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1.INTRODUCTION 
1.1 Preliminaries 

 

Knowing, understanding and predicting species distributions under global 

change: A cross-disciplinary challenge. 

 

Why do we want to know species distributions? What causes the observed pattern? I first 

stumbled on these questions years ago, during a field trip to the Pyrenees with Professor JM Roure 

in my last year of Environmental Science program. Since then, I have encountered many non-

conclusive answers to them but I have to confess that back then, for an environmental scientist 

mainly trained in social sciences, there was not an obvious answer. I contented myself answering 

that understanding the ecology of the species was an aim itself and that enabled us to know the 

Earth system better, which I think it is still a valid statement nowadays. 

 

Following my interest in environmental (sensu lato) controls on biota, Professor JM Roure 

pointed me to my PhD supervisor, Professor Ninyerola. He has been guiding me these years in my 

discovery of GIS science to undertake my first study on climatic classification (Serra-Diaz et al., 

2011) and subsequent bioclimatic profiling of species through statistical modeling, which is being 

presented in this PhD dissertation.  

  

After reading for a long while, I rapidly got to realize that understanding species distribution was 

a task far from trivial, and that many factors intertwine to produce what we see today: a certain 

species in a given geographical location. The role of both the environmental history of the Earth 

and the current environment is crucial to understand and predict species distributions: Past climatic 

changes (e.g. last glacial maximum), former and current uses of land by humans (e.g. treelines), 

environmental factors that affect species physiology (e.g. temperature tolerance), disturbance 

events (e.g. fire or droughts), species’ use by humans (e.g. plantations), and so on. Largely 
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influenced by my colleagues in Geography (especially Dr. Pèlachs), I certainly broadened the scope 

and realized that species (and landscapes) are a clear footprint of the intersection between past 

and present.  

 

Given this multiplicity of factors it did not surprise me so much the fact that many disciplines 

(and sub-disciplines) approached species distributions studies. Terms like chorology, biogeography, 

physical geography or ecology did not sound unfamiliar to me at all. However, I felt that recently a 

whole new terminology in (sub?) disciplines is being used to study species distributions: ecography, 

macroecology, spatial ecology, global biogeography. These new words rather emphasize details on 

the ecology of biogeography, or the biogeography of ecology. In my opinion, they represent a 

difficult conceptual mess, particularly for a newbie, even though I accept and sometimes embrace 

the value and subtleties of these terms. 

 

Currently, the convergence of biogeography and ecology is a topic of theoretical discussion 

(Jenkins & Ricklefs, 2011; Dawson & Hortal, 2012). These authors identified a gradual merging of 

these scientific communities, particularly at the intermediate temporal and spatial scales. This 

example illustrates how disciplines are not static boxes and, like many processes in the real world, 

disciplines are dynamic: they split and merge and the borders between them tend to be rather 

fuzzy than sharp. Just the same story as it should be for university departments and research 

networks. 

 

Each discipline and literatures used different conceptual models to understand and project the 

distributions of species, species richness and communities. Likewise, concepts like potential natural 

vegetation, niche, biotope or derivations of neutral theory of ecology have their own explanation 

(or not) of the patterns observed in the geography of species and biodiversity. I then understood 

that the concepts one chooses to approach species distributions may be contingent to one’s 

background, but many concepts overlap. 

 

 In the field of botany, the term potential natural vegetation has been traditionally used to 

describe the state of mature vegetation in absence of human intervention. Such approach, 

traditionally based on phytosociological studies still brings some heated debates in the literature 
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(Carrión & Fernández, 2009; Chiarucci et al., 2010; Carrión, 2010; Loidi & Fernández‐González, 

2012 ; Somodi et al., 2012 ), mainly due to the ambiguous use of the term and its disputable 

operational value. However, this term is being applied in some instances in the modeling scene 

(Hickler et al., 2012).  

 

Despite theoretical tribulations, I set my feet down to earth and I could not escape the fact that 

we are facing an era of global change, among which climate change has been one of the most 

studied phenomenon. In this context, I wondered again about the relevance of predicting future 

species distribution: Relocation of species in the future or their eventual extinction will likely affect 

human beings through the redistribution of ecosystem services and potential loss of ecological 

traditional knowledge, to mention a few. Thereby, I considered that studying future distributional 

shifts of species (and ultimately ecosystems and biomes) will enable us to adapt to the forthcoming 

environmental conditions, or mitigate its impacts. Overall, addressing species distribution 

represents a phenomenon of paramount interest for both biological research and management 

needs in the face of global change.  

 

Many definitions for global change are out there, but I especially like the one coined by the U.S. 

Global Change Research Act of 1990: “Changes in the global environment (including alterations in 

climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological 

systems) that may alter the capacity of the Earth to sustain life”. Although it hides who to blame for 

this effects, the definition embraces the much of the high dimensionality of the issue. However, it 

lacks of accounting for changesin social environment, which is crucial also for predicting future 

scenarios. Global change is therefore as complex as species distributions, potentially hiding 

interacting factors yet to be identified. 

 

In order to develop predictions of future distributional shifts I dove into the realm of modeling. 

Initially, the idea was to move beyond from the expert-based system of phyotosociological studies, 

which I acknowledge its strengths, to a more statistical oriented approach capable of applying the 

same set of rules to the study area. In general, models provide a powerful and practical tool to 

study a system or a guide to decision-making processes and may be less judgmental. Following my 

initial training on GIS and statistics, we developed an atlas of potential distributional shifts in 
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Iberian trees (Ninyerola et al., 2010) using a correlative statistical model of environment with 

presence-absence of species. This first project constituted the cornerstone of the studies presented 

in this PhD thesis. Nearly all studies in this document deal with climate change predictions, which I 

acknowledge is only a subset of the wholesale of processes compounding global change. I believe 

this is a start, although I would have enjoyed including many other processes. Definitely, separating 

a PhD project with one’s scientific career project is definetely a lesson I have learned.   

 

In the beginning, I used the term “species distribution model” to refer to the correlative 

statistical approach of linking presence (optionally absence) of a species with environmental 

variables. However, during this PhD I have been changing the term throughout, at the risk of 

reader’s annoyance. Many terms have been coined to this kind of models (environmental niche 

models, habitat suitability model, ecological niche models, etc.). There may be good reasons for 

choosing one or another. For instance, authors like J.Franklin prefer the use of the term species 

distribution models because the response variable is current species presence, which is influenced 

by many factors besides niche dimensions (Franklin, 2010a). Others, like P.Peterson and colleagues 

(Peterson et al., 2011) prefer to use niche models, because our final aim is to estimate the 

environmental conditions where a species lives (e.g. niche) and we do not take into account other 

variables. Therefore, whether the emphasis is given to the current distributions or the 

environmental factors may be a suitable criterion to use one term or another (Saupe et al., 2012). 

 

However, in the introduction and final remarks of this PhD I will use the term ecological niche 

models (ENM), although in each chapter I may use a different term when current distribution or 

niche dimensions where more appropriate for the context. The reason why I chose ENM is based on 

the terminological classification developed by Sillero (2011). It enables the use of the term for both 

correlative and mechanistic models and directly links the statistical formulation to the theoretical 

background of the model. In this PhD thesis we will only use correlative ENM, so the acronym 

CENM will be used. 

 

Finally, as scientists, we are engaged on identifying risks and finding solutions that forcefully 

imply the understanding of the Earth. As I am writing these words, new studies are warning that we 

are approximating to a (maybe) transition state in the Earth system (Barnosky et al., 2012), and 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
15 

 

how society engagement is necessary to turn the tables of Earth’s overexploitation (Ehlrich et al., 

2012). These days, 20 years after the Conference of Rio (1992) for Biodiversity, countries have 

shown little success besides those beautiful but uncompromising words written in a new treatise. 

However I think that we sometimes need to rely on the naïve hypothesis that makes us (scientists) 

believe that setting better predictions of the geography of species will, ultimately, enable to both 

realize the magnitude of the issues we are facing and develop strategies for nature conservation in 

the Anthropocene era. 

 

1.2 Setting the scene of species distribution models: a very 

brief summary (or not). 
 

In the present work we will refer to correlative ecological niche models (CENM) as the 

phenomenological model using statistical techniques that enables characterizing and mapping 

species distributional areas. Such statistical models use georeferenced data on species distribution 

(presence and/or absence) and the environmental variables thought (or known) to influence (or 

determine) species requirements. Subsequently, a statistical technique is employed to fit the 

relationship between species occurrence and the environment it inhabits. After assessing model 

accuracy, the environmental-occurrence relationship is projected to the geographical space and 

distributional areas are mapped (see Figure 1.1).  

 

The above definition hides the challenges that make the art of modeling species distribution 

more than a simple statistical juggling. We will revise below different options we can choose (or 

not) and outline several issues raised in the literature at each modeling step (Figure 1.1). It is not 

our intention here to write an extensive review of the current state of the art, for which we 

encourage reading (Guisan & Thuiller, 2005; Elith & Leathwick, 2009; Franklin, 2010a; Elith et al., 

2010; Peterson et al., 2011). Instead, our goal is to summarize current topics in CENM in order to 

frame the context of the complexities contingent to modeling species distributions. The reader can 

also find interesting Appendix 1, in which an extended literature review is organized for different 

steps of the modeling . 
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Figure 1.1 Modeling sequence of correlative ecological niche models. 

 

 

What drives species distribution? Not so easy choosing predictors 

 

Selecting what factors influence species distribution may not be obvious in many cases. Often, 

(bio)climatic variables are selected because analysis of species distributions are usually realized at 

coarse scales, however different environmental predictors are meaningful at different spatial and 

temporal scales. Austin (2002) and  Pearson & Dawson (2003) showed different conceptual 

frameworks of the interaction of different predictors and scale with species distributions. In 

summary, while broad climate variables work at large scales, topography and soil work at finer 

spatial scales. Indeed, topographic predictors may increase model accuracy but they may be 

challenged by temporal transferability (discussed below), that is, model extrapolation to new 

climatic situations. For instance, it has been argued that using topography hinders CENM to be used 

for climate change scenarios, since some of the predictors remain constant. On the other hand, 

such predictions are a surrogate of climate variables working at lower spatial resolution and could 
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therefore conjecture results from broad climatic datasets and improve model accuracy (Lassueur et 

al., 2006). In a recent paper Stanton et al. (2011) shows that including such static variables is 

however recommendable for future predictions, if we are certain that it clearly affects distributions 

of targets species. In general, selecting relevant variables in accordance with species ecology is not 

always straightforward as such information may be lacking for many species.   

 

Parallel to this debate is the use of remote sensing variables in CENM (Kerr & Ostrovsky, 2003). 

The products form satellite imagery have been to a lesser extent applied for different proposes: 

identifying niche similarity to better predict rare plants and invasions (Roura-Pascual et al., 2006; 

Zimmermann et al., 2007; Papes et al., 2012) and even direct reflectance values have been 

incorporated to models (Morán-Ordóñez et al., 2012). The difficulties to model such predictions to 

the future, however, have hampered its widespread inclusion in CENM, whose scientific literature 

(not necessarily practice) has been very much focused on climate change effects. 

 

There is a whole literature about the role of landscape and land use variables in these models 

although unfortunately they may have not reached the popularity or availability of bioclimatic 

parameters. For some taxa, especially birds and vertebrates, land-use variables and its influence in 

modeling outcomes have been widely discussed (Thuiller et al., 2004a; Austin & Van Niel, 2011; 

Triviño et al., 2011; Barbet-Massin et al., 2012). Additionally, the development of land use change 

models has boosted conservation studies that balance both climate and habitat loss in short-term 

global change studies (Bomhard et al., 2005; Araújo et al. 2008). 

 

In any case, many of these variables may show a high degree of colinearity which may affect 

parameter estimation, especially when using regression techniques as fitting algorithm, as well as 

modeling transferability and interpretability (e.g. equifinality). Although many methods could be 

applied (Dormann et al., 2012a), common uses set a threshold to consider a non-collinear variable.  
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What is my data like? Choosing or adapting to data approaches and sampling 

strategies 

 

Depending on the species data used for model building we can find 4 different approaches: (1) 

presence-only, (2) presence-pseudoabsence, (3) presence-background and (4) presence-absence. 

(1) Presence-only models profile the environmental conditions in which the species occur and are 

mostly used in the case of herbarium and museum data collections. (2) Presence-pseudoabsence is 

similar to the presence-only model but absence selection is not based on any record of absence but 

on a thought or random selection of probable absences. (3) Presence-background models use a set 

of locations in order to characterize species environment. The key difference is that background 

locations could coincide with occurrence locations whereas pseudo-absences do not. The rationale 

underneath is that pseudo-absences aim at simulating absence locations whereas background aims 

at environmentally characterizing the area under study.  In practice, the species modeled normally 

constitute a small proportion of the geographical area under study and differences between 

background and pseudoabsence tend to be subtle (Peterson et al., 2011). Finally, (4) presence-

absence models additionally use information of locations where the species is known not to be 

present and are used in the case of inventory data, where a designed sampling has been 

undertaken. 

 

In selecting species geographical distribution, bias in presence data and pseudoabsence or 

background selection constitute one of the major issues. It has been proposed that, at least for 

presence-absence, background or pseudo-absence, a possible approach is to cancel bias of 

presences by reproducing bias in absences, but different techniques to perform such task have not 

been widely tested (but see (Phillips et al., 2009)).  In addition, absence selection and the biological 

meaning of such absence play an influential role in model building (Chefaoui & Lobo, 2008; 

VanDerWal et al., 2009b; Lobo et al., 2010), essentially because we do not know the cause of such 

absence (e.g., humans? climate? species competition?). This may hinder true responses of species 

occurrence to the selected predictor variables. Furthermore, selecting the regions for background is 

not obvious and may rely on different assumptions that modelers need to deal with (Barve et al. 

2011). However, some practical approaches have started to sprout out: from modeling potential 
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areas visited by the species (Barve et al. 2011) to the use of trend surface analysis (Acevedo et al. 

2012).  

 

Other sources of bias are detectability, locational errors and imperfect reference data, which 

have been less explored ‘by default’ in CENM studies. Indeed the first rule of a naturalist in the field 

is that some (sometimes most) of the species are undetected. The treatment of detectability issues 

has been addressed by some authors (Gu & Swihart, 2004; Royle et al., 2005; Hartel et al., 2009; 

Rota et al., 2011), who pointed out that detectability clearly influence parameter estimation and 

accuracy, especially in the case of logistic regressions. Georeferencing errors also decrease model 

performance (Graham et al., 2008; Osborne & Leitão, 2009) although CENM may retrieve 

acceptable accuracy under medium-error levels, specially machine-learning techniques  (Graham et 

al., 2008). However, even having ecologically plausible and statistically meaningful models, Osborne 

et al. (2009) warns that variable selection and importance is widely affected by such positional 

errors and may therefore compromise inference.  

 

Other data features that affect model accuracy are quantity and quality. I believe that the 

amount of data used have been widely studied (Wisz et al., 2008) compared to the quality of data 

(Dormann et al., 2008). A thorough analysis on imperfect reference data realized by Foody (2011) 

highlight the need for most of presence-absence to undertake a careful design, as the quality and 

quantity of data should meet the specific need of the study and may show other behavior besides 

changes in performance metrics. Last but not least, the relative abundant sources of data on 

species distributions has led to the use of different data sources, underlying different sampling 

strategies which clearly may affect our estimations in several ways ( see Edwards et al. (2006) for 

examples of accuracy change). 

 

Embracing a whole ecosystem of algorithms 

 

These 4 approaches on geographic distribution of the target species, largely depending on 

available data and sampling method, bound the range of statistical techniques we can use, which 

could in turn be divided into 3 large (albeit fuzzy) groups: (1) regression techniques, (2) machine-

learning techniques and (3) classification-similarity techniques (Franklin, 2010a). We could also 
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identify other largely used approaches, like expert-based models (Carter et al., 2006) and Bayesian 

approaches (Latimer et al., 2006), but they will not be used in this work. 

 

Modern regressions have been widely applied and compared (Guisan et al., 2002; Segurado & 

Araujo, 2004), and they can use different type of functions to accommodate the shape of the 

response between independent variables and occurrence (dependent variable). Main algorithms 

employed are generalized linear models (GLM), generalized additive models (GAM) and 

multiadaptive regression splines (MARS). The difference mainly relies on the flexibility to 

accommodate response functions and whether they can or not apply interaction terms. Within 

regression models, spatial regressions deserve special consideration, because it has been largely 

recognized that undesired effects of spatial autocorrelation affect regression (Dormann, 2007), 

although other machine-learning methods too (Veloz, 2009). Methods like autologisitc regression, 

generalized estimating equations, generalized mixed models or geographically weighted 

regressions have been, to a lesser extent, employed but they explicitly account for the spatial 

component (Dormann et al., 2007). 

 

Machine learning algorithms imply to the detection of a set o rules that can classify input data 

accordingly; hence they are typically data-driven approaches. In the arena of machine learning, 

decision-tree methods have been widely applied and currently variations of them (e.g boosted 

regression trees, random forests) that are computationally more intensive and use a wide number 

of decision trees have proved to retrieve very good results (Elith et al., 2006). Other methods used 

in CENM are artificial neural networks, which classify data based on combinations of parameters 

and genetic algorithms, which develop a set of probabilistic rules that are sequentially selected. A 

less known algorithm currently being implemented are supported vector machines, which defines 

the hyperplane that divides presences from absences (Guo et al., 2005), although they could be 

used also for presence-only (Drake et al., 2006).  Perhaps the most popular method among machine 

learning techniques is the so-called maxent, which stands for maximum entropy algorithm used in 

species distributions (Phillips et al., 2006). Such method seeks to define the distribution of 

maximum entropy within defined constraints, in our case relative to current species distribution. It 

has been emphasized that such computational intensive algorithms may be prone to overfit data, 

sometimes through overparmetrization (Warren & Seifert, 2011). Such situation may lead to 
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ecologically unrealistic response functions and a less general model. Different regularization terms, 

especially in maxent, have been proposed to soften the response functions (Elith et al., 2011) and 

some new methodologies are being implemented to choose a suitable number of predictors 

(Warren & Seifert, 2011). 

 

Classification-similarity techniques are algorithms normally based on presence only data, 

describing species locations in a multivariate statistical distance framework. Among these, 

enveloping techniques imply the use of mathematical algorithms based on defining the 

environmental space among presences. They define an environmental region in which the species 

is present and can range from rectangular fitting in the environmental space (using minimums and 

maximums of environmental layers; e.g. BIOCLIM) to more complicated “shapes” like convex hulls 

(e.g. HABITAT). Other methods, such as ecological niche factor analysis (Hirzel et al., 2002) use 

Mahlanobis distances from averaged conditions in which the species occurs to define occurrence 

probabilities. 

 

Selecting data approach and algorithm produced several multi-model comparisons in the 

scientific literature, aiming to unveil which technique and approach performs best (Brotons et al., 

2004; Muñoz & Felicísimo, 2004; Elith et al., 2006). In fact, it is important to stress that the 

combination of techniques and data provide different insights into characterizing different kinds of 

distributional areas and even different probabilistic measurements (probability of occurrence, 

probability of habitat use, etc.). For instance, Jiménez-Valverde et al. (2008) showed a simple but 

clarifying diagram of the conceptual implications of such choices (see Figure 1.2). On one extreme 

these authors indicate that presence-only enveloping models tend to characterize potential 

distributional areas better (potential niche), whereas presence-absence machine learning methods 

tend to approach to current or realized distributional areas (realized niche, see section 1.3 for 

further details). These different characterizations will be suited to different study goals and will 

largely depend on the modeler. For instance, studies aiming at discovering new species populations 

may want to draw potential distributional areas maps, whereas studies aiming at monitoring 

current populations may want to have a map that tightly render current distribution area.  

 

 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
22 

 

 

 
Figure 1.2 Relationship between algorithm and data approach with the type of niche being modeled. 

Modified from Jimenez-Valverde et al. (2008) 

 

In order to reduce the uncertainty, which may be high especially (not exclusively) due to the 

algorithm employed, it has proposed the use of ensemble models (from the outcomes of several 

techniques) (Araújo & New,2007; Rangel et al., 2009; Thuiller et al., 2009), which may increase 

overall accuracy results (Grenouillet et al., 2010). However, model ensembles can be constructed 

using different approaches (Araújo & New, 2007) and may not always increase the plausibility of 

the predictions (Elith et al., 2010; Mellert et al., 2011).  

 

Spatial and temporal inference  

 

After building the model, the fitted relationship between environmental variables and 

occurrences is applied to the landscape under analysis, the so-called model ´projection in space’. In 

such procedure every map unit is assigned to a ´probability of presence´ derived from the built 

model. A key issue here is that the environmental range of model calibration or fitting should 

comprise the environmental range of projection; otherwise models are extrapolating beyond their 

model building capacities. Model extrapolation issues often arise not only when projecting to space 
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(i.e. different geographical areas) but also in time (i.e. future or past), when new environmental 

conditions will occur or have occurred (Williams & Jackson, 2007; Synes & Osborne, 2011; Zurell et 

al., 2012; Veloz et al., 2012). These extrapolation regions should be taken with caution when 

assessing past or future distributions. Some authors have applied distance operators in order to 

depict extrapolation regions in the geographical space (multivariate environmental similarity 

surface; Elith et al. 2010) 

 

Projection capacity (in space or time) is also closely related to the selected algorithm. It has been 

outlined that model complexity, more variables and much complex response curves, may retrieve 

very accurate predictions in the geographical area of parameterization, but show little 

transferability to other regions (Heikkinen et al., 2011). Parameter settings are therefore crucial in 

order to avoid overfitting to data used to model building. 

 

Not so obvious thresholds 

 

In order to determine the area of distribution (whether potential or realized) it is necessary to 

convert probability of presence values into categories (suitable-presence vs. unsuitable-absence), 

therefore a threshold needs to be set. Researchers have nourished literature with different ways to 

do that (Liu et al., 2005; Jiménez-Valverde & Lobo, 2007) and many papers sprouted revealing 

major differences in modeling outcomes depending on the threshold chosen (Freeman & Moisen, 

2008; Nenzén & Araújo, 2011). Generally, widely applied thresholds balance the correct 

classification of presences and absences (optimization thresholds: Maximum Kappa, Equate 

Sensitivity-Specificity) or maximize the correct classification of presences (i.e. sensitivity) or 

absences (i.e. specificity). However, optimization thresholds may not be the best approach when 

the costs of incorrectly predict presences and absences are different, which will be determined by 

the goal of the study. For instance, in the case of invasive species it is acknowledged that 

maximization of presences correctly predicted (true positive rate) constitute a better approach, 

because the costs of invasive species extraction surpass the costs of prevention (Jiménez-Valverde 

et al., 2011): underpredictions are more expensive than overpredictions in this case. 
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Is my model an accurate model?  

 

Assessing performance and significance of CENM projections is not a trivial task and many 

measures may slightly indicate different characteristics of the power to predict species distributions 

(Jiménez-Valverde & Lobo 2007). In theory, independent datasets should be used for 

calibration/fitting and validation/evaluation, but in practice a common use is to partition data into 

training and testing according to a percentage that ranges from 70-80% to 30-20% respectively. 

However, in the recent years computational advances enabled the use of jackknifing and 

bootstrapping techniques. Such techniques use a high number of modeling iterations by 

partitioning data into n-subsets that will (with or without replacement of samples) test model 

accuracy repetitively. In principle, CENM and accuracy results should be much more robust using 

such techniques, because we ensure that all information on species occurrence has entered during 

model building.  

 

Another issue is what metric should be used in order to assess model predictive ability and to my 

knowledge, here we are still far from consensus. Traditional approaches have broadly used 

different measures derived from a confusion matrix in which correctly and incorrectly presences or 

absences are quantified according to a certain chosen threshold. In the case of models using 

background information, modifications are undertaken so that instead of absences they calculate 

the area predicted to be suitable for the species, although other modifications of presence-absence 

metrics have been proposed (see Phillips et al. (2009); Peterson et al. (2008); Hirzel et al. (2006) ).  

However, such approach largely relies on the threshold chosen which may hinder the evaluation of 

the model itself and potential comparison tests. Such situation has lead to the largely used 

threshold-independent measure of the area under the receiver operating characteristic curve (AUC; 

Fielding & Bell (1997)). AUC was initially developped in World War II and later applied to medical 

diagnostics (Thompson & Zucchini, 1989), it uses prediction errors across the whole range of 

predictions. Consequently, models and species can be compared because they are not threshold 

dependent. However, such measurement has received much criticism (Peterson et al., 2008; Lobo 

et al., 2008; Jiménez-Valverde, 2011). These authors point out many shortcomings of AUC such as: 
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low ability to account for the goodness of fit because it is just a discrimination measurement, poor 

discrimination in the central area of the curve and lacking information about spatial errors, among 

others.  

 

Nevertheless, literature is still largely using AUC, probably because no better measurement has 

been proposed (but see modifications of AUC by Jiménez-Valverde & Lobo (2007) ). To sum up, AUC 

should be accompanied by other threshold dependent techniques. In any case, accuracy measures 

should also be interpreted together with other parameters, because they largely interact with 

species traits and sample size (Hernandez et al., 2006; Syphard & Franklin, 2010; Syphard & 

Franklin, 2009).  Despite intensive data-partitioning algorithms, we should always try to confront it 

to independent data and for this purpose, cross-scale data validation may be a good strategy to 

yield more reliable results (Marcer et al. 2012). 

  

It is interesting to acknowledge here that model diagnostics in CENM have been mainly directed 

to discrimination measures. In other words, we assess how good models are on predicting suitable 

versus unsuitable conditions. Less explored measures of accuracy have analyzed the accuracy of the 

probability of presence, although some applications have rather used this range of values for 

subsequent analysis.  In these cases a calibration curve (observed prevalence across the range of 

probability of presence) has been used to assess the goodness of the probability of presence 

(Acevedo et al., 2012). Ideally, in a perfect calibrated model, the probability of presence (from 0 to 

1) and the observed species prevalence (ratio of predicted presences and total presences) should 

follow a 1:1 relationship (Franklin, 2010a). 
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Assuming a utopia? 

 

Finally, it is important to recall that models represent a simplified understanding of a certain 

reality or process and therefore models rely on assumptions that may always be taken into 

account. Among others, most basic assumptions regarding CENM is that they assume that species 

are in equilibrium with the environmental variables selected (Araújo & Pearson, 2005) , we have a 

complete sampling of the species and knowledge of the whole set of key environmental variables 

controlling species distributions. In general, as mostly considered variables relate to climate and/or 

topography, it is often pointed out that biotic interactions and historical events (e.g. last glacial 

maximum) produce situations far from the equilibrium species-environment. Disequilibrium may 

vary among lineages and biogeographic regions (Munguía et al., 2012) and it is especially important 

when considering distributions of recent introductions, like in biological invasions (Václavík & 

Meentemeyer, 2012). 

 

Another basic assumption is that populations and individuals of a species respond equally to 

environmental changes. Certainly, differences in environmental ranges have been found for 

biological subspecific entities (Thompson et al., 2011) and local adaptations may occur causing 

differences environmental requirements in the populations of the species under study (Benito 

Garzón et al., 2011). Overall, it may be discussed whether for some taxa; modeling at the species 

level may hinder global change predictions. Furthermore, the interaction of the species with the 

environment it inhabits is constant, although it is largely acknowledged processes like niche 

construction in some species (modification of the abiotic environment along individual or 

population development). 
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1.3 Theoretical framework: The history and (the continuous) 

evolution of the niche theory, and its relationship with species 

distribution. 
 

Every model should be supported by an underlying existing theory and a set of assumptions. In 

our case, CENM are largely underpinned by niche theory, which has been one of the most difficult 

concepts to define in ecology (Chase & Leibold, 2003). In this section, we will revise early stages 

and current development of the theory and the niche concept, as well as outline potential 

connections to terminological issues found nowadays. 

 

It is largely acknowledged that the niche concept is separately attributed to Joseph Grinnell 

(1917) and Charles Elton (1927). However, the first time the word ‘niche’ was published with an 

ecological interpretation was in 1910, by Johnson (1910). Grinnell first used the word niche in his 

PhD dissertation (1914) but he had previously used it in a publication by Grinnell & Swarth (1913). 

Therefore, it has been suggested that the use of ‘niche’ was already discussed among Standford 

PhD students and used in an informal way (Wake et al., 2009). However, the first coining of the 

term is attributed to Grinnell, in a work were the word niche was explicitly stated: ‘The niche 

relationship of the California thrasher’, in 1917. The concept of ‘niche’ under Grinnell terms refers 

to the set of environmental conditions that determine the control on species distributions. Such 

definition was especially related to physiological tolerances that bound species ranges, especially 

temperature (Grinnell 1917b), although he was aware of the multifactorial nature of species 

distributions within these ranges. 

 

Elton built a slightly different perspective of the same concept significantly later, in 1927, 

apparently independently from Grinnell (after Hutchinson and Elton correspondence). In his work 

‘Animal ecology’ (Elton 1927), the use of niche is linked to a functional approach, as a role of a 

species in a community or in a food chain. Therefore, Elton’s definition is based on biotic 

interactions whereas Grinnell’s definition is more environmental/habitat oriented. Nevertheless, 
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some authors state that the main difference between such definitions relies, ultimately, from 

whether one or more species can occupy the same niche (Griesemeier (1992); although see other 

conceptual reviews in Udvardy (1959) and Hardin (1960) ).  

 

It is essential noting the working scales at which the two visions of the concept operate: Elton’s 

vision of biotic interactions or impacts tends to be fine grained whereas Grinnell’s vision based on 

resources typically works at larger scales (but see (Araújo & Luoto 2007) for importance of biotic 

interactions depicting large scaled patterns). Such different visions have encouraged the ENM 

literature to distinguish between Grinnellean and Eltonian niches (Hirzel & Lay 2008). 

 

Certainly, the operational framework of the theory is attributed to George Evelyn Hutchinson 

(Hutchinson, 1957). In his famous ‘Concluding remarks’ in the Cold Spring Harbor Symposia on 

Quantitative Biology in 1957, he defined the niche as the N-dimensional  ‘hypervolume’ of 

resources used by an organism. In addition, and influenced also by Elton’s ideas, he further 

distinguished between the set of abiotic conditions in which a species can live (‘fundamental niche’) 

and the reduced set of conditions occupied by the species due to competition with other organisms 

mainly, but not exclusively (‘realized niche’). These concepts are still widely present in the species 

distribution modeling literature, because species presence is actually a consequence of different 

biotic pressures; hence it has been argued that CENM model realized niches. 

 

It is, however, much later (1978) that Hutchinson developed the ideas that have fed current 

‘niche literature’ (Hutchinson 1978). From his conclusions, we can deduce that the key evolution of 

the concept is that its definition moved from a property of the physical environment to a property 

of the species (Colwell 1992), hence the core difference between the niche and the biotope (the 

physical space), which has been termed the ‘Hutchinson´s duality’ (Colwell & Rangel, 2009). As we 

will see, such duality has encouraged new formulations of the niche dimensions.  

 

Recently, the niche theory underpinning CENM has been interpreted in a more integrative 

approach, especially with population ecology. Pulliam (2000) integrated niche concept with 

metapopulation theory and source-sink theory in order to understand the link between species 

distributions and the different niches of a species (realized vs. potential). Accordingly, Jackson & 
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Overpeck (2000) pointed out a further link to geography, suggesting that most of Huchtinson’s 

multidimensional niche was not actually appearing in our realized environment. They proposed the 

use of the term potential niche as the joint distribution of the realized environment and the 

realized niche. We argue that the raise of such intermingled terms has led to some confusion in 

literature and further hypothesize that different names of CENM may be a consequence of many 

interchangeable conceptualizations (e.g. species distribution models, environmental niche models, 

ecological niche models; Sillero (2011)).  

