are equivalent. The following
section will check for the correlation of these two way of computing distances between graphs
as a function of � and �.

3.2.2 Distance Correlation

Given a pair of values (�; �), we compute the set of all pairwise graph distances X� and
Y� using parameter value � for the edit distances and parameter value � for the embedding
distance. For a fairer analysis, since graph edit distance takes edge labels into account, we
here use the '�2 embedding representation (Eq. (3.13)), where edge labels are also considered.
From these two sets of distance values, X� and Y�, we extract the correlation coe�cient by

C(�;�) =
cov(X�; Y�)

ϕXρϕYα
; (3.16)

where cov(X�; Y�) is the covariance between distributions X� and Y�, and ϕXρ and ϕYα are
the corresponding standard deviations. In particular, for the pair (�; �) = (0; 0) we know
the correlation coe�cient will be equal to 1 since in this case both ways of computing dis-
tances are equivalent. We compute the correlation coe�cient for all pairs (�; �) 2 [0; 1]2 and
plot the corresponding 3D functions and correlation maps. The desired e�ect is shown in
Fig. 3.4. Each axis would represent the weighting parameter of one of the ways of computing
the distances. These arti�cial plots show the ideal situation where similar values of both pa-
rameters would make the two sets of distances to behave exactly the same (high correlation)
and dissimilar values would make them behave di�erently (low correlation).
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Figure 3.4: Correlation maps (3D plot and projection) in an ideal situation where
the embedding distances would perfectly emulate the edit distances.

We use the four discretely attributed graph datasets described in Appendix A.1. In
particular, the two object datasets, the ALOI and OBDK ones, and the two molecule collec-
tions, the AIDS and MUTAG ones. We show the distance correlation results in Fig. 3.5. The
corresponding scatter plots between both sets of distance numbers are shown in Appendix B.

First of all, we note how values close to (�; �) = (0; 0) have, both in the object and
molecule datasets, a high correlation coe�cient. This con�rms that the embedding features
under the L1 metric replicate the edit distances when node information is considered as
more relevant than that of edges. If this is the case in the underlying application, we suggest



26 EMBEDDING OF DISCRETELY ATTRIBUTED GRAPHS

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.8

0.85

0.9

0.95

1

ρ
α

(a) ALOI, 3D

α

ρ

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(b) ALOI, Correlation map

0

0.5

1

0

0.5

1

0.85

0.9

0.95

1

ρα

(c) ODBK, 3D

α

ρ

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(d) ODBK, Correlation map

00.20.40.60.81

0

0.5

1

0.85

0.9

0.95

1

ρα

(e) AIDS, 3D

α

ρ

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.88

0.9

0.92

0.94

0.96

0.98

(f) AIDS, Correlation map

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ
α

(g) MUTAG, 3D

α

ρ

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

(h) MUTAG, Correlation map

Figure 3.5: Correlation values as a function of the weighting parameters.
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to use the attribute statistics based graph embedding rather than working with graph edit
distance because, �rst, the relative graph distribution is well maintained and, second, the
computational e�ciency is much higher.

In Fig. 3.5 we can also observe the biased e�ect of the correlation values with respect
to the ideal case (see Fig. 3.4). The explanation for this behavior is the fact that the edge-
based embedding features still keep quite some information of the node labels. In particular,
the co-occurrence of a certain pair of node labels at the end of an edge tells that these
particular node labels do appear in the graph. Therefore, it is clear that considering edge-
based features only, the embedding representation still keeps information about the node
attributes. Indeed, the correlation of the embedding distances for � = 1 is maximized by
values � ' 0:2, suggesting that 80% of the node information in the graph domain is still
considered for the embedding representation when only edge-based features are considered.

In Fig. 3.5, when both � and � tend to 1, low correlation values result. This might
be explained by the fact that the edit distance computation looks for an edit path that
completely disregards the information of the nodes. Thus, since edge-based embedding fea-
tures still keep some of this information, the behavior of distances in both domains becomes
di�erent.

Also worth noting is the shape of the correlation regions. This shape is more ellipse-like
in the molecule datasets than in the object datasets. This fact has an interpretation in terms
of how much important is the actual structural con�guration of graphs in each dataset. In
the molecule datasets edge information is more salient than in the object datasets. The
more weight we put on the edge-based features (� ! 1) the faster the correlation values
for � ' 0:2 descend, which means that edge-based features are less correlated with the node
information in the graph domain and thus we should put more attention on the edges.

3.2.3 Classi�ers Correlation

Another way to check how well the edit distances are emulated by the embedding features
is to see how a distance based classi�er performs. In particular, we use a kNN classi�er with
both ways of computing the distances between graphs and look for the di�erences in their
performances. In particular, we compare the performance of both classi�ers for all values
� = �. In Fig. 3.6 we show the corresponding classi�cation curves on the validation sets for
all values of � and � and the corresponding scatter plots of the accuracies of both classi�ers.
We also compute the correlation coe�cient for these scatter plots.

For the object datasets we observe how the edit distance tends to drop its performance
as we give more weight to the edge costs. This con�rms that in these datasets edge structure
is less important than in the molecule's case, where this e�ect is not found. Correspondingly,
the embedding curve in the object dataset does not drop that rapidly since, as we said before,
edge-based features keep some information of the node characteristics of graphs.

With respect to the performance of the classi�ers in the molecules dataset, we observe
how both curves obtain their higher results for intermediate values of the parameters, thus
con�rming that here edge have higher importance than in the objects case. It is also inter-
esting to see how the case � = 0 gives worse result than that of � = 1, but � = 0 better than
� = 1. Again, this is possible because edge-based embedding features are quite informative
with respect to the node labelling information while edit distances without any attention on
node labels provide less meaningful edit paths.

With regards to the correlation values of the classi�ers, we observe how the object
datasets obtain high correlation between classi�ers while the molecules encounter the con-
trary situation, very low values. This result is explained by the same reason we have been
discussing. The fact that the embedding features correlate with edit distance whenever the
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Figure 3.6: Classi�er performances. Edit distance as a function of �. L1 embedding
as a function of �. Scatter plots of the accuracies of all pairs � = �.
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node information of graphs is actually relevant makes the classi�ers perform in similar ways.
On the other hand, the molecules need some more attention on the edge structure and here
both the edit distance and the embedding features give di�erent versions of the actual graph
distributions in the corresponding domains.

In any case, we also observe how the embedding features are able to outperform the
results of the edit distances in these particular classi�cation setting. All in all, and beside
their higher e�ciency, whenever the node information is relevant for the problem under
study, we suggest the use of the attribute statistics based features since the distances between
them highly correlate with the edit distances and so a proper understanding of what goes
on in the graph domain can be given. Although distances do not correlate whenever edge
structure seems to be more relevant |and thus a similar understanding of the situation in
the graph domain cannot be extracted|, the embedding representation also provides better
classi�cation results that those obtained with the edit distance, and therefore its use is also
recommended.

3.2.4 Discussion

In this section we have shown how |under certain circumstances| the graph embedding
scheme we propose for discretely attributed graphs is able to reproduce the same graph dis-
tribution that is obtained under the graph edit distance. In particular, given a set of graphs
where the node labelling information is relevant for a proper characterization of them, we
have seen how the L1 distance between the proposed embedding features highly correlated
with the edit distances. On the other hand, in other situations where the topological in-
formation is rather more relevant, the embedding distance do not correlate with those of
the edit distance methodology, although the performance of a distance-based classi�er is
still better since the edge-based embedding feature still keep quite some information of the
labelling of nodes in the graphs.

On top of these things, the validation curves of the kNN classi�er presented in the
previous section reveal an interesting property about the proposed embedding methodology.
It is the fact that, in all cases, the optimal value of the parameter � is an intermediate
value in the range [0; 1]. It is closer to 0 for the object datasets (where node information
is much more relevant) and closer to 1 for the molecule collections (where the structure of
graphs demands more attention). From now on, in order to avoid the validation of this
parameter for every particular case, we will assume the same weight for both the node and
the edge-based features and keep on working with the unweighted version of the embedding
(De�nition 4.1). We should of course keep this in mind and investigate it in the future.

3.3 The Embedding Space under di�erent Metrics

In the previous section we have shown that it exists a relation between graph edit distance and
the L1 distance on the proposed embedding features. In particular, we have shown that this
vectorial metric on the embedding formulations is equivalent to the edit distance under some
conditions. Nevertheless, placing ourselves only in the embedding space without thinking
on the corresponding relation with the graph domain, this might not be the vectorial metric
that extracts the best out of the features we are exploring. We here propose to investigate
the e�ect of the vectorial metric used on the distribution of graphs under the embedding
methodology.

In particular, by using both versions of the unweighted embedding (the one that does
not consider edge labels and the one that does), we will evaluate the e�ect of the distance
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Figure 3.7: Study of the use of di�erent vectorial metrics in the embedding spaces.
kNN classi�er on the two di�erent version of the embedding of discretely attributed
graphs.

in the embedding features in terms of a distance-based classi�er such as the kNN. Besides
the L1 distance used above (Eq. (3.15)), we also use the Euclidean distance due to its wide
applicability in pattern recognition applications. The Euclidean or L2 distance is de�ned by

dL2(x; y) =

√√√√ n∑
i=1

(xi � yi)2: (3.17)

Apart from these two cases of the Lp metric, we will also test the embedding represen-
tations under a histogram-based distance. In fact, our representations are histograms over
node and edge labels and thus it seems reasonable to use such kind of metrics. In particular
we use the ε2 distance since it has been broadly used in pattern recognition and computer
vision problems [184] and, as we will see, it o�ers optimum results. It is de�ned as

dω2(x; y) =
1

2

n∑
i=1

(xi � yi)2

(xi + yi)
: (3.18)

As we just mentioned, using the embedded graphs under '1 and '2 representations, we
use a kNN classi�er with the three mentioned vectorial metrics on the validation sets of the
same four discrete datasets used along this chapter so far. The results of this experiment
are shown in Fig. 3.7.

As we have already announced, the ε2 distance provides the best results in most of the
cases. The fact that it is computing the sum of a relative proportion among components
makes it, in general, more adequate for the comparison between these type of vectors. In
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A ... ... B.....1 2 k-1 k

Figure 3.8: A path of length k between two nodes with labels A and B

particular, the ε2 distance is discounting the e�ect of small changes for large values of the
components. In other words, the di�erence between two components with values 1 and 10 is
the same as between components with values 1001 and 1010 but it seems clear that, under
these vectorial representations of graphs, the di�erence between the small values should have
a higher impact than that for larger ones, since it is more expected that two graphs having
values 1 and 10 in the same component are from di�erent categories than those having the
same absolute di�erence but much larger values. We thus may conclude that the embedding
spaces are non-Euclidean and that the Lp distances will not o�er, in general, as good results
as a histogram-based metric. We will in fact encounter this situation all along this thesis:
the ε2 distance is, from the set of metrics that have been experimentally tested, the one that
usually provides the best results, even with continuously attributed graphs or in clustering
scenarios.

As a collateral e�ect of the previous experiment, we also discover an interesting thing.
No matter the metrics used for comparing the vectorial representations of graphs, the version
where edge attributes are disregarded, '1, usually o�ers better results than the one where
edge attributes are certainly taken into account. A plausible explanation for this fact is that
the '2 representation breaks the topological structure of graphs into many small pieces that
eventually are not enough to represent the global structure of graphs. On its side, the '1

embedding does not consider edge labels, but it is less sparse than the other one and it can
thus provide a more strong representation of the graph structures. From now on, unless
otherwise indicated, we will discard edge attributes.

3.4 Higher order edge-based features

The edge-based features de�ned, used and discussed so far are rather local concerning the
graph topology. By gathering them together we obtain a rich representation able to cope with
the structure of graphs. In this section, we are concerned on �nding more structurally global
features that will eventually provide better vectorial representations of graphs. In particular
we discuss how the edge-based features can by understood as the simple particular case of
�nding paths of length 1 in the graphs, and thus we propose to generalize the edge-based
embedding features to be occurrence of paths of length k, for k � 1.

3.4.1 k-length Paths

The unweighted version of the adjacency matrix of a graph g is the matrix that tells whether
there exists an edge between a pair of nodes. This is, the matrix M 2 f0; 1gn×n is de�ned
in the following way:

Mij =

{
1; if (vi; vj) 2 E
0; otherwise.

(3.19)

Another point of view of this matrix is that it accounts for the number of paths of length 1
between every two nodes. Under this terminology, it is clear that the edge-based features for
the edge unattributed case de�ned in the previous sections are the number of paths of length
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Figure 3.9: kNN results on the sets of features for discretely attributed graphs as
a function of the length of paths considered in graphs.

1 that exist between two nodes with two speci�c labels. We now propose to use features that
account for longer paths, this is, to count the number of paths of length k that exist between
two nodes with labels, for example, A and B. Given a graph g = (V;E) with the nodes set
V = fv1; : : : ; vng, a path of length k in g is a set of k+ 1 consecutive nodes linked by edges.
In Fig. 3.8 we show an example of a path of length k between two nodes with labels A and
B.

An interesting property of the adjacency matrix is that, when it is exponentiated, it
generalizes the fact that it accounts for paths of length 1 and so Mk is the matrix regarding
the number of paths of length k that exists between every two nodes. We here use these new
form of the edge-based features. The computation of such a set of features is straightforward.
At least, as simple as it was in the previous case. The 1-length features (Eq. (3.5)) are built
by summing up those entries of the adjacency matrix M that correspond to the connection
between points with two certain labels. In this case, we use the matrix Mk instead.

Once these features are computed, the embedding representation we use is analogous to
the one proposed above. We concatenate the unary features counting occurrences of node
labels with the higher order edge-based features.

3.4.2 Experimentation

To evaluate the impact of the length of features considered in these higher order represen-
tations, we apply a kNN classi�ers on the validation sets of the discretely attributed graph
datasets. We use di�erent values for the parameter k. On top of that, and following the
same methodology as in Section 3.3, we use the same three vectorial metrics to assess the
performance of the classi�er, this is, we use the L1, L2 and ε2 distances. The results are
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shown in Fig. 3.9.
As already announced before, the ε2 distance is the one that performs best with respect

to the other considered distances. No matter the dataset that is used or even the length of
the paths considered for the features, the ε2 curves are in most cases above the other curves.

A deeper analysis of the results can be made by di�erentiating the object from the
molecule datasets. In the case of the object datasets, it turns out that the 1-length path
features always provide better results than longer paths. This is not happening for the
molecules datasets, where 2-length (AIDS) or 3-length (MUTAG) features o�er better results
than the original ones. This can be explained by the fact that object datasets are more
populated with edges than molecule datasets (see Tables A.1 and A.2) and thus computing
longer path features generates much more noise in the object datasets than in the molecule
cases.

In fact, these sets of features we are considering in this section still need to be re�ned
quite in depth. Several situations might occur where, for instance, an edge is traversed
several times in the same path and thus it creates redundant information that weakens the
�nal representation. Self-loops, or going back and forth using the same nodes and edges
should be avoided in order to properly represent graphs under this setting.

Results are not signi�cantly better than the simple 1-length case. Nevertheless, we have
shown a way that is able to create a population of vectors for each graph that might be used
to represent both local (shorter paths) and global (longer paths) structural information.
We will no longer use this representation except in Chapter 6, where such a diversity of
representations will be exploited in order to build several classi�ers of graphs and combine
them in a multiple classi�ers framework in order to boost the performance of the classi�cation
strategy.





Chapter 4

Statistics on Node Label
Representatives for the Embedding
of Continuously Attributed Graphs

The transition of the embedding methodology from discretely attributed graphs to contin-
uously attributed graphs is covered in this chapter. Continuous attributes of nodes are
discretized by assigning to a set of representatives. The embedding is thus de�ned by statis-
tics on these representatives. The intuition behind this procedure is to assume a topological
model for each graph category. Then, observed graphs would be variations of these models.
Therefore, we �rst undo possible deformations from such models by the assignment step
and then apply the embedding procedure described in the previous chapter for discretely
attributed graphs.

We initially de�ne the embedding for the continuous case. We explore two di�erent ways
of performing the transition to the discrete domain, namely, the hard and the fuzzy versions
of the embedding. Then, we evaluate the suitability of di�erent metrics in the vector space
for comparing the vector representations of graphs. We �nally discuss the e�ect of the set
of representatives in a classi�cation scenario.

4.1 From discrete to continuous: node attribute rep-
resentatives

In this chapter, we consider the case of graphs where the set of node labels is LV = Rd
and edges remain unattributed. The proposed methodology is based on the idea that the
more similar two node labels are the more likely they should be considered the same and
thus the more they should count for the same feature. In other words, the nodes of the
graphs can be assigned to some representatives of the node labels in terms of the Euclidean
distance, and then only statistics of these representatives are counted as features in the
vectorial representation of the graph. As representatives of a set we choose those points
|not necessarily in the set| that best represent the whole set, just as the classical cluster
analysis techniques do.

Based on this idea, we present two versions of the node-based and edge-based features
for continuously attributed graphs. The �rst one is called the hard version and is directly

35
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related to the discretely attributed graph versions. In some sense, continuous node labels
are just substituted with a discrete value. The second version is more able to cope with
deformations in the graph models and is called fuzzy version. Instead of assigning each node
label to a discrete value, nodes are distributed to all representatives with a certain degree of
probability for each of them.

4.1.1 Hard version

We now formally describe the new version of the graph features and the corresponding
embedding representation. Suppose we are given a set of N graphs G = fg1; : : : ; gNg. Each
of these graphs has nodes with continuous attributes. This is, for all i 2 f1; : : : ; Ng, the set
of nodes attributes is LVi = Rd. Let P ∧ Rd be the set of all node labels in all the graphs of
G. Furthermore, let W = fw1; : : : ; wng be a set of n representatives of all vectors in P. In
Section 4.2 we describe di�erent approaches for de�ning such sets of vectors. Elements inW
do not necessarily belong to P. The node to representative map is a function assigning every
node of a given graph to the vector in the representative set which is, among all elements in
the set of representatives, the closest to the label of the node. Formally, for every graph, we
have

�h : V �!W
v 7�! �h(v) = argmin

wi∈W
k �(v)� wi k2 (4.1)

where k � k2 stands for the Euclidean metric.
Using this function, we can rede�ne the concept of frequency of a speci�c label used

in the previous chapter by checking how many nodes have been assigned to this speci�c
label. This is, given a graph g = (V;E; �) and a representative set W, the frequency of a
representative wi 2 W is

Ui = #(wi; g) = j fv 2 V jwi = �h(v)g j: (4.2)

Similarly, the frequency of a speci�c relation between two representatives is de�ned as

Bij = #(wi $ wj ; g)

= j f(u; v) 2 E jwi = �h(u) ^ wj = �h(v)g j: (4.3)

It is important to notice the symmetry of the features #(wi $ wj ; g) as long as the involved
graph g is undirected. Because of this symmetry, we will consider each such feature only
once instead of counting both #(wi $ wj ; g) and #(wj $ wi; g).

De�nition 4.1 (Graph Embedding) Let G be a set of graphs as defined above. Given a
set of node representatives W = fw1; : : : ; wng, we define the embedding of a graph g into a
vector space as the vector

'W(g) = (U1; : : : ; Un; B11; : : : ; Bij ; : : : ; Bnn); (4.4)

where 1 � i � j � n, Ui = #(wi; g) and Bij = #(wi $ wj ; g).

