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and the Generalitat de Catalunya (research project 2009SGR0164). Logistic support
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Preface: The importance of the
problem of cooperation and the
finiteness of resources

0.1 Summary

The explosive introduction of network theory and stochastic methods for the study

of finite populations has recently led to a new step in the use of evolutionary game the-

oretical methods. The complexity of the represented systems has grown exponentially,

and has attracted the interest of scientists from many different branches, as biology,

physics, economy, sociology or linguistics. And on the core of most studies still lies the

same original problem, that of the emergence and evolution of cooperation, not only

in biological contexts, but also in a human one, where the complexity of the relation-

ships and contact networks is increasing in a society shaped by the appearance of new

information and communication technologies.

However, the development of a new theoretical framework, evolutionary game the-

ory, which is able to represent some of the intricacies of our society and nature, did

not carry attached a deep analyses of one of the most important factors in evolution:

the finiteness of resources in ecosystems as in the Earth. This factor, together with

cooperation, is of fundamental importance in the formation of societies and multicel-

lular life (among other higher-order structures). In this work, I aim to make a first

approach to the introduction of such resource constraints into evolutionary models by

studying the interplay between the emergence and stability of cooperative behaviours

and finiteness of resources.

In addition, I provide in this study a definition of cooperative behaviours, and re-

mark that pacifist, pacific, and conflict avoiding behaviours, are cooperative behaviours,
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even if they lead to no appreciable direct benefit. To finish, I also study the effect of

destructive behaviours on the evolution of cooperation, finding the first example –to

my knowledge– of a simple behaviour that allows for robust evolutionary cycles.

0.2 Cooperation and finiteness of resources

We, humans, have developed all along history the most complex social organisa-

tion of the natural world, and the foundations of such development rely on two main

components: Joint efforts –cooperation, mutual aid– between humans, and the use of

natural resources.

Cooperation and use of resources may be observed not only in humans, but all

along nature and at every stage of evolution. In this way, bacteria cooperate in order

to synthesise nutrients, eusocial insects as ants and bees cooperate to create nests,

sentinel meerkats cooperate watching for predators while others eat, and vampire bats

share their bloody food with conspecifics; in an even more dramatic way, cooperation

plays a fundamental role in the appearance and maintenance of higher-order entities

(as societies, animal groups, insect colonies, multicellular life and eukaryotes) from

their lower level components (humans, animals, insects, eukaryotic cells, prokaryotes).

However, even if examples of cooperation can be easily found, it is not so easy to

understand how and why cooperative behaviours may emerge and be maintained.

The question on the evolution of cooperation represents a conundrum, originated

by the possibility of exploitation of cooperative individuals. A cooperative individual

provides some kind of benefit to others at some personal cost. Any non-cooperative

individual who enjoys the benefits of the cooperative acts, but avoids to spend any

necessary cost for cooperating, will have higher benefits (earn more money, have more

free time, reproduce more, ...) than cooperative individuals. It is thus easier for such

kind of selfish behaviours to spread, leading cooperative behaviours to extinction, and

ultimately reducing any cooperative social welfare of the population.

The problem of selfishness and cooperation was initially investigated within a hu-

man context by philosophers and economists, such as Hobbes, Voltaire, Rousseau and

Adam Smith, and then formulated within an evolutionary context by Darwin and

Wallace, attracting the attention of scientists as Kropotkin and Hamilton. The latter



developed the theory of kin selection, finding that altruism (a form of cooperation)

may evolve between genetically related individuals.

However, cooperative behaviours do not need to happen between genetically related

organisms, but refer to much more general situations, including interspecies mutualisms

as that of sharks and remoras. Evolutionary game theory was conceived in order to

explain such situations. It models behaviours and interactions using game theoreti-

cal methods, and evolution through Darwinian selection dynamics. The use of such

framework has led to the discovery of some mechanisms that allow for the evolution of

cooperation, as reciprocity or the effect of interaction networks.

However, the development of the theory has relegated to oblivion the fact that the

use of resources also plays a fundamental role, both in the origin of any higher-level

unit, as societies or multicellular life, and in their stability once formed. Most models

assume such a limitation of resources to be either nonexistent (assuming infinitely large

populations) or just to impose a constant population size. I develop here several models

which introduce the limitation of resources explicitly, assuming that a constant flux

of resources leads the system out of equilibrium, and studying how this affects the

evolution of cooperation.

To achieve the goal of understanding how the limitation of resources influences

cooperation, I tried to keep the models as simple as possible, on the one side, to

capture the essence of the problem on its most stylised form, on the other, to make the

results applicable –with some modifications– in a very wide range of scenarios, which

are outlined in the next section.

0.3 The importance of simple models

The development of simple models to explain the evolution of cooperation is im-

portant from three different perspectives: natural-sociological, socio-technological, and

healthcare related.

The natural-sociological point of view relates to the understanding of the forma-

tion and evolution of cooperative groups of animals (including humans), the stability

of ecosystems, the maintenance and increase of common goods, and the occurrence of

the major transitions of evolution, which include the appearance of eukaryotes, multi-



cellular organisms, and human societies.

The social-technological perspective focuses on the understanding of the formation

of collaboration networks, both in a classical way or in an internet-based framework,

the management of common goods, as healthcare and educative systems, and the

implications of technological development and resources consumption in the increase

or decrease of common welfare.

The healthcare related point of view does not try to increase altruism or cooperation

anymore, but regards the different structural components of diseases such as cancer

(healthy and sick cells) as interacting individuals, and applies the evolutionary game

theoretical knowledge to try to cure or minimise the virulence and harmful effects of

the malign agents.

In the three cases, the development of simple models allows for the understanding

of the processes involved and the subjacent micro-dynamics, useful for the design of

experiments, and for a gradual increase in the complexity of the models grounded on

a solid basis.

0.4 Objectives and structure of the present study

The objectives of the present study are:

1. To provide a general definition of cooperation including parasitic behaviours and

analyse the dynamics of a population of parasites, altruists and neutral individ-

uals, called free-riders.

2. To study the influence of the limitation of resources in the evolution of coopera-

tion.

3. to study the influence of destructive behaviours in the evolution of cooperation.

Each objective is developed in one of the three parts in which this thesis is divided,

as explained next.

Part I of the present study (Chapters 1 and 2) is devoted to introduce the problem

and the most important concepts related to the evolution of cooperation. I begin in

Chapter 1 with a historical introduction of the most important works which inspired



this study, and explain how two different branches of science, evolutionary biology and

game theory, gave rise to the evolutionary game theoretical framework. I also introduce

here some of the most important concepts used along the study, as the replicator

equation, the prisoner’s dilemma or the public goods game. In Chapter 2, I provide a

full classification of the concepts, and remark the necessity to include conflict-avoiding

behaviours as cooperative behaviours –something never done explicitly in evolutionary

game theoretical models– when compared to parasitism. This kind of behaviours will

be studied in deep in Part II by means of a prisoners dilemma. I also provide here

a mathematical proof of situations in which the prisoners dilemma is the appropriate

model to represent nature. To finish, I show that the introduction of parasites, free-

riding non-aggressive individuals, and altruists in a model allows for the survival of the

latter two in unexpected high levels, which remarks the necessity to include conflict-

avoiding, pacific and pacifist behaviours as cooperative.

In Part II (Chapters 3, 4 and 5) I return to the problem which, after Malthus ideas,

inspired Wallace and Darwin to conceive the natural selection process: that of the

finiteness of resources. I show that the limitation of resources is able to constrain the

parasitic ability of the individuals in some situations, allowing for cooperative pacific

individuals to thrive and dominate parasites, or for stable coexistence between parasites

and pacific individuals in others. Chapter 5 provides simplified analytical versions for

the models presented in chapters 3 and 4, showing phase transitions from defective

states to states where cooperative individuals survive, and even dominate.

Part III (Chapters 6 and 7) is devoted to present a model for the evolution of

altruism based on evolutionary game theory and stochastic processes in which the

inclusion of destructive individuals, called Jokers, allows for the appearance of robust

evolutionary cycles in which the system spends relevant times in cooperative states. I

will also discuss how this relates to cooperation promoted by common enemies or risks.

To finish, in Part IV I summarise the main results obtained and list the publications

derived from the present work.





Part I

The evolution of cooperation.
History and concepts
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Chapter 1

Introduction: How evolution met
game theory

1.1 Evolution, natural selection and the problem of

cooperation

The publication in 1859 of the book On the Origin of

Figure 1.1: Charles
Robert Darwin.

Species by Means of Natural Selection, or the Preservation

of Favoured Races in the Struggle for Life by Charles Dar-

win marked the end of an old era dominated by religious

beliefs in which the human being –specially the occiden-

tal human being– was in the middle of the universe of

creation. The idea of evolution, independently found by

Wallace and Darwin himself at a time in which scientific

circles questioned creationist theories, laid the foundations

for scientific proof of the revolutionary ideas: man, as well

as any other living organism, is the product of a long evo-

lutionary process involving small changes and selection.

The first ideas related to evolutionary processes root on the late 1700’s and early

1800’s lively debate on the formation and shaping of the earth, where some geologists,

as James Hutton and Charles Lyell [2–5], proposed that very slow long term processes

of microscopic change driven by natural forces, as wind and water flow frictions or

temperature changes, where the actual cause for the observed earth structure (Hut-

ton [3] and Lyell [5], specially the first, already suggested the applicability of such
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ideas to the study of biological processes). Johann W. Goethe [6] also noticed that,

given the morphological similarities between all plants, they might have developed by

metamorphosis from an equal original form or ur-plant. In this context, Jean-Baptiste

Lamarck made the first proposal of a biological evolutionary process giving rise to new

species [7].

At the same time as the evolutionary geology debate

Figure 1.2: Alfred Russel
Wallace.

was held, economist T. Malthus ideas on population growth,

overuse and competition for resources spread, reachingWal-

lace and Darwin. Malthus argued that any increase in

available resources in society would lead to a subsequent

increase in the population, until the same original sub-

sistence per-capita amount of resources was reached [8].

Darwin and Wallace thought that, if this was to happen

in human societies in which individuals may restrain their

own reproductive and consumption rates, it would happen

still more intensely in nature, where animals were thought

not to do so, neither to have the ability to increase their resource supply.

The application of geological and economic born ideas,

Figure 1.3: Thomas
Robert Malthus.

together with the competition triggered by the finiteness of

resources, led Darwin and Wallace to the conception of the

evolutionary process in which individuals reproduce and

give birth to similar –but not equal– offspring, and natural

selection allows for the survival and spread of the best

adapted traits, those associated to the fittest individuals,

understood as the most successful from a reproductive and

survival perspective.

However, Darwin himself realised the paradox implicit

in natural selection acting at the individual level: any liv-

ing being exploiting others would have a net evolutionary

advantage over those individuals which assume some reproductive cost in order to pro-

duce a benefit on the rest; thus, the evolution of cooperative and altruistic behaviours
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seems to be doomed, which led to the imposition of the most dramatic view of the

struggle for life in some scientific circles [9] in the late 1800’s and early 1900’s, and to

the denial of the existence of cooperative benefits from an evolutionary perspective.

The evolution of cooperative behaviours was analysed

Figure 1.4: Pyotr Alex-
eyevich Kropotkin.

from an opposed point of view in 1902 by Piotr Kropotkin

in his book Mutual Aid: A Factor in Evolution, where

he gathered a collection of articles in which he showed

that cooperation, present both in animals and humans, is

an important factor to take into account from an evolu-

tionary perspective. He did not neglect natural selection,

but argued that the struggle against an inclement nature

favoured the evolution of mutual aid instead of fight be-

tween conspecifics.

Despite some experimental results showing the bene-

fits of group formation against under-crowding in unfavourable environments [10], the

debate continued, with supporters on both sides. It would still take another seventy

years for theoreticians to develop a theory consistent with the observed results, and

able to account for the evolution of cooperation.

1.2 Genes, populations, relatedness and assortment

At the time Wallace and Darwin proposed the theory of natural selection it was

still unknown how heredity of traits between parents and offspring was realised. The

works on heredity of Mendel, published in 1866, remained unknown until the beginning

of the 1900’s, when three European scientists –Hugo de Vries, Carl Correns, and Erich

von Tschermak– found similar results and rediscovered it. They found experimental

results proving the transmission of discrete traits between parents and offspring, and

a few years later the term gene was coined.

Even when the discovery of the DNA as carrier of the genetic information should

still wait until the 1940’s, the knowledge of the existence of such inherited information

as discrete traits allowed theoreticians –S.Wright, R. A. Fisher and J.B.S. Haldane–

during the 1920’s and 1930’s to develop a mathematical framework for the evolution of
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gene frequencies and their associated traits within populations, in what is now called

population genetics.

In this context, the importance of relatedness as a mea-

Figure 1.5: Gregor Jo-
hann Mendel.

surement of genetic similarity came into attention as a

possible factor allowing for the evolution of altruistic sac-

rifice, as illustrated by J.B.S. Haldane statement that he

would not risk his life for saving a drowning brother, but

he would do it for two brothers or eight cousins. This in-

tuitive statement was formalised mathematically in 1964,

when W.D.Hamilton published his seminal works on kin

selection [11,12], anticipating the ideas of inclusive fitness

theory.

Inclusive fitness theory is based on the assumption that,

Figure 1.6: William Don-
ald Hamilton.

although selection is carried out at an individual level, it is

the genes which are actually selected, and equal genes are

indistinguishable from an evolutionary perspective. Thus,

the fitness of a behavioural trait, which is a measurement

of its reproductive value and directly related to the num-

ber of offspring it will produce, is not only that of the trait

in the individual, but also the addition of the effects of its

behaviour on the fitness of all other individuals carrying

such trait. Furthermore, it is usually assumed that evo-

lution acts so as to maximise the inclusive fitness of the

individuals.

With the previous assumptions applied to identical genes by descent, i.e. genes

which are a perfect replica of those of a common ancestor, Hamilton proved that altru-

istic traits which imply a cost −c < 0 to the actor might evolve whenever the benefit

b > 0 of the altruistic behaviour is directed towards individuals whose relatedness r –a

measurement of genetic similarity– fulfils the so called Hamilton rule

r >
c

b
, (1.1)
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situation in which the inclusive fitness effects of the costly action to the altruistic donor

trait are outweighed by the benefits accrued on enough similar individuals (see [13] for

a detailed explanation of the meaning of r).

This results were expanded in 1971 by G.R. Price. He

Figure 1.7: George Robert
Price.

proved that, if the fitness of the individuals carrying a

trait i of value zi at time t is given by wi = w̄q′i/qi, where

qi, q
′
i are the frequencies of individuals carrying such trait

at times t and t′ = t + 1, and w̄ is the mean population

fitness, then the variation of the mean value of such trait

∆z = z′ − z fulfils

w∆z = Cov(wi, zi) + E(wi∆zi), (1.2)

where w is the mean population fitness, Cov(wi, zi) =

E(wizi)−E(wi)E(zi) is the covariance between fitness and

trait value, and E(X) is the expected value of X.

The Price equation applied to the evolution of altru-

istic behaviours results in the Hamilton’s rule, but its interpretation changes. The

fundamental feature which allows for the evolution of altruism is no longer genetic

relatedness, but the assortment between altruistic behaviours [14], i.e. the fact that

enough benefits given by altruists are enjoyed by other altruists.

1.3 The mathematics of games, or how to model

behaviours

The origin of game theory dates back to the 1920’s, when John von Neumann

published a series of articles on the issue, and the latter book The Theory of Games

and Economic behaviour in collaboration with Oskar Morgenstern. Its development

continued during the rest of the century, attracting initially the attention of economists

and politicians.

Game theory focuses on the study of cooperation and conflict between rational

decision makers interacting together, i.e. individuals who possess information about

the possible outcomes of the interactions (the game) and decide how to act according to

7



it. The specification of a behaviour of an individual in any situation is called strategy,

and the outcome of every interaction depends on the strategies chosen by all interacting

individuals (players). The main goal of game theory is to predict which strategies will

be played by each player and the associated distribution of benefits, for which reason

John Forbes Nash introduced in 1951 the concept later called Nash equilibrium. A Nash

equilibrium happens whenever none of the players increases its benefits by changing

its actual strategy. In this way, if one assumes that individuals are rational, the Nash

equilibrium represents the outcome of the interaction.

Full rationality was initially assumed in game theoret-

Figure 1.9: John Forbes
Nash.

ical models. This means that individuals are rational, and

take into account that their interacting partners are ratio-

nal as well. This assumption is often unrealistic, on the

one side because information might not be fully available

or costly to acquire, and on the other side because it leads

to an infinite iteration of the form I know that you know

that I know that you know..., for which reason the concept

of bounded rationality was introduced into economic game

theory.

Bounded rational individuals do not possess any longer

all the information of the system, or cannot process it,

and their behaviour is influenced only by a few variables

related to the situation. This point of view seems more

appropriate to describe the real world, in which animals (including humans) neither

have infinite perception of the reality surrounding them, nor –often– the time to process

all important information before having to interact. And this is specially important in

a situation in which life, reproduction and death come into play.

All previous concerns illustrate the necessity of a dynamic framework in which to

embed the game theoretical analysis (this was already suggested by Nash), which led

to the birth of evolutionary game theory.
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1.4 Evolutionary game theory to model behavioural

evolution

In 1973 J. Maynard-Smith and G.R. Price published a

Figure 1.10: John May-
nard Smith.

paper in which they reinterpreted the payoffs of the game

as fitness changes of the individuals, and thus in their re-

productive capacity. The static view of game theory was

transformed into a dynamic framework, and the Nash equi-

librium concept was changed for that of evolutionary sta-

bility, to refer to those populations which, once established,

cannot be invaded by just a few mutant individuals [15,16].

In this way, the branch of biology called evolutionary game

theory was born.

In the following years the replicator equation (see ap-

pendixes 1.B and 1.5.1),
dxi

dt
= xi(fi − f̄), (1.3)

became the main tool for analysing the dynamics resulting from the evolutionary pro-

cesses [17, 18]. In this equation xi is the fraction of individuals following strategy i, fi

is their fitness and f̄ the mean population fitness. This equation, which reduces to the

Price equation under some assumption [19,20], describes the frequency-dependent dy-

namics of infinite –or very big– populations of replicating individuals, i.e. the dynamics

in a fitness landscape which depends on the population composition. On its mutation

regarding version, the so called replicator-mutator equation has been proposed as a dy-

namical equation describing the entire evolutionary process of reproduction, mutation

and selection.

In the last two decades the evolutionary game theoretical framework has expanded

to cover a much broader range of situations. In addition to the study of evolution in

nature, culture and society have been regarded from an evolutionary perspective. In

cultural evolution and social learning contexts, strategies are no longer linked to genes,

and the reproduction and death process are reinterpreted as a change of strategy during

the lifetime of the individual. Furthermore, new microscopic update rules have been
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introduced to represent specific learning methods and reproduction-death processes,

broadening the range of applications to include sociological and psychological research.

1.4.1 Evolutionary game theory vs. inclusive fitness theory

The debate on the most fundamental approach to formulate mathematical models

of evolution has been a hot topic during the last two years [21–37]. In the beginning,

inclusive fitness theory was mostly supported by biologists, while evolutionary game

theory was supported by mathematicians and scientists coming from other disciplines.

However, in the last years both theories have gained adepts from any discipline.

Although recent studies show that both disciplines provide the same results [38] in

many cases, it has been recently suggested [20,37] that they are fundamentally different.

One of the main differences is that the Price equation is not dynamically sufficient in

some situations, i.e. cannot be used to predict all variables in future temporal steps

knowing their previous values, which suggests that the evolutionary game theoretical

framework might be more appropriate whenever we want to describe the dynamics

of the system and calculate associated quantities, as fixation probabilities or invasion

times. For this reason, an evolutionary game theoretical framework will be assumed in

the present work.

1.5 The evolution of altruism, an evolutionary game

theoretical viewpoint

The study of the evolution of cooperation has focused almost exclusively in the

problem of altruism (cooperation, C) versus free-riding –I present another example

in chapter 2 and study it in successive chapters–. Altruists (cooperators, C) are in-

dividuals who pay a cost c to give a benefit b to other individuals, cost and benefit

measured as fitness (i.e. growth rates). Free-riders (defectors, D) are those who enjoy

the benefits but do not pay any cost, thus getting higher net benefits and spreading

their behavioural trait in the population, eventually leading altruists to extinction.

If interactions between altruists and free riders are dyadic, i.e. happen in pairs,
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their result might be summarised in the following payoff matrix

(a) C D

C (altruist) R = b− c S = −c

D (free-rider) T = b P = 0

(1.4)

which determines a prisoner’s dilemma (defined below, see also appendix 1.A for its

original setting) whenever the benefit provided by altruists is bigger than the cost of

the altruistic act, b > c. In a prisoner’s dilemma it is always better to defect (D) than

to cooperate (C) from a fitness self-maximising point of view. This happens because,

if the co-player is a cooperator, by defecting one gets T = b, higher than R = b − c

by cooperating; if the co-player is a defector, then cooperating yields S = −c, while

defecting yields P = 0. Thus, regardless of the co-player being a cooperator or a

defector, defecting (free-riding) increases fitness in a quantity c (equal to the cost paid)

over cooperating (behaving altruistically).

In general, a prisoner’s dilemma (PD) is defined by the payoff structure T > R >

P > S, which ensures that defecting results in a higher benefit than cooperating if

the interaction partner is a cooperator (T > R) or a defector (P > S), although both

individuals fare better if they cooperate than if none does (R > P ). This situation,

in an evolutionary context, represents an example of the tragedy of the commons

[39], where selfish individuals maximising their instantaneous fitness spread in the

population, leading ultimately to populations of minimum fitness (P = 0 in the altruist

vs. free-rider case), while the spread of altruism would lead to populations with a higher

fitness (R = b− c) where everyone enjoyed the benefits of the altruistic acts.

The public goods (PG) game is introduced to model situations in which interactions

happen in groups. In this case, altruistic individuals are assumed to pay a cost c in order

to yield a benefit b = rc, which is redistributed within the entire group. Whenever the

interaction group size n is bigger than the amplification factor, n > r > 1, this situation

represents again a tragedy of the commons, as individuals avoiding to pay costs receive

higher benefits than those paying it, and evolution leads to none cooperating, and to

mean interaction benefits equal to zero.
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1.5.1 Dynamical outcomes of the replicator dynamics for two-
strategy symmetric games

The prisoner’s dilemma (PD) is one of the four possible two-player, two-strategy

symmetric games. In the PD the payoff ordering is T > R > P > S (see equation (1.4)).

As it has been discussed, this makes defection more beneficial from a self-maximising

point of view in any interaction. The other three games are the snowdrift (SD) game,

corresponding to T > R > S > P , the stag-hunt (SH) game, corresponding to R >

T > P > S, and the harmony game (HG), where R > T > S > P . In the following, I

make use of the replicator equation (1.3) to show the dynamical outcomes of the four

games, and how the PD represents the most difficult case for the evolution of altruism

in large, well-mixed populations (mean field limit in which every individual interacts

with any other with equal probability).

The replicator equation (1.3) depends on the difference between the mean payoff

of the strategy and the mean population payoff. Therefore, as shown in appendix 1.B,

the addition of a constant to any column of the payoff matrix leaves the dynamics

invariant. The payoff matrix for two strategies may thus be written (subtracting the

diagonal term in each column) as

A B

A 0 a

B b 0

(1.5)

where a = S − P and b = T −R in the terminology of equation (1.4).

Since the fractions of strategies add up to one, xa + xb = 1, the entire dynamics

may be expressed with just one differential equation, let us say that for x ≡ xa:

dx

dt
= ẋ = x(1− x)[a− (a+ b)x] (1.6)

In this case factor a corresponds to the per-capita growth rate of strategy A when rare,

i.e.

a = lim
x→0

ẋ

x
=

dẋ

dx

∣∣∣∣
x=0

(1.7)

It can be proven in a similar way that b is the per-capita growth of strategy B when

rare in the population.
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Generally, there will be three solutions for equation (1.6) with parameters a, b ̸= 0.

Two of them represent always valid solutions, i.e. x = 0 and x = 1. The third one

x∗ =
a

a+ b
(1.8)

represents a real solution only when it takes values x∗ ∈ [0, 1], and it may be a stable

or unstable fixed point.

The outcomes of the dynamics are summarised as:

i. Neutral stability. If a = b = 0 every point in [0, 1] is a rest point. In this case there

is no evolution and the fraction of individuals x remains constant in time.

xxxxxxxxxxxxxxxxxxxxx
ii. Dominance of one strategy. If ab ≤ 0 and at least one of the factors a and b is

not 0, then x∗ /∈ (0, 1), and the dynamics will lead either to x = 0 or to x = 1

depending on the sign of ẋ. This is what happens in prisoner’s dilemmas (PD,

defection dominates) and harmony games (HG, cooperation dominates).

h - x
iii. Bistability. If ab > 0 and a, b < 0 then x∗ is an unstable rest point and the

dynamics will lead either to x = 0 or to x = 1 if the initial fraction of individuals

is below or above x∗ respectively. This is what happens in stag hunt (SH) games.

x � h - x
iv. Coexistence. If ab > 0 and a, b > 0 then x∗ is a stable attractor, and whenever

the initial composition contains a mixture of individuals, the dynamics will lead

to stable coexistence of strategies in proportions x∗ for A and 1− x∗ for B. This is

what happens in snowdrift (SD) games.

h - x � h
Thus, in this case in which the replicator dynamics represent the evolution of the

system (it happens the same for most dynamics in the mean field limit), the PD –and
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the PG as its n-players generalisation– is the most difficult case for the evolution of

altruism, as the evolutionary outcome is dominance of defection.

1.6 Mechanisms for the evolution of altruism

The study of the prisoner’s dilemma and the public goods game has led to the

discovery of a set of mechanisms allowing for the survival and expansion of altruism,

which might be classified in two groups: structural and behavioural mechanisms.

Structural mechanisms imply the existence of some factor which does not depend

directly on the behaviour of the individuals, as

� kin selection [11, 12, 40], which allows for the evolution of cooperation whenever

altruistic behaviours are linked to genes, as explained in previous sections.

� network structures, as space or interaction networks, which depending on the

properties of the network may allow for the evolution of cooperation both for

prisoner’s dilemmas [41,42] and public goods games [43].

� multilevel or group selection [44,45], which happens whenever there are groups of

individuals, and the individuals interact according to a prisoner’s dilemma only

with individuals of their group, and there is also competition between groups. In

some situations this allows for cooperation to thrive [44].

� green beards, which happens when the altruistic behaviour is genetically coded

and preferentially directed towards individuals carrying the altruistic trait [46,47].

� linking payoffs to ecological variables, which has been proven to allow for the

evolution of cooperation in the competition for oviposition sites in insects [48].