 

Another important contribution to the ongoing understanding and evolution of the niche 

concept has been performed by Holt (Holt, 2009). He pointed out demographical features that 

potentially affect the realized environment of the species, such as density-dependent modulation 

and the role of dispersal and spatiotemporal dynamics of niche evolution. Altogether, such 

understanding challenges the traditional Hutchinsonian niche.  

 

I believe that Jorge Soberón (2007) has successfully arranged a conceptual model that merges 

both niche theory with population dynamics in geographical space (see also contribution (Soberón 

& Nakamura, 2009). Soberon (2007) drew the BAM diagram (Figure 1.3), explaining that three 

dimensions that affect species distributions in a geographical space (G): abiotic factors (A), biotic 

factors (B) and available space (M). Species may be found in different combinations of subsets of 

these three dimensions always within the M dimension (space reachable by the species). However, 

only when the three dimensions are suitable we can identify source populations (positive growth 

rate) whereas others represent sink populations. Such conceptualization, albeit interesting, is 

practically ignored in many cases as most ecological knowledge on the species and the system is 

unfortunately largely lacking, especially concerning biotic dimension (B). Such situation has lead to 

the formulation of the ‘Eltonian noise hypothesis’ (Peterson, 2005), that considers that most 

suitable abiotic conditions in a given geographical space are also suitable in the biotic dimensions, 

therefore biotic interactions can be interpreted as noise in data or unexplained variance. This 

hypothesis does not hold when large scale spatially distributed signals of biotic interaction appear, 

which may sometimes be the case (Hampe, 2004). However, it may be valid at broad scales using 

climatic predictors (Peterson et al., 2011). 
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Figure 1.3 Conceptual framework of species distribution of the BAM diagram. G represents the 
geographical space under study, M respresents the accessible geographical space by a species, A the 
abiotic conditions favorable for growth, reproduction and maintenance, B is the biotic dimension 
favorable to species persistence (e.g. it may either co-occur or exclude competitors). Star signs represent 
source populations, where the three dimensions intersect. Ellipsoids, rectangles and triangles represent 
sink populations where populations growth is negative due to biotic interaction (e.g. ellipsoids, outside B) 
or to abiotic conditions, (e.g. rectangles, out of A) or the combinations of the two of them (e.g. triangles, 
outside B and A) 
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1.4 Modeling framework  
 

A model is a mathematical formulation (or a set of them) that aims at describing or simulating a 

certain real process or phenomenon. To accomplish that, many approaches have been used and 

many different categorizations of models have been proposed (e.g. Wissel, 1992).  

 

Correlative ecological niche models (CENM) could be classified as a phenomenological or 

empirical model that aims at describing or predicting current species distributions. The 

phenomenon under analysis is species presence (sometimes abundance) and a set of predictors 

(abiotic or not) are used to describe what we empirically observe: current species presence.  

 

A model typically built under such observations is inherently a static model, meaning that the 

state of the predictors does not change over time. Therefore, such models actually constitute a 

snapshot of the current state and no other transition states are considered under such modeling 

framework. Normally, variables in such models tend to be defined as averaged values over certain 

period of time. As a consequence, time is forgotten and a steady-state of the ecosystem is 

assumed. Several advantages may be typically characteristic of static models: less computationally 

intensive, fewer and easier parameterization, etc.  Jørgensen & Bendoricchio  (2001) highlight that 

static models constitute good pictures of average situations and large elements of the system may 

be included, however they also warn that because time is not described, transitions are not 

accounted for and extrapolation to other systems should not be valid. 

 

If we consider that "essentially all models are wrong" (Box, 1987), there is no kind of model that 

is able to satisfy the three desired model intrinsic properties at the same time: Precision, Generality 

and Reality (Levins, 1966; Sharpe, 1990; Figure 1.4). Indeed, it is difficult to put together highly 

precise models that may be globally applicable and trustworthy describe reality. However, such 

conceptual scheme of trade-offs has been criticized by several authors (e.g. Korzukhin et al., 1996) 

who argue that such features may not necessarily be mutually exclusive. Nevertheless, we concur 

with (Guisan & Zimmermann, 2000) that it is a useful framework to approach a certain modeling 
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project, whose outcomes will be needed to be more general, precise or “real” depending on the 

model’s goal. 

REALITY 

GENERALITYPRECISION Analytical Models

 
 

Figure 1.4 Model classification between trade-off scheme of 3 properties: Precision, generality and 
reality. After Levins (1966) and inspired by Guisan and Zimmermann (2000). Arrows indicate the furthest 
property for a given model 

 

CENM may fall in the classification of precise and real models (Figure 1.4), but they may lack 

general application because we actually do not model the mechanism underlying the causes 

(climate, competition, etc.) and effects (species presence). As we will see in following sections, such 

distinctions have favored a great debate among species distribution modelers between correlative 

approaches, like CENM, with mechanistic approaches to modeling species distributions (Kearney, 

2006; Kearney & Porter, 2009; Dormann et al., 2012b).   
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1.5 Applied framework of CENM in the face of global change 
 

Despite aired critiques to CENM in ecological management (Sinclair et al., 2010) the fact is that 

applications of CENM continue to increase and many managers are still referring to their outcomes 

to orient many policies (Iverson et al., 2011). We argue that CENM still yield useful results in 

management and applied sciences when implemented with full understanding of assumptions and 

when critically interpreting results. We would like to point out that combination of current expert 

knowledge of species and CENM may picture a realistic scenario of the exposure of species (see 

Matthews et al. (2011) for an application on Eastern US forests).  

 

I would like to outline here several CENM applications that have fruitfully yielded positive 

results. The great number of applications reveals that species distribution models and species 

distribution in general have a great importance in the field of applied and theoretical sciences, 

although here we will only succinctly point out those related to global change applications. A 

complete review may be found in Franklin (2010b) and Peterson et al. (2011). 

 

Biodiversity monitoring and discovering 

 

CENM can inform about potential suitable areas for a species, which have clear implications for 

discovering new populations, especially for rare and cryptic species. This has the potential to detect 

not sampled regions with similar environmental conditions as in the already sampled 

populations.There is a general agreement that we are undergoing the 6th mass extinction (Barnosky 

et al., 2011), therefore efficiently sampling geographical areas to find new populations of 

endangered or considered extinct populations is of paramount interest.  

 

Using CENM, Guisan et al. (2006) tested a sequential strategy of modeling –sampling , resulting 

in an increased discovery of populations of an alpine plant Eryngium alpinum, and improved 

sampling efficiency by two times. Bourg et al. (2005) discovered 8 populations of a rare plant 

(Xerophyllum asphodeloides) using niche modeling based on classification and regression trees. De 

Siqueira et al. (2009) used landscape similarity analysis and found 6 additional populations of 
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Brazilian cerrado (Byrsonimia subterranean). Interestingly, Williams et al. (2009) found that 

machine learning algorithms performed better than regression based algorithms to find new 

populations of a rare edaphic specialist plant.  The use of ensemble models and different 

resolutions can increase the chance of finding rare species: Le Lay et al. (2010) increased up to 50% 

the number of records in rare plants of the Swiss alps. 

 

Surprisingly, these applications have even resulted in the discovery of new species: Raxworthy et 

al. (2003) developed different models for species of the same genera, and results of post-sampling 

ended up with the discovery of three new species of chameleon. Therefore, if niche conservatism 

holds for a group of selected species (e.g. related species tent to conserve their environmental 

niche Wiens et al. (2010); Peterson (2011)), we could expect the discovery of phylogenetically 

related species. 

 

Conservation planning and management 

 

CENM have been extensively applied in biological conservation science for many purposes. I 

argue that it has been of special importance in the spatial dimension of conservation, where the 

question ´where´ to conserve has had clear implications for prioritizing hotspots of biodiversity 

(Mittermeier et al., 1998; Myers et al., 2000). Additionaly, CENM could constitute a key step in 

planning species reintroductions (Hirzel et al., 2004; Martinez-Meyer et al., 2006). 

 

Most applications to global change projections use CENM to account for changes in species 

ranges under future global warming scenarios (e.g. Thuiller et al. (2005); Benito Garzón et al. 

(2008)), and to a lesser extent, they even consider projections in land use changes (Barbet-Massin 

et al. 2012). Derived changes in species ranges have been used to map potential consequences for 

current reserve planning and future mitigation strategies (Araújo et al., 2011). However, the 

rationale used is that changes in species range are a good surrogate for extinction risk (Thomas et 

al., 2004), which is not necessarily the case (Thuiller et al., 2004b). Indeed extinction is derived from 

many processes among which area, but also stochastic processes play an important role. However, 

some comparisons yielded good results confronting CENM and other measures related to 

extinction (Araújo et al., 2002; VanDerWal et al., 2009a). Current approaches consist of linking 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
35 

 

population ecology with results derived from CENM (Keith et al., 2008; Anderson et al., 2009; Brook 

et al., 2009; Regan et al., 2011). 

 

Species invasions 

 

One of the most global threats to ecosystems constitutes spread of invasive species globally 

(Millenium Ecosystem Assessment, 2005). CENM in this case have been widely applied to predict 

potential invasion risk in future conditions and in different areas. The idea behind is that we can 

capture the environmental suitable space of the invasive species and project it to our assessment 

area. Such approach has produced good results (Roura-Pascual et al., 2004; Peterson, 2005; Drake 

& Lodge, 2006), but equilibrium assumptions of CENM clearly challenge disequilibrium situations 

with climate in invasions, at least in the initial phases, as well as potentially different biotic 

interactions in native and different invaded ranges. 

 

Currently, invasive CENM approaches tend to couple invasions with demographic processes as 

well as incorporating introduction efforts derived from world trade routes (Herborg et al., 2007). 

This emphasizes the broadening of the scope CENM to include other parameters besides climate 

(Gallien et al., 2010; Roura-Pascual et al., 2011) 

 

Epidemiology and disease transmission studies 

 

Although it has not been profoundly explored, several attempts have been undertaken to apply 

CENM to identify potential changes in distribution of disease vectors and reservoirs (Peterson & 

Shaw, 2003; Ogden et al., 2006; Nakazawa et al., 2007; Reed et al., 2008). Normally, pathogen 

causing diseases implies several vectors and reservoirs interacting at different spatial and temporal 

scales (e.g. ephemeral distributions). Therefore, it is clear that mapping disease risk under global 

change predictions requires the additional challenge of biotic interactions and temporal 

resolutions. 
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To our knowledge, some authors have used a similar approach to species, by modeling disease 

occurrences to environmental predictors and mapping the ‘realized niche’ of the disease 

(Yeshiwondim et al., 2009). Although useful, such approach may be biased to existing public health 

data or available ecotoxicological studies and results might be of little transferability.  

 

Peterson (2009) analyzed future vectors of malaria transmissions in Africa over scenarios of 

climate change and reported significant poleward distributions. González et al. (2010) recently 

warned that leishmaniasis disease could potentially increase its area of influence in the USA due to 

northward expansions, and suggest potential control of reservoirs. Although such approach has 

been gaining popularity, still little evidence is found to earlier projections of infectious diseases 

spread after a century of global warming (Lafferty 2009), which suggests that the spread of vectors 

and reservoirs of transmission may be constrained by other factors than climate. 
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1.6 Aims and scope  
 

The aim of the present work is to assess the usefulness of correlative ecological niche models 

(CENM) and propose better strategies to predict future species distributions. Our context and 

derived hypothesis will be framed in the ongoing global change conditions, especially climate 

change which poses many challenges to the application of these models.  

 

The present work does not intend to present an extended collection of studies dealing with each 

identified issue in CENM, but rather emphasize some key processes that challenge the biological 

meaning of these models.  

 

Taking previous identified gaps as a starting point, we developed specific studies addressing: 

 

Species potential versus realized niche discrepancies. 

 

 

 

 

The role of biogeochemistry under future global warming scenarios.  

 

 

 

 

 

 

 

 

 

 

This is a key analysis since we should determine to what extent climate or other factors are 

driving species distributions. Such analysis enhance the understanding of our target species.  

Traditionally estimations of climate change have been used to analyze changes in 

distributions due to eventual increase in temperature and eventual decreses in water 

availability. However, for plants, the role of CO2 has been neglected and may affect 

performance of plants under global warming scenarios.  
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Differences between species individual vs. multi-species models. 

 

 

 

 

 

 

 

Potential changes of species´ niche of invasive species across geographical regions. 

 

 

 

 

 

Incorporating the temporal dimension in CENM predictions of exposure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to protect ecosystems many models have been calibrated at the species level. 

However, others advocate for using a borader biological level of organization (communities 

or ecosystems) to model species. It is important to asses how predictions may change 

between thes two approaches.  

At present, species is used as a whole. However, different studies point out niche changes 

between populations, especially in invasions. Therefore, it is important to assess how these 

predictions may change and identify potential solutions.  

The static nature of CENM models have been widely critizised. It is important to advance in 

the potential dynamic outcomes of CENM in order to take the temporal dimension into 

account.  
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2.FIRST STEPS 
2.1 The topoclimatic Atlas of the Iberian Peninsula 
Summary: Topo-climatic suitability maps of the main woody plant species in raster format in a 

200 m spatial resolution. Data used has been obtained from the Digital Climatic Atlas of the Iberian 

Peninsula (DCAIP; see Figure 2.1) and the third National Forest Inventory (NFI3). Using a GLM 

regression as a classifier (General Linear Model), climatic information has been combined with 

species locations using GIS tools (MiraMon) to map its suitability. OGC standards (Open geographic 

consortium) have been used to its Internet publication ensuring interoperability with other servers. 

Results shown are congruent with different modeling techniques used for the same study area 

(Benito-Garzon et al. 2008).   

Authorship:  Ninyerola M, Serra-Díaz JM & Lloret F. 2010. Topo-climatic Suitability Atlas of 

Woody Plants. Map server. Universitat Autònoma de Barcelona.  

URL: http://www.opengis.uab.cat/IdoneitatPI/index.html 

Technical support: Alex Franquesa, Núria Julià, Meritxell Batalla. 

 

 

Figure 2.1 Web display of the Atlas of Topo-climatic suitability. 

http://www.opengis.uab.cat/IdoneitatPI/index.html�
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2.2 Material and methods 
 

General Linear Models (GLM) have been used in order to model topo-climatic suitability of 

woody plants using presence and absence data from the plots of the National Forest Inventory 

(MMA 1994-2004). Although there are a wide range of classification methods (Araújo & New 2007; 

Thuiller et al. 2009), GLMs constitute one of the most used techniques for modeling species 

distribution (Guisan & Zimmermann 2000; Randin et al. 2009) given its ability to model realistically 

ecological relationships (Austin , 2002; Elith et al., 2006). 

 

Presence-Absence data of species. 

 

Plots of the third National Forest Inventory have been used to identify locations where species is 

present or absent. For each species, presence or absence has been used as the dependent variable. 

Data on absences may influence model accuracy (Lobo et al., 2008) and the kind of distribution 

that we want to model (realized or potential ecological niche) (Kearny,  2006). Given that the 

number of absences is larger than the number of presences for a target species, 250 datasets have 

been build where the number of presences and the number of absences are balanced, hence 

obtaining a robust model not dependent on prevalence (but see Chefaoui & Lobo, 2008). 

Species absence does not per se ensure its unsuitability because many other factors may be 

affecting its absence, besides climate and/or topography. Therefore it may be deduced that we are 

using pseudo-absences (we do not know whether the species is not present due to climatic factor 

or due to other factors). In order to diminish such an effect, we have selected as absences those 

plots where the species is not present and at a minimum distance of 5 km of a presence plot. 

 

Selection of topographic and climatic variables 

 

Climatic variables where derived from the Digital Climatic Atlas of the Iberian Peninsula (DCAIP) 

(Ninyerola et al., 2007a,b). This cartography consists of 65 monthly maps of mean air temperature 

(minimum, mean and maximum values), precipitation and solar radiation generated through spatial 
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interpolation techniques from c.a. 2000 meteorological stations (for precipitation) and c.a. 1000 

meteorological stations (for temperature). 

Furthermore, monthly and annual water balances have been calculated as the difference 

between precipitation and potential evapotranspiration (using Thornthwaite) without considering 

runoff.  

Topographic variables, for instance slope, curvature, solar radiation and friction (cost-distance to 

cost), have been calculated using a Digital Elevation Model (DEM) of 200m spatial resolution. This 

sort of variables has been shown to be relevant for forest distribution (del Barrio et al. 1997; Pfeffer 

et al., 2003; Bailey, 2004). 

A correlation analysis has been undertaken in order to reduce colinearity in models and variables 

presenting more than 0.70 correlation have been suppressed from the model. In order to choose 

which variable among the correlated variables should be used, we decided to introduce the most 

integrative variable. For example, we systematically maintained water balance (highly correlated 

with precipitation and temperature). 

 

Evaluation 

 

These models have realized with the 80% of plots keeping the 20% for cross validation. Due to 

use of 250 subsets of presence-absence data, evaluation results express the mean of the 250 

models for each species.  

The calculated index for evaluation is the area under the ROC  curve (AUC) (Receiver Operating 

Characteristics). Such an index varies between 0 and 1. In general, AUC values over 0.80 mean that 

the model used is a good classifier and therefore, an accurate prediction of suitability. 

 

Future scenarios: General Circulation Models (GCM) 

 

Socio-economic scenarios A1FI and A2 from HadCM3 simulation have been used. These 

simulation is linked to a coupled atmosphere-ocean circulation model (AOGCM) developed at the 

Hadley Centre – UK (Gordon et al., 2000; Pope et al., 2000; IPCC, 2007). 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
57 

 

These models predict monthly and annual temperature and precipitation for the 2050-2080 

period in a 4 km spatial resolution. Future regionalized climate was obtained using an 

approximation based on differences between the past climate (CRU) and the climate projection 

from the HADCM3 model using the A1 and A2 storyline, thus combining the predictive information 

of the GCM with the topoclimatic data provided by ground stations. 
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3.ON CURRENT DISTRIBUTIONS 
 

STUDY: ‘Geographical patterns of congruence and incongruence between niche-

based and eco-physiological models’1

 

 

3.1 Introduction 
 

Species distributions are driven by complex interactions between biotic and abiotic factors. 

Models constitute useful tools for describing patterns of species distribution, while also 

contributing to the identification of driving factors, the prediction of future species distribution and 

the weighing up of decisions about conservation in complex multidisciplinary scenarios (Thuiller et 

al., 2005a; Falk & Mellert, 2011). Species-specific models can be classified into two distinct 

categories: empirical niche-based models and process-based models (Kearney, 2006). These two 

approaches represent contrasting methodologies, and when applied together they can be used to 

provide insight into changing conditions (Morin & Thuille 2008; Keenan et al., 2011a; Dormann et 

al., 2012). 

 

Niche-based models (NBM, also known as species distribution models, bioclimatic envelopes, 

correlative envelope models) comprise a family of empirical statistical modelling approaches and 

data-mining techniques that correlate environmental variables with the presence and/or absence 

of a species in order to determine its distribution. These models profile the bioclimatic envelope of 

the species via a number of different statistical techniques and then project these conditions onto 

the geographical space (Franklin, 2010). This correlative approach has extensively been used to 

address many questions in ecology and conservation: identification of hotspots, understanding of 

speciation (Graham et al., 2004), assessment of extinctions (Thomas et al., 2004) and alien species 

invasions (Thuiller et al., 2005b), and projection of the effects of climate change on species 

                                                      
1  This study was led by JM Serra-Diaz, who performed the correlative ecological niche models and first draft of the 
study. Dr.Keenan performed the analysis and described results for physiological process-based  model. Conclusions are 
drawn from the interaction of the two researchers with great input from other co-authors.  
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distribution (Keenan et al., 2011a). Perhaps the most fundamental criticism is the need to assume 

the equilibrium or pseudo-equilibrium of species distribution with climate (Austin, 2002), even 

though many taxa have proved to be at different degrees of equilibrium with climate (Araújo & 

Pearson, 2005; Svenning & Skov, 2004).  

 

Alternatively, process-based models (PBM, also biophysical models) represent a modelling 

approach focused on species performance in a given environment, providing insights on the 

mechanisms that directly or indirectly shape species distribution (e.g. growth, dispersal, 

reproduction, etc.). They use detailed information on the target species or group to model a certain 

ecological or physiological process at the species level or at the functional level. For terrestrial 

vegetation, PBMs have been developed to describe, for instance, fitness (Chuine & Beaubien, 2001) 

or growth (Rickebusch et al., 2008). They can integrate different processes on a broader scale, such 

as landscape (Scheller & Mladenoff, 2007), gap models (Bugmann, 2001), global vegetation 

dynamics (Sitch et al., 2003) and the techniques used may range from empirical relationships to 

physical laws.  

 

Interestingly, this family of models has barely been adopted for predicting species distribution 

(but see Jeltsch et al. (2008); Buckley (2008) and Kearney et al., (2008)), as their widespread use 

may be hampered by the computational power and data required, thereby restricting their 

application to well-known taxa (Ainsworth et al., 2008). Furthermore, PBMs are subject to high 

parameter dimensionality, with associated complications in quantifying uncertainty in model 

projections (Raupauch et al., 2005; Keenan et al., 2011b). 

 

Comparisons between the two modelling approaches (NBMs vs. PBMs) are rare, and they have 

generally focused on testing model predictions under climate change scenarios. For instance, 

Keenan et al. (2011a), Morin & Thuiller (2009) and Rickebusch et al. (2008) have shown that NBMs 

potentially overestimate the negative effect of climate change on current forest stands, due to CO2 

fertilization and plant water availability.  Few studies have experimentally addressed the link 

between physiology and NBM-generated values of suitability (but see Austin et al. (2009)). On 

broad scales, and depending on the goal, it has been argued that general climatic variables prove 

sufficient to evaluate NBM models (Araújo & Guisan, 2006), but it has also been recognised that the 
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identification of more relevant predictors of species distributions requires a greater understanding 

of the interplay between physiology, climate variables and scale (Elith & Leathwick, 2009; Austin & 

Van Niel, 2011). In fact, an already validated PBM allows us to test such hypothesis projected in 

current environments where the species is not present at the moment, thus representing a 

controlled experiment compared to the complex analysis of inventory data, where a lot of signals 

(management, climate, etc.) could lead to confusion. 

 

In the present study we compare predictions from NBM (habitat suitability) and PBM (growth) 

for three common Mediterranean tree species (Pinus halepensis; Quercus ilex; Pinus sylvestris) in 

the Iberian Peninsula (Figure 3.1a), through a range of environments (arid to mesic to mountain 

conditions respectively). Specifically, our aims are to (1) assess whether habitat suitability and 

growth show similar responses across the three species and (2) map regions of agreement and 

disagreement between the two approaches. We hypothesise that, if species distribution is in 

equilibrium with climate and in absence of biotic interactions, a robust positive relationship 

between NBM measures of habitat suitability (occurrence) and PBM measures of growth would be 

found (Figure 3.1b).  
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Figure 3.1 (a) Current distribution in Spain of  Pinus sylvestris, Pinus halepensis and Quercus ilex 

according to the Spanish Forest Inventory (SFI) (b) Black arrow indicates expected relationship between 
growth and site suitability if species distribution is broadly in equilibrium with climate. Two types of 
incongruence are expected: positive incongruence (I+), when high growth performance corresponds to low 
suitability estimates, and negative incongruence (I-), when low growth corresponds to high suitability. 
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3.2 Material and methods 

 

Niche-based models (NBM) 

 

In order to attain robust results and quantify uncertainty resulting from differences between 

NBMs (Elith & Graham, 2009), we used a group of seven different NBMs (Araújo & New, 2007) with 

the BIOMOD platform (Thuiller et al., 2009) implemented in R statistical software (R Development 

Core Team 2011). All these models (see Table 3.1) require data on species presence and absence to 

be related to environmental variables. Presence and absence records were extracted from the third 

Spanish Forest Inventory (SFI; MinisterioAPyA, 2007), which surveyed forest species at a 1-km 

regular grid spatial resolution resulting in 10 784, 18 268 and 10 202 presence plots for Pinus 

halepensis, Quercus ilex and Pinus sylvestris, respectively, from the total of 70 855 plots in the 

Spanish Forest Inventory. We applied a random selection of absences from the forest inventory 

equal to two times the number of presences, allowing for a large number coverage of the 

environmental space (Barbet-Massin et al., 2012). The BIOMOD-platform automatically weights 

presences and absences so that the weighted sum of records maintains a prevalence of 0.5, hence 

contributing equally to the model construction. 

 

The climatic variables used in the NBMs are directly related to growth: mean air temperature, 

annual precipitation and solar radiation. Climate data were extracted from the digital climatic atlas 

of the Iberian Peninsula (http://opengis.uab.es/wms/iberia/en_index.htm; Ninyerola et al., 2000; 

Ninyerola et al., 2007a; Ninyerola et al., 2007b). It retrieves monthly mean climatic data at a 200-m 

spatial resolution. Although other variables have been used to derive NBMs on a regional scale, i.e. 

topography (Randin et al., 2009; Austin & Van Niel, 2011), we preferred using the variables most 

similar to the PBM. In addition, previous analysis using other set of variables retrieved similar 

results (Ninyerola et al., 2010; http://www.opengis.uab.es/wms/IdoneitatPI/index.htm). The most 

important variables affecting outputs were precipitation and mean annual temperature, for Pinus 

sylvestis and Quercus ilex respectively. Both variables had a very similar influence on Pinus 

halepensis NBM (see Appendix 2.1 in Supporting Information). 

 

http://opengis.uab.es/wms/iberia/en_index.htm�
http://www.opengis.uab.es/wms/IdoneitatPI/index.htm�
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MODEL  DESCRIPTION  REFERENCE 
RF  

(random forest) 
A machine-learning method – a combination of tree predictors in 

which each tree depends on the values of a random vector sampled 
independently and with the same distribution for all trees in the 
forest. 

Breiman (2001) 

CTA 
(classification  
tree analysis) 

A classification method – a 50-fold cross-validation to select the 
best trade-off between the number of leaves of the tree and the 
explained deviance. 

Breiman et al. (1984) 

MARS  
(multivariate  
adaptive  
regression splines) 

A non-parametric regression method, mixing CTA and GAM. Friedman (1991) 

GLM  
(generalised linear model) 

A regression method, with polynomial terms for which a stepwise 
procedure is used to select the most significant variables. 

McCullagh and 
Nelder (1989) 

GAM 
(generalised  
additive model) 

A regression method, with 4 degrees of freedom and a stepwise 
procedure to select the most parsimonious model. 

Hastie&Tibshirani  
(1990) 

GBM 
(Generalised  
Boosting Models) 

A method that fits a large tree of simple models, together aimed 
at giving a more robust estimate of the response. Based on Boosted 
Regression Tree algorithm.   

Friedman (2001) 

ANN  
(artificial  
neural networks) 

A machine-learning method, with the mean of three runs used to 
provide predictions and projections. 

Ripley (1996) 

Table 3.1 NBM used in this study. See the BIOMOD manual (Thuiller et al, 2009). 
 

Model calibration was undertaken with 70% of the presence-absence stands and the remaining 

30% were used for validation. The number of runs was set to three, with two repetitions of each 

run using different absence combinations; there were thus a total of six suitability outputs for each. 

The models project a suitability index that ranges from 0 to 1 000 for each location under 

consideration. In order to discriminate suitable from unsuitable conditions, a threshold needs to be 

set and there are a number of methods for this, based on accuracy measurements (Nenzén & 

Araújo, 2011). In the present study we set the threshold by maximizing the True Skill Statistic (TSS) 

metric, as this is not influenced by prevalence (Allouche et al., 2006), although the area under the 

ROC curve and Kappa (other accuracy measures) were also reported (see Appendix 2.1). They 

overall retrieve good accuracy results showing that the NBMs are able to model current 

distribution. 

 

Robust suitability measures were obtained from the ensemble of the seven calculated models. 

This procedure can be undertaken by using a wide range of approaches (Araújo & New, 2007). In 

the present study we employed the TSS accuracy measure to estimate each model’s contribution to 

the ensemble. We first ranked models by TSS accuracy and then applied a down-weighting factor of 
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1.6, which implies that the weight of each model will be 1.6 times smaller than the previous one 

(see Thuiller et al.,  (2009) for further details). Such values represents a compromise between null 

weighting (decay = 1) and overweighting (decay=2). 

 

Process-based models (PBM) 

 

GOTILWA+ (Growth Of Trees Is Limited by Water; Gracia et al., 1999; Sabate et al., 2002; Keenan 

et al., 2011a; http://www.creaf.uab.es/GOTILWA+) is a process-based terrestrial biogeochemical 

model of forest growth. Developed for the Mediterranean region, it is has been used to explore 

how forests are influenced by water stress, tree stand structure, management techniques, soil 

properties, and climate (including CO2) change. 

 

GOTILWA+ does not predict the distribution of a species, but simulates tree growth, and the 

associated carbon and water fluxes, for different tree species in different environments. Growth, or 

modeled net primary production (NPP hereafter), can be interpreted as reflecting a site-species 

specific ecophysiological value comparable to estimates of suitability generated by NBMs (Keenan 

et al., 2011a). The model treats mono-specific stands, which can be even or uneven-aged. 

Individual trees are aggregated into 50 dbh (diameter at breast height) classes and calculations are 

performed separately for each class. Hourly ecosystem carbon and water fluxes are estimated in 

dependence on meteorological forcing and ecosystem state.  

 

The GOTILWA+ model includes a two-leaf canopy photosynthetic sub-model (Wang & Leuning, 

1998; Dai et al., 2004) for the C3 photosynthetic pathway. The canopy is divided into sunlit and 

shaded leaves, with the amount of intercepted diffuse and direct radiation depending on the time 

of the day, season, and the area of leaf exposed to the sun (Campbell, 1986). Foliage net 

assimilation rates are calculated by using the Farquhar et al. (1980) photosynthesis model, with 

dependencies on intercepted quantum flux density, species-specific photosynthetic capacities, leaf 

temperature, and leaf intercellular CO2 concentration. Stomatal conductance is calculated by using 

the Leuning et al. model (Leuning et al., 1995), which is a version of the original Ball et al. (1987) 

model. Net photosynthesis is scaled from the leaf to the canopy through the canopy microclimate 

model to give canopy bulk gross primary production (GPP). NPP is calculated as the balance of GPP 

http://www.creaf.uab.es/GOTILWA�
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minus autotrophic respiration components and is defined as NPP = GPP-(Rf+ Rw + Rr), where Rf is 

night respiration rate per ground unit area, Rw is respiration of non-leaf aerial plant tissues, Rr is 

respiration of root tissues. Model parameters were set to species-specific values (as in Gracia et al., 

1999; Keenan et al., 2009a,b, 2011).  

 

Water stress affects the photosynthesis–conductance coupling by directly reducing the 

photosynthetic potential through a non-linear relationship with soil water content (Keenan et al., 

2009a). Phenology is temperature-dependent and accounted for in an updated version of the 

Pelkonen & Hari (1980) approach for calculating the seasonal variations in photosynthetic potential. 