Let us illustrate this de�nition with an example. In Fig. 4.1, all the nodes of the four
depicted graphs in the top row have attribute values that are close to either one of the
following points: W = fw1; w2; w3; w4g = f(0; 0); (0; 1); (1; 0); (1; 1)g. These four points are
a natural set of representatives for the whole set of node labels of the four di�erent graphs. By
using this set of representatives, we would have four di�erent node labels and, for example,
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Figure 4.1: Four graphs whose node attributes from R2 are all around one of the four
representatives { (0, 0), (0, 1), (1, 0), (1, 1) } , and their corresponding discrete versions
after assigning each node to an element in the set of representatives.

the node of the leftmost graph with label (0, 0.8), will count as an appearance of its closest
representative w2 = (0, 1). Regarding the relations between labels, the Bij features, the edge
in the second graph connecting the nodes with labels (0.2, 1.1) and (0.9, 0), would count as
an appearance of the relation between the representatives w2 = (0, 1) and w3 = (1, 0), which
are the corresponding nearest representatives to the node attributes. In particular, if g1

is the leftmost graph and g4 the rightmost one, given W their embedding representations
assuming the order ϕW(g) = (U1, U2, U3, U4, B11, B12, B13, B14, B22, B23, B24, B33, B34, B44)
are

• ϕW(g1) = (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0)

• ϕW(g2) = (1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0)

• ϕW(g3) = (1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0)

• ϕW(g4) = (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

4.1.2 The fuzzy version

In noisy situations, it might be the case that a node label is between two representatives,
and there is no clear rule telling us to which representative the node should be assigned.
Also, a node label could be far away from all representatives such that no element of W is
actually a proper representative of the node. These are typical situations where a soft rather
than a hard assignment can be beneficial. Fuzzy clustering assigns to every node a certain
degree of belongingness to every cluster, rather than saying that a node is assigned to just
one representative [45,166]. In this work, we also address this situation and propose a fuzzy
version of the graph vectorization procedure.

While Definition 4.1 is still our basic embedding approach, the features Uk and Uij will
be redefined. Eq. (4.1) is no longer usable for the assignment of nodes to representatives and
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every node will be given a certain degree of assignment to every representative. Formally,
we de�ne the function

�s : V �! S+
n ∧ Rn

v 7�! �s(v) = (p1(v); : : : ; pn(v)); (4.5)

where pi(v) = P (v � wi) is the probability of the node v being assigned to the representative
wi and S+

n is the positive orthant of the L1-hypersphere in Rn. In other words, we put these
degrees of belongingness under a probability framework in order to ease the methodology,
while requiring that pi(v) � 0 and

∑n
i=1 pi(v) = 1.

In this situation, the appearance frequency of a certain representative, Eq. (4.2), has
to be reformulated in terms of the probabilities of belongingness for all nodes in the graph.
This leads to

Ui = #(wi; g) =
∑
v∈V

pi(v): (4.6)

When there is an edge between two nodes in the graph, (u; v) 2 E, the fact that nodes
are assigned to representatives according to Eq. (4.5), makes it unclear how one should
compute the features Uij . Assume we have available the corresponding fuzzy assignment
representations of the source and the target nodes:

�s(u) = (p1(u); : : : ; pn(u));

�s(v) = (p1(v); : : : ; pn(v)):

From these two vectors of probabilities we need to �nd out how much the edge (u; v) is
contributing to the relation between two representative points. We handle this situation
using two di�erent approaches.

1) The �rst one is the naive and conservative approach in which the edge only contributes
to the relations of the representatives with maximum probability. This is, if wt is the
representative to which the node u has maximum probability of belongingness and ws the
corresponding one for the node v, then the edge (u; v) will only count as a relevant relation
between the representatives wt and ws. Formally,

Bij = #(wi $ wj ; g) =
∑

(u;v)∈E

�ij(u; v); (4.7)

where

�ij(u; v) =


1; if wi = argmax

wk∈W
pk(u)

and wj = argmax
wk∈W

pk(v);

0; otherwise.

(4.8)

This procedure for constructing the Bij features will be referred to the max assignment, since
we only take into account the edge relation from the most (maximum) probable representative
of one node to the most (maximum) probable representative of the other one.

2) The second approach will keep considering all possible assignments from one node to
the other, and thus, and edge (u; v) 2 E will contribute to all relations between any two
representatives. In particular, we call this approach the all assignment method since all
probabilities are taken into account. In particular, we de�ne

Bij = #(wi $ wj ; g)

=
∑

(u;v)∈E

pi(u)pj(v) + pj(u)pi(v): (4.9)
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The intuition behind (4.9) is based on walks of length 1 on the graph. The edge (u; v) 2 E
of a graph g will contribute to the relation wi $ wj the amount of probability of travelling
from the part of u assigned to wi to the part of v assigned to wj , this is, pi(u)pj(v). Then,
since we work with undirected graphs, we should also consider the path back and aggregate
the probability of travelling from the part of v which is assigned to wi to the part of u
assigned to wj , i.e., pj(u)pi(v).

4.1.3 Discussion

As already stated above, the main idea behind this methodology is that similar nodes will
count for the same feature with similar weights. We assume there is an intrinsic topological
model for every category in a given database of graphs and by this approach we believe that
we can extrapolate such model, via undoing possible deformations on the di�erent instances
of a certain class.

This way, it seems reasonable that the methodology is going to perform well on graphs
whose continuous attributes of the nodes describe positions on the plane. Indeed, as we will
see and discuss later (Section 4.4), the results con�rm this hypothesis since we work on graphs
of this kind and the results are quite satisfactory. Moreover, this point is reinforced by the
fact that in those cases where we have severe deformations, the proposed methodology does
not perform properly, and this is because such high degree of distortion makes it impossible
to discover the intrinsic model for each class. On top of this, we also believe that the
proposed methodology will properly discriminate among graphs with higher dimensional
node attributes, and not only on those cases where these attributes are representing spatial
positions of nodes. To evaluate this scenario and con�rm our hypothesis, in Section 7.3 we
study graphs whose node attributes are RGB values of segmented regions of object images,
for which we reformulate the embedding strategy in terms of a domain-dependent selection
of representatives.

Finally, let us mention the fact that for the continuously attributed graphs we have
not proposed features for graphs with edge attributes. The discretization process makes it
uncomfortable to de�ne such kind of features. A possible approach to this situation could
be also to discretize the edge labels and then perform similarly as we have done for the
discrete attributed graphs where edges with di�erent labels are di�erentiated in separated
features. Although feasible, we understand these features would experience a similar behavior
as the corresponding features for discrete attributed graphs. The structural information
would be split into too many small pieces and will eventually lead to sparse and, thus weak,
representations. We leave such a study for future research.

4.2 Selection of representatives

Selecting a proper set of node attribute representatives for the set of all graphs in a given
dataset is a crucial issue in the proposed embedding methodology. In this section we explore
four di�erent approaches of classical cluster analysis in order to select representatives. Two
of the considered methods are hard methods and two are soft (fuzzy) ones. For the rest of
this section, let P ∧ Rd be a set of m node labels from which we want to extract a set W of
n representatives.

4.2.1 Spanning prototypes

The �rst representative (hard) selector considered in this work is an approach that tries to
�nd points as much uniformly distributed as possible within the whole range of points at
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hand [125]. The algorithm starts by selecting the point that minimizes the sum of distances
to all the other points (called the median vector) and then, it keeps adding points to the
representative set by iteratively selecting the point which is furthest away |the one maxi-
mizing the sum of distances| to the already selected set of representatives. The algorithm
stops when a prede�ned number of points is obtained.

The algorithm is capable to �nd a set of representative vectors W that span the whole
range of points in P as uniformly as possible.

4.2.2 kMeans algorithm

The second hard selector for the set of representatives is the very well-known kMeans clus-
tering algorithm [45]. Briey, this algorithm starts by initializing the set of cluster centres
W with some random points and then assign each point in P to its closest centre. The setW
is updated as the mean of all points assigned to the same cluster. These steps run iteratively
until there are no changes in the set W.

A common problem one encounters using this algorithm is the uncertainty in the results
due to the random initialization of the setW. A possible solution is to repeat the experiment
a certain number of times and �nally average the results. In our case, though, in order to
avoid such an uncertainty, the kMeans algorithm is always deterministically initialized using
the spanning prototypes described in the previous section.

4.2.3 Fuzzy kMeans

The next approach for the selection of representatives is the Fuzzy kMeans algorithm [45].
Its main idea is to assign to every point x 2 P a degree of belongingness to each cluster
center in W, pi(x). This degree of belongingness is set to be inversely proportional to the
distance between x and the cluster center. This leads to

pi(x) = � �
(

1

k x� wi k2

)s
; (4.10)

where � is a constant assuring that
∑n
i=1 pi(x) = 1 and s is a parameter that controls the

amount of fuzzyness given to the assignment. The larger s is, the more weight is given to
points close to the centres and thus the more similar is this method to its respective hard
version. In our experiments we use s = 2 since it o�ers a fair compromise between the hard
and the fuzzy versions of kMeans.

The algorithm is basically the same as kMeans, although the assignment from points to
clusters is made by means of Eq. (4.10), and the update of the clusters at each iteration is
done by a weighted mean of all points (weighted by their degree of belongingness to each
speci�c cluster). To avoid uncertainty, we also initialize the algorithm using the spanning
prototypes.

4.2.4 Mixture of Gaussians

For the last representative set selector, we make use of a Gaussian Mixture Model (GMM)
or Mixtures of Gaussians [45]. It is an important probabilistic framework in which all the
data are assumed to be generated by a model in which several probability distributions are
involved. Technically, the set of points in P is assumed to be generated by

f(x) =

n∑
i=1

�iN (x j�i;�i); (4.11)



4.2. Selection of representatives 41

which is a linear mixture of n Gaussian densities N ( � j�k;�k), where �k is the mean vector
and �k the covariance matrix. The parameters �k are usually called mixing coe�cients
and can be understood as probability weights for the mixture components. The estimation
of the involved parameters (mixing coe�cients, means and covariances) is usually done by
maximization of the log-likelihood of the mixture with respect to the parameters. In our
experiments, this estimation has been carried out by means of the Expectation-Maximization
(EM) algorithm [40,61].

Note that in this scenario the set of representatives W is no longer a set of points but a
set of probability (Gaussian) densities. We can thus assign the degree of membership of a
point x to a certain representative wi = N ( � j�i;�i) by the probability

pi(x) = � � N (x j�i;�i); (4.12)

where � will be again a constant making
∑n
i=1 pi(x) = 1.

For the initialization of the parameters in the EM algorithm we use the kMeans results
as described above. For a Gaussian N ( � j�i;�i), its mean �i is initialized as the i-th kMeans
cluster centre, the mixing coe�cient �i is the amount of point mass assigned to this cluster
and the covariance �i is the covariance matrix of the data that were assigned to the i-th
kMeans cluster.

4.2.5 Summary

We here briey summarize the di�erent con�gurations of the presented graph embedding
methodology. In the hard case of the representative set construction we have two con�gura-
tions corresponding to the two methods for selecting representatives:

� Spanning prototypes (hard assignment)

� kMeans (hard assignment)

For the soft version of the embedding we have two ways of constructing the representative
set |and thus to assign nodes to representatives|, and also two ways of constructing the
edge-based features Bij . This leads to another four embedding con�gurations:

� Fuzzy kMeans + Soft max edge assignment

� Fuzzy kMeans + Soft all edge assignment

� Mixture of Gaussians + Soft max edge assignment

� Mixture of Gaussians + Soft all edge assignment

In the experimental part of this chapter (see Section 4.4), we will test these six embedding
con�gurations on di�erent datasets to get more insight into the strength of the proposed
methodology.

These formulations of the proposed embedding methodologies are generic enough to deal
with graphs whose node attributes are from Rd. In any case, there might be some situations
where it is preferable to put attention on the semantics of the node labels and try to select
representatives so that this semantics is exploited. In particular, in the experimental part of
this thesis (Chapter 7), we will work with graphs whose node attributes are RGB values of
segmented regions of object images and thus the selection of representatives is going to be
based on a color-dependent strategy.
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4.3 The embedding space under di�erent metrics

As in the case of discretely attributed graphs, we can potentially use several metrics to
compare the vectors obtained after embedding (Section 3.3). Thus, in this section we analyse
which is the vectorial metric that is capable to extract the best out of the di�erent embedding
methodologies that we have proposed. We use the same three vectorial distances as in the
previous chapter. In particular, the L1, L2 and ε2 distances,

dL1(x; y) =

n∑
i=1

jxi � yij; (4.13)

dL2(x; y) =

√√√√ n∑
i=1

(xi � yi)2; (4.14)

dω2(x; y) =
1

2

n∑
i=1

(xi � yi)2

(xi + yi)
: (4.15)

Let us make here a brief comment about the relation of graph edit distance with the L1

distances on the embedded continuously attributed graphs. In this case we have not perform
analogous experiments to those in Section 3.2 but we can say that, although some correlation
might still exists, the assignment of node to representatives will create quite some confusion
and thus the relations will not be that clear. A deeper analysis of this scenario is left for
future investigation.

Back to the metrics, the criterion for their optimality will be again a kNN classi�er on the
validation sets of di�erent databases. We pick a simple classi�er like kNN for two reasons:
the �rst one is that it really does not need a complex parameter tuning step (besides the
value of the number of neighbours), and the second one is that this classi�er already gives a
good and reliable measure of how the vectors are class-wise distributed in the input space.
In this section we use the Digits dataset described in Appendix A, Section A.2.1.

For the six con�gurations of the embedding methodology summarized in Section 4.2.5,
we build up the vectorial representations of graphs for sets of representatives of sizes from 10
to 100 elements, in steps of 10. In Fig. 4.2 we show the results of the classi�er as a function
of the size of the set of representatives for the Digits dataset. Moreover, in Appendix C, the
corresponding �gures for the rest of the datasets described in Section A.2.1 are shown.

Although in the hard con�gurations the di�erence is not that clear, the ε2 distance is
usually the one that obtains a better result with respect to the other vectorial distances.
Specially in the soft con�gurations with the all edge assignment, which are |as deeply
discussed in the next section| the con�gurations that o�er the best results (note the ranges
of the �gures are all the same). This behavior is generally observed for the other datasets
we have considered (see �gures in Appendix C), and thus, unless stated otherwise, we will
be working with the ε2 distance from now on.

4.4 The e�ect of the representative set

As it can already be seen in the �gures describing the distance impact on the di�erent embed-
ding representations, the results clearly depend on both the way the sets of representatives
are constructed and how many elements are considered in these sets. In this section, we
validate both things.
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(c) Fuzzy kMeans - max
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(d) Fuzzy kMeans - all
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(e) Mixture of Gaussians - max
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(f) Mixture of Gaussians - all

Figure 4.2: Study of the e�ect of distances for the Digits database using a kNN
classi�er.

4.4.1 Experimental results

We reproduce the same experiment of the previous section but we compare the di�erent
embedding con�gurations between each other. In particular, we construct all vectors with
the 6 di�erent con�gurations of the embedding using a number of representatives that ranges
from 5 to 100, in steps of 5. This assures that a rather large interval of essentially di�erent
representations of the graphs is explored. After the vectors are constructed, we classify them
using a kNN classi�er. Together with the kNN classi�er, we use the ε2 distance to measure
graph dissimilarities since, as discussed above, is the one that has experimentally shown the
best results. Figs. 4.3 and 4.4 show the results on the validation sets for all the datasets
described in Section A.2.1.

Let us �rst discuss the case of the Letter databases. There is a clear di�erence in the
results between the low distortion case and the medium and high ones. The more distorted
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(b) Letter LOW; soft configurations
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(c) Letter MEDIUM; hard configurations
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(d) Letter MEDIUM; soft configurations
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(e) Letter HIGH; hard configurations
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(f) Letter HIGH; soft configurations

Figure 4.3: Validation results for the di�erent databases of letters. Accuracy rates
of a kNN classi�er in conjunction with a ε2 distance on the validation set. The
horizontal axis shows di�erent choices of the size of the representative set. The hard
con�gurations of the proposed embedding are depicted in the �gures on the left. Soft
con�gurations are shown on the right column of �gures.

the graphs are, the lower the results are. We discuss these cases separately.

With respect to the low distorted database, we can see that the kMeans con�guration
adapts more properly to the node distribution than the spanning prototypes method, and
thus the accuracy rates are higher (Fig. 4.3(a)). Nevertheless, the recognition rate tends to
decrease as the size of the representative set is increasing, which is explained by the fact
that the more representatives are considered, the more sparse the resulting vectors become,
making the classi�er not able any more to distinguish among the di�erent classes. The soft
versions (Fig. 4.3(b)) perform generally better than the hard ones and the fuzzi�cation makes
the results more stable as the size of the representative set increases. It is also interesting to
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(a) GREC; hard configurations
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(b) GREC; soft configurations
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(c) Digits; hard configurations
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(d) Digits; soft configurations
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(e) Fingerprints; hard configurations
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(f) Fingerprints; soft configurations
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(g) COIL; hard configurations
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(h) COIL; soft configurations

Figure 4.4: Validation results for the GREC, Digits, Fingerprints and COIL
databases. Accuracy rates of a kNN classi�er in conjunction with a ε2 distance
on the validation set. The horizontal axis shows di�erent choices of the size of the
representative set. The hard con�gurations of the proposed embedding are depicted
in the �gures on the left. Soft con�gurations are shown on the right column of �gures.
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note that the all con�gurations are more capable than the max ones.

In cases with medium and high distortion (Figs. 4.3(c)-4.3(f)), the input graphs are so
badly distorted that there is no actual way to properly reect the discriminative features
of every class in the vectorial representation. Since the nodes of the graph are not in their
expected location, the representatives they are assigned to are not the ones they should be,
which results in highly distorted vectorial features. This fact even leads to accuracy rates as
low as 20% for large representative sets, while for small ones the results are still acceptable
but de�nitively not good. This behaviour is evident for the hard and the soft versions of our
embedding procedure.

Regarding the GREC dataset for the hard con�gurations (Fig. 4.4(a)), the results of
the kMeans selector are again better than the spanning prototypes ones, which makes sense
since kMeans adapts in a more accurate manner to the inherent clusters of the label space.
Here again, the soft versions (Fig. 4.4(b)) obtain better results than the hard con�gurations,
supporting the idea of a better adaptation to the possible deformations in the represented
objects. Concerning the di�erences between the soft assignments, both the fuzzy kMeans
and the mixture of Gaussians methods obtain better results for the all approach than for
the max one.

The results for the Digits and the Fingerprint datasets obey similar behaviours and thus
can be discussed together. In these two datasets of graphs a peculiar phenomenon happens.
Here, the spanning prototypes usually perform equally or even better than the kMeans
con�gurations (Figs. 4.4(c) and 4.4(e)). The reason for this fact is the inherent distribution
of the nodes in the label space. These are uniformly distributed among their range just like a
regular grid in the space, preventing kMeans from properly discovering good representatives.
In any case, small sets of representatives perform better since global relations in the nodes of
the involved graphs are more accurate to describe their shape (and thus their class). Among
the soft versions (Figs. 4.4(d) and 4.4(f)), the fuzzy kMeans with the all edge assignment
stands out with respect to the other soft versions, since this con�guration is capable to
perform in a stable manner along the increasing sets of representatives.

Finally, the COIL database shows no relevant di�erences between the two hard versions
of the proposed embedding (Fig. 4.4(g)) but a performance worth mentioning in the case
of the all edge assignment con�gurations. This behaviour is explained by the nature of
the database itself. The Harris salient point detector is quite unstable and, moreover, the
images in the COIL database are turning around. By fuzzi�ng the assignment of nodes
(fuzzy kMeans and GMM) and the assignment of edges (all), the proposed methodology is
able to adapt to the changes that two similar images may show in their respective graph
representations.

4.4.2 Discussion

After the previous experiments and discussions, we should recap the fact there is no clear
a priori way to select a set of representatives of a certain size in the general case. On the
contrary, such a parameter should be selected and validated for speci�c dataset under study.
Nevertheless, di�erent sizes of the representative sets may lead to semantically di�erent
vectorial representations of graphs, and such a situation should be explored and exploited.
Chapter 6 could be a way to approach it.

