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incondicionalmente en todos mis desaf́ıos. De él aprend́ı que lo utópico no siempre
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i



ii

me ayudo con algunas de las ilustraciones de la tesis.
Un especial agradecimiento al Dr. Sappa, un referente ético y profesional, que en
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Abstract

This thesis is devoted to moving shadows detection and suppression. Shadows could
be defined as the parts of the scene that are not directly illuminated by a light source
due to obstructing object or objects. Often, moving shadows in images sequences
are undesirable since they could cause degradation of the expected results during
processing of images for object detection, segmentation, scene surveillance or simi-
lar purposes. In this thesis first moving shadow detection methods are exhaustively
overviewed. Beside the mentioned methods from literature and to compensate their
limitations a new moving shadow detection method is proposed. It requires no prior
knowledge about the scene, nor is it restricted to assumptions about specific scene
structures. Furthermore, the technique can detect both achromatic and chromatic
shadows even in the presence of camouflage that occurs when foreground regions are
very similar in color to shadowed regions. The method exploits local color constancy
properties due to reflectance suppression over shadowed regions. To detect shadowed
regions in a scene the values of the background image are divided by values of the
current frame in the RGB color space. In the thesis how this luminance ratio can
be used to identify segments with low gradient constancy is shown, which in turn
distinguish shadows from foreground. Experimental results on a collection of pub-
licly available datasets illustrate the superior performance of the proposed method
compared with the most sophisticated state-of-the-art shadow detection algorithms.
These results show that the proposed approach is robust and accurate over a broad
range of shadow types and challenging video conditions.
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Resum

Aquesta tesi està orientada a la detecció i l’eliminació d’ombres en moviment. Les
ombres es poden definir com una part de l’escena que no està directament il·luminada,
pel fet que la font d’il·luminació es troba obstrüıda per un o diversos objectes. Sovint,
les ombres en moviment que es troben en imatges o en seqüències de v́ıdeo són causa
d’errors en l’anàlisi del comportament humà. Això es deu a que les ombres poden
causar una degradació dels resultats dels algorismes de processament d’imatges apli-
cats a: detecció d’objectes, segmentació, v́ıdeo vigilància o en propòsits similars. En
aquesta tesi primer s’analitzen exhaustivament els mètodes de detecció d’ombres en
moviment, i després amb l’objectiu de compensar les seves limitacions es proposa un
nou mètode de detecció i eliminació d’aquest tipus d’ombres. El mètode proposat no
fa servir informació a priori de l’escena, ni tampoc es restringeix a un tipus d’escena
en concret. A més, el mètode proposat pot detectar tant ombres acromàtiques com
també les cromàtiques, fins i tot quan hi ha camuflatge (és a dir, quan hi ha una forta
similitud de color entre el foreground i l’ombra). Aquest mètode explota una propi-
etat de constància local de color aconseguida a causa de la supressió de la reflectància
en les regions amb ombres. Per detectar les regions amb ombres en una escena, els
valors de la imatge del background són dividits pels valors de la imatge actual, tots
dos en l’espai de color RGB. Al llarg de la tesi es demostra com aquesta divisió serà
utilitzada per detectar segments amb gradients baixos i constants, que al seu torn
s’utilitzen per distingir entre ombres i foregrounds. Els resultats experimentals duts
a terme sobre base de dades públiques mostren un rendiment superior dels mètodes
proposats en aquesta Tesi, comparat amb els mètodes actuals més sofisticats de de-
tecció i eliminació d’ombres. A més els resultats demostren que el mètode proposat és
robust i prećıs a l’hora detectar diferents tipus d’ombres en diferents tipus de v́ıdeos.
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Resumen

Esta tesis esta orientada a la detección y eliminación de sombras en movimiento.
Las sombras pueden ser definidas como una parte de la escena que no esta directa-
mente iluminada debido a que la fuente de iluminación se encuentra obstruida por
uno o varios objetos. A menudo, las sombras en movimiento que se encuentran en
imágenes o en secuencias de v́ıdeo son indeseables. Esto se debe a que estas, pueden
causar una degradación de los resultados esperados en algoritmos de procesamiento de
imágenes aplicados a: detección de objetos, segmentación, video vigilancia o en sim-
ilares propósitos. En esta tesis primero son exhaustivamente analizados los métodos
de detección de sombras en movimiento, y luego con el objetivo de compensar sus
limitaciones se propone un nuevo método de detección y eliminación. Dicho método,
no usa información a priori de la escena, ni tampoco se restringe a algún tipo de es-
cena. Además, el método propuesto puede detectar tanto sombras acromáticas como
aśı también sombras cromáticas, incluso en presencia de camuflaje (es decir, cuando
existe una fuerte similitud entre los colores de los pixeles del objecto y de los de la
sombra). El método en cuestión explota una propiedad de constancia local de color,
que se logra debido a la supresión de la reflectancia en las regiones con sombras.
Para detectar las regiones con sombras en una escena, los valores de la imagen del
fondo son divididos por los valores de la imagen actual, ambos en el espacio de color
RGB. A lo largo de la tesis se demostrara como esta división será utilizada para
detectar segmentos con bajos y constantes gradientes, que a su vez estos se usaran
para distinguir entre sombras y objetos. Resultados experimentales llevados a cabo
sobre base de datos públicas, ilustran una superior performance del método propuesto
comparado con los más sofisticados métodos de detección y eliminación de sombras.
Dichos resultados demuestran que el método que se propone en esta tesis, es robusto
y preciso a la hora detectar diferentes tipos de sombras en videos con condiciones y
caracteŕısticas diversas.
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Chapter 1

Introduction

“The Thinker”

by Auguste Rodin.

Motion perception is an amazing innate ability of the creatures on the planet. This
adroitness entails a functional advantage that enables species to compete better in the
wild. The motion perception ability is usually employed at different levels, allowing
from the simplest interaction with the ’physis’ up to the most transcendental survival
tasks. Among the five classical perception system 1 , vision is the most widely used in
the motion perception field. Millions years of evolution have led to a highly specialized
visual system in humans, which is characterized by a tremendous accuracy as well as
an extraordinary robustness. Although humans and an immense diversity of species
can distinguish moving object with a seeming simplicity, it has proven to be a difficult
and non trivial problem from a computational perspective.

In the field of Computer Vision, the detection of moving objects is a challenging
and fundamental research area. This can be referred to as the ’origin’ of vast and
numerous vision-based research sub-areas. A particular domain-of-interest is repre-
sented by the semantic evaluation of human behavior in image sequences, in which
different tasks are involved (e.g., detection, identification, tracking, action recognition
and behavior understanding). Nevertheless, from the bottom to the top of this hier-
archical analysis, the foundations still relies on when and where motion has occurred
in an image.

1Philosophy’s conception was based on analyze the information obtained from the human per-
ception. ’The Thinker’ usually is used as a symbol to depict philosophy. Rodin based his theme on
The Divine Comedy of Dante.
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8 INTRODUCTION

(a) (b)

Figure 1.1: Shadows from static and moving objects. (a) Shadows casted by static
objects. (b) Shadow casted by a moving object.

Pixels corresponding to moving objects in image sequences can be identified by
measuring changes in their values. However, a pixel’s value (representing a combina-
tion of color and brightness) could also vary due to other factors such as: variation in
scene illumination, camera noise and nonlinear sensor responses among others. The
challenge lies in detecting if the changes in pixels’ value are caused by a genuine object
movement or not. An additional challenging aspect in motion detection is represented
by moving cast shadows. The paradox arises because a moving object and its cast
shadow share similar motion patterns. However, a moving cast shadow is not a mov-
ing object. In fact, a shadow represents a photometric illumination effect caused by
the relative position of the object with respect to the light sources.

Shadow detection methods are mainly divided in two domains depending on the
application field. One normally consists of static images where shadows are casted by
static objects, whereas the second one is referred to image sequences where shadows
are casted by moving objects (see Fig. 1.1). For the first case, shadows can provide
additional geometric and semantic cues about shape and position of its casting object
as well as the localization of the light source. Although the previous information
can be extracted from static images as well as video sequences, the main focus in
the second area is usually change detection, scene matching or surveillance. In this
context, a shadow can severely affect with the analysis and interpretation of the scene.

The work done in this thesis is focused on the second case, thus it addresses the
problem of detection and removal of moving cast shadows in video sequences in order
to enhance the detection of moving object.
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Figure 1.2: Moving Cast Shadow: a challenging issue in scene understanding.

1.1 Motivation

Nowadays, we witness a significant increase in demand of visual information process-
ing systems. The most desired areas are: visual surveillance, sport event interpreta-
tion, and human-computer interaction, among others. The huge amount of recorded
data requires an automatic analysis and understanding of the scene, with a particular
focus on moving objects.

In Computer Vision, motion analysis refers to detection, identification and track-
ing of objects in video sequences, where one of the most important goal is to un-
derstand and to predict the objects behavior. Even though there has been much
progress in moving object detection [17, 57] during the past decades, robust and
accurate moving object detection (or segmentation) still remains an open problem.

Moving Object Detection (MOD) process segments the scene into foreground
(moving) and background regions. MOD is often one of the first tasks in vision-based
applications, making it a critical part of the system. The success of many vision-
based applications is highly related to how accurately the MOD algorithm performs
the segmentation of the moving objects. However, in many circumstances the task of
MOD is strongly hindered due to factors such as: global illumination changes, local
illumination changes (moving cast shadows), camera noise etc. Moving Cast Shadows
are one of the principal factors affecting vision-based system’s performance [62, 80],
since they can easily be misclassified as foreground (see Fig. 1.2).

This misclassification undoubtedly leads to a drastic and severe degradation in
the moving object segmentation. For these reasons, an effective shadows detection
algorithm is highly desirable for a wide range of real-world applications.

The work presented in this dissertation is motivated by the necessity to obtain a
precise and accurate foreground segmentation by removing the negative effect caused
by moving cast shadows. Therefore, in this thesis a moving cast shadow detection
framework is presented; this can perform well over a broad range of shadow types and
challenging real-video conditions.
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1.2 Application Domains

Moving Cast Shadow detection is a key element in several applications. This section
will briefly introduce some real-word applications where a robust motion segmenta-
tion approach (including an accurate moving cast shadow removal method) takes a
fundamental role in the applications’ performance.

1.2.1 Video Surveillance

We live in a Surveillance Society. Video surveillance is more prevalent in Europe than
anywhere in the world. For instance, in the past decade, successive UK governments
have installed over 2.4 million surveillance cameras (about one for every 14 people). 2

The average Londoners are estimated to have their picture recorded more than three
hundred times a day 3.

Video Surveillance has been in our society for a long time [14, 6]. It began in
the twentieth century to assist prison officials in the discovery of escape methods.
However, it was not until the late-twentieth century that surveillance expanded to
include the security of property and people.

Traditionally it was used to display images on monitors inspected by guards or
operators. This has allowed the observation of an increase number of places using
less people and also to perform patrolling duties from the safety of a control room.
However, a single operator can only monitor a limited amount of scenes simultaneously
and for a limited amount of time, because the process of manual surveillance is very
time-consuming and is a really tedious task.

The new breakthroughs in technology have led to a new generation of video surveil-
lance. The current generation of video surveillance systems uses digital computing
and communication technologies to improve the design of the original architecture,
with the ultimate goal to create an automatic video surveillance system.

Recent trends in computer vision has delved into the study of cognitive vision
systems, which uses visual information to facilitate a series of tasks on sensing, un-
derstanding, reaction and communication. In other words, video surveillance systems
aim to automatically identify people, objects or events of interest in different kinds of
environments. Although video surveillance is probably one of the most popular areas
for research and much effort has been made to achieve an automatic system, this goal
has yet to be reached.

Nowadays, the task of a video surveillance system aims to provide support to the
human operator. The system warns an operator when an event, e.g., possible risks
or potential dangerous situations, is detected. Despite the fact that the long-term
goal is to build a completely automated systems, the short-term one is to increase the
robustness of the current systems in order to reduce false alarms. This can only be
achieved if the systems are able to interpret the interaction of events in the scene. This
task includes detection, localization, tracking and high and low level event-reasoning.

A method that is able to perform the basic tasks, namely detection, localization
and tracking with high accuracy, can highly benefit the process of scene understand-

2http://news.bbc.co.uk/2/hi/uk_news/6108496.stm
3http://epic.org/privacy/surveillance/

http://news.bbc.co.uk/2/hi/uk_news/6108496.stm
http://epic.org/privacy/surveillance/
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ing. Typically, a video surveillance system consists of multiple stationary cameras in
offices, parking lots, banks, airports and other places of interest. In these different
uncontrolled environments, many difficulties may occur. Some typical issues, which
any kind of video surveillance system has to deal with, are:

• Acquisition of images: the majority of cameras belonging to a surveillance sce-
nario provide low resolution information.

• Camera networks belonging to surveillance scenarios are not always calibrated
in terms of colors or in terms of spatial geometry.

• Occlusion problems often arise because the topology of the scene, or the inter-
action between objects.

• There are cases where the number of objects to be detected is extremely large.
Moreover, the spatial discontinuity between objects is imperceptible or it does
not exist. In this overcrowded situation, the individual identification became a
hard task.

• Surveillance systems, which are supposed to work 24/7, are obviously affected
by different global illumination conditions (time of the day) as well as changing
in the weather conditions (mostly for outdoor scenarios).

• The illumination changes are not always produced by external conditions, also
local illumination modification occurs due to shadows casted by objects in the
scene. Moving Cast Shadows are very frequent and extremely undesirable in
video surveillance applications.

Several stages in video surveillance systems’ architecture are highly affected when
low resolution images are acquired. Firstly, the sensibility of movement detection
method is affected due to the fact that the dynamic range of camera is diminished by
noise. On the other hand, in the appearance-based recognition stage, the possibility
to extract robust features or robust images descriptors is highly reduced when low
resolution images are used [34].

Generally surveillance systems consist of several cameras, some of them sharing
the field of view while others are pointed to different areas. Such systems should
optimally relate the information acquired from different cameras. The camera cali-
bration process’ objective is to find the relationships between cameras. Cameras can
be calibrated in terms of color [38, 31] or in terms of spatial localization [21, 53].
Fig. 1.3 shows images from a set of non-color calibrated cameras, the images look
different despite the fact that they were all taken at the same time, under the same
illumination conditions. The camera responses are different. This fact can seriously
impair any kind of detection based on appearance color model. On the other hand,
a spatial camera calibration can highly benefit a surveillance system. For instance,
an obvious way to solve the occlusion problem is by using multiples views as it was
described in the works of Amato et al. [54, 55, 3]. This fact is shown in Fig. 1.4. This
figure shows two images simultaneously recorded from two different cameras located
at different position. In Fig. 1.4(a) one agent is practically occluded by the other,
while that in Fig. 1.4(b) the occlusion does not exist.
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Frame 18 View 7 Frame 18 View 6

Figure 1.3: Images from two non-color calibrated cameras recording at the same
time. Source: Pets2010.