GOTILWA+ has been validated and widely applied both in the Mediterranean region and the rest of 

Europe (see Morales et al., 2005; Keenan et al., 2009a for validation exercises and Keenan et al., 

2009b, c, 2011 for example applications).  

 

Study design  

 

We employed a virtual data approach by creating virtual mono-specific forests (VF) for each 

species (Pinus halepensis,Pinus sylvestris and Quercus ilex). VF structure traits (e.g., tree density, 

diameter distributions, soil depth) were set to the mean of species-specific forest structural 

characteristics derived from the third Spanish forest inventory stands. Simulations of VFs’ growth 

were performed across the whole gradient of suitability predicted by the NBMs. First, 3 000 virtual 

forests where randomly assigned to each of the two different regions of the suitability index 

determined by the threshold criteria (maximum TSS): not suitable (below threshold) and suitable 

(above threshold) conditions. Second, we simulated forest growth using GOTILWA+ at these 

locations.  

 

We explored the relationship between NPP and suitability using robust statistics from 

robustbase package (Rousseeuw et al., 2011) using R statistics software (R Development core team 

2011). Robust regression has been widely applied, especially when assumptions of an ordinary least 

squared are violated, or to identify outliers in the regression (Maronna & Yohai, 2003).  
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We applied a data-driven approach to quantify the shape of the NPP-suitability relationship 

using different polynomials. In order to avoid over-fitting, a step-wise backwards procedure was 

used to find a trade-off between best fit and minimum degree of the polynomial. As a measure of 

the fit of these regressions, we calculated the R2 for robust regression (Renaud & Victoria-Feser, 

2010). Starting with an arbitrarily high polynomial degree, at each step, every R2 of the polynomial 

was compared to the R2 of the polynomial with one degree less. This process chooses the lowest 

polynomial degree, unless the difference between two steps is less than 0.05 in R2. Quercus ilex and 

Pinus sylvestris were best fit, using a second-degree polynomial, whereas Pinus halepensis required 

a fourth-degree. 

 

In order to classify each VF as congruent or incongruent we performed a cluster analysis, using 

as a distance measure the absolute value of residuals to the fitted robust function. We used k-

means clustering by applying the Hartigang & Wong algorithm (1979). We set k=2 in order to find 

two groups of VF: those congruent with the regression and those identified as outliers 

(incongruences).  

 

Following the trend outlined in Figure 3.1, we finally identified discrepancies using the following 

criteria: 

- Positive incongruence (I+): VF in the cluster of outliers, predicted as absences by 

NBMs and with positive residual values. That is, high values of NPP and low climatic 

suitability from the NBM. 

- Negative incongruence (I-): VF in the cluster of outliers, predicted as presences by 

NBMs and with negative residual values. That is, with low values of NPP and high climatic 

suitability from the NBM. 

We additionally analysed two physiological features related to growth that are modelled in 

GOTILWA+: Leaf area index (LAI) and mean leaf life (MLL). Such variables, besides being coupled 

with NPP, encapsulate species-specific strategies to cope with stressing factors such as drought, 

which is predominant in the Mediterranean climate.  
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3.3 Results 
 

General patterns of congruence and incongruence between growth and 

suitability values. 

 

Quercus ilex and Pinus sylvestris present the expected positive relationship (congruence) 

between NPP and suitability obtained by PBM and NBM, respectively (Figure 3.2a,b). In contrast, 

Pinus halepensisshows a negative relationship, where NPP is lower at high suitability than NPP at 

low suitability (Figure 3.2). For the three species studied, the range and variability in NPP values 

decrease along the axis of the suitability index (Figure 3.2). In other words, suitable climatic 

conditions tend to render more similarly modelled NPP values.  

 

 

The values of robust R2 are 0.43 (polynomial degree 4) for Pinus halepensis, the species showing 

no general congruence, 0.35 (polynomial degree 2) for Pinus sylvestris and 0.22 (polynomial degree 

2) for Quercus ilex. The high value for Pinus halepensisis explained by the degree of the polynomial 

fit, but it decreases to 0.30 when considering a polynomial degree of 2. Accordingly, we found 

similar results when analysing the correlation between suitability values of individual NBMs and 

NPP, this correlation being higher in Pinus sylvestris and Pinus halepensis than in Quercus ilex (Table 

3.3). 

Figure 3.2 Relationshipbetweengrowth (NPP) and suitability (NBM weightedensemble) for (a) 
Quercusilex , (b) Pinussylvestris and (c) Pinushalepensis. Line trendsrepresentthe fitted robust 
polynomial regression. 
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Incongruence of virtual forests and geographical distribution  

 

We identified incongruence regions only for those species presenting the expected general 

positive relationship between suitability and NPP (Quercus ilex and Pinus sylvestris).  For Quercus 

ilex, incongruent VFs constitute less than 10% of the total simulated forests (Table 3.2). All 

discrepancies for this species represent positive incongruences (I+), meaning that NPP is high 

despite being in low climatic suitability locations. Geographically, 95% of incongruent areas were 

located in the Northern Iberian Peninsula, the region receiving the maximum precipitation with 

subtly lower temperatures than the rest of the area. A few I+ represent isolated patches in other  

mountain ranges of the centre of the peninsula (Figure 3b,d).  

Figure 3.3 Positive and negative incongruence identified for Pinussylvestris (a) and 
Quercus ilex (b) and their geographical location (c, d, respectively) along a suitability 
gradient (weighted ensemble of NBM). Lines indicate density of VFs (virtual forests) of 
each category.   
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Table 3.2 Summary of incongruence values for each species considered and the associated 
environmental variables. Values correspond to the average of the conditions in the VFs (virtual forests) 
and values in brackets indicate standard deviation. P annual: annual accumulated precipitation; T annual: 
mean annual air temperature; R annual: mean potential solar radiation. 

 

 

For Pinus sylvestris both positive (I+) and negative (I-) incongruences are observed. However, I+ 

(9.0% of the simulated forests) are far more prevalent than I- (0.4% of the simulated forests) (Table 

3.2). The geographical pattern of I+ is the same as in Quercus ilex: a concentration in the Northern 

Iberian Peninsula (Figure 3.3b,d). These sites are also characterised by higher precipitation and 

similar temperature than congruent VFs (Table 3.2). I- are clustered in the South-East range of the 

Iberian Peninsula (Sierra Nevada) and are characterised by high altitudes with lower precipitation 

than the majority of VFs of this species.  

 

 

 

 

 

 

 

 

SPECIES INCONGRUENCE 
TYPE 

%  VFs  
 

T annual 
(°C) 

Pannual 
(mm) 

Rannual 
(MJ/m2*day) 

Elevation 
(m) 

Quercus  ilex Congruence 90.4% 15.1 (±2.6) 615 (±208)  21.60 
(±1.59) 

654 
(±393) 

Positive 
incongruence 

9.6% 
(578) 11.4 (±2.1) 1331 

(±242) 
19.66 
(±1.49) 

566 
(±419) 

Negative 
incongruence 0% - - - - 

Pinus 
sylvestris 

Congruence 90.6% 12.1 (±2.7) 727 (±285) 20.86 
(±1.32) 

837 
(±420) 

Positive 
incongruence 

9.0% 
(546) 11.9 (±1.4) 1357 

(±277) 
19.84 
(±1.43) 

466 
(±280) 

Negative 
incongruence 0.4% (26) 9.5 (±1.7) 588 (±147) 19.88 

(±1.80) 
1910 
(±354) 



ON CURRENT DISTRIBUTIONS 

 

 
72 

 

 

Physiological responses: Mean leaf life (MLL) and leaf area index (LAI) 

 

For Quercus ilex, LAI rapidly increases with suitability and reaches a maximum within the 

congruence region (Figure 3.4a). However, we observe a cluster of large LAI values at low 

suitability, which corresponds to I+ conditions. In these climatic environments, species would react 

by increasing leaf area and therefore also increasing NPP. It is worth noting that for LAI there is no 

complete separation between I+ and the rest of VFs. The relationship between MLL and suitability 

does not show a clear pattern (Figure 3.4b) as there is great dispersion. However, I+ generally show 

relatively higher MLL than the rest of VFs.  

 

For Pinus sylvestris, the relationship between LAI and suitability is not straightforward (Figure 

3.4c). As in the case of NPP, the variability of LAI values narrows as suitability increases. I+ 

conditions are characterised by higher LAI and  I- conditions correspond to lower LAI than the rest 

of VFs, although in the last case no sharp separation is evident. MLL for this species describes three 

different trends along a well-defined function: (1) for suitability values below 200, MLL decreases 

exponentially; (2) for suitability values above 800 it increases exponentially; (3) for suitability values 

between 200 and 800, MLL subtly increases in a linear fashion. Overall, MLL is in accordance with 

LAI values and NPP (Figure 3.4d): unsuitable conditions are linked to water stress and unproductive 

sites where leaves tend to be smaller and remain active for less time on the tree. 

 

Overall, Pinus halepensis shows an opposite pattern to that of the other two species. As with 

NPP, LAI tends to be lower at higher suitability (Figure 3.4e), even though the variability is very 

large. MLL presents two opposite patterns along the suitability gradient (Figure 3.4f): a positive 

linear relationship at MLL values below around 3 years, and a negative linear relationship above 

this value. These two opposite trends merge around suitability values of 600. The negative 

relationship corresponds to more humid conditions in which the species is in fact not present but 

water and light are available (North Iberian Peninsula; Appendix 2.2). Under these conditions, this 

species would tend to maintain leaves, thus resulting in high NPP at low suitability. The positive 

relationship corresponds to VFs placed in xeric conditions (Southern Iberian Peninsula; Appendix 

2.2), where leaves are not maintained.  
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Figure 3.4  Relationship of Leaf Area Index (LAI) and Mean Leaf Life (MLL) with 
suitability (NBM weighted ensemble), for Quercus ilex (a, b), Pinus sylvestris (c, d) 
and Pinus halepensis (e, f). Dark grey colours indicate VFs (virtual forests) that show 
a positive incongruence and light grey indicates VFs that show negative 
incongruence. Black points correspond to congruence cases. Note that Pinus 
halepensis has no categories due to the overall pattern of incongruence. 
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Differences between Niche-based model techniques and the role of the 

threshold value. 

 

We computed correlations between NPP and suitability for each species and each of the niche-

based model techniques, with and without incongruences (previously identified in the robust 

regression). In general, correlation between NPP and suitability increased when incongruent VFs 

were removed (Table 3.3, values outside brackets). In the case of Quercus ilex, correlations increase 

and change from negative to positive when incongruences are not taken into account. On the other 

hand, Pinus halepensis showed high negative correlations between NPP and suitability, confirming 

the results observed in the robust regression.  

 

 

 Qurecus ilex Pinus sylvestris Pinus halepensis 
ENS 0.30 (-0.15) 0.56 (0.26) -- (-0.51) 
ANN 0.33 (-0.11) 0.47 (0.19) -- (-0.49) 
CTA 0.27 (-0.17) 0.58 (0.30) -- (-0.48) 
GAM 0.31 (-0.29) 0.59 (0.29) -- (-0.59) 
GBM 0.31 (-0.17) 0.58 (0.35) -- (-0.53) 
GLM 0.35 (-0.23) 0.59 (0.30) -- (-0.56) 
MARS 0.29 (-0.12) 0.46 (0.19) -- (-0.50) 

RF 0.26 (-0.11) 0.51 (0.24) -- (-0.41) 
 

 

 

 

 

As expected, the most widespread species in the study region (Quercus ilex) showed less 

correlation (0.3 on average) than species with more restricted distribution (Pinus sylvestris and 

Pinus halepensis; 0.54 and -0.51 on average, respectively). In general, traditional approaches to 

regression techniques (GAM, GLM) tend to score higher correlations (Table 3.3) than classic 

machine-learning approaches (CTA, RF, ANN). Machine-learning techniques may tend to fit data 

Table 3.3 Correlation between modeled NPP and suitability for different niche-based model 
techniques (see Table 1). Values in brackets correspond to all simulated forests, whereas values 
outside correspond to the congruence region (outliers from the robust regression removed). All 
correlations are significant (p<0.05). Pinushalepensis present an overall incongruent pattern 
(negative robust relationship), thus no congruence region has been analyzed. 
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better, but they may easily assign a low score to absences in suitable conditions. In contrast, 

general regression models present smoother response functions, resisting the influence of 

absences in suitable conditions if they do not constitute the majority of absences. However, this 

may be highly depending on the way these models have been specified and also exceptions to this 

pattern are also present. For instance, GBM, although defined as a data mining technique, nearly 

performs at a level as high as that of traditional regressions. We recommend further testing on 

such behavior, using virtual species in order to control for other factors. 

 

We also further analyzed the binary transformation applied by using a threshold measure based 

on TSS. As our data were not normally distributed, we performed analysis of variance using a non-

parametric test (Kruskal-Wallis) for the variable NPP comparing two categories (suitable/unsuitable 

conditions). The results differ slightly from one model to another, but all of them support significant 

differentiation between suitable and unsuitable simulated forests in terms of NPP (see Appendix 

2.3). 

 

3.4 Discussion 
 

In Quercus ilex and Pinus sylvestris, suitability estimates from climatic variables and current 

species distribution are positively related to ecophysiological performance derived from process-

based modelling, supporting the hypothesis that the distribution of these species in this territory 

climate is broadly linked to physiology. Accordingly, Quercus ilex and Pinus sylvestris MLL and LAI 

have a positive relationship with climatic suitability for a broad area in the Iberian Peninsula. 

Nevertheless, both species present isolated regional discrepancies between the two modelling 

approaches. I+ dominate over I- in both species, demonstrating the availability of unoccupied 

potential environments for growth. Conversely, in Pinus halepensis, the relationship is the opposite: 

high NPP appears at sites with low suitability, meaning that factors other than climate would be 

more relevant than climate itself to the explanation of its distribution, at least on our scale of 

analysis.  

 



ON CURRENT DISTRIBUTIONS 

 

 
76 

 

Our results highlight the fact that the North of the Iberian Peninsula represents a potential 

region for the growth of forests of the three species studied. I+ discrepancies are identified in that 

region for the two species showing general congruence (Quercus ilex and Pinus sylvestris), but the 

region also presents high growth values for the species showing no general congruence (Pinus 

halepensis).  Regions of I+ indicate physiological suitability, so other factors should be shaping 

current distributions. Biotic interactions have been demonstrated to strongly affect species 

distribution on different scales (Hampe, 2004; Araújo & Luoto, 2007). On our scale of analysis, 

competition from species (i.e., trees) using similar resources (particularly water and light) 

constitutes a fundamental ecological factor in a multispecies environment, especially in favourable 

abiotic conditions (Meier et al., 2010). In fact, Gomez-Aparicio et al., (2011) observed that 

competition is more important than climate for contemporary tree growth in the Iberian Peninsula, 

specifically for the same species studied here and with similar data. 

 

Anthropogenic factors also influence vegetation distribution and they have long affected 

vegetation in the Iberian Peninsula (Perez-Obiol et al., 2011), and the geographical distributions of 

errors in NBM should be partly explained by human land use (Hanspach et al., 2011). In addition, 

differences in dispersal rates and past historical perturbations may also be causing such I+. For 

instance, the Last Glacial Maximum influenced many tree distributions and there is some evidence 

to show that it significantly explains tree richness in Europe (Svenning et al., 2010).  

 

I- was apparent only in the case of Pinus sylvestris. This incongruence was limited only to 0.5% of 

the VFs and was located in the South-East mountain ranges of the Iberian Peninsula, where a small 

population of the species still exists. We hypothesise four possible causes for this incongruence. 

First, the role of temporal variability in climatic drivers may have been underestimated. NBM use 

long-term averaged climatic factors to characterise the niche and suitable conditions, whereas our 

growth model simulated transient climate variables. Extreme climatic events, such as droughts in 

the Mediterranean (Lloret et al., 2007), may be important drivers for species distributions and Pinus 

sylvestris could be more vulnerable to such extreme events because its distribution in the Iberian 

Peninsula corresponds to its southern European limit (Galiano et al., 2010). Thus, NBM may gain 

from including such climatic episodes  (Zimmermann et al., 2009). Second, the PBM used does not 

take species plasticity into account, whereas current species plasticity is considered, indirectly, by 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
77 

 

presence records in NBM (McMahon et al., 2011). This could lead to a situation in which locations 

deemed highly suitable by the NBMs experience significantly less net productivity than that 

expected by the PBM. Third, biological interactions, particularly facilitation, may also play an 

important role blurring species growth from climate signal. Finally, species distribution is not static 

and may reflect a response to large-scale perturbations in the past (e.g. refuges during the Last 

Glacial Maximum) or management practices (e.g. plantations). 

 

Many statistical techniques could be used to identify outliers between the outcomes of different 

models. Robust statistics have proved resistant to outliers and have been widely used in many 

fields (Maronna & Yohai, 2006), although other techniques, such as the robust generalised linear 

model (Azadeh & Salibian-Barrera, 2011), could potentially improve such analysis. Inevitably, the 

use of different techniques will affect results and therefore the determination of geographical 

incongruence areas. One way to minimise this is the use of an ensemble of these classification 

techniques to reduce uncertainty. Another interesting approach could be to avoid sharp classifiers 

in favour of soft or fuzzy ones (Zimmermann, 2000), allowing for a determination of a degree of 

congruence instead of two mutual exclusive categories.  

 

Our result showed that the choice of NBM technique influences the magnitude of the growth-

suitability relationship that is obtained (Table 3.3), although there is a common pattern in which 

widespread species (e.g. Quercus ilex) show lower correlation than regionally restricted species 

(e.g. Pinus sylvestris and Pinus halepensis). These results are in agreement with other studies 

showing that suitable/unsuitable habitats are more difficult to differentiate using NBM for 

widespread species rather than for restricted-climatic species (Grenouillet et al., 2011). Despite this 

variability between techniques, we were able to differentiate between suitable and unsuitable 

habitats. Nevertheless, we did not analyse different threshold criteria, which could potentially 

change these results (Nenzen & Araujo, 2011). All these sources of uncertainty suggest that the use 

of NBM ensembles obtains more robust results than the use of a single technique (Araújo & New 

2007). 

 

Most importantly, the species distribution range used for calibrating NBM affects the scale of 

suitability values, particularly if the complete range of the species is not used (Thuiller, 2004). In our 
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study, the inclusion of the whole species range would probably facilitate the determination of a 

general congruence between physiological performance and suitability. However, in the case of 

P.sylvestris it is reasonable to assume to apply only Iberian populations (Benito-Garzon 2006) which 

differ morphologically and genetically form the European ones  (Ruby, 1967; Prus-Glowacki et al., 

2003). In the remaining cases (Q.ilex ; P.halepensis), we argue that the Iberian peninsula encompass 

the variability inherent to the Mediterranean climate to expect any significant change that would 

not support our conclusions. Unfortunately, the inclusion of the whole range of distribution implies 

the use of very different inventory methods in European countries, which may lead to biased 

results (Edwards et al., 2006), but most importantly such species distribution information is 

unavailable for some Mediterranean countries.  

 

PBM results are contingent on model structure and the parameters applied (Raupauch et al., 

2005; Keenan et al., 2011b). Although PBMs have been widely tested, significant differences 

emerge between models when applied both at site level and on the regional scale (e.g., Schwalm et 

al., 2010). The PBM used in this study, GOTILWA+, has been rigorously tested at site level on 

various Mediterranean sites (Keenan et al., 2009a) but uncertainties associated with spatial scaling 

outside the domain of testing still remain. Nevertheless, general geographical gradients are often 

well captured by PBMs (Schwalm et al., 2010) and, in fact, macroscales often reveal a higher degree 

of congruence between climate, physiology and NBM (Helaouët & Beaugrand, 2009). The slope of 

the response between PBM productivity and NBM suitability is therefore likely to be subject to 

uncertainty due to potential PBM structural errors and parameter uncertainty. We would argue, 

however, that the general trend identified reflects the large-scale sensitivity of the PBM to climate 

and is thus relatively robust.  

 

Although the PBM used is temporally dynamic, other potentially important dynamic processes 

are either static or not included. For example, spatially variable dynamics such as local adaptation 

and species plasticity could be significant when considering a species over its entire distribution. In 

the Mediterranean basin, phenotypic variation is known to allow forest tree species to adapt to 

macro-environmental gradients (Volis et al., 2002). The existing adaptation of populations to local 

conditions could bias results in the current study, for both PBMs and NBMs (Hampe, 2004). 

Unfortunately, we are far from a comprehensive understanding of possible species-specific 
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adaptation capacities.  Recruitment dynamics also play a large role in species distributions. Seed 

dispersal, germination and development are subject to bioclimatic limits that are not included in 

the PBM used.  

 

Generating a full characterization of PBM uncertainty is an onerous computational task, 

particularly when regional applications are taken into consideration (Zaehle et al., 2005). Without 

an associated estimate of error, the values presented from the PBM should only be considered as 

qualitative (Raupauch et al., 2005). We argue however, that the general spatial gradients in PBM 

fields of NPP remain informative when compared with results from NBMs. 

 

Far from raising another source of uncertainty and a new critique of NBM, the observed 

discrepancies throw new light on the hierarchy of factors such as human intervention or climate 

history contingency that constrain tree species distribution in a Mediterranean context. 

Accordingly, we have been able, for the first time, as far as we know, to map congruence and 

incongruence regions between NBM-generated habitat suitability and a PBM physiology-based 

performance. In the regions of discrepancy, other models dealing with processes linked to the 

species interactions or the geographical dynamics are strongly needed. We suggest that insights of 

species distribution may be discovered by the combination of such methods rather than claiming 

the superiority of one another (Dormann et al., 2012). 
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4. ON THE IMPORTANCE OF (PHYSIOLOGICAL) 
MECHANISMS IN CLIMATE CHANGE 
PROJECTIONS 

 

STUDY: ‘Predicting the future of Mediterranean forests with niche- and process- 

based models: CO2 matters!‘2

 

 

4.1 Introduction 

Detailed knowledge of species' ecological and geographic distributions is fundamental for 

conservation planning and forecasting (Ferrier, 2002; Funk & Richardson, 2002; Rushton et al., 

2004), for understanding ecological and evolutionary determinants of the spatial patterns of 

biodiversity (Ricklefs, 2004), and the potential response of these distributions to future climatic 

change (e.g. Thomas et al., 2004; Araújo et al., 2005a, b; Thuiller et al., 2005). This is of particular 

importance in the Mediterranean region, which has a high diversity of environments and harbors 

Europe's greatest diversity of vegetation and fauna (Cowling et al., 1996). This region is not only a 

biodiversity hotspot (Underwood et al., 2009), it has also been identified as a climatic change 

hotspot (Giorgi, 2006) because (1) climate projections consistently project significant increases in 

temperature, and decreases in precipitation in the Mediterranean basin (Gibelin & Deque, 2003; 

Giorgi et al., 2004) and (2) such potential change may have a large effect on current Mediterranean 

forests and the related ecosystem service supply (Schröter et al., 2005). 

 

Models are the most feasible and efficient way to assess spatial biodiversity and responses to 

climatic drivers over large spatial and temporal scales (Thuiller, 2007). Species-specific models fall 

broadly into two categories: empirical niche-based or habitat models and process-based models 

                                                      
2 This study was led by Dr. Keenan, who performed physiological simulations. JM Serra-Diaz performed the analysis and 
described results for correlative ecological niche models. Conclusions are drawn from the interaction of the two 
researchers with great input from other co-authors. Manuscript available at: Global Change Biology, 17, 565-579.  
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(see Kearney, 2006). These contrasting methodologies, however, often give conflicting results 

(Thuiller et al., 2008). 

Also known as ecological species distribution models, bioclimatic envelopes, or habitat models, 

niche-based models are by far the most commonly used method for predicting species geo-climatic 

distributions. Such models typically use a variety of correlative methods to provide detailed 

predictions of distributions by relating presence or abundance of species to gradients of observed 

environmental predictors. As such, niche-based models are used extensively and have provided 

researchers with an innovative tool to explore diverse questions in ecology and conservation (see 

Peterson, 2007). In particular, it has become common to use such models to assess potential 

distribution responses to future climate scenarios (e.g., Bakkenes et al., 2002; Araújo et al., 2004; 

Skov & Svenning, 2004; Thomas et al., 2004; Thuiller et al., 2005; Gomez-Mendoza & Arriaga, 2007; 

Thuiller, 2010), using sophisticated interpolation of climate data (e.g., Hijmans et al., 2005). One of 

the main advantages of niche-based models is their relative simplicity, making it straightforward to 

develop species-specific models, which make use of the large data sets available (e.g., Forest 

inventories, regionalized climate). 

 

For terrestrial vegetation, the term ‘process-based model’ incorporates a broad range of 

methodologies for describing eco-physiological processes, from purely empirical relationships to 

mechanistic descriptions based on physical laws. Various types of process-based models are used 

and under development, such as gap models (Pacala et al., 1993; Bugmann, 2001), landscape 

models (Lischke et al., 2006; Scheller & Mladenoff, 2007), fitness-based models (Chuine & 

Beaubien, 2001), or sophisticated ‘hybrid’ dynamic vegetation models (e.g., Sitch et al., 2008), 

which focus on achieving a balance between realism, accuracy and complexity. The suite of 

available models represents a range from very detailed species-specific models which describe 

stand structure and hourly plant physiological processes (i.e. coupled photosynthesis, respiration, 

and water balance), to general models based on fitness probability matrices. A process-based 

model can potentially allow for the highlighting of processes involved in range shifts or extinction. 

To date, various process-based approaches have been developed for predicting species 

distributions (see Jeltsch et al., 2008 for a review). These have been explicitly empirical, and link 

simple indexes of survival and reproduction with impacts of frost, drought, and windthrow to 
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produce a presence–absence indicator. The use of these empirical models to make predictions of 

species range shifts is rare for species ranges at the regional scale (Hijmans & Graham, 2006; Jeltsch 

et al., 2008). 

 

Many mechanistic process-based model studies, supported by experimental campaigns such as 

the FACE project (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007), as well as growth and yield 

surveys, suggest that global warming will have a positive impact on forest productivity (van der 

Meer  et al., 2002; Nigh  et al., 2004; Norby & Luo, 2004; Briceño-Elizondo et al., 2006; Gaucharel et 

al., 2008), due to the direct fertilization effect of increased CO2 and indirect effects such as 

lengthening of the growing period [but see contrary examples such as Zierl & Bugmann (2007)]. 

Results vary among experimental systems, especially when considering potential acclimation 

(Körner, 2006) and nutrient limitation (Zaehle et al., 2010), and remain the focus of much study. On 

the other hand, results from statistical niche-based models are supported by a growing body of 

ecological literature that suggests that the narrow climatic adaptation of many tree species may 

lead to many populations being poorly suited to their environment, resulting in large alteration to 

potential distributions towards the end of the 21st Century (Davis & Shaw, 2001; Iverson & Prasad, 

2001; Thomas et al., 2004; St Clair & Howe, 2007; Benito-Garzon et al., 2008). Within studies, 

different modeling methods yield highly divergent predictions, even when spatial assessments of 

model accuracy appear excellent (Araújo et al., 2005a, b; Kharouba et al., 2009). 

 

It is of great importance to develop several methods independently and to compare (for the same 

species and under the same scenarios) their predictions in order to identify both robust results and 

model inadequacies (Beaumont et al., 2007). Such cross comparisons may provide information on 

which policy makers and stakeholders can rely. Yet, despite the uncertainty generated by 

contrasting experimental results, the variety of modeling approaches available (Jeltsch et al., 2008), 

and studies that have highlighted differences between niche-based modeling approaches (Elith et 

al., 2006; Hijmans & Graham, 2006), niche-based model predictions are rarely compared against 

other modeling approaches. Of particular relevance to this study, the models used in previous 

comparisons (e.g., Hijmans & Graham, 2006; Jeltsch et al., 2008; Coops et al., 2009; Morin & 

Thuiller, 2009) have not described the indirect effect of CO2 driven forest productivity on the 

suitability of a site (but see Rickebusch et al., 2008). 
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This paper has three purposes. First, we consider the effectiveness of an empirically derived multi-

niche-based model ensemble, applying the biomod-r package (Thuiller et al., 2009) with 

regionalized present-day (1950–1998) climate, to predict the distributions of three forest species in 

continental Spain. These species are presently distributed along a gradient from drier 

(Pinushalepensis), to mesic (Quercus ilex) and moister conditions (P. sylvestris). Second, we assess 

potential future climate driven changes in current forest stands using both the niche-based 

approach and a mechanistic process-based forest growth model (GOTILWA+). Third, we use the 

process-based simulations of projected future forest productivity (with and without CO2 

fertilization) to identify possible processes responsible for the large differences observed in future 

projections from the two modeling approaches. We then suggest possible means by which to 

improve future model efforts. 

4.2 Material and methods 
 

Selected region and study species 

We focused on the region of continental Spain, which contains a large altitudinal gradient (sea 

level to 3500 m) and a mosaic of different climates (from semiarid climates to Mediterranean and 

humid Atlantic climates). The Third Spanish National Forest Inventory (Ministerio de 

AgriculturaPyA, 2007) surveyed the forested surface of the Spanish Iberian Peninsula (492 173 km2) 

with an approximate density of 1 plot km2. Each of the resulting 89 365 circular plots was located in 

the field by giving its Universal Transverse Mercator (UTM 30N) coordinates. We extracted the 

presence/absence data for three species with distinct topoclimatic distributions: two tree species 

(Q. ilex, P. halepensis) commonly found in Mediterranean forests of the study region, and one 

species (P. sylvestris) which is found at the most southern limits of its distribution (Figure 4.1). 
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Figure 4.1 Current distribution of Q.ilex, P.halepensis and P.sylvestris in continental Spain. 

Climatic data 

From 1900 to 2000, a reconstructed climatic data time series based on the CRU05 (1901–2000) 

monthly data set (New et al., 1999) was used, with global atmospheric concentrations of CO2 from 

1901 to 2000 obtained from the Carbon Cycle Model Linkage Project (McGuire et al., 2001). 

We applied the climatic projection for period 2001–2100 generated by the HadCM3 global 

circulation model using the A1 scenario (IPCC WGI, 2007) as an indicator for the effect of possible 

future climate change on species distributions and productivity. The HadCM3 model with the A1 

scenario uses an estimated increase in atmospheric CO2 to 810 ppm by 2080, with an associated 

increase in temperature of 3.1 °C by 2080 for the area included in this study (in comparison with 

the average temperatures for the 1960–1990 period), and a slight decrease in precipitation. 

The present-day regionalization was created by GIS modeling from ground data (1950–1998; 1068 

thermometric and 1999 pluviometric meteorological stations) from the Spanish weather 

monitoring system (National Weather Institute; http://www.aemet.es). The regionalization method 

chosen was multiple regression with residual correction (spatially interpolated using inverse 

distance weighting in the case of mean temperatures or splines in the case of precipitation). The 

climate predictors were altitude, latitude, continentality (linear or quadratic distances to 

Mediterranean, Atlantic and Cantabric coasts) and potential global solar radiation; all of them 

derived from a DEM (Digital Elevation Model). A holdout crossvalidation, using a fitting set (60%) 

and a testing set (40%), was applied to compute the RMSE for the monthly data (between 0.8 and 

1.6 °C in the case of temperature and between 6 and 20 mm in the case of precipitation). See 

Ninyerola et al. (2007a, b) for more details on the methodology used. The resulting maps have a 
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200 m spatial resolution, although in this study we have generalized the matrix into a 1 km grid for 

computational purposes. 