Behavioural mechanisms imply the addition of new behavioural types, which may

require the use of higher cognitive abilities, as memory or recognition capacity. Be-

havioural mechanisms found to promote altruism in a well-mixed prisoner’s dilemma,

where every individual interacts with any other, include

� reciprocity –direct [49] and indirect [50]–, where individuals choose to cooperate

or not according to some previous information about the co-player, as for instance

14



if he cooperated with you previously (direct reciprocity [49]), or if he cooperated

previously with others (indirect reciprocity [50]). The most famous example of a

behaviour that allows for the evolution of altruism through direct reciprocity is

Tit For Tat, a strategy which cooperates the first time it interacts with someone,

and then it simply imitates the behaviour displayed by the co-player in their last

interaction together. This very simple behaviour turned out to be the surprising

winner of a series of computer tournaments [49], showing that one time step

memory is enough to promote cooperation whenever the game is an iterated

prisoner’s dilemma, i.e. played repeatedly between the same two players for

many rounds.

� punishment and reward [51–59], when altruistic individuals may choose to pay

some extra cost in order to punish (impose a cost on) a free-rider partner with

whom they interacted, or to reward other altruistic individuals. Although the

relative importance of both mechanisms is debated, it is generally accepted that

they are able to increase cooperation levels.

� similarity donation, which happens whenever individuals choose to cooperate if

they find a certain level of similarity between them and their interaction partners

[60–62]. This mechanism is similar to a non-genetically determined green beard,

explained above.

In addition to reward and punishment, behavioural mechanisms promoting cooperation

in the public goods game include

� loner strategies, which do not to play the public goods game and get some benefit

on their own [63]. The inclusion of loners in addition to cooperators and defectors

allows for neutrally stable cycles in the absence of mutations, and for stable coex-

istence with cooperative and defective individuals whenever mutations between

strategies happen.

All previous mechanisms enable the evolution of altruism, either promoting the in-

vasion of the entire population by altruistic individuals, or allowing for their survival

in a coexistence state with free-riders. However, for a well-mixed prisoner’s dilemma
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or public goods game –where every individual interacts with any other individual with

equal probability– without repeated interactions, and in the absence of higher cognitive

abilities, cooperation cannot evolve. Being this case the most restrictive for cooper-

ative behaviours to evolve (see appendix 1.5.1), I will use it in order to, first, prove

that resource constraints may allow for the evolution of cooperation in a prisoner’s

dilemma (chapters 3, 4 and 5), and second, prove that destructive behaviours allow for

evolutionary cycles in a public goods game (chapters 6 and 7). Before that, however,

I will discuss in chapter 2 the concepts of altruism and cooperation, and prove that

the interactions of parasites and free-riders also determine a prisoner’s dilemma, not

explicitly studied in the game theoretical literature. This case, which is more appropri-

ate for the representation of resources use and exchange, as it allows for a conservation

law, will be the one studied in subsequent chapters.
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Appendices

1.A The prisoner’s dilemma

The PD is named after the dilemma in which two prisoners are asked to incriminate

the other as participant in a robbery. If both individuals do, each one is charged

with 5 years of imprisonment. If only one of them incriminates the other, they are

charged respectively with 0 and 7 years imprisonment. If none of them denounces

the other, both are charged with 1 year imprisonment. Thus, it is better for them

if none incriminates the other, and both get free after one year, than if both testify

against the other. However, rational behaviour leads to mutual defection, as from a

self-maximising point of view, it is always better to incriminate: if the other one does

not, incriminating is worth freedom, if the other does, incriminating reduces in two

years the time in prison.

1.B Extinction of cooperation in prisoner’s dilem-

mas and invariance of the dynamics

If the dynamics favour the increase of the proportion of individuals with higher

payoff and there are only two types of individuals in the population, cooperators and

defectors, then cooperators will extinguish. If the proportion of individuals are xC and

xD for cooperators and defectors respectively, then the average payoffs obtained by each

strategy after many interactions in a well-mixed population (where every individual

interacts with any other individual with equal probability) according to matrix (1.4)

are

πC = RxC + SxD

πD = TxC + PxD

(1.9)
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as for the PD one has T > R and P > S, then the mean payoff of defectors is higher

than that for cooperators, and evolution leads the cooperative strategy to extinction.

Note that if the evolutionary dynamics depend on payoff differences between strate-

gies, or between strategies and mean population payoff, as for the replicator equa-

tion (1.3), the dynamics is invariant under the addition of a constant to any column

in the payoff matrix. Let us prove it for the general case of N different strategies.

For payoff differences between two strategies, writing Mij for the element in row i,

column j of the payoff matrix, i.e. the payoff of strategy i interacting with j)

πi − πj =
N∑
k=1

xkMik −
N∑
k=1

xkMjk =
N∑
k=1

xk(Mik −Mjk) (1.10)

and as the difference in the last term is for payoffs in the same column, i.e. column k,

the addition of any constant to the entire column leaves the result invariant.

For dynamics ruled by the difference of strategies payoff and the mean population

payoff,

πi − π =
N∑
k=1

xkMik −
N∑
j=1

xj(
N∑
k=1

xkMjk) (1.11)

then, if one adds a constant t to all payoffs in column m, one gets an extra term xmt

from the first summation, and −
∑N

j=1 xj(xmt) = −xmt from the second one; both

vanish as they have different sign.
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Chapter 2

The tower of Babel of cooperation

Summary

The evolution of altruism, where individuals incur costs to provide benefits to oth-

ers, represents a dilemmatic situation, as behaviours that enjoy the benefits without

paying costs are promoted by natural selection. Many recent studies have focused on

this problem. However, its behavioural roots are sometimes missing, and contribute

to misunderstandings in the use of concepts such as altruism and cooperation [64–73].

Although altruism is a form of cooperation, there exist other cooperative behaviours.

I start this chapter providing a relative definition of such and related concepts.

Then, I show that pairwise interactions and additive fitness resulting from individ-

ual behaviours determine always Prisoner’s Dilemma’s (PD’s) and Harmony games,

property which –to my knowledge– has not been previously pointed out, and which

allows for an easy understanding of situations in which interactions determine PD’s,

which has been recently questioned given the difficulties to measure payoffs experimen-

tally [74–77].

To finish, I show that in addition to the altruists vs. free-riders setting, the combi-

nation of free-riders and parasites determines a fundamentally different PD, included

in the general framework of the relative definition. I show using numerical simulations

that the combination of parasites, free-riders and altruists, enables coexistence of the

three strategies whenever mutations occur, which may help understand the infrequent

punishment directed towards free-riding non-aggressive individuals observed in nature

and society.
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2.1 Introduction

The most widely studied case of the evolution of cooperation stands for altruism

[11, 12]. An act is said to be altruistic if it confers a benefit ba to a partner at a

cost ca to oneself. The interactions between altruists and passive individuals, that

receive the benefits of the altruistic acts but do not pay any cost nor confer benefits to

others, determine a prisoner’s dilemma (PD) whenever the provided benefits are higher

than the costs ba > ca > 0. Such neutral or passive individuals, called free-riders as

they receive the benefits at no personal cost, are expected to increase in number until

altruism extinguishes (see section 1.5). The study of the free-riding problem has been

a major task in the last decade, leading to the discovery of some mechanisms allowing

for the evolution of altruism, as those in section 1.6.

However, the development of our knowledge carried attached some problems, as

the controversy on the definition and use of altruism, cooperation and related con-

cepts [64–73], which have been mixed and occasionally used without distinction. Ac-

cording to the classic definitions, altruistic behaviours are always cooperative, but

not all cooperative behaviours are altruistic, although some recent redefinitions of the

concepts map the entire range of cooperative behaviours within weak or strong altru-

ism [73]. In order to clarify this issue, at the beginning of the present chapter I provide

a classification of concepts based on relative definitions of selfishness and cooperative-

ness, which comprises previous ones found on the literature, and intends to flatten the

path towards a unified semantic framework. These definitions will be adopted in the

rest of the present work.

Then, in section 2.3 I analyse the range of application and behavioural roots that

lead to PD’s. The usefulness of the PD has been recently questioned. The difficulty to

measure payoffs in nature [74–77] did not allow for a clear assessment of whether some

situations are PD’s or snowdrift games. I prove that, whenever interactions are carried

out by one individual, received by another, and if payoffs are additive, only PD’s and

harmony games emerge, from which the PD is the most difficult case for the evolution

of altruism. I further illustrate the necessity of identifying the behavioural roots that

lead to PD’s by showing that two altruists interacting together may determine one, in
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which both are cooperative individuals, but differing in their level of cooperativeness

and selfishness.

After that, I show that in addition to the case of altruists vs. free-riders, interactions

between parasites, who pay a cost cp to parasitise a benefit bp from the co-player, and

free-riders (passive individuals receiving the actions of the co-player) also determine

a PD, both PD’s belonging to different categories of the tragedy of the commons

[66]: the first case (altruism), to social goods formed by cooperation; the second case

(parasitism), to social goods formed by restraining from conflict. I also discuss the

usefulness of some of the mechanisms for the evolution of altruism in the free-rider vs.

parasite case.

To finish, I define a generalised PD where neutral individuals define the null point

of the reference system, altruists increase the mean population fitness, and parasites

reduce it. I show that whenever the three strategies are mixed, mutations enable

coexistence of the three strategies, which does not happen whenever only two of the

strategies are present in the population. Thus, the combination of altruists and free-

riders allows for their survival in the presence of parasites, and provides an intuitive

explanation for two important questions related to the evolution of cooperation. First,

the observation that animals punish much more often thieves than lazy individuals [78].

Second, the emergence and survival of cooperation in strictly defective populations, as

those composed of parasites.

2.2 A relative definition of cooperative behaviours,

a general definition of cooperation

The concept of cooperation, rather than a fixed concept that allows for a clear

definition of what cooperative individuals are, is a contextual dependent concept, as

strategies can be defined as cooperative or not only in relation to other strategies in-

volved in the evolutionary process [79,80] (see sections 2.3 and 2.B). This suggests that,

instead of trying to define strategies as cooperative or defective, a gradual definition

for cooperation might be established according to the following two principles:

� A strategy A is more cooperative than another one B whenever it is more beneficial
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to interact with A than with B from a receiver’s point of view.

� A cooperative act does not reduce the fitness of the recipient of the act.

Note that this is a relative definition for a cooperative behaviour or act, as it is

based on the perception of benefits of one individual when interacting with others, and

that this definition is completely consistent with the general definition of cooperation,

which might be stated as the non-forced act of working together for a common purpose

or benefit ; if two individuals that are regarded as cooperative interact together, it

defines a cooperative act.

Note also that this defines cooperation in the short-term, i.e. interaction after

interaction, as well as in the medium term (a certain number of interactions) and

in the long term (lifetime consequences of the behaviour [67]), but that such time

frame should always be specified [72,78], as past semantic misunderstandings originated

on the confusion of acts (short term) and lifetime behaviour, as illustrated by the

discussion on the so called reciprocal altruism [81]. According to the definitions above,

some acts that might be seen as altruistic may turn to be mutually beneficial in the

long term, as it happens for behaviours that reciprocate altruistic acts; they might

be called mutually beneficial (selfish and cooperative) in the long term, but altruistic

(non-selfish and cooperative) in the short, whenever individuals cannot predict the

outcome of the next interaction. Note however that independently of the time frame,

both are cooperative acts.

The second requirement states that the benefits of cooperation must be at least

the absence of fitness losses due to aggressions, and from this ground, any positive

benefit, as those created by altruists; a slightly more stringent definition requires pos-

itive effects (even if infinitesimal) on the partner [70]. However, the definition given

above accounts for peace as a social good [66], and thus conflict-avoiding, pacific and

pacifist behaviours as cooperative. Note that, although when compared with altruism,

free-riding strategies (neutral individuals) are regarded as defective, the cost paid by

altruists is not a consequence of the free-riding strategy, but of the altruistic behaviour

itself; furthermore, as I will show (section 2.6), in a context in which there exist ag-

gressive, parasitic strategies, the existence of free-riders and altruists allows for their

survival, preventing the sure extinction of any of those strategies when interacting
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Figure 2.1: Classification of strategies in the case of direct interactions as a function of
the direct fitness effect of the action on the actor itself and on the recipient. The arrow
on the right shows the increase in cooperativeness; increase in selfishness shown by the
lower arrow. According to the definition, only non-damaging strategies (upper quad-
rants including the x-axis) should be called cooperative, while only strategies increasing
their own fitness should be called selfish. Neutral individuals (free-riders) determine the
null point, altruism is non-selfish cooperation, mutualism is selfish cooperation, spite
is non-selfish and damaging, and parasites are selfish non-cooperative individuals. The
combination of any two of these strategies determines either a Prisoner’s Dilemma or
a Harmony Game.

with parasites in well-mixed populations, i.e. in the mean field limit in which every

individual interacts with any other with equal probability.

If one assumes a relative definition for the concept of selfishness, calling a strategy

more selfish than another if it is more costly or less beneficial for the actor, and truly

selfish if it provides positive benefits to the actor, a complete classification of strategies

can be done, including cooperative behaviours in which the cooperator gets a self-

benefit for cooperating, e.g. behaviours determining snowdrift games, which might be

regarded as selfish cooperation (figure 2.1). In this way, ’cooperativeness’ (’relative

selfishness’) refers to fitness variations in co-player (oneself), requiring for absolute
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cooperation (selfishness) such effects to be non-negative (positive) when compared to

the neutral case, i.e. the null point of the reference system (figure 2.1). I show in the

following two sections that the entire ladder of cooperation due to direct interactions,

with its lower level being parasitism and its higher altruism, may be illustrated with

the well known Prisoner’s Dilemma. The problem on how to choose the null point of

such reference system (figure 2.1) is discussed in section 2.7.

2.3 The prisoner’s dilemma, a controversial exam-

ple

The PD game has been widely used as a mathematical metaphor representing the

problem of the evolution of altruism and cooperation during the last 20 years. However,

its study by theoretical scientists has been surrounded by controversy since the very

beginning, as some scientists claim that other games, as the snowdrift, in which coexis-

tence is the evolutionary outcome (see appendix 1.5.1), are more suitable to represent

real interactions. The controversy has not been solved, as difficulties arise when trying

to measure payoffs in nature, which usually does not allow to assess if the payoff order-

ing is that of a PD or of a snowdrift [74–77]. I show in sec.2.3.1 below a special feature

that allows for a clarification of this problem in some contexts: If individual behaviours

produce a fixed fitness variation on the actor, a fixed fitness variation on the receiver

of the act, and fitness is additive, only PD structures or harmony games emerge, being

cooperation the nontrivial solution only for the PD. However, I also show a limitation

of the PD: the widely spread belief that any PD structure of the interactions involves

altruists and non-altruists is wrong. As I show in sec.2.3.2, two altruists interacting

together may also define a PD, in which they differ in their cooperativeness degree.

2.3.1 Direct interactions and additive payoffs lead either to
prisoner’s dilemmas or to harmony games

Suppose that in a habitat there are two interacting species, or in a population two

different behavioural types; let’s call them A and B. Suppose also that during any

interaction individual A produces a fitness change As on itself and Ar on the recipient,

and B produces Bs and Br on itself and on the co-player respectively. The interaction
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matrix is

A B

A R = As + Ar S = As +Br

B T = Bs + Ar P = Bs +Br

(2.1)

Let us assume in the following that individual A is the cooperative individual, and

B the non-cooperative one, also called defector. Then, the first requirement in the

definition of cooperative behaviours (see section 2.2) –it is better to interact with the

more cooperative individual– turns into T,R > P, S, and the second requirement –

absolute cooperative individuals do not reduce the recipient’s fitness– into Ar ≥ 0.

Defining ∆s = As − Bs (relative selfishness degree of A), and ∆r = Ar − Br (relative

cooperativeness degree of A), the two requirements for the definition of a behaviour as

cooperative reduce to

∆r > Abs(∆s)

Ar ≥ 0.
(2.2)

The first of equations (2.2) implies that, for individual A to be a relative cooperator

and B a relative non-cooperator, the relative cooperativeness degree of A must be bigger

than its relative selfishness degree. The second equation requires the action of A on

B to have neutral or positive effects in order to call A an absolute cooperator. As

we will see below in section 2.3, A being an absolute cooperator does not imply that

B is necessarily a non-cooperator; they may perfectly be both absolute cooperators,

and still determine a PD, as I show in section 2.3.2. For that reason, in the following

cooperative and defective individuals should be interpreted according to the relative

scale defined by equations (2.2).

There are four possible games that are consistent with equations (2.2) (see ap-

pendix 1.5.1), and thus one of the interacting individuals is regarded as more cooper-

ative than the other:

Game Payoff ordering → requirement

Prisoner’s Dilemma (PD) T ≥ R > P ≥ S → ∆s ≤ 0

Harmony Game (HG) R ≥ T > S ≥ P → ∆s ≥ 0

Snow Drift (SD) T ≥ R > S ≥ P → ∆s = 0

Stag Hunt (SH) R ≥ T > P ≥ S → ∆s = 0

(2.3)
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For a PD, being A the cooperative individual, the relative selfishness degree of A

is positive. This means that it is better to be a non-cooperator than a cooperator, as

∆s ≤ 0 → As ≤ Bs implies that changing strategy from A to B in any interaction

increases ones own payoff in a quantity ∆s, while getting the same payoff from the co-

player. In this case, Darwinian payoff self-maximisation promotes the increase of the

relative non-cooperative individuals, which have a higher payoff, leading to populations

where everyone earns a payoff P, though populations of relative cooperative individuals

do have a higher mean payoff, as R > P . Note that whenever P = 0 we face the so

called tragedy of the commons [39], i.e. the exhaustion of common goods due to

selfishness.

If one imposes the payoff ordering for a Harmony Game, then ∆s ≥ 0, i.e. As ≥ Bs.

In this case cooperative individuals (A) are more selfish, getting the higher self-payoff,

and any defector increases its own payoff in a quantity ∆s in any interaction by changing

to cooperate. Cooperators are thus favoured by natural selection and their evolution

does not represent a dilemma, as self-maximisation of payoffs equals mean population-

payoff maximisation.

For the snow drift (SD) and the stag hunt (SH) games, the payoff ordering imposes

As = Bs, which means that, if payoffs are assumed to be additive and interactions

direct, both dilemmas only exist at the boundary between PD and HG regions, and

might be seen as limit cases of them. It is not possible to have a SD or SH with

fixed additive fitness variations due to direct interactions; only PD and HG structures

emerge in this case, i.e. all possible combinations of behaviours present in figure 2.1

give rise to PD’s or HG’s.

2.3.2 Cooperative and defective altruists in a PD

The payoff ordering in equation (2.3) implies that whenever there are two altruistic

behaviours interacting together, i.e. As = −ca, Ar = ba, Bs = −cb, Br = bb, and both

behaviours fulfil a PD, i.e. ca ≥ cb, ba ≥ bb + ca − cb, then A is regarded as cooperator

and B as defector. This has led to the false and widely spread belief that PD structures

always include absolute cooperative and non-cooperative individuals, as an altruist and

a non-altruist. However, according to the definition of cooperation given in section 2.2
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and formalised in equation (2.2), altruistic behaviours are always absolute cooperative

behaviours when compared to neutral individuals defining the origin of the reference

system (see figure 2.1, although one of them is more cooperative and less selfish than

the other. It seems thus necessary to address the behavioural roots that lead to PD.

In the next section I show that, whenever one of the individuals is a neutral one, two

different PD’s arise, one in which the cooperator increases the social goods above zero,

another one in which the defector decreases them below zero.

2.4 Two prisoner’s dilemmas: Altruists, free-riders

and parasites.

The PD may represent two different situations, one related to social goods formed

by cooperation, another to social goods created by refraining from conflict [66]. One

may prove this using a free-rider (passive, neutral individual) to define the null point

of the reference system (figure 2.1); then, altruists that pay a cost ca to give a benefit

ba > ca to the co-player are more cooperative and less selfish, creating social goods

that increase the mean population fitness at a cost to themselves, while if compared to

parasites that pay a cost cp to parasitise a fitness amount bp from the co-player, free-

riders are cooperative individuals (relative and absolute). In this case the social good

is the non-competitive environment created by free-riders, while parasites decrease the

mean population fitness. In short:

Altruists: Pay ca, give ba to the co-player.

Free-riders: Receive the action of the co-player.

Parasites: Pay cp, parasitise bp from the co-player.

(2.4)

The interaction matrices determined by altruists and free-riders, and by free-riders

and parasites

(a) C D

C (altruist) ba − ca −ca

D (free-rider) ba 0

(b) C D

C (free-rider) 0 −bp

D (parasite) bp − cp −cp

(2.5)

determine a PD according to equation (2.3) whenever

bi > ci > 0 (2.6)
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Although in recent years some evolutionary game theorists have carried out work on

the study of cooperation using generic payoffs T,R, P, S, most work on the evolution

of altruism has focused on the study of altruists vs. free-riders. Specifically, most

mechanisms found for the evolution of cooperation refer to the evolution of altruism.

Thus, we may ask ourselves if this rules work in the free-rider vs. parasite case.

2.4.1 Mechanisms promoting cooperation in the free-rider vs.
parasite case

Some of the mechanisms for the evolution of altruism in populations of altruists

and free-riders require [65]

q > ca/ba (2.7)

where q is a constant related to the mechanism. For direct reciprocity q is the prob-

ability of playing a next round with the same player, for indirect reciprocity it is the

probability of knowing the reputation of the other individual, and for kin selection

q = r is the genetic relatedness.

The previous rule (equation (2.7)) makes cooperation –at least– evolutionary stable

[65,82], i.e. altruists resist invasion attempts by free-riders, but, do the mechanisms for

the evolution of altruism work for the evolution of non-aggressive societies (i.e. the free-

rider vs parasite case)? In order to answer to this question, note that, if the evolutionary

dynamics of the two cases are identical for some parameters combination, the result

must be the same. In appendix 2.A I address this question for the case in which the

evolutionary dynamics depends either on the difference between individual payoffs, or

between individual and mean population payoffs. I find equations (2.17), which applied

to the altruist vs. free-rider and free-rider vs. parasite cases (equations (2.5)) results

in

ba = bp (2.8)

k = ∆ba = cp. (2.9)

Using the previous equations, we may write equation (2.7) in terms of the parameters

referring to the parasite vs. free-rider case. Then, the mechanisms for the evolution of
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non-aggressive free-riding societies require

q > 1− cp/bp. (2.10)

Thus, cooperation is enhanced whenever the costs for defecting increase or its benefits

decrease.

Mechanisms for the evolution of cooperation based on structural properties –group

selection, kin selection, network reciprocity– work for the free-rider–parasite dilemma

without modification. However, some of the mechanisms for the promotion of altruism

require conditional behaviours, i.e. altruists may decide not to pay the cost in relation

to some previous information about the co-player, and thus yield no benefit to the

free-riders. For these mechanisms to work in the ”non-aggressions dilemma”, when the

active individual paying the cost is the parasite, free-riders would need the development

of either some defence ability to stop the losses (at least partially), or some ability to

act as a parasite when interacting with such individuals. This would increase the

assortment between free-riders [14, 83, 84], giving them the opportunity to enjoy a

non-competitive environment, and reject parasites in it. It seems thus plausible that

punishment directed towards parasites evolved in nature parallel to emerging conflict-

avoiding animal groups or societies, in order to ensure such free-riders assortment,

which matches the observations in nature of punishment of thieves (parasites), and the

few punishment observed directed towards lazy but non-aggressive individuals [78].

Note to finish that equation (2.9) requires k to equal the synergistic benefit ∆Bs

produced by the altruistic action, and the cost of the selfish act. This excludes the

possibility of having the same situation in the altruist and parasite cases if k = 0, as ac-

cording to equation (2.6) cp > 0. Thus, even if we can compare both situations and the

dynamics might be identical, they are fundamentally different, one representing social

goods formed by restraining from conflict, i.e. not decreasing others individuals fitness

(free-riders vs. parasite), and the second representing goods formed by cooperation

(altruist vs. free-riders), which increase the mean population fitness.

Furthermore, every time altruists interact, they produce a benefit which is bigger

than the cost paid, i.e. create a positive synergistic benefit. However, two parasites in-

teracting together create a net cost, i.e. a negative synergy. In order to have the same
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evolutionary dynamics in both cases, the negative synergistic effect has to be com-

pensated with a higher baseline fitness (equation (2.9)). This suggests that, although

in a PD cooperators always do worst than defectors, populations of altruists (active

cooperators), might have some advantage over parasites (active defectors) due to the

fact that the first create positive synergistic effects while parasites create a negative

synergy.

As I show in the next section, in well-mixed populations of altruists, free-riders, and

parasites, the combination between the first two allows for their survival in higher levels

than predicted by the mutation terms, providing a first step towards the emergence of

cooperation.

2.5 Generalised prisoner’s dilemma

The altruist and parasite strategies are defined in reference to a passive or neutral

one, called free-rider. The generalised PD matrix including interactions between the

three strategies is in this case

Altruist Neutral Parasite

Altruist ba − ca −ca −bp − ca

Neutral ba 0 −bp

Parasite ba + bp − cp bp − cp −cp

(2.11)

Note that any two strategies in this matrix determines a PD if bi > ci > 0 (for altruists

vs. parasites this condition may be relaxed).

2.6 Altruist–free-riding assortment to survive par-

asitism

In any mixed population of two strategies determining a PD, defectors perform

better than cooperators, i.e. have higher fitness, and thus the final population will

consist only of defective individuals. Let us see what happens when the three strategies

are mixed in the population. For this purpose I will assume that the replicator dynamics

hold, i.e. the variation of xi, the fraction of i individuals in the population, follows the

30



equation,
dxi

dt
= xi(fi − f) (2.12)

where fi is the payoff of strategy i and f is the mean population payoff.

The payoffs for altruists, free-riders (neutral individuals) and parasites in a well-

mixed population with proportions of individuals xi, i = a, n or p, are

fa = 1− s+ s[xaba − xpbp − ca]

fn = 1− s+ s[xaba − xpbp]

fp = 1− s+ s[xa(ba + bp) + xnbp − cp].

(2.13)

where the selection strength s accounts for the relative effect of the interactions on the

fitness of individuals (for s = 0 the game is irrelevant; for s = 1 the game determines

the entire fitness).

As xa + xn + xp = 1, we can describe the system dynamics with two replicator

equations. We will use those for altruists and parasites. The replicator equations are

dxa

dt
= sxa[(baxa − cp)xp − (1− xa)ca],

dxp

dt
= sxp[xa(ca + ba(xp − 1)) + cp(xp − 1)− bp(xa + xp − 1)],

(2.14)

and the rest points (xa, xp) for such dynamics are (0,0), (0,1), (1,0), corresponding to

homogeneous populations of one of the strategies. However, as it can be observed in

figure 2.2, the dynamics leads to populations of parasites whenever the initial conditions

include individuals of all types.