In any case, we may say that the fuzzy kMeans version of the set of representatives
together with the all edge assignment methodology is the con�guration that provides a most
robust vectorial representation of graphs. It clearly outperforms the other ones and is the
one that presents a more stable behavior along the curves, this is, when varying the sizes of
the sets of representatives. From now on, in the next two chapters of this thesis, this will be
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the only embedding approach that will be considered. Nevertheless, in Chapter 7, we will
revisit these other con�gurations to check their performance on the test sets of the databases
and compare them with other external reference systems.





Chapter 5

Feature Selection

The steps that de�ne the embedding that we have de�ned in the previous chapters provide
us with representations of graphs that might su�er from some problems. First, since the
selection of representatives is an unsupervised task, we do not have any control on these
elements. We might be selecting irrelevant points in the set of representatives for the task of
graph representation. Moreover, the number of edge based features is quadratic in the size
of the representative set, leading to high dimensional vectors for large sets of representatives.
This may weaken e�cient operations between the vectorial representations of graphs.

Another consequence of the quadratic number of edge based features could be some
sparsity in the vectorial representations. The selection of representatives might come up
with some elements that are barely represented in the graphs under consideration, and also,
to representatives the relations between which are not present in the vectors. These situations
would lead to too many zero-valued features that would impoverish the �nal representation.
As a �nal concern, we could also wonder how much correlation is there between the node-
based and edge-based features extracted from a speci�c element in the representative set.
Correlation between features is not desired and we ought to tackle this scenario. This chapter
covers these situations by di�erent feature selection approaches.

5.1 Feature selection

Feature selection algorithms try to select a proper set of features such that the performance of
a certain learning algorithm is improved [64]. A broad taxonomy of these methods is based on
two families, namely, ranking methodologies and variance-based algorithms. The �rst group,
usually called search strategies, are those methods that assign a weight to every feature in
its original form and search for the most relevant ones in terms of these weights. Search
strategies can be split into forward selection and backward elimination. The former starts
with an empty set and iteratively adds important features, while the later keeps eliminating
useless features from the set of all features. Also floating search strategies have been proposed
that allow to variably add relevant and remove useless features [126]. The second category
of feature selection methods is formed by those methods that initially transform the original
features in such a way that the variance within components is kept and then rank the
resulting features by means of variance measurements coming from the transformation itself.

In order to detect the most relevant features from the proposed embedding representa-
tions of graphs, we will use di�erent kinds of feature selection methods. From the search

49
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strategies family, we select three algorithms that are well established and that have proved
their good performance on di�erent scenarios. The �rst one is based on the ability to dis-
criminate among classes in terms of relative distances between feature values, the second
one on entropy measurements and the third one is based on the SVM classi�er. From the
variance-based methods, we use PCA and its non-linear generalization Kernel PCA.

5.1.1 Ranking methods

Ranking methods are based on a ranking map that gives to every feature at hand a certain
value that is eventually used to rank it with respect to the others. Based on di�erent ranking
strategies we have di�erent ranking methods.

Relief

The Relief algorithm is a classical ranking method that is based on the ability of features to
discriminate between di�erent classes [91]. For every instance of a given feature, the closest
value among elements of the same class (Near Hit) and the closest value among elements of
other classes (Near Miss) are found. Then a weight is given to every feature in terms of the
distances of every sample to the Near Hit and the Near Miss. This is, given the set S of m
samples of feature i, we compute the rank value as

!i =
1

m

∑
x∈S

jx� Z−x j � jx� Z+
x j; (5.1)

where Z+
x and Z−x are the near hit and the near miss of the sample x, respectively. It is

clear that a good feature should give low values to the distances between each sample and
its near hit and high values to the distances to the near miss. Thus, a good feature should
have a high ranking value !i.

Mutual Information

Mutual information is a measure of dependency between random variables. Let X and Y be
two random variables. Their mutual information I(X;Y ) is de�ned by

I(X;Y ) =

∫
Y

∫
X

p(x; y) log

(
p(x; y)

p(x)p(y)

)
dxdy; (5.2)

where p(x; y), p(x) and p(y) are the joint and the marginal probability density functions,
respectively. Being the features and the classes the random variables, one is capable to
measure how dependent is a feature for a given class. Those feature with higher relevance
to the existing classes are weighted higher and thus selected for further use.

Our data needs for a discretization of the feature values so that integrals can be reduced to
sums. To discretize features, we make use of the multi-interval discretization of continuous-
valued attributes algorithm described in [49]. This particular approach is iteratively based
on class information entropies between sets of binary partitions of the whole range of feature
values. Formally, features are sorted and all possible binary cuts of the range of values are
evaluated in terms of the class entropy that these cuts generate. The cut that provides the
minimum class information entropy is chosen and the process is repeated for the subsequent
subsets of feature values.
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Once discretized, if we consider X(i) the set of discrete values that the feature xi can
take, the mutual information between xi and the set of class labels 
 reduces to

I(xi;
) =
∑
!∈Ω

∑
xi∈X(i)

p(xi; !) log

(
p(xi; !)

p(xi)p(!)

)
; (5.3)

where both the joint and marginal density functions can be estimated by counting the in-
stances in the training set. Finally, features are ranked based on their mutual information
in a forward selection fashion.

SVM based ranking

The last ranking method we will use in our experimental evaluation was originally proposed
in [63] and is based on the support vector machine classi�er (SVM). An SVM classi�er seeks
for a hyperplane f(x) = hw; xi+b, where w 2 Rn and b 2 R, that best separates the involved
classes. The components of the vector w can be used as feature rankings since they weight
how much each of the components (features) inuences the �nal decision boundary. The
idea is thus to consider those features with high values in the vector w as relevant features.

5.1.2 PCA-based methods

The other category of feature selection methods considered in this work does not rank the
original features but, instead, a transformation of those.

Principal Component Analysis

Given a set of N feature vectors x1; : : : ; xN 2 Rn, principal component analysis (PCA) �nds
a linear transformation of the data yi = Axi 2 Rm so that linear correlation among the
new features is reduced and the new m � n features capture most of the variance. Such
transformation is obtained by an orthogonal mapping where each column of the matrix A
is an eigenvector of the covariance matrix of the centered original data. These eigenvectors
v1; : : : ; vn are called principal components and are ordered from greater to smaller variance.
By taking m � n principal components, the dimensions are reduced and most of the variance
is being kept.

Kernel PCA

Kernel principal component analysis (kPCA) is a non-linear generalization of PCA by means
of the kernel trick [146]. kPCA �nds linear behaviors of the data in the implicit space of the
kernel function, which in general correspond to non-linear properties of the input patterns.
The projection of ν(x) onto a (non-linear) principal component up of the input feature space
is given by

up � ν(x) =

N∑
j=1

�pj �(xj ; x) (5.4)

where �p = (�p1 ; : : : ; �
p
N ) 2 RN is the p-th leading eigenvector of the kernel matrix K =

(�(xs; xt))1≤s;t;≤N . The �nal transformation is given by yi = (u1 � ν(xi); : : : ; un � ν(xi)).
Exactly as in PCA, by keeping m � n principal components one captures most of the
variance in H.
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Besides standard PCA, in the experimental part of this chapter (Section 5.2), we have
used two other well-known and used kernel functions, namely, the radial basis function -or
Gaussian kernel- and the ε2 kernel:

�rbf(x; y) = exp(� � k x� y k2);  > 0 (5.5)

�ω2(x; y) = exp(� � dω2(x; y));  > 0 (5.6)

where k � k stands for the L2-norm and dω2(�; �) is the ε2 distance (Eq. (4.15)).

5.2 Experimental evaluation

Given the seven continuous attributed graph datasets described in Section A.2.1, we build
up the embedding representations by the use of fuzzy kMeans for the set of representatives
construction and the all edge assignment setting. We construct the vectorial representations
for di�erent sizes of the set of representatives.

As previously discussed, the choice of the representative elements is of crucial importance
because the semantics of the representation will depend on them. Nevertheless, we have
no presumptive manner to select them beforehand and thus we assume this step as one
to be validated. Again thus, and for each dataset, we have built sets of representative
elements of sizes ranging from 5 elements up to 100, in steps of 5, leading to 20 di�erent
vectorial representations for each dataset of graphs. We apply the described feature selection
algorithms to all of them.

5.2.1 Ranking methods

For each of these representations based on a di�erent size of the set of representatives, we
have to select the subset of features that best solves a speci�c task. In particular, as we did in
most validation stages so far, we are interested in solving a classi�cation problem by means
of a kNN classi�er. Given one of these representations, based on a set of representatives of
size m, the number of resulting features is M � O(m2)

x1; x2; : : : ; xM ; (5.7)

and according to a ranking criteria, they are sorted from greater to lower relevance

x(1); x(2); : : : ; x(M): (5.8)

Once the features are ranked, we can construct a structure of nested features: from the
most important one, we iteratively add the rest of them in decreasing order of importance,
obtaining several subsets of features,

fx(1)g ∧ fx(1); x(2)g ∧ : : : fx(1); x(2); : : : ; x(M)g: (5.9)

These nested features are the candidates for the optimal subset of features that we seek
for each representation. If we try out all these subset candidates for all the di�erent vectorial
representations that we have created, the computational complexity of the validation stage
increases dramatically. To avoid this situation, we do not use all candidates but instead
we use just some of them. In particular, we use those subsets that correspond to the most
relevant feature (�rst subset) and that of all features (last subset), plus the subsets containing
1
16

, 1
8
, 1

4
, 3

8
, 1

2
, 5

8
, and 3

4
of the most relevant features.

For the Relief and Mutual Information cases, we compute the nested feature subsets after
ranking each feature. This can be done this way since the ranking itself is not a complex
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Figure 5.1: Validation results for some con�gurations on the Fingerprint and Digits
databases. Accuracy rates of a kNN classi�er in conjunction with a ε2 distance on
the validation set. First and third rows show the behavior when keeping a relative
number of components. Dots on the curves show the best con�guration. Second and
fourth rows plot the same curves in absolute terms of the selected features.

task. For the SVM ranking case, we proceed di�erently. Instead of ranking all features
and then building up the nested structure, we directly build such a structure in its reduced
version. We initially train an SVM classi�er with all features and then remove all of them
except for 3

4
of the most relevant features. With the remaining ones, we proceed analogously

and, after training, remove all except for 5
8

of the most relevant features. This procedure is
repeated until, �nally, we end up with the most relevant feature.

In Fig. 5.1, we show classi�cation results on the validation sets of the Fingerprints and
the Digits datasets (kNN classi�er with the ε2 distance). These are two representative
examples of the general behavior observed. We plot, for each ranking method, di�erent curves
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that correspond to di�erent choices of the size of the representative set (10, 30, 50 and 75
representatives). And we plot these curves in two di�erent ways: in relative and in absolute
terms regarding the size of the feature subset that is being used for classi�cation. Moreover,
on each relative curve and using a Z -test of statistical signi�cance with a con�dence level
of � = 0:05, we draw a dot at the best con�guration, where by best we understand the one
based on the least number of features from all those con�gurations that are statistically at
the same level of signi�cance than the maximum accuracy rate obtained.

The main behavior we can observe in Fig. 5.1 is the fact that, in general, those con�g-
urations that are constructed with larger sets of representatives need a {relatively{ smaller
number of components in order to reach the proper subset of features. This can be seen on
the relative curves since the dots corresponding to the larger sets of representatives can be
found before those of the smaller ones. In the absolute curves this behaviour can also be
noticed by the fact that curves tend to atten rapidly when the representative set becomes
larger. This situation also suggests that large sets of representatives introduce noisy and
redundant features to a higher degree than smaller sets. It is clear that most of the elements
in the set of representatives will tend to be not edge-linked in the graphs as the size of the
representative set increases. However, as it happens in the Fingerprint dataset, a larger
representative set might obtain better results than a smaller one.

In Table 5.1 we show a deeper analysis into the actual features the ranking methods are
considering as relevant. In particular, we put attention on whether the ranking methods keep
the node-based features Ui and on how much they inuence the �nal subsets in the nested
structures. For each choice of the size of the representative set, we show the con�guration
that has obtained the best classi�cation results of the kNN classi�er on the validation set.

Several statistics are shown. First, the size of the set of representatives (rss) which is,
actually, the number of Ui features before feature selection. The resulting dimensionality of
the vectors after mapping the graphs under the described embedding methodology, this is,
the original number of features (onf ), all Ui and Bij features. The next column of the table
(onbf, original node-based features) tells which is the percentage of the node-based features
over all features in the original representation (�rst column over the second column).

We display the number of signi�cant features (nsf ), this is, the size of the optimal subset
of features that leads to the best classi�cation performance given a set of representatives.
From these sets, we are interested in the proportion of features that originally come from
Ui, namely, the signi�cant node-based features (snbf ) and also the proportion of node-based
features that are kept in the �nal optimal subset (nbfk), this is, the actual number of Ui
features that the ranking algorithm has selected. We �nally show the classi�cation rate (cr)
of each speci�c con�guration in %.

A �rst observation we make is how much all feature ranking methods reduce the original
number of features. By comparing the nof and nsf columns, regardless of the database
and the ranking methodology we work with, we see that the number of features is, in gen-
eral, drastically reduced, resulting in a situation in which further learning algorithms are
computationally more feasible than when using all the original features.

Another interesting observation is the fact that node-based features are more present
in the reduced version {this is, in the optimal subsets of features{ than in the original sets
(see onbf versus snbf ). Indeed, it only happens in a very few number of cases that the
percentage of features coming from node probabilities in the original vector representations
is higher than in the reduced versions. This is indicating the importance of these Ui features.
Nevertheless, Bij features do introduce important additional information in the embedded
representation as long as several of these features are kept in the reduced versions. We also
observe that the SVM ranking methodology tends to keep a higher proportion of the features
than the other methods.
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Figure 5.2: Fractions of variance for di�erent choices of the representative set on
the GREC dataset.

Finally, let us mention the fact that the accuracy of the classi�er is not necessarily a
monotonic function with regard to the representative set. In some cases, it turns out that
small or large representative sets are not performing as well as intermediate sizes. In any
case, these functions tend to stabilize, suggesting that the ranking methods are capable
of reducing the noisy and redundant features that we are producing with our embedding
methodology when we increase the size of the set of representatives. We do observe, though,
that there is some correlation between the size of the graphs and the accuracy rates obtained.
The datasets that have a small average number of nodes tend to obtain better results using
small sets of representatives (see Letters datasets) and those with larger average number of
nodes achieve better results when using larger sets of representatives (see GREC and COIL
cases).

5.2.2 PCA-based methods

For the PCA-based methods we have also built the same vectorial representations based
on the 20 di�erent sets of representatives. We have, however, adopted another validation
strategy. Although we also �nd a ranking on the transformed features, we make use of the
variance that each component is preserving and we threshold these values, keeping a certain
amount of them as relevant.

In particular, we initially apply the PCA and Kernel PCA transformations and keep all
features. In Fig. 5.2 we show the variance for di�erent sets of representatives in the GREC
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dataset. We depict the fraction of variance curves for PCA, and for di�erent values of the 
parameter in the Kernel PCA approach with the two mentioned kernel functions.

We clearly see how PCA is capable of easily keeping most of the variance with just a
small number of features. It is much faster than any of the kernel PCA approaches in all
cases. The same behavior is observed in all the other datasets we work with. In any case,
this does not necessarily mean that PCA reduced features outperform the kernel PCA ones
since the performance will depend on the transformation rather than the precise number
of features that the method is keeping. It is also worth noticing that higher values of the
 parameter for the kernel functions will produce transformations that maintain the same
rate of variance with less dimensions than lower values of it. Nevertheless, this is again
not synonymous to the fact that these higher values will produce better transformations of
features with regard to the classi�cation performances.

The optimal subset of the transformed features is obtained by di�erent cut-o� points
that we do on the variance values that each component is preserving. Particularly, we
make cuts on the fraction of variance at the following points: 0.9, 0.925, 0.95, 0.975, 0.99
and 0.999. Each of these cut-o� points determines a particular number of features that
are being considered as potential candidates for the optimal subset of features in the �nal
representation.

Again, the accuracy of a classi�er can be regarded as a function of both the size of the
representative set and the amount of variance that is being kept. In Table 5.2 we show some
statistics of di�erent con�gurations for all datasets. Using a representative set of a certain
size (rss in the table), with its respective number of original features (onf ), we apply all the
cut-o� points mentioned above. For each of them, we apply a kNN classi�er together with
the Euclidean distance (features are transformed making them no longer histogram-based
and thus the ε2 distance is not used). For each of these representations, we report the best
classi�cation rate (cr), the cut-o� point on the fraction of variance that has produced this
performance (fov) and the corresponding number of features in the reduced version of the
embedded graphs (ndrv).

A �rst and important comment we should make here is that almost all con�gurations
that we have considered (the ones we show and the ones we do not show) already reach the
best performance by using the lowest threshold that we have considered for the variance
cut-o� points. This means that all further cut-o� points de�ne sets of features that do not
actually improve the performance of this lowest cut, and thus, most of the redundancy is
removed from the vectorial representations. It also suggests the use of lower cut-o� points.
Yet, we have experimentally seen that these lower points lead to too few features and too
low classi�cation rates.

Related to this �nding is the fact that the �nal number of dimensions is drastically
reduced with respect to the original ones. This fact is even more prominent when compared
to the size of the optimal subsets that were obtained using the ranking methods. Thus, PCA-
based methods reduce to a higher degree the dimensionality of the embedded representations
of graphs than the ranking methodologies.

On the other hand, we encounter that such a reduction is not necessarily related to the
performance of the considered classi�er. In general, when comparing both tables, we observe
that the ranking methods usually outperform methods based on PCA or Kernel PCA. In
other words, transforming the features does not seem to make the �nal con�guration stronger.
We should of course check whether this is a problem of the general methodology used or just
the fact that other kernel functions should be applied together with other distance measures
in the kNN algorithm. However, we understand that such a deeper study is out of scope
with regard to the original objectives of this work and we leave it for future work.
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In any case, the results of Table 5.2 suggest again that there is no clear a priori way to
de�ne which is the number of elements in the set of representatives and that this step should
always be validated since it depends on the dataset under study.

5.3 Discussion

Let us summarize the main points tackled in this chapter. We have faced the dimensionality
problem that the vectorial representation we proposed for graph embedding exhibits due to
its quadratic dependency on the number of elements in the set of representatives. More-
over, some correlation and redundancy on the features is also present and feature selection
algorithms have been applied to deal with these problems.

We have observed that the major gain of applying such algorithms is on those cases
where a larger set of representatives is used. Clearly, these con�gurations of the embedding
add more noise to the features and redundancy or irrelevance of some of them will be there
in a higher degree than in those cases where less representatives are used. Nevertheless,
ranking methodologies have revealed themselves as more appropriate for the task of feature
selection in the proposed feature vectors of graphs than PCA-based methods. Transforming
the features is not convenient since many information is lost in the transition. Although
with PCA-based methods the dimensionality is reduced in a higher degree than with the
ranking ones, this translates into a drop of the performance of the embedding methods for
the task of classi�cation. A careful investigation on which are the features that ranking
methods rank as more discriminative tells us that node-based features are certainly more
important than the edge-based ones, but still these latter ones are relevant for the task of
graph characterization since they convey most of the structural information of the graphs,
and thus it is important to consider them in this framework.





Chapter 6

Ensembles of Classi�ers

One of the main conclusions we can draw from the previous chapters is that there is no a
priori manner to de�ne the magnitude or the number of features we build for our graph
representations. For instance, in the case of discretely attributed graphs, besides what the
experimental validations tell us, we cannot say beforehand whether it is more convenient
to use short or long path based-features. Also, for the continuously attributed graphs, we
really have no clue when it comes to selecting a small or a large set of representatives, and
we have seen that such a parameter is dependant on the dataset under study.