Future regionalized climate was obtained using an approximation based on differences between 

the past climate (CRU) and the climate projection from the HadCM3 model using the A1 storyline, 

thus combining the predictive information of the GCM with the topoclimatic data provided by 

ground stations. 

Niche-based models 

We performed the projections using nine different and widely used niche-based modeling 

techniques, within the BIOMOD computational framework (Thuiller, 2003; Thuiller et al., 2009), as 

outlined in Table 4.1. 

All models used in this study need information about presences and absences to be able to 

determine suitable conditions for a given species. Pseudo-absences were randomly selected from 

stands at least 10 km distant to a presence where the target species was not recorded in the Forest 

Inventory. The number of pseudo-absences and presences were equaled in order to keep 

prevalence constant. A holdout crossvalidation has been used to evaluate the models: 80% of the 

presence–absence stands have been labeled as the training set and the remaining 20% as the 

testing set. The number of model evaluation runs was set to three with a repetition of two pseudo-

absence combinations on each run, resulting in a total number of six evaluation runs per model. 

The models outlined predict suitability values between 0 and 1 at each site. We applied a binary 

transformation (absence or presence, 0 or 1) by assigning a threshold from which we can consider a 

species present or absent, using the True Skill Statistic (TSS). This threshold represents the optimum 

correct classification of both presences and absences within the evaluation data. However, the 

accuracy of each model was calculated using both the AUC [area under the curve, from receiver 

operating characteristics curve (Swets, 1988)] and TSS (Allouche et al., 2006). 

To constrain model uncertainty, averaging of model predictions (giving the same weight to all 

predictions) can be implemented to derive a consensus prediction; an alternative is to combine 

models using some form of weighting (e.g. using PCA score value, Thuiller et al., 2003; Araújo & 
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Guisan, 2006). There is a wide range of approaches to do this (see Araújo& New, 2007 for a review). 

In this study, each model is given a weight in the ensemble of forecasts depending on their 

predictive accuracy using TSS. A decay factor of 1.6 in weights is set; that is, models are ordered in 

terms of TSS and the weight of each model in the forecast will be 1.6 times larger than the 

following. This procedure (i.e. a form of ‘stacking’) ensures accuracy-based discrimination between 

models. Further information on this procedure may be found in Thuiller et al. (2009). 

Climatic and topographic uncorrelated variables (from more than 100 raw variables) are used to 

apply these niche-based models. For each target species, a different set of topoclimatic variables is 

chosen by evaluating the correlation matrices. Variables were chosen from those commonly shown 

to influence tree distribution. 

The variables chosen for each species, and their mean relative importance over all niche-based 

models were: 

Q. ilex – Summer minimum water availability (11%), mean winter water availability (31%), 

minimum of the mean winter temperature (23%), minimum of the mean summer 

temperature (12%), cost–distance to the sea (15%), slope (7%). 

P. halepensis – Mean spring water availability (40%), minimum of the mean winter 

temperature (23%), cost–distance to the sea (23%), aspect (14%). 

P. sylvestris – Summer minimum water availability (39%), mean winter water availability 

(8%), minimum of the mean winter temperature (35%), cost–distance to the sea (6%), slope 

(11%). 

The relative importance of each variable is calculated based on the correlation between standard 

prediction and the prediction with a randomized variable, therefore estimating the influence of the 

randomized variable in the modeling (see Thuiller et al., 2009 for further details). 
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Model 

number 

Abbreviation Description Reference 

1 RF 

(random forest) 

A machine-learning method – a combination of tree 

predictors such that each tree depends on the values of a 

random vector sampled independently and with the same 

distribution for all trees in the forest. 

Breiman 

(2001) 

2 CTA (classification 

tree analysis) 

A classification method – a 50-fold cross-validation to select 

the best trade-off between the number of leaves of the tree and 

the explained deviance. 

Breiman et al. 

(1984) 

3 GBM (generalized 

boosting model) 

A machine-learning method – combines a boosting algorithm 

and a regression tree algorithm to construct an ‘ensemble’ of 

trees. 

Ridgeway 

(1999) 

4 MARS (multivariate 

adaptive regression 

splines) 

A nonparametric regression method, mixing CTA and GAM. Friedman 

(1991) 

5 GAM (generalized 

additive model) 

A regression method, with 4 degrees of freedom and a 

stepwise procedure to select the most parsimonious model. 

Hastie & 

Tibshirani 

(1990) 

6 MDA (mixture 

discriminant analysis) 

A classification method – based on mixture models Hastie & 

Tibshirani 

(1990) 

7 GLM (generalized 

linear model) 

A regression method, with polynomial terms for which a 

stepwise procedure is used to select the most significant 

variables. 

McCullagh & 

Nelder (1989) 

8 ANN (artificial neural 

networks) 

A machine-learning method, with the mean of three runs 

used to provide predictions and projections. 

Ripley (1996) 

9 SER (surface range 

envelope) 

A simple rectilinear envelope, that takes into account the 

whole range of conditions in which the species is present. 

Busby (1991) 

Table 4.1 Niche-based models used in this study 
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Ecosystem model GOTILWA+ 

 

GOTILWA+ (Growth Of Trees Is Limited by WAter), (Keenan et al., 2008, 2009a, b, c, 2010; 

http://www.creaf.uab.es/GOTILWA+) is a process-based terrestrial biogeochemical model of forest 

growth that has been developed in the Mediterranean region to explore how forests are influenced 

by water stress, tree stand structure, management techniques, soil properties, and climate 

(including CO2) change. 

 

GOTILWA+ does not predict the distribution of a species, but simulates tree growth, and the 

associated carbon and water fluxes for different tree species in different environments, thus 

reflecting a site-species specific ecophysiological suitability. The model treats monospecific stands, 

which can be even or uneven-aged. Individual trees are aggregated into 50 dbh (diameter at breast 

height) classes and calculations are performed for each class. Hourly ecosystem carbon and water 

fluxes are estimated using meteorological forcing. No bioclimatic limits are set in GOTILWA+, and 

indeed indirect bioclimatic limits can only be considered through the direct effect of climate on the 

physiological processes of the forest. 

 

The GOTILWA+ model includes a two-leaf canopy photosynthetic submodel (Wang &Leuning, 

1998; Dai et al., 2004). The photosynthesis submodel treats the C3 photosynthetic pathway. The 

canopy is divided into sunlit and shaded leaves, with the amount of intercepted diffuse and direct 

radiation depending on the time of the day, season, and the area of leaf exposed to the sun 

(Campbell, 1986). Foliage net assimilation rates are calculated using the Farquhar et al. (1980) 

photosynthesis model, with dependencies on intercepted quantum flux density, species-specific 

photosynthetic capacities, leaf temperature, and leaf intercellular CO2 concentration. Stomatal 

conductance is calculated using the Leuning et al. model (Leuning et al., 1995) that is the 

advancement of the Ball et al. (1987) model. Net photosynthesis is scaled from the leaf to the 

canopy through the canopy microclimate model, to give canopy bulk gross primary production 

(GPP). Net primary production (NPP) is calculated as the balance of GPP less autotrophic respiration 

components and is defined as NPP=A+Rf+Rw+Rr, where A is the net assimilation rate per unit ground 

(=GPP−daytime leaf respiration), Rf is night respiration rate per ground unit area, Rw is respiration 

of nonleaf aerial plant tissues, Rr is respiration of root tissues. Model parameters were set to 
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species-specific values (as in Gracia et al., 1999; Kramer et al., 2002; Morales et al., 2005; Keenan et 

al., 2009a). Each tree cohort is represented with three carbon compartments: leaf, sapwood, and 

fine roots. Available mobile carbon is allocated to each, and maintenance respiration of each 

compartment is calculated as a function of temperature. 

Water stress affects the photosynthesis–conductance coupling by directly reducing the 

photosynthetic potential through a nonlinear relation to soil water content (Keenan et al., 2009a). 

Phenology is temperature-dependent and accounted for in an updated version of the 

Pelkonen&Hari (1980) approach for calculating the seasonal variations in photosynthetic potential. 

GOTILWA+ has been validated and widely applied both in the Mediterranean region and the rest of 

Europe (see Kramer et al., 2002; Morales et al., 2005; Keenan et al., 2009a for validation exercises 

and Keenan et al., 2009b, c, 2010 for example applications). 

 

Experimental setup 

 

The niche-based model ensemble was used to calculate the per model suitability for each 

recorded stand (1 km2 scale) for the two periods 1950–1998 and 2050–2080. A weighted mean 

model ensemble suitability was then calculated for each period. For GOTILWA+, simulations were 

run for each dominant occurrence of the three studied species for the period 1930–2100. Two 

experiments were considered for the GOTILWA+ model: (1) with increasing CO2 concentrations as 

prescribed by the A1 climate scenario, (2) with CO2 concentrations fixed constant at post 2000 

levels from 2000 to 2100. We used modeled values of NPP as a pseudo-proxy for suitability, given 

that it reflects direct changes in temperature and soil water availability, and as well as more 

complex indirect effects of changes in phenological events, labile carbon pools, stand biomass and 

the associated maintenance, growth and turnover. Long- and short-term changes in NPP therefore 

can be used as a simple representation of the ‘health’ of a forest stand and may be correlated to 

changes in suitability values for a given species. 
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4.3 Results 
 

We first assessed consistency in niche-based model predictions by measuring agreement between 

modeled present-day distributions and known presence and pseudo-absence of species (Table 4.2). 

The results showed a good predictive ability for observed distributions, with most mean AUC and 

TSS values within ranges of good predictive performance (Allouche et al., 2006). The Random Forest 

(RF) model performed consistently better across species, followed by the classification tree analysis 

(CTA) and generalized boosting model (GBM) models. Variability in performance between modeling 

techniques was high (Table 4.2), with mean TSS values varying by up to two times between models. 

The TSS statistic proved to be a more sensitive estimator of model predictive accuracy than the 

AUC statistic. In the case of TSS, each species weighted model ensemble proved to have higher 

predictive power than simply taking the average of all models, or even using the best model. 

 

Two distinct groups were observed in the niche-based models: the first consisting of the three 

methods GAM, GLM, and MDA, and the second group comprising of the three methods MARS, 

GBM, and CTA. Three methods [artificial neural networks (ANN), RF, and surface range envelope 

(SRE)] with distinct predictions were observed (Figure 4.2). Although the majority of methods show 

an overall good performance of mean TSS across species, they vary in terms of TSS variance across 

species. The RF model proved to be the most stable across species due to its flexibility in contrast 

with SRE, a restricted envelope only based on maximum and minimum of the explanatory variables. 

ANN accounts for the greatest variance due to its performance for Q. ilex (Table 4.2). 

 

 

 

 

 

 

 

 

 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
99 

 

 

MODELING 

TECHNIQUE 

Quercus ilex Pinushalepensis Pinussylvestris 

w AUC TSS w AUC TSS w AUC TSS 

RF 
0.381 

0.974 

(0.004) 

0.845 

(0.011) 
0.381 

0.962 

(0.006) 

0.805 

(0.018) 
0.381 

0.989 

(0.002) 

0.911 

(0.012) 

CTA 
0.238 

0.931 

(0.01) 

0.768 

(0.02) 
0.238 

0.924 

(0.011) 

0.750 

(0.019) 
0.22 

0.963 

(0.008) 

0.876 

(0.019) 

GBM 
0.149 

0.947 

(0.006) 

0.770 

(0.014) 
0.149 

0.954 

(0.006) 

0.779 

(0.013) 
0.16 

0.984 

(0.004) 

0.881 

(0.014) 

MARS 
0.093 

0.929 

(0.01) 

0.714 

(0.02) 
0.073 

0.943 

(0.005) 

0.750 

(0.010) 
0.1 

0.981 

(0.005) 

0.881 

(0.012) 

GAM 
0.031 

0.893 

(0.008) 

0.643 

(0.012) 
0.078 

0.942 

(0.006) 

0.755 

(0.010) 
0.055 

0.978 

(0.004) 

0.873 

(0.008) 

MDA 
0.054 

0.890 

(0.012) 

0.668 

(0.028) 
0.021 

0.01 

(0.018) 

0.699 

(0.024) 
0.02 

0.871 

(0.007) 

0.861 

(0.014) 

GLM 
0.032 

0.890 

(0.012) 

0.645 

(0.015) 
0.036 

0.933 

(0.007) 

0.737 

(0.017) 
0.035 

0.976 

(0.004) 

0.867 

(0.006) 

ANN 
0.01 

0.754 

(0.037) 

0.475 

(0.048) 
0.016 

0.903 

(0.008) 

0.706 

(0.012) 
0.021 

0.963 

(0.016) 

0.847 

(0.021) 

SRE 
0.013 

 

0.528 

(0.015) 
0.009 

 

0.436 

(0.030) 
0.009 

 

0.683 

(0.022) 

Ensemble  

0.958 

(0.003) 

0.961 

(0.003)  

0.969 

(0.001) 

0.976 

(0.001)  

0.990 

(0.486) 

0.990 

(0.513) 

      Table 4.2 Assessment of the agreement between modeled and observed distributions for each niche-     
based model and species, and the resulting weights (w) used in the multimodel ensemble. 
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Figure 4.2 Variation of performance of each niche modeling technique 

 

When predicting responses to climate change, a broad topoclimatic range of responses were 

observed (Figure 4.3), although all species showed the same general tendency. Model ensemble 

predictions of suitability showed large declines in suitability for each of the three species between 

the periods 2050–2080 and 1950–1980. Q. ilex stands were the largest affected by the applied 

climate change scenario (Figure 4.4), with 40.4% of current stand locations becoming unsuitable by 

the period 2050–2080. Although Q. ilex is a typical Mediterranean species, and relatively drought 

tolerant, its large topoclimatic distribution means that it is currently located in some areas which 

are predicted to be subject to high levels of climate change in the future. Thus, areas of its southern 

most range were the highest affected. Climate change induced decline of P. halepensis was not so 

severe, with the majority of sites (87.3%) maintaining a level of suitability that would permit the 

presence of the species. The multimodel ensemble also predicted an important decline in the 

presence of P. sylvestris (24%), though the species maintained a strong presence in most 

mountainous regions (e.g. the Pyrenees Mountains), resulting in much larger geographical 

variability than that observed for the other two species. 
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Figure 4.3 Changes in suitability in current forests 

 

 
 

Figure 4. 4 Predicted future of current forests of Quercus ilex, Pinus halepensis, and P. sylvestris in 
continental Spain, as predicted by the multimodel ensemble for the period 2050–2080. Future absence 
relates to current forest stands in locations which are projected to be geoclimatically unsuitable by the 
period 2050–2080. 

Results for estimates of change in current forests under future climates also demonstrate that the 

modeling technique used to define climate envelopes can have a very large impact on predictions 

(Table 4.3). Predictions for each of the three species (excluding SRE which presents a very low 

weight) varied in magnitude of predicted change. For example, for Q. ilex predicted losses of 

current habitat ranged from 5.6% to 46.9%. The other two species showed a lower range of model 

dependent variability (between 3% and 35%). Between-model variability across species was also 

very high, with models predicting between 17% (MARS model) and 28.3% (CTA model) loss of 

current habitat on average over the three species by the period 2050–2080. 
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  ANN CTA GAM GBM GLM MARS MDA RF SRE Mean SD 

Quercus ilex 5.65 46.97 21.34 40.06 16.92 29.1 9.66 30.56 88.42 32.08 25 

Pinus halepensis 18.59 9.5 30.62 18.4 20.51 21.49 27.94 6.6 47.13 22.31 12 

Pinus sylvestris 34.99 28.39 23.16 15.97 27.94 3.06 29.23 14.34 51.21 25.37 13.7 

Mean 19.74 28.29 25.04 24.81 21.79 17.88 22.28 17.17 62.25     

SD 14.7 18.7 4.92 13.2 5.6 13.3 10.9 12.2 22.7     

Table 4.3 Percentage (%) of current forest stands which were predicted to become unsuitable for their 
current species by the period 2050–2080 according to the different statistical models 

 

Simulations using the GOTILWA+ model showed a quite stable productivity from the three species 

over the past century (Figure 4.5), with slight increases in production nearing the end of the 

century. When considering potential future climatic change with no increment in atmospheric CO2 

each of the species was predicted to reduce their production (NPP) on average by the time period 

2050–2080 (Figure 4.5). This supports the results from the niche-based modeling approach, given 

that a reduced productivity reflects a reduction in topoclimatic suitability for these species. 

However, when considering the effect of increasing atmospheric CO2 concentrations, simulated 

production from each of the three species showed strong increases in NPP until about 2070. After 

2070, the fertilization effect of increased atmospheric CO2 was observed to plateau, and species-

specific reductions in NPP were observed. P. halepensis showed the strongest reduction, followed 

by Q. ilex. Although NPP rates began to decline by the end of the 21st century under the CO2 

fertilization scenario, they still maintained higher average rates (if only slightly in the case of Q. ilex) 

than those observed during the period 1950–1980.  

 

Large differences were observed between the response of the species as modeled by GOTILWA+ 

and that of the multimodel ensemble. However, when considering spatially explicit simulations 

with a constant CO2, the per-pixel magnitude and direction of the changes in NPP and in suitability 

(as predicted by the multimodel ensemble) between the period 2050–2080 and 1950–1980 were 

similar for two (Q. ilex, P. sylvestris) of the three species (Figure 4.6). So, less suitability for a pixel 

(niche-based) was reflected in less NPP for the same site, if no CO2 effect is taken into account 

(process-based). On the other hand, when considering a CO2 increment in the GOTILWA+ 

simulations, NPP generally showed an increase. The same per-pixel spatial trend was maintained, 
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where low suitability was mirrored by low NPP for Q. ilex and P. sylvestris, but the sign of the 

relative change in NPP vs. that of suitability, between the two focus periods, was different. 

 

Figure  4.5 The spatially explicit change (percentage per pixel) 
in average per period net primary production (NPP) (GOTILWA1) 
and estimated Suitability (multi-niche-based model ensemble), 
between the periods 1950–1980 and 2050–2080, considering 
both GOTILWA+ simulations with (gray) and without (black) an 
atmospheric CO2 increment. Lines represent linear regressions. 
 

 

 

 

 

 

The root mean squared error (RMSE) between the two 

different modeling approaches increased by a factor of 

three between GOTILWA+ simulations considering 

atmospheric CO2 as constant and those considering a CO2 

increment. This indicates that the introduction of CO2 as a 

driver in the GOTILWA model lead to a large dissimilarity 

between the two modeling approaches. For GOTILWA+ 

simulations with a constant CO2 concentration, the RMSE 

between the percentage of change in NPP and that of suitability for the two periods was 0.22, 0.28, 

and 0.29 for Q. ilex, P. Sylvestris, and P. halepensis, respectively. The RMSE when considering a CO2 

increment was 0.64, 0.73, and 0.83 (data presented in Figure 4.6). Changes in NPP and suitability 

are not necessarily 1 : 1 correlated, but the RMSE between the estimates gives a measure of their 

similarity, and the extent of the relative dissimilarity introduced by the consideration of the 

potential effect of CO2 fertilization. 
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Figure 4.6 The spatially explicit change (percentage per pixel) in average per period net primary 

production (NPP) (GOTILWA+) and estimated Suitability (multi-niche-based model ensemble), between 
the periods 1950–1980 and 2050–2080, considering both GOTILWA+ simulations with (gray) and without 
(black) an atmospheric CO2 increment. Lines represent linear regression 

 

 

4.4 Discussion 
We found that the applied niche-based models were capable of capturing the complex 

topoclimatic distribution of the three studied species, and that the use of a weighted multimodel 

ensemble improved the individual model performance. This adds to the mounting evidence that 

environmental conditions strongly influence species distribution patterns locally and regionally, as 

they do world-wide (Hawkins et al., 2003). Indeed, most of the selected variables were related to 

water and energy, which is consistent with the widely documented trend of plant species to be 

climatically driven by water–energy dynamics (see e.g., Field et al., 2005 and references therein). 

 

An important issue regarding niche modeling is the variability of results when using different 

modeling techniques (Thuiller et al., 2003; Araújo et al., 2005a, b; Pearson et al., 2006). The 

identification of five distinct patterns of range prediction from nine models highlights the 

differences between modeling approaches, while providing a foundation for further investigation as 

to which technique, or group of techniques, may be most appropriate for predicting future ranges 

but inevitably calls for an ensemble forecasting to determine species distributions (Araújo& New, 

2007). The best performing models are not always the same for different species, even if some of 

them (in particular RF, CTA, GBM) generally perform better for the species included in this study. 

The performance also varied according to the number of available presence records, corroborating 

results of other studies (Elith et al., 2006). Nevertheless, the use of different niche-based models 
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has been shown here to be an effective manner by which to quantify the inherent intermodel 

variability (Araújo et al., 2005a, b; Thuiller et al., 2005) and improve model estimates through 

ensemble forecast techniques. Process-based models would also benefit from such an approach, 

and future comparison studies should incorporate multiple process-based models. 

 

All models, considered in any time period, entail multiple sources of uncertainty (Thuiller et al., 

2003; Guisan&Thuiller, 2005). Many important biological factors are either often insufficiently 

described or omitted in all modeling approaches (see Guisan&Thuiller, 2005), such as small-scale 

environmental heterogeneity (e.g. microclimates, quantitative properties of soils), local dispersal 

(local dispersal leads to intraspecific aggregation; Pacala, 1997); biotic interactions across trophic 

levels (e.g. dispersal, pollinization; Araújo&Luoto, 2007); and processes that fragment space and 

create patchy aggregated distributions (e.g. forest fire events) (Fahrig, 2003). Perhaps most 

fundamentally for projecting possible future scenarios, large uncertainty exists regarding direct 

impacts of increased concentrations of atmospheric CO2 on species physiology and competitive 

interactions (e.g. Ainsworth et al., 2008). 

 

Despite their broad use, uncertainties about niche-based model predictions remain high (Hampe, 

2004; Heikkinen et al., 2006; Randin et al., 2006). To date, the main drawback of niche-based 

models is their inability to consider important relationships such as biotic interactions, mortality, or 

growth (Davis et al., 1998; Hampe, 2004) and their reliance on observed distributions, which are 

the results of long-term historical factors (e.g., postglacial recolonization and human management), 

and environmental stochasticity, among other factors. As they are empirical models they are based 

on information relevant to present day or past species distributions. This may make their 

extrapolation to future scenarios questionable for some species and drivers (e.g. terrestrial 

vegetation and CO2 fertilization) (Guisan&Thuiller, 2005; Pearson et al., 2006; Rickebusch et al., 

2008). One technique to reduce prediction uncertainty is to fit ensembles of forecasts by simulating 

across more than one set of initial conditions, model classes, model parameters, and boundary 

conditions (see Araújo& New, 2007, for a review) and analyze the resulting range of uncertainties 

with probabilistic methodologies rather than using a single modeling outcome (Thuiller et al., 

2006a, b; Araújo& New, 2007). Another may be to compare results from niche-based models to 
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those from process-based ones (e.g. Morin &Thuiller, 2009). In this study, we have shown both 

these techniques to be valuable in reducing and highlighting uncertainty. 

 

The use of species level process-based models is complicated by their necessity for a large amount 

of data to be calibrated (often leading to the use of proxies, assumptionsm and expert knowledge), 

and large computational resources. Applications are thus restricted to well-known species for 

which demography or physiology has been sufficiently studied. Previous studies have highlighted 

large differences between different process-based model approaches (e.g., Kramer et al., 2002) and 

systematic difficulties in some ecosystems (Morales et al., 2005), for example, difficulties in 

representing soil water and soil water stress (Jung et al., 2007), or accurately predicting phenology 

(Keenan et al., 2009a) and related uncertainties in predicting changes to the length of the growing 

season. Although process-based models should theoretically be more reliable than empirical 

models under future climate scenarios, not all processes are fully understood (e.g., species 

adaptation, down-regulation, nitrogen cycling etc.), potentially also making their extrapolation to 

future scenarios questionable. Such uncertainties can be effectively explored through techniques 

such as Monte Carlo parameter estimation (e.g., Richardson et al., 2010), normally showing poorly 

constrained respiration processes, but well constrained canopy photosynthesis and growth. 

Multimodel suites, similar to that of BIOMOD, are not used for process-based models but could 

help reduce such uncertainties. 

 

The effect of elevated CO2 has been highlighted as the largest uncertainty in projecting future 

productivity of terrestrial vegetation (Parry et al., 2004). Elevated CO2 stimulates photosynthetic 

carbon gain and net primary production over the long term despite down-regulation of Rubisco 

activity. It also improves nitrogen-use efficiency at both the leaf and canopy scale, while stimulating 

dark respiration via a transcriptional reprogramming of metabolism (Leakey et al., 2009). 

Experimental results indicate that plants are able to increase their water-use efficiency (WUE) as 

CO2 levels rise (e.g., Picon et al., 1996; Morison, 1998), as has been corroborated under field 

conditions (Peñuelas&Azcón-Bieto, 1992; Ehrlinger&Cerling, 1995; Duquesnay et al., 1998; 

Gunderson et al., 2002; Ainsworth & Rogers, 2007). Studies have also identified interspecies 

variability in responses to increasing atmospheric CO2 concentrations (e.g., Francey& Farquhar, 

1982), and, importantly, have highlighted the possibility of species-specific response saturation 
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rates (Waterhouse et al., 2004; Betson et al., 2007). Few interspecies comparisons exist, though the 

general tendencies have been shown to be conserved over a large number of species (Hickler et al., 

2008). It should be noted, however, that there is broad agreement that the effects of elevated CO2 

measured in experimental settings lacking potentially limiting influence of pests, weeds, nutrients, 

competition for resources, soil water, and air quality, may overestimate field responses of 

terrestrial vegetation (Long et al., 2006; Easterling et al., 2007; Tubiello et al., 2007; Ainsworth  et 

al., 2008; Zavala et al., 2008). 

Although soil water availability is the largest limitation to forest growth in Mediterranean climate 

regions (Allen, 2001) [and often badly represented in model projections (Hickler et al., 2009)], 

fertilization studies show that the availability of nutrient availability limits primary production in 

Mediterranean ecosystems (LeBauer&Treseder, 2008; Elser et al., 2007). Nitrogen deposition is 

expected to increase in Mediterranean regions in the future (Rodà et al., 2002), but nitrogen 

limitation is also expected to become more pronounced as atmospheric CO2 concentration 

increases (the ‘progressive nitrogen limitation’ hypothesis) (Luo et al., 2004, 2006; de Graaff et al., 

2006; Finzi et al., 2007; Reich et al., 2006). Biogeochemical models have recently incorporated 

dynamic nitrogen cycles (e.g., Zaehle& Friend, 2010) and results show that C–N interactions 

significantly reduce the stimulation of forest NPP under increased atmospheric CO2 concentrations 

(e.g., Thornton et al., 2007; Jain et al., 2009). Such down-regulation in the response of forest 

productivity under elevated CO2 (Ainsworth & Rogers, 2007) is estimated at about 10% for 

European forest species (Medlyn& Jarvis, 1999). It is thus likely that the projected future NPP 

(under the CO2 enriched scenario) is overestimated in this study because it does not properly 

account for N down-regulation constraints (Hungate et al., 2003; Thornton et al., 2007). 

 

Organisms are the products of chemical reactions, and their development, growth and mortality 

depends on various environmental factors, in particular temperature, radiation, CO2, nutrients, and 

water availability. In the Mediterranean region, the future presence of a species is thus likely 

determined by the complex balance of temperature change, water stress. and the species-specific 

capacities (e.g. Peñuelas et al., 2008). Ultimately, species-specific responses may affect the 

structure and functioning of ecosystems (Peñuelas&Filella, 2001) due to altered competitive 

relationships of key performance measures and the loss of synchronization of development (Fitter 
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& Fitter, 2002; Gordo &Sanz, 2005). This could strongly contribute to relative fitness and thus to 

evolving biogeographic distributions. 

 

The magnitude of climate change scenarios for past and future periods differ among different 

circulation models and therefore it is a source of uncertainty that might affect the results of the 

applied models (Beaumont et al., 2008; Parra & Monahan, 2008). It is therefore normally of utmost 

importance to apply a range of climate models and scenarios in order to estimate the inherent 

variability introduced by the choice of climate. In this study, due to computational limitations 

associated with the application of a mechanistic process-based model, we have applied only one 

climate scenario and model. Although the use of other climate data would change the projected 

distribution for each of the species, and the productivity patterns simulated by the mechanistic 

process-based model, we argue that the qualitative conclusions of this work are independent of the 

choice of climate scenario. 

 

The presented results show that previous reports of species decline in continental Spain (e.g. 

Benito-Garzon et al., 2008) may be overestimated due to two reasons: the use of only one 

predictive niche-based model, and the failure to account for possible effects of CO2 fertilization. 

Similar studies in other regions, which do not consider these two aspects, are also potentially 

overestimating species decline due to climate change. Similarly, the presented niche-based model 

results also likely overestimate the decline in suitability. 

 

Human effects can have large impacts on the distribution of species (Channel &Lomolino, 2000). 

The assumption of equilibrium between a species distribution and environmental conditions is less 

valid in disturbed ecosystems such as Mediterranean forests, where human influence is strong (e.g., 

land-use effects, fire occurrences). It has also been reported that many European tree species are 

not in equilibrium with climate (Svenning & Skov, 2004, not P. sylvestris, which was reported to be 

in relative equilibrium) as a consequence of postglacial dispersal limitations (Svenning et al., 2008). 

In this study, some of the observed imbalance between environment and spatial aggregation of 

tree species might be explained by the lack of equilibrium between species and current 

environmental conditions. It is also important to bear in mind that our results are restricted to tree 

species in continental Spain, and thus we can not be certain to what extent any patterns or results 
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that we observe here may be either affected by species occurrences in other regions, or 

extrapolated to other topoclimatic scenarios. 

 

It is interesting and reassuring that changes in suitability predicted by the niche-based models 

conferred well with changes in NPP projected by the GOTILWA+ model (with no CO2 increment) for 

two of the three studied species. This was not the case, however for P. halepensis. This could be 

explained by the fact that P. halepensis is distributed along the coast (Figure 4.1). Many factors 

other than climate can significantly influence species distributions and distribution changes 

(Hampe, 2004; Coudun et al., 2006; Pearson et al., 2006) and distance from the sea is used as a 

strong explanatory factor for presence prediction of P. halepensis in the niche-based models, which 

is not the case for the other two species. As distance from the sea is constant under climate 

change, this could also explain why P. halepensis is predicted to loose less of its current territory by 

the period 2050–2080 due to climate change, when compared with the other species (Table 4.3), 

and could in part explain the difference between projects from the niche-based models and those 

of GOTILWA+ for P. halepensis. 

 

Ecosystems in the Mediterranean basin are prone to experience a concatenation of stochastic 

disturbances, including fire, drought, clearing, grazing, and land-use change. Mediterranean Basin 

ecosystems are thus characterized by acertain ‘unpredictability’ (Blondel & Aronson, 1999). This 

conditions local adaptation and manifests its effect on the phenotypic variation of forest tree 

species in response to macroenvironmental gradients (Volis et al., 2002). Adaptive modes could be 

highly important for predicting future species responses to climate change. The models presented 

here assume nonsignificant evolutionary and/or ecological change in a species in response to 

changing environmental conditions through time [thus ignoring rapid in situ adaptation (Thomas et 

al., 2001), and existing adaptation of populations to local conditions (Hampe, 2004), etc.]. Evidence 

suggests that species adaption has occurred for many species (Pearman et al., 2008), implying a 

questionable ability of models to project species responses to potential future climates. However, 

we are far from a comprehensive understanding of possible species-specific adaptation capacities. 