The situation changes drastically if mutations appear. In this case, if the cost

associated with altruism is not too big, and the one associated with parasitism is big,

the dynamics leads to coexistence of the three strategies, with fractions of altruists,

free-riders and parasites approaching 1/3 for high mutation rates (figure 2.3(c)) or

extreme costs (ba ≫ ca, bp ≈ cp, figure 2.3(f)).

One observes that decreasing altruists costs increases slightly the fraction of altruists

and appreciably that of parasites (figures2.3(b),(d)), while increasing costs for parasites

increases the fraction of altruists and free-riders in the population (figures2.3(b),(e)),

and thus the mean cooperative level. Decreasing altruists costs and increasing costs of

parasites increases greatly the levels of cooperative strategies (free-riders and altruists)

in the population (figures2.3(b),(f)).
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A

N P

Figure 2.2: Replicator dynamics in well-mixed populations (mean field limit) of altruists
(A), free-riders (N) and parasites (P) without mutations. The simplex represents the
fractions of individuals in the population; it shows the xa+xn+xp = 1 plane in the three
dimensional space determined by the fractions of strategies: The corners represent ho-
mogeneous populations of the corresponding individual while any other point represents
mixed states. Colours correspond to different speeds dxi/dt: red for the fastest, blue for
the slowest. The evolutionary dynamics leads to homogeneous populations of parasites,
the dominant strategy, where the fitness of any individual is −cp < 0. This represents
the worst tragedy of the commons, as homogeneous populations of free-riders possess
null fitness, and populations of altruists have ba − ca > 0 (note that these quantities
might be seen as variations on a baseline fitness). Parameters: Altruist and parasite
benefits ba = bp = 2 and costs ca = cp = 1; selection strength s = 1. Images obtained
using a modified version of the Dynamo Package [85].
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Figure 2.3: Replicator dynamics in well-mixed populations of altruists (A), free-riders
(N) and parasites (P) with mutations. Unexpectedly, altruist and free-rider individuals
survive in higher proportions than expected by the mutation rate. Increasing the muta-
tion rate increases the fractions of altruists and free-riders in the fixed point, as shown
in (a)-(c). Decreasing altruists costs and increasing parasites costs favours altruism,
as shown in (d)-(f), which have equal mutation rate as (a). Parameters: ba = bp = 2,
s = 1/(1 + ca + bp), which ensures non-negative payoffs, (a)-(c) ca = cp = 1, (a)
µ = 0.05, (b) µ = 0.15, (c) µ = 0.45; (d)-(f) µ = 0.05, (d) ca = 0.05, cp = 1, (e)
ca = 1, cp = 1.95, (f) ca = 0.05, cp = 1.95.
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The coexistence found cannot be explained by the mutation term alone; the presence

of altruist and free-rider individuals allows for both of them to survive to the invasion

of parasites, which does not happen whenever any of such strategies is mixed only with

parasites. This result resembles the speciation transitions found in other models (not

PD’s), where evolution leads to coexistence of individuals differing in their cooperative

levels [86, 87]. Thus, although free-riders lead altruism to extinction, and parasites

lead free-riders to extinction, the presence of both free-riders and altruists provides

an escape from the worst of the tragedies of the commons, i.e. populations where all

individuals are parasites decreasing the fitness of any other individual, and where the

mean population fitness decreases to its minimum value below zero.

2.7 Discussion

2.7.1 Remarks on the definitions

At the beginning of the present chapter I stated a relative definition of cooperation

and selfishness, and avoided commentaries of whether cooperation is intentional or un-

intentional. The definition of cooperation in this way includes by-product mutualism;

this situation might be regarded as a case of unintentional cooperation, which some

authors have claimed to be on the limit of the scope of cooperation [67,79], and which

is important to understand the emergence of stable ecosystems and other selective

units [1] from cooperative interactions, independently of their intentionality.

As an example, an elephant excreting dung is acting beneficially for itself, and for

beetles feeding on such dung. Some authors argued that such behaviour is out of the

scope of cooperation, as the situation is a one-way byproduct benefit, and the elephant

behaviour does not deviate from the behaviour found in the absence of beetles, which in

this case represents the null point [67,72,79]. However, it is known that baby elephants

eat other elephants dung in order to obtain some bacteria that feed on it, and which

they need to digest the vegetation present in the savannahs and jungles. According

to the same reasoning, if an increase in dung leads to an increase of such bacteria,

which in turn allows elephants to produce more dung, this second situation might be

classified as cooperation.
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The provided definition explicitly states that cooperation must not be forced. Other

authors require it to be voluntary to prevent some exploitative or slaver behaviours and

acts to be regarded as cooperative, as food in exchange for work or forced starvation

otherwise, which might be found in the wrongly-classified as mutualistic interactions

between ants and aphids, where ants take care of aphids as far as they provide them

with food, but kill them otherwise. Requiring cooperation not to be forced allows for

coherence with this argument, as well as with those in the previous paragraphs for

including non-intentional behaviours.

Cooperative acts may be carried out in big groups [80], where one action has many

simultaneous recipients. According to the definition, we might talk about cooperative

acts of one individual directed to another, as it might happen that the action of an

individual has non-negative effects and negative effects on different individuals at the

same time (suppose the elephant dung falls on an ants nest and blocks the entrance).

The act would be cooperative for some (beetles, bacteria), while non-cooperative for

the rest (ants), and only classified as cooperation between bacteria and elephant.

Furthermore, even if intentionally directed towards cooperation and voluntary, co-

operative acts may fail to produce the expected benefits [64]. In this case, the long

term behaviour, influenced by the probability of success, can be used to define it as

cooperative or not. Note that with this extension of the definition, acts that cannot

reduce other individuals fitness are always regarded as cooperative, even if they always

fail to provide benefits.

2.7.2 Discussion on the null point

Along the text I have extensively used the PD to illustrate the cases of cooperation

by restraining from conflict (free-riders vs. parasitism), and that of social goods formed

by cooperation (altruism vs. free-riding). However, it is good to remark that both of

them, as well as the definition of cooperation provided at the beginning, are relative

definitions, as they refer to fitness changes in reference to a certain behaviour, which

determines the null point. In the PD examples along the text, the reference used is

a passive, neutral individual, called free-rider, as it produces no fitness variations on

others, nor on itself, but receives the actions of the co-players.
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Whenever the null point is determined by a passive behaviour, it can be easily used

as null point or reference. However, it might not be so easy to find such reference points

in other situations, specially whenever all individuals are active, e.g. individuals which

by refraining from reproduction reduce their own reproductive fitness and increase

that of others would be altruists, while those that increase their reproductive rate

and decrease the fitness of others would be parasites. However, in this case no fixed

reference point can be established, as all individuals are actively reproducing and it

might be the case that no fixed baseline fitness can be measured. In these cases the

mean population fitness value might be used as reference.

Finally, I have analysed using computer simulations the dynamics when three strate-

gies (altruists, free-riders and parasites) are present, and I have shown that coexistence

is possible in proportions beyond those predicted by the mutation rate, even when all

interactions are PD’s irrespective of the two strategies involved, one of the three strate-

gies –parasites– may be regarded as an active super defector favoured by evolution, and

no previous mechanism for cooperation is present. This shows that, whenever para-

sites are present in a population or ecosystem, the synergy between non-competitive

environment supported by free-riders and benefits provided by altruists allows for the

survival of both of them, providing for an evolutionary explanation for why individuals

in nature do not punish laziness, but they do punish parasitism: if lazy non-aggressive

individuals were not present, cooperative populations might be easily extinguished by

parasites, leading to the worst of the tragedies of the commons, while the combination

of free-riders and altruists provides a mechanism for their survival, and a first step for

the emergence and rise of altruistic, non-aggressive societies.
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Appendices

2.A Reference strategies, dynamical equality and

distinguishability

If the evolutionary rule depends on the payoff difference between strategies, as it

happens for some local rules [88, 89], or between the strategy’s payoff and the mean

population fitness, as for the replicator equation [90], the dynamics is invariant under

the addition of a constant to all payoffs (see Sec.1.B). Suppose now that there are

two different situations, one represented by payoff matrix Π, corresponding to equa-

tion (2.1), the other one by Π′. We may add a constant k to the second one, and find

the necessary conditions to have equal dynamics, i.e. find the parameters that fulfil

Π = Π′ + k. (2.15)

By doing so, one finds

∆s = ∆′
s

∆r = ∆′
r

k = Ar − A′
r + As − A′

s

(2.16)

This conditions tell us when the dynamics of the two situations are indistinguishable

given the previous assumptions, and thus cannot be used to tell the difference between

both scenarios. Note that if we are dealing with direct interactions between individuals,

which produce a fitness change in actor and recipient, and fitness is additive, then

equations (2.2), (2.3) must hold, which is consistent with equations (2.16).

Now, suppose that we are dealing with the more interesting case in which one of

the strategies is present in both situations, and might be used as reference to establish

a relative scale of cooperativeness. If this strategy is the cooperative one in both

scenarios, then the only possibility that fulfils equations (2.16) is that the defective
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strategy is also the same, and k = 0. Both situations are then not only indistinguishable

by looking to the dynamics, but the same indeed. There is a more interesting case,

however, when the strategy present in both scenarios is regarded as defective in one

case, as cooperative in the other, i.e. Bs = A′
s, Br = A′

r. In this case, this strategy

may be used as reference. Equations (2.16) reduce to

2Bs = As +B′
s

2Br = Ar +B′
r

k = ∆s +∆r > 0

(2.17)

The fact that k > 0 comes from the restrictions introduced in equation (2.3), both for

PD and HG. This has an important implication: Even if the dynamics of two situa-

tions are identical (given the assumptions above), we may always measure a baseline

fitness difference k to tell them apart. Furthermore, the equations tells us the relation-

ship between cooperativeness and selfishness degrees (∆r,∆s), and difference in mean

population fitness k.

It might not seem really surprising the fact that we can always find a difference

when the systems are not equal. However, the fact that we may quantify such difference

measuring differences in baseline fitness, and relate it to higher or lower cooperativeness

and selfishness of the interactions between the different behaviours or species, allows

us to define a relative scale for cooperation.

2.B Some definitions along the literature and com-

mentaries on them

� “The degree of co-operation observed in nature varies along a continuum, from

the one extreme of severe parasitism/virulence to the other extreme of mutual

benevolence. [. . . ] An observed level of co-operation requires evolutionary expla-

nation only in so far as that level deviates from a level representing the ”null”

point for the species interaction, and calculation of this null point is somewhat

subjective. [. . . ] Our designation of a phenotype as cooperative need only imply

that it is more co-operative than some feasible alternative.” [79]

This definition refers to relative cooperation.
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� “Cooperation is an outcome that –despite potential relative costs to the individual–

is ”good” in some appropriate sense for the members of a group, and whose

achievement requires collection action. But the phrase ”to cooperate” can be

confusing, as it has two common usages. To cooperate can mean either: (1) to

achieve cooperation–something the group does, or (2) to behave cooperatively, that

is, to behave in such a manner that renders the cooperation possible (something

the individual does), even though the cooperation may not actually be realised

unless other group members also behave cooperatively.” [80]

The difference between cooperative behaviour and cooperation is clear in this

definition.

� “The key distinction we wish to make is between cooperation (an interaction be-

tween two or more individuals) and cooperative behaviour (an action or actions

taken by a single individual). [. . . ] We define cooperation as an interaction be-

tween individuals that results in net benefits for all of the individuals involved” [70]

This definition is slightly more restrictive than the one in the main text, though

both overlap if one accounts for peace as a social good or benefit.

� Referred to lifetime consequences: “Cooperation: A behaviour which provides a

benefit to another individual (recipient), and which is selected for because of its

beneficial effect on the recipient” [67]

This definition mixes cooperation, which is something carried out by at least two

interacting individuals (see the definition by Dugatkin above), and cooperative

behaviour, i.e. individual behaviour which allows for cooperation.

� “- Cooperative behaviour: a behaviour that on average increases the fitness of a

recipient and which is under positive selection if it on average increases the in-

clusive fitness of the actor via direct fitness benefits. [. . . ] - Altruistic behaviour:

a behaviour that on average increases the fitness of a recipient and which is un-

der positive selection if it on average increases the inclusive fitness of the actor

via indirect fitness benefits. [. . . ] - Cooperation: two (n) partners increase on

average their direct fitness due to the interaction.” [72]

The first definition above accounts always for cooperative behaviours (behaviours
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that, when interacting together, create direct fitness benefits for all interacting in-

dividuals). However, the above definitions are blurry in some situations, as when

behaviours are counter-selected, e.g. if an actor provides a benefit to a recipient,

and the inclusive fitness of the actor increases due to direct fitness benefits, but

less than the average increase in the population, it would be under negative se-

lection, and the above definition cannot be applied to call it cooperative or not.

Furthermore, the definitions above are not self-consistent: a behaviour which

provides benefits to the recipient, which produces negative direct fitness effects

on the actor, and which is selected for due to positive inclusive fitness effects,

would be called altruistic but not cooperative according to the above definitions.
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Part II

Resource constraints in the
evolution of cooperation
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Since 1859, when Darwin published the theory of natural selection [91], the ques-

tion on how cooperation is established and evolves has centred the attention of many

scientists, as it seems to contradict the principle of fitness self-maximisation. The first

mechanism found to promote cooperation, kin selection [11, 12], states the conditions

that make beneficial from a genetic point of view to help individuals sharing your own

genes, even if it is costly for yourself. More recent studies pay attention to how coop-

eration evolves in the absence of genetic relatedness. Two frameworks are widely used

for this purpose.

The first framework is evolutionary game theory (EGT) [15, 16, 90], which models

the interactions from an individual point of view, regarding to the strategies of the

interacting agents, but usually not including ecological dynamics; the second frame-

work –called here the ecological, resource based or just resources framework– includes

Lotka-Volterra models and resource-ratio theory [92–94]. This framework models the

ecological systems as a whole, including environmental features, as the existence of lim-

iting resources, but does not usually regard to the microscopic interaction dynamics.

As explained in section 1.6, the evolutionary game theoretical framework allowed to

find mechanisms for the evolution of cooperation. However, most models used implicitly

assume that the limitation of resources does not modify payoffs, and thus does not affect

directly the dynamics. On the other side, recent studies using the ecological framework

have shown that the limitation of resources may play an important role in the evolution

of cooperation [95–97], and might be important to explain cooperative behaviours in

bacteria, plants and animals. As an example, the trade off between rate and yield of

metabolic pathways, as that of aerobic and anaerobic bacteria, has been proposed to

help cooperation thrive in a two dimensional world [95,96], and as a possible mechanism

for the emergence of undifferentiated multicellularity. Furthermore it has been shown

that if trade of resources is possible [97], long term relationships allow cooperative

plants to evolve.

In chapters 3, 4 and 5 I present some models aiming to ascertain some implications

of the limitation of resources in the survival of cooperation. The stylised models are
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a first step towards this understanding, where the dynamics of the system is ruled by

a limiting resource necessary for reproduction. Two cases are studied: One in which

the limiting resource is also necessary for survival –this is dealt in chapter 3 – and a

second one, where it is not necessary for survival –treated in chapter 4. These agent-

based models are shown to fulfil an a priori PD game, but in some conditions the

limitation of resources allows for the survival of cooperation, thus providing a scenario

not previously addressed in the evolutionary game theoretical literature, where resource

limitation is usually assumed just to impose a constant population size. Chapter 5

provides simplified analytical models for the agent based models studied in chapters 3

and 4.
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Chapter 3

Resources necessary for
reproduction and survival

Summary

In this chapter I first present a model of a population of individuals whose strategies

fulfil a PD and where a limiting resource is necessary for their survival and reproduction.

In the ideal situation where all individuals possess resources, the interactions between

cooperators and defectors leads to a PD –as determined by their strategies– and thus

cooperators extinguish. Remarkably enough, the dynamics changes when resources are

limited: the game is modified and a region of dominance of cooperation appears.

After that, I present the equations that connect resources and fitness as defined

in evolutionary game theory, and test the validity of the replicator equation [18] to

predict the mean time evolution of the system, opening a way to connect resource

based models and evolutionary game theory.

3.1 A game theoretical model including resource

consumption

The model presented here includes three basic features of alive organisms under

natural selection: reproduction, interactions and death. It consists of an agent based

model of a well-mixed population of self-replicating individuals that receive resources

from the environment and exchange resources during interactions. Each individual is

represented by its internal amount of resources and its strategy, namely to cooperate or
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defect: defectors parasite resources from the interaction partner at a cost to themselves,

cooperators do not. In order to maintain living functions, every time step individuals

dissipate an amount of resources El. If an the amount of resources of an individual

surpasses a certain bound, Es, it splits into two identical copies with half its internal

amount of resources; if it is depleted, the individual dies. Neither genetic relatedness

nor special abilities are assumed. Next I provide the details of the model.

3.1.1 Environment and resource allocation

In order to study the influence of resource limitation in the evolution of cooperation,

let’s assume for simplicity that the environment supplies resources at a constant rate.

Every time step, the environment generates an approximately constant amount of

resources ET to be shared among all individuals in the population. Each individual

receives a random portion Ep uniformly distributed on the interval [0, 2ET/N ], whereN

denotes the number of individuals in the population. In this way, we allow for variations

in the resource intake of individuals while keeping an approximately constant total yield

ET in the population. Other resource assignation methods were also tested providing

the same results, as shown below.

In contrast to most models, where the number of individuals in the population is

kept constant, in the present one it evolves in time and its equilibrium value depends

on the composition of the final population. The reason for this is that, in equilibrium,

the resources that enter the system compensate the ones that are dissipated. Since

defectors dissipate resources at a higher rate than cooperators (see next subsection)

the amount of individuals that the environment is able to sustain depends on the

fraction of defectors in the final population. In the simple case when it only contains

cooperators, the equilibrium size is N = ET/El.

3.1.2 Interactions

The defective strategy is characterised by two quantities: the cost spent Ec for

getting a reward Er from the co-player. Both quantities are inherited without mutation

and supply the interaction payoffs whenever the internal resources of the two players

surpass the corresponding values, Ec and Er. For simplicity, interactions are considered
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as simultaneous, though results are the same for not simultaneous interactions (see

Appendix 3.A) If resources were unlimited, the internal resources of individuals would

be high and those values would describe the amount of resources actually exchanged,

leading to a payoff matrix

C D

C R = 0 S = −Er

D T = Er − Ec P = −Ec

(3.1)

which fulfils the requirements for a simplified prisoner’s dilemma between parasites (D)

and pacific individuals (C) as in equations (2.2)-(2.3), whenever Er > Ec > 0; note

that the reproduction rate is proportional to resource intake and whenever no resource

constraint is influencing the game, evolution will lead to homogeneous populations of

parasites.

However, if resources are limited, individuals may posses resources below Er and

Ec. We thus assume: (i) if the internal resources of a defector are smaller than the cost

Ec, it does not pay the cost nor receives the reward; and (ii) if the interaction partner

of the defector has internal resources below Er, the defector extracts the entire amount

of resources of the co-player. Some modifications of the rule were also tested, such as

allowing parasites to spend lower costs than Ec if their internal resources are smaller

than this amount and then getting proportional rewards; they yield similar results to

those presented below.

Interactions with cooperators whose internal resources are lower than Er make the

average reward actually obtained by defectors E ′
r fall below the value expected from

their inherited strategy, E ′
r < Er. Since E ′

r depends on the distribution of resources

within the population of cooperators, which in turn depends on the action of defectors,

its value is not known a priori. The change in E ′
r modifies accordingly the average net

reward got by defectors in an interaction ∆E ′ = E ′
r−Ec. Therefore, resource limitation

modifies the interaction payoffs. If eventually ∆E ′ became negative, the game would

turn into a Harmony Game and cooperation would become dominant (see chapter 2).

Because E ′
r is not known, but determined by the dynamics, it turns out quite difficult

to predict analytically the fate of the population. Instead, we have performed extensive

numerical simulations.
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3.1.3 Numerical simulations

Simulation runs started with population compositions ranging from 5% to 90% of

cooperators, and sizes close to the estimated equilibrium values for such proportion of

individuals. The initial internal resources of individuals was taken from a uniformly

random distribution on the interval [0, Es], whereas other initial distributions have

been analysed yielding the same results. The value of ET was chosen to ensure big

populations (N ∼ 104 individuals) in order to avoid finite size effects while keeping

feasible simulation times. The amount of resources required for splitting was taken

Es = 1000.

The dynamics is implemented as follows. Every interaction time step, six individ-

uals are chosen at random: (a) two of them receive an amount of resources Ep from

the environment, independently calculated for each one, (b) two of them interact and

(c) two of them dissipate an amount of resources El. This process is repeated N/2

times for, in average, all individuals to have captured resources, interacted, and dissi-

pated resources, once. This defines one time step of the simulation. Simulations run a

maximum of 1000 time steps and stop if a homogeneous population is reached before.

The latter dynamics describes a completely asynchronous updating method with

overlapping generations in order to prevent spurious correlations (see [98]). Note that

asynchronous updating mimics the dynamics observed in nature where, with few ex-

ceptions, individuals do not feed, interact and reproduce at the same time, but with

fixed mean ratios between the different actions (we are excluding seasonal reproduction

in this way). Other updating methods were also tested obtaining the same results (see

Appendix 3.A).

Finally, let us note that the model presented here contains 5 parameters. One of

them, say Es, sets the scale of resources, and ET only affects the number of individuals

in equilibrium (provided it is big enough), and not its composition. Therefore, the

fate of the population in the model is characterised by three parameters: the a priori

defector’s cost Ec and net benefit ∆E = Er−Ec, and the amount of resources dissipated

by the individuals to keep alive El. We have performed simulations covering the whole

parameters space.
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Figure 3.1: Time evolution of the fraction of cooperators for several parameter values
and initial conditions of the model. The genetically determined strategies of the indi-
viduals fulfil a simplified PD (see equation (3.1)). However, the limitation of resources
may modify the payoff structure of the interactions, allowing cooperators to invade the
entire population. Stable coexistence is not observed. While the invasion capacity of
cooperation depends on its initial frequency in some situations, this dependence is very
small for small El, being cooperation the dominant strategy in many situations (see
figure 3.2).

3.2 Peace or parasitism

3.2.1 Agent based simulations results.

Simulations show that, when resources are limited, there exist situations in which

selfish individuals die out despite the genetically inherited strategies determine a PD

under unlimited resources (figure 3.1).

The dynamics leads to two different regions in the parameter space: one where

the system ends up in a population of only cooperators at essentially large costs Ec,

and another with a population of defectors only (figures 3.2). The biggest regions of

cooperation are found for dissipation of resources around El ∼ 0.4Es, while increasing

or decreasing it diminishes the region of cooperation. There is little dependence on the

initial fraction of cooperators; the bigger the fraction, the bigger the region of cooper-

ation. This dependence increases as El approaches the splitting bound Es. However,

except for extreme cases of very high resource dissipation, El ∼ Es, and very low initial

fraction of cooperators, ρC0 < 0.1, one observes regions where cooperators invade the

entire population.
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Figure 3.2: Regions of cooperation and defection. The final fraction of cooperators ρ is
displayed as a function of the parasite strategy, i.e. resources cost (Ec) and net benefit
(∆E = Er −Ec). In black, the fraction of cooperators is 1; in white it is 0. Whenever
costs and net benefits are small enough, i.e. when the limitation of resources does
not influence the payoffs, defectors invade the entire population, as expected for a PD.
However, one observes a well defined region where cooperation overcomes defection.
In this region the initial PD is modified by the limitation of resources, which leads to
negative net benefits for defectors and allows the system to evolve towards homogeneous
populations of cooperators. Solid lines show the analytical prediction for the frontier
between both regions. In (a) the dissipation of resources for keeping alive is El = 0.4Es;
in (b) El = 0.02Es. In all cases, simulations start with a ρ0 = 0.5. Results have been
averaged over 50 realisations.

Modifications in the updating method as well as in the definitions of interactions

and resource allocation were also tested: distributing the resources in identical por-

tions among all individuals Ep = ET/N ; giving portions of a constant size Ep with

a probability p = ET/(NEp); allowing defectors to get a proportional reward to the

cost spent in case their internal amount of resources was lower than Ec; or defining not

simultaneous interactions (see Appendix 3.A). The results obtained in all cases showed

similar or slightly bigger regions of cooperation. In the case in which individuals may

spend lower costs than Ec and get proportional rewards, the regions of cooperation do

not depend on the initial fraction of cooperators.

Some modifications in the updating were tested too, as distributing the resources

in portions Ep = ET/N , giving portions of a constant size Ep with a probability
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p = ET/N , allowing defectors to get a proportional reward to the cost spent in case

their internal amount of resources was lower than Ec, or defining not instantaneous

interactions. The results obtained in all cases showed similar or bigger regions of

cooperation. In the case in which individuals may spend lower costs than Ec and get

proportional rewards, the regions of cooperation do not depend any longer on the initial

fraction of cooperators.

3.2.2 Analytical description

The genetically determined prisoner’s dilemma structure of the resource exchanges

among cooperators and defectors, which matches the real resource exchanges in the ab-

sence of limitation of resources, may lead to the prediction that selfish individuals have

a larger resource intake than cooperative ones and thus reproduce quicker. However, as

the simulation results show, the existence of a limiting resource modifies the outcomes

of the interactions allowing unconditional cooperators to invade defectors in the case

of a well-mixed population and with non-iterated interactions. In the following, I show

analytical methods to explain such results and to model the dynamics of the system.

Depletion of resources and survival of cooperation

The invasive capability of cooperators when there is a limitation in the available

resources is due to the subsequent distribution of internal resources in the population.

This distribution of internal resources modifies the outcome of the interactions by low-

ering the average reward E ′
r actually obtained by defectors from cooperators, because

some cooperators have internal resources below Er. If the average reward E ′
r turns to

be smaller than the defector’s cost Ec, the net reward ∆E ′ = E ′
r−Ec becomes negative

and defection is not favoured any more by natural selection. In this case the resource

payoff matrix is modified and it is no longer a prisoner’s dilemma, but a Harmony

Game (see chapter 2). This is what happens in the regions where cooperation invades

the entire population in figures 3.2.
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Analytic expressions

As mentioned before, an exact analytical treatment of the model is quite difficult

because of the interdependence of E ′
r and the cooperator’s distribution of internal

resources. We next provide a quantitative analysis that allows for an estimation of the

region in the parameter space where cooperation becomes dominant.

The condition for cooperation to outperform defection is

Ec > E ′
r (3.2)

i.e. the cost per interaction for the selfish individual must be bigger than the average

amount of resources obtained from a cooperative individual. Let us call P (E < Er)

the probability that a cooperator has an internal amount of resources lower than Er.