We do acknowledge, however, the plurality and diversity that these parameters eventually
o�er us in terms of the vectorial representations of graphs. It is clear that short path features
will regard local information of discrete attributed graphs while longer ones will account
for a more global information of the structures. Regarding continuous attributes, a similar
argument can be made. Small sets of representatives will retain the global topology of graphs
since every representative element will attract more nodes to it and the corresponding edge
relations. On the other hand, large sets of representatives will distribute the structural
information into more bins of the vectors by assigning a fewer number of nodes to each
representative element and thus better describing local information of the graphs.

In this chapter, instead of assuming a best vectorial representation out of all the ones
that are constructed, we make use of the diversity all of them o�er when considered together,
and combine them in a multiple classi�er system in order to boost the performance of the
classi�cation of graphs.

6.1 Multiple Classi�ers on Graphs

A multiple classi�er system tries to combine several base classi�ers in such a way that the
resulting classi�cation performance improves the accuracy rates of the underlying individual
classi�ers [97]. A common way to build base classi�ers for further combination is by randomly
selecting di�erent subsets of features and training classi�ers on those subsets [72]. By feature
subset selection one is usually able to obtain classi�ers with enough diversity, in terms of
their discriminative power. Such procedures can be rather easily implemented and have
been widely studied for statistical feature vectors. However, when it comes to graph based
representations, the construction of single base classi�ers has not a straightforward solution.

Based on the idea of feature subset selection, just a few works aiming at constructing
multiple classi�er systems for graph based representations have been proposed. While for
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feature vectors the idea is to select a subset of features, for graph representations the way
to proceed is to construct base classi�ers by selecting subgraphs of the training graphs. For
instance, in [140] the authors are able to de�ne di�erent classi�ers by randomly removing
nodes and their incident edges from the graphs. This methodology has the problem that the
need arises of comparing several instances of labelled graphs, which makes the combination
of multiple classi�ers a highly complex task. In [101], a more e�cient way is proposed by de-
composing a set of labelled graphs into several unlabelled subgraphs based on their labelling
information. All these subgraphs are compared one by one with respect to di�erent labels
which create di�erent base classi�ers. Finally, in [102], in order to build several base classi-
�ers, the authors claim for the bene�cial use of full graphs instead of just subgraphs. They
transform labelled full graphs into di�erent unlabelled graphs by removing information from
the nodes and re-weighting the edges based on the linked nodes' information. Although the
graphs are altered, the topology is preserved and several base classi�ers can be constructed.

The main drawback of all the approaches described above is that they necessarily need
to work in the graph domain when comparing graphs and, therefore, the base classi�ers to
be used are restricted to be of the kNN type. In this work we adopt another approach to
construct several base classi�ers for graph based representations. We use all the embedding
representations that we have at hand |based on di�erent order edge-based features or on
di�erent representative set sizes| and build up a base classi�er for each of them. Then, we
combine the base classi�ers under any of the common statistical combination frameworks (see
Section 6.2). The idea is somewhat similar to the one in [131] where the authors transform a
graph into a feature vector by computing edit distances to a prede�ned set of prototypes. By
using di�erent sets of prototypes, the authors create di�erent populations of vectors leading
to several base classi�ers that can be combined.

6.2 Multiple Classi�er Methods

In this section we intend to give a brief description of the existing methodologies for combi-
nation of multiple classi�ers. We start by categorizing the set of classi�ers in terms of their
output values and then explain how every class of classi�er can be combined.

In [182], the authors originally put together various classi�ers under the following taxon-
omy, based on the output information they are able to supply. Given x 2 P a pattern to be
classi�ed, let fLjg1≤j≤N be N di�erent classi�ers solving an n-class classi�cation problem
and let f!ig1≤i≤n be the labels of the n di�erent classes. There are three levels of classi�ers:

1. The abstract level: The output of the classi�ers is a unique label corresponding to
the class that has been recognized, this is, Lj(x) = !ji.

2. The rank level: At this level, the classi�er outputs are a ranked list of all the labels
Lj(x) = [!ji1 ; !ji2 ; : : : ; !jin ], sorted from the most to the least plausible labels.

3. The measurement level: The last level of classi�ers is the one whose classi�ers
output an n-dimensional vector Lj(x) = [ pj1(x); pj2(x); : : : ; pjn(x) ], where the com-
ponent pji(x) is de�ning the degree of con�dence that the pattern to be classi�ed
belongs to the class i, under the classi�er Lj .

The problem is now how to combine these outputs from a set of di�erent classi�ers in
order to obtain a �nal unique label. Such combination will obviously depend on whether the
classi�ers belong to the �rst, the second or the third level.

� Voting: For classi�ers in the abstract level, voting is a commonly used technique [97].
The Lj output !ji is considered as one vote for the class i. Then, the �nal decision is
taken as the class with the maximum number of votes.
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� Borda Count: In the rank level, the problem is re-ranking the labels for the �nal
decision. From the decision of the classi�er Lj , Borda Count gives to each class the
value of its position. Then, for all classi�ers, the minimum of the sum of these positions
is taken as the �nal decision label.

� Bayesian Combinations: When working in the measurement level, [93] provides
a really elegant understanding of the situation. Based on the Bayes decision rule,
di�erent assumptions on the probability dependencies lead to di�erent combination
strategies such as the maximum, the minimum, the mean or the product of all con�-
dence values for a speci�c class. In all cases, the class with the maximum value after
each of these strategies is taken as the �nal decision.

There is also another way of combining classi�ers in the measurement level. The Bayesian
Combination methodologies for the measurement level of classi�ers assumes the indepen-
dence of all classi�ers. This might not be a proper assumption. To investigate this fact,
this assumption is eliminated in [129] and two new methodologies are proposed based on
the independence of the validation variables. In any case, we shall not work with these
non-Bayesian strategies. In particular, in this work, we use the voting combination strategy
for the �rst level of classi�ers, the Borda Count for the second, and the product and the
mean rules in the Bayesian combination framework.

6.3 Classi�er Selection

In order to build a diverse set of base classi�ers, for the discretely attributed case of graphs,
we will use the di�erent representations that we may extract based on di�erent path lengths
of the edge-based features. For the continuous case, the base classi�ers will be learnt from
the di�erent representations that we can extract out of di�erent sets of representatives based
on their size. An important issue that deserves our attention is thus the question of how to
build the �nal ensemble from the available classi�ers. Among the options that are available
in the literature, we have addressed this problem by a forward selection strategy since it
provides a simple and successful framework for the selection of classi�ers [97].

From the set of N classi�ers that we have available, we will construct N ensembles,
considering an increasing number of classi�ers (from 1 to N) in each ensemble. The �rst
ensemble will be constituted by one classi�er, the second by two classi�ers, etc., until the
last ensemble that is going to be the ensemble of all classi�ers that we have trained. These
ensembles are iteratively build by, �rst, taking the best single classi�er as the �rst ensemble,
and then adding to the k-th ensemble the classi�er that best �ts the previous ensemble, in
terms of the accuracy of the combination on a validation set. As a result, the �nal ensemble
that is applied to the test set is the one with the highest accuracy rate. Algorithm 1
summarizes the steps of the procedure.

6.4 Experimental evaluation

In this section we experimentally investigate the ensembles of classi�ers for discretely and
continuously attributed graphs. In the former case, we construct di�erent classi�ers based
on the length of paths that are used for the edge-based features. In the latter, based on the
sizes of the sets of representatives.

For each of the vectorial representations we learn a model for classi�cation. In particular,
we use a Support Vector Machine [147] in conjunction with a ε2 kernel (Eq. (5.6)). We have
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Algorithm 1 Classifier Selection

Input: Set of all single classi�ers: L = fL1; : : : ; LNg
Output: Combination with highest accuracy rate: Cm

1: Initialize N empty classi�er combinations: C = fC1; : : : ; CNg
2: Set the best individual classi�er as the �rst combination: C1 = argmax

Li∈L
acc(Li)

3: k := 1
4: while k < N do
5: From the remaining classi�ers, take the one that best complements the previous com-

bination: Lm = argmax
Li∈L\Ck

acc(Ck [ Li)

6: Add it to the previous combination: Ck+1 = Ck [ Lm
7: k = k + 1
8: end while
9: return The combination of highest performance: Cm = argmax

Ci∈C
acc(Ci)

used the implementation described in [29], which provides a way to extract outputs on the
three di�erent levels that have been described in Section 6.2.

6.4.1 Ensembles for discrete attributed graphs

Given the four datasets used in Chapter 3, we build 8 vectorial representations using the
edge-based features described in Section 3.4. In particular, we consider path lengths from 1
(this is, the original embedding representation) to 8. For each of these representations, we
train the SVM classi�er and validate the meta-parameters on the validation sets. In the left
column of Fig. 6.1 we show the best result of each of these con�gurations on the validation
sets of each dataset.

The SVM classi�ers for the object datasets show a trend where, for small values of the
path length, the accuracy is maintained and eventually drops signi�cantly. Such a decay
might be explained by the fact that larger lengths of the paths introduce much more noise
that �nally impoverishes the embedding representations. Although the shape of the curves
is the same for the AIDS dataset, here again |as in other situations|, the corresponding
results are stable and very saturated almost classifying correctly all elements in the validation
set. However, they decrease a bit after k = 5. For the MUTAG dataset, interestingly, we
observe a zigzag pattern of the curve. On odd values of the path lengths the performance
of the classi�ers is better than on even values, overall, with the tendency to decrease. An
explanation for this situation is that even lengths for the paths tend to trace back, walking
along the same edges with higher frequencies, thus incorporating more noise to the features
and eventually to the vectorial representations.

In comparison to the kNN results (see Fig. 3.9, curves for the ε2 distance), we observe
that for the object datasets, the SVM classi�ers obtain better results for those features that
are based on short paths than for those based on longer paths. For the molecules datasets,
this behavior is not observed. For the MUTAG dataset, we can see that the SVM results
are always better than the corresponding kNN ones. Finally, let us highlight the fact that in
the ALOI and the MUTAG datasets results for path lengths of k = 2 or k = 3 outperform
those of k = 1. These behaviors are not observed in the kNN curves which means that the
SVM classi�er is abler to exploit the potential of such features. Nevertheless, these results



6.4. Experimental evaluation 65

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of the considered paths

(a) ALOI, single classifiers

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(b) ALOI, classifier ensembles

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length of the considered paths

(c) ODBK, single classifiers

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(d) ODBK, classifier ensembles

1 2 3 4 5 6 7 8

0.984

0.986

0.988

0.99

0.992

0.994

0.996

Length of the considered paths

(e) AIDS, single classifiers

1 2 3 4 5 6 7 8

0.984

0.986

0.988

0.99

0.992

0.994

0.996

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(f) AIDS, classifier ensembles

1 2 3 4 5 6 7 8

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Length of the considered paths

(g) MUTAG, single classifiers

1 2 3 4 5 6 7 8

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(h) MUTAG, classifier ensembles

Figure 6.1: ε2 SVMs. Left column: accuracy as a function of the length of the paths
considered for the edge-based features. Right column: ensembles of the classi�ers.
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Table 6.1: Ensemble distributions for the discrete datasets.

Combination strategy

Dataset Voting Borda Count Bayes product Bayes mean

ALOI f2,3,6g f2,1,4g f2g f2g
ODBK f1,2,5,7g f1g f1g f1g
AIDS f1g f1g f1g f1g
MUTAG f3,1,2,5,8g f3,1,2,5,8g f3,5,4,2,8,1g f3,5,4,2,8,1g

justify that we keep investigating on these higher order features that are capable of extract
better characteristics of graphs than the single binary relations we have originally proposed.

Concerning the ensembles we have built out of the di�erent base classi�ers, we show
the corresponding performances on the right columns of Fig. 6.1. The �gures show the
performance of each ensemble as a function of the number of base classi�ers it contains. For
those datasets where the single classi�ers tend to perform stably (ALOI, ODBK and AIDS)
the combination of base classi�ers do not really obtain any improvements besides the fact
that they are capable to keep the same recognition rates for most of the ensembles. On the
other hand, the dataset where there is more variability on the results obtained by the base
classi�ers (MUTAG) does take pro�t of the combination of classi�ers and such a combination
is capable to improve the best single base classi�er.

For a more proper insight on what we just said, in Table 6.1 we show, for each dataset and
each combination strategy, the ensemble of classi�ers that has led to the best performance
on the corresponding validation set. In particular, we show the numbers of the length of
paths with which we have built the base classi�ers that are eventually in the best ensemble.

Those cases where only one base classi�er is shown are the ones where no ensemble could
provide an improvement over the best base classi�er. If two ensembles give tied results,
we assume a better performance for the one formed by less base classi�ers. In the case
of the AIDS dataset |as happened many times so far|, no improvements are obtained
since the best base classi�er (the original vector representation considering 1-length paths)
is already saturated at the top and further accuracy gains are complicated. Regarding the
MUTAG dataset, we can see what we have discussed concerning the performance curves of
the ensembles. Five or six base classi�ers are combined together for the �nal ensemble and
they lead to higher accuracy rates. The interesting thing to see here is that the Voting and
the Borda Count strategies start considering short length paths (1 and 2) after the best base
classi�er (3) while the Bayes strategies select longer path features (5 and 4).

With respect to the object datasets the results are half way between the two extremes
that the molecule datasets exhibit. The ODBK dataset can be improved by the voting strat-
egy using base classi�ers of short (1 and 2) and long (5 and 7) length path. Nevertheless, the
improvements are not signi�cant and for the other combination schemes the best base classi-
�er is still more optimal than any ensemble. Also for the ALOI dataset, the Bayes strategies
do not consider other classi�ers but the best base one and the voting and Borda count com-
binations select diverse |in terms of path length| base classi�ers but the improvements
gained are not signi�cant.

6.4.2 Ensembles for continuous attributed graphs

Given the seven datasets of continuous attributed graphs described in Section A.2.1 and used
in Chapters 4 and 5, we build di�erent vectorial representations for each of them in order to



6.4. Experimental evaluation 67

0 10 20 30 40 50 60 70 80 90 100
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Representative set size

(a) Letter LOW, single classifiers

0 2 4 6 8 10 12 14 16 18 20
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(b) Letter LOW, classifier ensembles

0 10 20 30 40 50 60 70 80 90 100
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Representative set size

(c) Letter MED, single classifiers

0 2 4 6 8 10 12 14 16 18 20
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(d) Letter MED, classifier ensembles

0 10 20 30 40 50 60 70 80 90 100
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Representative set size

(e) Letter HIGH, single classifiers

0 2 4 6 8 10 12 14 16 18 20
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Size of ensemble

 

 

Majority
Borda Count
Bayes product
Bayes mean

(f) Letter HIGH, classifier ensembles

Figure 6.2: ε2 SVMs. Left column: accuracy as a function of the size of the
representative set. Right column: ensembles of the classi�ers.

build di�erent base classi�ers. In particular, for each graph dataset, we use again the fuzzy
kMeans representative constructor and the all edge assignment methodology to construct
20 di�erent representations based on 20 di�erent sizes of the set of representatives. With
these vectorial representations we learn a ε2 SVM model and the classi�cation performance
is shown for all of them on the left columns of Figs. 6.2 and 6.3.

A general conclusion that can be extracted from these graphs is the fact that, as happened
in the discrete attributed case, the SVM classi�er has more potential than the kNN one in
order to extract the best out of the features we propose. If we compare these results with
those for the kNN classi�er (Figs. 4.3 and 4.4, fuzzy kMeans with all edge assignment)
we can see that the performance for all datasets has increased. For instance, the Letter
MEDIUM and HIGH datasets have gone from low accuracy rates at around 0:4 for large sets
of representatives up to performances of around 0:85.
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(b) Digits, classifier ensembles
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(d) GREC, classifier ensembles
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Figure 6.3: ε2 SVMs. Left column: accuracy as a function of the size of the
representative set. Right column: ensembles of the classi�ers.
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Table 6.2: Ensemble distributions for the continuous datasets.

Combination strategy

Dataset Voting Borda Count Bayes product Bayes mean

Letter LOW {15} {15} {15} {15}
Letter MED {10,5,90} {10,5,90} {10,5,90} {10,5,90}
Letter HIGH {10,5,55} {10,5,25,50} {10,5,60,25} {10,5,20,85}
GREC {40} {40} {40,65} {40}
Digits {15,20,30} {15,30,20} {15,20,45,30,5,10,35} {15,20,5,35}
Fingerprints {10,45,80,55} {10,45,80,55,15,50,25} {10,45} {10,45}
COIL {20,60,45,5,15,100} {20,25,45,15} {20,45,25} {20,25,5,45}

In any case, the main conclusions remain the same. This is, there is no size for the set of
representatives that can be chosen a priori in a general setting and such a parameter should
be validated for each dataset. We do observe though a major improvement when combining
the base classi�ers we have just discussed. The result curves are shown on the right columns
of Figs. 6.2 and 6.3.

With respect to the Letter datasets we see that the low distorted version is perfectly
classi�ed. Indeed, the best base classi�er already obtained a perfect classi�cation score. The
other two Letter datasets gain quite a lot on performance while maintaining acceptable rates
for large ensembles. In any case, the best results |and this is a general behavior| are
obtained by ensembles of a few base classi�ers (see discussion regarding the next table). The
very same e�ect is also observe on the other datasets. The diversity of the classi�ers provides
enough information to boost the performance of the base classi�ers by combining some of
them. Only in the GREC dataset we can observe that no major improvement is achieved
although some stability is observed.

More insight can be extracted by checking Table 6.2, where we show the resulting best
ensembles for each of the datasets and combination strategy. In particular we identify each
base classi�er by the size of the corresponding set of representatives that it is built from.
Besides the already mentioned cases of the Letter LOW and the GREC datasets |the
former is perfectly classi�ed while the later collapses at some point| we can see in the
table that the considered combination strategies are able to acknowledge the diversity of
the base classi�ers so they can improve them. It is also worth noting that the sizes of the
corresponding representative sets are usually from di�erent ranges, which supports the initial
idea that such di�erences in the sizes would provide di�erent meaningful information that
would eventually be combined to obtain richer representations for the graphs.

6.5 Discussion

In this chapter we have proposed a way of exploiting both local and global information of
graphs in terms of the embedding features. In particular, for the discretely attributed graphs,
the di�erent representations based on di�erent path lengths for the edge-based features o�er
both local relations (short paths) and global information (long paths). These informations
for the continuously attributed graphs are based on the size of the sets of representatives,
where large ones o�er local information about the topology of graphs and small ones global
relations.

As we already pointed out before, the higher order edge-based features need a re�nement
of their computation in order to avoid adding too much noise. This way, an eventual situation
where diverse classi�ers are available can occur and thus we can take more pro�t out of
them by combining them in a multiple classi�er system. On the contrary, the ensembles of



70 ENSEMBLES OF CLASSIFIERS

classi�ers for the continuous case has been shown to add quite some more information with
respect to the base con�gurations, boosting their performance and suggesting the suitability
of this methodology.

As a last comment, interestingly, both in the discrete and continuous cases, for those
selection strategies that o�er a diverse ensemble |3 or more base classi�ers| the classi�ers
that appear in the ensembles are usually the same. This means that there are some of the
representations that are potentially more discriminant than others and thus all selection
strategies are able to detect them.



Chapter 7

Experimental Evaluation

In this chapter we assess the performance of all the embedding con�gurations de�ned along
this thesis in comparison with classic and state-of-the-art graph matching methodologies.
In particular, classi�cation of all datasets described in Chapter ?? is done by means of two
classi�ers such as kNN and SVM. In the graph domain, the comparison is made with respect
to graph edit distance. In particular, a kNN classi�er is used with the resulting distances and
an SVM one in conjunction with a kernel function directly computed from the edit distance
values. In the vector domain, we select as a reference system another embedding methodology
|also based on the edit distance| that has reported sound and consistent results. For this
other embedding, we also compare our results with a kNN and an SVM classi�ers. We also
experimentally assess the computational complexity of our methodology with respect to the
reference systems. Finally, we perform graph clustering experiments within the ICPR Graph
Embedding Contest framework, for which we rede�ne the embedding features in terms of a
domain-dependent scenario.