 

The identification of a general connection between biogeochemistry, plant physiology, 

disturbance, and species distributions would constitute a considerable advance in our predictive 
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ability (Morin et al., 2007; Chown & Gaston, 2008). Here we take the first step in using a 

biogeochemical model in comparison with a niche-based model, estimates of species distributions. 

Further work is needed to identify complementary elements of the different modeling approaches, 

in order to develop effective techniques for estimating species responses to potential climate 

change. 

 

Plant physiology, biogeography, and related areas of research are currently merging to a new 

framework for understanding the patterns of the distribution of life on Earth. Ecosystem responses 

to climate change are driven by complex multifactor influences (Norby & Luo, 2004; Körner, 2006). 

An organism's niche must therefore be modeled mechanistically if we are to fully explain 

distribution limits (Kearney, 2006), especially when considering an organism's distribution under 

novel circumstances not used for the parameterization of the original model, such as a species 

introduction or climate change (Guisan & Thuiller, 2005). We have shown that niche-based models 

give accurate predictions of present species distributions (which can be improved through the use 

of multi model ensembles) and that comparisons with a process-based biogeochemical model can 

be useful in highlighting areas of uncertainty in projections under potential climate change. 

However, given the high variation in the accuracy of model predictions and the species-specific 

nature of biological responses to landscape changes (e.g. species responses to CO2 fertilization), it 

seems clear that we are far from a comprehensive methodology for predicting the responses of 

individual species (and thus current stands) to future climatic change. Our results support recent 

calls for a new generation of more biologically realistic niche-based models (Guisan & Thuiller, 

2005; Kearney, 2006; Araújo & Luoto, 2007; Keith et al., 2008; Rickebusch et al., 2008; Montoya et 

al., 2009; Nogues-Bravo, 2009). Perhaps most importantly, it is vital that models such as those used 

in this study are interpreted as tools for sharpening our understanding of species range constraints, 

and that they are only applied in a predictive capacity along with full appreciation of the 

uncertainty involved. 
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5. ON PROJECTIONS OF MULTIPLE SPECIES: 
AGGREGATED VERSUS INDIVIDUAL PLANT 
SPECIES DISTRIBUTIONS 
 

STUDY: ‘Coexistence of Abies alba (Mill.) – Fagus sylvatica (L.) and climate 

change impact in the Iberian Peninsula: A climatic-niche perspective approach’ 

 

5.1 Introduction 
The effects of global climate change on vegetation and forests might induce deep 

transformations in natural resources and landscape structure, posing a challenge to biodiversity 

and habitats (Thomas et al., 2004; Botkin et al., 2007; Nogués-Bravo et al., 2007). The implications 

of climate warming for vegetation have therefore been widely studied on different scales, ranging 

from the physiological responses of plants (Peñuelas et al., 2002; Walther et al., 2002) to regional 

plant distribution (Thuiller et al., 2005), using various modeling approaches (Guisan & 

Zimmermann, 2000; Elith et al., 2006). 

 

Species distribution models (SDM) refer to the whole set of statistical correlative approaches 

that extrapolate the environmental data associated with a species’ presence and/or absence and 

project its relationship with these data onto a different sites and/or time period. As they are easy to 

implement, these models are now widely used to address various issues in ecological research, 

while also providing guidance for applied research (Franklin, 2010). 

 

The theoretical basis for most species distribution models is the niche theory, which establishes 

the existence of a whole set of conditions and resources in which a species can live (sensu 

Hutchinson, 1957; see Holt, 2009). The niche theory makes it possible to use current patterns of 

distribution to characterize the realized niche (RN), whereas the fundamental niche (FN) concept 

indicates the whole range of conditions in which a species may survive and reproduce. 

There has been great debate on the scientific scene over what these species distribution models 
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are really modeling (Hirzel & Lay, 2008; Kearney, 2006) and many studies point out that the 

proximity of a modeled niche to either a realized or a fundamental one is dependent on the 

techniques used, the selection of absences and whether the model’s construction is built on 

presence-absence data or presence data alone (Jiménez-Valverde et al., 2008). Furthermore, it has 

often been argued that the processes involved (e.g., growth, reproduction, competition and 

migration) are not evaluated directly, thus hampering both the interpretation and application of 

these models (see Guisan & Thuiller, 2005; Thuiller et al., 2008, for an extended review). 

 

These models have usually treated species distribution on an individual basis, although 

vegetation units have also been considered (Miller & Franklin, 2002). Community assemblies may 

be modeled via a number of different strategies: (1) assemble first, predict species later; (2) predict 

species first, assemble later; or (3) assemble and predict at the same time (Ferrier and Guisan, 

2006). Modeling communities (several species simultaneously) may provide a faster way to model 

diversity and examine different patterns of co-occurrence. Although community-based models may 

render accurate results, species may respond differently to variations in climate (Williams & 

Jackson, 2007) and are subject to differences in plasticity (Valladares et al., 2007), prejudicing these 

models’ ability to predict various situations in space and time (Guisan and Zimmermann, 2000) and 

therefore be extrapolated (Elith and Leathwick, 2009). Previous studies investigated the effect of 

individual models versus community models (Baselga & Araújo, 2009) using a community approach 

based on patterns of co-occurrence and co-exclusions (Canonical Quadratic Ordination). Their 

results pointed out some shortcomings due to the generality of the model and species interactions 

in such community models. 

 

In fact, by applying SDMs to model community distribution, we would expect the projection of 

the current conditions in which a community appears (realized niche of the community; RNC) to 

result in smaller areas than the overlap of the projections of single species. If this is true, models of 

future communities may overestimate species assemblages if produced by Boolean intersection 

(overlap) from the performance of individual species. Such an overlap could be interpreted as the 

niche space lying between the realized niche of the community and the fundamental niche, 

corresponding to the pseudo-fundamental niche of a community (PseudoFNC; Figure 5.1). Although 

the fundamental niche of any species or community is difficult to estimate, the pseudo-
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fundamental niche represents combinations of the environmental space in which the species in a 

community currently occur, projecting a niche close to the fundamental niche. Therefore, the 

degree of disagreement between both niches (realized to pseudo-fundamental) may elucidate 

whether a community’s current realized niche meets the whole set of current conditions met by 

species comprising the target community (Realized Niche sp1 ∩ Realized Niche sp2). 

 

 

In the Iberian Peninsula, the distributions of silver fir (Abies alba Mill.) and European beech 

(Fagus sylvatica L.) and Abieti-Fagetum community are restricted to some areas of the Eurosiberian 

bioregion (Figure 5.2). Therefore, here both species are located on the southwest boundary of its 

European distribution, making them more vulnerable to changes in climate and management (Jump 

et al., 2006; Aitken et al., 2008). Although both species show similar distribution patterns within 

this region, the community Abieti-Fagetum is relatively scarce and the two indicator species often 

occur separately. Fir is mainly distributed at higher altitudes than beech, which requires greater 

humidity and shows a more continental distribution in the European context (European Flora Atlas: 

Lahti & Lampinen, 1999).  

Figure 5.1 Framework of the niche concept. Fundamental niche of the community (FNC) corresponds to 
the intersection of the Fundamental niche of indicator species of the community (FN1, FN2). Pseudo-
fundamental niche of the community (PseudoFNC) models the intersection of the realized niches of each 
indicator species of the community (RN1, RN2; modeled by the overlap of individual models) whereas the 
realized niche of the community (RNC) is modeled by the co-occurrence of the indicator species of the 
community. 
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Climate change scenarios (IPCC, 2007) 

predict a rise in temperature and 

changing patterns of precipitation in 

the Iberian Peninsula, resulting in 

increased water deficit. The relatively 

high water requirements of these 

species therefore will reduce the 

viability of the community of Abies alba 

and Fagus sylvatica. All these elements 

make the case of the Abies alba- Fagus 

sylvatica a good study-system for 

analyzing the performance of species-

based distribution models when building community assembly models. Previous studies already 

presented community model results for the Abieti-Fagetum community in Switzerland (Brzeziecki 

et al., 1993, 1995), but did not directly consider different modeling approaches. 

In the present research we aim to assess the future distribution and the reliability of predictions 

about the community formed by the co-occurrence of Abies alba and Fagus sylvatica in the Iberian 

Peninsula, by considering and comparing both the individual-species approach (OIM, strategy 2) 

and the community-based approach (CM, strategy 1), under climate change scenarios A1FI and A2 

(IPCC, 2007). 

 

5.2 Material and methods
 

We used a Generalized Linear Model (GLM) to map the suitability of Abies alba, Fagus sylvatica 

and mixed forests of these species based on presence/absence plots from the third National Forest 

Inventory (Ministerio de Agricultura PyA, 2007). The National Forest Inventory uses a regular 

sampling of all 1 × 1 UTM grid intersections matching forest areas. A presence of the target-species 

was selected only when dominant (first or second more abundant species according to their Basal 

Area [BA]). 

Figure 5.2 Spanish national forest inventory plot 
location of the co-occurrence of Abie salba and Fagus 
sylvatica (A), of Abies alba (B) and of Fagus sylvatica (C) in 
the Pyrenees and in the Iberian Peninsula. 
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Data on absences may influence model accuracy (Chefaoui and Lobo, 2008; Lobo et al., 2010), so 

we built 250 different data sets and run models for each dataset to obtain robust results, i.e., 

results not dependent on absences. Prevalence was kept constant (Nabsence = Npresence) in each 

dataset and we imposed a distance constraint on absence selection: plots within a buffer zone of 

5km around presences were not considered. By imposing these criteria we restricted the selection 

of absences in suitable climatic conditions. 

 

We followed two approaches to project community suitability: (1) overlapping individual-species 

modeling (OIM), and (2) community-based modeling (CM) of the co-occurrence of both species on 

the same forest inventory stand. 

 

Selection of variables 

 

Firstly, a correlation analysis was conducted between several climatic and topographic variables 

that explain, a priori, the distribution of Abies alba and Fagus sylvatica (Benayas et al., 2002; 

Thuiller et al., 2003): minimum, maximum and mean temperature and precipitation on a seasonal 

and yearly time scale, and water availability, computed as precipitation minus evapotranspiration 

(Thornthwaite, 1948). 

 

Climatic variables were derived from the Digital Climatic Atlas of the Iberian Peninsula (Ninyerola 

et al., 2000; available at: http://opengis.uab.es/wms/iberia/en index.htm). This cartography consists of 

65 monthly maps of mean air temperature (minimum, mean and maximum), precipitation and solar 

radiation derived from 1000 to 2000 meteorological stations, depending on the variable. These 

climatic grids are built using multiple regression and interpolation techniques, such as inverse 

distance weighting and kriging, coupled with a residual error correction method implemented in a 

GIS environment. Data from meteorological stations have been combined with altitude, latitude, 

distance from coast, solar radiation and terrain curvature to obtain 180 m spatial resolution grids of 

every climatic variable. Cross validation results show a root mean square error (Root Mean Square 

Error, RMSE) of 6–20 mm for annual precipitation, and 0.8–1.5◦C for annual mean temperatures. 

Topographic variables such as slope, terrain curvature, solar radiation and continentality (cost-
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distance to coast) were derived from a 200m spatial resolution Digital Elevation Model (DEM). 

 

Highly correlated variables were removed for subsequent species distribution modeling. We 

preferred this procedure to the use of factors extracted from Principal Components Analysis, as 

when many variables are used it is often difficult to interpret the extracted components in 

biological terms. Correlation analysis was performed using R 2.11.1 software (R Development Core 

Team, 2010) and correlations above 0.70 led to the elimination of one of the correlated variables. 

To decide which variables should be selected, we used the rule of the most comprehensive and 

integrative variable. For example, water balance is obviously highly correlated with precipitation 

and temperature but since it is also the most integrative variable, we would then remove 

precipitation and temperature from further analysis. The variables used in each model are shown in 

Table 5.1. 

MODELING APPROACH VARIABLES 

 

MEAN EXPLAINED VARIANCE 

 

AUC 

IM 

Abies alba 

(individual model) 

WAsummer;WAwinter 

MinWiT; Curvature; Slope; RAsummer 
74 % 0.98 

IM 

Fagus sylvatica 

(individual model) 

WAspring; MinWiT 

Friction; Slope; RAsummer 
65% 0.96 

CM 

Fagus sylvatica+ Abies alba 

(community model) 

WAfall; MinWiT; Curvature; Slope 84% 0.98 

 

 

Table 5.1 Summary of the GLMs. Variables: WA (Water Availability), MinWiT (minimum winter 
temperature), CURV (Terrain curvature), SLP (Slope), RA (Solar radiation). AUC refers to the Area Under 
the Receiver Operating Characteristics curve (ROC), a measure of accuracy calculated with the 20% of 
points in each dataset. Data correspond to the mean values of 250 datasets with different absence 
locations. 
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Generalized linear models for Abies alba, Fagus sylvatica and A. alba-F. sylvatica 

co-occurrence 

 

A stepwise GLM was performed using R software (R Development Core Team, 2010) based on an 

Akaike Information Criterion (AIC; Akaike, 1974). This procedure was run separately for Abies alba, 

Fagus sylvatica and the community Abies alba-Fagus sylvatica, with presence and absence 

considered on a scale of 1 km2. In each approach 250 iterations (runs) of a GLM were performed, 

using different selections of absences. For each run, the GLM algorithm chose the best combination 

of variables that minimize the input information in the model (AIC), and the most repeated set of 

variables in the 250 models was chosen to run the final model. The final model consisted of a 

regression using averaged regression coefficients from the 250 GLM iterations, using the selected 

formula. 

 

Model calibration was performed by using 80% of the plots from each dataset (250 in total), with 

20% of the plots reserved to calculate the accuracy of the model using the area under the Receiver 

Operating Characteristics curve parameter (Fielding & Bell, 1997). The final model accuracy for each 

approach was computed using the mean of the 250 runs. 

 

Suitability models for each species and CM produced an output (suitability index), ranging from 0 

to 1, which can be mapped. A threshold needs to be set in order to differentiate a suitable location 

from unsuitable ones (binary response). We calculated this threshold as a compromise between 

maximizing the correct predicted presences and minimizing unpredicted presences, thus optimizing 

model sensitivity and specificity (see examples in Pearce & Ferrier, 2000; Randin et al., 2009). 

 

Future climatic scenarios: downscaling global circulation models 

 

The IPCC socioeconomic analysis (IPCC, 2007) proposes several scenarios of CO2 emissions. 

Different scenarios and climate variability may achieve quite different results (Beaumont et al., 

2007), so we used two climatic projections (A1FI, A2) derived from the coupled atmosphere-ocean 

general circulation model (AOGCM) HadCM3 simulation, developed at the Hadley Centre – UK 
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(Gordon et al., 2000; Pope et al., 2000). Each scenario represents a storyline in greenhouse gasses 

emissions, taking into account demographic and social frameworks. In our study we selected two 

scenarios from the A1 and A2 storylines family. The former forecasts a future of rapid economic 

growth and intensive fuel use (A1), whereas the latter describes growth, albeit limited to a regional 

level and free of any rapid technological development (IPCC, 2007). In the Iberian Peninsula these 

scenarios describe varying degrees of severity: A1FI predicts an increase of 4.5°Cinmean anual 

temperatura anda drop of 111 mm in annual precipitation, whereas A2 represents a milder change, 

with an increase of 3.2°C and an average decrease in annual precipitation of 95 mm. 

 

These general circulation models were applied to obtain the mean annual temperature and 

precipitation for the period 2050–2080 on a grid with a 4000 m spatial resolution. We downscaled 

these values by adding the predicted mean increase or decrease in temperature and precipitation 

(2050–2080) to the Digital Climatic Atlas of the Iberian Peninsula, which offers a finer resolution for 

mountainous areas (Randin et al., 2009). The topographic variables remained constant for the two 

scenarios. The new values for the models’ variables resulted in new suitability maps in the 

predicted scenarios, making it possible to determine future increases or decreases in suitability. 

 

5.3 Results 
 

Individual-species models present positive evaluation results with AUC values of 0.98 for Abies 

alba and 0.96 for Fagus sylvatica (Table 5.1). The geographic pattern of the topoclimatic area 

suitable for Abies alba is restricted to the northern mountain regions of the Iberian Peninsula, 

although some remnants of suitable areas may also be found in the mountainous central areas of 

Spain (Figure 5.3A). Curiously, large suitable areas can be found in the northeastern mountains, 

where the species is not currently present, although it has been reported to exist there during the 

Quaternary (Peñalba, 1994; Benito Garzón et al., 2007). 

 

With respect to the present time, the models predict a larger suitable area for Fagus sylvatica 

compared to Abies alba (Table 5.2). Even though the range of Fagus sylvatica is narrow, but larger 

than Abies alba, the variability of climatic situations within the current presences provide suitable 
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areas in other locations, such as the central mountain areas of Spain, the mountain regions in the 

east of the Iberian Peninsula and even the southern mountain region (Figure 5.3D). 

 

SPECIES 
Suitable area (km2) Change in suitable area 

PRESENT A2 A1FI PRESENT-A1FI PRESENT-A2 

Abies alba 19418 8625 7735 -60 % -56 % 

Fagus sylvatica 56024 9287 6241 -88 % -83 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Total suitable area of Abies alba and Fagus sylvatica 

          

 

 

Figure 5.3 Current and future suitability for Abies alba and Fagus sylvatica separately. Present 
suitability index for Abies alba (A), predicted dynamics of suitable areas in scenario A1FI (C) and 
A2 (E). Present suitability index for Fagus sylvatica (B), predicted dynamics of suitable areas in 
scenario A1FI (D) and A2 (F). 
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Future scenarios predict a large decrease for both species. This decrease is stronger for Fagus 

sylvatica than for Abies alba but the suitable area for Abies alba remains smaller in both the climate 

change scenarios (see Figure 5.3B, E and F and Table 5.2). Suitable area decrease is linked to the 

aridity degree assumed by the scenario and, as expected, a larger loss of suitable area is predicted 

for both species under the A1FI scenario than under then A2 scenario. No gain in suitable area is 

observed in any of the scenarios considered. 

 

The geographic pattern of suitable area loss is similar for both species: the western Iberian 

peninsula and forests at lower altitudes are much more affected while the Pyrenean range (North- 

East) remains stable, with the exception of the west side, where losses are forecasted to be large 

(Figure 5.3B–E). 

 

The Community Model (CM) also showed good accuracy results (Table 5.1) and correctly 

identified the 77.2% of the stands in which both species are present. A ROC curve cannot be 

calculated for the overlap of individual models (OIM) approach since it is a simple GIS overlap 

function, although it correctly classified the 88.2% of co-occurrences (Table 5.5). 

 

As expected, the suitable area for mixed forests obtained by overlapping individual (OIM) 

models is larger than that obtained by the community models approach (CM), regardless of the 

climate change scenario considered (Table 5.3). Both the CM and the OIM predict that the co-

occurrence of these two species will undergo a large decrease insuitable area but the percentage of 

area reduction is higher in the OIM than in the CM (Table 5.3). Of the climate change scenarios, the 

CM is more sensitive than the OIM, predicting a larger reduction of suitable area in the A2 scenario. 

The CM suitable area represents 70% of the OIM area suitable for current conditions, and this 

figure drops to 50% and 40% in the A1FI and A2 scenarios, respectively (Table 5.3). 

Model 

Approach 

Suitable area (km2) Change in suitable area 

PRESENT A1FI A2 PRESENT-A1FI PRESENT-A2 

OIM 16105 1787 2722 -91.8 % -90.2 % 

CM 11238 927 1096 -88.9 % -83.1 % 

 
Table 5.3 Differences in suitable area and predicted changes for each modeling approach: 

OIM (Overlapped Individual Models) and CM (Community model). 
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Geographically, both approaches project the most suitable area for the community in the 

Pyrenees under present conditions (Figure 5.4). Despite this common tendency, there are 

differences between the two approaches as regards the spatial distribution of the suitable area: the 

overlap of individual species models forecasts the occurrence of mixed forests in the Cantabrian 

mountain range system (northwest Iberian Peninsula), whereas the community model locates small 

patches of suitable area along the southern face of the Pyrenees (Figure 5.4). 

 

In both the climate change scenarios considered, the Cantabrian Mountains and inland 

mountain ranges are sites where the decrease in suitable area is predicted to be more severe, 

whereas it will remain fairly stable in the Pyrenees, especially in places at higher altitudes (Figure 

5.4, A1FI and A2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Agreement and disagreement between modeling Community and Overlapped 
Individual Models approach (CM and OIM) for present climate and future scenarios. Agreement 
declines with climatechange and most suitable area is only forecasted by OIM approach. Main 
agreement geographical region corresponds to the central Pyrenees range. 
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The degree of spatial disagreement, calculated as the area predicted to be suitable by only one 

of the approaches, increases when the models are projected onto climate change scenarios (Table 

5.4). As expected, the realized niche of the community (RNC; depicted from the community model) 

is geographically included in the Pseudo-fundamental niche of the community (PFNC; depicted 

from the overlap of individual models) for the current environmental conditions, i.e. the suitable 

area predicted only by the overlap of individual models is 30% compared to 0.6% in the community 

model (Table 5.4).  

 

 

 PRESENT (km2) A1FI(km2) A2(km2) 

Suitability agreement 

(OIM and CM) 11 170 464 1 030 

Disagreement OIM 

(suitable only in OIM)  4 935 (30%) 1 323 (74%) 1 692 (62%) 

Disagreement CM 

(suitable only in CM)  68 (0.6%) 463 (50%) 66 (6%) 

 

 

 

 

This geographical inclusion of the modeled niche also occurs in the A2 scenario, with a 6% 

disagreement in the community model, although the spatial disagreement increases in both 

approaches for both climate change scenarios. In the case of the most severe scenario, A1FI, the 

geographical inclusion effect of the community model in the overlap individual model disappears 

because spatial disagreement rises up to 50%. 

 

The spatial differences between the modeling approaches become more relevant when 

assessing the future of the current plots of mixed forests of Abies alba and Fagus sylvatica. The 

overlap of individual models (OIM) predicts a loss of between 73% and 80% of the current stands 

Table 5.4 Agreement between the community model (CM) and overlay individual model (OIM) 
for the climate change scenarios considered. Percentages in brackets indicate the degree of 
disagreement in suitable areas (Area of disagreement under approach X/Total suitable area 
under approach X). 
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depending on the scenario, whereas the community model (CM) increases this loss to between 92% 

and nearly 99% of the current co-occurrences of the forest inventory for these species (Table 5.5). 

In many cases, the OIM predicts that losses of mixed forests are the result of a decline in Fagus 

sylvatica, while Abies alba would remain on these sites (Table 5.5). Remnants of future suitable 

plots are to be found on the northern slopes of Pyrenees and at higher altitudes (Table 5.6), which 

suggests an upwards shift in its lower altitudinal limit. Likewise, more threatened forests are those 

located at lower altitudes. 

 

 

 % 

NOT SUITABLE 

FOR MIXED 

FORESTS 

SUITABLE 

FOR 

Fagus 

sylvatica 

NOT SUITABLE 

FOR 

ANY SPECIES 

SUITABLE 

FOR 

Abies alba 

OIM 
PRESENT 

15.8 7.0 0.6 8.2 

CM 22.8  22.8  

OIM 
A1FI 

80.3 19.7 14.6 45.9 

CM 98.7  98.7  

OIM 
A2 

73.9 24.2 8.3 41.4 

CM 92.4  92.4  

 

 

 

 

5.4 Discussion 
 

The present study highlights a decline in the climatic suitability of Fagus sylvatica and Abies alba 

and its present co-occurrence in the Iberian Peninsula. This trend can be appreciated in both the 

future climatic scenarios and the two modeling approaches for co-occurrence assembly (individual 

overlapping and community).  

Table  5.5 Percentage of predicted suitable/non-suitable topo-climatic conditions for current NFI 
plots of mixed forest (Abies alba-Fagus sylvatica) for the two model approaches (OIM: overlap 
individual model; CM: community model) under A1FI and A2 scenarios. Not suitable areas in the 
case of OIM are divided, depending on the source of the loss of the co-occurrence. Shaded cells 
correspond to present climate plots (model accuracy in OIM). 
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This pattern concurs with results of modeling studies on both a European (Bakkenes et al., 2002; 

Thuiller et al., 2006) and an Iberian Peninsula scale (Benito Garzón et al., 2008). Furthermore, 

indications of this downward trend are already being detected in fir and beech forests in the region. 

For instance, Macias et al. (2006) documented a die-back of Pyrenean forests of Abies alba in 

recent decades, associated with the interaction of climate tendencies and management history. 

Likewise, Puddu et al. (2003) detected vulnerability of Abies alba to pathogenic fungi in less suitable 

climatic conditions, while canopy defoliation of Fagus sylvatica forests on a regional scale was 

detected by remote sensing during a drought episode that affected Western Europe in 2003 (Lloret 

et al., 2007). Xeric conditions have also been reported as affecting the physiological performance of 

Abies alba (Peguero-Pina et al., 2007). These episodes, and overall water stress, are likely to 

increase with climate change (Meehl & Tebaldi, 2004; Schar & Jendritzky, 2004), reducing the 

regional climatic fitness of the species. In keeping with our predictions, an upward shift in the 

altitudinal distribution of Fagus sylvatica has been detected in the region (Peñuelas and Boada, 

2003; Jump et al., 2006), similarly to the cases reported for other species and regions (Parmesan & 

Yohe, 2003; Beckage et al., 2008; Kelly & Goulden, 2008; Lloret & González-Mancebo, 2011), 

including latitudinal changes (Jump et al., 2009). The expected upward shift for the two species 

studied predicts a possible competition between Abies alba and Pinus uncinata. According to 

Ameztegui and Coll (2011) such chorological changes in the Pyrenees make take place since silver 

fir may find suitable conditions for colonizing pine dominated stands. 

 

Both approaches to co-occurrence modeling (CM and OIM) indicate that the Pyrenees will be the 

most stable suitable area for the maintenance of these mixed forests. For this reason, it is 

important to consider the Pyrenees as a future potential refuge for these species and a reservoir for 

mixed silver fir-beech forests in the Iberian Peninsula. Interestingly, this mountain range has been a 

climate refuge also in the past for these two species (Terhürne- Berson et al., 2004). Nevertheless, a 

significant portion of the flora currently present in this mountain range may be under threat for 

climate (and other) reasons (Thuiller et al., 2005; but see Scherrer & Körner, 2011). 

 

Species distribution models are not free from the limitations and uncertainties widely discussed 

in the literature (Thuiller,2004; Jiménez-Valverde et al., 2008; Thuiller et al., 2008). In addition to 



ON MULTIPLE SPECIES VERSUS INDIVIDUAL SPECIES PROJECTIONS 

 

 
138 

 

management, some important factors involved in species’ resistance to changes in distribution 

ranges are interactions between climate and resource availability (for instance, CO2, see Keenan et 

al., 2011), phenotypic and genetic adaptation (Visser, 2008; Valladares et al., 2007), dispersal ability 

across fragmented landscapes (Opdam and Wascher, 2004), and biotic interactions, such as 

pathogens (Negrón et al., 2009). These factors may produce an under- or over- estimation of the 

future species suitability obtained from current climatic suitability. There is great uncertainty, 

however, about the ultimate effect of all these factors, and the resultant adaptation to new 

conditions is still subject to controversy (Davis & Shaw, 2001; Hamrick & Godt, 1996; Rehfeldt et al., 

2002; Jump and Peñuelas,2005 ;Kramer et al.,2010). 

 

The extent of the distribution range considered in modeling may affect local estimations of 

extinction (Barbet-Massin et al., 2010; Thuiller et al., 2004). In our case, both species present a wide 

European distribution (Lahti & Lampinen, 1999) and the use of this expanded territory in the model 

would involve profiling a colder niche; more extinction would therefore be predicted in the 

Pyrenees. We argue that the use of our regional data is appropriate because of the importance of 

local adaptations (Hamrick & Godt, 1996; Sork et al., 2010), particularly in the case of beech 

(Kramer et al., 2010). Also, it could be argued that the use of constant variables over time (i.e. 

terrain) may lead to an overestimation of species persistence. It is common to explicitly ignore 

terrain variables in climate change in order to achieve a strict assessment of climatic effects on 

distribution (Araújo et al., 2006; Araújo and Luoto, 2007; Araújo and Guisan, 2006; Thuiller et al., 

2006), but terrain variables play a key role in species distribution (Franklin, 1998; Leathwick, 1998; 

Hara, 2010; Austin & Van Niel, 2011). Other terrain variables not available for this study may 

significantly enhance the accuracy to our results. Soil cover, for example, is particularly important in 

mountain areas since mountain soils are often not sufficiently developed to sustain tree growth. 

The absence of this variable in the model may result in an overestimation of species persistence or 

an unrealistic upward altitudinal shift. For instance, Scherrer and Körner (2011) found that the 

terrain induced mosaic of environmental conditions buffers the flora of the Alps against climate 

change. 

 

Co-occurrences do not track the whole environmental space of the species that compose a 

community, and community models are therefore a less general approach than the overlap of 
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individual species’ responses. In general, a major argument for selecting the overlapping of 

individual models (OIM) is its greater capacity to model different situations (Guisan & 

Zimmermann, 2000; Baselga & Araújo, 2009). Although the model performance for a community 

may achieve good results, it seems less informative in terms of future niche differentiation than the 

OIM, which can assess future fitness at the level of an individual species. The analysis of niche 

differentiation, even across large regional scales, may provide information that enhances our 

understanding of local coexistence across environmental gradients (Silvertown, 2004). 

 

On the other hand, profiling the realized niche of the community allows for a comparison 

between the environmental space of the observed co-occurrence and the environmental space of 

combinations (overlap) of the current individual species distributions. Similar concepts appear at 

the species level with equations such as the range/range potential ratio (Gaston, 2003). This has 

been used to evaluate species range filling on the European scale (Svenning and Skov, 2004). At the 

individual species level, it has been observed that current distribution of Abies alba and Fagus 

sylvatica is smaller than the potential realized environmental niche. Some authors state that low 

migration rates or even the existence of beech forests would have hampered the spread of Abies 

alba in this area during Holocene (Peñalba, 1994). However, despite the historical component, 

much of the differences between realized distribution and its potential environmental space may 

be attributed to biotic interactions, namely competition and facilitation processes. 

 

According to our expectations, the realized niche of the community (modeled by the community 

model; CM) is spatially included in the pseudo-fundamental niche of the community (modeled by 

the overlap of individual species models; OIM) under present conditions. But this pattern differs in 

all the climate scenarios studied. Although both approaches predict similar declines in suitability, 

there is a relevant spatial disagreement. Although such differences are rooted in model 

parameterization, this highlights the relevance of the modeling approach (CM or OIM) in climate 

change analysis of the distribution of species co-occurrences. Further research should be 

undertaken using different modeling techniques and ensembles of forecasts in order to achieve 

more general results (Thuiller et al., 2009; Araújo and New, 2007). 