The mean payoff for a defector playing against a cooperator can be written as E ′
r =

P (E > Er)Er + P (E < Er)Ēr, where Ēr is the mean internal amount of resources of

cooperators in the region E < Er. This may be rewritten as

E ′
r = Er − P (E < Er)(Er − Ēr). (3.3)

If the distribution of resources is known, one could derive from this equation the ana-

lytic expression for the region where cooperation is dominant. As an example, for the

case shown in figure 3.2a the distribution of resources may be taken at a first approx-

imation as uniform (see figure 3.3a). For uniform distributions, the mean amount of

resources that selfish individuals steal from cooperators is E ′
r = Er −E2

r/(2Es), which

after a few calculations yields

Ec > (2Es∆E)1/2 −∆E. (3.4)

figure 3.2a shows that this approximation is in good agreement with simulation results.

For other values of the dissipation of resources El the internal distributions cannot be

approximated as uniform (figure 3.3b). Then, stepwise distributions are already good

approximations to calculate the region where selfishness is suppressed (figure 3.2b).

3.2.3 Connecting resources and fitness

The usual framework in evolutionary game theory expresses the payoffs in terms of

fitness, and assumes that the cooperative individual is the one incurring the costs. This
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Figure 3.3: Internal distribution of resources for cooperators. Cumulative resource
histograms for parameter values close to the boundaries of cooperation and defection
(see figure 3.2). In (a) El ≈ 0.4Es and (b) El ≈ 0.02Es. In (a) the histograms do
not depend on the point of the boundary chosen (only two points are displayed for
clarity), and can be approximated by a straight line, i.e. a uniform distribution. This
approximation is used to derive the analytical prediction shown in figure 3.2a. In (b) the
histograms are point dependent. To derive the analytical prediction of the boundary in
figure 3.2b a mean histogram was obtained and approximated by a stepwise distribution.
This rough approximation is again in good agreement with the results.
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framework can be recovered in the resource scenario by comparing the fitness matrix,

in which cooperators pay a cost c in order to provide a benefit b to the co-player, with

the one in terms of resources (equation (3.5)), in a similar manner as done in chapter

2. To do so, let us notice that in the model, the greater the resource intake by an

individual, the faster it reaches the splitting bound Es and reproduces. Therefore, the

resource income rate is proportional to the reproductive rate and may be translated

into fitness. The matrixes in both scenarios and relationships obtained are

(a) Resources framework (b) Fitness framework

C D

C E0 E0 − pE ′
r

D E0 + p∆E ′ E0 − pEc

C D

C k + b− c k − c

D k + b k

(c) Relationship between both frameworks

b = apE ′
r, c = ap∆E ′, k = a(E0 − pEc), ∆E ′/Ec = c/(b− c)

(3.5)

where a is the proportionality factor between resources and fitness and k a constant.

Note that b, c are independent of such constant, and the cost to benefit ratios in both

frameworks are independent of k, a and p.

In appendix 3.A we derive the values of the terms in equation (3.5)(a). As expected,

the interaction terms are described by the cost Ec and the average rewards E ′
r and

∆E ′ = E ′
r − Ec. All these terms, however, appear multiplied by the factor p ≡

P (ED > Ec), namely the probability that a defector actually performs a parasitic

action. Naturally, being factor p in all terms of the payoff matrix, it does not modify

the structure of the game (see appendix 3.A for more details); it only affects the

temporal scale of the dynamics.

The relationships in equation (3.5)(c) can be used to check the validity of the repli-

cator equation (equation (1.3)) on its evolutionary game theoretical form to describe

the dynamics in the model [18]

dρ

dt
= ρ(πc − π̄) (3.6)

where ρ is the fraction of cooperators, πc their fitness and π̄ the mean population

fitness. According to equation (3.5), this equation writes

dρ

dt
= −a′∆E ′ρ(1− ρ) (3.7)
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Figure 3.4: Connection between resource and fitness frameworks and test of the repli-
cator equation. The decreasing solid line shows the time evolution for simulations with
∆E = 16, Ec = 1; in this case (Ec,∆E ≪ Es = 1000) the payoffs are not altered
and the dynamics results in the extinction of cooperation, as expected for a well-mixed
PD. The increasing line shows the time evolution in a region where the distribution of
internal resources modifies the payoffs and drives the extinction of defectors (∆E = 16
and Ec = 161). In this case, ∆E must be substituted by ∆E ′ = E ′

r −Ec in the replica-
tor equation. Solid lines show the mean time evolution averaged over 20 realisations.
Dashed lines show the analytical predictions by using the best fit value for parameter a′

in equation (3.7).

with a′ = ap. The factor p = P (ED > Ec) depends on the distribution of internal

resources in the population of defectors. By assuming that stationary distributions

are rapidly achieved (this is confirmed by simulations), the factors ∆E ′ = E ′
r − Ec

and a′can be approximated as constants. In our simulations we do not know these

values in advance. However, good agreement between the replicator equation and the

simulations can be observed in figure 3.4, where E ′
r has been calculated according to

equation (3.3), and a′ has been obtained by a numerical fit using the simulation data.

However, as the genetically determined quantities (in the sense that they are fixed

before starting the game) are the values of Er and Ec related to the selfish strategy,

which might be measured in experiments designed to avoid external influences on the

payoffs, it would be useful to find a rule for the evolution of cooperation based only on

these a priori determined quantities. Using the equations in equation (3.5) one may

find the corresponding fitness values for these quantities associated to the parasitic

strategy, namely b = apEr for the reward, c = ap∆E for the cost. Then, writing the
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constant a in units of Es equation (3.4) reduces to

b > (2apc)1/2 (3.8)

This inequality is similar to previously found rules to describe the evolution of coop-

eration (see section 2.4.1). Indeed, the rules relating to kin selection [11, 12], direct

and indirect reciprocity, network reciprocity and group selection can be written as:

b/c > 1/r [99]. Equation (3.8) suggests that, as a first order approximation, a general

rule for the evolution of cooperation based on statistical analyses and including the

effect of environmental or morphological constraints might be written as

b/cS > (λa)S (3.9)

where λ, S and a are constants related to the statistical properties of the system under

study and the reproductive dynamics of the population.

3.2.4 Conclusions

We have analysed the influence of the limitation of resources in the evolution of

cooperative behaviours in the case in which selfish individuals perform parasitic acts,

and have shown that, although the genetically inherited strategies define a PD under

unlimited resources, resource constraints may modify the structure of the game so

that cooperation becomes the dominant strategy. Thus, resource limitation permits

the survival of cooperation in well-mixed populations, without repeated encounters

between the same two individuals and in the absence of either genetic relatedness,

memory, or other special abilities. This suggests that the limitation of resources is an

important element to be taken into account when studying the evolution of cooperation

in simple entities, such as viruses, unicellular organisms or even plants, and makes the

present results suitable for studying the evolution of cooperation in early evolutionary

stages, and thereafter the associated transitions in evolution, as those from prokaryote

to eukaryote cells or from unicellular to multicellular organisms. More generally, these

results might be applicable to any system in which reproduction and death are ruled

by the same limiting resource, and with the restrictions that the strategies are fixed

before starting the game and that the benefits and costs for defecting are disassociated.
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Two different frameworks were used in this chapter, the resources framework and

the (evolutionary game theoretical) fitness framework (equation (3.5)). In the first

one the selfish individuals pay the cost, while in the latter the cooperators are the

individuals paying it. This might seem contradictory, however, selection is totally

unaware of who is the individual acting and selects behaviours by the results of the

actions. Therefore, as both matrixes determine the same outcome, a PD, there is no

contradiction on it, and individuals that seem not to pay the cost in some situations

might be seen as cooperators paying a cost in the fitness framework. Indeed, our

simulations show that the dynamics in the model is well described by the replicator

equation of evolutionary game theory both, when resource exchanges satisfy a PD

so that cooperators die out, and also when resource constraints make cooperation

dominant and defectors are extinguished.

Finally, we have found a simple rule for the evolution of cooperation based only

on the fitness translation of the inherited strategies. The use of equations connecting

resources and fitness may facilitate the design of experiments to test evolutionary

game theoretical predictions and we hope they will help in establishing the necessary

communication between evolutionary game theoretical researchers and experimental

biologists, as well as to introduce more detailed behavioural and ecological features in

the models, all of this in order to continue expanding our knowledge on how altruistic,

mutualistic and parasitic behaviours evolved and gave rise to the diversity present in

the natural world.
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Appendices

3.A Payoff matrix calculation

The average payoff obtained by each player in a time step is calculated here. Interac-

tions are defined as simultaneous between both players. Defectors pay a cost Ec to steal

a maximum reward Er from the co-player. Furthermore (i) if the internal resources of a

defector are smaller than the cost Ec, it does not pay the cost nor receives the reward;

and (ii) if the interaction partner of the defector has internal resources Eint < Er, the

defector extracts the entire amount of resources of the co-player. Thus, the reward

obtained by a defector when interacting with individual i is Ei
r = min(Er, E

i
int). Ac-

cordingly, if individuals j and k interact, the variation of their internal resources after

interacting can be written as

∆Ej = qj(Ek
r − Ec)− qkEj

r

∆Ek = qk(Ej
r − Ec)− qjEk

r

(3.10)

Here qi = 1 if individual i is a defector with resources above the cost Ec, i.e. it is an

individual able to perform a parasitic action, and qi = 0 otherwise. Below we provide

the variation of internal resources of the players as supplied by equation (3.10) for all

possible interaction couples:

i. Interaction CD:

∆EC = −qDEC
r , ∆ED = qD(EC

r − Ec). (3.11)

ii. Interaction CC:

∆EC1 = 0, ∆EC2 = 0. (3.12)

iii. Interaction DD:

∆ED1 = qD1(ED2
r − Ec)− qD2ED1

r , ∆ED2 = qD2(ED1
r − Ec)− qD1ED2

r (3.13)
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Averaging these equations over the entire population one finds the average payoffs

obtained by each player in a time step, i.e. the terms in the payoff matrix. The

average of EC
r is, by definition, E ′

r; the average of q
D supplies P (ED > Ec), the fraction

of defectors that possess resources above the cost. Then, by calling p ≡ P (ED > Ec)

the terms in the payoff matrix write:

i. Interaction CD:

∆EC = −pE ′
r, ∆ED = p(E ′

r − Ec). (3.14)

ii. Interaction CC:

∆EC = 0 (3.15)

iii. Interaction DD:

∆ED = −pEc (3.16)

Therefore, the payoff matrix of resource exchanges due to interactions in a time step

reads

C D

C R = 0 S = −pE ′
r

D T = p∆E ′ P = −pEc

(3.17)

The condition for cooperators to dominate defectors (Mesterton-Gibbons 1991,

Nowak 2006) is then Ec > E ′
r (equation (3.2)).

The decrease of defectors rewards due to the distribution of internal resources of

cooperators is included in the term E ′
r, while the decrease in the capacity of defectors

to act as parasites is included in the term p = P (ED > Ec), related to their distribution

of internal resources. Note that the first term may alter the structure of the payoffs,

meanwhile the last term only affects the time scale of the simulations by reducing the

net number of effective interactions, i.e. interactions in which defectors actually behave

as parasites. To obtain the total exchange of resources for individuals in a time step,

one must add the average portion Ep received from the environment and subtract the

dissipated resources El, i.e one must add E0 = Ep − El. This provides the resource

payoff matrix displayed in equation (3.5).
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Note that, if the interactions are defined with one individual as actor and one as

recipient of the act, which would model not simultaneous interactions, the calculation

of the payoffs is similar but a 0.5 factor appears multiplying the term p. This happens

because the individuals act only half of the times and receive the act the other half.

However, as this factor multiplies each matrix element, it does not modify the structure

of the game but only the time scale of the dynamics, which now becomes slower. We

have checked that the use of this method does not modify the simulation results.

Nevertheless, since our extensive simulations over the parameter space are very time

consuming, they have been carried out using simultaneous interactions.
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Chapter 4

Limiting resources constraining
reproduction

Summary

In this chapter I modify the agent-based model in the previous chapter and show

that whenever the limiting resource is only necessary for reproduction, the resource lim-

itation may drive a self-organising process that allows for stable coexistence between

cooperators and defectors. In contrast to previous EGT studies including ecological

features, in which coexistence happens only in public goods games with variable inter-

action group sizes [100], it is transient [101] or requires spatial structure [102,103], here

stable coexistence for pairwise interactions without population structure is found. This

stable coexistence resembles the homeostatic equilibrium in the daisy world [104,105],

as both are mediated by environmental factors driving the system out from equilibrium.

4.1 The model

In order to study the situation in which resources are only necessary for reproduc-

tion, the model presented in chapter 3 is modified here. The model consists again of

an evolving well-mixed population of self-replicating individuals that receive resources

from the environment and exchange resources during interactions. No population struc-

ture, memory, learning abilities or any other sensory inputs are assumed. The difference

with the model in chapter 3 is that now the limiting resource necessary for reproduction

provides no advantage for keeping alive; therefore, no resource dissipation for keeping

alive is assumed (El = 0) and deaths occur at random with a frequency (rate) f relative
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Figure 4.1: Simulation results for the evolution of the fraction of cooperators ρ for
two different values of the reward Er and cost Ec associated to the selfish strategy
(averaged over 10 runs). In some cases the simplified PD payoff structure is modified
by the limitation of resources, which allows for coexistence of cooperation and defection
(solid line) and dominance of cooperation (dashed line). The final stable states are
independent of the initial ρ and N . Parameters: f = 1, Es = 1000, ET = 8200000,
Ec = 660; solid line, ∆E = 310; dashed line, ∆E = 10.

to receiving resources and interacting –which happen equally frequently– irrespective

of the strategy.

As before, the PD structure of resource exchanges predicts a larger resource intake of

defectors and their quicker reproduction –fitness is proportional to resource exchanges.

Therefore one would expect homogeneous populations of defectors as the outcome

of the evolutionary process. However, the nonlinearities of the model modify this

simple picture allowing for a region of dominance of cooperation, as in chapter 3.

Simulations show that the present model, where deaths are not linked to payoffs, yields

this behaviour and also stable coexistence of cooperation and defection (figure 4.1).

This result is quite surprising, since coexistence is the expected outcome in games

with a snowdrift payoff structure (see appendix 1.5.1), different from the one here. As

shown below, coexistence in the present model is the result of a complex self-organising

process.
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4.2 Emergent coexistence of cooperators and defec-

tors.

Coexistence in this scenario requires a complex feedback process whose exact anal-

ysis is quite difficult because of the complex nonlinearities involved in the dynamics.

However, a simple quantitative reasoning exhibits the logic of this feedback and allows

for an analytic estimation of the final stable state of the system. Let us note that an

increase in the number of defectors over the equilibrium value would cause an overex-

ploitation of cooperators, thus reducing their resource content. This would have two

effects: (i) it would reduce the reproduction rate (fitness) of cooperators because they

become farther from the splitting bound Es, and (ii) it would also decrease the average

reward obtained by defectors, which thereby reduces their fitness. If the second effect

dominates over the first one, then stable coexistence becomes possible, as the feedback

pushes the system back to equilibrium. A similar argument applies for a decrease in

the number of defectors.

The entire system is in equilibrium when the resource influxes and out fluxes in the

populations of both cooperators and defectors cancel out. The balance of resources in

these subpopulations contains three contributions: environmental supply, deaths, and

interactions. They are expressed in the following equations

dEC

dt
= NC [E0 − fE

C − pE ′
r(1− ρ)] (4.1)

dED

dt
= ND[E0 − fE

D − pEc + pE ′
rρ] (4.2)

Ej, E
j
and Nj denote, respectively the total resource content, average resources per

individual and number of individuals of the subpopulations j = C,D ; E0 = ET/N

is the mean amount of resources received by an individual per unit time, with N =

NC +ND the instantaneous population size; ρ = NC/N is the fraction of cooperators;

f is the death probability per individual and interaction, and p the fraction of the

population of defectors able to pay the cost (i.e. with Ei > Ec).

In equilibrium, the populations of cooperators and defectors become constant in

time so that the resource pools ED and EC reach a constant value. One thus finds the
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equilibrium condition

p(E ′
r − Ec) = f [E

D − E
C
] (4.3)

This shows that the coexistence depends on the death frequency f . For simplicity,

we assume in this analytic derivation that deaths happen much less frequently than

interactions, i.e. the limit f → 0; this corresponds to many interactions in a lifetime,

when the effects of interactions become more relevant. Other f values will be studied

through simulations (figures. Since p never equals zero due to the constant resource

influx, equation (4.3) reduces in this ideal limit to

Ec = E ′
r (4.4)

Remarkably this means that for coexistence to exist in the limit f → 0 it is necessary

that the system tunes the value of the benefit E ′
r to match the cost Ec.

In order to analytically predict the region of coexistence in the parameters space

and the corresponding population composition, it is necessary to know the average

reward E ′
r in terms of the parameters Er and Ec. This implies the calculation of the

equilibrium distribution of resources for cooperators, which is a difficult task due to

the nonlinearities involved in the dynamics. Instead, a rough heuristic estimate can

be given as follows. The lower the fraction of cooperators in the population, the more

frequent any cooperator meets a defector, thereby cooperators become overexploited

and their average internal resources decrease. Thus the average reward E ′
r is expected

to decrease as ρ decreases. Now assume a linear relationship between both quantities,

E ′
r = αρ, with α a positive factor. By the moment, consider that when ρ is close

to 1, the effect of defectors is expected to be small, so that at first order the resource

distribution of cooperators may be approximated as uniform. For uniform distributions

one finds E ′
r = Er − E2

r/(2Es) (see equation (3.3)). With the previous assumptions

E ′
r = ρ(Er −

E2
r

2Es

) (4.5)

By combining equation (4.5) with equation (4.4) one obtains an expression for the

equilibrium fraction of cooperators

ρ =
Ec

Er − E2
r/2Es

. (4.6)
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In order to analyse in detail the behaviour of the model, extensive numerical sim-

ulations covering the whole parameters space have been performed. They confirm the

stability of the coexistence for all death frequencies (figures4.2), and show that the

final stable state is independent of the initial conditions and resource influx (and thus,

final population size). The analytical prediction for ρ according to equation (4.6) is

shown in figure 4.3a, showing a good qualitative agreement with the outcome of the

simulations. Deviations root in the linear approximation assumed in equation (4.5) (see

figure 4.3b) , and in the assumption of f → 0 (the accuracy of equation (4.3) is shown

in figure 4.4 for f = 0.01) . If one assumes a quadratic dependence the agreement

between predictions and simulations improves substantially (see figure 4.3c).

4.3 Novelty of coexistence states in the mean field

limit: Feedback towards neutral stability.

The obtained stable coexistence between cooperators and defectors presents a new

outcome in the context of two-player games, where a stable mixed state is only expected

in Snowdrift (or Hawk-Dove) games, which have a different payoff structure from the

one analysed here. As shown in appendix 1.5.1, symmetric two-player games can be

described through the interaction matrix [106]


C D

C 0 a

D b 0

 (4.7)

where coefficients a and b are assumed to be constant. Applying the replicator equation

[18, 90, 106] to analyse the evolution of the population, three cases are possible (see

section 1.5.1): (i) dominance of one strategy (when a and b differ in sign); this is the

case of the non-iterated PD, where defection always wins; (ii) bistability (if both a

and b are negative), in this case the final state is homogeneous and depends on initial

conditions; this is what happens in stag hunt games, where coordinating with the

partner pays; and (iii) coexistence (if both a and b are positive); this is what occurs in

Snowdrift games, when it always pays to play the opposite of the co-player.
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Figure 4.2: Final fraction of cooperators ρ as a function of resources cost (Ec) and
net benefit (∆E = Er − Ec) of the selfish strategy. In black ρ = 1, in white ρ = 0.
One observes well defined regions of coexistence of cooperation and defection, as well
as regions where cooperation is the dominant strategy. The regions of coexistence and
dominance increase with decreasing f , the death rate. Parameters: Es = 1000, ET =
420000; in (a) f = 0.01, (b) f = 0.05, (c) f = 0.1 and (d) f = 1.
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Figure 4.3: (a) Analytical prediction according to equation (4.6) for the final fraction of
cooperators ρ as a function of resources cost (Ec) and net benefit (∆E = Er−Ec) of the
selfish strategy. In black ρ = 1, in white ρ = 0. (b) Comparison of the approximation in
equation (4.5) and the result of numerical simulations. (c) A quadratic fit between E ′

r

and ρ obtained from (b) is used to improve the analytic prediction in figure (a). In (d)
the different games corresponding to a 2x2 matrix are shown; the dashed line shows the
places where the payoffs in the model lay (see equation (4.9)). Point A denotes the final
payoffs for coexistence states, where the payoff matrix is evolutionary neutral; points B
and C are examples of final payoffs for situations where cooperation and defection are
dominant, respectively.
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Figure 4.4: . The figure shows the terms p(E ′
r −Ec) (squares), −f [E

D −E
C
] (circles)

and their addition p(E ′
r − Ec) − f [E

D − E
C
] (crosses) obtained from the simulations

for f = 0.01 as a function of ρ (see figure 4.2(a)). The fact that the latter is very close
to zero (the minimum resource unit in the simulations is 0.001) shows the accuracy of
equation (4.3).
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In the model, fitness is directly proportional to resource exchanges, because indi-

viduals reproduce when their resources overcome an upper bound that is the same for

cooperators and defectors. Resource exchanges come from the environment and from

interactions. The resource supply from the environment is the same for defectors and

cooperators; it just provides a constant to all fitness values and can be omitted in the

fitness matrix. The latter is thus ruled by the average resources exchanged through

interactions, which aside from a scale factor translating resource exchanges to fitness

(equation (3.5)), is  0 −pE ′
r

p∆E ′ −pEc

 . (4.8)

As stated above, p stands for the fraction of defectors whose resources exceed the

cost Ec. Let us note that this factor does not change the payoff structure in any

case, as it multiplies all payoffs, and it only modifies the time scale of the dynamics.

The interaction matrix can be rewritten in the form of matrix (4.7) by adding pEc to

the second column (as adding a constant to a column does not affect the replicator

dynamics, see section 1.B):  0 −p∆E ′

p∆E ′ 0

 (4.9)

i.e. a = −b = −p∆E ′. According to the classification given above, this payoff matrix

leads to dominance of one strategy whenever p∆E ′ ̸= 0. In the absence of resource

limitation ∆E ′ = ∆E > 0 and we have a PD. If resources are limited, there exists a

wide range of parameters for which the ∆E ′ is tuned to zero for a specific mixture of

cooperators and defectors (see figures 4.2); thus, the stable equilibrium is the result of a

dynamical self-organising process and not of the game structure itself (see figure 4.3d).

This represents a new result in two player games.

Equation (4.9) can be used to gain further insight into the stability of the coex-

istence state found in the model. In equation (4.5) we proposed the rough estimate

E ′
r = αρ for the net benefit of defectors, with α > 0. Thus, we have ∆E ′ = αρ − Ec.

Aside from a positive factor relating fitness and payoffs in equation (4.9), the replicator
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equation yields

dρ

dt
= −ρ(1− ρ)p∆E = pρ(1− ρ)(Ec − αρ) (4.10)

which supplies three equilibria, ρ = 0, 1 and Ec/α. Since p > 0, the mixed state is the

stable one for 0 < Ec/α < 1, in agreement with the stability of the coexistence states

observed in the simulations.

4.3.1 Independence of the results on initial conditions and
resource influx

As already mentioned, the simulation results presented above are very robust. In

particular, they are independent on initial conditions aside from finite size effects when

either N or ρ are too small. For instance, in figure 4.5 simulations starting from four

different initial amounts of cooperators and defectors (NC , ND) lead to the same final

steady state.

In addition, the results are robust with respect to changes in the resource influx

and, in particular, the latter is not required to be constant for coexistence to happen.

Figure 4.6 shows simulation results for a sudden reduction of ET to its fifth. As

expected, the population size N also reduces to its fifth, but the fraction of cooperators

hardly changes. Indeed, it is observed a slight transient advantage for cooperators

when resources are reduced, and a transient advantage of defectors when resources are

increased.

Finally, figure 4.7a analyses the limit of small population sizes. One observes that

both the number of individuals in the population and the fraction of cooperators reach

steady states with larger random fluctuations. The other panels of figure 4.7 show

the effect of oscillatory changes of the total resource influx ET in these small popula-

tions. The population numbers are found to follow the resource influx ET (except at

fast oscillations of period w = 10, shorter than the time scale of the population dy-

namics). Remarkably, the fraction of cooperators remains essentially constant, though

fluctuations may drive the system to the extinction of one strategy (figure 4.7f).
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Figure 4.5: Evolution of (a) ρ, (b) NC, (c) ND and (d) N , for four different initial
numbers of cooperators and defectors. It can be observed that in all cases, even when
the initial values are far away from the final state, the system recovers its equilibrium
values given there is enough time. In the case in which the initial number of defectors
is much bigger than its final stable value (five times bigger, dash-dotted lines), or that
of cooperators is very small (13 times smaller, solid lines), the population of coop-
erators/defectors (respectively) decreases initially, and thus this situation could drive
one of the populations to extinction if its initial number was small enough (see fig-
ure 4.7). Parameters: ET = 420000, Ec = 300,∆E = 400, f = 0.01. Final values:
ρ = 0.54, NC = 5380, ND = 4580, N = 9960
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decreases. Parameters: ET,inic = 420000, Ec = 300,∆E = 400, f = 0.01; values in
equilibrium: ρ = 0.54, N = 9960
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Figure 4.7: Dynamics of small populations. Simulation results for (a) a constant ET =
4000, and a variable ET = 4000 + 3500sin(2πt/w) in between t = 5000 and t = 15000
with periods (b) w = 100, (c) w = 1000, (d) w = 5000, (e),(f) w = 10000. It can be
observed in figures (b)-(e) that the inclusion of a variable resource influx only introduces
noise in the value of ρ, while N follows the behaviour of ET . For values of w lower than
100 (the one in figure (b)), N does not follow ET and only some noise is introduced
into the system. In (f) an example of fixation of one strategy is shown: a random
fluctuation makes the system remain in a state with 15 individuals during time enough
as to allow for fixation of defectors. Note that typical fluctuations in the equilibrium
(figure(a)) have a standard deviation on NC of 8 individuals, while it is of 4 individuals
for ND; thus, any state in which the number of individuals is maintained in very low
values during time enough will reach fixation, being fixation of defectors favoured over
cooperators in this case. Mean values in equilibrium (figure(a)): ρ = 0.53, N = 93.
Parameters: Ec = 300,∆E = 400, f = 0.01.
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4.4 Discussion

The scenario presented here, in which reproduction depends on a limiting resource,

allows for stable coexistence of unconditional cooperators and defectors in well-mixed

populations under pairwise interactions. This result is quite robust, since it does not

depend on initial conditions, and it is also observed in small populations – though in

this case fluctuations may lead to the extinction of one strategy – and under variable

influx of resources. This stable coexistence roots on a self-organising process which

implicitly includes the environment, and it is the feedback induced by environmental

constraints and defective behaviour which turns the payoff matrix into evolutionary

neutral and allows for the stability of the system. The evolutionary neutrality of

the system (environment + individuals) and its stability as a whole, might be a first

step towards the emergence of new units of selection by providing a self-organising

mechanism preventing the spread of selfish mutants alternative to central control (see

[1]).