(a) Frame 767 View 5 (b) Frame 767 View 3

Figure 1.4: Images from two cameras recording at the same time with two differ-
ent viewpoints. (a) Pedestrian Occluded, (b) free-occlusion view. Source: Hermes
Outdoor

Surveillance systems must be active during long periods of time, meaning to solve
global illumination problems such as: natural illumination variations during the course
of the day, appearance and disappearance of clouds which distort the primary source
of light, etc. Moreover, outdoor systems must perform under changing weather con-
ditions.

One big limitation in the performance of video surveillance systems arises when
part of the moving object detected is shadow or when the moving shadows are detected
as object. In these cases, tracking, classifying and analyzing of target object often fail.
Later on, we will present common problems caused by moving cast shadows affecting
surveillance applications. Summarizing, the capability to discriminate moving cast
shadows and objects is crucial for the motion analysis in the field of video surveillance.
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1.2.2 Potential Applications

There are another applications that can be beneficed by an accurate moving object
segmentation, for example:

1. Sport Event Interpretation
During decades, sport competitions have played an important role in our society.
Nowadays, the money invested in sports reaches hundreds of millions if not
more; part of it goes to improving the performance of elite players. Performance
analysis is effectively integrated into both teams and individual athletes. This
is achieved by working with an inter-disciplinary team, which includes coaches
and athletes as well as other sports sciences and medicinal professionals.

Research has shown that providing athletes with accurate feedback based on
systematic and objective analysis, is a key factor on improving sporting perfor-
mance. This desired improvement is achieved by a combination of deep knowl-
edge of performance’s theory with a range of Vision-based technology. In this
context video motion analysis is becoming a primary training tool for many ath-
letes, coaches and trainers. Competition today is steep and teams and athletes
need an extra edge to succeed. Sport Event Interpretation provides that edge
with state-of-the-art in the motion analysis research area.

Basically, the computer vision techniques used in this area include: motion seg-
mentation, tracking and human pose estimation. As we pointed out before, an
accurate object segmentation is highly desirable and beneficial for the perfor-
mance analysis.
Big efforts are done to improve the performance of athletes; however, vision-
based motion analysis also contributes to improve the competition evaluation
during the performance. The best known example is Hawk-Eye 4, which is used
as an additional artificial umpire. Hawk-Eye is mostly applied in tennis and
cricket games (Fig. 1.5). Tracking and moving object segmentation are the core
of this technology.

2. Human-Computer Interaction (HCI)
HCI is the study of how people interact with computers and to what extent
computers are or are not developed for a successful interaction with human
beings. Recently the field of human-computer interaction (see Fig. 1.6) has
broadened and has payed more attention to the processes and context for the
user interface.

This interesting application field explores the manner to integrate the whole
human communication skills such as: speech, human motion (gestures, body
poses and facial expressions) and human perception in order to interact with a
computational system. The focus of research and development is now on un-
derstanding the relationships among users’ goals and objectives, their personal
capabilities, the social environment and the designed artifacts with which they
interact.

4http://www.hawkeyeinnovations.co.uk/

http://www.hawkeyeinnovations.co.uk/
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(a) (b)

Figure 1.5: Sport Event Interpretation. Artificial umpire: (a) tennis application;
(b) cricket application. Source: http://www.hawkeyeinnovations.co.uk.

As an applied field, see Fig. 1.6, is also concerned with the development process
used to create an interactive system and its usefulness for the human user. The
sub-areas involved in HCI are mainly Advanced Human Interface and Virtual
Reality.

• Advanced Human Interface
The advanced human Interface can be described as the point of commu-
nication between the human user and the computer. Even though human
communication is mainly based on speech, visual cues can noticeably im-
prove the understanding of any communication process. In a human com-
munication process, visual cues are obtained by watching the pose, gestures
and facial expressions of the speakers.

In human-machine interaction, computer vision takes the role of the ob-
server and interpreter during the dialog. Computer vision is a useful com-
plement of speech recognition and natural language understanding, for a
natural and intelligent dialog between human and machine. Additional
visual information can create a more useful and friendly interface, which
in turns allow for a more customized human-computer communication.

• Virtual Reality
Virtual reality is a form of human-computer interaction in which a real
or imaginary environment is simulated and users interact with and ma-
nipulate that world. It can immerse people in an environment that would
normally be unavailable due to cost, safety or perception restrictions. A
successful virtual reality environment offers its users immersion, navigation
and manipulation.

The realistic effects are achieved by using equipment with tiny computer
screens, one in front of each eye and each giving a slightly different view
so as to mimic stereoscopic vision. Sensors attached to the user, comple-
mented with visual motion detection techniques, allow the creation of a
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Figure 1.6: Human computer interaction: Applications.

realistic feeling of user been able to move in the scene. Virtual reality
can be applied in a variety of ways. In scientific and engineering research,
virtual environments are used to visually explore whatever physical world
phenomenon is under study.

Training personnel for work in dangerous environments or with expensive
equipment is best done through simulation. Airplane pilots, for example,
train in flight simulators. Virtual reality can enable medical personnel to
practice new surgical procedures on simulated individuals. As a form of
entertainment, virtual reality is a highly engaging way to experience imag-
inary worlds and to play games.

Moving cast shadows are a major concern in today’s performance from broad range
of many vision-based applications because they made shape-based classification of ob-
jects very difficult. Furthermore, if objects are merged together due to their shadows
then tracking cannot be accurately performed . Therefore, the success of applications
that include motion analysis is highly related on the capacity to discriminate between
moving shadows and moving objects.

1.3 Context of this Research

The work done in this thesis has been realized in an European project entitled HER-
MES IST-2006-027110 (Human Expressive Representations of Motion and their Eval-
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uation in Sequences), under the umbrella of the Video Surveillance field.
HERMES was a consortium project that concentrated on how to extract descrip-

tions of people behavior from videos, such as pedestrians crossing inner-city roads,
approaching or waiting at stops of buses and even humans in indoor worlds like an
airport hall, a train station, or a lobby.

These video recordings (from different parts of Europe in order to prevent over-
adaptation to local habits) allowed exploring a coherent evaluation of human move-
ments and facial expressions across a wide variation of scale.

The main objective of HERMES was to develop a cognitive artificial system based
on a framework model which allows both recognition and description of a particular
set of human behaviors arising from real-world events. Specifically, HERMES pro-
posed to model the knowledge about the environment in order to make or suggest
interpretations from motion events, and to communicate with people using natural
language texts, audio or synthetic films. These events were detected in image data-
streams obtained from arrays of multiple active cameras (including zoom, pan and
tilt).

HERMES thus aimed to design a Cognitive Vision System for human motion and
behavior understanding, followed by communication of the system results to end-
users, based on two main goals. The first goal was to determine which interpretations
are feasible to be derived in each category of human motion. Consequently, for each
category, suitable human-expressive representations of motion have been developed
and tested. In particular, HERMES interpreted and combined the knowledge inferred
from three different categories of human motion, namely the motion of agent, body
and face, in the same discourse domain.

The second objective of HERMES was set to establish how these three types
of interpretations can be linked together in order to coherently evaluate the human
motion as a whole in image sequences. Such evaluation has required to acquire human
motion from video cameras, to represent the human motion using computational
models, to understand the developments observed within a scene using high-level
descriptions, and to communicate the inferred interpretations to a human operator
by means of natural language texts or synthesized virtual agents as a visual language.
Thus, the main procedure of HERMES was the combination of:

• Detection and tracking of agents while they are still at some distance away
from a particular location (for example a bus station, a pedestrian crossing, or
a passenger in an airport, or a guest in a lobby).

• When these agents come closer to the camera, when the active camera zooms in
on these agents, their body posture will be evaluated to check for compatibility
with behavior hypotheses generated so far.

• If they are even closer and their face can be modeled sufficiently well, facial
emotions will be checked in order to see whether these again are compatible
with what one expects from their movements and posture in the observational
and locational context which has been accumulated so far by the system.
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Figure 1.7: Background Subtraction representation.

1.4 Problem Statement and Objectives

1.4.1 Problem Statement

Moving object detection plays an important role in computer vision [17, 57]. It is a
necessary pre-processing step for many real-word applications.

One of the most common, simple and effective approach to moving object seg-
mentation is Background Subtraction, where a stationary camera is used to observe
dynamic events in a scene. The methodology behind any background subtraction
technique consists in subtracting a model of the static scene ’background’ from each
frame of a video sequence (see Fig. 1.7).

In general, a background subtraction technique can be divided into three phases:
first, the generation of a suitable reference model, normally called background (train-
ing phase); second, the measurement procedure or classification (running phase) and
finally; the model maintenance (updating phase).

For each of these phases, particular challenging exist. A deep case study together
with solutions of some of these classical issues is reported in [30].

In moving object detection algorithms, moving cast shadows have a high proba-
bility to be misclassified as moving objects (foregrounds). Such error is due to the
fact that a moving object and its moving shadow share similar motional character-
istics. An example of motion segmentation image based on background subtraction
process is shown in Fig. 1.8(c). The segmented image shows that the shadow was also
segmented as a part of the object.

A shadow occurs when an object partially or totally blocks the direct light source.
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(a) (b)

(c)

Figure 1.8: Motion Segmentation: (a) background Image; (b) current image; and
(c) Segmented Image.

Shadows can take any size and shape. In general, shadows can be divided into two
major classes: self and cast shadows. A self shadow occurs in the portion of an object
that is not illuminated by direct light. Cast shadows are the areas projected on a
surface in the direction of direct light. Cast shadows can be further classified into
umbra and penumbra. The region where the direct light source is totally blocked
is called the umbra, while the region where it is partially blocked is known as the
penumbra. These definitions are visually represented in Fig. 1.9.

Shadows in images are generally divided into static and dynamic shadows. Static
shadows are shadows due to statics objects such as building, parked cars, trees, etc.
Moving object detection methods do not suffer from static shadows since static shad-
ows are modeled as a part of background. In contrary, dynamic (moving) shadows,
the subject of interest in this thesis, are harmful for moving object detection methods.
These appear due to moving object such as vehicles, pedestrians, etc.

The shadows can be either in contact with the moving object, or disconnected
from it (see Fig. 1.10). In the first case, shadows distort the object shape, making
the use of subsequent shape recognition methods less reliable. In the second case, the
shadows may be wrongly classified as an object in the scene.

For example, typical problems caused by moving shadows in surveillance scenarios
are shown in Fig. 1.11. In Fig. 1.11-(I), a traffic surveillance scene, shadows cause
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Cast Shadow

Umbra

Penumbra

Figure 1.9: Shadows Types: Self and Cast (Umbra and Penumbra).

merging of multiple objects; in Fig. 1.11(II), an indoor scenario, shadows are projected
on the floor and on the wall. In this case a false positive foreground (shadow casted
on the wall) occurs; and in Fig. 1.11(III), a long shadow causes a severe object shape
distortion in an outdoor scenario.

Clearly, in many image analysis applications, the existence of moving cast shadows
may lead to an inaccurate object segmentation. Consequently, tasks such as object
description and tracking are severely affected, thus inducing an erroneous scene anal-
ysis.

Shadows are normally considered as a local illumination problem. Obviously, areas
affected by cast shadow experience a change of illumination. Often this illumination
change is considered only as a decrease in brightness, without significant variation in
chromaticity. However, the assumption that chromaticity is invariant to cast shadows
is not always correct. It is correct, in fact, only when light sources are white and
there is no color blending among objects.

This type of shadow is often called an achromatic shadow, while those that are
not achromatic are referred to as chromatic shadows. Removing chromatic shadows
is a particularly challenging task due to the fact that they are extremely difficult to
distinguish from the foreground because they have not a clearly defined photometric
pattern. The interplay between color and texture in the background and shadows is
highly variable and difficult to characterize.

Another non trivial problem occurs when there is no difference in chromaticity
between foreground object and background (e.g. black car is moving in highway),
hence inducing a strong similarity between shadow-foreground regions. Such effect is
called as shadow camouflage.

Despite of the fact that many articles of moving cast shadow detection have been
published during the las years, only few works in the literature address these two
major problems: chromatic shadow identification, and shadow detection in
camouflaged areas.



20 INTRODUCTION

(a)

(b)

Figure 1.10: Shadow-object Location.
Shadows location: (a) shadow is spatially connected to the object; (b) shadow is spatially

unconnected to the object.
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(I)
(a) (b)

(II)
(c) (d)

(III)
(e) (f)

Figure 1.11: Negative effect of shadow in surveillance scenarios.
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Figure 1.12: Objective formulation.

1.4.2 Objective

Previously, different moving cast shadows characteristics have been described together
with the most common problems that normally moving shadows might cause for
moving object segmentation algorithms. The main objective of this dissertation is to
develop a moving shadow detector capable of detecting moving cast shadows for most
possible scenarios occurring in real video sequences. Thus, the proposed method has
to operate under the following conditions: (i) for indoor as well as outdoor scenarios;
(ii) detect both umbra and penumbra; (iii) detect chromatic and achromatic shadows;
and (iv) recognize shadows even in the presence of camouflage. Figure 1.12 illustrates
this objective.
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Figure 1.13: Block diagram of the proposed cast shadows detection method.

1.5 Method Outline

A novel approach to detect and remove moving cast shadows is presented in this
thesis. This sections depicts the outline of the proposed shadow detector. The method
exploits local color constancy due to reflectance suppression over shadowed regions.
Such a color constancy effect, over a shadow region, is achieved through dividing the
values of the background image by the values of the current image to form a new
image in the division space. In this space, segments with low gradients correspond
to all shadow regions, as opposed to foreground regions which, in most cases, exhibit
higher gradients.

A brief description of the main steps of the method are given next. First, an initial
change detection mask containing moving objects and cast shadows is obtained using
a background subtraction technique. Then, the objects’ mask is computed by using
connected component analysis. Next, the proposed method is used to detect cast
shadow areas inside each detected moving object segment. To do this, luminance
values of the background image are divided by the corresponding luminance values
of the current frame, thus suppressing the reflectance component in shadow areas.
Later, each object area is partitioned into a set of segments using a novel gradient-
based segmentation algorithm.

Finally, these sub-segments are classified as foreground or shadow by analyzing
the intrinsic parameters of sub-segments. Fig. 1.13 shows the block diagram.
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LOCATION CONTRIBUTIONS
Chapter 2 A comprehensive review of the literature.

A new taxonomy of moving cast shadow methods.
Chapter 3 A deep analysis of shadow modeling.

An exhaustive examination of relevant methods, which in-
cludes description, comparison and limitations.

Chapter 4 A motion detection algorithm based on angular and eu-
clidean distance similarity measurement.
A shadow feature based on low gradient region in the lumi-
nance ratio space.
A gradient-based segmentation approach.
A geometrical shadow supporter based on external terminal
points.