 

 



ON MULTIPLE SPECIES VERSUS INDIVIDUAL SPECIES PROJECTIONS 

 

 
140 

 

We conclude that the climatic suitability of Abies alba, Fagus sylvatica and their mixed forests 

will led to a significant exposure to climate change, possibly leading to a decline,  whichever 

modeling approach is chosen. Accuracy measures and future scenario trends are similar in both the 

community model and the overlap of individual models, but spatial projections differ, resulting in 

variations in the assessment of future climate-change effects on present distributions. We argue 

that the OIM is preferable for future scenarios, because of its broader generality, but the CM 

approach may provide information that determines the current shape in the environmental space 

occupied by co-occurrence, especially if compared to the full range of conditions in which the two 

species occur, either jointly or separately. 
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6. ON FACING POTENTIAL NICHE CHANGES 
 
STUDY: ‘Knowing the origin to predict the end: spatial projections in Rhaponticum repens  

(Compositae) suggests considering its invasion provenance.‘ 

 

6.1 Introduction 
 

Invasive species are amongst the most relevant world threats to ecosystems and biodiversity 

(Ecosystem Millennium Assessment, 2005) and with an increasing globalized world where vectors 

of invasion multiply; a good understanding of the environmental conditions prone to invasion 

across different biological realms is of paramount interest. 

 

Central to the concept of environmental suitability of a species is niche theory: a set of 

conditions in which a species can develop and reproduce. First coined by Grinell (1917) and later 

conjectured by Elton (1930) to food-webs, the operational framework of the theory is attributed to 

Hutchinson (1957) which defined the ecological niche as the n-multidimensional space where 

species can maintain its living. Further conceptual developments have been explored by (Soberón, 

2007) which linked such multidimensional spaces with mechanisms using the BAM diagram, which 

interprets species distribution according to three interrelated dimensions: biotic (B), abiotic (A), 

geographic (M). 

 

Environmental suitability of a species can be measured via environmental niche models (ENM, 

also termed species distribution models). This correlative modeling approach assesses the 

relationship between species occurrence or abundance to environmental variables thought to 

influence species fitness and distribution (Franklin 2010). The statistical method used to construct 

the model varies from regression fitting to machine learning approaches, which influence model 

outcomes and interpretation (Elith & Graham, 2009; Jiménez-Valverde et al., 2008) , together with 

other factors and assumptions that make environmental niche models more than a simple 

application of an algorithm (Elith et al., 2010) . Overall, these models only constitute a preventive 
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screening phase of invasion risk assessment (Drake & Lodge, 2006; Peterson, 2003), but they gained 

popularity given that the costs of eradication and potential economic consequences (Pimentel et 

al., 2005). 

 

In the case of invasive species, environmental niche models have proved to be very useful to 

determine new areas of invasions (Roura-Pascual et al., 2004) and overall helped on assessing 

invasive risk assessment and understand environmental drivers of invasion (Ficetola et al., 2007; 

López-Darias & Lobo, 2008; Capinha & Anastácio, 2011). Traditional applications consist in 

estimating the environmental niche in native ranges and subsequently project them to new invasive 

areas (but see Fitzpatrick et al., (2007)), which has lead to outstanding results in some cases 

(Richardson & Thuiller, 2007; Ibáñez et al., 2009). The rationale of such procedure relies on the 

assumptions of niche stasis or slow niche evolution in ecological time, which has its homologue 

evolutionary concept in the niche conservatism (Wiens et al., 2010). In other words, we assume 

that the niche does not change and we are able to capture it via native range distribution, which is 

more likely to be in equilibrium with climate than in the invasive range (Peterson, 2005). 

 

Unfortunately but interestingly the general picture is by far more complex, challenging a 

straightforward application of the native niche estimation projected to potential invasive areas. 

Niche shifts have been reported to occur during invasion (Broennimann et al., 2007; Medley, 2010; 

Urban et al., 2007; da Mata et al., 2010) and several processes may be playing an important role. In 

some cases it is erroneous to assume species´ niche stasis (at least the realized niche) or slow 

evolution, which could be the case of genome reduction during invasion (Lavergne et al., 2010), 

genetic bottleneck (Golani et al., 2007), mutations (Phillips et al., 2008) or hybridization (Hall et al., 

2006; Schierenbeck et al., 2009; Mukherjee et al., 2011). In addition, several decisions undertaken 

during the modeling process (e.g., equilibrium, algorithm used, etc.) may also underestimate or 

overestimate niche shifts and potential invasion area (Jiménez-Valverde et al., 2011).  

 

Russian knapweed (also known as creeping Knapweed) [Rhaponticum repens (L.) Hidalgo] is a 

rhizomatous perennial plant native from Turkey throughout Central Asia to China (Koloren et al., 

2008) that has become a noxious weed in several countries as USA, Canada, Argentina, Germany, 

Italy, Western Australia and recently has been reported from eastern Iberian Peninsula (López 
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Alvarado et al., 2011; see Figure 6.1). Russian knapweed was initially introduced to North America 

in the early 1900's, primarily as a contaminant of Turkestan alfalfa (Medicago sativa) seed (Watson, 

1980) and possibly sugarbeet (Beta vulgaris) seed (Maddox et al., 1985). It is a serious weed pest 

which can establish and persist in a variety of environments, such as disturbed grassland, croplands, 

irrigation ditches, roadsides, shrubland communities and riparian woodlands (Carpenter & Murray, 

1999). The main method of spread for Russian knapweed (which produces relatively few seeds and 

lacks effective mechanisms for seed dispersal) is by adventitious buds on a creeping perennial root 

system (Watson, 1980). This species contains an allelopathic polyacetylene compound which 

inhibits the growth of competing plants (Watson, 1980; Stevens, 1986). This allelopathic effect, 

combined with effective clonal growth, allows Rhaponticum repens to quickly colonize and 

dominate new sites. Preliminary molecular analysis of Rhaponticum repens from diverse 

geographical origins has evidenced that specimens from Iberian Peninsula could be related to USA 

populations (Nearctic realm) rather than with those of central Asia (native range), indicating that 

invasion in the Iberian Peninsula can be the result of a secondary invasion (López Alvarado et al., 

2011). 

 

Under the urgent need to determine invasion risk to undertake preventive actions (preventive 

assessment), it is crucial to consider and anticipate potential scenarios of niche shifts during 

invasion. In the present study we assess the prediction capacity and environmental niche similarity 

of ENMs in spatial projections of Rhaponticum repens into an invaded area (Iberian Peninsula). We 

hypothesize that knowing the origin of invasions should translate into better predictions of invasion 

due to lower probability of niche shift, at least in the initial phase. We interpret these results in light 

of the decisions taken during the modeling process by using several ENMs calibrated in both 

different biogeographical realms and the world (using all information available) (Broennimann & 

Guisan, 2008). 
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6.2 Material and methods 
 

Environmental niche models (ENM) have been constructed in their native and other invaded 

distributional areas of the world, encompassing 4 biological realms (World Wildlife Fund; (Olson et 

al., 2001): Palearctic (Nnative=64 ; Ninvasive=25), Nearctic (N=497), Neotropical (N=4), Australian 

(N=36). An additional global model has been calibrated using all records available (World model; 

Broennimann & Guisan, 2008) (see model data in Figure 6.2). Data of species presence was 

extracted from the global biodiversity information facility (GBIF) database and subsequently data 

filtering using quality control processes (geopositional congruence) to avoid possible planimetric 

errors. Because of the relatively recent systematic studies, Centaurea repens has been transferred 

to the genus Rhaponticum as Rhaponticum repens (Hidalgo et al. 2006), which could lead to the 

underestimation of records, we ensured that previous species names (Acroptilon picris, Centaurea 

repens, Acroptilon subdentatum, Acroptilon repens, ,Acroptilon obtusifolium, Carduus picris, 

0 5000000 m

N

Figure 6.1. Distribution of Rhaponticum repens (L.) in different realms of the world (different shaded 
areas). Black dots indicate main invaded locations (N=4) in the Iberian Peninsula (dashed lines).  
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Acroptilon angustifolium, , Serratula  picris, Acroptilon serratum, Centaurea picris) where explicitly 

included. In the case of Neotropical model, which account for very low number of presences, model 

results have been built and projected but interpreted with caution, although species distribution 

models have shown good performance under such circumstances (Pearson et al., 2007), at least 

with sophisticated algorithms (Hernandez et al., 2006). All other models account for acceptable 

number of occurrences (N≥25, (Araújo et al., 2005)). 

 

Climatic data was extracted from the Worldclim database (Hijmans et al., 2005) at 2.5 arc 

minutes resolution (approximately 5 km at the Equator). In order to avoid excessive over-

parametrization of models possibly leading to overfitting (Warren & Seifert, 2011), we selected 6 

bioclimatic variables that have strong influence over plant physiology and distribution:  Annual 

precipitation (Pann) , mean annual temperature (Tmean), maximum temperature of the warmest 

month (Tmaxwarm), minimum temperature of the coldest month (Tmincold), precipitation of the 

wettest month (Pwet) and precipitation of the driest month (Pdry).  

 

Two modeling techniques have been employed: a profiling technique (presence-only; Bioclim 

(Busby, 1991) and context dependent technique (presence – background; Maxent (Phillips et al., 

2006). Bioclim algorithm profiles current climatic situations where the species is present without 

any consideration of the species absence (see Figure 6.2). It calculates the mean and standard 

deviation of species occurrences for each environmental variable and characterizes a given 

environment as suitable, marginal or unsuitable depending on the number of variables within a 

standard deviation criterion. We used the implementation in OpenModeler software (de Souza 

Muñoz et al., 2011), which uses a default standard deviation cutoff of 0.674.  

 

Maxent characterizes both the occurrences of the species and the landscape of occurrence 

(background, see Figure 6.2) and minimizes the entropy between the two probability densities 

(occurrence and background). We used Maxent v.3.3.3k using a conventional approach of allowing 

automatic features selection, with a regularization parameter of 1. We subsampled occurrences 

setting 30% of occurrences for validation and using 4 replicates.  Because Maxent also characterizes 

the background, such algorithm implies that the delimitation of the available environment affect its 

results and interpretation (Barve et al., 2011). Therefore, we further developed two background 
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environment scenarios (see Figure 6.2): (1) considering the biological realm as potential accessible 

or accessed area (background), and (2) restricted accessible area to potential dispersal observed in 

each invasion. In the latter case, available habitat is constrained by a distance kernel derived from 

the cumulative distance (Di) between current invasive locations (Václavík & Meentemeyer, 2009). 

Such measure is suitable to incorporate dispersal limitations in invasive ENM without detailed 

consideration of dispersal traits (Allouche et al., 2008). 

 

We projected every model calibrated in different regions to the biogeographical space to a 

recent invaded area (Iberian Peninsula) obtaining a map of environmental suitability of 

Rhaponticum repens that ranges from 0 (unsuitable) to 1 (suitable). We further tested the approach 

of using all available data by calibrating another model for the entire world (Broennimann & 

Guisan, 2008). Therefore, a total of 18 environmental suitability maps were evaluated representing 

different combinations of modeling algorithm, invasion provenance and background scenarios.  

 

In order to distinguish suitable and unsuitable invasion conditions a threshold has to be set and 

there exist many procedures to calculate it (Freeman & Moisen, 2008; Liu et al., 2005). Despite 

being a great source of uncertainty in modeling projections (Nenzén & Araújo, 2011), it is of a 

general agreement that the choice of the threshold relies mainly on the goal of the study (Jiménez-

Valverde & Lobo, 2007). In general, species distribution models tend to use a procedure where 

thresholds optimize presence and absence/background predictions. However, in invasive risk 

assessment it has been argued that the choice of a threshold should be based on the maximization 

of the true positive rate (TPR, presences correctly predicted) because the costs of extraction 

surpass the costs of prevention (Jiménez-Valverde et al., 2011). Therefore, we investigated the 

effect of two threshold criteria: equate entropy of original and thresholded distributions (EET; 

optimized threshold where entropy in both distribution is kept equal) and minimum training 

presence (MTP; conservative threshold where all presences are predicted). Differences in 

predictions have been interpreted through the percentage of correct predictions (TPR) in the new 

invasions, the environmental suitability index of the new invasions and the total area climatically 

suitable for invasion. 
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We further assessed projections in the Iberian Peninsula of different models by measuring niche 

overlap with three different metrics: (Schoener, 1968) overlap index (D), a modified Hellinger 

distance index (I)  (Van der Vaart, 2000) and a relative rank index (RR) (Warren & Seifert 2011). 

Such measures provide a quantitative approach to measure spatial congruence and similarity of 

projections (see Warren et al., (2008) for further details). D-index quantifies the degree of similarity 

between two probability distribution over a geographical space ranging from 0 (no overlap) to 

1(identical projection) using the differences in probabilities in the same locations. Nevertheless, it is 

unwarranted to assume that such probabilities are proportional to species density or a measure of 

relative use (Warren et al., 2008) and therefore authors proposed in addition the use of a 0 to 1 

transformation of Hellinger’s distance (I), which merely compares probability of distributions. 

Additionally, we used a third metric of relative rank (RR) proposed by Warren & Seifert (2011), in 

which probabilities in cells are compared according to their ranking in their projections. Using a 

similar example of the authors, comparing two projections in which differences in probabilities are 

proportional across the entire geographical space, would yield low similarity in their I and D 

similarities but RR would indicate a complete correspondence. Thus, such measure indicates given 

the relative geographical ranking despite raw differences in probabilities for each location. In our 

study, this metric is of special interest because it draws the qualitative spatial projections of 

invasion risk. The entire methodological sequence is illustrated in Figure 6.2. 
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6.3 Results 
 

The genetically identified area of provenance (Nearctic, NA) modeled with Bioclim and Maxent 

without dispersal constraints, showed the best stable invasive predictive power (Figure 6.3): all new 

invasions where predicted regardless of the chosen threshold. Nevertheless, modeling the 

complete range of the species in the world or in the Australian realm (with MTP threshold) 

achieved nearly as good results as using the origin of invasion for calibrating models (Nearctic). In 

our case, the traditional approach of projecting the native range to the invasive range did not yield 

good results with a mean percentage of correct predictions of 50%, but no combination of 

parameters achieved the desired predictive power of 100% (Figure 6.3). 

 

Figure 6.2. Sequence of methods used.  
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All evaluated models showed acceptable performance results in their respective area of 

calibration with AUC values ranging from 0.785 to 0.986, with the exception of the Neotropical 

dispersal constrained model (0.512, see Table 1). We argue that in that case the relatively low 

number of presences clustered in a constrained region does not make climate a good predictor of 

presence nor a reliable model. Concurring with other studies (Hernandez et al., 2006, Wisz et al., 

2008) , the limitation of the available area (dispersal distance constraint) and low number of 

presences lowered accuracy values (AUC), although they still qualify for acceptable models (using 

Swets (1988) classification). 

 

 
 

 

 

 

 

 

 

 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

100.0 

% Correct Predictions % Projected Invasion Mean Suitability of Invasions (*100) 

Figure 6.3. Results of projections to the Iberian Peninsula, according to different provenance 
models. Mean suitability of invasions indicates the average of the probability values in invaded 
locations. Percentage of projected invasion refers to the area predicted to be climatically 
suitable for invasion. Percentage of correct predictions indicates the number of current 
invasions predicted in each projection. Error bars indicate differences between equal entropy 
threshold (upper boundary) and minimum training presence threshold (lower boundary). Bars 
indicate average between the two threshold cases.   
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Bioclim algorithm projected two contrasting scenarios: huge climate-

based invasion risk (Nearctic and World models) or no risk at all (Palearctic, 

Neotropic, native range and Australian model) (Figure 6.3). These two 

outputs are influenced by the low flexibility of the algorithm, which 

produces a hard classification (no gradient or soft boundaries) of 

projections that tend to predict ‘all or none’ areas of invasion. In the case of 

the world provenance model, although it fully predicts all invasions (Figure 

6.3), the model is of limited use because the entire Iberian Peninsula is 

predicted to be at the same risk, therefore the model is not capable to prioritize any area over 

another (Figure 6.4).  

 

Maxent algorithm produces much variable outputs and the threshold set largely influence the 

success on predicting new invasions (Figure 6.3). As expected, optimized error threshold (EET) 

produces poorer prediction rates than conservative (MTP) threshold. For instance, using MTP 

(conservative) threshold criteria, Australian model predicts all invasions in the Iberian Peninsula and 

assign high probability values to invasions although it predicts less suitable areas than the Nearctic 

model (invasion provenance). In the case of the World model using the same threshold criteria, all 

invasions are also correctly predicted but they result uninformative since the entire Iberian 

Peninsula is predicted to be at risk (Figure 6.4). Interestingly in the Nearctic model (invasion 

provenance) without dispersal constraints, invasion predictive power is not affected by the 

threshold criteria used.  Using constrained dispersal background in models did not show a 

straightforward effect on predictive power, nor the amount of area predicted nor probability values 

(Figure 6.3). For instance, in the Nearctic model (invasion provenance) yielded poorer invasive 

predictive power when applying such distance constraint whereas it increased in the case of the 

native range. 

MODEL AUC 
Neotropical 0.98 
Neotropical  D 0.512 
Nearctic 0.899 

Nearctic D 0.843 
Palearctic 

0.986 
(invasive) 

Palearctic 
0.844 

(invasive) D 
Australian 0.961 

Australian D 0.899 
Palearctic 

0.898 
(Native) 

Palearctic 
0.785 

(Native) D 
World 0.931 
World D 0.811 

Table 6.1. Provenance Maxent models’ accuracy, using the area 
under the receiving operating curve (ROC, (Fielding and Bell 1997) ). 
D indicates whether background has been constrained using 
maximum dispersal kernel (Allouche et al. 2008). 
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Figure 6.4. Spatial projections of invasions of Rhaponticum repens 

in the Iberian Peninsula, according to different invasion provenance 
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In general, spatial projections to the Iberian Peninsula showed markedly differences between 

modeling algorithms (Figure 6.4). As expected, Maxent generally provides complex patterns 

whereas most of Bioclim models provide simple classes due to the differences in the algorithm 

nature. Most projections indicate a relatively higher risk in the North-East and East of the Iberian 

Peninsula (Figure 6.4), but this is by far not a general obvious pattern. In general, projections agree 

on defining high mountain regions as unsuitable, but the role in coastal and inland environments is 

highly depending on models.  Quantitative measures of niche overlap did not show a 

straightforward pattern although the majority of tests showed weak to null similarity among 

projections (Table 6.2). In line with results of invasion predictive power, niche overlap between 

native (nPA) and provenance (NA) models only reaches 0.53 in relative rank, although relatively 

similar for D and I index (Table 6.2). Such results imply that both projections predict a similar 

degree of regional invasion climatic suitability, but ranked differently in space. Interestingly, spatial 

mismatch is aggravated in the case of the world model (W), where niche overlap does not reach 

0.50 in RR compared to projections of any other provenance model. 

 

 

As expected, similarity measured by D and I show little differences because they rely on similar 

quantitative measures of probability of presence (Warren et al. 2008). In all cases, they present 

systematically higher values than RR.  Such results point out that even if the projections may 

partially agree in their scoring of suitability, they present different ranking of areas suitable for 

invasion (e.g. prioritization of invasive areas). Adding dispersal constraints did not affect niche 

overlap tests univocally: in some instances overlap was high (Australian and Nearctic model) and in 

other models caused spatial mismatch in projections (Neotropic model).     
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6.4 Discussion 
 

Our results support the hypothesis that calibration of Rhaponticum repens in their invasive origin 

(Nearctic) translates into better and less-parameter dependent projections of invasions in the new 

invasive range (Iberian Peninsula) than native range models. However, we acknowledge these 

results may not be applicable to all invasive situations: different phases of invasion may be taking 

place in different geographical regions, hence affecting climatic equilibrium status and hampering a 

good climatic profiling of the species. In fact, ENMs assume equilibrium with climate, which is not 

always the case in neither invasions (Roura-Pascual et al., 2009) nor species distributions (Araújo & 

Pearson, 2005).  Václavík & Meentmeyer (2009) demonstrated that calibrating ENMs at early stages 

of invasion clearly underpredicts the extent of potential invasive environments, but such effect 

decreases at intermediate to large climatic equilibrium situations.  In Rhaponticum repens, most 

introductions took place more than 90 years ago (date records extracted from GBIF database), 

except for the Neotropic realm where databases date introductions in 1972. Therefore, we 

considered that ENMs in this case are not biased due to their low climatic equilibrium status, 

although such factor could be significant in the Neotropic realm model. 

 

In addition to equilibrium assumptions, model calibration in a geographic area different than the 

projection poses several challenges to the use of ENMs and termed as model transferability in 

space (Elith & Leathwick, 2009). In the developed models, new environmental conditions were not 

found and therefore we did not encounter climatic extrapolation issues (see Appendix 3.1). 

However, we did not check for biotic interactions that could potentially reduce or expand the 

climatic range in model calibration (Godsoe & Harmon, 2012), hence reducing transferability of 

ENMs. Also, the modeling technique used influence the degree of transferability to other regions.  

We used two contrasted modeling approaches to determine invasions: envelope modeling 

(presence only, Bioclim) and machine learning (presence-background, Maxent). The two of them 

provided different but complementary information. Bioclim algorithm showed that invasions in the 

Iberian Peninsula were climatically near the situation in the Nearctic presences. Derived maps from 

such models however are very simple and easily overestimate or underestimate suitable area. On 

the contrary, Maxent models provided informative spatialization and relative similarities between 
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Iberian and other invasions. Heikkinen et al. (2011) showed that Maxent achieved good 

performance in transferability among machine-learning techinques, although the authors also 

emphasize that in general transferability for plant ENMs is generally lower than for other species.  

Altogether, our results emphasize that ensemble modeling is highly recommended to reduce 

technique uncertainty (Araújo and New, 2007); but see also some warnings (Elith et al., 2010). 

 

Besides modeling technique, the invasion predictive power showed significant interaction with 

other modeling decisions. Applying different thresholds showed that the most stable was the 

Nearctic provenance model, but it is important to stress that if a relatively lower threshold criterion 

is chosen other provenances could have achieved the same predictive power. Similarly and 

especially meaningful is the role of background or pseudo-absence selection. The statistically 

determined dispersal area, used as background, lowed the accuracy of the models of Rhaponticum 

repens in their calibration region and did not improve models in the invasive region. Indeed is the 

selection of background/pseudo-absence region one of the major challenges in species distribution 

models (Anderson & Raza, 2010; Chefaoui & Lobo, 2008). Barve et al. (2011) identified three 

approaches to identify background regions: biotic regions, niche reconstructions (hindcasting to 

measure potential distributional areas) and full dynamic approaches (estimations of dispersal 

potential through simulations). In this study, the buffer area selection used may picture a phase of 

invasion that does not suite the assumptions of pseudo-equilibrium of ENMs. It is likely that 

invasive situations require better simulated dispersal in order to characterize the potential area of 

distributions.  

 

Other factors that we did not explore are the variables used and number of occurrences, which 

number and kind may also have a strong influence in models. Warren & Seifert (2011) showed that 

intermediate levels in the number of variables were preferred to avoid overfitting in Maxent. Given 

the global scale of our analysis and the prospective nature of the projections we refused the use of 

land use variables. Although very relevant, using only-climate variables allow for the determination 

of a first abiotic context where invasion could take place, whereas land use variable could be 

explored afterwards as a risk multiplier effect or at a more local scale (Ibañez et al., 2009; Santos et 

al., 2011). In this analysis, the relatively different number of presences may largely affect our 

results. In fact, we acknowledge that we cannot identify true niche differences unless our model 
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building does not account for these differences using, for instance, resampling methods. However, 

we rather used this study as a potential application of world versus provenance realm. Future 

studies being undertaken take into consideration both such sampling issues.  

 

Above all the mentioned assumptions and methodological challenges, one of the biggest 

transferability issues is that species niches may change. Broennimann et al. (2007) demonstrated 

that a shift of the observed climatic niche of the invasive Spotted Knapweed (Centaurea maculosa 

Lam.) occurred between native and non-native ranges. However in a large-scale analysis, 

(Petitpierre et al., 2012) reported that niche shifts are rather the exception than the rule for 

terrestrial plant invaders. Often, attributed niche shifts may be explained by niche unfilling in the 

native range (via biotic or dispersal constraints) or because such environments are not found in 

native ranges. Therefore, the authors evidenced that identification of niche shifts poses several 

conceptual and methodological challenges (but see Broennimann et al. (2007) and Warren et al. 

(2008)).  

 

It would be misleading to interpret our results as niche shifts in Rhaponticum repens invasions, 

but our add-hoc analysis pointed out that, given the possibility of climatic niche shifts, considering 

models´ projections from several provenances may develop several scenarios in preventive risk 

assessment of invasions. Such projections evidenced that a large area of the Iberian Peninsula is 

climatically suitable for Rhaponticum repens. Models’ projections mostly differ into what ranking is 

given between the coastal and the inland regions, being the best predictive projections those 

ranking higher for coastal conditions.  We further hypothesize that the combination of climatic 

niche of invasive species provenance and introduction effort should increase our predictive power 

and understanding of invasions (Herborg et al., 2007), by developing invasive hybrid models (Hall et 

al., 2006).  In a broader context and also in line with our results, using all available records with a 

low threshold criterion may prove to be to predict new invasions, fully concurring with 

recommendations reviewed by Jimenez-Valverde et al. (2012) and Broennimann & Guisan (2008). 

However, its effectiveness may rely more on decisions of the modeler. We recommend the use of 

alternative spatial scenarios of provenance to assess potential introductions via niche shift. 

However, we are still on the quest to find an ensamble of such projections that may facilitate 

depicting invasion risk and potential niche change at the same time. 
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7. ON CONSIDERING THE TEMPORAL 
DIMENSION 

 
STUDY: ‘Species-specific exposure to climate change in time and space: from climate velocity 

to bioclimatic-velocity‘ 

 

7.1 Introduction 
 

Assessing vulnerability of terrestrial ecosystems to climate change over the next 50-100 years is 

a highly uncertain and complex task. This complexity is illustrated through divergent outcomes 

projected by a variety of methodological approaches. One of the most widespread techniques used 

to inform conservation and 21st century climate adaptation is species distribution modeling (SDM) 

(e.g. Thomas et al., 2004; Thuiller, 2004; Araújo et al., 2011). 

 

SDM correlates species presence or abundance to climate and other environmental variables, 

typically using statistical learning methods, so the bioclimatic profile of the species is quantified 

(Franklin, 2010). Subsequently, this climatic profile is applied to mapped climate projections, to 

evaluate which areas will be more or less suitable relative to present conditions. It has been 

recognized that this approach is limited to the assessment of exposure to climate change (extent of 

climate change likely to be experienced by a species; after Dawson et al. (2011)). Species traits such 

as ecophysiological or life history sensitivity (Woodward, 1992; Keenan et al., 2011) and adaptive 

capacity (Davis & Shaw, 2001; Sork et al., 2010) may well constrain and even contradict results from 

only climate change exposure analysis. Nevertheless, the benefit of assessing exposure to climate 

change is that it may be estimated without very detailed information on the target species and is 

useful for bounding the range of actions decision makers may need to consider (see Figure 3 in 

Dawson et al., 2011). 
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Recent research has focused on developing methods to account for how quickly climatic changes 

are occurring across different areas (Loarie et al., 2009; Ackerly et al., 2010; Burrows et al., 2011). 

For instance, Loarie et al. (2009) derived climate velocity (km·yr-1) as the ratio of absolute projected 

local temperature change per year over the spatial gradient in projected temperature. They used 

the measure to examine patterns of exposure and conservation risk for the world’s major biomes. 

Ackerly et al. (2010) mapped and analyzed local climate change velocity in California to help identify 

the magnitude and pattern of biodiversity risk. Moreover, the velocity of past climatic changes have 

resulted in clear effects on species extinction and evolution (Nogués-Bravo et al., 2010; Sandel et 

al., 2011), therefore it is important to detect high velocities under the rapid ongoing climatic 

warming, as species’ capacities for adaptation and migration may be challenged (Davis & Shaw, 

2001).  

 

Presumably, climate velocity is proportional to the rate at which the biota of an area must 

migrate locally in order to encounter or track shifts in its suitable habitat according to its correlation 

with recent historical climate. However, as Ackerly et al. (2010) point out, ecologists anticipate 

species to manifest distinct, individualistic responses to climate change. Research is needed to 

better understand how species climate change exposures could vary as a function of the local 

climate change velocities.   

 

We investigated the velocity of species exposure to predicted climate changes using a consensus 

measurement of species habitat suitability derived from general climatic variables.  We studied 

time-exposure dynamics of endemic oak and pine trees in a Mediterranean climate region 

(California Floristic Province), which has been determined to be one of the most sensitive biomes to 

climate change globally (Sala & Chapin, 2000; Underwood et al., 2009). Oaks and pines were 

selected because they are diverse and widespread ecologically (Pavlik et al., 1991; Richardson, 

2000). Specifically, we analyzed spatio-temporal dynamics in species potential suitable area and 

current distribution of stands, based on species distribution models for recent historical climate 

(1971-2000) and projected climates for mid-century (2041-2070) and end of century (2071-2100).  
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7.2 Material and methods 
 

Species distribution models (SDMs) were developed for eight ecologically widespread species of 

oak and pine trees endemic to the California Floristic Province: Pinus balfourniana, P. coulteri, P. 

muricata, P. sabiniana, Quercus douglasii, Q. engelmannii, Q. lobata, and Q. wislizenii. Species 

presence data from recent vegetation survey plots were used to model species occurrence 

probabilities as a function of mapped bioclimatic variables.  

 

Species occurrence data were extracted from 42 existing vegetation inventories (compiled by 

Hannah et al., 2008). Only records from presence/absence vegetation surveys were used.  The 

following current climatic variables were obtained from a statistical downscaling (Flint & Flint, 

2012) of the PRISM database (PRISM Climate Group, Oregon State University, available at: 

http://prism.oregonstate.edu) from 800 m to 270 m spatial resolution: total annual precipitation, 

mean annual temperature, precipitation of the driest month, maximum temperature of the 

warmest month and minimum temperature of the coldest month. Although different species may 

be limited more or less by different subsets of these variables, we included all variables in the 

models to ensure maximum comparability among species. 

 

Using averaged climate data for the period 1971-2000, we estimated eight different SDMs for 

each species within the BIOMOD platform (Thuiller et al.,  2009 and see Appendix 4.1 for model 

descriptions) in order to obtain a robust measure of species climatic suitability (Araújo & New, 

2007). Model calibration was undertaken with 70% of the presence-absence observations and the 

remaining 30% were used for validation. We applied a random selection of absences equal to two 

times the number of presences for each species, allowing for a large number of absences covering 

the environmental space (Barbet-Massin et al., 2012). In addition, each model was run twice using 

different random samples of absence to address sample bias in absences (Elith et al., 2010). Models 

were able to reproduce current distributions with good accuracy (Appendix 4.2). 

In order to discriminate suitable from unsuitable areas, a threshold in the continuous climatic 

suitability measure predicted by the SDM was applied to each model. We set the threshold by 

maximizing the True Skill Statistic (TSS) metric (Allouche et al., 2006). Estimates of current and 
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future suitable area were then identified based on the agreement of at least 5 models in 

considering an area suitable after threshold binarization. A continuous consensus climatic suitability 

was then obtained for each grid cell by averaging the probabilities from those models agreeing with 

the consensus of suitable area.  

 

Habitat suitability dynamics were estimated based on differences between models’ consensus 

projection for current climate and for future projected climate under the A2 emissions scenario 

using the GFDL (Geophysical Fluid Dynamics Laboratory) global circulation model (GCM). This GCM 

is one of two models that were selected for climate change assessment in California (the other 

being the NCAR Parallel Climate Model (PCM)) because of its ability to reproduce historic climate 

patterns accurately (Cayan et al., 2008).This combination of GCM and scenario represents a “strong 

change” scenario of a much warmer and drier California used by the California Climate Change 

Center (Cayan, 2009) for impact analysis and to derive informed conservation policies. Two climate 

change periods were projected: mid-21st century (averaged climate 2041-2070; period 1) and the 

late-21st century (averaged climate 2071-2100; period 2).  