Let us also remark that, in contrast to previous models in evolutionary dynam-

ics, the model presented here explicitly sets the issue in a non-equilibrium context,

where a (resource) flux drives the system out from equilibrium. The observed self-

organised coexistence state may be seen as another example of self-organising process

found in non-equilibrium systems such as, for instance, the unexpected oscillations in

Belusov-Zabhotinsky reactions. This perspective may bear interest in economic con-

texts, another classical field of evolutionary game theory, where some authors claim

that economic systems should be modelled as open, nonlinear non-equilibrium systems

instead of the closed, equilibrium view dominant in traditional economics [107,108].
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Chapter 5

Analytical models of cooperation
and resources

Summary

Aside from a few examples [100–103], the role played by the limitation of resources

in most studies on the origin and persistence of cooperation has been just to impose a

constant population size [42,49,50,60,61,65,81,109]. In the previous chapters, however,

we have introduced a new viewpoint where the environment is considered explicitly by

introducing a resource flux into the system that drives it away from equilibrium (chap-

ters 3 and 4). This standpoint leads to unexpected outcomes, such as that resource

limitation allows for stable coexistence between unconditional cooperators and defec-

tors, and even dominance of cooperation, in well-mixed populations playing an a priori

Prisoner’s Dilemma (PD) game, where defectors are expected to drive cooperators to

extinction [49]. This happens due to a self-organising process involving the environ-

ment which generates dynamical payoffs transforming the original PD structure into a

different game. In the present chapter a phase transition from defection to cooperation

is studied in three analytical models, two of which represent simplified versions of the

agent based models in chapters 3 and 4.

In the first model, presented in section 5.1 the limiting resource constraints the

ability of reproduction of individuals and their survival, similarly to the agent based

model in chapter 3; in the second model, in section 5.2 the limiting resource is necessary

only for reproduction, as in chapter 4. One finds that the analytical models display,

with a few differences, the same qualitative behaviour of the more complex agent-based
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models. In addition, the analytical models allow to expand the study and identify the

dimensionless parameters governing the final fate of the system, such as coexistence of

cooperators and defectors, or dominance of defectors or of cooperators. We provide a

detailed analysis of the occurring phase transitions as these parameters are varied. A

third model is presented in section 5.3 where resources are necessary for reproduction

and the population size is held constant. This situation corresponds to a case where

the population size depends on a limiting resource different from the one constraining

reproduction. This model allows for a description of a phase transition from defective

populations to coexistence states when the amount of resources received by individuals

decreases, showing the importance of the limitation of resources as a factor allowing

for the survival and evolution of cooperation.

5.1 Resources constraining reproduction and sur-

vival

An analytical simplified version of the agent-based model in chapter 3 is presented

below. In this model resources are necessary for reproduction and survival of the

individuals, and the population size depends on the resources influx.

5.1.1 Analytical model

The model consists of an evolving well-mixed population of self-replicating indi-

viduals that receive resources from the environment and exchange resources during

interactions. The internal resources of individuals are either 0 or 1. Each defector

attacks at a rate α individuals chosen at random and steals its internal resources. To

do so, the defector must have internal resources greater than 0 (i.e. Ei = 1). In every

interaction, the defector loses its unit of resources with probability q, which is thus

the average cost paid by a defector in an interaction. Let us note that, in an ideal

situation where all individuals possess resources (Ei = 1), the payoffs for cooperators

and defectors in an interaction between them are respectively πCD = −1, πDC = 1− q;

interactions between cooperators result in a payoff fCC = 0 for each and between de-

fectors in πDD = −q. The payoff ordering in this situation πDC > πCC > πDD > πCD

corresponds to a Prisoner’s Dilemma, and hence the names cooperators and defectors,
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and the expectation of the extinction of cooperation. However, since not all coopera-

tors have resources Ei = 1, the average net reward got by defectors will be, in general,

smaller than 1−q. This reward depends on the fraction of cooperators in state Ei = 1,

which is a dynamical quantity. As a consequence, the dynamics might lead the average

reward to values smaller or equal to the cost and allow for the survival of cooperators,

as shown below.

The system receives resources from the environment at a rate ET , and they are

distributed equally among the N individuals of the population independently of its

strategy. In addition, individuals dissipate resources in living activities at a rate r; this

is implemented as the probability of spending one resource unit per unit time. If an

individual with 0 internal resources is attacked or it is required to dissipate resources it

dies. On the other side, when an individual with internal resources Ei = 1 receives an

extra unit of resources it splits into two identical copies, each one with Ei = 1. Again,

resource allocation, reproduction and death rules are equal for both cooperators and

defectors, being the strategy the only difference.

Let us note that the main differences of the model presented here and the agent-

based one in chapter 3 are: (a) now there are only two resource levels Ei = 0, 1, instead

of a much larger distribution, (b) the cost paid by active defectors in an interaction,

and resource dissipation are stochastic.

We use the following notation: ci for the number of cooperators with internal

resources i and di for defectors; N = c1 + c0 + d1 + d0 represents the population size.

The model equations are:

dc0
dt

= −αd1
c0
N

+ αd1
c1
N

− ET

N
c0 − rc0 + rc1 (5.1)

dc1
dt

= −αd1
c1
N

+
ET

N
(c0 + c1)− rc1 (5.2)

dd1
dt

= α(1− q)d1
c1
N

− αqd1(
c0 + d0 + d1

N
) +

+
ET

N
(d0 + d1)− rd1 (5.3)

dd0
dt

= −αd1
d0
N

+ α(1− q)d1
d1
N

+ αqd1(
c0 + d0 + d1

N
)−

− ET

N
d0 − rd0 + rd1 (5.4)

Let us first explain the interaction terms. From the α attacks per unit time of a defector
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D1, in a fraction c1/N the victim will be a C1 player. Thus, αd1c1/N describes the

rate of interactions of active defectors D1 with cooperators C1. As a result of these

interactions, individuals C1 lose their internal resource unit after the attack of defectors

and move from population c1 to c0; this explains the first term in the equations for c0

and c1. Also, in a fraction 1−q of these interactions the D1 individual keeps its resource

unit, which added to the stolen unit from the C1 player, leads to its reproduction; this

gives the first term in the equation for d1. When a D1 player attacks C0 and D0

individuals, a fraction q of times loses its resource unit so that it moves to population

D0 (this yields part of the second term in equations for d1 and d0); furthermore, in

this case the C0, D0 individual dies. An interaction D1D1 produces either D1D0 with

probability q (which reduces the D1 population and increases D0), or D1D1D0 with

probability 1−q, which does not affect the population of d1 but increases the one of d0;

these two processes describe the remaining interaction terms in the dynamic equations

for d1 and d0. Finally, dissipation kills individuals c0 and d0 at a rate r and moves

individuals from c1 to c0, and from d1 to d0 also at a rate r.

On the other hand, the term in ET

N
c0 quantifies the number of individuals C0 moving

to population C1 after getting a unit of resources from the environment. In addition,

individuals in population c1 that receive resources from the environment replicate, thus

increasing the c1 population. The same applies for the population of defectors d0 and

d1.

This model is much simpler than the one described in chapter 4, because it contains

just four independent variables, namely c0, c1, d1 and d0, in contrast to the many vari-

ables included in the resource distributions for cooperators and defectors of the latter

model. However, it keeps most of its ingredients and captures the main features of its

behaviour: the promotion of cooperation triggered by resource limitations.

5.1.2 Model dynamics

One can analyse the dynamical behaviour of our model equations (5.1)–(5.4). Since

the right-hand side of the system equations are homogeneous functions of degree 1 on ci,

di, N and ET , the stationary populations ci, di are proportional to ET . Therefore, ET

just determines the population size, but not the composition, given by ci/N and di/N .
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Figure 5.1: Time evolution for the scaled number of cooperators (solid line) and number
of defectors (dashed line) for three sets of parameter values: α/r = 1 and (a) q = 0.6,
(b) q = 0.7 and (c) q = 0.8. In (a) cooperators die out, in (b) the system ends up
in a mixed state where cooperators and defectors coexist, in (c) cooperators get rid of
defectors. Two phase transitions occur as q increases. The populations are given in
units of ET/r (see equation (5.5)).

This is in agreement with the behaviour found in the agent-based model in chapter

3. One can also nondimensionalize the system equations by defining a nondimensional

time rt. This shows that the system is ruled by three nondimensional parameters: q,

α/r and ET/r and, the stationary populations obey the scaling relation

ci, di = gi(q,
α

r
)
ET

r
. (5.5)

Here, ET/r provides the characteristic size of populations ci, di; this is larger the bigger

the resource influx rate ET and the smaller its dissipation rate r. On the other hand,

the composition of the final population is determined by parameters q and α/r.

The numerical resolution of the system (5.1)–(5.4) displays two main behaviours

depending on the parameter values: dominance of defection and dominance of coop-

eration (see figure 5.1), in agreement with the behaviour of the agent-based model in

chapter 3. figure 5.1b shows that coexistence of cooperators and defectors is also pos-

sible, in opposition to the behaviour of the more complex agent-based model. Again,

figure 5.1 shows that the final composition of the system changes as a parameter is

varied, indicating a phase transition from a population of only defectors at small costs

q and a population of only cooperators at larger q values, separated by a coexistence re-

gion (see figure 5.2). Let’s analyse the parameter region where each attractor becomes

the stable one, i.e. let us find the phase diagram of the model.

The analytical resolution of the system reveals the existence of three stationary
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Figure 5.2: Phase transitions for α/r = 10. Population of defectors (dashed line)
and cooperators (solid line) as function of defectors cost q. As q grows two phase
transitions occur: first, a transition from defective to coexistence states, and a second
one at q = 0.723 from coexistence to purely cooperator states.

states: (a) one made of cooperators (c1 = ET/r, c0 = 0.62ET/r), (b) one made of

defectors (d1 = ET/(αq + r), d0 = ET [
√
α2 + 5r2 + 6αr − r − α]/2r(αq + r)), and

(c) a mixed state whose solution provides positive populations only for a limited set

of parameter values. The whole solution is rather cumbersome, but one can extract

valuable information by focusing in some aspects of it. The solution for c1 is (ET = 1)

c1 =
2.62αq2 − 1.62qα + 3.62qr − 2.62r

qα(1− q)
, (5.6)

which is positive provided that

α

r
=

1− 1.38q

q(q − 0.62)
> 0. (5.7)

This shows that the mixed state can only exist in a thin range of q values between 0.62

and 0.72, in agreement with figure 5.1b. The same happens for solution c0. Popula-

tions d0 and d1 become negative at q > 0.72. Expression (5.7) provides the separation

line between dominance of defectors and coexistence; for q > 0.72 cooperators domi-

nate (see figure 5.2). Therefore, the dynamics is mainly ruled by the defector cost q,

being defectors dominant below q = 0.62 and cooperators dominant above q = 0.72

(figure 5.3). Aside from the thin range of coexistence in the parameter region separat-

ing both dominating behaviours, the analytical model provides the same qualitative

behaviour as the agent-based model presented in chapter 3.
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Figure 5.3: Phase diagram. Below q = 0.62 defectors dominate. Above q = 0.72
cooperators dominate. In between there is a thin region of coexistence of cooperators
and defectors.

5.2 Limiting resource constraining reproduction

In this section the simplified analytical version of the agent-based model in chapter

4 is studied, where the limiting resource only constrains reproduction; therefore deaths

are assumed to happen at random and equally for cooperators and defectors.

5.2.1 Simplified analytical model

The model studied here is similar to that developed in section 5.1, but now resources

are not necessary for survival; therefore no dissipation of resources to keep alive is

assumed. Again the internal amount of resources Ei is either 0 or 1 and each defector

attacks at a rate α per unit time to individuals chosen at random and steals its internal

resources. To do so, the defector must have internal resources greater than 0 (i.e.

Ei = 1), otherwise it does not attack. In every interaction, the defector loses its unit

of resources with probability q, which can thus be seen as the average cost paid by

a defector in an interaction. If the interaction partner has no resources, no reward is

obtained. Cooperators do nothing, they just eventually suffer from defector’s attacks.

The system receives from the environment ET units of resources per unit time, which

are distributed equally among the N individuals of the population independently of its

strategy, thus not modifying the interaction payoff structure. When an individual with

internal resources Ei = 1 receives an extra unit of resources it splits into two identical
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copies, each one with Ei = 1. Along with reproduction, we assume that players die

with a probability f per unit time, independently of its strategy. Therefore, resource

allocation, reproduction and death rules are equal for both cooperators and defectors,

being the strategy the only difference.

At the sight of the two models, the main differences between them are that in

the simplified model the resource distribution is discrete (while it is continuous in the

agent-based model), and defectors cost is stochastic.

We consider simultaneous interactions and large populations so that we can make a

continuum approach. We denote by c0 and c1 the number of cooperators with internal

resources 0 and 1, d1 and d0 the number of defectors with internal resources 1 and 0,

respectively; N = c0 + c1 + d1 + d0 is then the total population size. The evolution

equations according to the mechanisms involved are

dc0
dt

= αd1
c1
N

− ET

N
c0 − fc0 (5.8)

dc1
dt

= −αd1
c1
N

+
ET

N
(c0 + c1)− fc1 (5.9)

dd1
dt

= α(1− q)d1
c1
N

− αqd1(
c0 + d0 + d1

N
) +

+
ET

N
(d0 + d1)− fd1 (5.10)

dd0
dt

= α(1− q)d1
d1
N

+ αqd1(
c0 + d0 + d1

N
)−

− ET

N
d0 − fd0 (5.11)

The equation terms are similar to those in equations (5.1)-(5.4), but with no deaths

due to interactions and no dissipation of resources (r = 0). The terms with f just

describe the number of individuals dying in each population per unit time.

5.2.2 Model dynamics

One of the properties of the model in chapter 4 is that a change in the resource

influx ET does not modify the final fate of the system, but just the final population

size; more specifically, it was found in equilibrium that N ∝ ET . This is also what

the system (5.8)–(5.11) predicts for the steady state, since the right-hand side of all

the equations are homogeneous functions of degree 1 of variables ci, di, N and ET , as

in the previous model. This means that the stationary states are solutions of the type
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ci, di = λiET , with λi constants depending only on α, f and q; therefore, N ∝ ET as

in the previous model.

As before, one can obtain a further understanding of the model through nondimen-

sionalization. By dividing equations (5.8)–(5.11) by the death rate f and defining the

dimensionless time ft, the system turns to be described by three dimensionless param-

eters, namely q, α/f and ET/f . Since we have seen above that stationary populations

are proportional to ET , they can be generally written as

ci, di = gi(q,
α

f
)
ET

f
, (5.12)

with gi unknown functions of the dimensionless parameters q and α/f . Then, ET/f

sets the characteristic size of the populations, and the composition, let us say the

population fractions ci/N, di/N , comes determined by the other two parameters, q and

α/f through functions gi. Parameter α/f has a direct interpretation: since α is the

attack rate of a defector and f−1 is the average lifetime of an individual, α/f denotes

the average number of interactions performed by an active defector, and it is this

quantity, along with the cost q, what determines the fate of the system. For simplicity,

in the following we will assume ET = 1, i.e. absolute populations ci, di will be given in

units of ET .

The most interesting feature of the model in chapter 4 was the existence of sit-

uations where cooperators are able to survive in coexistence with defectors in mixed

stationary states. We analyse next the dynamical behaviour of equations (5.8)–(5.11)

through its numerical and analytical resolution. Figure 5.4 illustrates that the dy-

namic equations (5.8)–(5.11) indeed display a behaviour as the original model, namely

by modifying parameters α, f and q the system ends up either in purely defective states

or in coexistence states.

One can perform a systematic analysis of the dynamic behaviour of our system

(5.8)–(5.11) which will allow for a better understanding of the model. Its analytical

resolution shows the existence of a number of stationary states: (a) one made only

of cooperators C1, which the dynamics shows it is always unstable; (b) another one

made only of defectors, which is sometimes stable (we give it here for completeness,

d1 = 1
αq+f

, d0 =

√
1+α/f−1

αq+f
); and (c) a number of mixed states of which only one

provides positive values for all population variables for some parameters. The latter
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Figure 5.4: Time evolution for the scaled number of cooperators (solid line) and number
of defectors (dashed line) for two sets of parameter values: q = 0.7 and (a) α/f = 1
and (b) α/f = 10. In (a) cooperators die out, in (b) the system ends up in a mixed state
where cooperators and defectors coexist. These two types of states are the only attractors
of the dynamics. The populations are given in units of ET/f (see equation (5.12)).
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is the mixed state that, when takes positive values, becomes stable at the same time

that the defective state (b) becomes unstable. In order to study this (transcritical)

transition, it is useful to realise that the populations for cooperators in the mixed state

(c) have the following form (the solutions for defectors are always positive)

ci =
ai
α
[
α

f
− γc], (5.13)

where ai (i = 0, 1) and γc are functions of q only. This expression supplies positive

values for ci only when α/f > γc. Therefore, γc(q) is the critical value over which α/f

must be in order for the system to end up into a coexistence state. This indicates that

the transition from defective to coexistence states depends on the parameter α/f , and

not separately of parameters α and f , in agreement with equation (5.12). figure 5.5

shows the phase transition from dominance of defectors to coexistence of cooperators

and defectors for two values of q. One observes that the survival of cooperation is

favoured by larger defector costs (larger q), as expected, since mixed states appear at

lower critical numbers of α/f . One can also display the phase transition as a function

of q for two values of α/f (figure 5.6). One observes that as q → 1 the mixed state

tends to the stationary state made only of cooperators C1, which is the stable state for

q = 1.

Finally, one can obtain the phase diagram separating the two behaviours in terms

of the two parameters governing the system. The separation line is found by imposing

ci = 0 in equation (5.13), i.e. α/f = γc. The analytical expression for γc is long but it

can be solved numerically (see figure 5.7).

5.2.3 Comparison with the agent-based model

The phase diagram, figure 5.7, shows that cooperation is favoured at large costs q

for defecting, as expected, and also at large numbers of attacks in a lifetime, α/f . The

latter behaviour is surprising, since at first sight interactions should benefit defectors

versus cooperators. However, we must bear in mind that attacks are indiscriminate and

then a fraction of the attacks fall on defectors themselves, thus reducing the number of

defectors in active states. The dynamics of the system shows that for a large enough

number of attacks in a lifetime, the number of active defectors decrease enough so as
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Figure 5.5: Phase transition. Fraction of cooperators (c1/N , solid line; c0/N , dotted
line) as a function of parameter α/f for (a) q = 0.5 and (b) q = 0.7. Below a critical
value, cooperators die out.
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line) and defectors (dashed line) as a function of parameter q for (a) α/f = 1 and (b)
α/f = 10. Below a critical value, cooperators die out.
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Figure 5.7: Phase diagram. For large costs q or large average number of attacks in a
lifetime, α/f , cooperators survive in coexistence with defectors.

to allow for the survival of cooperators. This happens in a continuous phase transition

as seen in figures 5.5 and 5.6. Let us note that the latter behaviour was partially

observed in the original agent-based model. There, the attacking rate α was set to

unity by construction of the model, so that it could not be modified. However, it was

found that cooperation increased when the death rate f decreased, in agreement with

the predictions of the present model.

Let us further compare the agent-based model in section 4 and the simplified an-

alytical model presented here. As previously noticed, they show a similar qualitative

behaviour, both displaying a phase transition from purely defective states at low costs

and small death rates to stable coexistence states in the opposite limit. However,

there exist a few differences between them. The numerical simulations of the former

model predicted dominance of cooperators for large costs (see figure 4.2 in chapter

4), whereas this does not occur in the analytical model. We have checked this differ-

ence of behaviour by performing large-size simulations of the agent-based model, thus

minimising finite size effects; they confirm the extinction of defectors for large costs,

and the existence of a region where they extinguish due to stochastic fluctuations in

coexistence states with few defectors.
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5.3 Resources constraining reproduction with con-

stant population size

One of the main results in the previous section is that a well-mixed population of

unconditional cooperators extinguishes for infinite resources (where the system plays a

PD game) but may survive for some parameter values when resources are finite (where

the game is not a PD anymore). This suggests the possibility of a transition from a

population of only defectors when resources are abundant to a population containing

cooperators for more stringent environments. The existence of this transition should

have great interest, since it would provide a resource-based mechanism preventing the

spread of defectors and thus may shed light on the conditions under which cooperators

could appear through evolution. Indeed, this effect has been recently observed experi-

mentally in yeast cultures [110], and has also been found in a model for the survival of

aerobic cells inside anaerobic cultures [95,96]. The model depicted in sections 5.2 and

5.1, however, do not yield such a transition: in these models we considered that the

population was ruled by a resource limiting reproduction, and that deaths occurred at

a constant rate, so that the limiting resource influx determined the population size; as

it was thoroughly discussed, a reduction in the resource flux just decreased the size of

the population in the same proportion, but it did not modify its composition. In this

section we consider a different situation in which the limiting resource constraining

reproduction is different from the limiting factor constraining population size. For in-

stance, limiting factors for bacteria include nutrients, as Carbon or Nitrogen, space, and

light (for photosynthetic bacteria), to name some. The situation studied in this work

might happen by the combination of two different nutrients or, in a simpler case, by the

combination of a limiting nutrient for reproduction, and space constraining population

size. If there is a flux of an available nutrient which is necessary for reproduction in a

certain area or volume where the bacteria might live, bacteria will increase in number

until the total habitable area or volume is occupied; further reproduction drives some

of the bacteria out of the habitable area. As an example, sub-aquatic volcanoes are

a constant source of nutrients for some bacteria, which live in the surrounding area,

and which has very specific environmental conditions, as heat and nutrient concen-
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tration. This area is clearly limited, which constrains population size, while nutrient

concentration constrains reproduction.

In this section we show that, in the situation just described, a system of uncon-

ditional players displays a phase transition from a population of defectors when the

resource limiting reproduction is abundant, to the coexistence of cooperators and de-

fectors when it is scarce. To this end, we develop a stylised model, similar to the one

in section 5.2, which consists of an evolving well-mixed population of self-replicating

individuals that receive resources from the environment and exchange resources during

interactions. However, we focus in a limiting resource constraining reproduction while

population size is constant.

5.3.1 The model

The model consists of an evolving well-mixed population of self-replicating indi-

viduals that receive resources from the environment and exchange resources during

interactions. Again, no memory, learning abilities or any other sensory inputs are as-

sumed. Each individual i is represented by its internal amount of resources, Ei, which

in this simplified model is either 0 or 1, and its strategy, namely cooperate (C) or

defect (D). The internal amount of resources may be interpreted as the amount that

belongs to it independently of how (it may be in its surroundings, for instance). Each

defector attacks at a rate α per unit time to individuals chosen at random and steals

its internal resources. To do so, the defector must have internal resources greater than

0 (i.e. Ei = 1), otherwise it does not attack. In every interaction, the defector loses its

unit of resources with probability q, which can thus be seen as the average cost paid by

a defector in an interaction. If the interaction partner has no resources, no reward is

obtained. Cooperators do nothing, they just eventually suffer from defector’s attacks.

We assume that behaviours are inherited without mutation and represent physiologic

or morphological characteristics intrinsic to individuals which cannot be modified by

choice.

Each individual receives from the environment γ units of resources per unit time in-

dependently of its strategy, thus not modifying the interaction payoff structure. When

an individual with internal resources Ei = 1 receives an extra unit of resources it splits
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into two identical copies, each one with Ei = 1. Along with reproduction, we assume

that players die with a probability f , independently of its strategy, in such a way that

the number of individuals in the population remains constant. Therefore, resource

allocation, reproduction and death rules are equal for both cooperators and defectors,

being the strategy the only difference.

Let us note that, in this model, an increase in the environmental resource supply

leads to an increase in γ, the amount of per-capita resources obtained by individuals.

This contrasts with the models in sections 5.1 and 5.2, where an increase of resources

leads to a proportional increase in the population size while keeping the same per-capita

value.

We consider simultaneous interactions and large populations so that we can make a

continuum approach. We denote by c0 and c1 the fraction of cooperators with internal

resources 0 and 1, and d1 and d0 = 1−c0−c1−d1 the fraction of defectors with internal

resources 1 and 0, respectively. The equations governing the evolution of cooperators

are the following

dc0
dt

= αc1d1 − γc0 − fc0 (5.14)

dc1
dt

= −αc1d1 + γ(c0 + c1)− fc1 (5.15)

The αc1d1 term shows the fraction of cooperators C1 that lose their internal resource

unit after the attack of defectors (the latter pertaining to the population d1); these

individuals move from population c1 to c0. The term in γc0 quantifies the fraction of

individuals C0 that change to population c1 after getting a unit of resources from the

environment. In addition, individuals in population c1 that receive resources from the

environment replicate, thus increasing the c1 population. The terms fci describe the

fraction of individuals dying in each population per unit time.

To describe the evolution of defectors is enough to write the equation for population

d1 because d0 is just the remaining fraction of the whole population. The dynamic

equation for d1 is
dd1
dt

= −αqd1 + αc1d1 + γ(d0 + d1)− fd1. (5.16)

The terms related to deaths and resource allocation from the environment are analogous

as for cooperators. The interaction term is as follows. On the one hand, with probabil-
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ity q individuals D1 lose its resource unit when interacting with individuals C0, D0 and

D1; this leads to a decrease in the population of d1 in an amount αqd1(c0+d0+d1). On

the other hand, when interacting with individuals C1, individuals D1 sequester their

resource unit; therefore, either the population of D1 does not change, with probability

q, or it increases due to reproduction at a rate αc1d1(1− q).

To complete the equations of the model, we need an expression for the death rate

f . In order to have a constant population size, the frequency of deaths must equal the

frequency of reproductions. This leads to

f = γ(c1 + d1) + α(1− q)(c1 + d1)d1. (5.17)

The first term denotes reproductions due to resource allocation and the second one to

reproduction of D1 individuals when attacking individuals with Ei = 1 and not paying

the cost. equations (5.14)–(5.17) are the equations of our model. They can be further

simplified by noticing that one can divide all the equations by parameter γ and absorb

it into the time parameter; therefore, there are just two dimensionless parameters in

the model, q and β = α/γ. A large β value indicates either large defector attack rates

or small resource influxes from the environment; conversely, large resource influxes or

small attacking rates yield small β values. The dimensionless equations are the same

equations (5.14)–(5.17) replacing α by β, and γ by 1.