Table 1.1

Thesis contributions

1.6 Contributions and Thesis outline

The outcome of this work ends with a new moving cast shadow detector, which is
able to properly performs in most possible scenarios occurring in real video sequences.
Furthermore, the proposed detector outperforms the state-of-art [2].

Table 1.1 summarizes an account of the specific contributions achieved throughout
the development of this thesis and the chapters where such contributions appear.

This thesis is organized in the following chapters. Chapter 2 gives a literature
review on Moving Cast Shadow methods, describing different algorithms developed
during the last years. In turn, some relevant Background Subtraction techniques are
also revised. Chapter 3 is divided into two parts. The first one, is focused on the
shadow modeling from a photometric viewpoint. While, in the second, a deep analysis
of common shadow detection methods is presented. In Chapter 4 the description of
the proposed moving cast shadow detection framework is given. Finally, Chapter 5
briefly reviews the topics discussed in the different sections of this thesis, establishes
future lines of research, and, as a conclusion, summarizes the contributions of the
thesis.



Chapter 2

Related Work

“Que otros se jacten de las páginas que han escrito;
a mi me enorgullecen las que he léıdo.”

Jorge Luis Borges

2.1 Introduction

Several shadow detection methods have been reported in the literature during the
last years. They are mainly divided into two domains. One usually work with static
images [16, 63, 78], whereas the second one uses image sequences, namely video con-
tent.

In spite of the fact that both cases can be analogously analyzed, there is a difference
in the application field. The first case, shadow detection methods can be exploited in
order to obtain additional geometric and semantic cues about shape and position of its
casting object (’shape from shadows’) as well as the localization of the light source [40,
60]. While in the second one, the main purpose is usually change detection, scene
matching or surveillance (usually in a background subtraction context). Shadows can
in fact modify in a negative way the shape and color of the target object and therefore
affect the performance of scene analysis and interpretation in many applications, such
as video retrieval, as well as video analysis.

This chapter will mainly reviews shadow detection methods related with the sec-
ond case, thus aiming at those shadows which are associated with moving objects
(moving shadows). As it has been mentioned, the moving shadows detection prob-
lem is highly related to background subtraction techniques, therefore in this chapter
classical and well-know background subtraction algorithms will also be studied.

2.2 Moving Shadow Detection Methods

Moving cast shadow detection algorithms are mainly based on the use of shadow
descriptors. They basically model shadows by using properties such as: chromaticity

25
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invariant, textural patterns, photometric physical models, or even by analyzing the
projected areas in term of size, shape and direction.

The methodology of moving cast shadow detection can further includes geometrical-
shadow-information or spatial-shadow-cues as well as a training-shadow-stage, or a
sort of combination of them. In turn, the methods can perform at different levels, con-
sidering only the information of a single pixel, using a set of pixels, or even performing
with the information of the whole frame.

Diverse information that characterizes moving shadows is exploited and in many
cases such information is combined or used in a different way. This makes very difficult
to classify in a unique manner the moving cast shadow methods.

Actually, in the literature we only found three taxonomies used to classify moving
shadow detection methods: Salvador et al.[67] propose to divide shadow detection
methods in (i) model-based and (ii) property-based. Model-based approaches work
with models that represent a priori knowledge of the geometry of the scene, the
object and the illumination. While property-based methods identify shadows by using
properties such as the geometry, brightness and/or color of shadows. This is not a
very useful classification. First of all this taxonomy is quite general. Furthermore, the
majority of the state-of-art methods use some property/ies to detect moving shadows,
even the model-based approaches.

Ullab et al.[80] state that moving shadow removal method can be partitioned into
three categories: (i) intensity information, (ii) photometric invariant information
and (iii) color and statistical information. The first classification concentrates in the
brightness of the shadowed pixels. Typically a shadowed pixel decreases its brightness
compared to the same pixel without shadow. The second classification includes those
algorithms that exploit photometric-invariant-shadow property. Normally such pho-
tometric invariability can be obtained in normalized color spaces that can separately
operate with the brightens and the chroma of the pixels. The last classification stands
for methods which usually classify shadow by using statistical model of the pixel’s
information. In this classification two main drawback can be pointed out.

The first one, an ambiguity can occurs when the methods are classified as category
(i), since the majority of the methods exploit this property of shadows. The second
one is that relevant information used to detect moving shadows are not included in
the classification (e.g., spatial, temporal, prior-knowledge of scene, etc.). These are
basically the reasons of why we have found that this taxonomy can not classifies
known methods properly.

Undoubtedly, the most complete taxonomy available in the literature was proposed
by Prati et al. [62], they presented two layers taxonomy (algorithm-based taxonomy).
The first layer classification considers whether the decision process introduces and ex-
ploits uncertainty. Deterministic approaches use an on/off decision process, whereas
statistical approaches use probabilistic functions to describe the class membership. In
turn, both layers are further divided. For statistical approaches the authors include
parametric and non-parametric separation. In the case of deterministic methods, algo-
rithms are classified by whether the decision is supported by model-based knowledge
or not. Additionally, spectral, spatial and temporal information are also considered.

Summarizing our review of the known taxonomies we can state that the greatest
distinction behind moving cast shadow methodologies does not reside in the decision
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Figure 2.1: Illustrative image of the Moving Cast Shadow Taxonomy. TM, CIM,
PPM and PM stand for Texture Model, Color and Intensity Model, Photometric
Physical Model and Projection Model respectively.

process. The highest diversity reflected in the results as well as the capability of meth-
ods to perform under different scene’s conditions are in the choice of this feature/s
used, how the feature/s is used and combined, and essentially in the manner or level
that this feature/s is implemented. This realization was the motivation to propose a
new moving cast shadow taxonomy.

2.2.1 Taxonomy

The proposed taxonomy starts with three operative levels. In turn, the methods are
classified based on the descriptors or properties used and how such descriptors are
implemented. In Fig. 2.1 an illustrative graphic of the proposed taxonomy is shown.
The illustration consist of three main components:

1. Angular Selector:
It is represented by the circle that surround the pyramid level. A rotation of
0◦ is used for frame level, 90◦ for adaptive-region level, 180◦ for pixel level and
270◦ for fixed-region level. (see Fig. 2.2)
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(a) (b)

(c) (d)

Figure 2.2: Representation of level selection. (a) Frame Level, (b) Adaptive-Region
Level, (c) Pixel Level and (d) Fixed-Region Level.



2.2. Moving Shadow Detection Methods 29

2. Polar Selector:
It is used to set up the configuration of the method in term of the shadow
descriptor used as well as the supporters and the decision process.

3. Window of Method Configuration:
It is represented by a fixed semi-transparent cone, that determines the config-
uration of the method. In Fig. 2.3 we show the taxonomies of four different
methods of the literature.

The main layer of the taxonomy is related with the operative level of the method.
In other words, it describes whereas the methods operate with a single pixel or with a
group of pixels or using the whole frame information. A distinction must be done with
the region level, meaning that the region level can performs within a fixed area (usually
with a window of pixels) or within a local adaptive region meaning a particular region
of pixels.

On the other hand, the methods can be classified based on shadow descriptor
used. The principal shadow descriptors used in the literature are: chromaticity and
intensity models (CIM), texture models (TM), photometric physical models (PPM)
and projection models (PM).

In turn, some methods need to be supported by an extra information. Such
information can be obtained by a training phase or by using some prior-knowledge of
the scene or by exploiting geometrical, temporal, or spatial cues.

Finally the last category is based on the classification’s decision of the methods.
It was inspired by the work of Prati et. al. [62] where the classification considers
whether the decision process introduces and exploits uncertainty or not. This category
discriminates between deterministic and statistic algorithms.

A detailed components description of the proposed taxonomy is given below.

• Shadow Descriptors

– Chromaticity and Intensity Models (CIM)
Many shadow detection method assume that a region under shadow be-
comes darker but with a similar chroma that the same region without
shadow. Chormaticity is a measurement of color that is independent of
intensity component.

The invariability in chroma, between a (non-shadowed) pixel belonging
to the background and the same (shadowed) pixel belonging to the cur-
rent image, together with a brightness decrement, represent a distinctive
shadow feature1.

Often methods that are using this shadow descriptor perform in color
spaces where the distinction between brightness and chroma is supported.
These common spaces are: HSV, HSI, YUV, C1C2C3, normalized RGB,
etc.[25, 13, 50, 67, 66].

1Earlier approaches perform with gray scale images; they exploit the same intensity’s decrement
assumption. Therefore, they could be consider to be inside this category.
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(a) (b)

(c) (d)

Figure 2.3: Taxonomy of different approaches. (a) Cucchiara et al. [13], (b) Hor-
prasert et al. [25], (c) Huerta et al. [29] and (d) Amato et al. [1]
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– Texture Models (TM)
Methods that use texture as shadow descriptor basically are based on the
idea that a shadow is a semi-transparent region in the image. Thus, they as-
sume that a strong correlation between two regions, one affected by shadow
and the same region without the shadow’s effect, must exist.

These methods try to obtain such a correlation using for example: local
binary patterns (LBP), normalized cross-correlation (NCC), color cross
covariant (CCC), Markov random field, etc. (e.g. [19, 91, 23, 89, 1]).

– Photometric Physical Models (PPM)
Methods in this category aim to obtain an inference of the pixel values in
the shadowed areas. For such a purpose, a formulation can be achieved
by using: a reflectance model, an illumination model or an adaptation of
classical color models.

In order to obtain the appearance of the shadowed pixels some methods
may need a training phase (it could be supervised or unsupervised), or/and
some prior knowledge of the scene of interest. (e.g. [56, 46, 47, 28, 88]).

– Projection Models (PM)
Methods that use this shadow descriptor are focused on the characteristic
of the casted shadow area. Usually the characteristics to be analyzed are
direction, size and shape of the shadow. Often these methods operate in
two steps. In the first one, the border points between the object and its
shadow are computed. The second step aim to obtain a refined segmenta-
tion by estimating the line through the border points between objects and
its shadow.

These methods can be hardly able to avoid the use of some prior knowledge
of the scene (e.g. [8, 26, 27, 90]).

• Supporters

This category attempts to describe whereas methods combine some addi-
tional information or not, and which kind of information is used. The dif-
ference between the supporters and the shadows descriptors is highlighted
next.

The supporters are not used as the core of moving cast shadow methods,
they are only implemented as an additional information used to improve
detection.

– Scene prior-knowledge
There are methods that make use of the information such as: camera loca-
tion, ground surface, geometry of the objects and classes, illumination con-
dition, etc. Obviously, the use of scene’s prior-knowledge can significantly
improve the detection. Nevertheless, the way in which the information of
classes of objects is used in term of their photometric structure as well as
their geometry is not a trivial problem for complex environments, where
many objects interact in the scene.
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– Training
Several methods make use of this supporter to obtain a better inference
in the shadow-foreground classification. Basically, the idea behind this
technique is to implement a training stage, which can be supervised or
unsupervised, in order to obtain a more accurate approximation of the
shadowed pixel appearance. However, a strict relationship exists between
the accuracy in the achieved results and the training phase.

– Geometrical
A significant improvement can be achieved when the detection is enriched
by using geometrical and topological clues that characterize a shadow. An
example can be found in the consideration that a casted shadow pixel
or region cannot be inside the foreground 2; a shadowed region should
surround the object.

Another assumption frequently used considers a fix light source; therefore,
the shadow is casted in a certain direction. Often, this is used in outdoor
scenarios to detect shadow casted by rigid objects (mainly in traffic surveil-
lance) because the direction as well as the relative size of the shadow can
be pre-computed.

– Temporal
Temporal information is also exploited by some moving cast shadow re-
moval methods. These methods take advantage of certain temporal con-
stancy of the shadowed pixels to infer the shadow-foreground classification
of the consecutive frames (multi-frame integration).

Broadly speaking, a multi-frame integration methodology evaluates a con-
fidence detection map to better infer the detection of consecutive frames.
More sophisticated approaches use trackers of shadows.

– Spatial
Following the principle of the shadow descriptor based on texture, where
a shadow can be considered as a semi-transparent area, methods that use
the spatial supporter try to find an extra shadow clue by analyzing edges,
gradient density or similar spatial-features under the shadowed area.

Undoubtedly, in many circumstances the detection of moving cast shadow can
be highly benefited by the use of supporters. However, not all real video se-
quences can hold the constrains as well as the assumption needed for some
supporters. Furthermore, in the majority of the cases, some of the aforemen-
tioned supporters attempt to loss generality, making the detection useful only
for some specific and controlled sequences.

• Decision
This category discriminates between deterministic and statistic algorithms. Un-
like Prati et al. [62], it should be observed that there are methods that combine
the uses of statistical inferences with some deterministic decision. Therefore,
we propose a not mutually exclusive separation.

2Note that the topic of interest in this research is not focused in the self-shadow, this work
addresses moving cast shadow.
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The decision category could be deterministic and/or statistic and this one can
be parametric or non-parametric.

2.2.2 Methods Review

In this subsection some of the most classical moving cast shadow detection approaches
are presented. They are organized in pixel-level, region-level and frame-level3.

Pixel-Level

In general, the main shadow descriptors used by a method that performs at the
pixel-level, are CIM and PPM. Then, the supporter and the decision used by them
can vary. Some methods can be chosen for their simplicity, for their speed, or for their
accuracy as well as for a trade-off between these advantages. However, the pixel-level
methodology in moving cast shadow detection methods intrinsically imply an inability
to solve shadow camouflage.

Methods that exploit CIM as shadow descriptors were proposed by the following
authors:

Horprasert et al. [25] propose a color model that compares intensity to the chro-
maticity component at each pixel. Each pixel is classified as background, shaded,
highlighted or moving foreground through a combination of three threshold values,
which are defined over a single Gaussian distribution. An extension of this work based
on multiple background pixels organized in a codebook is done by Kim et al. [36].

Cucchiara et al. [13] use shadow properties in the HSV color space to distinguish
shadows from moving objects. These properties show that cast shadows darken the
background in the luminance component, while the hue and saturation components
change within certain limits.

McKenna et al. [50] assume that cast shadows result in significant change in in-
tensity without much change in chromaticity. Pixel’s chromaticity is modeled using
its mean and variance. In turn, the first-order gradient of each background pixel is
also exploited. Moving shadows are then classified as background if the chromaticity
or gradient information supports their classification as such.

The advantage of all the mentioned above methods reside in that they are fast
(suitable for real-time applications), and easy to implement. However, they are spe-
cially restricted to achromatic shadows. Moreover, some of them often require explicit
tuning of parameters for each scene.

PPM that implement statistical learning-based methodology have been developed
to learn and remove cast shadows [46], [61], [47], [28]. For example, in the work
of [47] a nonparametric framework to model surface behavior when shadows are cast
on them is introduced. Physical properties of light sources and surfaces are employed
in order to identify a direction in RGB space at which background surface values
under cast shadows are found. However, these approaches are particularly affected
by the training phase. These methods require a long training period.