7.1 Discrete Attributed Graphs Classi�cation

In this section we compare the embedding methodologies for discrete attributed graphs
described in Chapter 3 with two reference systems. First, we use a kNN classi�er together
with the graph edit distance and compare the results with those of the same classi�er on
the propose vectorial representations of graphs using a ε2 distance. Also, we will see the
performance of the statistics based embedding under an SVM classi�er with a ε2 kernel in
comparison with a graph kernel also using SVMs.

First, we review the technical details of the reference systems used in this section. We
then present an experimental evaluation of the computational runtime of both the reference
systems and our methodologies. Finally, we present and discuss the results obtained.

7.1.1 Reference Systems

Graph Edit Distance

In Section 3.2.1, the edit cost function was formulated in such a way that node and edge
costs where assumed to have a unitary value. Then a weighting parameter was introduced
in order to calibrate the e�ect of both types of operations. Here use a more re�ned version
of such edit costs functions. In particular, instead of a cost 1, we give to node deletions and

71
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insertions a cost of ωn (respectively ωe for edges) and twice this cost to nodes substitutions
when the corresponding labels are di�erent. On top of that, we also introduce a parameter
� 2 [0; 1] to balance the amount of weight given to either node costs or edge costs. All in
all, the edit cost function used here can be summarized as follows:

� Edit costs for nodes:

c(u! �) = c(�! v) = (1� �) � ωn

c(u! v) =

{
0; if �(u) = �(v)

2 � (1� �) � ωn; otherwise

� Edit costs for edges:

c(e1 ! �) = c(�! e2) = � � ωe

c(e1 ! e2) =

{
0; if �(e1) = �(e2)

2 � � � ωe; otherwise

The validation of the triplet (ωn; ωe; �) is done using the validation sets of the datasets
under study. Several values for the parameters have been tried using a grid structure. Those
triplets that provided the best results on the validation sets are the ones that are eventually
used for the test sets.

The dissimilarity kernel

In order to move from the graph domain |where almost only kNN-based algorithms are
applicable| to a more complex setting we make use of a graph kernel. This graph kernel
will allow us to use a kernel machine such as the SVM. In [122], graph edit distance is used to
de�ne several graph kernels. The idea is to convert a dissimilarity measure into a similarity
measure by a monotonically decreasing transformation.

De�nition 7.1 (Similarity Kernel) Given two graphs g1 = (V1; E1; �1; �1) and g2 =
(V2; E2; �2; �2), the similarity kernel based on the edit distance is defined as

�G(g1; g2) = exp (� � d(g1; g2)) (7.1)

where d(g1; g2) is the edit distance between graphs g1 and g2, and  is a positive real-valued
parameter,  > 0.

Under this kernel, very dissimilar graphs (large edit distance) are given a low value, close
to zero, while similar graphs (low edit distance) will produce kernel values close to one. This
kernel function is, however, not positive de�nite since graph edit distance is not generally a
proper metric. Nevertheless, as pointed out in [122] and [65], there is evidence that proves
the utility of inde�nite kernels in conjunction with kernel machines under certain speci�c
conditions. In any case, among all possible kernels we could have used as reference systems,
this kernel function has been selected due to its simplicity and to the fact that no extra
expensive computations have to be done with respect to the edit distances.

7.1.2 Computational Time Analysis

Before analysing thoroughly the speci�c results, we want to put special emphasis on the
computational time that all of the involved systems need at the testing phase. We do not
consider the time required for applying the corresponding classi�ers as it is the same in all
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Figure 7.1: Average times in milliseconds (vertical axis, logarithmic scale) of the
test stage of both the reference and the proposed systems. The length of the ticks
on the top of the bars show the variance around the mean values.

representations. We just consider the time required for the distance and kernel computations
and the construction of the embedding representations of the graphs. For a test graph to be
evaluated under the �rst reference system, we need to compute the graph edit distance to
all graphs in the training set. Using these distances, kNN can be applied. For SVM using
kernels on graphs, in addition to the computation of edit distances, we have to exponentiate
them to obtain the kernel values (Eq. (7.1)). Regarding the embedding methods, the �rst
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Table 7.1: Discrete attributed graph datasets. Classi�cation results on the test sets.
Accuracy rates given in %.

Reference Systems Embedding Systems

kNN SVM kNN kNN SVM SVM
Dataset Edit Distance κG kernel ϕ1 Emb. ϕ2 Emb. ϕ1 Emb. ϕ2 Emb.

ALOI 85.8 91.0 À 92.2 À 90.0 À 94.8 ÀÁ 94.2 À
ODBK 70.0 80.0 À 76.6 73.6 80.0 À 81.3 À

AIDS 94.9 97.0 À 98.4 ÀÁ 98.4 ÀÁ 98.5 ÀÁ 99.2 ÀÁ
MUTAG 66.9 68.6 73.6 ÀÁ 74.9 ÀÁ 75.1 ÀÁ 76.4 ÀÁ

À/Á Statistically significant improvement over the first/second reference system (Z-test, α = 0.05).
Ê/Ë Statistically significant deterioration over the first/second reference system (Z-test, α = 0.05).

step is always to construct the vector representation. Afterwards, in order to apply the kNN
classi�er, the ε2 distances of a test element to all training elements have to be computed.
In the case of the SVM classi�ers, there is a �nal step in which kernel values are computed
(Eq. (5.6)). In Fig. 7.1, we show results on two datasets, ODBK and MUTAG. Those
are the two sets with the smallest and the largest average number of nodes per graph,
respectively. We can see that the relative behavior of the graph-based versus the embedded
vector representations is basically the same independently of the dataset and the size of the
graphs.

One can observe that the proposed embedding systems are several orders of magnitude
faster when compared to the reference systems. Even in the most favorable case for graph
edit distance computation |ODBK, which has the smallest average number of nodes per
graph|, the proposed embedding systems are about 103 times faster than the reference
systems. In all other datasets, we observe a similar behavior. Apart from that, validating
the parameters of the reference systems is indeed a hard task. For instance, using a Java
implementation, to obtain the optimal values of the graph edit distance for the two object
datasets took around 10 days on a computer cluster using 24 CPUs of 2.4GHz each. On the
other hand, in the proposed embedding methodology, one has almost no parameters to tune
at the training stage besides those related to the kNN and the SVM classi�ers, which took
in the worse case just a few minutes under a MATLAB implementation.

7.1.3 Results

Next, we consider the recognition performance of all systems. In Table 7.1 the recogni-
tion rates of all classi�ers on all datasets are shown. First, we notice that SVM results
always outperform the kNN ones, in all databases and in both the '1 and '2 representations
(Eqs. (3.10) and (3.11)). This result is most likely due to the strength of the SVM classi�er.

Another interesting observation |already made in the validation of the methodology in
Chapter 3| is that, for the object datasets, the performance of the embedding representa-
tion in which edge labels are not taken into account ('1) usually outperforms that of the
representation in which this particular information is taken into account ('2). Theoretically,
one would expect it the other way around since more information is being included in the fea-
ture vector representation when edge labels are taken into account. However, by considering
such features, the structural information of the graphs falls apart, and the relevant informa-
tion is divided into many isolated pieces that eventually may lead to a lower performance.
This behaviour may also be explained by the larger dimensionality of the '2 representation
with respect to '1 because larger vectors are more prone to over�tting. This situation is
bene�cial for the proposed methodology in the sense that the resulting feature vectors of the
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embedding systems have less components (less features are taken into account) and thus the
complexity of the classi�ers that are eventually used is drastically reduced. With respect to
the molecule datasets, this behavior is not observed due to the fact that molecule graphs are
less populated with edges than object graphs. Therefore, the described e�ect of dividing the
structural information into many pieces does not occur.

Regarding the comparison of the proposed embedding methodology with the reference
systems, we see how the proposed graph embedding procedures improve the recognition
rates on all datasets. For the kNN classi�ers, results using either of the two con�gurations
of the embedded vectors are always better than their counterpart in the graph domain.
For the SVM classi�ers, the worse case is a tied result of the reference system with the '1

representation in the ODBK dataset. Indeed, there is no statistically signi�cant deterioration
in any of the four datasets with respect to the reference systems, and actually three of all
the four improvements are statistically signi�cant.

Even in case no signi�cant improvement over any of the reference systems is achieved,
the proposed approach still seems to be a better option since the computational time is
signi�cantly lower than that of the reference systems. Computing the suboptimal solution of
the edit distance [133] between two input graphs is a procedure that requires a cubic number
of operations in the number of nodes of the involved graphs. In order to classify any graph in
the test set, this computational procedure has to be done against all elements in the training
set, and this certainly requires much more operations than just arranging the graphs in the
vectorial form that is proposed in this thesis and then computing the distances among them.
Besides this, the number of parameters to validate is higher in both reference systems and
requires quite some time for training.

Ensembles of higher-order edge-based representations

The last experiment with discrete attributed graphs is the one concerning the higher-order
edge-based features de�ned in Section 3.4 and the corresponding ensembles of classi�ers. In
particular, we compare the original '1 embedding representation |which is the particular
case of considering paths of length k = 1 for the edge-based features| to the con�guration
for a certain path length k that provides the best result on the validation sets (Section 3.4.2).
For those cases, we compute the corresponding features for the graphs in the test sets and
apply an SVM classi�er.

After that, we build the ensembles of classi�ers that provided the best results on the
validation sets. The base classi�ers were reported in Table 6.1. All these results are now
shown in Table 7.2. Note that we do not report the result of the best path length (second
column) whenever this parameter coincides with k = 1. This is the case where higher-
order edge-based features do not contribute to the original representation in terms of the
performance. We do not show either the results of the ensembles of classi�ers when the
optimal ensemble is composed of only one base classi�er.

We discuss the results of each dataset separately. With respect to the ALOI dataset, we
observe that the original representation gives better results than that of the best path length.
This is not an incoherence since the concept of best is based on the classi�cation performance
on the validation sets, and in this case, the performance of the edge-based features for
a certain k > 1 provided better results than those for k = 1. The same thing happens
regarding the ensembles of classi�ers, where results are lower than the original representation.
Although results are not statistically signi�cantly deteriorated, in this particular case, the
outcome of the ensemble methodology suggests not to go further on this track.

The same thing happens for the ODBK and AIDS datasets. No improvements are ob-
tained and a |non statistically signi�cant| deterioration is obtained with respect to the
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Table 7.2: Performance of the ensembles of classi�ers for the discrete attributed
graph datasets. Single classi�er results are shown only if k 6= 1. Multiple classi�er
results are shown only if the resulting ensemble is compounded of more than 1 base
classi�er.

Single Classifiers Multiple Classifiers

Dataset ϕ1(k = 1) Best k Voting Borda Count Bayes product Bayes mean

ALOI 94.8 93.2 92.4 93.6 - -
ODBK 80.0 - 78.6 - - -

AIDS 98.5 - - - - -
MUTAG 75.1 76.1 78.1 3 78.1 3 77.1 77.3

3 Statistically significant improvement over the ϕ1 representation (Z-test using α = 0.05).
7 Statistically significant deterioration over the ϕ1 representation (Z-test using α = 0.05).

results of the original representation. On the other hand, the MUTAG dataset has ex-
perienced a statistically signi�cant improvement with respect to the 1-length edge-based
features after combining several classi�ers. This is due to the diversity the di�erent base
classi�ers have shown (see Fig. 6.1(g)) and the corresponding discussion) which allow, not
only the improvement of the best k-length path based-features with respect to the original
representation, but also of the ensembles of the classi�ers.

7.1.4 Discussion

We have proposed embedding formulations of discrete attributed graphs based on counting
appearances of node labels and appearances of speci�c edges between them. We have shown
that they have a very e�cient computational complexity with respect to well-known graph
matching methodologies. Also with respect to these reference systems, we have seen how by
means of the proposed embedding features we can obtained statistically signi�cant improve-
ments in several datasets of graphs of rather di�erent nature. In summary, the simplicity of
the embedding representations, both conceptually and computationally, and their good per-
formance on classi�cation problems when compared to classical and modern graph matching
approaches make them an attractive new tool for graph-based pattern recognition problems.

Regarding the edge-based features and their formulation in terms of paths of length k
between nodes with certain labels, there is still large room for improvement. As already
discussed before, this is just an idea in an embryonic stage which might lead in the future to
more robust features able to cope with global descriptions of the graph structures. Possible
ways to seek such improvements would have to go through those research directions in where
paths do not walk through the same edges twice. The fact that this is now not considered
introduces noise to our representations and thus impoverishes the classi�cation performances.
Nevertheless, the statistically signi�cant improvement in one of the datasets encourages us
to keep investigating on this line.

7.2 Continuous Attributed Graphs Classi�cation

A comparison of the proposed embedding methodologies for continuously attributed graphs
with state-of-the-art graph matching algorithms is described in this section. In particular, as
we did for the discretely attributed case, we �rst use the graph edit distance together with
a kNN classi�er in order to see which are the bene�ts and disadvantages of the embedding
representations in the graph domain. We then transit to a more complex learning framework
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such as SVMs by comparing our approaches with another embedding con�guration. We will
�nally discuss the e�ect of performing feature selection on the vectorial representations of
graphs and combining di�erent classi�ers.

7.2.1 Reference Systems

In contrast to the discrete attributed case, the reference systems used in this section are
not implemented by ourselves. Instead, we have used the work of [134] and the related
publications of the same authors [24{26]. The datasets used are exactly the same and we
have followed the exact same evaluation protocols.

Graph Edit Distance

Graph edit distance is computed, as it has been done along this thesis, using the subopti-
mal approach of [133]. The edit cost functions involved for each dataset are de�ned with
respect to the underlying labelling information. In general, the deletion and insertion of
nodes and edges have a �xed cost (ωn and ωe respectively) weighted by a parameter �, and
the substitution of nodes and edges is proportional to a suitable distance measure between
the corresponding labels. Formally,

� Edit costs for nodes:

c(u! �) = c(�! v) = � � ωn
c(u! v) = � � dn(�(u); �(v))

� Edit costs for edges:

c(e1 ! �) = c(�! e2) = (1� �) � ωe
c(e1 ! e2) = (1� �) � de(�(e1); �(e2))

where dn and de are the corresponding distance measures between node and edge labels,
respectively (see [134] for details concerning each of the datasets). The triplets (ωn; ωe; �),
together with the k parameter in the kNN classi�er, are validated on the validation sets and
those sets of values that provide the best results on these subsets are eventually used in the
test sets.

The Dissimilarity Embedding

Also from [134], we use an embedding methodology based on the dissimilarity representation
formalism [124,125]. A graph is represented as a vector whose components are edit distances
to a prede�ned set of prototypes. Formally,

De�nition 7.2 (Dissimilarity Embedding) Let P = fp1; : : : ; png be a set of graph pro-
totypes. The dissimilarity embedding of a graph g is defined as

νPn (g) = (d(g; p1); : : : ; d(g; pn)); (7.2)

where d(g; pi) is the edit distance between the graph g and the prototype pi.

We will not explain here how the set of prototypes is selected nor how many prototypes
were used, but will only report the best results of this approach using a Support Vector
Machine on the set of vectors de�ned by Eq. (7.2). It is worth mentioning, though, that this
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system has been selected for reference since it has interesting generalization properties and
it can handle arbitrary graphs as long as only a dissimilarity measure is required. Besides, it
has been proven to obtain remarkable results in graph classi�cation and clustering problems.
On top of these things, we use this reference system since, for it, results have been reported
on the same datasets used in this work and using the exact same validation settings, so that
there was no need to reproduce the experiments again.

7.2.2 Results

In order to make the comparison we use the following setup for our embedding proposals.
For each dataset and each of the six embedding con�gurations summarized in Section 4.2.5,
we construct 20 representations based on 20 di�erent sizes of the set of representatives. In
particular, we use sizes ranging from 5 up to 100 representatives, in steps of 5. Each one of
these 20 representations is built for the validation sets and a kNN classi�er together with the
ε2 distance is applied. For the best set of representatives, this is, for the representative set
size providing the best result in such validation sets, we construct the corresponding vectors
for the test elements. Using these test vectors we �rst apply a kNN classi�er |also with
the ε2 distance| and then we perform SVM classi�cation. The SVM model is learnt on
the corresponding validation vectors with a ε2 kernel. The results of the kNN classi�er in
comparison with the graph edit distance ones are shown in Table 7.3. Those for the SVM
classi�er in comparison to the reference embedding can be found in Table 7.4.

Regarding the reference system in the graph domain, there is at least, in four of the
seven datasets, one of the six proposed con�gurations that is tied or even statistically better
than a kNN classi�er using the graph edit distance. These results suggest that the proposed
methodology is able to keep those distances among graphs reected in the vectorial repre-
sentations. A tied result compared to the edit distance classi�er is indeed a success since
the computation of the edit distance is more costly than the methodology we propose in this
work. The results that are statistically signi�cantly lower than those obtained with the �rst
reference system can all be explained by the nature of the graphs where these results are
gotten from. In particular, we get lower results than the reference system in all con�gura-
tions of the proposed embedding approach for the medium and high distorted letters and
the Digits databases. The graphs in these sets represent objects with an inherent distorted
structure, making the assignment of nodes to representatives a confusing step for the pro-
posed approach, and thus obtaining low classi�cation rates. In other words, in those cases
where graphs are heavily distorted, the proposed embedding methodology cannot retrieve
the inherent topological model that is sought.

With respect to the reference embedding and the SVM classi�er, the results of the
proposed embedding approach are again adequate. The soft versions of the embedding
methodology together with the all assignment of edges give rise to accuracy rates that are
comparable to that of the embedding reference system. Only in the case of the high distorted
letters and the Digits dataset -which are also highly distorted in nature- the results are
statistically worse (the medium distorted case of letters is now statistically tied with the
reference system). The explanation for this fact is just as the one given for the �rst reference
system. In the other databases, we obtain a tied result (or better in the GREC and COIL
cases) which should be considered as a success due to the computational complexity of both
methods. Such complexity for the reference system is governed by the computation of the
edit distance between each graph and the set of prototype graphs. As reported in [133],
the edit distance approximation has complexity of O(n3), where n is the size of the involved
graphs (number of nodes), plus the fact that such computation has to be performed for every
prototype graph. In our case, the complexity of the graph description by a feature vector
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has to be performed by visiting the n nodes and the m edges of a graph, thus obtaining a
complexity of O(n+m), plus the fact that each node label has to be compared with the set
of representatives. We will not here report test evaluation runtime as it has been done for
the discrete case (Section 7.1.2), but the behavior is analogous to the one described there.

Despite the good results obtained for the soft versions of the proposed embedding, to-
gether with the all edge assignment, it should be noted that the other four representations
are not generally capable to get comparable results to the second reference system. Only
by fuzzifying the node (Fuzzy kMeans and GMM) and the edge assignments (all method,
Eq. (4.9)), we are capable to compete with the chosen reference system. Nevertheless, these
remarkable results, together with its low computational complexity, foster the consideration
of the described embedding methodology of graphs into the set of algorithms that are able
to bridge the gap between the structural representation of objects by means of graphs and
the statistical pattern recognition �eld.
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Feature Selection

In Chapter 5 we have assessed how the embedding representations behave under feature
selection methods. We now here evaluate the same strategies on the test sets of continuously
attributed graphs. Recall that, once all the embedding con�gurations have been evaluated,
we keep on working only with the one build by the Fuzzy kMeans representative set con-
structor and the all edge assignment method. For this embedding con�guration we also need
to validate the size of the set of representatives as well as the portion of feature we end up
keeping for the �nal vector representation.