The numerical resolution of the model shows that the system is attracted to a glob-

ally stable fixed point independent of initial conditions. Depending on the parameter

values, the final fate is either a population of defectors (an expected solution) or, inter-

estingly, a stable mixture of cooperators and defectors. Remarkably enough, for fixed

q, small β values, i.e. large resource influxes, provide a population of just defectors,

but when β exceeds a critical value βc a mixed state appears, thus providing a smooth

phase transition from defective states to mixed states as resources become scarce (see

figure 5.8). The existence of stable mixed states in the model may be explained in

terms of the overexploitation mechanism discussed in chapter 4: an excess of defectors

may reduce the resources owned by cooperators and, as a result, the average reward

obtained by defectors; eventually, rewards decrease below costs and cooperators re-

cover. Interestingly, we can obtain simple analytical expressions for the composition
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Figure 5.8: Phase transition for q=0.5. The fraction of cooperators c0, c1 and defectors
d1 above the threshold are denoted with solid, dashed and dotted lines, respectively.
Below the critical value βc = 7.58 cooperators die out.

of the mixed state as a function of parameter β above the threshold:

ci = ai(1−
βc

β
), d1 =

a2
β
, (5.18)

with ai and βc functions of parameter q.

Remarkably, the dynamics in coexistence states self-organises defectors rewards to

be (almost) equal to costs thus turning the payoff matrix to neutral. According to the

model, the payoff matrix for an average interaction is


C D

C 0 −E ′
r

D E ′
r − Ec −Ec

 (5.19)

with E ′
r the average reward obtained when a defector attacks a cooperator, and Ec = q

the average cost paid when a defector attacks. Then, the average reward received by

defectors when interacting with cooperators is E ′
r = c1/(c0+c1). equation (5.18) shows

that E ′
r = a1/(a0 + a1) and then it is a function dependent only on q, and not on β.

figure 5.9 displays the reward E ′
r as obtained numerically versus the cost q showing that

E ′
r ≃ q. They are not exactly equal because, as explained in equation (4.3) of chapter 4,

they may differ when death frequencies f are not small compared with resource intake.
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Figure 5.9: Defectors benefit versus costs in coexistence states. It equals the frequency
rate function f(q) (see text). The dashed line E ′

r = q is a guide to the eye.

In the present model, f cannot be arbitrarily chosen because of the constant population

condition. Indeed, equations (5.14)–(5.15) readily show that f = c1/(c0+ c1) = E ′
r and

then figure 5.9 also displays f(q). One observes that f is generally of order 1 (this is

the cause of the small deviations found in figure 5.9). At small q, however, f is also

small and E ′
r and q match perfectly.

One can further study the transition by drawing a phase diagram β−q with the re-

gions where each behaviour dominates. It is possible to obtain an analytical expression

for the critical curve βc(q) by performing a stability analysis. To do so, let us recall that

for a fixed point to be stable in three dimensions the trace and determinant of the Jaco-

bian matrix must be negative, since all three eigenvalues must be negative. Our model

system given by equations (5.14)–(5.17) has at least two fixed points, corresponding

to pure populations of cooperators and defectors: (A) c1 = 1 (the remaining variables

equal to 0), and (B) c0 = c1 = 0 and d1 ̸= 0 obeying, according to equation (5.16),

d1(f + βq) = 1. (5.20)

As we know, it may also have a mixed fixed point, given by equation (5.18), but it

need not be considered for our present purpose. Linear stability of fixed point A leads
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to the jacobian matrix 
−2 0 β

1 −1 −1− 2β + βq

−1 −1 β(1− q)− 1

 , (5.21)

with determinant D = 4β(1 − q) > 0. The positive sign shows that at least one

of its three eigenvalues is positive. Then point A is always unstable for q < 1 and

cooperators never occupy the whole population. Fixed point B provides the following

jacobian matrix 
−1− f∗ βd∗1 0

1 1− βd∗1 − f ∗ 0

−1 −1− d∗1
df

dc1
+ βd∗1 −βq − f∗ − d∗1

df

dd1

 , (5.22)

where d∗1 and f∗ are the values of these quantities in fixed point B. To be compact, let

us call J33 = −(βq+f∗+d∗1(1+2β(1−q)d∗1)) < 0. The trace is T = J33−2f∗−βd∗1 < 0,

and the determinant can be written as

D = J33(−1 + βd∗1f∗ + f 2
∗ ). (5.23)

Then, for point B to be stable the term inside parenthesis has to be positive. Although

this is not a sufficient condition to prove that point B is stable, the numerical resolution

of equations (5.14)–(5.17) shows that this is the case; this is the region where defectors

are dominant. When the parenthesis in equation (5.23) is negative point B becomes

unstable, which means that a small fraction of cooperators will grow and survive (notice

that point B is the only fixed point with only defectors). Then, since point A is also

unstable, in this situation there must exist a third (mixed) fixed point in the dynamics.

equation (5.18) supplies the solution for this mixed fixed point and numerical solutions

show it is a stable attractor, the one describing the stationary coexistence of cooperators

and defectors found at large β values. In order to obtain the curve βc(q) separating

the regions of dominance of defectors from the mixture of cooperators and defectors

we should find d∗1 from equations (5.17) and (5.20) and solve the equation

−1 + βcd
∗
1f∗ + f 2

∗ = 0. (5.24)
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Figure 5.10: Phase diagram. The solid line indicates the numerical solution, the dashed
line the analytical approximation βc = q−3. Cooperation is favoured at large β, i.e.
small resource fluxes or large attacking rates (see text).

The exact analytical solution of this transition curve is very cumbersome, so that we

try two alternative routes. One is to obtain a numerical solution (see figure 5.10, the

other one is to find an approximate analytical solution. In this sense, let us note that,

if β2q3 ≫ 1 equations (5.17) and (5.20) show that d∗1 ≃ (βq)−1, because βq ≫ f∗ ≃

(βq2)−1. In this limit, the instability condition (5.24) just gives

βc = q−3, (5.25)

which provides an excellent approximation not only for β2
c q

3 ≃ q−3 ≫ 1 (say q . 0.5 )

but over the whole range 0 ≤ q ≤ 1 as shown when compared with the exact numerical

solution (figure 5.10).

figure 5.10 shows that cooperation is favoured at large costs q and large β, whereas

defectors dominate in the opposite limit. The origin of the dependence on the average

cost q is rather direct: the larger the cost, the less favourable for defectors to reproduce.

The dependence on parameter β is, however, counterintuitive since (at first sight) one

would expect that large attack rates (large β) should benefit defectors. The explanation

is not easy due to the nonlinearities involved in the model. One might think that the

origin of the observed behaviour relies on the exploitation mechanism that explains the

existence itself of coexistence states, and accordingly reason that large attacking rates

would cause a great damage on cooperators, which would reduce rewards over costs,

ultimately harming defectors. However, this is not what happens, since we have seen
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above that the average reward E ′
r is a function of q only, and then it does not change

when increasing β at fixed q.

One explanation of why large β favour cooperators is that it leads to a small fraction

of defectors in the active state (D1), thus reducing the damage on cooperators. In

effect, if resources are abundant individuals receive them frequently and there will be

large populations of D1 individuals; if resources are scarce, only a few individuals will

be in state Ei = 1. The same occurs if attacking rates are large. Since attacks are

indiscriminate, defectors are also victim of the attacks, which decrease the number ofD1

individuals; conversely for small attacking rates. This explanation is consistent with the

behaviour of d1 displayed in figure 5.8. Indeed d1 decreases yet from β = 0, i.e. below

the transition, as it can be seen from our approximate solution d∗1 ≃ (βq)−1. Below

some critical population value depending on q (around q2) the reduced population of

defectors in the active state is not capable of extinguishing cooperators. It is worthwhile

to point out that parasites continuously receive resources from the environment and

interact, and then, they change from active to inactive states continuously. In the

stationary state, the fraction of defectors in the population is d0 + d1. These defectors

spend a fraction of time d0/(d0+d1) in inactive states and d1/(d0+d1) in active states.

5.4 Conclusions

In this chapter, we have studied the dynamics of three analytical models describing

the evolution of well-mixed populations of unconditional cooperators and defectors

under limiting resources. These models try to capture and expand the essence of the

agent-based models presented in previous chapters. The main differences of the models

introduced here and the agent-based models are, on the one hand, that the distribution

of internal resources is limited to two states, instead of a continuous distribution and,

on the other, that the cost paid by defectors is now a stochastic process. Furthermore,

the third model deals with constant population sizes, which was not implemented in

the agent based models.

Analytical models have the advantage with respect to simulation models of allowing

for a complete and more compact analysis of their behaviour. Indeed, we have expanded

the study of the agent-based models by separating the time scales of all the mechanisms

99



in the model. In effect, in the agent-based models, we assumed equal rates for attacks

of defectors and the feeding process. Here, in contrast, we consider different rates

for each process. This increases in one the number of parameters. However, the

nondimensionalization of the models has permitted us to identify the dimensionless

parameters ruling the model dynamics, a study which is not easy to perform in agent-

based models. As a result, we have easily seen that in sections 5.1 and 5.2 the resource

influx from the environment determines the steady state size of the final population,

but not its composition, a result that was observed in the simulations of the agent based

models. Furthermore in the three models (sections 5.1–5.3) the final composition is

ruled by just two parameters: the average cost paid by defectors and the number of

attacks in a characteristic time.

The behaviour of the analytical models resemble very much the ones obtained in

the corresponding more complex agent-based models, remarkably allowing for the sur-

vival of cooperators in some regions of the parameter space. When resources limit

only reproduction, cooperators are able to coexist with defectors at larger defectors

cost and larger number of interactions in a lifetime. The latter behaviour may seem

surprising, as one would expect defectors attacks to benefit defectors and harm coop-

erators. However, since attacks are indiscriminate, a large number of interactions in a

lifetime reduces the number of defectors in active states and eventually allows for the

survival of cooperators. Remarkably, this process occurs following a phase transition, so

that cooperators are able to survive only when parameters surpass some critical value.

When resources restrict reproduction and survival the fate of the system is essentially

a population of defectors at small defector costs, and a population of cooperators at

large costs, separated by a thin region of coexistence at intermediate costs. Aside from

the coexistence region in the second model (resources constraining also survival), this

is the behaviour found in the agent-based model. The origin of this difference is proba-

bly due to the different resource distribution in both models (discrete in the analytical

model, and continuous in the agent based model).

Finally, we have developed a simple model describing a phase transition from defec-

tive parasitic populations when resources are abundant to the survival of pacific coop-

erators when resources are scarce. In contrast to the models in chapters 3 and 4, and
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sections 5.1 and 5.1, where the same limiting resource ruled reproduction and popula-

tion size, and which do not display this transition, the model studied here assumes that

the factor limiting reproduction is different from the one limiting the population size.

The simplest case for the latter is space limitation. Thus, the results presented here

may represent a first step in the route towards the emergence of undifferentiated mul-

ticellularity by cooperative aggregation triggered by resource or energetic constraints.
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Part III

Destruction as a source of
regeneration
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In this block we study the effect of destructive behaviours in the promotion of coop-

eration. To this end, we introduce destructive agents –called Jokers in the following– in

a population of unconditional cooperators and defectors fulfilling a prisoner’s dilemma.

We will show that the introduction of this third agent is able to induce robust evolu-

tionary cycles in the presence of mutations, where Defectors beat Cooperators (as it

corresponds to a PD), which are overcome by Jokers which, in turn, are defeated by

Cooperators, in a Rock-Paper-Scissors (RPS) dynamics. To this end, the three strate-

gies are engaged in a Public Goods (PG) game, a standard generalisation of the PD

for more than two agents. The joker behaviour represents the first simple behaviour (it

does not require any special feature or cognitive ability) which allows for the existence

of cycles when mutations are present.

In chapter 6 we analyse the dynamics generated by Jokers in infinite populations

through the study of the replicator-mutator equation. In chapter 7, we expand the

analysis to finite populations obeying several selection rules, showing the robustness of

the cyclic dynamics.
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Chapter 6

Destruction and regeneration, the
altruism cycle

Summary

The study of the effect of Jokers (destructive agents) in the evolution of cooperation

in infinite populations is carried out in this chapter. The chapter is organised as follows.

Section 6.1 motivates the study and presents biological and social systems where the

effect studied might be observed. In section 6.3 the model is presented and the existence

of cycles shown. Section 6.4 is devoted to analyse the replicator dynamics for infinite

populations. Finally, section 6.5 compares the joker model with other RPS dynamics

and discusses the results.

6.1 Introduction

Piotr Kropotkin supported the idea that the evolution of mutual aid is an impor-

tant factor for the evolution of individuals facing a common risk or danger, as it might

be the entropy, an inclement weather or a common enemy. A metaphorical example

of such danger–induced cooperative behaviours can be found in the recent Hollywood

movie The Dark Knight (2008), where the comic character known as the Joker jeop-

ardises a whole society spreading chaos and destruction with no aim of benefit at it.

The situation is so critical that even the mob is willing to cooperate with honest peo-

ple to stop the Joker–created nonsensical catastrophe. This fiction provides a visual

metaphor of how an event like this can force exploiters of society to collaborate tem-

porarily to fight the common enemy. Society is an emergent structure resulting from
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the cooperation among its members, and exploiters need society to survive, even if

they do not contribute to it. Thus they are specially sensitive to the destruction of

society precisely because, being selfish agents, society is their only source of survival.

The appearance of the Joker provides a strong incentive for cooperation.

Beside situations like the one depicted by the Joker metaphor, the importance of

the inclusion of malicious agents on the game is also illustrated in other scenarios.

Here are a few examples. Temporary coalitions of rival parties are constantly formed

whenever a common enemy arises, only to restore their old rivalry once this enemy

has been wiped out. During the Second World War U.S.A. and U.S.S.R. were allied in

fighting Hitler, but they got engaged in the Cold War for decades after the danger of

Nazism had been ruled out. It is also well known that strong affective links between

humans are created when they face a common difficult situation. Biology is another

source of potential examples. For instance, it has been shown that the perception of

an increase in the risk of predation can induce cooperative behaviour in some bird

species [111]. Indeed, prey species frequently form groups to increase the survival rate

against predator attacks [112, 113]. In some cases, this has been proven to happen

even in the absence of kinship among its members, as in the collective defence of spiny

lobsters [114].

The existence of these temporary coalitions for defence against a common danger

in rational and irrational agents alike calls for an evolutionary explanation. In this

section a stylised evolutionary game [115] is presented, aimed at studying theoretically

this enhancement of cooperation driven by the emergence of purely destructive agents.

The game does not try to model any specific situation, but it proposes an abstract

setting in which the role of the indiscriminate destructive action of these agents in

enhancing cooperation is made clear.

The model presented here is a modification of the standard Public Goods (PG) game

[116], the n-players version of the Prisoner’s Dilemma and a paradigm of the risk of

exploitation faced by cooperative behaviour [39]. It has been shown that several mech-

anisms involving reputation [117], allowing for volunteer participation [118, 119], pun-

ishing defectors [120, 121], rewarding cooperators [53] or structuring agents [122–124],

can enhance cooperation. Here, we present a different mechanism for the enhancement
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of cooperation based on the existence of destructive agents.

The game involves n players who belong to one out of three different types: co-

operators, who contribute to the public good at a cost for themselves; defectors, who

free-ride the public good at no expense; and jokers, who do not participate in the

public good —hence obtain no benefit whatsoever— and only inflict damage to the

public good. Remarkably, the appearance of jokers promotes a rock-paper-scissors dy-

namics, where jokers outbeat defectors and cooperators outperform jokers, which are

subsequently invaded by defectors. In contrast to previous models [118,119], the cycles

induced by jokers are limit cycles, i.e. attractors of the dynamics, and exist in the

presence of mutations; these properties make them robust evolutionary outcomes.

Therefore, paradoxically, the existence of destructive agents acting indiscriminately

promotes cooperation.

6.2 The public goods game

The public good (PG) game is a generalisation of a prisoner’s dilemma to the case

in which interactions happen in groups of size n instead of between pairs of individuals

(see section 1.5). In a PG game there is a population of M individuals. Then, n ≤ M

individuals are extracted at random out from the total population and are engaged in

the game: each individual contributes to a common pool according to its strategy, this

pool is multiplied by some synergistic factor and, finally, the pool is equally shared

among the n players. This provides the payoff of each individual for one round. It is

usually assumed that interactions happen many times, and the averaged payoff results

in the fitness variation –it is usually added to a constant baseline fitness– of each

strategy. The evolutionary dynamics depends on the particular imitation rule chosen.

In a typical PG with cooperators (altruists) and defectors, each cooperator in an

interaction group contributes with a cost c to the common enterprise, which turns into

a benefit b = rc to the group, being r > 1 the synergetic gain factor (for simplicity,

one can take c = 1); defectors do nothing. Therefore, if there are m cooperators in the

group the common good ascends to mr and each player (cooperator or not) receives a

benefit of mr/n. The payoff for each defector is ΠD = mr/n, and that for a cooperator,

ΠC = ΠD − 1, since the latter pays a cost c = 1. Thus, defectors have a higher payoff
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than cooperators in any interaction group.

For large populations, if r < n, it can be seen (see appendix 6.A) that the average

payoff of cooperators is smaller than that of defectors, PC < PD, so that defectors get

rid of cooperators and the final common good vanishes (i.e. the tragedy of the commons

happens). In contrast, if all of them cooperated, they would obtain a common good

of n(r − 1). Then, the case r < n is a dilemmatic situation similar to the PD. On

the contrary, if r > n, the situation is the opposite, PC > PD, and it always pays to

cooperate.

In what follows, we analyse the fate of a population of Cooperators, Defectors and

Jokers in the dilemmatic situation, r < n, and show that robust cycles may appear in

the presence of mutations.

6.3 A public goods game with jokers: existence of

limit cycles

The public goods game with Jokers works as follows: Groups are formed randomly,

and each player’s strategy is established before the group is selected. Hence, players

have no memory. Every cooperator yields a benefit b = rc (r > 1) to be shared by

cooperators and defectors alike, at a cost c for herself (this cost can be set to c = 1

without loss of generality: all other payoffs are given in units of c), and defectors

produce no benefit at all but get their share of the public good. As for the new agents

(jokers), every joker inflicts a damage −d < 0 to be shared equally by all non-jokers

and gets no benefit. In a given game 0 ≤ m ≤ n denotes the number of cooperators,

0 ≤ j ≤ n the number of jokers, and n−m− j ≥ 0 the number of defectors; S = n− j

expresses the number of non-jokers. In this group, the payoff of a defector will be

ΠD(m, j) = (rm− dj)/S, and that of a cooperator ΠC = ΠD − 1. Then, in each group,

defectors will always do better than cooperators. The payoff of Jokers is always 0. In
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summary, we have

ΠD(m, j) =
rm− dj

S
, 0 ≤ m ≤ S − 1 ≤ n− 1,

ΠC(m, j) =
rm− dj

S
− 1, 1 ≤ m ≤ S ≤ n, (6.1)

ΠJ(m, j) = 0, 0 ≤ S ≤ n− 1.

A usual requirement of PG games is that r < n. Without this requirement the

solution in which all n players are defectors is no longer a Nash equilibrium —hence the

dilemma goes away. As shown later, the evolutionary dynamics for infinite populations

yields the same constraint, i.e., if r < n the dynamics asymptotically approaches the

tragedy of the commons. However this is no longer true for finite populations, where

the upper bound of r for which the tragedy of the commons takes place grows as M ,

the population size, decreases. In this case the tragedy of the commons arises whenever

r < rmax = n(M−1)/(M−n) (see appendix 6.A; notice in passing that for a population

of M = n individuals, the evolutionary dynamics yields a tragedy of the commons for

every r > 1).

An invasion analysis provides the clue as to why a rock-paper-scissors (RPS) cycle

is to be expected when jokers intervene in the game. We shall assume that we have a

population of M players of the same type and will consider putative mutations of one

individual to any of the other two types. The mutation will thrive if the average payoff

of the mutant after many interactions overcomes the average payoff of a non-mutant

player. The result of this analysis (see appendix 6.A) is summarised in figure 6.1,

which represents the three different patterns of invasion that can be observed within

the region of interest 1 < r < rmax, d > 0:

I Rock-paper-scissors cycle: It arises whenever r > 1+ d(n− 1). This condition

expresses the fact that a single cooperator gets a positive payoff in spite of the

damage inflicted by n− 1 jokers and therefore being a cooperator pays (jokers get

no payoff whatsoever).

II Joker-cooperator bistability: If 1 + d/(M − 1) < r < 1 + (n − 1)d neither

jokers nor cooperators can invade each other. Nonetheless defectors always invade

cooperators, and jokers always invade defectors, so eventually only jokers survive,
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Figure 6.1: Dynamics of invasions in a Public Goods game with jokers. The
axes represent the gain factor r of the Public Goods game (i.e., the payoff each cooper-
ator yields to the public good) and the “damage” d > 0 that every joker inflicts on the
public good. The tragedy of the commons occurs for 1 < r < rmax = n(M −1)/(M −n)
(see text), which includes the dilemmatic region 1 < r < n characteristic of PG games.
Different colours are assigned to different invasion patterns: Light blue corresponds to
a region where J invades both C and D (III); light green corresponds to a region where
neither C nor J invades each other (there is bistability on the J–C line) but D invades
C and is in turn invaded by J, so again everything ends up in J (II); finally, light yellow
corresponds to a region where D invades C, J invades D, but C invades J back, thus
generating a rock-paper-scissors cycle (I). The latter behaviour is the essence of the
Joker effect. The equations of the straight lines separating the three regions are (from
top to bottom) r = 1 + d(n − 1) and r = 1 + d/(M − 1). Notice that this scheme is
valid for arbitrary n > 1. Also, for fixed r, all three regions are crossed upon varying d,
whereas vice-versa is only true provided d < d1 = M/(M−n). The Joker effect does not
occur if d > d1. For large populations, M ≫ 1, the region for the rock-paper-scissors
cycle simplifies to n > r > 1 + (n− 1)d and d < 1.

either because they are initially a majority or indirectly through the emergence of

defectors.

III Joker invasion: If r < 1 + d/(M − 1) jokers will invade any homogeneous pop-

ulation, so a homogeneous population of jokers is the only stable solution. Notice

that this region disappears for large populations (M → ∞) because r > 1.

The RPS cycle C→D→J→C occurring in region I is the essence of the Joker effect.
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6.4 Infinite population dynamics

We can gain further insight into this effect by studying a replicator-mutator dynam-

ics [16]. We assume a very large population in which the three types are present at time

t in fractions x (cooperators), y (defectors), and z = 1−x−z (jokers). Agents interact

with the whole population by engaging in the above described game within groups of n

randomly chosen individuals [125]. Average payoffs of a cooperator, a defector, and a

joker are denoted PC(x, z), PD(x, z), and PJ(x, z), respectively. Assuming individuals

of a given type mutate to any other type at a rate µ ≪ 1, the replicator-mutator

equations for this system will be

ẋ = x(PC − P̄ ) + µ(1− 3x),

ẏ = y(PD − P̄ ) + µ(1− 3y),

ż = z(PJ − P̄ ) + µ(1− 3z),

(6.2)

where P̄ = xPC + yPD + zPJ is the mean payoff of the population at a given time.

Explicit expressions for PC, PD, and PJ can be obtained by averaging over all samples

of groups of n players extracted from a population containing Mx cooperators, My

defectors, and Mz jokers, in the limit of very large populations (M → ∞); the deriva-

tion can be found in 6.B. Let us recall that the parameters of the game in the infinite

population limit satisfy 1 < r < n and d > 0; the first condition enforces the public

goods dilemma, and the second one implies that jokers beat defectors in the absence

of cooperators, because defectors receive the damage inflicted by jokers thus obtaining

a negative payoff.

The stability analysis of the dynamical system (6.2) recovers the picture displayed in

figure 6.1 (taking M → ∞). When r < 1+(n−1)d the system is in region II. The only

stable equilibrium is a population of only jokers and any trajectory of equation (6.2)

is asymptotically attracted to it. Thus, in this region the destructive power of jokers

is high enough to wipe out the populations of both cooperators and defectors. But the

most interesting situation takes place when

r > 1 + (n− 1)d, (6.3)

i.e., in region I. In the absence of mutations the dynamical system (6.2) has three

saddle points at the corners of the simplex as well as an unstable mixed equilibrium
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Figure 6.2: The Joker effect in public goods games for large, well-mixed
populations. The simplex describes the replicator-mutator dynamics, equation (6.2),
for a population of cooperators, defectors and jokers with parameter values satisfying
n > r > 1+d(n−1), for which a rock-paper-scissor dynamics is expected (yellow region
in figure 6.1). When mutation rates are small, the only equilibrium is a repeller (white
dot), and trajectories end up in a stable limit cycle (black line). Thus the presence
of jokers induces periodically a burst of cooperators. Cooperators abound during short
time spans, as shown by the small fraction of cooperators in the equilibrium point.
Parameters: n = 5, r = 3, d = 0.4 and µ = 0.005. (Images generated using a modified
version of the Dynamo Package [127]).

(see appendix 6.C). As a consequence, the attractor of the system is the heteroclinic

orbit C → D → J → C. The period is infinite because the system delays more and

more around the saddle points. When mutations occur the corners of the simplex

are no longer equilibria, and one is left with the interior fixed point, which for small

mutations is a repeller (see appendix 6.C). Since trajectories are confined within the

closed region of the simplex, they are attracted to a stable limit cycle for any r > 1 (a

direct consequence of the Poincaré-Bendixon theorem [126]), as shown in figure 6.2.

The size of the cycle depends on the parameter values. It grows as d increases

—i.e., when jokers play a more important role (figure 6.3)— and as the mutation rate

decreases (figure 6.4). For both, large values of d [compatible with condition (6.3)]

114



Figure 6.3: Replicator-mutator dynamics as a function of the damage d in-
flicted by jokers. For a fixed mutation rate, the size of the cycles increases as the
damage increases. Parameters: n = 5, r = 3 and µ = 0.001.

Figure 6.4: Replicator-mutator dynamics as a function of the mutation rate
µ. (a) For very small mutation rates cycles approach the boundary of the simplex.
(b) As µ increases, the cycle amplitude decreases and, above a critical value (typically,
µc ≃ 0.01), cycles disappear in a Hopf bifurcation yielding a stable mixed equilibrium
(c). Parameters: n = 5, r = 3 and d = 0.4.
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and very small mutations, the cycle closely follows the boundaries of the simplex (see

figure 6.4a). By increasing the mutation rate (typically over 0.01), cycles disappear in

a Hopf bifurcation yielding a stable mixed equilibrium (figures 6.4b-c).