 

We computed the bio-velocity of climate change using the same procedure as in Loarie et al. 

(2009) but applied it to each species’ suitability map rather than to a single climate variable. We 

divided the temporal gradient (e.g. magnitude of change over time) of climate suitability by the 

spatial gradient (e.g. magnitude of change over space) in suitability for the period under analysis. 

Temporal gradient is computed as the difference in consensus probabilities between present and 

future projection per unit of time (years): 70 years for period 1 and 100 years for period 2. Spatial 

gradients are computed as the slope of probabilities using the maximum average technique 

(Burrough et al., 1998) in a 9-pixel kernel. To avoid infinite velocities, we excluded flat spatial 

gradients (< 0.001). The result is a velocity measure of the changes in climatic suitability of each 

species.  

 

For each of the two time periods, we calculated several metrics to evaluate species’ exposure to 

predicted climate change at two different organizational scales: range level (climatically suitable 

areas) and plot level (current forests). Range-level metrics describing species exposure provide 

information most relevant to developing conservation strategies that address broad patterns of 
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change in climate suitability, including potential new areas for colonization (whether assisted or 

not), whereas the plot-level metrics inform more local management strategies focused on species’ 

adaptation and in situ conservation (see Appendix 4.3 for full description of the metrics).    

 

At the range level, five metrics were calculated: 

 (1) species range change (SRC), which measures differences of potential suitable area (Thuiller 

et al., 2005) per year and is related to exposure to extinction;  

(2) range exposure to migration (REM), calculated as the difference in suitable habitat area 

between full and null dispersal assumptions (Svenning & Skov, 2004; Araújo & New, 2007) divided 

by the time lapse between the current and targeted period, which emphasizes the relevance of 

migration processes in lowering exposure;  

(3) range change velocity (RCV), calculated as the net balance between trailing edge and leading 

edge velocity based on the average of climatic suitability by grid cell of models coincident with 

consensus range dynamics, which identifies potential disruptions in the edges of ranges to tracking 

climate change;  

(4) range spatial fragmentation (RSF), calculated as the number of discrete habitat patches 

(McGarigal 2006);  

 (5) range spatial aggregation (RSA), calculated as the percent of total suitable habitat occupied 

by the largest patch (McGarigal, 2006). We assessed the temporal rates of change in RSF and RSA 

by dividing current and future projections of the metric by the time elapsed between projections. 

These landscape metrics assess the spatial configuration of potential suitable habitat, which is 

related to population persistence (Opdam & Wascher, 2004). 

 

To assess plot-level exposure of current forests, we defined three metrics: 

(1) forest migration effort (FME), which measures the mean distance of forest plots to projected 

future climatically suitable area using a least cost-distance route based on suitability measures. 

Skov & Svenning (2004) used a similar approach based on tree cover to assess potential migration 

routes for European herbs, and Wang et al. (2008) found a significant relationship between gene 

flow and a suitability resistance measure; 

(2) forest climate-site exposure (FCE), calculated as the percentage of forest plot locations 

switching from suitable to unsuitable conditions based on the set threshold of habitat suitability. 
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Although this measure has been used as a surrogate for extinction risk (Thomas et al., 2004), we 

have adopted it as a forest exposure risk to new climatic conditions, and  

(3) forest climatic velocity (FCV), the mean bioclimatic velocity of forests plots decreasing in 

suitability, calculated by overlaying forest plots with the bioclimatic velocity grid computed using 

the methods described above.  

 

7.3 Results 
 

Bioclimatic velocities differ greatly among species and climate change projections in the periods 

analyzed (Figure 7.1). In some cases, current distributional area is located at the transition between 

slowly increasing and decreasing predicted bioclimatic velocities (e.g., Fig 7.1a, P. sabiniana), 

whereas in other cases, current climatic suitable area is located where bioclimatic suitability is 

predicted to rapidly decrease (e.g., P. balfourniana). However, for these California mountain pines 

and oaks, high velocities leading to climatic unsuitability are located in and around the Central 

Valley, whereas high velocities increasing climatic suitability tend to concentrate in Northern 

mountain ranges, although this pattern is quite species-idiosyncratic. Predicted velocities are also 

markedly different for each period of analysis, both in extent and spatial distribution (Figure 7.1b). 

For instance, for Q.douglasii and P.coulteri larger areas are predicted to experience higher velocities 

in period 1, whereas higher velocities are predicted to occur in period 2 for Q.lobata and 

P.muricata. 

 

Species ranges (the extent of climatically suitable habitats) are predicted to shrink at greater 

rates in period 1 (species range change, SRC), for all species except P. muricata, Q. lobata and Q. 

wislizenii (Figure 7.2a). Climatically suitable habitat for Q. engelmannii is predicted to shrink at a 

rate of over 1.2 % per year. On the other hand, P. sabiniana is predicted to expand its climatically 

suitable range and the projected rate tends to increase with time. Because SRC does not account 

for dispersal, these rates of range dynamics should be interpreted together with the information 

provided by range exposure to migration (REM, Figure 7.2b). REM represents the extent to which 

the role of dispersal potentially becomes relevant by examining the ratio between full dispersal and 

null dispersal assumptions in species ranges (Guisan & Thuiller 2005). Our predictions suggest that 
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REM will generally be higher in period 2, except for P. balfourniana and Q. douglasii, where high 

rates of projected habitat loss tend to diminish differences between full dispersal and null dispersal 

assumptions. 

 

Differences in predicted velocities between trailing edge and leading edge (range change 

velocities, RCV) highlight the dynamism and heterogeneity of climatically suitable habitat for each 

species and period (Figure 7.2c and 7.2d). In general, velocity in ranges tends to be higher in period 

2 except for Q.douglasii and P.balfourniana leading edge and P.coulterii and Q.engelmanii trailing 

edge (Figure 7.2c). Leading edge velocities are higher than trailing edge velocities for the majority 

of species and periods (Figure 7.2d). Interestingly, two species present a reversal in their response 

across periods: P. balfourniana presents higher leading edge velocities only in period 1 whereas 

Q.douglasii in period 2. Net differences between trailing and leading edge follow a general pattern 

of increase in velocity in period 2, according to the results in each edge. Nevertheless, differences in 

the magnitude are noteworthy and range from very large increase (e.g. P.sabiniana) to low increase 

(e.g. P.muricata). 
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Figure 7.1  The bioclimatic velocity of climate change for different California endemic tree species within 
their range. (a) Bioclimatic velocity for the period present (1971-2000) to mid-century (2041-2070).  (b) 
Temporal categorization bioclimatic velocity, whether higher in mid-century (2041-2070) or end of century 
(2071-2100). Gray color indicates lack of spatial gradient or not suitable areas in any time frame. PIBA = P. 
balfourniana, PICO = P. coulteri, PIMU = P. muricata, PISA = P. sabiniana, QUEN = Q. engelmannii, QUDO = 
Q. douglasii, QULO = Q. lobata, QUWI = Q. wislizenii. 
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Figure 7.2  Climate change exposure in species ranges in to period 1 (present (1971-2000) to mid-

century (2041-2070), dark grey) and period 2 (present (1971-2000) to end of century (2041-2070), light 
grey). (a) Species range change (SRC). (b) Range exposure to movement (REM): time rates between full 
versus null dispersal in their ranges. (c) Species range velocity in trailing versus leading ranges: “Negative” 
velocities indicate loss of climatic suitability (trailing edge) whereas “positive” velocities indicate an 
increase of climatic suitability (leading edge). (d) Range change velocity (RCV): differences between 
velocities of leading edge and trailing edge. Species abbreviations defined in Figure 1 caption 

 
 
Spatial configuration of predicted habitat highlights different velocities in aggregation (range 

spatial aggregation, or RSA) and fragmentation processes (range spatial fragmentation, or RSF) 

(Figure 7.3) of climatically suitable habitat. Together with shrinkage dynamics, yearly proportional 

declines in the number of suitable patches per year (a measure of RSF) and the percentage of the 

largest patch area (describing RSA) are projected for several species: P. balfourniana,P. coulteri and 

P. muricata, although the rates of such changes vary between periods (Figure 7.3a and 7.3b).  
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It is worth noting some additional projected patterns: Q. engelmannii shows a predicted pattern 

of fragmentation and decline, with an increasing rate of the number of patches between period 1 

to period 2, and decline in the area of the largest patch. A similar pattern is predicted for Q. 

douglasii, although period 1 shows higher rates of fragmentation than period 2. Another notable 

response occurs in Q. wislizenii, with increasing fragmentation predicted in the first period and 

aggregation (negative rates in the number of patches but increase in the largest patch area) in the 

second. Overall, some predicted patterns of fragmentation and aggregation of suitable habitat may 

be identified, but our results demonstrate that the velocity in spatial configuration varies in a 

heterogeneous manner and is species-specific. 

 
 
 
Figure 7.3 Spatial configuration dynamics in species ranges in period 1 (present (1971-2000) to mid-

century (2041-2070), dark grey) and period 2 (present (1971-2000) to end of century (2041-2070), light 
grey). (a) Range spatial fragmentation (RSF). Percentage of patch abundance increase/decrease per unit of 
time. (b) Range spatial aggregation (RSA). Percentage of area change of the species’ largest suitable 
habitat patch per unit of time. Species abbreviations defined in Figure 1 caption. 

 
 

Projected exposure of current forest distribution suggests different dynamics than for projected 

future ranges. Current forest locations occupied by each species present different degrees of 

velocity change between periods ranging from subtle increases in period 2 (P.balfourniana, 

P.sabiniana and Q.douglasii) to much larger velocities in period 1 (P.coulterii and Q.lobata) (Figure 

7.4a). These bioclimatic velocities in plots (FCV) should be reflected in the percentage of plots 

becoming unsuitable per unit of time (forest change in suitability, or FCS) (Figure 7.4b), but this is 

not always the case. For instance, for P.balfourniana FCV is higher in period 2 whereas FCS is higher 
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in period 1. Such situations imply a nuanced difference between the two metrics: while FCV 

measures the velocity of the gradient, FCS measures the rate after which a certain threshold is 

achieved and forests become exposed. We acknowledge the uncertainty deriving from the method 

used to identify this threshold and its consequences in climate change projections (Nenzén & 

Araújo 2011). Nevertheless, distinguishing the two measures is useful because each has different 

implications relative to conservation strategies

 
 
Figure 7.4 Velocity of climate change exposure on current distribution in period 1 (present (1971-2000) 

to mid-century (2041-2070), dark grey) and period 2 (present (1971-2000) to end of century (2041-2070), 
light grey). (a) Forest velocity change (FVC): average velocity of bioclimatic exposure in species plots. (b) 
Forest change suitability (FCS): percentage of plots becoming unsuitable per unit of time (c) Forest 
migration exposure (FME): average of cost-distance to the nearest suitable patch. Species’ abbreviations 
defined in Figure 1 caption. 
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The projected rate of climatic isolation of current forests, or forest migration exposure (FME, 

Figure 7.4c), as measured by the average least cost-distance to the nearest suitable patch, leads to 

a large increase in isolation during period 2, especially for P. balfourniana, P. coulteri and P. 

muricata.  The exception of Q. engelmannii. which is caused by the predicted total loss of suitable 

habitat in the second period. Clearly, P. balfourniana, P. coulteri and P. muricata migration 

(whether assisted or not) will need further consideration since these species are projected to be 

exposed to an accelerating source of risk through the following decades, requiring predicted 

migration rates of up to 2712, 1930 and 1047 m·yr-1 respectively to reach suitable habitat. The case 

of P.balfourniana is especially indicative of two disjunct populations, one of them becoming 

unsuitable in the second period, which substantially increases the FME indicator.   

REM : range exposure to movement
SRC: species range change
RSF: range spatial fragmentation
RSA: range spatial aggregation

nRCV: net range change velocity
FCV: forest change velocity
FCS: forest change suitability
FME: forest migration effort
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Figure 7.5 Species’ exposure to climate change for different dimensions and periods (period 1 -present 
(1971-2000) to mid-century (2041-2070)-, dark grey; period 2 -present (1971-2000) to end of century 
(2041-2070)-, light grey). Data have been z-transformed for each variable and period in order to compare 
species and dimensions. Species abbreviations defined in Figure 1 caption. 
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Comparing different species and exposure dimensions reveals the complexity and dynamism of 

exposure to climate change, which is contingent on the species and varies in time (Figure 7.5). 

While for some species there is a similarity between exposure dimensions for period 1 and 2 (Q. 

lobata, P. coulterii), for others (P. balfourniana, P. muricata, Q.engelmanii) exposure is dramatically 

increased or decreased in one or more dimensions, pointing to several processes (e.g. dispersal, 

migration, etc.) that may become key sources of exposure in each time frame analyzed. For 

example, for P.balfourniana and P.muricata current forests may be challenged by the requirements 

for of dispersal, whereas Q.douglasii will have to cope with rapidly varying climatic conditions in 

period 1. Additionally, this graphical summary emphasizes differences between exposures at the 

range level versus exposures at the current distribution level.  

 

7.4 Discussion  
 

We have shown that the projected bioclimatic velocities of species’ exposure to climate change 

vary widely depending on the species under analysis. Our results illustrate that bio-velocity and 

temporal measurements applied to spatial analysis of species’ distributions can reveal rather 

complex interacting dynamics in the form of differences between leading and trailing edge 

velocities, varied habitat fragmentation and aggregation patterns, migration challenges and 

differences in in-situ forest exposure velocity. Our results suggest that targeted conservation 

responses will be required sooner rather than later for some endemic oaks and pines of the 

California Floristic Province as some key processes are predicted to be challenged more rapidly 

from now to mid-century than from mid-century to the end of the century. However this will be 

highly depending on the exposure dimension and species under consideration. 

 

In general, most species analyzed here tend to show higher velocities in their range dynamics by 

mid- century, but current forests exposure and net differences between velocities in trailing and 

leading edges draw a complex picture of the pace of climate suitability increasing and decreasing in 

some areas.  Accordingly, several modeling and observational studies have also identified diverse 

patterns of range dynamics. Some studies have shown that the leading edge of the range may 

become occupied at higher rates than trailing edge (Chen et al. 2011 and references therein) and 
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accumulation of extinction debt may occur at trailing edges especially for long-lived organism, such 

as trees (Kuussaari et al., 2009). These effects could eventually result in range expansions. On the 

other hand, empirical observations from eastern US forests show that the common current signal is 

range erosion (Murphy et al., 2010). In line with this, a recent analysis of coupled species 

distribution and population models found high rates of range reduction (44% approximately) for 

alpine plants (Dullinger et al., 2012), similar to projections of niche based models under an 

unlimited dispersal scenario.  In any case, we acknowledge that bioclimatic velocity may over- or 

under-emphasize range erosion unless it is not balanced with explicit spatial and temporal 

population dynamics. 

 

It is likely that temporal resolution (30 year averaged climate in this analysis) may affect the 

results found here. Indeed extreme climatic events, or climate change at a finer temporal 

resolution, may accelerate species’ responses and produce non-linearities not reported in our study 

(Easterling et al., 2000; Coumou & Rahmstorf, 2012). For instance, extreme climatic events may be 

important for migration routes for some taxa (Early & Sax, 2011), large-scale vegetation responses 

and food webs (Carnicer et al., 2011). However, there is also potential for vegetation resilience to 

extreme climatic events making true distributional shifts in forests the exception rather than the 

rule (Lloret et al., 2012). Considering the wide range of species-specific outcomes that may occur 

within short time frames, we argue that species exposure predicted at a 30-year temporal 

resolution provides a useful climate risk context in which to embed predictions of extreme climatic 

events. Future research could, for instance, detect non-stationary dynamics and tipping-points in 

species exposure to new conditions (e.g. climate change) using yearly sliding-window analysis 

through the entire time sequence analyzed (2041-2100). 

 

Species’ exposure to environmental changes is multidimensional and also time dependent. We 

anticipate that the different paces of changing conditions will yield potentially different synergies 

between exposure dimensions. For example, a species may be characterized by high velocity 

leading to exposure of current forests and increased migration effort in period 1, whereas period 2 

presents a decrease in habitat area and increased fragmentation that may constitute a significant 

threat. Altogether, such varying exposures in time should be taken into account in conservation 

planning to define actions and priorities in an appropriate time frame (Hannah et al., 2002; 
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Mawdsley et al., 2009). Furthermore, the pace of changing climatic exposure suggests the inclusion 

of more dynamic parameters of habitat suitability in new hybrid modeling approaches dealing with 

the challenge to predict species distributions (Dormann et al., 2012). 

 

The distinction between two complementary levels (plot and range level) is important in 

exposure risk assessment. Range level, measuring areas of potential suitable future conditions, may 

over- or under- represent risk because SDM have errors of commission and omission not detected 

in performance metrics (Lobo et al., 2008). In contrast, plot-level depicts exposure at current 

locations where the species is actually observed, therefore it provides a forecast of the current 

forests under risk. It is noteworthy that the difference between the two measures constitutes an 

interesting approach to global change projections: higher differences between range and plot levels 

could indicate that vulnerability may be either be more dependent on in-situ adaptive capacity 

(higher plot level exposure) or more dependent on migration and colonization capacity (higher 

range-level exposure). Such differences are also likely to be time dependent, therefore calling for a 

dynamic conservation strategy (Hannah & Hansen, 2005). 

 

The results presented in this study show that in principle, climate velocity maps should be 

species-specific. In practice, we acknowledge that challenges presented by the large number of 

species and the limited information on climate associations for many species makes it difficult to 

analyze and synthesize climate velocity species-by-species. Furthermore, it is also challenging to 

develop unified conservation and forest management strategies for species responding quite 

differently to changing conditions in space and time. We argue that, when possible and for 

endangered species or species that provide ecosystem services, species-specific velocity maps 

provide new valuable information on the dynamics of species exposures to climate change in the 

coming century, helping to identify conservation action priorities taking into account, also, the 

temporal scale. 
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8. FINAL REMARKS AND LESSONS LEARNED 
 

8.1 Reflecting on the use of correlative Ecological Niche Models 

for global change studies. 

 
CENM are plagued of issues and uncertainties that have compromised their usefulness in global 

changes studies, especially regarding climate change (Wiens et al. 2009). Altogether, it has been 

claimed several times in the literature that CENM should be applied with caution, by carefully 

examining assumptions and uncertainties (Loiselle et al., 2003; Austin, 2007). For instance, Rocchini 

et al. (2011) suggested the generation of maps of ignorance as a code of good practice when 

developing CENM. After some overwhelming critics to CENM (see Cressey, 2008 on Nature news), 

one may think to what extent are these statistical models meaning anything at all, and to what 

extent they are useful. The studies involved in this work attempt to give some hints on whether 

information from these phenomenological models is acceptable, and to what extent we should rely 

on these models for global change projections.   

 

For starters, it is especially meaningful to know the actual driving forces of species distributions, 

that is whether climate factors or others are constraining its current distribution and where climate 

may not be the reason for an absence of the species (Lobo et al., 2010). This is particularly relevant 

since most of studies about global change are directed to global warming. Ideally and in line with 

the theory, we would want to know how niche dimensions (B-A-M diagram) affect species and how 

they translate into space (and hopefully time; see Saupe et al. (2012) for implementation), in order 

to better understand constraints of species distribution. In study 2.1 we have shown a possible way 

to deal with this, by comparing the outputs from mechanistic ENM (eco-physiological models) and 

CENM probability scores at a specific regional scale. Essentially, we have linked the pattern 

(occurrence) and the process (growth) to robustly assess the degree of congruence between the 

two approaches. In this case, while the physiological model is linked to the potential niche of the 

species, CENM pictures the realized niche. Therefore the spatial differences between the two may 
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provide tests for further spatial hypothesis on species distributions (Buckley et al. 2010), as well as 

point out key factors that may or may not be exacerbated through global change dynamics. This is 

applicable to other kind of models aiming to determine the relative roles of climate and other 

factors across ranges (e.g. Angert 2009). 

 

Ideally, if one is to model a change of state, an understanding of the process or mechanisms of 

change should be of paramount importance. In the realm of species distribution models (as a 

whole), it has been widely discussed the need for such understanding (Kearney, 2006). For instance, 

Kearney et al. (2008) successfully modeled cane toads in Australia without the need of any 

occurrence record, which exemplifies the power of understanding the underlying mechanisms in a 

modeling framework. I believe that the high dimensionality of processes involved in species 

distribution hampered the widespread use of some process-based models, in addition to the often 

limited information available to feed them. However, a mechanistic model does not need to be 

necessarily complex. For instance, thermal ecologists use some heat transfer functions that are 

easy to implement and they have predicted fairly well distributions of some organisms (Buckley et 

al. 2010) and patterns emerge between ecthotherms and endotherms (Buckley et al., 2012). For 

instance, operative temperatures have been used in lizards or degree days for embryonic larval 

development in butterflies, or sunlight in plants. This illustrates the feasibility of potential 

comparisons between different approaches, without necessarily building very complex models. 

However, issues on the temporal resolution of input data (monthly averages versus daily) may 

largely affect its results (Kearney et al., 2012).   

 

In global change studies, mechanisms are especially crucial for enhancing the reliability of 

projections of CENM. Modeling global change and in particular climate change, should not be 

detached from species physiology, especially in the case of plants. CENM in this case suffer from 

the lack of information on CO2 concentration, simply because it is a global diffuse variable that it is 

assumed not to change spatially and therefore, it may not be a good estimator of the spatial 

distribution. However, in chapter 4 we have demonstrated that climate change is not only about 

precipitation and temperature, for which we recognize its crucial effects on vegetation, but it is also 

a global dynamism of biogeochemical cycles. In fact, our forecasts differed by the end of the 

century and revealed potential resilience of forests due to elevated CO2 concentration. Using 
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development temperature of species from laboratory experiments, Buckley et al. (2011) published 

an interesting work in which they included this experimental parameterized variable in CENM. They 

concluded species-specific physiological traits may enhance predictions of climate change although 

their results were not conclusive. The power of including the mechanics is therefore evidenced and 

most importantly, whether included in CENM or compared to CENM’s projections, they open up the 

avenue of biophysical dynamic mutual relationships of how species affect the environment and 

how the environment affect species.  

 

In the present work I did not assess many other processes of utmost relevance that deserve 

special attention for geographical projection of species distribution like population dynamics, biotic 

interactions and human alterations. It has been already a while that population and meta-

population processes including dispersal traits and biotic interactions have been incorporated to 

CENM, as pre-treatment data or post-treatment of results. This is particularly interesting for 

conservation studies, because species tracking climate change and persisting populations directly 

assess extinction or persistence, which are not necessarily included in the probability of presence 

and area outputs of from CENM (Fordham et al., 2012a).  

 

Dispersal rates have been incorporated as a fixed term (Midgley et al., 2006), coupled with 

neighboring abundances (Iverson et al., 2004), but interestingly mechanistic models have also been 

developed for dispersal (Keith et al., 2008). This last case is especially meaningful because, dispersal 

rates are likely to change with changing conditions. However, in a recent work for European alpine 

plants (Dullinger et al., 2012), the incorporation of dispersal in CENM resulted in projections 

relatively similar to those assumed by the non-limited dispersal projections of CENM. This suggests 

that null vs. full dispersal assumptions may be a good strategy to bound dispersal scenarios. I 

believe these results may be very landscape dependent. The problem still relies in the fact that 

species presence data is also influenced by such mechanisms and therefore, decoupling the 

environmental (physiological) signal from others is not an easy task. In addition, Hui et al. (2012) 

warned us that indeed dispersal strategies are quite flexible and may vary regionally depending on 

the abiotic conditions, but in any case the addition of these dynamic approaches may improve 

predictions of range change (Keith et al., 2008; Zurell et al., 2009; Franklin, 2010).  

 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
193 

 

Nevertheless, some of these processes and interactions have been, some would argue 

successfully, incorporated into CENM. Obviously, they may large changes in CENM projected 

climates (Bateman et al., 2012). Such is the case of biotic interactions, where the inclusion of the 

distribution of an interacting species may yield good results on performance and increase biological 

understanding (Heikkinen et al., 2007; Pellissier et al., 2010; Hof et al., 2012), or alternatively the 

use of a surrogate variable of biotic interactions (e.g. competition for light in Meier et al. 2010). 

Again, the issue relies on how to model the future distribution of a species depending on many 

other species and all of them depending on climate? How to disentangle the biotic from the abiotic 

signal? I think such practices may be very interesting when we want to determine to what extent 

biotic interaction constraint distributions, but may lead to some circularities in projections. On the 

other hand, they may point to some hints on patterns of co-occurrence and co-exclusion in the 

environmental space.  

 

The avenue of biotic components inclusion could potentially lead to models that can 

accommodate such co-occurrence interactions (Meier et al., 2011), or determine the way in which 

a modifying feature of the environment (e.g. forest cover, fire, engineering species) modulates 

environmental variables ( e.g. biotic modifiers; Linder et al., 2012). In any case, when sufficient data 

is available, there exist multiple ways by which it is potentially possible to incorporate multiple 

species interactions in CENM (e.g. error matrices in multivariate regression models (Kissling et al., 

2011) or simultaneous equations). However, the enormous amount of biotic interactions (maybe 

most of them undiscovered) poses several challenges to the quantification of such effect. Surely, 

this avenue will represent a substantial step forward to the biological realism of these models (see  

Wisz et al. 2012 for a thoughtful review).  

 

Another important process that I did not explore is human land use dynamics, despite 

accounting for a strong influence on biodiversity planning.  A number of studies have addressed this 

question and (Bomhard et al., 2005; Eglington & Pearce-Higgins, 2012), in fact, most of land use and 

land cover variables may directly explain species distribution (Améztegui et al., 2010; Triviño et al., 

2011) . I believe that the temporal scale of land use/ land change models and their projections (10 

to 15 years maximum) precludes a direct comparison with those from climate change, which may 

operate at a coarser temporal scale. However, combined analysis provided valuable insights into 
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the synergies between these two effects (Lawson et al., 2010). Much less explored is the fact that 

actually these two components (land use and climate) interact and it may be difficult to disentangle 

the climatic changes due to land use shift or global warming (but see Clavero et al., 2011).  To add 

more complexity we should not forget about disturbance events, where land use changes and 

expected extreme weather events interact and affect species distribution too (Regan et al., 2011; 

Conlisk et al., 2012).  

 

Overall, many processes challenge the “snapshot” view of CENM. In a recent paper by Janet 

Franklin (2010) ,she calls for the development of dynamic approaches leaving behind some major 

limitations of modeling changes with, what she prefers to call, species distribution models (CENM in 

this work). In line with this, we have advanced in the dynamism by explicitly considering a measure 

of motion of the suitability index (chapter 7, bioclimatic velocity). Nevertheless, bioclimatic velocity 

is still constrained by the same issues of CENM. However, adding the temporal dimension yield 

valuable information to identify the temporal patterns of the rate of change between current and 

future situations. I feel that explicitly accounting for time is still an unresolved matter in CENM, 

although it may be crucial in decision-making and political processes. Howver, the question still 

remains whether CENM should account for transient states or on the contrary, we should leave this 

for explicitly dynamic models (see next section). 

 

In the quest for finding general patterns or derive future global assessment of biodiversity and 

conservation networks, huge amounts of species have been modeled using CENM. For instance 

Garcia et al. (2012) published a study with more than 2000 species, depicting quite general patterns 

of change at continental scale (Africa). But can we model all species? It seems quite of a challenge 

taking into consideration that a lot of species are still to be discovered and there is a substantial 

lack of information on many species ecology (Linnean shortfall + Wallacean shortfall + 

Hutchinsonian shortfall3

                                                      
3Linnean shortfall refers to the limitation that many speciess are yet to be discovered (Brown and Lomolino, 
1998); Wallacean shortfall refers to the lack of information on species distribution (Lomolino, 2004); 
Hutchinsonian shortfall refers to the inadequate knowledge of the attributes that influence species niches. 

). However, attempts to scale up to higher levels of organizations (e.g. 

communities or ecosystems) are disputable since it is acknowledged that species respond 

individually to changes (McGeoch et al., 2006; Williams & Jackson, 2007)  and spatial projections 
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may largely differ with individual versus aggregated approaches (chapter 5; but see dynamic 

community approaches in Mokany & Ferrier 2011). Essentialy, perhaps the question is what 

biological level of organization may be suitable for capturing the environmental niche for a 

particular management goal. Empirical studies are reporting potential niche shifts in human 

dispersed species (e.g. invasive, Broennimann et al., 2007; Medley, 2010; da Mata et al., 2010), 

significant differences below the specific entity (Thompson et al., 2011) and new powerful in-depth 

data points out potential different responses of among populations of the same species (Benito 

Garzón et al., 2011) . Moreover, other studies emphasize the differences in niche across species life 

stages (Quero et al., 2008).   

 

I think that given the lack of information, modeling at the species level proved to be a good 

option, but if possible, the incorporation or ultimately the sole consideration of potential different 

responses below the specific level or different life stages, may be of major importance. 

Nevertheless, when the goal surpasses the species-specific levels, using broad climatic 

classifications or higher-taxon levels are also useful. For instance, (Thuiller et al., 2005) measured 

the potential of the South African flora (in general) to become invasive in different regions. The aim 

in that case was to derive general invasive risk and therefore such approach may be appropriate. 

 

In any case, data is a crucial ingredient of our models. For instance, some global data may not 

achieve the desirable spatial resolution for regional studies (Bedia et al., in press), however some 

attempts have been performed to downscale coarse data to a desirable working scale (e.g. 

downscaling atlas data (Bombi & D’Amen, 2012; Niamir et al., 2011) . Whether downscaled or not, 

we need to have the maximum amount of data, at least before a quality control phase. In a very 

illustrative paper, Lobo (2008) examined the effects of data versus modeling techniques. The results 

of the study pointed that we may need to focus more on biologically meaningful data than in high-

profile modeling techniques. Accordingly, new calls for global integration of species distribution 

data are emerging (Jetz et al., 2012). 

 

In any case, data quality is essential to apply CENM. Usually, quality data is available only at local 

or regional domains but luckily the emergence of geoportals through the World Wide Web has 

enabled the organization of contents and services (geosearch tools, community information, 
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support resources, data and applications).  Both geoportals and spatial infrastructure data (SID) 

have simplified its acces to the geographic information, enabling that we can have relatively high 

quality information for extensive geographic coverages (e.g. continental level or even world). Such 

is the case of initiatives such as GBIF (Global Biodiversity Information Facility, http://www.gbif.org), 

WORLDCLIM (http://www.worldclim.org/), the Global Index of Vegetation-Plot Databases 

(http://www.givd.info) or the Global Observation Research Initiative in Alpine environments 

(http://www.gloria.ac.at), to mention a few.  

 

However, we are still facing interoperability and quality challenges. Most metadata are still 

lacking of quality parameters and the disparity of data formats may produce an onerous work of 

data gathering. Therefore it may be difficult to address the appropriateness of a given GIS layer to 

be used in a CENM. To address this problem, initiatives as the Open Geospatial Consortium are 

collaborating to develop standards for distributed geospatial computing, together with efforts with 

those of data portal builders (e.g. GBIF). 