From the same 20 di�erent representations in the previous section |based on 20 di�erent
sizes of the set of representatives| we validate both this size and the corresponding number
of features we keep. We do it by using a kNN classi�er with the ε2 distance in the case of
the ranking methods and the same classi�er with the Euclidean distance in the case of the
PCA-based algorithms. We assume the best representation to be the one that has provided
results at the same level of statistical signi�cance (Z-test, � = 0:05) as the maximum number
achieved by any of the representations (see Section 5.2 for more validation details). Using
this representation, we build up the test elements by, �rst, constructing the whole vectorial
representation and, second, reducing the dimensions to the optimal rate. The test evaluation
is done using a ε2-kNN classi�er and a ε2-SVM classi�er for the ranking methods and a
Euclidean kNN classi�er and a linear SVM classi�er for the transformation-based feature
selection methods. The former results are shown in Table 7.5 while the latter in Table 7.6.

With regard to the kNN results, we observe the same phenomenon as in the previous sec-
tion, in which those datasets with an inherent distorted nature are properly classi�ed under
any of the proposed con�gurations. As we discussed above, the embedding methodology is
not capable to extract a robust representation for distorted graphs and the feature selection
methods used in this work do not either solve such inconvenient. Nevertheless, for the rest of
the datasets, we still get statistically signi�cant improvements with respect to the graph edit
distance, which suggests that the feature selection step keeps considering those features that
are able to emulate |and improve| the graph similarities that edit distance is providing.

Concerning a comparison between ranking and PCA-based methods, it is clear that
those methodologies that transform the original features obtain worse results than those
that just rank them. In general, results are lower for the PCA-based methods, but the best
results in each dataset are certainly obtained by the ranking methodology and mostly all
statistically signi�cant improvements are also reported by this methods. In any case, among
the PCA methodologies the ε2 version is the most stable: less signi�cant deteriorations,
more signi�cant improvements, more times ranking the best of the three considered.

The SVM results are similar to the ones just described, although in comparison to the
reference system, we impoverish the performance. Despite there is a statistically signi�cant
tie in the medium distorted case of the Letters dataset, results are still bad with respect
to the reference embedding for those datasets of distorted nature. In this case, also the
Fingerprint dataset is drastically a�ected. The explanation is strictly related to that of the
same situation in the kNN case, and it is due to the broader exibility of graph edit distance
to structural deformations compared to the proposed methodologies. This correlation be-
tween the classi�ers is reinforcing the idea that the features we propose might not be a good
option for these cases. Anyhow, some statistically relevant results are still obtained, and for
those cases, the SVM classi�er can properly exploit the dimensionality reduced versions of
our embedding methodology, which is also a great success due to the low complexity of the
embedding con�gurations we have proposed.
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Table 7.7: Performance of the ensembles of classi�ers for the continuously attributed
graph datasets. Results are shown only if the resulting ensemble is compounded of
more than 1 base classi�er. The best result for each dataset is shown bold face.

Single Classifier Multiple Classifiers

Dataset Best repr. set Voting Borda Count Bayes product Bayes mean

Letter LOW 99.7 - - - -
Letter MED 93.8 94.1 94.5 95.3 95.0
Letter HIGH 86.8 89.6 89.4 91.2 3 91.7 3
GREC 98.2 - - 98.2 -
Digits 96.3 97.1 97.1 97.8 3 97.5 3
Fingerprints 82.5 82.2 83.5 83.1 83.1
COIL 95.6 97.1 96.6 96.6 96.7

3 Statistically significant improvement over the reference system (Z-test using α = 0.05).
7 Statistically significant deterioration over the reference system (Z-test using α = 0.05).

Ensembles of Classifiers

In this section we present and discuss the improvement obtained after combining classi�ers
based on di�erent vectorial representations of graphs. We here again only use the embedding
representation based on the Fuzzy kMeans representative set constructor and the all edge
assignment method. From the diversity obtained using di�erent sizes for the set of repre-
sentatives, we build a multiple classi�er system. In particular, we train ε2 SVMs on the
validation sets as described in Section 6.4.2. The optimal ensembles obtained (see Table 6.2)
are constructed for the test sets of the databases. We show the results of such con�gurations
in Table 7.7. We also show the results for the best classi�er that provided the best result.
Whenever the optimal ensemble is only composed of a single base classi�er, we do not report
the result since it is the same as the best classi�er.

First of all, note that the results of the best classi�ers do not coincide with those of the
corresponding column in Table 7.4. This makes perfect sense since the results shown here
are the ones obtained by validating the size of the representative set using an SVM classi�er.
In the other case, such a step is done using a kNN classi�er. Both cases are not necessary
the same.

Results of the ensembles of classi�ers are generally satisfactory. In most of the cases we
obtain an improvement over the representation on the best set of representatives. Specially
relevant is the fact that the statistically signi�cant improvements are obtained on those
datasets where we have been reporting really bad results in the previous sections. These were
the cases with high distorted nature. It seems that by combining diverse base classi�ers we
are able to boost the performance of the �nal recognition system. Also worth-mentioning,
such improvements are obtained by the two bayesian combination strategies, although the
other considered ones are capable of outperforming the best single classi�er.

7.2.3 Discussion

In this section we have shown and discussed a set of results that let us say that the proposed
embedding methodology for continuously attributed graphs is worth being considered in the
broad set of graph matching methodologies available nowadays. First, we have demonstrated
to be competitive with two very well known and established algorithms that solve the problem
of graph comparison. Not only because they classi�cation performance is higher in many case
but also because of the computational complexity of our proposal. We base our embedding
methodology in a set of features that regard statistics of labelling information and thus they
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can be extracted at a low cost.
Nevertheless, we have also discussed some cases where the proposed methodology seems

not to be the best option. By assigning node labels to representatives we aim at discovering
an inherent topological model of graph categories, undoing possible deformations to such
models. In this scenario, it makes sense that heavily distorted graphs do not really �t into
our proposal, and graph edit distance, although its much higher complexity, is more capable
to detect graph dissimilarities and to properly categorize graphs.

Apart from showing the proper performance of the raw versions of the embedding, we
have also investigated how they behave under feature selection methods and how several
con�gurations of the embedding can be combined in order to improve the eventual perfor-
mance of the classi�ers. In particular, we have observed that reducing the dimensionality
of the vectorial representations is bene�cial for those case where the original formulations
already worked properly, since we still get improvement with respect to the reference systems
but by using lower dimensional vectors. On the contrary, for those case where the original
representations failed due to the distorted nature of graphs, feature selection did not solve
the problem. In any case, we do observe an improvement in all cases by means of combining
several diverse classi�ers.

7.3 Graph Clustering under Domain-speci�c Em-
bedding: color RAGs

All along this thesis, for the case of continuously attributed graphs, we have not put any
assumptions on the nature of the node labelling space, besides the fact that it should be a
subset of Rd. We have argued, though, that the proposed methodology should perform well
for those graphs whose node labels are (x; y) coordinate positions, and all the experiments
carried on so far have been for graphs of this kind. In this section we want to go one step
further and check for the suitability of the proposed methodology for graphs whose node
labels are not points on the plane but non-spatial coordinates such as RGB color values.
This situations needs for a revision of how the set of representatives is selected, and this is
also covered in this section. Moreover, we will evaluate the methodology within the ICPR
Graph Embedding Contest, where a clustering measure is the performance evaluation for
the embedding con�gurations. More details are given below.

7.3.1 Motivation

Color region adjacency graphs (RAGs) are a quite common tool for representing object
images. Object images are segmented into meaningful regions and each of these regions
constitutes a node of a graph labelled with the corresponding region color. Nodes are linked
by edges in terms of the neighboring relations of the image segments. We want to apply our
methodology to these type of graphs and see how well we can perform.

The �rst observation to be made is concerning the set of representative elements. Up to
this point, the way these elements have been selected assumed an Euclidean space and so
clustering approaches served us for our purposes. In the present case, we do not really work
on such a vector space since color spaces have a more complex structure. Let us illustrate
the process with an example. From a given dataset of color RAGs (see Section A.2.2), in
Fig. 7.2(a), we plot a random sample of node labels, this is, a set of RGB values. It can be
observed that the point cloud distribution is not uniform nor lineal in the RGB space. Colors
are distributed along ridges of similar chromaticity from dark to light intensities. In this
scenario, it seems natural to select representatives for the node labels as these ridges appear
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in the RGB space. In other words, instead of considering spherical clusters as representatives,
these very same ridges should be the representatives. In Fig. 7.2(b) we show the result of
applying the kMeans algorithm for k = 10 to the set of points in Fig. 7.2(a). The clusters
obtained do not regard the natural structure of the RGB space and thus they seem not to
be the best choice.

We propose here to use a color-based approach for selecting the node label representa-
tives. In particular, we put our attention in the color naming theory �eld to see how this can
be done. The aim of color naming scientists is to come up with ways to categorize the whole
palette of colors into a �nite set of color names. In this work, we use the approach proposed
in [9], where each point in the RGB space is automatically assigned to each one of the eleven
basic color categories in the color naming theory with a certain degree |probability| of
belongingness. The eleven categories are

fBlack, Blue, Brown, Green, Grey, Orange, Pink, Purple, Red, White, Yellowg

and each RGB point is distributed among these eleven bins by means of a parametric model
that has been learnt from psychophysical experiments.

To illustrate that this domain speci�c approach approaches our desired solution of ex-
tracting the existing ridges in the RGB space, in Fig. 7.2(c) we plot the same cloud of points
in the RGB space after applying the color naming algorithm. First, each point is assigned to
the eleven categories with a degree of probability and then we keep the color with maximum
probability as the corresponding color. In the �gure, we can appreciate that the inherent
structure of the cloud of points is much more exploited than in the kMeans case and, as we
will show in the experimental part, this will in general favour our methodology in a graph
clustering scenario.

7.3.2 Color Naming based Embedding

Given a color RAG g = (V;E; �), each node v 2 V is assigned to the color naming categories
using the parametric model mentioned above. Each node is thus represented by eleven
probability values

v 7�! (p1(v); : : : ; p11(v)): (7.3)

Note the analogy of this assignment with the one of Eq. (4.5). We can thus de�ne the
node-based and edge-based features in the same way for this case,

U ′i =
∑
v∈V

pi(v); (7.4)

B′ij =
∑

(u;v)∈E

pi(u)pj(v) + pj(u)pi(v): (7.5)

and again de�ne the �nal embedding representation by the concatenation of all these features
together into a unique vectorial form. This embedding con�guration will be known as Soft
Color.

For the sake of completeness, we also want to work with a hard con�guration of the
embedding, as it was de�ned in Section 4.1.1. To do so, we assign each node to the color
that has produced a maximum probability after the color naming assignment. Embedding
features are then de�ned analogously to those for the general case, Eqs. (4.2) and (4.3). This
con�guration will be referred to as Hard Color.

To be able to compare the hypothetical improvements of these con�gurations over the
generic embedding approaches de�ned in Chapter 4, we will also work with two of them as
they were de�ned there. In particular, we use the kMeans clustering for the construction of
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Figure 7.2: Distributions of the graphs nodes in the RGB space. (a) Original color
of each node. (b) kMeans clusters for k = 10. (c) Color naming distribution.
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the set of representatives (Section 4.2.2) and the corresponding embedding features (this one
will be referred to as Hard kM ) and the fuzzy kMeans algorithm (Section 4.2.3) together with
the all edge assignment for the construction of the edge-based features (this con�guration is
going to be called Soft kM ).

Summarizing, for the color region adjacency graphs, we have de�ned four embedding con-
�gurations. Two of them are generic ones in the sense that they build a set of representatives
using generic clustering algorithms

� Hard kM,

� Soft kM,

and two domain-speci�c approaches that try to capture the inherent RGB structure of the
labelling space

� Hard Color,

� Soft Color.

7.3.3 Experimental validation on the ICPR Graph Embedding
Contest

To check the performance of these color-based embedding con�gurations we make use of the
ICPR Contest datasets (Section A.2.2) together with its evaluation framework [55]. This
contest was organized in order to provide a framework for direct comparison between embed-
ding methodologies for the purpose of graph clustering. Three object image datasets were
chosen and converted into graphs, divided into a training and a test set. The participants
also received a code with which they could assess their own methodologies in terms of a
clustering measure. Object images were �rst segmented into di�erent regions and a region
adjacency graph was constructed. Each node representing a region was attributed with the
corresponding relative size and the average RGB color components, while edges remained
unattributed. As we have been doing up to now for the case of continuously attributed
graphs, we neglect edge attributes.

Given a set of vectors ffigi∈I representing a set of graphs fgigi∈I of di�erent categories
and a distance measure d(�; �) between two of these vectorial representations, the C index is
computed [75]. This clustering measure is de�ned as follows. Let Sw be the set of distances
dij = d(fi; fj) such that gi and gj belong to the same class. Let M be the cardinality of Sw.
Let also Smin and Smax be the sets of the M shortest distances and the M largest distances
among all possible values of dij , respectively. The C index is de�ned as

C =
sum(Sw)� sum(Smin)

sum(Smax)� sum(Smin)
: (7.6)

The smaller is C the better is the separation of the classes in the set of graphs. The index lies
in the interval [0; 1], in which the ideal case C = 0 is that where all inter-class distances are
smaller than all intra-class distances. Regarding the distance measure used in the contest,
explicit formulation of vector space embeddings are compared using the Euclidean distance
(Eq. 4.14).

Explicit Embeddings

Regarding the generic con�gurations of the embedding for the color RAGs we show the
clustering performance as a function of the size of the set of representatives. In particular,
we have tried sizes from only 2 representatives up to 100. On top of that, and as we have
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Table 7.8: Generic vs color-based representations. Clustering results on the train
sets by the use of di�erent distance measures. The geometric mean of the results on
the di�erent datasets is also shown. The best results are shown bold face.

Distance Representation ALOI COIL ODBK Geo. Mean

L2

Hard kM 0.096 0.093 0.043 0.073
Soft kM 0.086 0.093 0.043 0.070
Hard Color 0.102 0.076 0.049 0.073
Soft Color 0.088 0.066 0.050 0.066

L1

Hard kM 0.100 0.079 0.051 0.074
Soft kM 0.088 0.088 0.048 0.072
Hard Color 0.102 0.071 0.056 0.074
Soft Color 0.092 0.054 0.054 0.065

χ2

Hard kM 0.045 0.045 0.024 0.037
Soft kM 0.035 0.046 0.022 0.033
Hard Color 0.057 0.044 0.033 0.044
Soft Color 0.043 0.029 0.029 0.033

been doing along this work, we try not also the Euclidean distance to measure the similarity
between embedded representations but also we use the L1 and ε2 distances. Results are
shown in Fig. 7.3.

The conclusions are again similar to those for the generic formulations of the embedding.
In general, the soft con�gurations tend to outperform their corresponding hard versions,
and this is due to their ability to adapt to possible deformations in the object models.
In particular, in this case, the intensity variability of every color is responsible of such
perturbations. It also happens the that ε2 distance is, from those that have been tried, the
one that provides the best results. The corresponding curves are almost always below the
other distances' ones. Finally, it is not clear to tell in the general case which is the optimum
number of elements in the set of representatives, although it seems that numbers below 10
are a reasonable choice.

Next, we discuss a comparison between the generic and the color versions. We use the
same distances to measure the clustering performance, and for the generic representations, we
report the results of the con�gurations |based on the size of the set of representatives| that
give the best clustering results on the training sets. For each dataset and each embedding
version we report the clustering results. We also show the geometric mean of the results on
the three datasets as a measure for ranking con�gurations (this is actually the way it is done
in the contest report [55]). Results are shown in Table 7.8.

From these results we can argue again that the ε2 distance is again the metric that best
exploits the features we are proposing. Indeed, the best results for all datasets are always
con�gurations of the embedding under the ε2 distance. It is also worth pointing out the fact
that soft con�gurations (Soft kM and Soft Color) always perform better (in terms of the
geometric means) than their corresponding hard versions. Finally, we observe that the Soft
kM con�guration is competitive with the Soft Color one. It beats the color-based approach
in two of the three cases, and the geometric means are equivalent. This tells that the generic
approach is still a very good approach for solving this problem. Nonetheless, the color-based
one does not depend on the validation stage of the number of representative elements and
can be directly computed without having to tune a parameter of this nature.
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Figure 7.3: Clustering performance of the generic versions of the embedding as
a function of the size of the set of representatives. Results for di�erent vectorial
measures.
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Table 7.9: Generic vs color-based representations. Clustering results on the train
sets by the use of di�erent kernel functions. The geometric mean of the results on
the di�erent datasets is also shown.

Kernel Representation ALOI COIL ODBK Geo. Mean

κL2

Hard kM 0.167 0 0.129 0
Soft kM 0.150 1.64e-08 2.4e-10 8.40e-07
Hard Color 0.167 7.20e-12 0.127 5.35e-05
Soft Color 0.152 8.70e-12 0.129 5.56e-05

κL1

Hard kM 0.176 0 0.142 0
Soft kM 0.154 0.041 4.40e-11 6.57e-05
Hard Color 0.173 6.17e-12 0.137 5.27e-05
Soft Color 0.160 2.55e-12 0.134 3.80e-05

κχ2

Hard kM 0.104 9.29e-10 0.097 2.11e-04
Soft kM 0.080 6.58e-10 1.91e-12 2.33e-08
Hard Color 0.113 2.41e-05 0.097 6.44e-03
Soft Color 0.091 6.21e-09 0.089 3.71e-04

Implicit Embeddings

The contest organization also allowed implicit expressions of graph embeddings, this is,
graph kernels. In order to compute the distance value between two graphs they would use
the following expression

dij =
√
�(gi; gi) + �(gj ; gj)� 2�(gi; gj) (7.7)

where �(gi; gj) is the kernel function between graphs gi and gj . Straightforward operations
and the use of the kernel trick show that this equation is regarding the Euclidean distance
in the implicit Hilbert space associated to the kernel function.

In order to be able to compare our methodology with the contest participants that
provided implicit embedding representations (such a comparison will be make in forthcoming
sections), we de�ne kernel functions between graphs by means of the kernel functions between
the explicit vector representations we propose. Formally, given graphs g1 and g2, we de�ne
�d as the kernel

�d(g1; g2) = exp (� � d(ν(g1); ν(g2))) ; (7.8)

where ν(g) is an embedding formulation of the graph g, d(�; �) is any vectorial distance at
hand and  > 0. In particular, we have used the same three distances we have been using
so far, L1, L2 and ε2. By computing the distances using Eq. (7.7), we report the results
obtained on the training sets in Table 7.9. Di�erent values of  have been tried. We omit
the validation plots for these cases.

As it can be seen, the values reported in the table justify the use of these kernel functions
since the clustering performances are of almost perfect results in many cases. Results are of
orders of magnitude that little that it is hard to really explain a general behavior of these
data. Nevertheless, the conclusions that can be extracted are similar to those from the
previous table.

7.3.4 Contest Participants

In the next section we will report results obtained on the test sets of the contest datasets.
We here explain briey the embedding approaches of the contest participants. In particular,
four approaches were submitted. Three of them were explicit embeddings of graphs, one was
an implicit formulation, this is, a graph kernel.
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Table 7.10: Clustering results on the test sets. C -index under the Euclidean dis-
tance. Comparison with the contest participants. The best results are shown bold
face.