6.5 Discussion on Jokers in infinite populations

The evolutionary scheme presented in the last section has some resemblances with

the effect of volunteering in a PG game [118, 119]. There, the introduction of a third

agent (so called loner), which does not participate in the game but receives a constant

payoff, is able to generate cycles. However, the two games are fundamentally different.

This can be told from the dynamic behaviour of the system. In both cases, the exis-

tence of a third agent which does not participate in the game is the ultimate reason

why cooperators periodically thrive through a Rock-Paper-Scissor dynamics. However,

while the loners game leads to neutrally stable cycles around a centre, trajectories

in the Joker model are attracted by the heteroclinic cycle C–D–J–C. The difference

is even more striking if mutations are included. Mutations replace the cycles in the

loner model by a stable mixed equilibrium. In contrast, in the Joker model mutations

substitute the heteroclinic orbit by a stable limit cycle, which undergoes a transition

(Hopf bifurcation) to a stable mixed equilibrium above a threshold mutation rate.

These two scenarios can be understood from the analysis of general RPS games

[115]. In the absence of mutations there are three situations: (a) orbits are attracted

towards an asymptotically stable mixed equilibrium (the case of the loners game with

mutations), (b) orbits cycle around a neutrally stable mixed equilibrium (the case of

the loners game without mutations), and (c) orbits go away from an unstable mixed

equilibrium and approach the heteroclinic orbit defined by the border of the simplex

(the case of the Joker game without mutations). If mutations are added to the latter

type of RPS games, limit cycles and a Hopf bifurcation upon increasing the mutation

rate are also found [128]. Limit cycles are robust to perturbations and have a well

defined amplitude irrespective of the initial fractions of players (as long as it is not at

the border of the simplex). Therefore, they are true attractors of the dynamics, and

can thus be regarded as a robust evolutionary outcome, in contrast to neutrally stable

cycles.
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Figure 6.5: Replicator-mutator dynamics for d = 0. If jokers are just passive
agents cooperators go extinct. (a) µ = 0. The system ends up in a point of the line DJ
with a majority of defectors. (b) µ = 0.001. Mutation generates one single stable state
made up mostly by defectors. Parameters: n = 5, r = 3 and d = 0.

In contrast to loners, which do not participate in the game but receive a benefit

outside of it, jokers do not receive any benefit at all and cause damage to players. Both

loner and joker models coincide —in the absence of mutations— when the damage

inflicted by jokers and the benefit obtained by loners are both zero. In this case both

become simply non-participants in the game, and the only effect they produce is a

reduction in the effective number of players in the game, which is not enough to induce

an oscillatory dynamics (see figure 6.5). In other words, the appearance of the RPS

cycle which periodically increases the population of cooperators in the presence of

jokers can only happen, remarkably, provided d > 0, i.e., if jokers are truly destructive

agents.

6.6 Conclusions

In this chapter light has been shed on a still unexplored aspect of evolutionary

game theory (the presence of a destructive strategy) in the prototypical PG game. It

has been shown, both theoretically and by numerical simulations, that the addition of

purely destructive agents (jokers) to a standard PG game has, paradoxically, a positive

effect on cooperation. Bursts of cooperators are induced through the appearance of

a RPS cycle in which jokers beat defectors, who beat cooperators, who beat jokers

in succession. The evolutionary dynamics provoked by the Joker, with periods of

cooperation, defection and destruction of the PG, may help understand the appearance
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of cognitive abilities that allow individuals to foresee the destructive periods, promoting

in advance the necessary cooperation to avoid them.

As shown, the “Joker effect” occurs both in finite and infinite populations, discard-

ing the possibility of its being an artificial size-depending phenomenon. The study of

finite populations by means of stochastic methods is carried out in the next chapter.
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Appendices

6.A Finite populations: invasion analysis

We shall consider the situation in which in a homogeneous population of M indi-

viduals with the same strategy Y, one of them mutates (changes) to a different type

X. The new individual will invade provided its average payoff after many interactions,

PX, is larger than the average payoff of a Y individual, i.e., PX > PY. Average payoffs

can be evaluated as follows. The population is made of one X player and M − 1 Y

players. Thus, when playing the game, the X player will always interact with n− 1 Y

players. Therefore

PX = ΠX(1X, (n− 1)Y ). (6.4)

On the other hand, the n− 1 opponents of a Y player can be of just two types: either

all n−1 are Y players, or n−2 are Y players and one is the single X player. The latter

situation occurs with probability (n − 1)/(M − 1). Therefore the average payoff of a

Y player will be

PY = ΠY(nY )
M − n

M − 1
+ ΠY(1X, (n− 1)Y )

n− 1

M − 1
. (6.5)

Next we derive the invasion conditions for homogeneous populations of three types of

players. In this new scenario we must consider the six different situations arising form

the pair interactions that can be formed:

(a) 1D + (M − 1)C.

PC = r − 1− r

n

n− 1

M − 1
, PD = r − r

n
. (6.6)

The tragedy of the commons occurs when defectors overcome cooperators, i.e.,

PD > PC. This happens iff

r < n
M − 1

M − n
. (6.7)
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We will henceforth assume (6.7) to hold. This condition contains the dilemmatic

region 1 < r < n of PG games. In the limit M → ∞, the inequality (6.7) reduces

to r < n and both, the conditions for the dilemma and the tragedy of the commons

coincide.

(b) 1C + (M − 1)D.

PC =
r

n
− 1, PD =

r

n

n− 1

M − 1
. (6.8)

Because of (6.7) PD > PC, so C never invades D.

(c) 1J + (M − 1)C.

PC = r − 1− d

M − 1
, PJ = 0. (6.9)

Since PJ > PC iff

r < 1 +
d

M − 1
, (6.10)

then J invades C iff (6.10) holds.

(d) 1C + (M − 1)J.

PC = r − (n− 1)d− 1, PJ = 0. (6.11)

Since PC > PJ iff

r > 1 + (n− 1)d, (6.12)

then C invades J iff (6.12) holds.

(e) 1D + (M − 1)J.

PD = −(n− 1)d, PJ = 0. (6.13)

As long as d > 0 we will have PJ > PD, then D never invades J.

(f) 1J + (M − 1)D.

PD = − d

M − 1
, PJ = 0. (6.14)

As long as d > 0 we will have PJ > PD, then J always invades D.

Figure 6.1 illustrates the different regions of interest in this game. The most inter-

esting one is that in which there is a rock-paper-scissor rotation between C, D, and J,

which corresponds to

1 < r < n
M − 1

M − n
, 0 < d <

r − 1

n− 1
. (6.15)

120



6.B Infinite populations: average payoffs

We evaluate here the average payoffs PX obtained by each strategy (i =C, D, J)

in this game when the population is very large. These functions will determine the

dynamics of the population through the replicator equation. As before, sample groups

of n individuals playing the game are randomly formed, and it is assumed that each

player is sampled a large number of times before payoffs are compared in order to update

strategies. The payoff for a given strategy is therefore proportional to the average payoff

that a player using this strategy obtains playing against the whole population. This

average payoff will depend only on the player’s strategy and the composition of the

population, described by a fraction x of cooperators, z of jokers and y = 1− x− z of

defectors. Notice that PJ = 0 for any composition of the population, so only payoffs of

cooperators and defectors need to be calculated.

6.B.1 Defectors

The average payoff of a defector is

PD =

⟨
rm− dj

S

⟩
, (6.16)

where the symbol ⟨· · · ⟩ denotes an average over samples of n− 1 opponents randomly

selected from the population. The average ⟨m/S⟩ can be obtained as in [119], yielding⟨m
S

⟩
=

x

1− z

(
1− 1− zn

n(1− z)

)
.

Since j = n − S, the second term in equation (6.16) can be written as n⟨1/S⟩ − 1,

where ⟨
1

S

⟩
=

n∑
S=1

(
n− 1

S − 1

)
(1− z)S−1zn−S 1

S
,

the factor in front of 1/S in the summation being the probability of having S− 1 non-

jokers in a group of n−1 randomly chosen players. By using the identity a
(
a−1
b−1

)
= b

(
a
b

)
,

the latter expression becomes ⟨
1

S

⟩
=

1− zn

n(1− z)
.

Joining the two averages one gets the average payoff of a defector,

PD = r
x

1− z

(
1− 1− zn

n(1− z)

)
− d

(
1− zn

1− z
− 1

)
, (6.17)
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the first term arising from the exploitation of cooperators and the second one being

the damage inflicted by jokers.

6.B.2 Cooperators

The difference PD − PC can be written as

PD − PC =
⟨
1− r

S

⟩
(6.18)

because in a group of S − 1 opponents switching from cooperation to defection yields

a payoff increment of 1− r/S: the defector’s payoff gets reduced by r/S because there

is one cooperator less in the group, but adds 1 to her payoff because she does not pay

the cost of cooperating [119]. The average in the r.h.s. of equation (6.18) just contains

< 1/S >, thus yielding

PD − PC = 1− r

n

1− zn

1− z
. (6.19)

Finally, from equations (6.17) and (6.19) one gets

PC = r
x

1− z

(
1− 1− zn

n(1− z)

)
+

r

n

1− zn

1− z
− 1

− d

(
1− zn

1− z
− 1

)
.

(6.20)

6.C Infinite populations: proof of existence of limit

cycles

To complete the proof that the system ends up in a limit cycle it remains to show

that the interior equilibrium of Eqs ((6.2)) is a repeller, i.e., its two eigenvalues have

positive real parts. The interior equilibrium and its stability can be evaluated in the

limit of small mutation rates, the one we are interested in. In this case, one can neglect

the dependence of µ in the position of the fixed point. We are thus faced with the

solution of the dynamical system ((6.2)) without the mutation term. The calculation

becomes simple for n = 2, and tractable for n > 3. The proofs are treated separately

in the next subsections.
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6.C.1 Interior fixed point for n = 2

The interior fixed point (x0, y0, z0) satisfies PC = PD = 0. According to equa-

tion (6.19), the first equality requires (1 + z0)r = 2, yielding

z0 =
2− r

r
.

Since n = 2 > r > 1, one has 0 < z0 < 1, as it should. The second equality, PD = 0,

produces

x0 = 2d
2− r

r2
.

Condition r > 1 + d from expression (6.3) guarantees that 0 < x0 < 1 and 0 < y0 =

1 − x0 − z0 < 1. In order to analyse the stability of this equilibrium, we consider

frequencies x and z as the independent variables of the two-dimensional system. To

prove that the equilibrium is a repeller it suffices to show that the trace and determinant

of the Jacobian matrix at the fixed point are both positive. For n = 2, equations ((6.2))

become

ẋ = −1

2
x(2dz2 − rz + 2− r − 2x+ rx), (6.21)

ż = z[(1− r)x+ dz(1− z)]. (6.22)

The Jacobian matrix in the interior equilibrium is
d(2− r)2

r2
d(2− r)(r2 + 4dr − 8d)

r3

−(2− r)(r − 1)

r

d(2− r)(3r − 4)

r2

 , (6.23)

whose trace, T , and determinant, D, are

T =
2d(2− r)(r − 1)

r2
> 0, (6.24)

D =
d(r − 2)2(r2 + r(d− 1)− 2d)

r3
> 0. (6.25)

T is positive because n = 2 > r > 1. To prove that the determinant is positive, we

should realise that the second bracket in its expression can be written as r(r − 1) −

d(2− r), which is larger than 2(r − 1)2 > 0 because r > 1 + d.
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6.C.2 Interior fixed point for n > 3

We use the same procedure as in the previous case. The fraction of jokers z0 of the

interior equilibrium arises from PC = PD, namely equation (6.19). Once it is found, x0

follows from PD = 0, c.f. equation (6.17).

Calculation of z0

z0 is obtained as the solution to

1− r

n

1− zn

1− z
= 0, (6.26)

which is equivalent to
n−1∑
i=0

zi = n/r. (6.27)

The latter equation has exactly one solution, namely the crossing of the polynomial

in the l.h.s of equation (6.27) with the constant n/r > 1. Since r > 1, this occurs

at 0 < z0 < 1, consistent with the meaning of z0. There is no analytical solution to

equation (6.26) for arbitrary n. There exists, however, a simple analytical solution in

the limit of large n, which is indeed an excellent approximation for all n > 3. It can

be obtained neglecting zn as compared to 1 in (6.26), which leads to

z0 ≈ 1− r

n
. (6.28)

Since r < n, one has, of course, 0 < z0 < 1. For consistence, zn0 = (1− r
n
)n ≈ e−r ≪ 1,

which holds, say, for r > 3. Notice that if r ≪ n the equilibrium approaches allJ, so

that cycles get very close to this state in this limit.

Calculation of x0

Let us impose PD = 0. Introducing (6.26) into (6.17) one finds

x0 ≈
d

r − 1

(n
r
− 1

)
(1− z0). (6.29)

Conditions d > 0, n > r > 1, and r > 1+(n−1)d yield 0 < x0 < 1 and 0 < x0+z0 < 1,

so that the three fractions are smaller than 1. Substituting z0 from expression (6.28)

into (6.29) one finally obtains

x0 ≈
d

r − 1

(
1− r

n

)
. (6.30)
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Stability of the interior equilibrium

We need to determine the Jacobian matrix for the equilibrium (x0, z0) given by

equations (6.29) and (6.28). The dynamical system ((6.2)) can be written as

ẋ =− x

n(1− z)2

(
− r + n− rnxz − dnzn+1 + 2nxz

− nxz2 − 2nz + rx− rxzn + dnz2 − nx+ rzn (6.31)

+ nz2 + rz − rzn+1 + rnxz2 + dnzn+2 − dnz3
)
,

ż =− (−dz + rx+ dzn − x)z. (6.32)

The first equation is very cumbersome. Fortunately, as already explained, in the limit

of large n and if r > 3 one can neglect terms of order zn and above. Using expressions

(6.28) and (6.30), the Jacobian matrix J can be written as J = Y d(n− r)/n, where

Y =


n− r

r

nr(r − 1) + d(r − n)(r2 − r + n)

r2(r − 1)2

−r − 1

d
2

 . (6.33)

(Notice that the factor d(n − r)/n > 0.) As the diagonal elements of this matrix are

positive, the trace is positive. Also Yzx < 0 and, as we show next, Yxz > 0, therefore

the determinant turns out to be positive, and the interior equilibrium is a repeller. To

see that Yxz > 0 we must show that the numerator is positive. This can be shown by

writing it as

nr(r − 1) + d(r − n)(r2 − r + n) > (r − 1)2
(n− r)2 + nr

n− 1
> 0.

The first inequality follows from condition r − 1 > (n− 1)d.
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Chapter 7

Destruction towards altruism in
finite populations

Summary

The analysis of the effect of destructive behaviours in chapter 6 is expanded here

to finite population sizes and different updating (or selection) rules. In order to carry

out such analysis, stochastic methods are used, which allow for a precise description

of the dynamics of the system. The structure of the chapter is as follows: Section

7.1 provides the stochastic equations describing the evolutionary dynamics for finite

populations. In section 7.2 we analyse the joker dynamics in finite populations using

different selection dynamics in order to check the existence of cycles. Section 7.3 is

devoted to discuss the dynamics in finite populations.

7.1 Stochastic dynamics in finite populations

The deterministic evolution represented by the replicator-mutator equation is an

idealisation of the system behaviour in the limit of infinite populations. To get a deeper

insight into the model we need to address the question what happens when populations

have a finite size M . To begin with we need to describe the microscopic dynamics in

more detail. Hauert et al. [57] have proposed a protocol in which random selections of

n players are gathered together to play the game. After receiving their corresponding

payoffs the group dissolves and a new one is sampled. This sampling is made a sufficient

number of times so that on average each player receives a payoff proportional to the

mean payoff she can obtain given the composition of the population.
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Suppose there arem cooperators, j jokers, andM−m−j defectors in the population.

The probability that the sampling of n individuals contains k cooperators, l jokers, and

n− k − l defectors is given by the extended hyper-geometric distribution

p(k, l|n,m, j,M) =

(
m

k

)(
j

l

)(
M −m− j

n− k − l

)
(
M

n

) . (7.1)

The average payoff of strategy X within this population, PX(m, j), is obtained by av-

eraging formulae (6.1) with this probability distribution. This is done in Appendix 7.A,

where explicit expressions for PC(m, j) and PD(m, j) are obtained—obviously PJ(m, j) =

0 irrespective of the population composition.

Once payoffs are obtained evolution proceeds by imitation. Different payoff-dependent

rules have been proposed in the literature [98]. All of them describe a process of birth

and death which is defined by the transition probability T (m′, j′|m, j) from a pop-

ulation with composition (m, j) to another one with composition (m′, j′) within the

set

Nm,j = {(m, j), (m± 1, j), (m, j ± 1),

(m+ 1, j − 1), (m− 1, j + 1)}.
(7.2)

If now Π(m, j; t) denotes the probability that the population has a composition given

by (m, j) at time t, then this probability evolves according to

Π(m, j; t+ 1) =
∑

(m′,j′)∈Nm,j

T (m, j|m′, j′)Π(m′, j′; t), (7.3)

or in matrix notation

Π(t+ 1) = TΠ(t). (7.4)

7.1.1 Stationary state

If the process undergoes mutations then matrix T is ergodic and equation (7.4) has

got a unique stationary state, π, which is obtained by solving the linear system

π = Tπ. (7.5)

In the absence of mutations, though, there are three absorbing states corresponding

to the three homogeneous populations. A homogeneous population remains invariant
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because the imitation process cannot change its composition. We will denote these

vectors eC, eD, eJ, the index denoting the strategy of the homogeneous population.

Clearly eC(m, j) = δm,Mδj,0, eD(m, j) = δm,0δj,0, eJ(m, j) = δm,0δj,M .

7.1.2 Infinitely small mutation rate

Clearly the limit

lim
µ→0+

π =
∑

X=C,D,J

αX eX (7.6)

will provide the values of αX, but this limit cannot be obtained directly from equa-

tion (7.5). There is an alternative though. It has been proven [129] that the µ → 0+

limit of this process is equivalent to another process with three states, C, D, J, in which

the transition probability between X and Y is equal to the probability that a single

mutant of type Y invades an otherwise homogeneous population of X individuals, thus

transforming it into a homogeneous population of Y individuals. Intuitively, this is

tantamount to saying that mutations are so rare that the ultimate fate of a mutant

is decided before the next mutation occurs. The normalised stationary vector in this

space,

α = (αC, αD, αJ), (7.7)

provides the values of the coefficients αX in equation (7.6). Note that this coefficients

represent the fraction of time that the system spends in each homogeneous state, as

we will check in section 7.2.

Following [57], let ρYX denote the probability that a single Y mutant takes over the

population made of the mutant and M − 1 individuals of type X. Then the transition

probability of going from state X to a different state Y in the three-states Markov

chain defined above will be rYX = ρYXµ. Introducing R = (rYX) so that the elements

in each column add up to one (this fixes the diagonal of the matrix), we can rewrite

this matrix as R = I+ µQ, where

Q =


−ρDC − ρJC ρCD ρCJ

ρDC −ρCD − ρJD ρDJ

ρJC ρJD −ρCJ − ρDJ

 . (7.8)
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In the stationary state, the dynamics leads to π = Rπ. Vector α is then the solution

of the linear system Qα = 0. A little bit of algebra leads to the result

αC = (ρCDρCJ + ρCDρDJ + ρCJρJD)/A, (7.9)

αD = (ρDCρDJ + ρDCρCJ + ρDJρJC)/A, (7.10)

αJ = (ρJCρJD + ρJCρCD + ρJDρDC)/A, (7.11)

with A chosen so as to fulfil ∑
X=C,D,J

αX = 1. (7.12)

7.1.3 Finite mutation rates

If the mutation rate is not zero the Markov chain is ergodic and the stationary state

can be obtained by solving numerically the master equation (7.5). This is accomplished

with better accuracy by splitting

T = T0 +T1, (7.13)

π =
∑

X=C,D,J

αX eX + π1, (7.14)

with T0 the transition matrix in the absence of mutations—i.e., with transitions de-

scribing only the imitation process. Then π1 is the solution of the linear system

(I−T)π1 =
∑

X=C,D,J

αXT1eX. (7.15)

7.1.4 Imitation rules

In order to specify the transition matrixT we need to describe the imitation process.

Of the many different rules applied in the literature [98] we have chosen the three

most commonly employed: unconditional imitation, proportional update, and a Moran

process. In all cases the corresponding matrix T is obtained in Appendix 7.B.

Under unconditional imitation two players are chosen at random among the pop-

ulation, one as the focal player and the other one as the model to imitate. The focal

player compares both payoffs and changes her strategy to that of the model if the latter

has a higher payoff. In this case, the strategy with the highest fitness never changes

except by mutation, which is the only source of stochasticity in this rule.
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Appendix 7.C discusses the value α for this update rule. There are two possibilities:

i r > 1 + (n − 1)d. In this cases all three homogeneous states are equally likely

[c.f. equation (7.38)].

ii r < 1+(n−1)d. In this cases J is the only absorbing state of the process [c.f. equa-

tion (7.40)].

Proportional update is entirely similar to unconditional imitation with the exception

that imitation occurs with probability proportional to the payoff difference between the

model and the focal players. For this reason the values of α for this rule are the same

as those for unconditional imitation.

In a Moran process a strategy is chosen to be imitated (or reproduced) with a

probability proportional to its population-dependent fitness. The player who imitates

(or is replaced by the offspring of) this selected player is randomly chosen from the rest

of the population. The only drawback of this rule is that fitnesses must be positive for

it to make sense, so they cannot be directly the payoffs of the game, because they can

take negative values. A standard mapping between payoff and fitness is obtained by

introducing the selection strength s [130]. This weights the contribution of the game to

the total fitness of the strategy as F = 1−s+sP , with P the average payoff. Bounding

the value of s we can force F to be positive.

The Moran process thus described defines a birth-death process with two absorbing

states, and the corresponding probabilities ρXY are obtained via standard formulae (see

Appendix 7.C).

7.2 Robustness of the cycles using different selec-

tion dynamics

In this section we compare the results of agent-based simulations with those ob-

tained by solving numerically the stationary equation (7.5). Simulations implement

the following stochastic process. We start with a population of M individuals with

equal amounts of C, D and J players. Then:

1. Assuming that every time step each individual plays many rounds of the game

with different, randomly gathered groups of n players, the payoffs they obtain
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Figure 7.1: Time evolution of the frequencies of the three strategies in a population of
M = 1000 (left) and M = 100 (right) individuals playing a PG game with jokers with
different update rules: (a), (b) unconditional imitation, (c), (d) proportional update,
and (e), (f) a Moran process. The presence of jokers induces a cyclic behaviour irre-
spective of the update rule and the population size, as long as the mutation rate µ > 0.
Black solid lines: cooperators, red dashed lines: defectors, and blue dotted lines: jokers.
Parameters n = 5, r = 3, d = 0.4, µ = 0.001; in (a)-(d) s = 1, in (e),(f) s = 0.38. One
period corresponds to one updating event according to the evolutionary rule used.

will be proportional to the average payoffs, as calculated in Appendix 7.A. Thus

we assume that these expressions provide the payoffs each individual gains every

time step.

2. These payoffs are used to update the population according to the corresponding

imitation rule. We implement the three rules described in Sec. 7.1.4.

3. With probability µ each newborn mutates to a different strategy (any of the other

two with equal probability).

A quite general result is that, irrespective of the population size, at low mutation

rates simulations show patterns of cyclic invasions C→D→J→C (see figure 7.1). These

patterns resemble the limit cycles observed in the replicator dynamics (see chapter 6),

i.e., for infinite populations.

Roughly speaking we can distinguish three regimes of mutations. In the low mu-

tation regime the system spends most of the time in homogeneous states, and the

dynamics of the system is well described by the µ → 0 limit of the stationary probabil-

ity distribution π. This can be clearly seen in figure 7.2. The dashed-dotted curves in
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figures 7.2(a), (c) and (e) represent the fraction of time spent in transients when a ho-

mogeneous population is replaced by another one arisen as the result of mutations. This

fraction is very small up to µ ≈ 10−5–10−4, depending on the imitation rule. For larger

mutation rates (µ up to 10−3–10−2) the system spends as much time in homogeneous

populations as in mixed transient states. This is the regime displayed in figure 7.1,

where cycles are clearly defined even though for some imitation rules (particularly so

for proportional update) certain homogeneous populations that are hardly ever reached

[figure 7.1(b) shows burst of cooperators which never reach a fraction higher than 80%

of the population]. For even higher mutation rates homogeneous populations are very

rare and the behaviour of the system is very different, typically dominated by defectors

[see figures 7.2(b), (d) and (f)].

Unconditional imitation is practically a deterministic rule in the low mutations

regime. For µ . 10−4 the population is almost always homogeneous, and is made

of each of the three strategies with equal probability [see figures 7.1(a), (b) and fig-

ures 7.4(a), (b)]. Figure 7.2(a) shows this probability as a function of the joker’s

inflicted damage d. As long as d > 0 and r > 1+(n−1)d we find each strategy equally

likely. For r < 1 + (n − 1)d a homogeneous population of jokers cannot be invaded

because this is the only absorbing state of the Markov chain for µ = 0. For d = 0

jokers do not inflict damage. Then the system spends most of the time in a homoge-

neous population of defectors. However, random drift allows for occasional invasions

by jokers, who are subsequently wiped out by cooperators, who in its turn get replaced

again by defectors. Figure 7.3(b) illustrates a typical realisation exhibiting one of these

turn-overs.

As of proportional update, its main difference with unconditional imitation is its

being a truly probabilistic rule, in which individuals only imitate higher payoffs with a

certain probability. Although in the small mutations regime this leads to the same prob-

ability of mutual invasion of strategies as for unconditional imitation, the stochastic

nature of this rule renders much longer invasion times. This can be clearly appreciated

in figure 7.1.