In the work of Siala et al. [71] a statistical non-parametric shadow detection

3Frame-level methods are included, despite the fact that they are not widely used, in order to
obtain a thorough review of the methods.
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method is presented. First, in the learning phase, an image containing foreground,
background and moving shadow is selected. The moving shadow regions are manually
annotated. The information obtained from this annotation is then used to create a
diagonal model that describes the shadow appearance in the RGB ratio color space.
The shadow detection is obtained by performing a one class classification based on a
support vector domain description (SVDD).

Region-Level

As it has been mentioned before, region-level methods are separated into fixed
region and adaptive region. A fixed region, normally is predefined as a square or
rectangular window with a fixed size, while the adaptive region has not predefined
neither a shape nor the size of the area.

Fixed:

Although most of the methods that perform in a fixed region typically make use of
texture information (TM), there are few methods that exploit other shadow descrip-
tor such as: CIM or PPM. Next, a brief description of moving cast shadow detection
methods that perform at fixed region level is presented.

Grest et al.[19] propose to tackle the moving cast shadows detection using two
similarity measurements, one is based on the normalized cross correlation (NCC) and
the other is the color cross covariant (CCC). Basically the authors are interested in
comparing pixel values at the same position in two images, (the current image and a
reference image) and then infering if there is a correlation between the information
of these pixels. The computation of these measurements are done over a given win-
dow size. The NCC is calculated using the brightness of the pixel, while the CCC
is obtained in the biconic HSL (Hue, Saturation and Lightness) color space. The
authors assume that: (i) a shadowed pixel is darker than the corresponding pixel
in the background image; (ii) the texture of the shadowed region is correlated with
the corresponding texture of the background image. Despite the fact that CCC is
used to solve the limitation of the method to distinguish shadow from object over
homogeneous areas, still the success of the approach under shadows-camouflage areas
is far to be achieved.

Other approach based on NCC is proposed by Yuan et al. [91]. The authors
proposed to include a multi-frame differencing strategy to improve the segmentation
in those cases where the shadows cannot successfully be removed. This strategy is
based on that shadowed regions differ a little in two consecutive frames. Therefore
the biggest part of the shadows can be eliminated by frame difference, but only
remain some shadow edges. These shadow edges are removed by using a new frame
differencing step.

Jacques et al.[7] propose to detect shadows regions by using intensity measurement
of a set of pixels. This measurement are computed by ratio-pixels (image/background)
in a fixed 3 × 3 windows and the decision is based on a statistical non-parametric
inference.
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In the work of Yao et al. [89], textures are computed using the LBP combined
with a RGB color model. The authors state that LBP can work robustly to detect
moving shadows on rich texture regions. However, it fails when both the background
image and the foreground objects share the same texture information. Therefore,
to handle these situations, in this work the authors make use of a shadow invariant
color distance in the RGB color space. They claims that pixel values changed due
to shadows are mostly distributed along in the axis going toward the RGB origin
point. Thus, they propose to compare the color difference between an observed color
pixel and a background color pixel using their relative angle in RGB color space with
respect to the origin and the changing range of the background color pixel up to last
time instant.

Leone et al. [37] use a textural shadow descriptor by projecting the neighborhood
of pixels onto a set of Gabor functions, extracted by applying a generalized scheme of
the Matching Pursuit strategy. The methodology for shadow detection is based on the
observation that shadows are half-transparent regions which retain the representation
of the underlying background surface pattern. This approach assumes that shadow-
regions contain same textural information, both in the current and in the background
images.

In the work of Amato et al.[1] a method that introduces two discriminative features
to detect moving cast shadow is presented. These features are computed based on
angular and modular patterns, which are formed by similarity measurement between
two sets of RGB color vectors. Unlike the most texture-based methods that often
exploit spatial information, the patterns used in this approach are only photometric.
This method could also be categorized as CIM since it make uses of chroma and
intensity information of a set of pixels to form a textural pattern.

Salvador et al. [67, 66] introduce a two stage method for segmenting moving shad-
ows. The first stage segments the moving shadows in each frame of the sequence. In
this stage the property that shadows casted on a surface reduce the surface intensities
is exploited by using the photometric invariant C1C2C3 color space. In addition, to
obtain a more robust result, the authors propose two schemes: (i) analyze a set of pix-
els (neighborhood) instead of a single pixel, and (ii) include geometrical verification
based on boundary analysis of the shadow-candidate regions and testing the position
of shadows with respect to objects. The second stage is used to obtain a coherent
description of the segmented shadows over time. Therefore, the authors introduce a
tracking shadow algorithm. An extension of this work was presented in [68] where
the algorithm can segment cast shadow for both still and moving images.

Yang et al [88] propose a PPM moving cast shadow detection algorithm that
combines shading, color, texture, neighborhoods and temporal consistency in the
scene.

In comparison with methods that perform at the pixel-level, the aforementioned
methods normally exploit texture information or use information from a set of pixels,
making the detection more robust against noise and more efficient in those cases where
ambiguity in the pixel’s information occurs. However, the main drawback of these
methods reside in the choice of the region’s size that will be used. In other words,
a strong dependency between the size of the region and the success of the method
exists.
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Many factors are involved in the choice of the region’s size, for example: size
of the object, textural composition of the background as well as of the object, etc.
Consequently, an optimal region’s size highly depends on the scene; moreover, the
optimal size can change for different frames, even the optimal region size can changes
within the frame. Furthermore, in many cases the computational time will vary with
the size of such a region.

Adaptive:

These methods perform with local adaptive regions. Basically they attempt to seg-
ment the moving area and then analyze and classify each segment based on shadow
properties. These methods take advantage from pixel-level methods since they can
make use of the information of a set of pixels. Additionally, they have also an ad-
vantage with respect to the fixed region-level methods since they can automatically
adapt the area of analysis. A summary of some common adaptive methods is given
below.

Toth et al. [76] propose a shadow detection algorithm based on color and shading
information. They segment an image into several regions based on color information
and the mean shift algorithm. They consider that the intensity values of a shadow
pixel divided by the same pixel in the background image should be constant over a
small segment.

In [18] an algorithm for outdoor scenarios is presented. Luminance, chrominance
and gradient density information are exploited to create a shadow confidence score.
Such a shadow score is based on three rules. The first rule claims that the luminance
of the cast shadow is lower than the background. The second rule claims that the
chrominance of the cast shadow is identical or slightly shifted when compared with
background. And the last rule claims that the difference in gradient density between
the cast shadow and background is lower than the difference in the distance of gradient
between the object and background.
The final classification combines the shadow score with a geometrical supporter. The
geometrical cue used is based on the fact that the cast shadow is at the boundary
region of moving foreground mask. That is, the cast shadow can be formed in any
direction of the object, but not inside the object. However, the method is restricted
to: (i) the areas where the shadows are casted on are not textured and (ii) the object
shape is a convex hull which makes inappropriate to detect non-rigid object.

Rosin et al.[65] present a method based on the notion of a shadow as a semi-
transparent region in the image which retains a (reduced contrast) representation
of the underlying surface pattern, texture or gray value. The method uses a region
growing algorithm which apply a growing criterion based on a fixed attenuation of
the photometric gain over the shadow region, in comparison to the reference image.
The problem with this approach is that region growing algorithm cannot perform
accurately in the penumbra part of the shadow due to the intensity’s variations inside
of the shadow region.

Xu et al. [87] detect shadow region in indoor environment. The proposed method
assumes that the shadow often appears around the foreground object. A number
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of techniques are used including initial change detection masks, Canny edge maps,
multi-frame integration, edge matching, and conditional dilation. The method tries
to detect shadow regions by extracting moving edges.

Chang et al. [8] propose a parametric Gaussian shadow model to detect and sup-
press pedestrian’s shadow. The model makes uses of several features including the
orientation, mean intensity, and center position being estimated from the properties
of object movements.

In the work of Hsieh et al. [26] a line-based shadow modeling process is proposed
to detect moving shadows in traffic surveillance. When a vehicle moves along a lane,
it will have several boundary lines parallel or vertical to this lane. Then, the lane can
provide useful information for shadow elimination and do not destroy vehicle shapes.
In the method first all lanes dividing lines are detected. These lanes dividing lines
from video sequences are detected by vehicle’s histogram. This histogram is obtained
by accumulating different vehicles’ positions in a training period. According to these
lines and their directions, two kinds of lines are used to eliminate shadows. The first
one is the lines that are parallel to the dividing lines and the second one is the lines
vertical to the dividing lines.

In [56] the authors propose an outdoor shadows removal method. It is based on a
spatio-temporal-reflection test and a dichromatic reflection model. The approach is
divided in several sequential steps. The step one starts with the motion mask, which
is computed based on mixture of Gaussians. The intensity test takes the second step.
This is in charge to discard all the foreground pixels that are more brightness than
their corresponding background pixels. The third step so-called blue ratio test exploits
the observation that shadows pixels falling on neutral surfaces, tend to be more blueish
(this step can only be performed in neutral surfaces the authors propose to define
a neutral surface based on the saturation level). The fourth step so-called albedo
ratio segmentation performs a segmentation based on a spatio-temporal albedo ratio.
Basically, this step attempts to obtain segmented regions with uniform reflectance.
Step five removes the effect of the sky illumination. The authors claim that the
reflection due to sky illumination (ambient reflection) is considered as an additive
component; therefore they subtract the foreground pixels from the background. The
regions that belong to the foreground will result with a very different color vectors
that it is the contrary of the pixels belonging to the shadow regions. The last step
aim to classify those regions that could not be labeled in previous stages. This stage
computes the dominant color of the unclassified-regions (body color estimation) and
compare with the body colors of material surfaces pre-stored as a background model
(using a supervised-learning phase).

Similar to [56] Huerta et al. [29] approach uses a multi-stage approach, however
they use multiple cues: color and gradient information, together with known shadow
properties. In this way, regions corresponding to potential shadows are grouped by
considering the ”bluish effect” and an edge partitioning. Additionally, temporal sim-
ilarities between textures and spatial similarities between chrominance angle and
brightness distortions are analyses for all potential shadows regions. Furthermore,
geometrical shadow position is used to avoid a misclassification of moving shadows.

The challenge in these methods is not only in being able to properly analyze
the segments, but also in the segmentation process. However, this is a promising
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methodology since the analysis is done with the context of the shadowed area having
all the shadow information.

Frame-Level

There are a very few moving cast shadow detection methods that perform at the
frame-level. Normally, these few methods are not used in a background subtraction
context. Hence, some of the closest methods related to the research line proposed in
this thesis are briefly describe.

Liu et al. [42] detect shadows using pixel-level information, region-level informa-
tion, and global-level information. Pixel-level information is extracted using GMM in
the HSV color space. Local-level information is used in two ways. First, if a pixel gets
a sample that is likely to be a shadow, then not only the GMM of that pixel is updated
but the GMM of neighbor pixels is also updated. Second, Markov random fields are
employed to represent the dependencies among neighboring pixels. For global-level
information, statistical feature is exploited for whole scene over several consecutive
frames.

Stauder et al. [73] use a physics-based luminance model to describe illumination
changes. They assume a plain textured background and a cast shadow is determined
by combining the results of change detection, static edge detection, shading change
detection and penumbra detection.

A summary of the methods previously described is presented in Table 2.1. Nota-
tion in the table is as follows: Shadows Descriptors: TM, CIM, PPM and PM stand
for texture models, chromaticity and intensity models, photometric physical models
and projection models respectively. Supporters: Sp, Te, Ge, Tr, and SPK stand
for spatial, temporal, geometrical, training and scene prior knowledge respectively.
Decision: D, SP and SNP stand for deterministic, statistic parametric and statistic
non-parametric respectively.

Next section reviews some of the most classical and well-know background sub-
traction algorithms.

2.3 Background Subtraction Methods

Background subtraction is the most commonly used technique for motion segmen-
tation in static scenes [48, 59, 35, 5, 69]. It attempts to detect moving regions in
an image by subtracting the current image with a reference background model in a
pixel-by-pixel manner.

The background representation is created by averaging several images over time
during an initialization period. Subsequently, pixels are classified as foreground if
the difference between the input image and the background model is above a learned
threshold, which calculation depends on the specific approach. Then, numerous ap-
proaches update over time the background model with new images in order to adapt
it to dynamic scene changes.
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Shadow Descriptors Supporters DecisionL
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Methods TM CIM PPM PM Sp Te Ge Tr SPK D SP SNP

Cucchiara [13] X X

Horprasert[25] X X

McKena [50] X X X

Kim [36] X X

Siala [71] X X X X

Brisson [47] X X X X
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Huang [28] X X X X

Xu [87] X X X X

Fung [18] X X X X

Huerta [29] X X X X X X

Toth [76] X X

Nadimi [56] X X X X

Rosin [65] X X

Chang [8] X X X
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Hsieh [26] X X X X

Amato [1] X X X

Yuan [91] X X X

Grest [19] X X

Yao [89] X X

Leone [37] X X X

Jacques [7] X X
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Yang [88] X X X X X

Liu [42] X X X

Stauder [73] X X X X
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Table 2.1

Comparison of different moving shadow detection algorithms. Each row

represents an algorithm from the literature, and the columns represent a

range of characteristics of shadow detection methods.

There are a large number of different algorithms using this background subtraction
scheme. Nonetheless, they differ in: (i) the type of cues or structures employed
to build the background representation; (ii) the procedure used for detecting the
foreground region; and (iii) the updating criteria of the background model.

A naive version of the background subtraction scheme is employed by Heikkila
and Silven [22], which classifies an input pixel as foreground if its value is over a
predefined threshold when subtracted from the background model. This approach
updates the background model in order to guarantee reliable motion detection using
a first order recursive filter. However, this method is extremely sensitive to changes
of dynamic scenes such as gradual illumination variation or physical changes such
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as ghosts (i.e., when an object already represented in the background model begins
to move). In order to overcome these difficulties, statistical approaches have been
applied [81]. These approaches make use of statistical properties of each pixel (or
regions), which are updated dynamically during all the process in order to construct
the background model.

Haritaoglu et al. in W 4 [20] apply background subtraction by computing for each
pixel in the background model, during a training period, three values: its minimum
and maximum intensity values, and the maximum intensity difference between con-
secutive frames. Background model pixels are updated using pixel-based and object-
based updating conditions to be adaptive to illumination and physical changes in the
scene. However, this approach is rather sensitive to shadows and lighting changes,
since the only cue used is intensity.

Alternatively, Wren et al. in Pfinder [85] proposed a framework in which each
pixel’s value (in YUV space) is represented with a single Gaussian. Then, model
parameters are recursively updated. However, a single Gaussian model cannot handle
multiple backgrounds, such as waving trees.

Stauffer and Grimson [75, 74] addressed this issue by using a Mixture of Gaussians
(MoG) to build a background color model for every pixel.