 

This lack of quality data is especially interesting in a moment where a lot of methodological 

refinements are sprouting out (e.g. new techniques, data selection procedures, autocorrelation 

control methods, etc.). However, little funding is actually dedicated to improve our knowledge on 

biodiversity, which could lead to biased results of nature conservation design to those over-

monitored areas (Ahrends et al., 2011). In addition, less scientific reward is given on those data 

producers (Chavan & Penev, 2011) and consequently, it is not surprising that less people are 

actually trained to survey, recognize and classify species (Wägele et al., 2011). Despite the need of 

such methodological improvements, I think the role of data acquisition of biodiversity data has 

been downturned and needs to be reemphasized and mostly, temporarily connected to modeling 

efforts. Ideally, it would be desirable to set up a dynamically linked process of data acquisition and 

CENM resulting maps, even enabling the calibration of a mechanistic component (De Cáceres & 

Brotons, 2012). A constant feedback is then set, so that maps inform potential distribution and that 

enables new campaigns of data acquisition. Volunteering and undergraduate students may be also 

increase distribution databases and to recover the role of taxonomy (Pearson et al., 2011). For 

instance, geopositional applications in cellular devices (e.g. ZamiaDroid, http://biodiver.bio.ub.es/ ) 

may indeed open up as a new opportunity to acquire new information or validate existing geodata 

http://www.gbif.org/�
http://www.worldclim.org/�
http://www.givd.info/�
http://www.gloria.ac.at/�
http://biodiver.bio.ub.es/veganaweb/main/?section=../zamiaDroid/content.jsp�
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bases (e.g. geowiki). However, expert knowledge and metadata handling will have to be undertaken 

in order to carefully assess the quality of such new databases, as potential taxonomic errors may 

occur. Although barcoding may be a good technique to overcome such errors, we are still at an 

early-stage for its widespread use as several technical issues still remain unresolved, especially in 

plants (Chase & Fay, 2009). 

 

In addition to biological data, some crucial environmental data are still lacking. For instance, soil 

types and soil properties are not easily available in some countries (e.g. Spain) although this may 

greatly affect our predictions of species distributions, especially plants whose relationship with soil 

is really tight.  Sometimes, soil data exist at a very coarse resolution (e.g. Joint Research Centre, 

http://eusoils.jrc.ec.europa.eu/ ), or at high resolution but low coverage (e.g. only for agricultural 

areas). We acknowledge the difficulty of building such information but happily great efforts are 

being made (e.g. Catalonia Soil Map). Further, remote sensing missions like SMOS (Soil Moisture 

Ocean Salinity; European Space Agency) may improve our understanding and descriptions of the 

spatial distributions of soils and its properties. 

 

After all, are CENM worth for global change studies despite their known caveats? I think so.  Let’s 

first recall a developed vulnerability framework for species coping with climate change, which is 

one of the particular cases in which CENM have been widely applied. Dawson et al. (2011) 

proposed a vulnerability framework for climate change impacts on species distributions, in which 

vulnerability encompasses three features: exposure (extent of climate change likely to be 

experienced by a species), sensitivity (degree of dependency between current climate and 

species/population persistence or performance) and adaptive capacity (ability to cope with new 

environments in situ or migrate to other suitable environments).  Adaptive capacity and sensitivity 

may be difficult to address for many species since they rely on detailed knowledge of genetic 

structure, demography, species physiology or life history, for which data are unfortunately largely 

lacking. However, exposure to climate change may be estimated with species distribution data by 

using CENM on the target species and is useful for bounding the range of actions decision makers 

may need to consider. 

 

http://eusoils.jrc.ec.europa.eu/�
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It is also important to stress here that other authors have developed these three features of 

vulnerability (exposure, adaptive capacity and sensitivity after Dawson et al. 2011) using only CENM 

(Summers et al., 2012; Crossman et al., 2011). For instance, they used the sum of the absolute 

value of probabilities of CENM in current and projected distribution to derive species sensitivity 

weights. The same authors have referred to adaptive capacity assessing only cost-dispersal routes. 

Although I appreciate the full potentiality of this approach, I think it is a very restrictive use of the 

vulnerability framework. First, CENM correlative approach is not designed to account for adaptive 

capacity, which is dependent not on the phenomenon of occurrence, but from species traits itself. 

Second, sensitivity and exposure are measures widely overlapped under this approach. I think that 

adaptive capacity and sensitivity would better benefit from experimental or mechanistic 

approaches, or at least in combination with CENM. 

 

In summary, CENM assess the degree of change from known occurrences to current or new 

environmental conditions. However, the degree to which this probability of occurrence informs a 

certain process of interest (e.g. invasion, migration, extinction, etc.) will largely rely on data 

treatment and availability, statistical technique and the possibility of contrasting with alternative 

modeling approaches. The reader may at this point feel disappointed, but as noted during this 

work, picturing similar conditions to known frequency of species occurrences has a tremendous 

wide range of applications and constitutes a powerful hypothesis generator. 

 

Indeed it is likely that a researcher or a manger feel overwhelmed amidst the complexities of 

biological processes that need to be considered in the face of global change and even only 

considering climate change (Bonan, 2008; Heimann & Reichstein, 2008). On one hand, the scientific 

community urges managers and policy makers to develop conservation plans and policies that are 

in line with projected climate and land use changes through the end of the century. On the other 

hand, scientists have demonstrated little success in transforming predictions (especially climate 

change predictions) into policy-ready information with an acceptable range of uncertainty (Kerr, 

2011). For instance, assessments of vulnerability for a broad range of species that consider multiple 

processes are still lacking due to a paucity of detailed information for many taxa, even though 

projections of threats are fundamental to conservation management plans. I do not underestimate 

here large collaborative networks of scientists that are developing useful tools, but it is 
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acknowledged that we are still at early stage of understanding, especially understanding each other 

(scientist and decision makers). 

 

Under these circumstances, are CENM for global change informative for practitioners? I guess 

we have to find the answer in those who have been applying CENM for long in the management 

scene. Iverson and colleagues, from the United States Forest Service, have recently published a very 

thoughtful work entitled: “lessons learned while integrating habitat, dispersal, disturbance and life-

history traits into species habitat models under climate change” (Iverson et al., 2011). In that paper, 

summarizing common practices and new approaches, they developed a set of modification factors 

framework (ModFacs; see also Matthews et al., 2011) based on expert knowledge, together with 

other modeling efforts (dynamic dispersal module: SHIFT). It is very interesting in this case that 

expert knowledge, when wisely handled, may modify projections from CENM in a useful way for 

managers. However they also recommend to “Use species models as guidelines for regional trends. 

Because of uncertainties and scale, they are not usually appropriate for fine-scale management 

without the regional context”. 

 

8.2 The ongoing and future modeling scene and the role for 

CENM 
 

CENM are still useful and will likely to continue being an essential tool for natural scientists 

dealing with species distributional changes, particularly because a lot of biological data is still 

lacking to develop alternative modeling tools. Ongoing studies outline better strategies dealing with 

potential issues of data and new CENM algorithms may show up in the forthcoming years. Overall, 

better practices in the application of CENM are being implemented nowadays (Anderson & 

Gonzalez Jr., 2011). 

 

Meanwhile, we are on the way of understanding and assessing the strengths and weaknesses 

between modeling approaches (e.g. correlative versus process-based). Surprising as it may seem, to 

my knowledge the existing comparisons have especially addressed the issue of climate change 

(Hijmans & Graham, 2006; Buckley, 2008; Morin & Thuiller, 2009; Buckley et al., 2010; Keenan et 
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al., 2011). In a recent paper, Cheaib et al. (2012) performed a very complete assessment of 

uncertainties using 8 models ranging from correlative to process-based models, to predict tree 

range changes in France due to climate change. The authors evidenced regions of high uncertainty 

and point out in which way taking into account a certain process affect its outcomes.  

 

In my opinion, there is not much of a point in praising the strengths of one approach over 

another, but rather make them work in tandem. We need to elucidate potential synergies in an 

open-minded modeling framework. Thereby, I feel that the ongoing modeling scene has shifted 

towards a hybrid modeling of species distribution (sensu Dormann et al. 2012). Hybrid models may 

be defined as the “sequential application of different models” and they may represent a useful way 

in order to “capitalize on the strength and advantage of both approaches and concepts to make 

more reliable and useful predictions” (Gallien et al., 2010). 

 

But what is the role of CENM under this modeling framework? Happily, readily available 

examples can be found in the literature. In general, coupling CENM suitability with other models 

has been realized in the context of dispersal and migration process, by balancing the forecasts of 

future potential habitats (Thuiller et al., 2008). In some cases a cellular automaton approach is built 

where habitat suitability represent environmental conditions of a state. For instance, Wilson et al. 

(2009) used habitat suitability as a surrogate for extinction in their coupled dynamic model of 

migration. In many cases, probability of occurrence is assumed to be a surrogate of carrying 

capacity or intrinsic growth rate (Pagel & Schurr, 2011). Anderson et al., (2009) used climatic 

suitability maps to derive carrying capacity at each time step in their metapopulation models by 

taking into account suitable patches and the area of those patches (after thresholding). 

 

In general, CENM have been used to provide potential suitable habitat in a given time-step, in 

which to embed a certain process. They provide the spatial structure of patches of potential 

habitats (Regan et al., 2011; Fordham et al., 2012b; Conlisk et al., 2012) and, in simulation 

experiments they may be combined with different dynamic processes (e.g. distrubance, etc.), 

suitable habitat patches are the ones susceptible of being colonized (Iverson et al., 2004; Engler & 

Guisan, 2009). Another fruitful example of this is the BioMove framework (Midgley et al., 2010), an 

integrated modeling platform that simulates several processes (e.g. disturbance, dispersal, 
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succession, etc. ) at the plant functional type level. In this case, suitability is used (optionally) not 

only to exclude some processes (e.g. setting off recruitment in unsuitable habitats) but also to scale 

them.  

 

To sum up, we pointed out several manners by which to embed CENM results in a broader 

modeling framework. However, I feel that it may be risky to use suitability index as a surrogate of 

population or individual dynamic performance traits. Some authors have evidenced a weak (or null) 

link between suitability and abundance (Sagarin et al., 2006) or suitable area as a surrogate of 

extinction risk (Zurell et al., 2012). Further, as pointed out by Zurell (2009), it is often assumed that 

suitability index represents resources, shelter or at least the available climate space. However, it is 

difficult to know the full potential of the suitability index in order to be linked with several other 

processes, especially because we do not know what low values of suitability mean (unsuitability 

areas). I envision future refinements in models to explicitly state what the suitability or probability 

of occurrence is modeling in each geographic region of interest, so we can derive better hybrid 

models (Saupe et al., 2012). In other words, a spatially explicit biological refinement of the 

probability of presence.  

 

Basically, these hybrid approaches rely on a framework of spatially nested models. A good 

example is the recent work by Boulangeat et al. (2012) in which they applied a theoretical 

framework top-down approach, of  presence-absence-model and an abundance model. In this work 

they fitted many processes (e.g. dispersal, biotic interactions, etc.) and managed to both explain 

occurrence and abundance.  As in many other works of new hybrid models, CENM are aimed to be 

the “physiological filter”, the potential of the abiotic factors. I concur with this sequential approach, 

but I would rather emphasize here that we should perform a post-treatment of suitability, maybe 

by comparing it to simple process-based models, in order to refine the physiological signal of 

suitability outputs. 

 

However, it is not only suitability that should be accurately examined. In fact, in recent analysis 

of uncertainty in these sort of hybrid models,    Zurell et al. (2012) pointed out that larger sources of 

uncertainty where concentrated rather in dynamic components than in climate change scenario or 

CENM algorithm. Furthermore, it is important to highlight that the calibration of the mechanistic 
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component may also be highly influenced by its calibration procedure and the data used for that 

aim (De Cáceres & Brotons, 2012).  

 

At broader scales and similarly to such sequential approaches we can find Dynamic Global 

Vegetation Models (DGVM). These process-based models represent a scaling-up approach of 

processes starting from physiology until ecosystem dynamics.  First developments treated 

vegetation as a green cover, but they are currently using plant functional types to address 

vegetation heterogeneity within each tile of analysis. These (meta-) models could be classified as 

either fitted process-based models or forward process-based models. They offer the potential to 

determine broad patterns of future vegetation types and transient responses to global change 

including biogeochemical cycles. However, uncertainty analysis and treatment of tile heterogeneity 

are still largely lacking. I envision potential use of CENM to inform DGVM in at higher spatial 

resolution in order to determine future species distributions, or at least hypothesize future regional 

contexts within each tile (I actually found a new study while proof reading this phd dissertation: 

Notaro et al., 2012). 

 

Finally, whether nested hybrid models or fitted-process based models, such nested meta-models 

will have to explore potential connections of scale and how bottom up and top-down controls 

inform different mechanisms, and most intriguing is to identify at which temporal resolution. 
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8.3 So far, what have I learned along the way? Bits and pieces 

about CENM in a nutshell. 
“ The most common ‘error’ of any modeller is to ‘believe’ a model “  

(Dormann et al., 2012) 

 

 

 

Do not be afraid of comparing apples and oranges! 

Model inter-comparison greatly facilitates the understanding of species distributions and 

improves the assessment of global change projections.  We should enhance the mix and 

comparison between modeling approaches, as they may shed light of potential caveats while open 

up new avenues of improvement. 

 

 

Fit the model for the purpose and, if possible, do not run out of time. 

The bioclimatic profiling (niches) is dynamic and the identification is contingent to the biological 

level of organization. For global change studies, CENM need to carefully consider their working 

spatial and biological scale in response to a desired management or scientific framework. Adding 

the temporal scale to predictions may better picture spatiotemporal dynamics, although they will 

be constrained by the static nature of their responses.   

 

 

Watch out going beyond your predictions 

Great care should be taken when considering the probability of presence as a surrogate of 

physiological or population performance. For global change studies, CENM measure exposure to 

new conditions. In some case, it may be a surrogate of other biological factors, but not necessarily. 

As a consequence, changes in the bioclimatic profiling should be interpreted as exposure to new 

conditions unless the biological meaning of probability of presence has been assessed. 
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APPENDIX 1 

APPENDIX 1.1.  Literature extension 
 

The present literature extension orders relevant literature reviewed during this PhD thesis. 

It is not the intention here to perform a complete literature review here but rather to illustrate 
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APPENDIX 2 

APPENDIX 2.1.  Results from niche-based models. 

(NBM). 
 

Table1.Variable Importance in NBM, by model and species studied.  Variable 

importance is calculated as 1 minus the correlation between two models: the full 

model and one in which the target variable has been randomised. As the two models 

are highly correlated, resulting variable importance decreases. 

 

SPECIES MODEL 

ACCUMULATED 

PRECIPITATION 

MEAN ANNUAL  

TEMPERATURE 

REAL SOLAR 

RADIATION 

Quercus ilex 

ANN 0.42 0.85 0.01 

CTA 0.38 0.88 0.06 

GAM 0.25 0.84 0.02 

GBM 0.32 0.87 0.01 

GLM 0.28 0.83 0.02 

MARS 0.39 0.79 0.04 

RF 0.60 0.83 0.26 

Pinus 

sylvestris 

 

ANN 0.82 0.30 0.04 

CTA 0.83 0.29 0.04 

GAM 0.77 0.180 0.03 

GBM 0.86 0.182 0.00 

GLM 0.78 0.24 0.03 

MARS 0.76 0.27 0.04 

RF 0.79 0.33 0.14 
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Pinus 

halepesis 

ANN 0.67 0.51 0.04 

CTA 0.65 0.54 0.11 

GAM 0.50 0.52 0.04 

GBM 0.60 0.49 0.00 

GLM 0.58 0.49 0.06 

MARS 0.58 0.50 0.08 

RF 0.61 0.60 0.25 
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Table 2. Evaluation scores of Niche-based models by species using three different 

indexes: True Skill Statistic (TSS), Area under de curve (AUC) and Kappa statistic. 

Models: Artificial neural networks (ANN), Classification tree analysis (CTA), General 

additive models (GAM), Multivariate adaptive regression splines (MARS), Random 

forests (RF). See Table 1 in manuscript for further details. 

SPECIES MODEL AUC TSS Kappa 

Quercus ilex 

ANN 0.769 0.428 0.391 

CTA 0.811 0.527 0.489 

GAM 0.824 0.524 0.498 

GBM 0.823 0.529 0.499 

GLM 0.819 0.514 0.488 

MARS 0.834 0.535 0.506 

RF 0.840 0.535 0.501 

Pinussylvestris 

ANN 0.863 0.629 0.599 

CTA 0.918 0.745 0.693 

GAM 0.929 0.740 0.695 

GBM 0.929 0.744 0.686 

GLM 0.925 0.726 0.690 

MARS 0.934 0.742 0.699 

Pinushalepensis 

RF 0.926 0.732 0.687 

ANN 0.806 0.484 0.443 

CTA 0.883 0.664 0.621 

GAM 0.901 0.669 0.605 

GBM 0.897 0.655 0.604 

GLM 0.898 0.660 0.593 

MARS 0.906 0.687 0.628 

RF 0.911 0.704 0.639 
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APPENDIX 2.2  Geography of mean leaf life (MLL) 

simulations in Pinus halepensis . 
Geography of the different physiological strategies for mean leaf life (MLL) in 

Pinushalepensis. Grey areas indicate the upper part of the suitability gradient where all 

simulated forests present similar values of net primary production (NPP). Orange areas 

and red areas indicate the a positive (congruent) or negative (incongruent) relationship  

between mean leaf life and weighted suitability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDICES 

 
242 

 

APPENDIX 2.3. Analysis of variance results between 

NPP and suitable/unsuitable virtual forests for 

Quercus ilex and Pinus sylvestris.  
 

 

  CONGRUENT RANGE WHOLE RANGE 

SPECIES   Kruskal-Wallis test            p Kruskal-Wallis test            p 

QUIL ENS 602.77 4.18 E-133 113.794 1.45 E-26 

GLM 794.75 7.49 E-175 186.87 1.53 E-42 

RF 299.56 4.10 E-67 46.72 8.16 E-12 

ANN 1272.05 1.34 E-278 249.15 3.97 E-56 

CTA 485.36 1.46 E-107 51.56 6.96 E-13 

GAM 877.17 9.00 E-193 198.75 3.92 E-45 

MARS 747.49 1.41 E-164 132.38 1.23 E-30 

PISY ENS 790.19 7.33 E-174 790.19 7.33 E-174 

GLM 761.99 9.89 E-168 761.99 9.89 E-168 

RF 503.74 1.46 E-111 503.74 1.46 E-111 

ANN 489.95 1.46 E-108 489.95 1.46 E-108 

CTA 773.25 3.53 E-170 773.25 3.53 E-170 

GAM 759.59 3.29 E-167 759.59 3.29 E-167 

MARS 751.73 1.69 E-165 751.73 1.69 E-165 
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APPENDIX 3 

APPENDIX 3.1 Extrapolation in the environmental 

space. 
 

Rhaponticum repens projections to the Palearctic realm. Different colors indicate novel 

climates where extrapolation occurs. Measures of extrapolation have been provided by 

Maxent extentsions MESS and MoD (see Elith et al. 2010). Maps indicate the most dissimilar 

variable outside its traning range. Most of projections to the Iberian Peninsula (square frame) 

show no extrapolation issues, except for some cases (European invasion). As shown, limiting 

dispersal increases extrapolation into projections. 

 

R.repens (Neotropic origin) - model maxent  
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R.repens (Neotropic origin) – model maxent dispersal constrained 

 

 

 

 

R.repens (Nearctic origin) – model maxent 

 

 
 

 

R.repens (Nearctic origin) – model maxent dispersal constrained
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R.repens (Palearctic invasive origin) – model maxent 

 

 
 

 

R.repens (Palearctic invasive origin)  – model maxent dispersal constrained 

 

 
 

R. repens (Australian origin) – model maxent  
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R. repens (Australian origin)– model maxent dispersal constrained 

 

 
 

 

R. repens  native range  (Palearctic)– model maxent 

 

 
 

R. repens native range (Palearctic)– model maxent dispersal constrained 

 

 

 



APPLYING CORRELATIVE ECOLOGICAL NICHE MODELS TO GLOBAL CHANGE STUDIES 

 

 
247 

 

APPENDIX 4 
APPENDIX 4.1 Model descriptions 

 

Species Distribution Models description (inspired by Thuiller et al. 2009 and Franklin 

2010. 

 

Random forests (RF

 

): A machine-learning method – a combination of tree predictors 

in which each tree depends on the values of a random vector sampled independently 

and with the same distribution for all trees in the forest. (Breiman, 2001) 

Classification tree analysis (CTA):

 

 A classification method – a 50-fold cross-validation 

to select the best trade-off between the number of leaves of the tree and the 

explained deviance. (Breiman et al., 1984) 

Multivariate adaptive regression splines (MARS):

 

 A non-parametric regression 

method, combining elements of CTA and GAM. (Friedman, 1991) 

Generalized linear model (GLM): 

 

 A regression method, with polynomial terms for 

which a stepwise procedure is used to select the most significant variables. (McCullagh 

& Nelder, 1989) 

Generalized additive model (GAM):

 

 A regression method more flexible than GLM, 

we used a spline of 4 degrees of freedom and a stepwise procedure to select the most 

parsimonious model. (Hastie & Tibshirani, 1990) 

Generalized Boosting Models (GBM): A method that fits a large tree of simple 

models, together aimed at giving a more robust estimate of the response. Based on 

Boosted Regression Tree algorithm.  (Friedman, 2001) 
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Artificial neural networks (ANN):

 

 A machine-learning method, with the mean of 

three runs used to provide predictions and projections. (Ripley, 1996) 

Flexible discriminant Analysis (FDA):

 

 A supervised classification method based on a 

mixture of normals obtain a density estimation of each class. (Hastie and Tibshirani, 

1996) 
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APPENDIX 4.2 Model Accuracy 
Models’ accuracy measures by the True Skill Statistic (TSS, Allouche et al. 

2006). Reported values indicated averaged TSS across model repetitions. Model 

abbreviation in Appendix 4.1 

 

SPECIES   MODEL TSS  

Cross validation 

TSS  

Total score 

Pinus balforuniana ANN 0.92 0.94 

(PIBA) CTA 0.90 0.93 

 N= 217 GAM 0.87 0.86 

  GBM 0.94 0.95 

  GLM 0.83 0.82 

  MARS 0.89 0.89 

  FDA 0.79 0.8 

  RF 0.94 0.97 

Pinus coulterii ANN 0.78 0.8 

  CTA 0.76 0.82 

(PICO3) GAM 0.78 0.79 

 N=323 GBM 0.82 0.85 

  GLM 0.74 0.75 

  MARS 0.75 0.76 

  FDA 0.74 0.75 

  RF 0.84 0.94 

Pinus muricata ANN 0.68 0.77 

(PIMU) CTA 0.67 0.82 

 N=65 GAM 0.66 0.67 

  GBM 0.77 0.88 

  GLM 0.63 0.64 

  MARS 0.53 0.61 

  FDA 0.52 0.59 

  RF 0.74 0.91 
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SPECIES   MODEL TSS  

Cross validation 

TSS  

Total score 

Pinus sabiniana 

(PISA2) 

 N=2372 

  

  

  

  

  

ANN 0.67 0.68 

CTA 0.7 0.75 

GAM 0.64 0.65 

GBM 0.67 0.69 

GLM 0.65 0.65 

MARS 0.65 0.65 

FDA 0.63 0.64 

RF 0.76 0.91 

Quercus douglasii 

(QUDO) 

 N= 2422 

  

  

  

  

  

ANN 0.72 0.72 

CTA 0.77 0.8 

GAM 0.73 0.72 

GBM 0.75 0.76 

GLM 0.68 0.68 

MARS 0.73 0.73 

FDA 0.72 0.71 

RF 0.81 0.93 

Quercus dumosa 

(QUDU) 

 N= 83 

  

  

  

  

  

ANN 0.68 0.75 

CTA 0.63 0.78 

GAM 0.65 0.65 

GBM 0.75 0.88 

GLM 0.67 0.67 

MARS 0.56 0.6 

FDA 0.39 0.43 

RF 0.7 0.89 

Quercus engelmanii 

(QUEN) 

 N = 36 

  

  

  

  

  

ANN 0.77 0.84 

CTA 0.67 0.78 

GAM 0.67 0.69 

GBM 0.81 0.91 

GLM 0.75 0.72 

MARS 0.78 0.78 

FDA 0.66 0.67 

RF 0.71 0.89 
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SPECIES   MODEL TSS  

Cross validation 

TSS  

Total score 

Quercus lobata 

(QULO) 

 N = 699 

  

  

  

  

  

ANN 0.65 0.66 

CTA 0.66 0.74 

GAM 0.65 0.64 

GBM 0.68 0.7 

GLM 0.62 0.6 

MARS 0.62 0.61 

FDA 0.60 0.6 

RF 0.72 0.9 

Quercus sabiniana 

(QUSA2) 

 N = 999 

  

  

  

  

  

ANN 0.93 0.93 

CTA 0.92 0.93 

GAM 0.92 0.92 

GBM 0.93 0.94 

GLM 0.91 0.91 

MARS 0.90 0.89 

FDA 0.82 0.83 

RF 0.94 0.97 

Quercus wislezenii 

(QUWI) 

 N = 2763 

  

  

  

  

  

ANN 0.54 0.53 

CTA 0.63 0.68 

GAM 0.57 0.57 

GBM 0.63 0.64 

GLM 0.57 0.57 

MARS 0.59 0.59 

FDA 0.57 0.57 

RF 0.68 0.89 
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APPENDIX 4.3 Metrics description 
 

Broad species geographic attribute of conservation (range or current distribution). 

Each metric is provided with its formula and a description. In grey, relevant studies 

using the same or very similar metric/concept. 

 

RANGE 

LEVEL 

Conservation applied to potential suitable habitat whether currently 

occupied or not; range-wide ecosystem management perspective. 

 

 

Species range change (SRC) 

SRC= AGained−ALost ; 

 

where  A= area 

 

Differences in potential suitable area between two periods. Area Gained is the total 

area predicted suitable at time 2 but not time 1; Area Lost is predicted suitable at time 

1 but not time 2.  

 

Purpose: Indicates the degree of shrinkage or expansion of potential suitable 

habitat.  

 

 

 

Range exposure to migration (REM) 

Difference in habitat suitable area between full and null dispersal assumptions. Area 

of suitable habitat assuming full dispersal is the total area predicted suitable at time 2; 
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area assuming null (no) migration is the area of intersection of habitat predicted 

suitable at time 1 and time 2 (stable habitat) 

 

REM= (AFull−ANull)/ ANull; 

 

where  A= area 

 

Purpose: Assess the degree of disparity between assumption of full migration and 

no migration. REM represents the potential role of migration on filling potential 

suitable habitat. 

 

(Araujo& New, 2007 suggest bounding boxes between these assumptions;  

Svenning and Skov 2004 use current to potential distribution) 

 

  

Range velocity (RV) 

Differences the velocity of climatic exposure between leading edge (unsuitable cells 

in t0 becoming suitable in t1) and trailing edge (suitable cells in t0 becoming unsuitable 

in t1). 

 

RV=vgained− vlost =
∑ 𝑣𝑖,𝑗;𝑢𝑛𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 →𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑖=1,𝑁

𝑁
−  

∑ 𝑣𝑖,𝑗;𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 →𝑢𝑛𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑖=1,𝑁

𝑁
 

wherevi,j=bioclimatic velocity in cell xi,j, and N is the number of cells. Velocity is 

calculated as follows: 

 

Vi,j =
𝑇𝑖,𝑗
𝑆𝑖,𝑗

  ; 

 Where Ti,j is the temporal gradient of probabilities and Si,j is the spatial gradient 

of probabilities in cell xi,j. 

 Gradients are defined as: 

 

Ti,j =∫
𝑑𝑃𝑖,𝑗
𝑑𝑡

𝑡1
𝑡0 = 𝑃𝑖,𝑗;𝑡1−𝑃𝑖,𝑗;𝑡0

𝑡1−𝑡0
 ; 
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Si,j =�(Si2 +  Sj2) ;  

where Si is spatial gradient in direction i and Sj is spatial gradient in direction j (see 

figure) 

 

Cell position scheme (focal cell in bold): 

 

Xi-1,j+1 

(a) 

Xi,j+1 

(b) 

Xi+1,j+1 

(c) 

Xi-1,j 

(d) 

Xi,j 

(e) 

Xi+1,j 

(f) 

Xi-1,j-1 

(g) 

Xi,j-1 

(h) 

Xi+1,j-1 

(i) 

 

 

Si =  𝑑𝑃𝑒
𝑑𝑥

 = (Pc+2Pf+Pi) – (Pa + 2Pd + Pg)
8 ×𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒

  
 

Sj=  𝑑𝑃𝑒
𝑑𝑥

 =  (Pc+2Pf+Pi) – (Pa + 2Pd + Pg)
8 ×cellsize

  
 
 

Purpose: To assess the balance between the velocity between trailing edge and 

leading edge in order to determine which one is faster in acquiring or losing suitable 

conditions. 

 

 

Range spatial fragmentation (RSF) 

Number of discrete habitat patches at a given time period. 

 

Purpose: To assess spatial fragmentation of potential suitable habitats. 

(Opdam&Wascher, 2004) 
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Range Spatial Aggregation (RSA) 

Percent of total suitable habitat occupied by the largest (suitable) patch at a given 

time period. 

 

 

LPI = (ALargestPatch / Asuitable)* 100 

 

A= area 

 

Purpose: To assess spatial aggregation of potential suitable habitats. 

(Opdam&Wascher, 2004) 
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PLOT  

LEVEL 

Conservation applied to current known distribution (forest plots); 

local management strategies and in situ conservation. 

 

 

 

Forest migration effort (FME) 

Average distance of the most climatically suitable route for current forest locations 

(plot) to reach a suitable patch. Cost resistance surface is determined by probabilities 

of presence. 

 

𝐹𝑀𝐸 =  
∑ ∫ 𝑑𝑥𝑖,𝑗(𝑃) (𝐶) 𝑡1

𝑡0𝑖=0,𝑁

𝑁
 

 

wherei is forest plot, j is nearest suitable patch determined by the 

probability function (P) and dx is the distance between the two points as a 

function of the cost resistance surface C (product of linear distance to suitable 

patches and inverse of suitability for each cell of the grid). 

 

Purpose: to incorporate a surrogate metric of meta-population persistence and 

potential connectivity processes. 

 

(Skov and Svenning 2004, use tree cover for resistance , Wang et al. 2008 found 

significant relationship between habitat suitability resistance and gene-flow) 
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Forest climate-site exposure (FCE) 

Percentage of current forest locations (plots) changing from suitable in t0 to 

unsuitable conditions in t1. 

 

FCE = (Nt1_suitable -> t2_unsuitable /N) × 100; 

 where N is the number of plots. 

 

Purpose: to assess the magnitude of current forests exposed to new environmental 

conditions.(Thomas et al. 2004; Thuiller et al. 2005) 

 

 

 

Forest climatic velocity (FCV) 

Mean bioclimatic velocity of forests plots in decline. 

 

 

FCV =  
∑ 𝑣𝑖𝑖=1,𝑁

𝑁
 

 

 

Where velocity (v) in plot (i) is assigned as the velocity in matching cell xi,j as 

in computed as in the range velocity metric (see above), and N indicating plots 

of decreasing suitability in time. 

 

Purpose: to assess the speed of change in exposure of current forests.  
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