Another effect of stochasticity is that the time spent in transient states is also longer,

thus shrinking the low mutations regime by more than one order of magnitude [compare
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Figure 7.2: Relative times spent in homogeneous as well as in transient states in a
population of M = 100 individuals. For practical purposes, a state is considered ho-
mogeneous if more than 95% of individuals belong to the same strategy. Symbols are
the result of agent-based simulations; lines are obtained from the solution of equa-
tions (7.14)–(7.15). Results for cooperators are represented with (black) squares and
solid lines, those for defectors with (red) circles and dashed lines, and those for jokers
with (blue) triangles and dotted lines. Panels (a), (c) and (e) also show (with inverted
triangles and dashed-dotted lines) the fraction of time spent in transient states. Panels
(b), (d) and (f) show the relative fractions of the time spent in homogeneous states in
which we find each of the three strategies. Panels (a) and (b) correspond to uncondi-
tional imitation, panels (c) and (d) to proportional update, and panels (e) and (f) to
a Moran rule. We can see that high mutation rates promote defection over the other
two strategies. Parameters used are n = 5, r = 3, d = 0.4; selection strength is s = 1
in (a)–(d) and s = 0.38 in (e) and (f).
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Figure 7.3: Evolution of a population of M = 100 individuals by unconditional imita-
tion. (a) Fraction of time spent in homogeneous populations of cooperators (red squares
and solid line), defectors (red circles and dashed line) and jokers (blue triangles and
dotted line), as a function of joker’s inflicted damage d. Symbols correspond to an
agent-based simulation; lines to the results obtained from numerical computation of the
stationary probability distribution. (b) A realisation made with d = 0 showing an inva-
sion of defectors by jokers through pure drift, and the subsequent burst of cooperators
and turn-over by defectors. Parameters: n = 5, r = 3, s = 1 and µ = 5× 10−5.
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Figure 7.4: Realisation of an agent-based simulation of a population with M = 100 indi-
viduals evolving through proportional update. Notation is as in figure 7.3. Parameters:
n = 5, r = 3, d = 0.4, µ = 5× 10−6, s = 1.
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Figure 7.5: A population of M = 100 individuals evolving through Moran update. (a)
Comparison of the the relative times in which the population is in a homogeneous
state vs. the selection strength, s, for low mutation rates. Lines represent the analyt-
ical estimates obtained in Sec. 7.C.2; symbols represent the results from agent-based
simulations. (b) Fractions of each strategy as a function of time as obtained from a
realisation of an agent-based simulation. Cooperators are represented with a black solid
line and squares, defectors with a red dashed line and circles, and jokers with a blue
dotted line and triangles. Parameters are n = 5, r = 3, d = 0.4 and µ = 5 × 10−5. In
(b) the selection strength is s = 0.05.
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figures 7.2(a) and (c)]. The effect is particularly notorious for jokers, who take a long

time to invade defectors, thus extending the life time of defective populations. This

effect is illustrated in figure 7.4, which represents a typical realisation of an agent-based

simulation.

The Moran process is the most random of the three evolutionary dynamics because

even strategies not performing very well have a chance to get imitated. The effect is

more noticeable the smaller the population. This dynamics imposes an upper limit to

the selection strength s (see Sec. 7.1.4) and the probabilities to find the population in

each of the three homogeneous states depend on the parameters of the game and on s

in a nontrivial way (see Sec. 7.C.2). These probabilities are represented in figure 7.5(a)

as a function of s. The theoretical predictions of Sec. 7.C.2 agree with the simulations.

This figure shows that cooperation is highly promoted for small s(0.005 < s < 0.05).

In this limit cooperative populations are found with almost 50% probability. This

probability decreases down to around 25% for larger s. Figure 7.5(b) shows a typical

realisation of this process, exhibiting a defining feature of this process, namely the

frequent failures of attempted invasions.

Whichever the update rule, when mutation rates are not small the system is better

characterised by providing the stationary probability distribution π, as obtained from

equation (7.15)). The results are plotted in figure 7.6 for all three imitation rules and

different mutation rates µ. For low and intermediate values of µ the higher probabilities

are found near the border of the simplexes, consistent with the cyclic behaviour of the

system. However, for high µ the probability peaks around a point. This point is

interior for the most stochastic rules, but corresponds to a defective population for

unconditional imitation. figure 7.7 shows the results for the same parameters using the

replicator dynamics, so a direct comparison can be made.

7.3 Discussion of the results in finite populations

In this chapter we have expanded the results and have proven that the oscillatory

dynamics does not occur only for infinite (or very large) populations evolving under

a replicator dynamics, but also in the case of finite populations and for different up-

date rules. The dynamical rules analysed in this chapter are unconditional imitation,
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Figure 7.6: Density plots for the probability of finding the system in each population
state as obtained by solving numerically equation (7.5). First row corresponds to uncon-
ditional imitation, second row to proportional imitation, third row to a Moran process.
In each case mutations increase left to right. In all three cases low mutation rates (µ)
yield high probabilities near the boundaries of the simplexes, specially near the corners,
corresponding to cyclic transitions between homogeneous states. Increasing µ increases
the probability to find the system near homogeneous defective populations. For high µ
an attractive point appears close to the D corner which goes away from it upon increas-
ing µ. Parameters are n = 5, r = 3, d = 0.4; the selection strength is s = 1 in the first
and second rows, s = 0.38 in the third. Mutation rates appear near each simulation.
Densities are plotted using a logarithmic scale. figure 7.7 shows the replicator dynamics
in infinite populations for the same mutation rates, to allow for a comparison.

138



Figure 7.7: Cycles induced by jokers in infinite populations. This figure allows for a
comparison with the results in finite populations of figure 7.6. The simplexes describe
the replicator-mutator dynamics for a population of cooperators, defectors, and jokers,
with parameter values satisfying n > r > 1 + d(n − 1), for which a rock-paper-scissor
dynamics is expected. For small mutation rates, the only equilibrium is a repeller (white
dot in (a),(b)), and trajectories end up in a stable limit cycle of decreasing amplitude
with increasing µ (black line); when mutations reach a critical value µc, the system
undergoes a Hopf bifurcation and a stable mixed equilibrium appears (black dot in (c)).
Thus the presence of jokers induces periodic bursts of cooperation for low mutation
rates, and stable coexistence for high µ. Parameters: n = 5, r = 3, d = 0.4, µ is (a)
0.001, (b) 0.005, (c) 0.05. (Images generated using a modified version of the Dynamo
Package [127]).
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proportional update, and a Moran process. In all cases the system exhibits finite time

lapses in which most of the population is composed by cooperative individuals, find-

ing that the Moran process for low (but not extremely low) selection pressures is the

most favourable to cooperation—as the system spends 50% of the time in coopera-

tive states. Under unconditional imitation system spends one third of the time in

cooperative states, whereas the more stochastic nature of proportional update favours

defection due to the slower invasion of jokers, and thus the system stays longer in

defective states—especially so for high mutation rates.

In summary, we have proven that the existence of jokers, i.e., individuals whose

purely destructive behaviour damages the common enterprises represented by PG

games, allows for the emergence of robust evolutionary cycles in finite populations

regardless of the updating method chosen. Together with the existence of limit cy-

cles for infinite populations evolving via a replicator-mutator dynamics (section 6.4),

the present results show that limit cycles are a generic feature of the dynamics gen-

erated by destructive agents, not restricted to a particular selection dynamics. This

is a dynamical feature that makes this model different from other three-player games

like that of loners [118], for which cycles are structurally unstable and their existence

strongly depends on the absence of mutations and other kinds of perturbations, and

thus it might be applied to situations observed in nature and history, where periods of

destruction, cooperation and defection have been reported to occur cyclically.
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Appendices

7.A Average payoffs in a finite population

Let us denote PX(m, l) the average payoff that a player of type X receives when the

population is made of m cooperators, j jokers, and M −m− j defectors. This average

payoff is calculated by averaging the corresponding payoff (6.1) with the probability

distribution (7.1). For defectors this implies

PD(m, j) =
∑
k,l≥0
k+l<n

rk − dl

n− l
p(k, l|n− 1,m, j,M − 1). (7.16)

To perform this average it will prove convenient to factorise the probability distribution

as the product of two standard hyper-geometric distributions, i.e.,

p(k, l|n,m, j,M) = p(l|n, j,M)p(k|n− l,m,M − j). (7.17)

where

p(l|n, j,M) =

(
j

l

)(
M − j

n− l

)
(
M

n

) . (7.18)

The first term in (7.17) is the probability of selecting l jokers out of the population, and

the second term is the conditional probability of subsequently selecting k cooperators,

given that we have already selected the l jokers.

A useful identity of the hyper-geometric distribution —consequence of the proper-

ties of the binomial coefficients— is

k p(k|n,m,M) =
nm

M
p(k − 1|n− 1,m− 1,M − 1). (7.19)

Substituting factorisation (7.17) into (7.16) and making use of this identity we readily
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obtain

PD(m, j) =
rm

M − j − 1

n−1∑
l=0

n− l − 1

n− l
p(l|n− 1, j,M − 1)

− d
n−1∑
l=0

l

n− l
p(l|n− 1, j,M − 1).

(7.20)

A new identity, namely

p(l|n− 1, j,M − 1)

n− l
=

M

n(M − j)
p(l|n, j,M), (7.21)

allows us to do the sum

n−1∑
l=0

p(l|n− 1, j,M − 1)

n− l
=

M [1− p(n|n, j,M)]

n(M − j)
. (7.22)

It will prove convenient to introduce the function

Ξ(n, j,M) ≡ j

M − j

[
1− (j − 1) · · · (j − n+ 1)

(M − 1) · · · (M − n+ 1)

]
, (7.23)

in terms of which

1− p(n|n, j,M) = 1− j(j − 1) · · · (j − n+ 1)

M(M − 1) · · · (M − n+ 1)

=
M − j

M
[1 + Ξ(n, j,M)] .

(7.24)

This allows us to write

n−1∑
l=0

p(l|n− 1, j,M − 1)

n− l
=

1 + Ξ(n, j,M)

n
, (7.25)

and using this in (7.20) obtain

PD(m, j) =
rm[n− 1− Ξ(n, j,M)]

n(M − j − 1)
− dΞ(n, j,M). (7.26)

As for the average payoff of a cooperator,

PC(m, j) = −1 +
∑
k,l≥0
k+l<n

r(k + 1)− dl

n− l

× p(k, l|n− 1,m− 1, j,M − 1)

= r

n−1∑
l=0

p(l|n− 1, j,M − 1)

n− l
− 1 + PD(m− 1, j)

=
r

n
[1 + Ξ(n, j,M)]− 1 + PD(m− 1, j).

(7.27)
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Therefore

PC(m, j) =
r

n

(
1 +

(n− 1)(m− 1)

M − j − 1

)
− 1

+

[
r

n

(
1− m− 1

M − j − 1

)
− d

]
Ξ(n, j,M).

(7.28)

Finally, PJ(n, j) = 0 because jokers get zero regardless of the composition of the

population.

7.B Calculation of the transition matrices

Transition probabilities T (m, j|m′, j′) are obtained according to the specified update

rule. We will calculate those corresponding to the rules used in this work. But before we

proceed let us introduce some shorthands. We will write Tϵ1,ϵ2 ≡ T (m, j|m+ ϵ1, j+ ϵ2),

where ϵ1, ϵ2 ∈ {−1, 0, 1}. Also by ωXY
ϵ1,ϵ2

we will denote the probability that a player of

type Y is chosen to be replaced by a player of type X when the population is made of

m+ ϵ1 cooperators, j + ϵ2 jokers, and M −m− j − ϵ1 − ϵ2 defectors. Whether the Y

player is finally replaced by an X one depends on mutations, thus

T1,0 =ωDC
1,0 (1− 2µ) +

(
ωJC
1,0 + ωCC

1,0

)
µ,

T1,−1 =ωJC
1,−1(1− 2µ) +

(
ωDC
1,−1 + ωCC

1,−1

)
µ,

T−1,0 =ωCD
−1,0(1− 2µ) +

(
ωJD
−1,0 + ωDD

−1,0

)
µ,

T0,−1 =ωJD
0,−1(1− 2µ) +

(
ωCD
0,−1 + ωDD

0,−1

)
µ,

T−1,1 =ωCJ
−1,1(1− 2µ) +

(
ωDJ
−1,1 + ωJJ

−1,1

)
µ,

T0,1 =ωDJ
0,1(1− 2µ) +

(
ωCJ
0,1 + ωJJ

0,1

)
µ,

(7.29)

In all cases there are two possibilities for a Y individual to become an X one, either

a pair XY is selected, the update takes place and no mutation occurs, or another pair

ZY is selected (with Z ̸= X) but a mutation changes Z into X.

Finally, the probability that no change of strategy occurs T0,0 = T (m, j|m, j) is

obtained as

T0,0 = 1− (1− µ)
∑
X̸=Y

ωXY
0,0 − 2µ

∑
X

ωXX
0,0 , (7.30)

where the subscript 0, 0 refers to a population made of m cooperators, j jokers, and

M −m− j defectors.
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Notice that the expansion (7.14) readily follows from expressions (7.29) and (7.30).

7.B.1 Unconditional imitation

This rule prescribes that two players are selected at random from the population

and the strategy of the model player (X) replaces that of the focal player (Y) if the

latter has a lower payoff. Accordingly, if X ̸= Y,

ωXY
ϵ1,ϵ2

=
nX
ϵ1,ϵ2

nY
ϵ1,ϵ2

M(M − 1)
Θ
(
PX
ϵ1,ϵ2

− PY
ϵ1,ϵ2

)
, (7.31)

where Θ(x) = 1 if x > 0 and 0 otherwise, and nX
ϵ1,ϵ2

denotes the number of individuals

of type X in the population (e.g., nC
1,0 = m + 1, nD

1,0 = M − j −m− 1, nJ
1,−1 = j − 1,

nD
0,0 = M − j−m, etc.). On the other hand, in order to account for mutations we must

define

ωXX
ϵ1,ϵ2

=
nX
ϵ1,ϵ2

(nX
ϵ1,ϵ2

− 1)

M(M − 1)
. (7.32)

7.B.2 Proportional update

Similarly to the previous rule,

ωXY
ϵ1,ϵ2

=
nX
ϵ1,ϵ2

nY
ϵ1,ϵ2

M(M − 1)
Ψ
(
PX
ϵ1,ϵ2

− PY
ϵ1,ϵ2

)
, (7.33)

where Ψ(x) = x/Ω if x > 0 and 0 otherwise, Ω being a constant ensuring that

Ψ
(
PX
ϵ1,ϵ2

− PY
ϵ1,ϵ2

)
≤ 1 (typically Ω is chosen as the largest possible payoff difference).

As in the previous rule ωXX
ϵ1,ϵ2

is given by (7.32).

7.B.3 Moran process

In this case payoffs are replaced by fitnesses FX
ϵ1,ϵ2

= 1− s+ sPX
ϵ1,ϵ2

(see Sec. 7.1.4).

Let us introduce the total fitness of the population

Φϵ1,ϵ2 ≡
∑
X

nX
ϵ1,ϵ2

FX
ϵ1,ϵ2

. (7.34)

The Moran rule specifies that a player is chosen for reproduction proportional to its

fitness and the offspring replaces another randomly chosen individual from the rest of

the population. So if X ̸= Y,

ωXY
ϵ1,ϵ2

=
nY
ϵ1,ϵ2

M − 1

nX
ϵ1,ϵ2

FX
ϵ1,ϵ2

Φϵ1,ϵ2

, (7.35)
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and

ωXX
ϵ1,ϵ2

=
nX
ϵ1,ϵ2

− 1

M − 1

nX
ϵ1,ϵ2

FX
ϵ1,ϵ2

Φϵ1,ϵ2

, (7.36)

7.C Stationary probabilities in the weak mutation

limit

7.C.1 Unconditional imitation and proportional update

According to the payoffs obtained in Appendix 7.A:

1. PD(m, 0) > PC(m, 0) for all 0 < m < M , so D always invades C, but C never

invades D.

2. PC(m,M −m) > PJ(m,M −m) for all 0 < m < M , provided r > 1 + (n − 1)d

(the rock-paper-scissors condition), so under this assumption C always invades

J, but J never invades C.

3. PJ(0, j) > PD(0, j) for all 0 < j < M , so J always invades D, but D never invades

J.

Therefore

Q =


−1 0 1

1 −1 0

0 1 −1

 . (7.37)

This implies

αC = αD = αJ =
1

3
. (7.38)

On the other hand, if r < 1+ (n− 1)d neither C invades J nor vice-versa, so in this

case

Q =


−1 0 0

1 −1 0

0 1 0

 , (7.39)

which implies

αC = αD = 0, αJ = 1. (7.40)
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7.C.2 Moran Process

The Moran process for a population with two strategies defines a birth-death process

with two absorbing states. The details of the calculation of ρYX can be found in [57] and

follow standard formulae for this kind of processes [131]. Summarising, if we denote

PYX(m) the payoff received by a type Y individual when the population is made of m

Y individuals and M −m X individuals, then

ρ−1
YX =

M−1∑
m=0

qm, ρXY = qM−1ρYX, (7.41)

where q0 = 1 and

qm = qm−1
1− s+ sPXY(M −m)

1− s+ sPYX(m)
, 0 < m < M. (7.42)

Payoffs PXY(m) and PYX(m) are obtained from the formulae of Appendix 7.A. The

maximum value of the selection strength s is given by

smax =
1

1− min
XY,m

PXY(m)
. (7.43)

146



Part IV

Conclusions
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Chapter 8

Conclusions

1 - Cooperation is promoted in a prisoner’s dilemma –the most
difficult case for the evolution of cooperation– whenever there
are at least three strategies that differ in their cooperative and
selfishness levels, and mutations occur

Part I consisted of a general introduction of the concepts. In particular, chapter 2

was devoted to introduce the PD and shown some of its properties. There, I proved

that. . .

� . . . if fitness is additive, direct interactions between individuals in which the actor

suffers a fitness change in order to produce a fitness change in the recipient only

result in prisoner’s dilemmas and harmony games. This is important to identify

situations in nature in which the prisoner’s dilemma is the only mathematical

representation, which was recently questioned by some authors.

� . . . in the absence of mutations, the most selfish strategy (parasitism) is promoted

by natural selection in prisoner’s dilemmas whenever the dynamics are ruled by

the difference between strategies payoffs, or between strategies payoffs and mean

population payoff. This result is not new, but shows the importance of the

problem of the evolution of cooperation.

� . . . when mutations occur, unexpected high levels of altruism and free-riding are

found in well-mixed populations containing altruists, free-riders, and parasites.

Therefore the importance of including non-aggressive strategies in the cooperative

definition, as the combination of such non-aggressive strategies, as altruists and
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free-riders, allows for their survival in much higher levels than expected in the

presence of parasites.

2 - The finiteness of resources promotes cooperation in well-
mixed populations of unconditional cooperators and defectors
playing an a-priori prisoner’s dilemma

As it has been proven in part II, the existence of limiting resources generates dynam-

ical payoffs and promotes cooperation in all cases studied, at least for some parameters

combination. The main results found are that, in addition to dominance of defection

(parasitism) . . .

� . . . whenever the limiting resource constrains reproduction and death of individ-

uals, coexistence and dominance of cooperation are possible with increasing the

costs of defection, or the attacking (interacting) rates.

� . . . if the limiting resource constrains only reproduction and deaths occur at ran-

dom, coexistence is possible for sufficiently large defective costs and attacking

rates. This is due to a self-organising process that tunes the payoff matrix to

neutral.

� . . . if the population size is kept constant by the action of some limiting factor

(e.g. space), and reproduction is ruled by another limiting resource, a phase

transition which depends only in the resource influx happens. This phase tran-

sition separates defective states for high resource fluxes from coexistence states

of cooperation and defection when resources are scarce. This presents a possible

scenario for the evolution of multicellular organisms.

3 - Indiscriminate destruction may promote cycles of coopera-
tion, defection and destruction

Part III was devoted to the study of the effect of the inclusion of destructive individ-

uals in public good games. This may represent situations in which destruction refers to

resources, or more generally, affecting in some way the fitness of the individuals. The

main results found are that. . .
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� . . . if destruction is too intense, no cooperative or defective individual survives.

� . . . in the presence of mutations some parameter combinations allow for robust

evolutionary cycles of cooperation, defection and destruction, triggered by the

decrease in mean population fitness created by the defective individuals. This is

the first example of robust limit cycles with unconditional strategies in the public

goods game.

� . . . the evolutionary cycles found happen irrespective of population size and evo-

lutionary rule chosen. Therefore limit cycles are a generic feature of the dynamics

generated by destructive agents, not restricted to a particular selection dynamics.

Furthermore, it is possible to make a precise prediction of the mean time spent

in each possible state by means of stochastic calculus.

The results presented here thus shed light on some previously unexplored scenarios

which allow for a better understanding of the evolution of cooperation in nature and

society, and I hope that they will be useful in the further development not only of our

knowledge, but also in the development of experiments which may result in new disease

treatments, or the management of common resources.
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[55] Fehr, E., Fischbacher, U., and Gächter, S. Hum. Nat. 13, 1–25 (2002).

[56] Fehr, E. and Gachter, S. Nature 415(6868), 137–140 January (2002).

[57] Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., and Sigmund, K. Science

316, 1905–1907 (2007).

[58] Boyd, R., Gintis, H., and Bowles, S. Science 328(5978), 617–620 April (2010).

[59] Fehr, E. and Rockenbach, B. Nature 422(6928), 137–140 March (2003).

[60] Riolo, R. L., Cohen, M. D., and Axelrod, R. Nature 414(6862), 441–443 Novem-

ber (2001).

[61] Traulsen, A. and Schuster, H. Phys. Rev. E 68(4, Part 2) OCT (2003).

[62] Antal, T., Ohtsuki, H., Wakeley, J., Taylor, P. D., and Nowak, M. A. Proc. Nat.

Ac. Sci. USA 106(21), 8597–8600 MAY 26 (2009).

[63] Hauert, C. and Szabó, G. Am. J. Phys. 73, 405 (2005).

157



[64] Brosnan, S. F. and de Waal, F. B. M. Hum. Nat. 13(1), 129–152 (2002).

[65] Nowak, M. A. Science 314, 1560–1563 (2006).

[66] Rankin, D. J., Bargum, K., and Kokko, H. TRENDS 22(12), 643–651 December

(2007).

[67] West, S. A., Griffin, A. S., and Gardner, A. J. Evol. Biol. 20(2), 415–432 March

(2007).

[68] Taborsky, M. Behav. Proc. 76(2), 95–99 October (2007).

[69] Kokko, H. Behav. Proc. 76(2), 81–85 October (2007).

[70] Bergmueller, R., Johnstone, R. A., Russell, A. F., and Bshary, R. Behav. Proc.

76(2), 61–72 October (2007).

[71] Gardner, A. and Foster, K. R. Ecol. Soc. Ev. , 1–36 (2008).

[72] Brosnan, S. F. and Bshary, R. Phil. Trans. R. Soc. B 365, 2593–2598 (2010).

[73] Wilson, D. S. Oikos 59, 135–48 (1990).

[74] Turner, P. E. and Chao, L. Nature 38, 441–443 (1999).

[75] Turner, P. and Chao, L. Am. Nat. 161(3), 497–505 MAR (2003).

[76] Hauert, C. and Doebeli, M. Nature 428(6983), 643–646 April (2004).

[77] Doebeli, M. and Hauert, C. Ecol. Lett. 8, 748–766 (2005).

[78] Jensen, K. Phil. Trans. R. Soc. B 365, 2635–2650 (2011).

[79] Bull, J. J. and Rice, W. R. J. Evol. Biol. 149(1), 63–74 March (1991).

[80] Dugatkin, A. Cooperation among Animals: An Evolutionary Perspective. New

York: Oxford University Press., (1997).

[81] Trivers, R. L. Q. Rev. Biol. 46, 35–57 (1971).

[82] Taylor, C. and Nowak, M. A. Evolution 61(10), 2281–2292 OCT (2007).

158



[83] Price, G. R. Nature 227(5257), 520–& (1970).

[84] Hamilton, W. D. Nature 228(5277), 1218–& (1970).

[85] W. H. Sandholm, E. D. and Franchetti, F. Software suite.

http://www.ssc.wisc.edu/ whs/dynamo (2011).

[86] Doebeli, M., Hauert, C., and Killingback, T. Science 306(5697), 859–862 October

(2004).

[87] Killingback, T., Doebeli, M., and Hauert, C. Biology Theory 5(1), 3–6 (2010).

[88] Szabo, G. and Toke, C. Phys. Rev. E 58(1), 69–73 July (1998).

[89] Traulsen, A., Nowak, M. A., and Pacheco, J. M. Phys. Rev. E 74(1), 011909

July (2006).

[90] Hofbauer, J. and Sigmund, K. Bull. Am. Math. Soc. 40, 479–519 (2003).

[91] Darwin, C. On the Origin of Species by Means of Natural Selection. John Murray,

London, 1st edition, (1859).

[92] MacArthur, R. Geographical Ecology: Patterns in the Distribution of Species.

Harper and Row, NewYork., (1972).

[93] Tilman, D. Resource Competition and Community Structure. Princeton Univer-

sity Press, Princeton., (1982).

[94] Chase, J.M. & Leibold, M. Ecological Niches: Linking Classical and Contempo-

rary Approaches. University of Chicago Press, Chicago and London., (2003).

[95] Pfeiffer, T., Schuster, S., and Bonhoeffer, S. Science 292(5516), 504–507 APR

20 (2001).

[96] Pfeiffer, T. and Bonhoeffer, S. Proc. Nat. Ac. Sci. USA 100(3), 1095–1098 FEB

4 (2003).

[97] de Mazancourt, C. and Schwartz, M. W. Ecol. Lett. 13(3), 349–359 MAR (2010).

159



[98] Szabo, G. and Fath, G. Phys. Rep. 446(4-6), 97–216 JUL (2007).

[99] Nowak, M. A. Evolutionary dynamics: exploring the equations of life. The

Belknap Press of Harvard University Press, Cambridge, Massachusetts, (2006).

[100] Hauert, C., Holmes, M., and Doebeli, M. Proc. Roy. Soc. London B 273, 2565–

2570 (2006).

[101] Melbinger, A., Cremer, J., and Frey, E. Phys. Rev. Lett. 105(17), 178101 October

(2010).

[102] Wakano, J. Y. J. Theor. Biol. 247, 616–622 (2007).

[103] Dobramysl, U. and Tauber, U. C. Phys. Rev. Lett. 101(25), 258102 December

(2008).

[104] Lovelock, J. and Margulis, L. TELLUS 26(1-2), 2–10 (1974).

[105] Watson, A. and Lovelock, J. TELLUS Ser. B 35(4), 284–289 (1983).

[106] Sigmund, K. The Calculus of Selfishness. Princeton University Press, Princeton,

(2010).

[107] Beinhocker, E. D. Origin of Wealth: Evolution, Complexity, and the Radical

Remaking of Economics. Harvard Business School Press, (2006).

[108] Peters, O. iFirst, Quatn. Fin. (2010).

[109] Gomez-Gardenes, J., Campillo, M., Floria, L. M., and Moreno, Y. Phys. Rev.

Lett. 98(10) MAR 9 (2007).

[110] Koschwanez, J. H., Foster, K. R., and Murray, A. W. Plos Biol. 9(8), e1001122

August (2011).
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[121] Fehr, E. and Gächter, S. Amer. Econ. Rev. 90, 980–994 (2000).
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