An improvement of the MoG can be found in Zivkovic et al. [92, 93], where the
parameters of a MoG model are constantly updated, while selecting simultaneously
the appropriate number of components for each pixel.

Elgammal et al. [15] use a non-parametric Kernel Density Estimation (KDE) to
model the background. Their representation samples an intensity values for each pixel
to estimate the probability of newly observed intensity values. The background model
is also continuously updated to be adaptive to background changes. In addition to
color-based information, their system incorporates region-based scene knowledge for
matching nearby pixel locations. This approach can successfully handle the problem
of small background motion such as tree branches.

Mittal et al. [52] use adaptive KDE for modeling background in motion, and
implement optical flow to detect moving regions. In this way, their approach is able
to manage complex background; however, the computational cost of this approach
is quite high. Chen et al. [9] combine pixel- and block-based approaches to model
complex background. Nevertheless, the method is very sensitive to camouflages and
shadows.

Cheng et al. in [10] propose an on-line learning method which is able to work in
real-time and can be implemented in GPU, which also gives similar results managing
complex background. In [4] Barnich and Droogenbroeck also present a really fast
method that can cope with background in motion and bootstrapping problems. The
method adopts the idea of sampling the spatial neighborhood for refining the per-
pixel estimation. The model updating relies on a random process that substitutes old
pixel values with new ones. However, it cannot cope with camouflages and shadows.
Another solution to bootstrapping problem is presented by Colombari et al. in [11],
where a patch-based technique exploits both spatial and temporal consistency of the
static background.

Li et al. [39] and Sheikh et al. [70] use Bayesian networks to cope with dynamic
backgrounds. Li et al. uses a Bayesian framework that incorporates spectral, spatial,
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and temporal features to characterize background appearance. Sheik et al. apply
non-parametric density estimation to model the background as a single distribution,
thus handling multi-modal spatial uncertainties. Furthermore, they also use temporal
information.

The use of layers for image decomposition based on the neighboring pixels is
presented in [58]. They state that such approach is robust and efficient to handle
dynamic backgrounds. Maddalena et al. [44] use neural networks to overcome the
same problem. An improvement of it, using self organizing maps, can be found
by Lopez-Rubio et al. [43], which can adapt its color similarity measure to the
characteristics of the input video.

Mahadevan et al. in [45] uses a combination of the discriminant center-surround
saliency framework with the modeling power of dynamic textures to solve problems
with highly dynamic backgrounds and a moving camera. However, this method is not
designed for high accurate segmentation.

Toyama et al. [77] in Wallflower use a three-component system to handle many
canonical anomalies for background updating. Their work processes input images
at various spatial scales, namely pixel, region, and frame levels. Reasonably good
foreground detection can be achieved when moving objects or strong illumination
changes (for example when turning on/off the light in an indoor scene) are present.
However, it fails when modeling small motion in the background or local illumination
variations.

Edge cues are also used for motion segmentation. Weiss [84] also extract intrinsic
images using edge cues instead of color to obtain the reflectance image. This process
requires several frames to determine the reflectance edges of the scene.
A reflectance edge is an edge that persists throughout the sequence. Given reflectance
edges, the approach re-integrates the information to derive a reflectance image. How-
ever, the reflectance image also contains scene illuminations because this approach
requires prominent changes in the scene, specifically for the position of shadows.

Jabri et al. [32] use a statistical background modeling which combines color (in
RGB space) with edges. The background model is computed in two distinct parts:
the color model and the edge model. On the one hand, a color model is represented
by two images, the mean and the standard deviation images. On the other hand,
an edge model is built by applying the Sobel edge operator to each color channel,
thereby yielding horizontal and vertical difference images. Subsequently, background
subtraction is performed by subtracting the color and edge channels separately using
confidence maps, and then combining the results to get the foreground pixels.

Javed et al. [33] present a method that uses multiple cues, based on color and
gradient information. The approach tries to handle different difficulties, such as boot-
strapping (initialization with moving objects), repositioning of static background ob-
jects, ghost and quick illumination changes using three distinct levels: pixel, region
and frame level, inspired from [77].

At the pixel level, two statistical models of gradients and color based on mixture
of Gaussians are separately used to classify each pixel as background or foreground.
At the region level, foreground pixels obtained from the color model are grouped into
regions, and the gradient model is then used to eliminate regions corresponding to
highlights or ghosts.
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Pixel-based models are updated based on decisions made at the region level.
Lastly, the frame level ignores the color based subtraction results if more than 50
percent of the results are considered foreground, thereby using only gradient subtrac-
tion results to handle global illumination changes. Nevertheless, ghosts cannot be
eliminated if the background contains a high number of edges.

Some of the aforementioned motion detection approaches generally obtain good
segmentation in indoor and outdoor scenarios, thus some of them have been used in
real-time surveillance applications for years. However, most of them are susceptible
to both local (such as shadows and highlights) and global illumination changes (like
at dawn or dusk, and when the sun is suddenly covered by clouds).
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Summary

This chapter presented a comprehensive survey of moving cast shadow algorithms.
Although the area of research is relatively young, lot of works have been reported
during the last years. The diversity of the information that characterizes moving
shadow and the manner that such information is combined or exploited makes very
difficult the task of classifying the methods. After a deep review of state-of-the-art
taxonomies, this chapter reported a new moving cast shadow detection method tax-
onomy, where the main layer of this taxonomy describes whether methods operate
with a single pixel or with a group of pixels (within a local adaptive region or a fixed
region) or using the whole frame information. The second layer taxonomy describes
the shadow descriptors used by the methods. The principal shadow descriptors used
in the literature are: chromaticity and intensity models, texture models, photometric
physical models and projection models. Some methods need to be supported by extra
information. Such information can be obtained by a training phase or using some
prior-knowledge of the scene or exploiting geometrical, temporal, or spatial cues. Fi-
nally the last category is based on the classification’s decision of the methods. In
addition, in this chapter a topology graph was designed to provide a visual interpre-
tation of all the characteristic involved in the moving cast shadow methods. Such
design is intended to facilitate the analysis of the methods by identifying the main
features and characteristics used by them, and how they can be combined. Later
on, this chapter summarized the most representative characteristics of several mov-
ing cast shadow methods. Finally, classical and well-known background subtraction
methods were also described.
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Chapter 3

Shadows Modeling and Analysis

“The greatest challenge to any thinker is
stating the problem in a way that will allow a solution.”

Bertrand Russell

3.1 Introduction

A shadow is a photometric phenomenon that interferes with the scene’s illumination.
However, the material properties of the surface, namely the reflectance, can not be
obviously modified by shadows. This means that the reflectance of the same non-
shadowed and the shadowed pixel of the background and the tested image respectively
must be identical. This fact probably represents the strongest feature in order to
distinguish shadowed areas from a photometric perspective.

In the literature, specially in the color theory research area, there are huge amounts
of works trying to separate illuminat and chrominant components from color im-
ages [64, 51, 41, 83]. In essence the chrominant information of the pixels is associated
with the reflectance.

Nevertheless, the most effective methods mentioned above, normally exploit global
color information of the image that are not very useful to completely describe a local
phenomenon such as a shadow. Despite of this fact, a significant part of moving cast
shadow detection methods e.g., ([25, 50, 13, 1], among other) based on photometric
shadow information make use of such separability between illuminat and chrominant.

Following the aforementioned statement, these methods will not be able to prop-
erly perform in those cases where there is color blending among objects or where the
light sources involved in the scene differ in their chromaticity (chromatic shadows).

In order to describe the limitations of these methods and to individualize a so-
lution, this chapter is organized as follows: the first part describes and discusses a
photometric shadow model and the second part introduces an analysis of well-known
moving cast shadow detection methods.

45
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Figure 3.1: The light distribution L(λ) that reaches to the camera as function of
illuminant E(λ) and the surface reflectance ρ(λ).

3.2 Shadow Modeling: The Reflection Model

Broadly speaking, a color vision system tries to describe reflectance functions inde-
pendent of illuminant color. It is obviously useful, since the reflectance is a property
of the material that an object is made of. This fact, will be exploited by the proposed
moving cast shadow detector method in order to compare the same region with and
without shadows.

Let us consider the physics behind the problem of the scene illumination. The
light distribution L(λ) that reaches to the camera is a multiplication of the illuminat
distribution E(λ) and the reflectance function of a surface ρ(λ), as follows: L(λ) =
E(λ).ρ(λ), (see Fig. 3.1).

The reflectance ρ gives the fraction of light reflected from the object. In other
words, the color of an object is defined by the reflectance ρ as a function of wavelength.

A reflection model describes the interaction of light with a surface in terms of
the properties of the surface and the nature of the incident light. Normally in such
interaction there are a tremendous number of variables and factors which make the
modeling a non trivial task. This chaotic lights-surfaces interaction can be simplified
with the Phong reflection model [79] (also called Phong illumination or Phong light-
ing). It is a simple model that attempts to synthesize the way in which light behaves
with a surface in the scene.

The Phong reflection model is a shading model commonly used in computer graph-
ics to assign shades to each individual pixel. It can be considered as a local reflection
model. For the sake of simplicity it assumes that the scene has only one source of
light. However the model can be extended to multiple light sources.

In the Phong reflection model, a surface point is lit by three types of light: Ambient
light Ca , Diffuse light Cb and Specular light Cc, as is illustrated in Figure 3.2.
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(Ambient) (Diffuse)

(Specular) (Phong Reflection Model)

Figure 3.2: Visual illustration of the Phong model: emulated with 3DS Max.

Ambient light is the light coming to a surface as a result of multiple reflections in
the scene from all directions, it is modeled as a constant term in the scene. Diffuse
light is the light coming from sources such as the sun or light bulbs to the object
surface diffused by the object surface to the camera. The specular light is the shiny
part, that comes from the light source, reflects on the object and goes directly to the
camera. The total light power coming to the camera is described by:

L = (Ca +Cb cos(θ) +Cc)ρ. (3.1)

where θ is the angle between the light source direction and the surface normal
(Fig. 3.1). The specular light is usually small and may be negligible especially when
the surface is not very shiny. Therefore, this term for Lambertian surfaces is omitted,
then equation (3.1) becomes:

L = (Ca +Cb cos(θ))ρ. (3.2)

The Phong reflection model can be used to express the photometric phenomenon
caused by shadows. Cast shadows are the areas projected on a surface due to an
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Figure 3.3: Umbra-Penumbra.

object that partially, or totally occludes the direct light source. Inside the shadow,
there are two region types: umbra and penumbra, as is illustrated in Fig. 3.3.

The umbra is the darkest part of the shadow. Inside the umbra, diffuse light from
the main light source is totally blocked. This region is mainly lit by the ambient light.
The penumbra is the region where some part of the diffuse light is blocked, in other
words this region is lit by both ambient light and part of the diffuse light.

The relative size of the umbra and penumbra regions normally depend on the size
and the shape of the light source as well as the distance of the source light respect
to the object Fig. 3.4. The penumbra surrounds the umbra and there is always a
gradual change in intensity from penumbra to umbra [82]. Inside shadows the light
power of both umbra and penumbra regions can be expressed as follows:

LSH = (Ca + ςCb cos(θ))ρ. (3.3)

were ς ∈ [0, 1] is a shadow parameter that represents the transition inside the penum-
bra.

The shadows’ luminance model equation. (3.3) has been directly or indirectly
used in many cast shadow detection algorithms, e.g., [73, 50, 25, 13, 1], among others,
but with the assumption that ambient light and diffuse light both have a similar
chromaticity, which is a correct assumption for achromatic shadows.

On the contrary, for chromatic shadows, the chromaticity of ambient light is dif-
ferent from the chromaticity of the diffuse light. Chromatic shadows can normally
occur, for example in sunny days. In direct sunlight a surface is illuminated by light
from the sun (diffuse light) and by light scattered from the sky (ambient light). In
shadowed areas, direct sunlight is cut off and the scattered light from the sky is the
main illuminat. Scattered light has less long-wavelength light than direct sunlight.
Another chromatic shadows scenario can also appear when second order reflections
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(a)

(b)

(c)

Figure 3.4: Umbra Penumbra spatial source variation: emulated with 3DS Max.
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Figure 3.5: Visual illustration of achromatic and chromatic shadow effect over a
pixel information in the RGB color space. In (a) the change resides only in the
intensity of pixel. In (b) the change is applied in both the intensity as well as the
direction of the pixel. Ps stands for a shadowed pixel and P stands for a non shadowed
pixel.

cannot be neglected since they have a considerable intensity, for example when an ob-
ject with non-lambertian surface casts its own shadow (e.g., red brilliant car is casts
its shadow on a highway). Therefore, the illuminant’s chromaticity of a shadowed pix-
els is significantly different from the illuminant’s chromaticity of the non shadowed
pixels. Hence, a variation of intensity as well as ’direction’ over a shadowed pixels is
induced.

Figure 3.5 illustrates the different effects caused by an achromatic shadow and a
chromatic shadow over the intensity and direction of a shadowed and non shadowed
pixel. Examples and analysis of these situations will be presented in the next section.

3.3 Moving Shadow Analysis

When an object casts a shadow on a surface it partially or completely blocks the
surface of direct illumination from a light source, producing a change in its appearance.
The measurement of this change, between a pixel affected by a shadow and the same
pixel in the absence of a shadow is one of the main properties used to classify cast
shadows in background-foreground segmentation algorithms.

Classical shadow suppression approaches are based on the assumption that the
pixel’s value of the surface under cast shadows is just a linear scaling back of its
brightness component, without significant variations in its chromaticity component.
This property has been modeled by several authors over different color spaces.

An analysis of the most used shadows removal methods is presented next. Such
analysis includes: (i) a description of the methods; (ii) a qualitative and quantitative
evaluation as well as a comparison; and (iii) a discussion of their limitations.
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Figure 3.6: Brightness distortion and color distortion in the RGB color space. Ibg

represents the background pixel, Iim is the current image pixel, BD and CD are the
brightness distortion and color distortion respectively.

3.3.1 Descriptions

1. Normalized RGB Space for Brightness and Color Distortion
Horprasert et. al. [25] have oriented their work to a color model that separates
the brightness and the chromaticity components in RGB color space. They
introduce two terms: brightness distortion BD and color distortion CD. The
BD is a scalar value that represents the quantity of change between the module
of a background pixel and the module of a pixel of the current image. For
shadows, BD is considered to be less than one. CD is defined as the orthogonal
distance between a pixel belonging to the current image and the background
pixel (see Fig. 3.6).