Embedding ALOI COIL ODBK Geo. Mean

Osmanlıoğlu et al. 0.088 0.067 0.105 0.085
Jouili and Tabbone 0.136 0.199 0.138 0.155
Riesen and Bunke 0.048 0.128 0.132 0.093
Luqman et al. 0.379 0.377 0.355 0.370

Hard kM 0.088 0.160 0.067 0.098
Soft kM 0.073 0.136 0.058 0.083
Hard Color 0.067 0.143 0.061 0.083
Soft Color 0.056 0.121 0.051 0.070

Jouili and Tabbone method starts by constructing a dissimilarity matrix between all
pairs of graphs. Such dissimilarities are based on node signatures and an optimal assignment
between them using the Hungarian method [83]. The dissimilarity matrix is latter converted
into a positive semi-de�nite matrix, the eigenvalues of which are used as features for the
�nal embedding [84]. The second embedding methodology was proposed by Luqmann et
al. The feature vector extracted for each graph encodes meaningful information of nodes
and edges by the use of fuzzy intervals. For instance, histograms of node degrees or node
attributes [111]. The third explicit embedding proposal way proposed by Riesen and Bunke
and it is exactly the one we have used for comparison in the previous sections in which a
graph is represented by a feature vector the components of which are edit distances to a set
of prototypes [134]. Finally, the fourth embedding approach is an implicit one. Proposed
by Osmanl�o�glu et al., it maps each node of each graph to a vector space by means of the
caterpillar decomposition, and computes a kernel value between two given graphs in terms
of a point set matching algorithm based on the Earth Mover's distance [39].

7.3.5 Results

In the previous sections, we have validated the four embedding con�gurations proposed
and summarized in Section 7.3. Recall we have two generic versions in which a set of
representatives is obtained by either kMeans or Fuzzy kMeans. They are referred to as Hard
kM and Soft kM respectively. We also have to color-based versions, in which we use a color
naming methodology to assign each RGB node label to either a color name (Hard Color) or
a set of probability values for each of the color names (Soft Color).

In this section, we show a comparison between these con�gurations and the contest
particpants. For those cases that a certain parameter needs to be validated |the number
of representative elements, a meta-parameter of a kernel function, etc.|, we have used the
corresponding training sets and discussed in the previous sections.

Distance-based

The contest participants were evaluated under the Euclidean distance for the explicit method-
ologies or using the corresponding analogous of the same metric in the implicit vector space
(Eq. 7.7) for the kernel-based methodologies. For the sake of fairness, in Table 7.10, we �rst
show a comparison of the results reported in the contest communication [55] and the results
of our approaches under the Euclidean metric.

Concerning the results of our methodologies, as expected, the Soft approaches obtain
better results than the hard ones, and the color-based versions improve the generic ones.
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Table 7.11: Clustering results on the test sets. Comparison of the C -index under
the use of di�erent distances. The best results are shown bold face.

Results with distance

Distance Representation ALOI COIL ODBK Geo. Mean

L2

Hard kM 0.088 0.160 0.067 0.098
Soft kM 0.073 0.136 0.058 0.083
Hard Color 0.067 0.143 0.061 0.083
Soft Color 0.056 0.121 0.051 0.070

L1

Hard kM 0.082 0.156 0.067 0.095
Soft kM 0.064 0.130 0.063 0.080
Hard Color 0.071 0.129 0.071 0.086
Soft Color 0.060 0.110 0.061 0.073

χ2

Hard kM 0.037 0.098 0.037 0.051
Soft kM 0.031 0.066 0.033 0.040
Hard Color 0.045 0.086 0.045 0.055
Soft Color 0.032 0.064 0.037 0.042

Compared to the participants methods, the proposed embedding approach ranks second on
two databases and �rst on the third one. This leads to the best geometric mean among all
tested methods. Moreover, let us mention again the high e�ciency of our approach which
arises from the fact that we base our embedding method on very simple features with a fast
computation.

As it has been proved along this thesis, the Euclidean distance is not the best metric
for the analysis of the vectors we propose. We re�ne our results by computing the C-index
for clustering under the L1 and ε2 distances. Results of these experiments are shown in
Table 7.11. The ε2 distance is again providing the best results, ranking best on all datasets,
even when compared to the contest participants (we, however, want to point out that a
direct comparison to the results obtained by the contest participants would not be fair since
we do not know how their algorithms would perform under other metrics). Interestingly, the
ε2 distance extracts the best out of the Soft kM versions since it outperforms the Soft Color
one in two of the three datasets, which does not happen when using the two other metrics.

Kernel-based

Finally, in order to relate our methodology to those that provide an implicit embedding of
graphs we compute kernel values between embedded graphs as in Eq. (7.7). Results are
shown on Table 7.12.

Although the results for the ALOI database worsen when using the kernel values for
all versions of the embedding, the most signi�cant point to highlight from this table is
that we obtain almost perfect separation indexes for the COIL dataset under all embedding
con�gurations and kernels and also for the ODBK under the Soft kM one. This makes the
geometric means to drastically decrease and demonstrates the embedding methodology we
propose in this work to be a strong approach for graph clustering.

7.3.6 Discussion

We have presented a way to adapt the generic con�gurations of the proposed embedding
to a speci�c case of graphs whose node labels regard RGB color values of object images.
In particular, this adaptation has been made through a color naming based selection of
the set of representatives. The experimental evaluation has been done, this time, in terms
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Table 7.12: Clustering results on the test sets. Comparison of the C -index under
the use of di�erent kernel functions.

Results with kernel

Kernel Representation ALOI COIL ODBK Geo. Mean

κL2

Hard kM 0.148 6.25e-10 0.165 2.48e-04
Soft kM 0.134 3.83e-08 1.24e-09 1.85e-06
Hard Color 0.130 7.71e-12 0.141 5.20e-05
Soft Color 0.115 2.05e-11 0.128 6.70e-05

κL1

Hard kM 0.158 6.25e-10 0.167 2.54e-04
Soft kM 0.134 4.13e-07 1.21e-12 4.06e-07
Hard Color 0.138 7.71e-12 0.154 5.47e-05
Soft Color 0.122 2.05e-11 0.140 7.04e-05

κχ2

Hard kM 0.117 1.88e-07 0.120 1.40e-03
Soft kM 0.088 3.10e-08 8.67e-10 1.36e-06
Hard Color 0.106 3.60e-03 0.114 0.035
Soft Color 0.083 9.04e-07 0.097 1.94e-03

of a clustering measure. Again, we have seen that the soft versions of the embedding |
both the generic and the color ones| always perform better than the corresponding hard
con�gurations, which is a common phenomenon along this work. Also, the soft color version
is at the same performance level as the generic soft version using fuzzy kMeans, with the
advantage that there is no need for a validation of the number of elements in the set of
representatives. This suggests that it is indeed a good choice for clustering color region
adjacency graphs.

Finally, with regard to the comparison to the ICPR Contest participants, we have shown
superior performance with respect to all of them, con�rming again that the embedding
proposal we have been explaining along this thesis is worth considering in the repository of
tools for the analysis and solutions of structural pattern recognition problems.





Chapter 8

Conclusions

Pattern recognition can be divided into two main branches based on how patterns are for-
mally presented to the machine. On the one hand, statistical pattern recognition represents
patterns as a set of numerical measurements arranged in the form of a feature vector. The
vast and exible geometrical apparatus of the vector spaces allows the design and e�ciency
of several ways to process data but feature vectors might not be a good representational
paradigm in those cases where relations between parts of the patterns clearly need to be
described. Structural pattern recognition, on the other hand, makes use of graphs in order
to present patterns to the machine. Graphs allow to encode complex information of patterns
in terms of binary relations inside the underlying represented objects. Moreover, they are
not restricted to a prede�ned complexity and can adapt the representation to the patterns
under study, in contrast to feature vectors, where always the same number of features have
to be computed for all patterns regardless of their complexity.

Although graphs provide a fancy solution for representing patterns in a given problem,
they su�er from a high computational complexity problem and just a few ways to treat and
analyse graphs are there available. The optimal situation under this scenario would thus be
to be able to represent patterns using relational structures such as graphs and analyse such
structures using any of the data processing algorithms that the statistical pattern recognition
�eld is capable to come up with. Bridging this gap between the statistical and the structural
pattern recognition domains has been studied for the research community for some time. Two
main investigations are there that provide elegant solutions to this problem, namely, graph
kernels and graph embeddings. Graph kernels aim at de�ning positive de�nite symmetric
functions between instances of graphs so the set of learning algorithms called kernel machines
becomes applicable to the graph domain by means of the kernel trick. Graph embeddings,
for their part, seek for those graph features that best describe the structural information
of graphs and arrange them as a feature vector. In other words, graph embeddings map
each graph into an appropriate and convenient feature space where as much of the graph
information is preserved. By this way, any data processing algorithm originally developed
for statistical feature vectors now becomes also applicable to the graph domain.

In this thesis we have tackled the problem of transiting from the structural to the statisti-
cal pattern recognition worlds from a graph embedding point of view. The main contributions
of this work and how the proposal we have made can be extended in the future is what this
chapter is devoted to.

95
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8.1 Summary of the Contributions

In this thesis, we have proposed an e�cient solution for embedding graphs into vector spaces
for the discrete and the continuous attributed cases. In particular, the embedding map is
based on counting frequencies of unary and binary relations of the node labels of the graphs.

Discrete attributed graphs

After an introductory chapter, where the problem to be solved has been stated, and after
a revision of the graph matching methodologies we can �nd in the vast structural pattern
recognition literature, the discrete attributed case has been faced in the third chapter of
this thesis. We have proposed to extract features from graphs that regard the number of
nodes with a given label and the number of edges between nodes with two given labels. We
distinguish the edge attributed case by considering di�erent features those cases of edges
that have di�erent labels although they link nodes with the same label.

First of all, we have evaluated how this methodology emulates the graph edit distance
when the L1 distance is considered to compare our vector representations. It turns out that
the embedding proposal together with this metric is, for the node-based features, computing
how many nodes of a certain label are there in one graph that are not in the other. This
is what the graph edit distance does when assuming edit costs that penalize substitutions
of nodes with di�erent labels by forcing to delete and insert nodes from one graph to the
other. Besides the fact that our proposal is much more e�cient, we have come to the
conclusion that the graph features we suggest are highly correlated with the edit distance
whenever more importance to the node operations are given. When this situation occurs, our
embedding methodology could thus be used as an e�cient alternative for the analysis of graph
distributions. On top of that, classi�cation results of the embedding vectors outperform those
of the graph edit distance for all considered datasets.

Although the L1 metric provides a measure of how related the embedding methodology
is with the edit distance, we have also analysed other vectorial distances to check for the
best one in terms of classi�cation performances. We have evaluated the proposed graph
features under the Euclidean distance and also under a histogram-based metrics such as the
ε2 distance. It is not by chance that this last distance is the one that generally performs
best for the datasets that have been used in this work. Indeed, the vectorial representation
of graphs that we propose are histograms of frequencies of some speci�c substructures in the
graphs, namely, nodes and edges with certain labelling con�gurations. The ε2 distance has
thus experimentally placed itself as the best choice concerning the metrics of the embedding
space.

Chapter 3 �nished by giving another interpretation of the features we propose. In par-
ticular, edge features are understood as the number of walks of length 1 between two speci�c
labels. In that line, and in order to improve the vectorial representations of graphs, we
generalize the features by proposing to use not only walks of length 1 but walks of any
length. By such generalization we aim at providing a broader diversity, since several vecto-
rial representations are built for each graph in terms of di�erent walk lengths. This way, we
introduce more global features for the graph representations than just the local features that
the 1-length walks provide. We experimentally observe that only in very few cases, longer
walks provide better results than shorter ones. Even though some more insight has to be
given to this idea, the diversity of the representations is still there and it is exploited in a
later chapter.
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Continuous attributed graphs

The embedding representation for discrete attributed graphs has been extended to the case
of continuous attributed graphs. It turns out that counting frequencies of continuous labels is
unfeasible since it might happen that two graphs do not even share any label in common. To
overcome this problem we have proposed to discretize the continuous node labels by selecting
a set of node label representatives and assigning nodes to elements in this set. The underlying
idea is to assume that a graph model exists for every category of continuous attributed graphs
and by assigning nodes to representatives we aim at undoing the possible deformations that
each graph has su�ered with respect to such a model. Once the discretization has been done,
the embedding methodology is de�ned analogously to the discrete case, this is, counting how
many nodes has been assigned to each representative and how many edges are there between
nodes that have been assigned to two given representatives.

In particular, we propose essentially two versions of the assignment step, namely, a
hard version where nodes are assigned to just one representative and a soft version where
such assignment is done in a fuzzy fashion, this is, probabilities of belongingness to each
representatives are computed. By fuzzy�ng the assignment of nodes to representatives we
expect to deal with noisy situations in which node labels have no clear representative in the
set of representatives. In other words, it might happen that, for a given node label, there
is no clear rule telling to which element in the set of representatives the node should be
assigned to. On top of these things, the edge-based features should also be rede�ned when
a set of probabilities is given to every node. In particular, we adopt two strategies. The
�rst one is by considering those representatives that turned out to be the ones with highest
probability and count the corresponding edge as an appearance of the relation between these
two representatives. The second strategy is rather more robust since it keeps considering all
probabilities and thus all possible counts for the relations between any pair of representatives.
As expected, it turns out that the soft assignment provides better results than the hard ones
because it solves the problem of representing node labels by elements in the representative
set rather more �rmly than the hard way, where only a single representative is assumed for
each node label. Also, the fuzzy version of edge-based features performs generally better
than that where a relation between only two representatives is assumed.

Regarding how to select the set of representatives, we have proposed to use several
algorithms from the data clustering domain. In particular, we use two approaches for the
case of hard assignment |spanning prototypes and kMeans| and two for the soft assignment
|fuzzy kMeans and mixtures of gaussians|. A later experimental evaluation tells that the
fuzzy kMeans is generally more stable than any other methodology and thus it becomes our
option in further developments of the embedding approach. Moreover, as it was done in the
discrete case, the embedding space is evaluated under di�erent metrics in order to check for
the one that best suits the proposed features. Results advice to keep using a histogram-based
metric such as the ε2 distance, as they did in the discrete case.

It is clear that the graph features we have proposed not only depend on how the set of
representatives is selected but also on how many. In fact, di�erent number of elements in the
set of representatives have di�erent interpretations on what the eventual embedding features
are describing. For instance, a small number of representatives would make each of them to
attract several nodes of the graphs and thus the edge-based features will be regarding for
more global relations among the structure of graphs. On the contrary, a large number of
elements will make representatives to attract less nodes of each graph, and thus accounting
for a more local description of the graphs. There is no clear way to select beforehand the
number of elements in the set of representatives since we do not really know whether a given
database would respond better to a local or a global embedding representation. We thus
need to validate such a parameter for each dataset and, at the end, we observe how this
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number depends on each of the datasets we have considered.

Feature selection and classifier ensembles

Chapters 5 and 6 of this thesis are devoted to study two important properties that the
proposed embedding methodology present, namely, the high dimensionality and feature cor-
relation on one side and the diversity of the di�erent representations we might build up for
each graph on the other.

The vectorial representation of graphs that we have proposed in this work has a quadratic
dimensionality with respect to the number of elements in the set of representatives we select.
Not only this, but it may also happen that some of the representatives we end up selecting
are not relevant at all in the �nal vectorial con�guration of the embedding, plus some of the
features can present correlation among them, which may turn into noisy and redundant rep-
resentations of graphs. Such situations have been tackled using feature selection algorithms,
which generally try to get the subset of features from all the available ones that best solve
a particular task. We have used two di�erent strategies for feature selection. The �rst one
is based on ranking methodologies, that assign to each feature a ranking value regarding its
discriminative power. Once the ranks are associated to each features, one keeps the �rst
important ones and so the task that is wanted to be solved can be evaluated with lower
dimensional vectors. The second strategy we have used is based on PCA methods, where
a transformation of the features is sought such that most of the variance is kept. Once the
features are transformed into a lower dimensional space, the same task can also be solved
using the new transformed features.

We have applied the mentioned feature selection strategies to di�erent con�gurations
of the embedding methodology based on di�erent sizes of the set of representatives. The
gain we have obtained is much more relevant in those cases where we originally used a large
set of representatives. Clearly, this is because a larger set of representatives includes more
superuous elements which leads to noisier representations. In any case, we have observed
that the ranking methodologies are more adequate for the embedding proposal of this work
than those that look for a transformation of the features. Moreover, a deep evaluation of
the ranking methods tells how the node-based features have more weight than the edge-
based ones in the �nal reduced versions. This is not discarding, though, that edge-based
features need to be there since they keep adding structural information to the embedding
representations that help on the performance in classi�cation problems. PCA-based methods
are able to reduce redundancy of our features by removing several components of the vectors,
but this generally leads to poor classi�cation performances when compared to the ranking
methods. All in all, we have extracted some insight about the features we are proposing
by means of feature selection methods that let us work with lower dimensional vectorial
representations of graphs.

With respect to how to take pro�t of the diversity of the di�erent representations we may
construct for each graph, we have adopted a multiple classi�er system point of view. Ensem-
bles of classi�ers aim at boosting the performance of di�erent (base) classi�ers by combining
the outputs of all of them. In particular, for the discrete attributed graphs, we have used
di�erent representations with di�erent walk lengths, and for the continuous attributed case,
we use di�erent con�gurations based on di�erent sizes of the set of representatives. In both
cases, the di�erent representations can be seen as regarding both local and global structural
information of graphs.

The results con�rm that the discrete attributed case, where walks of di�erent length
are considered, need to be rede�ned in such a way that more robust representations are
obtained. Dealing with noisy features due to tottering e�ects and obtaining more diverse
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representations will eventually result in more discriminative embedding formulations. On the
contrary, the continuous attributed case do o�er some diversity in the representations that
lead to improvements of the combination of classi�ers with respect to the base con�gurations.
In most of the evaluated datasets, the optimal set of base classi�ers is composed of embedding
vectors that are based on rather di�erent representative set sizes. This supports the idea
that both local and global information of graphs is important to be taken into account.

Results and comparisons

This thesis �nished with a vast experimental evaluation of the di�erent proposed method-
ologies in comparison to other graph matching techniques. The discrete attributed case is
compared with graph edit distance in the graph domain and with a graph kernel based on
the edit distance in the vector domain, where a support vector machine is applicable. We
have put quite some emphasis on an empirical comparison of the computational times of all
methods |ours and the reference ones| and concluded that, while we still obtain tied or
even statistically better results than the reference systems, our methodology is much more
e�cient than graph edit distance and its associated kernel. Ensembles of di�erent classi�ers
only reported improvements whenever we detected a clear diversity in the original embedding
con�gurations.

The continuous attributed case has been also compared with the graph edit distance. In
this case, though, instead of a graph kernel we have used another embedding methodology
|based on the dissimilarity representation and the edit distance| that has been reported
as quite a robust approach for graph embedding. Our embedding fails in those cases where
a severe deformation is present in the underlying objects that graphs represent, these are,
distorted letters and handwritten digits. This is due to the fact that the assignment from
node labels to representatives is not as meaningful as desired and not able to undo the
inherent deformations that exist in the graphs with respect to its category model. In any
case, the other considered cases have generally a similar result to the reference method
while again here keep the computational time within reasonable limits, just the opposite
as the other techniques do. Feature selection methodologies usually impoverish the original
representations since some information is lost in the process, but still, the situation is only
worse than the reference systems whenever we have objects with inherent deformations.
Interestingly, the diversity of the di�erent base classi�ers results into an improvement on
this datasets where we originally have more problems.

Finally, we have proposed to adapt the generic embedding methodologies to a speci�c
case of color region adjacency graphs. We have used a color naming strategy in order to
select more meaningful elements in the set of representatives. Clustering results using the
proposed methodologies have reveal themselves as very competitive with other embedding
methodologies within the ICPR Graph Embedding contest.