In order to cope with problems such as camera noise, band unbalancing, etc, the
aforementioned terms are normalized by statistical parameters. The statistical
values are computed over the training phase during the background modeling
process. Brightness distortion and color distortion are defined as follows:

BD(x) =

∑

c∈{R,G,B}
Iim
c (x).µbg

c (x)

(σbg
c (x))

2

∑

c∈{R,G,B}

(

µ
bg
c (x)

σ
bg
c (x)

)2 (3.4)

CD(x) =
∏

c∈{R,G,B}

(

Iimc (x)−BD(x).µbg
c (x)

σ
bg
c (x)

)

(3.5)

where µbg =
(

µ
bg
R , µ

bg
G , µ

bg
B

)

and σbg =
(

σ
bg
R , σ

bg
G , σ

bg
B

)

are the arithmetic means

and variance respectively. In turn, x denote a vector position in the discrete
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frame coordinate system, x ∈ {i, j}. Iim(x) and Ibg(x) are the tested image
pixel and background image pixel respectively, where Iim(x) =

{

IimR (x), IimG (x), IimB (x)
}

and Ibg(x) =
{

I
bg
R (x), IbgG (x), IbgB (x)

}

.1

To simplify the thresholding process, BD and CD are normalized as follows:

BD′(x) =
BD(x)− 1

√

N∑

i=0

(BD(i)−1)2

N

(3.6)

CD′(x) =
CD(x)

√

N∑

i=0

(CD(i))2

N

(3.7)

where N is the number of training frames. The pixel classification mask (PCM )
holds four categories and it performs following the next rules:

PCM(x) =















F : CD′(x) > τCD ∨BD′(x) < τBlow else

B : BD′(x) < τB1 ∧BD′(x) > τB2 else

S : BD′(x) < 0 else

H : otherwise

(3.8)

where F, B, S and H stand for Foreground, Background, Shadows and Highlight
respectively. τCD, τBlow, τB1 and τB2 are thresholds.

The criterion used in equation (3.8) is depicted in Fig. 3.7(a), a simplification
in 2D of the thresholding zone is shown in Fig. 3.7(b);

2. Chromaticity Space
The chromaticity color space was designed in order to restrict the influence of
the illumination [86] in the color components. This is done by using a simple
components normalization.

X = R
R+G+B

Y = G
R+G+B

Z = B
R+G+B

= 1−X − Y

(3.9)

Since each of the normalized color is linearly dependent, the XYZ space may
be represented by two normalized colors (see Fig. 3.8). Coordinate Z can be
calculated for verification. The mentioned space was explored to detect shadows
by McKenna et.al [50]. Unlike other approaches, in [50] they also perform the
foreground-background classification in the ’chromaticity invariant color space’.

1From now on, this will be the notation used throughout the thesis.
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(a)
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Figure 3.7: Thresholding zone is shown in (a). A simplification in 2D of the decision
space is shown in (b).
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Figure 3.8: Chromaticity space.

This fact can generate problems as foreground camouflage, that is when back-
ground and foreground have a similar chroma (e.g. an agent with a dark green
coat moves in front of grass or with black trousers crosses a gray concrete path).
In this case foreground can be misclassified as background as well as shadow,
since the brightness information is ignored. To cope with these limitations a first
order image gradient information was included. Therefore, pixel chromaticity is
modeled using its mean and variance and the first-order gradient of each back-
ground pixel modeled using gradient means and magnitude variance. Moving
shadows are then classified if the chromaticity or gradient information supports
their classification as such. However, the use of gradient affects in a negative
way the classification of those shadows with strong edges, since these types of
shadows can be incorrectly classified as foreground. Often these can be the
umbra region of the shadows.

3. HSV Color Space
In the HSV color space, the brightness information of the pixel is contained in
the Value component (V), while Hue component (H) is supposed to intrinsically
enclose the chrominance information of the pixel. Moreover, a measure of color
purity is characterized by Saturation component (S). Figure 3.9 depicts the
space. The precursors to exploit HSV color space for moving cast shadows
suppression were Cucchiara et al. [13]. Their statement is based on the fact that
HSV color space performs similarly to the human perception of color, therefore
a better description of the shadows can be achieved. The proposed method
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Figure 3.9: Hue Saturation Value color space.

point out that cast shadows darken the background in the V component, while
the hue and saturation components change within certain limits (preserving the
principal assumption of chromaticity invariant in shadowed and non shadowed
pixels). A shadow mask SM of one pixel at the image position x is obtained
using the following equation:

SM (x) =



























1 if α ≤ Iim
V

(x)

Ibg
V

(x)
≤ β

∧
(

IimS (x)− IbgS (x)
)

≤ τS

∧
∣

∣

∣
IimH (x)− IbgH (x)

∣

∣

∣
≤ τH

0 otherwise

(3.10)

were IimH (x), IimS (x) and IimV (x) are the Hue, Saturation and Value components

respectively of the current image. Consequently, IbgH (x), IbgS (x) and I
bg
V (x) are

the components of the background image. The parameters α, β , τS and τH are
empirical thresholds.

4. RGB Polar Chromaticity Space
Initially we proposed a shadow descriptor based on chromaticity and intensity
patterns [1]. We have observed that the angle between two color vectors in RGB
space has been stable against illumination changes, therefore this stability can be
seen like a chromaticity invariant property. These patterns are formed by simi-
larity measurement between two sets of RGB color vectors: one belonging to the
background image and the other to the current image. So a better shadow dis-
crimination was achieved by including and combining the information of a set of
pixels. This fact in turn has benefited the sensibility of background-foreground
detection in foreground camouflage zones. The similarity measurements used in
the method are described as follows:
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• Angular similarity measurement ∆θ between two color vectors pc(x) and
qc(x) in the RGB color space c ∈ {R,G,B}, is defined as follows:

∆θ (pc(x),qc(x)) = cos−1

(

pc(x) · qc(x)

|pc(x)| |qc(x)|

)

(3.11)

• Euclidean Distance similarity measurement ∆I between two color vectors
pc(x) and qc(x) in the RGB color space is defined as follows

∆I (pc(x),qc(x)) = |pc(x)− qc(x)| (3.12)

For each of the described similarity measurements a threshold function is
associated

Tθ
(

∆θ, θT
)

=

{

1 if ∆θ > θT

0 otherwise
,

T I
(

∆I, IT
)

=

{

1 if |∆I| > IT

0 otherwise

(3.13)

where θT and IT are intrinsic parameters of the threshold functions of the
similarity measurements.

To describe a neighborhood similarity measurement let us first characterize the
index vector x = (n,m)t ∈ Ω = {0, 1, .., n, .., N ; 0, 1, ..,m, ..,M}, which defines
the position of a pixel in the image. Also we need to name the neighborhood
radius vector w = (i, j)t ∈ W = {−W, .., 0, 1, .., i, ..,W ;−W, .., 0, 1, .., j, ..,W },
which defines the positions of pixels that belong to the neighborhood relative to
current pixel. Indeed, the domain W is just a square window around a chosen
pixel.

• Angular neighborhood similarity measurement ηθ between two sets of color
vectors in the RGB color space pc(x +w) and qc(x +w) can be written
as:

ηθ
(

ϑ, θT
)

=
∑

w∈W

Tθ
(

∆θ (ϑ) , θT
)

(3.14)

where Tθ, θT and ∆θ are defined in equations (3.13) and (3.11) respec-
tively and ϑ is (p(x+w),q(x+w)).
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• Euclidean Distance neighborhood similarity measurement µI between two
sets of color vectors in the RGB color space pc(x+w) and qc(x+w)
(w ∈ W) can be written as:

µI
(

ϑ, IT
)

=
∑

w∈W

TI
(

∆I (ϑ) , IT
)

(3.15)

where TI, IT and ∆I are defined in equations (3.13) and (3.12) respectively.
With each of the neighborhood similarity measurements we associate a threshold
function

Tηθ
(

ηθ(ϑ), ηT
)

=

{

1 if ηθ(ϑ) > ηT

0 otherwise
,

TµI
(

µI(ϑ), µT
)

=

{

1 if µI(ϑ) > µT

0 otherwise

(3.16)

where ηT and µT are intrinsic parameters of the threshold functions of the
neighborhood similarity measurements.

As a result, classification between Ibg(x) and Iim(x) is computed as:

Sh(x) = TµI
(

µI
((

Ibg(x+w), Iim(x+w)
)

, γIT
I(x)

)

, kIF
)

∩
(
∣

∣Ibg(x)
∣

∣ >
∣

∣Iim(x)
∣

∣

)

∩
(

1− Tηθ
(

ηθ
((

Ibg(x+w), Iim(x+w)
)

, γθT
θ(x)

)

, kθS
))

∩
(

1− TµI
(

µI
((

Ibg(x+w), Iim(x+w)
)

, γST
I(x)

)

, kIS
))

,

(3.17)

Fr(x) = TµI
(

µI
((

Ibg(x+w), Iim(x+w)
)

, γIT
I(x)

)

, kIF
)

∩
(1− Sh(x)) .

(3.18)

The rest of the pixels that are not classified as shadow or foreground pixels are
classified as background pixels. Figure 3.10 illustrates the classification regions.

3.3.2 Comparison

This section provides a qualitative and quantitative comparison between the methods
mentioned above. All the methods were faithfully implemented. Furthermore, the
thresholds of the methods were manually selected to achieve the best overall perfor-
mance for each video sequence. The comparison was performed over publicly available
sequences.
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Figure 3.10: (a) Angular similarity measurement ∆θ and Euclidean distance simi-
larity measurement∆I between two color vectors in the RGB color space. (b) Decision
space in the Polar RGB space.

1. Quantitative Results

The quantitative comparison is based on two standard metrics for evaluating
the performance of cast shadow detection algorithm introduced by Prati et.
al [62]: shadow detection rate (η) and shadow discrimination rate (ξ). These
two metrics are as follow:

η =
TPS

TPS + FNS

; ξ =
TPF

TPF + FNF

. (3.19)

where TP and FN stand for true positive and false negative pixels detected

respect to both shadows S and foreground F . TPF is the number of true positive
foreground pixels detected minus the number of points detected as shadows but
belonging to the foreground.

The shadow detection rate η is related to the percentage of shadow pixels cor-
rectly classified, while the shadow discrimination rate ξ is concerned with fore-
ground pixels correctly classified.

The sequences used for the evaluation were:2 Hallway, Pets-2009 View 7 (Pets200
V7) and Football Match (see Table 3.1).

In order to obtain a comparison as fair as possible the thresholds for all the meth-
ods were manually selected trying to obtain an optimal response for both met-
rics (shadow detection rate and shadow discrimination rate) for each sequence.
Although the algorithm described in [25] proposes an automatic threshold cal-
culation, the optimal segmentation based on an automatic thresholding is far
from be achieved. The comparative results are reported in Fig.3.11

2Note that for a quantitative evaluation a ground truth is necessary, the sequences as well as their
ground truth are publicly accessible. More information of the sequences are available in chapter 4
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Sequences

Hallway Football Match Pets 2009 V7

Number 1800 2699 795

Hand-labeled 13 13 16

F
ra

m
es

Size 320x240 320x240 720x576

Type Indoor Outdoor Outdoor

Background Textured Textured-less Variable

S
c
en

e

Noise Medium Medium Low

Class People People People

O
b
je

c
t

Size Variable Small Variable

Size Variable Small Variable

Visibility Low Low Low

Direction Multiple Multiple horizontal Single horizontal

Camouflage Low Low LowS
h
a
d
o
w

s

Chromatic effect Low Low Low

Table 3.1

Description of the sequences used in the comparative evaluation.

To compare the ability to distinguish shadow in the RGB polar chromaticity
space the algorithm proposed in Amato et al. [1] was modified to perform at the
pixel level and was also included with the name of PCS in the results (Fig. 3.11).
The modification is represented by the next shadow mask:

Sh(x) =























1 if ∆I(Iim(x), Ibg(x)) > TI1
∧∆I(Iim(x), Ibg(x)) < TI2
∧∆θ(Iim(x), Ibg(x)) < Tθ

∧
∣

∣Iim(x)
∣

∣ <
∣

∣Ibg(x)
∣

∣

0 otherwise

(3.20)

where ∆I and ∆θ were defined in equations (3.12) and (3.11) respectively. TI1,
TI2 and Tθ are thresholds.

The methods used in the comparison illustrated in Fig. 3.11 were: Amato et
al. [1]; PCS; Cucchiara et al. [13]; McKenna et al. [50] and Horprasert et al. [25].

In general, for these tested sequences the methods have reported good and sim-
ilar performance. The better shadow discrimination capability was achieved by
the region-based approach [1]. The Football Match sequence shown the biggest
variability between the shadow detection rate (less than 0.7) and shadow dis-
crimination rate (more than 0.9) for all the methods. The shadows in this
sequence are very soft in terms of intensity and very small. The lowest shadow
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discrimination rates were found in the Hallway sequence, because some fore-
ground pixels are not detected due to foreground camouflage (i.e., strong simi-
larity between background and foreground pixels exists).

2. Qualitative Results

Visual comparison of methods’s performance is provided in Fig. 3.12. The
first column is referred to the Hallway sequence, the second to the Football
Match sequence and the third to the Pets2009 V7 sequence. The testing image
frames are shown in the first row. Next rows depict the classification results
of the previously described methods. Note that the segmented images of the
method reported in [1] (row (a)) are less noisy, this noise reduction is due to
the region based methodology (neither pre-processing nor post-processing filter
were applied).

Parts of foreground objects are misclassified as background of the Hallway se-
quence (see Fig. 3.12 (I)) ; this fact is reflected in the decrease of the shadow
discrimination rate.

3.3.3 Limitations

The approaches described in [25] and [50] make the foreground-shadow classification
by thresholding statistical information learned from previous frames. In the technique
proposed in [13], the classification is based on a set of scene-constant thresholds.
The algorithm developed in [1] uses a combination of scene-constant thresholds and
statistical thresholding process.

Although in [25, 50] as well as [1] the classification decision is associated with
smoothing terms (statistical inference of the data), still they often require explicit
tuning parameters for each new scene to achieve optimal results. Therefore, all the
previously described methods suffer from non-completely automatic tuning thresholds
that attempt the portability of the methods.

On the other hand, in some specific cases these approaches do not work properly.
To illustrate the cases where the methods can satisfactorily be applied and the cases
where the methods severely decrease their accuracy, an experimental analysis based
on ground truth distribution is performed.

The experiment aims to visualize the shadow-foreground separability in the fea-
tures space (delta color spaces). Thus, a better classification will obviously be achieved
for those cases where less shadow-foreground overlapped pixels exist. To obtain the
ground truth distribution of foreground and shadow pixels in the feature spaces ((a-d)
for: Fig.3.13, Fig.3.14 and Fig.3.15) a hand-labeled segmentation image was used.3.

Three sequences with different characteristics were chosen. In Fig. 3.13, a frame
with achromatic shadows is shown. Fig. 3.14 illustrates a frame where there are

3Note that the hand-labeled segmentations are deliberately conservative in labeling pixels either
foreground or shadow. This is done in order to minimize the chance of falsely labeling pixels in the
ambiguous region at the boundary between object and shadow
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Figure 3.11: Comparison of moving cast shadow detection methods in different
sequences: (a) Hallway; (b) Football Match; and (c) Pets2009 V7.
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Hallway Football Match Pets200 V7

(a)

(b)

(c)

(d)

(e)
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Figure 3.12: Comparison of moving cast shadow detection methods((a) Amato,
(b) PCS, (c) Cucchiara, (d) McKenna and (e) Horprasert) in different sequences.
(I) Hallway (frame #974), (II) Football Match (frame#004) and (III) Pets2009 V7
(frame#234). (Red color stands for pixels classified as foreground and green color
stands for pixels classified as shadows).
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regions affected by shadow camouflage. Finally, Fig. 3.15 shows a frame where chro-
matic shadows occur. The different delta color spaces are computed as follow:

• Delta Brightness and Color Distortion Space:

DCD′(x) =
∣

∣Iim(x)
∣

∣ . sin

(

cos−1

(

Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))

DBD′(x) =

∣

∣Iim(x)
∣

∣

|Ibg(x)|
. cos

(

cos−1

(

Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))

− 1

• Delta Chromaticity Space:

X(x) =

∣

∣

∣

∣

∣

I
bg
R (x)

I
bg
R (x) + I

bg
G (x) + I

bg
B (x)

−
IimR (x)

IimR (x) + IimG (x) + IimB (x)

∣

∣

∣

∣

∣
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∣
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I
bg
G (x)
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bg
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bg
G (x) + I

bg
B (x)

−
IimG (x)

IimR (x) + IimG (x) + IimB (x)

∣

∣

∣

∣

∣

• Delta HSV Space:

Vim

Vbg

(x) =
IimV (x)

I
bg
V (x)

|Sim − Sbg| (x) =
∣

∣

∣
IimS (x)− I

bg
S (x)

∣

∣

∣

|Him −Hbg| (x) =
∣

∣

∣
IimH (x)− I

bg
H (x)

∣

∣

∣

In this space, a current frame pixel and a background pixel respectively are de-

fined as: Iim(x) =
{

IimH (x), IimS (x), IimV (x)
}

and Ibg(x) =
{

I
bg
H (x), IbgS (x), IbgV (x)

}

• Delta Polar RGB Space:

X̄(x) =
∣

∣Ibg(x)− Iim(x)
∣

∣ cos

(

cos−1

(

Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))

Ȳ (x) =
∣

∣Ibg(x)− Iim(x)
∣

∣ sin

(

cos−1

(

Ibg(x).Iim(x)

|Ibg(x)| |Iim(x)|

))

It can be observed in Fig. 3.13 that for the achromatic shadows foreground pixels
are scattered in the feature space. Obviously the pixels’ location as well as they density
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Figure 3.13: Frame with achromatic shadows. Real distribution of the foreground
and shadow pixels in: (a) Delta Brightness and Color Distortion space; (b) Delta
Chromaticity Space; (c) DHSV space; and (d) Polar RGB space. Source: Hermes
Indoor
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Figure 3.14: Frame with shadow camouflage. Real distribution of the foreground
and shadow pixels in: (a) Delta Brightness and Color Distortion space; (b) Delta
Chromaticity Space; (c) DHSV space; and (d) Polar RGB space. Source: HWI



66 SHADOW MODELING AND ANALYSIS

(Background) (Current Frame) (Hand-labeled )

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

8

9
Histogram in Delta Brightness and Color Distortion

DCD’

D
B

D
’

(a)

(b)

0

100

200

0
0.2

0.4
0.6

0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|Him−Hbg|

Histogram in DHSV space

|Sim−Sbg|

V
im

/V
bg

(c)

(d)

Figure 3.15: Frame with chromatic shadows. Real distribution of the foreground
and shadow pixels in: (a) Delta Brightness and Color Distortion space; (b) Delta
Chromaticity Space; (c) DHSV space; and (d) Polar RGB space. Source: HWII
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depend on the relationship between the information of the background image and the
information of the tested image. In the contrary, shadow pixels are concentrated in a
specific location of the features space. Such location corresponds to the assumptions
done, that characterize shadows, for the previously described methods. Therefore, in
this case satisfactory results can be expected.

In the example done for shadow camouflage (see Fig. 3.14), the shadow pixels
behave similarly to the previous example. The difference in this example relies in the
foreground pixels. They are mainly located and mixed in the shadowed region. Thus,
doing less reliable the classification.

Last example aims at chromatic shadows (see Fig. 3.15). In this case the problem
arises since the shadow’s pixels are shifted in a such a way that they are invading
the typical foreground zone. Furthermore, such shift does not follow any constant
pattern; it depends on the illuminats of the scene as well as the multiple reflections
among the objects in the scene. Therefore, in this case satisfactory results cannot be
achieved. Results of foreground-shadow segmentation of the entire frames from the
above selected images are shown in Fig. 3.16.

3.4 Discussion

Moving cast shadow detection methods that only exploit chromaticity invariant prop-
erty are not intrinsically prepared to cope with ’chromatic shadows’. In turn, methods
that perform at the ’pixel level’ highly decrease their performance in those cases where
’shadow camouflage’ and ’chromatic shadows’ occur, since the information of a sin-
gle pixel is not enough to discriminate between shadow and foreground due to the
ambiguity in their pixels’ values.

In comparison with methods that perform at the pixel-level, the region-based
method reported in [1] makes the detection more robust against noise and more effi-
cient in those cases where ambiguity in the pixel’s information occurs (see Fig. 3.11).
However, this method also suffer from the chromatic shadow effect. Furthermore, an
intrinsic difficulty of the fixed region-based methods resides in the criterion of the
region’s size that is used. Thus a strong dependency between the size of the region
and the success of the method exists. Several factors are involved in the choice of the
region’s size, for example: size of the object, textural composition of the background
as well as of the object, etc. Consequently, an optimal region’s size is highly depend-
ing on the scene; moreover, an optimal size can change in different frames of the same
scene or even the optimal region’s size can change within the frame.

Although only four methods have been analyzed in this chapter, above mentioned
limitations can be extended to similar approaches.
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(a)

(b)

(b)

(d)

(I) (II) (III)

Figure 3.16: Foreground-shadow segmentation on: (I) Hermes Indoor (achromatic
shadow), (II) HWI (shadow camouflage) and (III) HWII (chromatic shadow). The
row (a), (b), (c) and (d) stans for: Horprasert et. al [25], Mckenna et. al [50],
Cucciara et. al [13] and PCS from Amato et. al [1] respectively.
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Summary

This chapter contains two parts. In the first part, a shadow luminance model is derived
from the Phong reflection model. The shadow luminance model is crucial to describe:
(i) the effect inside the shadows (umbra-penumbra); and (ii) the phenomenon caused
by chromatic shadows. Consequently, the shadow luminance model establishes the
basis of the proposed method. In the second part a case analysis of different moving
cast shadow algorithms is presented. The analyzed algorithms perform at the pixel-
wise and at the fixed region-wise; exploiting different color spaces.

The methods that only exploit chromaticity invariant property are intrinsically
not prepared to cope with ’chromatic shadows’. In turn, the methods that perform
at the ’pixel level’ severely decrease their performance in those cases where ’shadow
camouflage’ and ’chromatic shadows’ occur, since the information of a single pixel
is not enough to discriminate between shadow and foreground due to the ambiguity
in their pixels’ values. On the other hand, methods that analyze ’fixed regions’ are
strongly dependent on the size of the selected region and their performance. Further-
more the textural composition of the background as well as of the object is crucial to
obtain a good segmentation.

The final remarks of this chapter are summarized next:

• Chromaticity invariant is a powerful shadow descriptor but cannot be used for
all sequences.

• Pixel-based methods are often easy to implement. Furthermore, they normally
are suitable for real-time applications due to they low computational complexity
as well as low space complexity, but are restricted to some scene types.

• Fixed Region-based methods suffer for the scene/object composition in terms
of (texture and colors).
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Chapter 4

Moving Cast Shadows Suppression

“It is my ambition to say in few sentences
what others say in a whole book.”

Friedrich Nietzsche

The framework of the proposed moving shadow detector is presented in this chap-
ter. The goal of this approach is to detect and suppress moving cast shadow regions
for most possible scenarios that occur in real video sequences, under the following con-
ditions: (i) not make use of prior knowledge about the scene; (ii) not be restricted to
specific scene structures; (iii) be automatically adaptive to different sequences; and
(iv) perform in real-time.

The method is based on the assumption that in the luminance ratio space a low
gradient constancy exists in all shadowed regions, due to a local color constancy effect
caused by reflectance suppression. Such a color constancy effect, over a shadow region,
is achieved through dividing the values of the background image by the values of the
current image to form a new image in the division space. In this space, segments with
low gradients correspond to all shadow regions, as opposed to foreground regions
which, in most cases, exhibit higher gradients. The segments are formed by using an
algorithm specifically designed for grouping shadowed pixels. The method makes use
of intrinsic shadows features in order to classify each segment as shadow or foreground.

The whole description of the proposed framework is presented in this chapter. It is
organized in the following sections: Section 4.1 presents the pipeline of the framework.
Section 4.2 introduces the algorithm used for motion detection. Reflectance Suppres-
sion for shadowed pixel is described in section 4.3. Local constancy in shadowed areas
is demonstrated in section 4.4. Section 4.5 describes a novel gradient-based segmenta-
tion algorithm. The final shadow-foreground classification is reported in section 4.6.
Finally, experimental results and discussions are given in section 4.7 and section 4.8
respectively.
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Figure 4.1: Framework Pipeline.

4.1 Framework Pipeline

A brief description of the proposed framework architecture is presented in this section.
Since the method aims to detect only moving cast shadows, in this case all the image
pixels must be previously classified into background pixels and motion pixels (fore-
ground and shadow). Thus, first an initial change detection mask containing moving
objects and cast shadows is obtained using a background subtraction technique. Then,
the objects’ mask is computed by using connected component analysis. Next, each
object area is partitioned into a set of low gradient segments. To do this, luminance
values of the background image are divided by the corresponding luminance values
of the current frame, thus suppressing the reflectance component in shadowed areas;
then the segmentation is performed by using a novel gradient-based segmentation al-
gorithm. Finally, these segments are classified as foreground or shadow by analyzing
their intrinsic parameters. A block diagram of the proposed framework is reported in
Fig. 4.1.
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4.2 Motion and Object Mask Formation

A binary mask of moving regions is obtained by using a background subtraction tech-
nique. A simple and common background subtraction procedure involves subtracting
each new image frame from a static model of the scene. As a result a binary mask
with two labels (foreground and background) is formed for each pixel in the image
plane. Although the proposed shadow detection method is not limited to any specific
background subtraction algorithm, in this work we choose a simplified version of the
method reported in [1]. The criterion to decide this approach was based on a trade-off
among robustness, accuracy and computational complexity.

Broadly speaking, a background subtraction technique can be separated in three
stages, one stage deals with scene modeling, the other one with motion detection
process and the last one with model updating. The scene modeling stage represents
a crucial part in the background subtraction technique [77, 15, 52].

Usually a simple unimodal approach uses statistical parameters such as mean and
standard deviation values [24, 49, 36]. Such statistical parameters are obtained during
a training period and then they are dynamically updated. In the background modeling
process the statistical values depend on both the low and high frequency changes of the
camera signal. Normally, low frequency variations correspond to global illumination
changes in the scene. If the standard deviations of the low and high frequency com-
ponents of the signal are comparable, methods based on such statistical parameters
exhibit robust discriminability. When the standard deviation of the high frequency
change is significantly smaller than the low frequency change, then the background
model can be improved to make the discriminative sensitivity much higher.

The work reported in [1] proposes to build a model more insensitive to low fre-
quency changes. The main idea is to estimate only the high frequency change per
each pixel value as one inter-frame interval. The general background model in this
case can be explained as the subtraction between the current frame and the previous
frame, which is supposed to be the background image. Two values for each pixel in
the image are computed to model background changes during the training period: the
maximum difference in angular and Euclidean distances between the color vectors of
the consecutive image frames. The angular difference is also used because it can be
considered as a photometric invariant of color measurement and it has been proved
to be an acceptable cue to detect highlights.

Below the three steps of the method are depicted.

1. Background Scene Modeling.
The scene modeling step consist of two parts:

Similarity Measurements:

Two similarity measurements are used to compare a background image with the
current frame. They are: angular similarity measurement ∆θ and Euclidean
distance similarity measurement ∆I. (see equations (3.11) and (3.12)).

Scene Modeling:

The background model (BG) will be represented with two classes of components
namely running components (RC) and training components (TC). The RC is
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Figure 4.2: Difference in angle and magnitude in 2D ”Polar RGB Color Space”.
The axes are computed as: x = ∆I.cos (∆θ) and y = ∆I.sin (∆θ)

a color vector in the RGB color space, which is only updated in the running
process. The TC is a set of fixed threshold values obtained during the training.
The background model is represented by:

BG(x) =
{{

Ibg(x)
}

,
{

T θ(x), T I(x)
}}

(4.1)

where T θ(x) is the maximum of the chromaticity variation and T I(x) is the
maximum of the intensity variation computed during the training period as
follows:

T θ (x) = max
f∈{1,2,...,F}

{

∆θ
(

If−1 (x) , If (x)
)}

,

T I (x) = max
f∈{1,2,...,F}

{

∆I
(

If−1 (x) , If (x)
)}

,
(4.2)

where F is the number of frames in the training period, and RC is initialized as
follows:

RC =
{

IF (x)
}

where IF represents the last image frame of the training period.

2. Classification Process.

All those pixels that satisfy the condition reported in equation (4.3) will be
classified as background, the rest will be considered as foreground. Note that
the second, third and fourth rows of the condition (equation (4.3)) represent the
criterion of the highlight regions. Figure 4.2 illustrates the classification regions.

(∆I(Ibg(x), Iim(x)) < γI(x)) ∨
((∆I(Ibg(x), Iim(x)) < γH(x)) ∧
(∆I(Ibg(x), Iim(x)) < γθ(x)) ∧
(
∣

∣Ibg(x)
∣

∣ <
∣

∣Iim(x)
∣

∣)),

(4.3)
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(a) (b) (c)

Figure 4.3: (a) Background image, (b) Current frame, (c) Binary moving pixel
mask.

where Ibg and Iim represent the pixel values of the background and the current
frame respectively; γI(x) =

(

TI(x) + kbI
)

, γθ(x) =
(

Tθ(x) + kbθ
)

, (T I and T θ

were defined in equation (4.2)). kbI ,kbθ and γH are thresholds.

3. Model Updating.

In order to maintain the stability of the background model trough the time, the
model needs to be dynamically updated. As it was explained before, only the
RC is updated in running phase. The update process is done at every frame,
but only for those pixels that have been classified as background. The model is
updated as follows:

Ibg (x) = β.Ibg−1 (x) + (1− β) .Iim (x) . (4.4)

where (0 < β < 1) is an update rate.