8.2 Future Perspective

New ideas are there on the horizon that time constraints did not allow us to evaluate. First of
all, as it has been said plenty of times along this work, those features for discrete attributed
graphs that account for walks of arbitrary lengths could be drastically improved. Particu-
larly, the research line should look for ways to, �rst, e�ciently compute walks of arbitrary
length since the longer the walks the more the adjacency matrix should be exponentiated
and, second, to remove those meaningless walks that, for instance, keep travelling back and
forth along the same edges. Especially interesting would be to relate this embedding method-
ology with the so-called label pairs graph kernel [57, 58], a predecessor idea of the random
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walk kernel where some of this ideas are taken under consideration. A transition of these
ideas to continuous attributed graphs would be straightforward and also de�nitively worth
considering.

There is also a very important situation that should be tackled and that would close the
circle with respect to the kind of graphs that the proposed methodology can handle. It is
that of continuous attributed graphs with labelled edges. This case has not been considered
in this thesis, and whenever edge labels were there in a given dataset of graphs we just
neglected them. A possible way to adapt the embedding proposal to this type of graphs
could be of course the one that is directly related to the way it has been done for the discrete
case. This is, discretize the edge labels and count as di�erent features those edges that,
although they link nodes with the same (assigned) representatives, have di�erent labels.

It will also be interesting to perform the same analysis we did about the correlation with
edit distance in the discretely attributed case for the continuous one. Although the relation
is not that clear in this case, we feel this analysis will reveal a similar behavior than that
for the discrete case and thus we will be able to give quite more strength to the proposed
methodology.

Related to this, another idea is the following. Consider two graphs. A necessary condition
for one graph to be a subgraph of the other is that all of the features that we have described
for the �rst one are component-wise smaller than the corresponding ones of the second graph.
This is a necessary but not su�cient condition and thus it will not be useful for checking
subgraph isomorphism, but it would be of great help to e�ciently crop potential solutions
in a retrieval problem where a large database of graphs is evaluated. In particular, retrieval
scenarios are those that aim to recover similar objects to a given query element from a large
indexed dataset. E�cient comparisons by means of the proposed features in a subgraph
retrieval problem would easily discard unrelevant elements from the dataset.

Regarding the validation of the number of elements in the set of representatives, we
could perhaps use smarter ideas than just try several values in a large range. In particular,
we may evaluate a clustering measure in the labelling space and see whether there is any
correlation between those sets of representatives that obtain good clustering measures of the
set of labels and the corresponding performance of the eventual embedding representations.
If that is so, the range of the number of representatives where we seek the optimal one could
be reduced, and thus the validation of the set of representatives could be done faster and
more e�ciently.

Also on the experimental side, we could enrich this thesis if we apply feature selection
algorithms on the discrete attributed case, as we did in the continuous version. The main
reason for not doing so is that the labelling sets for the discrete graphs were always small
enough to not worry about the dimensionality of the resulting vectors. Anyway, a similar
study on which type of features a ranking method would reveal as the most relevant ones
would de�nitively be interesting.

The diversity of di�erent base classi�ers in the ensembles of multiple classi�ers has been
sought and obtained by using di�erent con�gurations of the embedding based on di�erent
sizes of the sets of representatives. We have no clue whether this is the optimal way to
approach this situation or whether other ways to look for diversity in base classi�ers would
give more discriminative representations. We may of course try to use several sets of repre-
sentatives of the same size but construct them in a di�erent manner. For instance, we could
try to randomly select several sets of representatives of a certain size and they will all be
regarding di�erent information from the graphs that may lead to an enrichment of the �nal
ensemble of the base classi�ers. Also, we may combine di�erent of the representations that
have been proposed, for instance, hard and soft versions, and see how they complement each
other in a �nal classi�cation setting.
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Finally, regarding the validation of most of our methodologies, we have used a simple
classi�er such as the kNN on the validation sets and eventually used an SVM for the test
stage. This procedure is clearly suboptimal but it has been done to keep the validation stages
within reasonable amounts of time. Maybe also the comparison with other graph matching,
and particularly, graph embedding methodologies could have been carried out. We have used
the ones described above since they provide a very general understanding of the problem.
Graph edit distance can deal with any type of graphs and thus the embedding methodology
we have used as the baseline does too. On top of these things, results on the same datasets
and with the exact same validation settings as the ones we have used are reported for these
methodologies and thus the comparison has been much more easier.





Appendix A

Graph Data

Along this work we have used several datasets of graphs. In this chapter we give a detailed
description of the nature of all of them. In particular, we describe the patterns each of them is
representing and, when necessary, the graph extraction process. The set of graph collections
is divided between those graphs with discrete attributes and those with continuous labels.

A.1 Discrete Attributed Graphs

Concerning graphs with discrete labels, we have considered 4 di�erent datasets. These
collections are split into two main categories regarding the nature of patterns they represent.
The �rst group of graphs represent objects in images and the second one represent molecule
structures.

A.1.1 Object Image Datasets

We construct graphs with discrete attributes from two publicly available large image databases.
The databases represent di�erent objects under a rotating viewpoint. In particular, we
used the Amsterdam Library of Object Images (ALOI) [60], and the Object Databank by
Carnegie-Mellon University (ODBK) [161].

The ALOI dataset is a generalization of the COIL dataset [118]. Images of 1000 objects
are acquired by changing the illumination and the view pose of the objects several times,
leading to a total amount of 110,250 images. In the top row of Fig. A.1, some examples can
be found. To keep the computational time of the tested algorithms within reasonable limits,
we only use 50 of the 1000 objects in this datasets. For the 72 di�erent images of an object
at 5 degrees of rotation, we keep 24 images (one at each 15 degrees of rotation) for training
and, from the remaining ones, we randomly select 5 for validation and 10 for testing. The
training set thus consists of 1200, the validation set of 250, and the test set of 500 images.

The second collection, the ODBK dataset, is rather di�erent from ALOI. It is a collection
of 209 di�erent object models that have been rendered with photo-realistic quality using 14
di�erent viewpoints. The bottom row of Fig. A.1 shows some examples. We select 100 of
the 209 objects. Out of the 14 viewing points of each object model, 12 are views arising
from 30 degrees rotation and 2 are the top and the bottom views. We only keep the 12
rotated viewpoints, 6 of which are used for training (one at each 60 degrees of rotation) and
the remaining six are randomly put either in the validation or in the test set. We eventually
have a training set of 600 images, and a validation and test sets of 300 images each.
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Figure A.1: Examples of images in the object datasets.

The graph extraction process is the same for the two datasets and it is illustrated in
Fig. A.2. Given the original image (Fig. A.2(a)), we �rst segment it (Fig. A.2(b)) using the
graph-based image segmentation approachdescribed in [50]. We crop the meaningless regions
by convoluting the image with a mask (Fig. A.2(c)) that distinguishes the object from the
background. The mask is constructed by �rst thresholding the grey-level image to remove
the background and then closing possible holes in the object by mathematical morphology
operations. We �nally obtain a segmented version of the original object (Fig. A.2(d)).

From the segmented object images we extract discrete attributed graphs in the following
way. Each region in the image is assigned to one of the eleven colors of the color naming
theory. In [9] the authors proposed a model by which an RGB value is assigned to one of
the eleven basic colorsWe label each region in our segmented objected by the color naming
output of this model when providing the mean RGB value of all pixels in the region. By
doing so, our node labelling alphabet will be

LV = fBlack; Blue; Brown; Green; Grey; Orange;
P ink; Purple; Red; White; Y ellow g: (A.1)

Regarding the edges of the graphs, we link all adjacent regions, this is, we put an edge
between every two regions whose borders have neighbouring pixels. In order to label these
edges, we compute the length {in pixels{ of the common border between two adjacent regions.
Such length is normalized by the sum of the lengths of all common borders in the image
and further discretized in three bins regarding the amount of pixels they share. The edge of

(a) Original image (b) Segmented image (c) Image mask (d) Result

Figure A.2: Object segmentation for graph extraction.
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Table A.1: Characteristics of the discrete object image datasets. Size of the train-
ing (tr), validation (va) and test (te) sets, the number of classes for each dataset
(#classes), the average number of nodes and edges (�jV j/�jEj), the maximum num-
ber of nodes and edges (maxjV j/maxjEj) and the size of the node (jLV j) and the
edge (jLE j) label alphabets.

Size
Dataset (tr, va, te) #classes ±|V | max|V | ±|E| max|E| |LV | |LE |

ALOI 1200, 250, 500 50 22.9 78 49.6 204 11 3
ODBK 600, 300, 300 100 15.2 62 30.8 172 11 3

those regions that share a short border will be labelled by Short, those falling in the second
bin by Medium and those in the third by Long. The edge alphabet is thus

LE = fShort; Medium; Long g: (A.2)

Finally, some other interesting characteristics of these datasets, such as the average and
maximum number of nodes and edges, are shown in Table A.1.

A.1.2 Molecule Datasets

The second group of discrete attributed datasets is formed by two molecule datasets. Molecule
compounds are certain biological structures that are easily represented by graphs. Atoms in
the molecules are represented by nodes whose labels are the corresponding atomic elements.
Edges represent the covalent bonds and they are labelled with the corresponding bond type.

The �rst dataset of molecules is the AIDS database from the IAM Graph Database
Repository [132]. Graphs are constructed from the AIDS Antiviral Screen Database of
Active Compounds [2]. They consist of molecules that are either positive or negative against
HIV activity. In Fig. A.3 an example of a molecule of each class is shown. For training and
validation purposes, 150 molecules are used in each set, while 1500 are used for testing. In
this dataset, 21 di�erent atomic elements happen to be the label of a node in the training
set. Thus the size of the node label alphabet is 21. For the edges, only three labels are there:
single, double, and triple bonds.

The second dataset of molecules is also taken from the IAM Graph Database Repository
[132]. The Mutagenicity dataset (MUTAG) is composed of molecules that are divided into
two classes, mutagen and non-mutagen. The mutagenicity of a molecule is a biological
property that restricts its potential to become a commercial drug [90]. In this dataset, 1500

(a) Active (b) Non-active

Figure A.3: Examples of molecules from the AIDS dataset.



106 GRAPH DATA

Table A.2: Characteristics of the molecule datasets. Size of the training (tr), val-
idation (va) and test (te) sets, the number of classes for each dataset (#classes),
the average number of nodes and edges (�jV j/�jEj), the maximum number of nodes
and edges (maxjV j/maxjEj) and the size of the node (jLV j) and the edge (jLE j) label
alphabets.

Size
Dataset (tr, va, te) #classes ±|V | max|V | ±|E| max|E| |LV | |LE |

AIDS 250, 250, 1500 2 15.7 95 16.2 103 21 3
MUTAG 1500, 500, 2337 2 30.3 417 30.8 112 13 3

molecules are used for training, 500 for validation and 2337 for testing. In this case, 13
di�erent atomic elements constitute the node label alphabet, while again there are three
di�erent types of atomic bonds represented by the edges labels.

As a summary, in Table A.2 we show the main characteristics of each of these datasets.

A.2 Continuous Attributed Graphs

Regarding the graph collections of continuous attributed graphs, we have used two important
sets of databases. The �rst one, the IAM graph database repository is an important and
widely used set of collections for graph-based algorithms benchmarking. The second one is
the ICPR 2010 Graph Embedding Contest datasets which is rather new and also provides a
practical framework for algorithm comparison.

A.2.1 IAM Database Repository

The IAM Graph Database Repository was created at the University of Bern [132]. The
original purpose was to provide a set of standarized graph collections for benchmarking
graph-based pattern recognition and machine learning algorithms. It has been clearly ac-
complished since many works use these datasets for comparing the algorithms proposed. The
IAM Database covers a wide range of pattern recognition applications due to the nature of
the representations that can be found, wrapping topics from document analysis problems
(letters and symbols) to biometric identi�cation (�ngerprints). The IAM databases we have
used in this work are described in the following.

Letter Databases

The �rst three datasets of graphs are the Letter Databases, which represent synthetic dis-
torted letter drawings. Starting from a manually constructed prototype of every of the 15
Roman alphabet letters that consist of straight lines only (A, E, F, H, I, K, L, M, N, T,
V, W, X, Y and Z ), di�erent degrees of distortion are applied: low, medium and high. For
each of the classes, 150 instances are acquired under every degree of distortion, leading to
three di�erent datasets with 2250 graphs each. The datasets are split into a train, a val-
idation and a test sets of 750 instances each. Concerning the graph representation of the
letters, each ending point of a line is represented by a node of the graph and labelled with
its (x; y) coordinates. Unlabelled edges represent the existing lines in the letters by linking
the corresponding nodes. An example of the A prototype and three instances of each of the
di�erent distortions are shown in Fig. A.4.
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Figure A.4: Synthetic prototype of the letter A (left). One instance of the same
class for each of the distortion levels (low, medium, high).

GREC Database

The GREC Database [43] represents architectural and electronic symbols under di�erent
levels of noise. In Fig. A.5, we show an example of each distortion level for di�erent drawings.
Depending on the level of noise, di�erent morphological operations are applied to the symbols
until lines of one pixel width are obtained. Intersections and corners of such lines constitute
the set of nodes, which are labelled with their position on the 2-dimensional plane. Edges
are traced between such interest points and labelled as line or arc. From the original dataset
described in [43], 22 classes are considered, containing 50 instances of each distorted symbol.
Around one quarter of them are used for training purposes, another quarter for validation
and the rest for testing.

Figure A.5: An example of each of the distortion levels in di�erent symbols of the
GREC dataset.

Digits Database

The Digits database represents a set of handwritten digits. In [3] digits were originally
acquired by recording the pen position at constant steps of time. Based on the sequences
of (x; y) coordinates, graphs are constructed by adding nodes in regular intervals between
the starting and ending points of a line. Nodes are labelled with their (x; y) position and
connected by undirected edges. The orientation of each edge with respect to the horizontal
direction is its label. In Fig. A.6 one instance of each class is depicted. From the original
10992 handwritten digits, 350 are considered for each class: 100 for training, 50 for validation
and 200 for testing purposes.

Fingerprint Database

The Fingerprint Database consists of graphs that are obtained from a subset of the NIST-4
�ngerprint image database [178] by means of particular image processing operations [119].
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Figure A.6: Examples of each of the classes of the Digits dataset.

Ending points and bifurcations of the skeleton of the processed images constitute the (x; y)-
attributed nodes of the graphs, plus some additional nodes that are inserted between these
points. All points connected through a ridge in the image skeleton are connected with an
unlabelled edge. From the original set of images [178], 500 are considered for a training set,
300 for a validation set and 2000 for a test set. Fingerprints are distributed among four
di�erent classes: arch, left, right and whorl from the Galton-Henry classi�cation system.
The arch class has twice the number of element than the other classes since it also includes
the so-called tented arch class. An instance of each of the four classes in the Fingerprint
dataset is shown in Fig. A.7.

Figure A.7: Fingerprints Dataset: one example of each class. From left to right:
left, right, arch and whorl.

COIL Database

The last IAM Dataset we have used in this work is also a set of graphs extracted from
the COIL-100 database [118]. In this case, though, graphs are extracted by considering
salient points in the images using the Harris corner detection algorithm [69], labelling these
points with their corresponding (x; y) coordinates on the plane, and linking points using a
Delaunay triangulation. Nevertheless, the distribution of the training, validation and test
sets is exactly as the one described in Section A.1.1. In the �rst row of Fig. A.1, color images
of �ve instances of the COIL dataset are shown. In Fig. A.8 there is a grey-level picture of
each of the 100 objects.

Summary and discussion

The IAM Graph Database Repository includes several collections of graphs describing pat-
terns of di�erent nature. In this section we have just described those that are represented in
terms of locations of interest points, this is, those sets whose graph nodes are (x; y) coordi-
nates in the two-dimensional plane. Some of these datasets include also edge labels, which,
unless indicated, are neglected by the algorithms proposed in this work.

Moreover, each of the datasets is split into a training set, a validation set and a test set.
In Table A.3, we summarize the main properties of them, in particular we show the size
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Figure A.8: The 100 COIL objects.

of the corresponding training, validation and test sets, the number of classes and also the
average and maximum number of nodes and edges.

Table A.3: Characteristics of the IAM repository datasets. Size of the training (tr),
validation (va) and test (te) sets, the number of classes (#Cls), the average number
of nodes and edges (An/Ae) and the maximum number of nodes and edges (Mn/Me)

Dataset Size #Cls An/Ae Mn/Me
tr, va, te

Letter low 750, 750, 750 15 4.7/3.1 8/6
Letter medium 750, 750, 750 15 4.7/3.2 9/7
Letter high 750, 750, 750 15 4.7/4.5 9/9
GREC 286, 286, 528 22 11.5/12.2 25/30
Digits 1000, 500, 2000 10 8.9/7.9 17/16
Fingerprints 500, 300, 2000 4 5.4/4.4 26/25
COIL 2400, 500, 1000 100 21.5/54.2 77/222

A.2.2 ICPR 2010 Graph Embedding Contest

The ICPR 2010 Graph Embedding Contest organizers prepared three datasets of graphs with
continuous attributes for nodes [55]. In this case, though, unlike the IAM graphs, nodes are
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not attributed with location coordinates but with RGB values of segmented regions of object
images and relative size of such regions.

In particular, the object image collections that were used are exactly the same as those
described in Section A.1.1. Namely, the Columbia Object Image Library (COIL) [118], the
Amsterdam Library of Object Images (ALOI) [60], and the Object Databank by Carnegie-
Mellon University (ODBK) [161].

Given an object image, it is initially smoothed using a Gaussian �lter and then segmented
with a pyramidal segmentation algorithm. A region adjacency graph is constructed: regions
become nodes labelled with the mean RGB value of their pixels and the corresponding
relative size. Edges remain unattributed.

Being these datasets part of a contest and due to the will of making algorithms as much
class-independent as possible, the distribution of training/test sets is di�erent from the one
described in the previous section regarding the IAM repository. In particular, there is only
a training and a test set for each object image collection (no validation set is available).
The evaluation protocols that are used for these datasets are detailed in this work whenever
they are used (Section 7.3.5). On top of this, the classes present in the training set do not
intersect with those of the test set. Particularly, the train set for the ALOI and COIL datasets
contains 25 classes and the test set contains 25 other classes. The ODBK is distributed with
104 classes for training and 104 for testing. We show these number and other important
information regarding these datasets in Table A.4.

Table A.4: Characteristics of the ICPR 2010 Graph Embedding Contest datasets.
Size of the sets, the number of classes (#Cls), the average number of nodes and edges
(An/Ae) and the maximum number of nodes and edges (Mn/Me)

Dataset Size #Cls An / Ae Mn / Me

ALOI train 1800 25 29.24 / 28.37 103 / 112
ALOI test 1800 25 18.37 / 17.25 134 / 156

COIL train 1800 25 33.31 / 32.30 107 / 97
COIL test 1800 25 34.88 / 32.33 100 / 92

ODBK train 1248 104 65.18 / 62.45 636 / 598
ODBK test 1248 104 56.91 / 54.37 528 / 512

Again here, and unless indicated, edge labels have been neglected for all these datasets
and are not used by any of the algorithms proposed in this work. Moreover, the node at-
tribute regarding the relative size of the corresponding color regions is not either considered.



Appendix B

Scatter Plots of the Correlation
between Graph Edit Distance and
the L1 distance for the Embedding
Features
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(f) Mixture of Gaussians - all

Figure C.1: Study of the e�ect of distances for the Letter LOW database using a
kNN classi�er.
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(d) Fuzzy kMeans - all
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Figure C.2: Study of the e�ect of distances for the Letter MEDIUM database using
a kNN classi�er.
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(d) Fuzzy kMeans - all
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Figure C.3: Study of the e�ect of distances for the Letter HIGH database using a
kNN classi�er.
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(d) Fuzzy kMeans - all
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Figure C.4: Study of the e�ect of distances for the GREC database using a kNN
classi�er.
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Figure C.5: Study of the e�ect of distances for the Fingerprints database using a
kNN classi�er.
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Figure C.6: Study of the e�ect of distances for the COIL database using a kNN
classi�er.
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