An indicator function M(x) of moving pixels is a simple binary mask, where:

M(x) =

{

1 foreground
0 background

(4.5)

The result of computing a moving mask image M between a background image and
a frame of test sequence is shown in Fig.4.3.

Despite of the fact that the components defined in the model of the background
(RC and TC) were enough to achieve the motion detection mask, the model will also
include one term related with shadow components (SC). These SC are composed by
the mean and the variance of each pixel frame. SC are computed in the training phase
and updated in running stage, SC will be used to compute some shadow parameters.
More details related to the use of SC are given in section 4.7. In equation (4.6) the
new model of the background is shown. The update process of the mean value and
the variance are respectively reported in equations (4.7) and (4.8).

BG(x) =
{{

Ibg(x)
}

,
{

T θ(x), T I(x)
}

,
{

µbg(x), (σbg(x))2
}}

, (4.6)
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µbg(x) = β.µbg−1(x) + (1− β)Iim(x), (4.7)

(σbg(x))2 = β.((σbg−1(x))2 + (µbg(x)− µbg−1(x))2)+
(1− β)(Ibg(x)− µbg(x))2.

(4.8)

The parameters (γH and β) are often scene-dependent, while (kbI and kbθ) are more
independent since they behave as an offset of pre-estimated data. However, a precise
selection of all these parameters is not crucial in the performance of the proposed de-
tector. Normally, in a background subtraction context a accurate thresholds setting
plays an important role in order to enhance the motion segmentation mask. Nev-
ertheless, for the proposed region-based approach the motion segmentation mask is
transformed in the motion object mask using a connected component analysis [12],
which indirectly copes with the outliers of the motion segmentation (working as a
post-processing filter). To illustrate this fact, Fig. 4.4 shows three image frames from
different sequences, where the parameters were severely altered. In Fig. 4.4(a) β was
manipulated in such a way to generate the motion detection more unstable, since
this sequence suffer from illumination changes problems. Results of motion detection
mask and object mask are reported in Fig. 4.4(d) and (g) respectively. In the case of
Fig. 4.4(b) and (c) the thresholds were manipulated in order to obtain low sensibil-
ity detection (Fig. 4.4(b)) and high sensibility detection (Fig. 4.4(c)). It is observed
that in Fig. 4.4(e) many true foreground pixels are not correctly classified, while in
Fig. 4.4(f) the motion detection became very noisy. However, the object masks for
all the examples (see Fig. 4.4(g-i)) are properly formed.

To obtain the objects’ masks starting with the binary motion mask where naturally
and obviously is formed by several connected regions, the following steps are needed:
(i) assign a unique identifier for each connected region; (ii) discard small (relative
to the image size) group of moving pixels; and (iii) merge an empty region with the
area that is surrounded by. Using depth-first search algorithm, this can handily be
computed.

Therefore, the initial binary mask is transformed into a set of independent regions
Φ = {o1, o2, ..., ok}, where K is the number of motion regions in the current frame.
Figure 4.5 depicts the process and Fig. 4.6 reports several object mask formation
examples.

4.3 Reflectance Suppression

An image obtained from a scene by a standard RGB camera, assuming Lambertian
reflectance can be analyzed using a simple luminance model [73]:

L (x) = E (x)ρ (x) .

where L (x) = [LR (x) , LG (x) , LB (x)]
T

is the luminance vector of the RGB color

space in the image plane x ∈ X, E (x) = [ER (x) , EG (x) , EB (x)]
T
is the irradiance
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Thresholds evaluations. (a-c) test images; (d-f) motion detection masks;
(g-i) objects masks.
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(a) (b)

(d) (d)

Figure 4.5: (a) Background image; (b) current frame; (c) binary motion pixels mask
and (d) object mask.
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(a)

(b)

(a)

(I) (II) (III)

Figure 4.6: Object Mask Examples. (a) HWIII #198; (b) HERMES Outdoor Cam3
#1097; and (c) Pets 2009 V7 #9. Columns (I), (II) and (III) represent current image,
motion mask and objects mask respectively.
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Figure 4.7: Umbra-penumbra transition in terms of intensity and spatial distance
from the object. (a) test image; (b) illustration of the shadow parameter.

vector of the input signal, and ρ (x) = [ρR (x) , ρG (x) , ρB (x)]
T

is the reflectance
vector of the object surface reflected at the pixel x. Though vectors E and ρ should
be properly expressed by diagonal matrices, notation throughout the text is simplified.
The product of two vectors indicates simple component-wise multiplication ab =aibi.
Division is similarly indicated.

The irradiance component of the input signal for one light source in shadows areas
can now be expressed (see chapter 3.2) as:

E(x) = Ca +Cb cos(θ(x))ς(x). (4.9)

where Ca, Cb and θ(x) are the intensity of ambient light, the intensity of the light
source and the angle between the light source direction and a surface normal respec-
tively; ς(x) ∈ [0, 1] is a shadow parameter that represents the transition inside the
penumbra, which depends on the light source and scene geometry. Generally, it is
characterized by slow spatial variation [82].

When ς(x) is equal to 0, the quantity of light reflected at pixel x is from ambient
light alone and it belongs to the umbra region. For 0 < ς(x) < 1, the pixel is located
in the penumbra and when ς(x) = 1 the pixel is outside of the shadow region (see
Fig. 4.7).

The appearance of an arbitrary pixel x in an image sequence will vary according
to illumination conditions and the configuration of objects that may cast shadows.
Let Lim(x) be the pixels belonging to cast shadows in the current frame and Lbg(x)
those that do not. The luminance ratio of these pixels can be written as:

D(x) =
Lbg(x)

Lim(x)
=

Ebg(x)ρbg(x)

Eim(x)ρim(x)
. (4.10)

If the point x belongs to the shadow region Rsh of the current image Lim(x) then
the two reflectances in equation (4.10) are equal because the reflectance ρ(x) of the
projected surface point x does not changes with time. Therefore, the result of the
luminance ratio D is reduced to:
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D(x) =
Ebg(x)

Eim(x)
, ∀x ∈ Rsh. (4.11)

After substituting equation (4.9) in (4.11) D becomes:

D(x) =
Cbg

a +Cbg
b cos(θ(x))

Cim
a +Cim

b cos(θ(x))ς(x)
. (4.12)

Let ∆x be the distance between two neighboring pixels in the image plane. The
difference between two luminance ratios can be written as:

D(x)−D(x+∆x) =
Cbg

a +Cbg
b cos(θ(x))

Cim
a +Cim

b cos(θ(x))ς(x)
−

Cbg
a +Cbg

b cos(θ(x+∆x))

Cim
a +Cim

b cos(θ(x+∆x))ς(x+∆x)
. (4.13)

Assuming that the scale factor ς and the angle θ are slowly varying functions: ς(x) ≈
ς(x+∆x) and θ(x) ≈ θ(x+∆x), we obtain:

D(x)−D(x+∆x) ≈ 0. (4.14)

which means that a local constancy exists for any pair of pixels belonging to the
shadow region. In contrast, local constancy in equation (4.14) does not hold for
foreground pixels because of the inequality of the reflectance components in equa-
tion (4.10).

The local color constancy condition in equation (4.14) is derived using a single
light source model. However, the used assumption will also hold when E(x) in equa-
tion (4.9) is formed by a linear combination of multiple light sources. The commonly
used irradiance model of equation (4.9) from [73] assumes that the intensity of ambi-
ent light Ca is constant and that the intensity of the light source Cb is proportional to
( 1
r2
), where r is the distance between the object and light source [72]. These assump-

tions are valid for a broad range of imaging conditions, and for deriving the proposed
local color constancy criterion it is reasonable to use a model where both Ca and
Cb are constants. This simplified lighting model has been used in the derivation of
several other shadow suppression models [73, 76, 88].

Using the local constancy effect that exists in shadow regions, the proposed algo-
rithm distinguishes between shadows and foreground regions. Note that there is not
any assumption with the chormaticity of the light sources, thus local color constancy
will exist for achromatic shadows as well as chromatic shadows.

4.4 Shadow Region with Local Color Constancy

The Luminance ratio image is firstly calculated in order to detect regions with a local
color constancy. The luminance ratio for a single pixel is written as:
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(a) (b) (c)

Figure 4.8: (a) Background image; (b) current image; (c) luminance ratio image in
the RGB color space.

D(x) =
Lbg(x) + ν

Lim(x) + ν
, (4.15)

where ν is a quantization constant, which is chosen to be unity for the standard
eight bit input signal. It is very important to note that for our shadow detection
algorithm it is more essential to make fine segmentation in shadow-like pixels than
in foreground pixels (shadow-like pixels are referred to those current image pixels
with lower luminance than their corresponding background image pixels). When the
background image is divided by the current image, the luminance ratio image D is
segmented into two types of regions: (i) foreground regions where 2−8 ≤ D(x) ≤ 1
and (ii) shadow like regions where 1 ≤ D(x) ≤ 28. It is easy to see that in the
shadow-like regions, measurement is more precise.

An example of the luminance ratio image in the RGB color space is illustrated in
Fig. 4.8(c), where Fig. 4.8(a) shows the background model and Fig. 4.8(b) is a frame
of the test sequence.

Let us analyze the values of the luminance ratio D inside each motion areas. As
we explained in equation (4.11), the value of the function D(x) in the shadowed area
only depends on the irradiance ratios between the background and current image, and
form regions (usually one shadows region per motion segment) that are characterized
by smooth spatial changes in equation (4.14), which we call local color constancy.
We stress that color constancy does not assume, in general, color constancy in a full
shadow region and a value of the luminance ratio D(x1) can be considerably different
from a value D(x2) if the distance between two pixels |x1 − x2| is significant.

In contrast, in the foreground areas the value of the function D(x) depends both
on the irradiance ratios and on reflectance ratios (equation (4.10)) and in general,
form small regions with local color constancy. In this way, local color constancy
detection allows us to distinguish shadow from foreground.

In some cases, when this assumption in the foreground areas does not hold (i.e.
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poor texture or texture-less in both foreground and background), we use additional
features to solve the problem (external terminal points as will be explained later).

Thus, the main goal of our algorithm is to detect local color constancy regions,
which is a classical segmentation task. Segmentation problems can usually be solved
by local neighborhood analysis. Local neighborhood analysis is a widely used tech-
nique in image processing. Most of them utilize sliding windows with a fixed shape
and size or with a locally adaptive shape.

Other approaches work with neighborhoods that are the result of an initial seg-
mentation of the entire region of interest, for example watershed [19] or mean shift
segmentation [20]. But in our case, to detect shadow segments we have to overcome
the problem of gradual change. Therefore, we apply a gradient-based segmentation
technique. More precisely, our algorithm forms a set of gradient space connected
neighborhoods (GSCN) or a set of nonoverlapping segments. In the next section we
explain this technique.

4.5 Gradient Space Connected Neighborhoods Seg-

mentation

A gradient-space connected neighborhood is defined as a set of pixels in an image in
which any two pixels are gradient connected. That is, there exists a (four- or eight-
connected) path between any pair of pixels in the neighborhood. All pixels of the
path satisfy the following condition: |D(p)−D(q)| ≤ ∂, where ∂ is a given threshold,
{D(p), D(q)} are values of any pair of adjacent pixels {p,q} ∈ X on the path.

Figure 4.9(a) illustrates two paths between pixels (0, 2)− (2, 0) and (0, 5)− (7, 0)
of gradient-space connected neighborhoods. Figure 4.9(b) shows two formed gradient
adaptive neighborhoods. The edges that separate these pixels, or cells, may be repre-
sented as partitions or thin dams (see Fig. 4.9(b)). The heights of these partitions are
proportional to the difference between adjacent pixels. When every pixel of the image
is flooded by letting water rise to a fixed level ∂ then several noncommunicating pools
are formed, each with a unique levels of water.

To form GSCNs we use a standard graph-based technique. An undirected image
cover graph is defined as G = (V,E), where each pixel x of a segmented object ok ∈ Φ
has a corresponding node v(x), and to each pair of neighboring pixels xi,xj ∈ ok
corresponds one edge e(xi,xj) with weight:

w(e(xi,xj)) =
∏

c∈{R,G,B}

H(∂ − |Dc(xi)−Dc(xj)|), (4.16)

where H is the Heaviside step function:

H(y) =

{

0 if y < 0
1 otherwise

.

Then a new graph is formed G̃ = (V, Ẽ) such that G̃ ⊂ G,∀e ∈ E s.t. |e| 6= 0 ⇒ e ∈ G̃.
In other words, this new graph inherits all vertices of the graph G and only edges with
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(a) (b)

Figure 4.9: (a) Illustration of the GSCN concept, (b) formed GSCNs.

nonzero weight |e|. To reach a new subdivision of an object ok, a forest of graph trees
is formed with the aid of depth first or breadth first search algorithms [12]. Finally,
all vertices (pixels) of a tree form a sub-segment inside a considered object such that:

Lk
⋃

l=1

skl = ok,

Lk
⋂

l=1

skl = ∅,
K
⋃

k=1

ok = Φ. (4.17)

where Lk is the number of trees, i.e. the number of sub-segments skl of object ok, of

the graph G̃.
Such segmentation is unique and only depends on a given threshold ∂. Further,

it permits us to classify as shadow or foreground all pixels inside a sub-segment
sl. In contrast, approaches based on sliding windows must form a neighborhood for
each pixel separately, and consequently have much higher computational complexity.
However, we choose gradient-space connected neighborhoods not only because of the
low computational complexity relative to similar segmentation techniques, but also
because for our method is very important to obtain a unique shadow segment for every
shadow region. The main reason for this requirement is that sometimes shadows
are formed by a large penumbra, and therefore segmentation algorithms based on
global pixel analysis, such as mean shift and watershed segmentations, can fail due
to over- and/or under-segmentation. This is illustrated in Fig. 4.10. For example, if
a considered region must include only the pixels with values in some fixed interval ∂
then the segmentation process usually splits shadows region or merges shadow and
foreground pixels into one segment. This situation is shown in Fig. 4.10(b), where
∂ is a small interval value that results in three segments {s1, s2, s3}, while ∂̃ is a
big interval value that under-segments by merging SR ⊂ s̃. If there is no penumbra
region Fig. 4.10(a), over-segmentation does not occur.

Figures 4.11 illustrates two segmentation examples. The segments in the images
are represented by random colors (white color is assigned to those pixels that cannot
form a group, in other words, segment with only one pixel); it is observed that in
general segments in the shadowed ares are bigger than segments in the foreground
regions.
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(a) (b)

Figure 4.10: Illustration of shadow splitting and over-segmentation effects. (a)
Signal without penumbra effect. (b) Signal with penumbra that causes splitting and
over-segmentation.

(a) (b)

(c) (d)

Figure 4.11: (a) and (b) test image frames. (c) and (d) GSCN segmentation results
in the luminance ratio space. The segments in the images are represented by random
colors.
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4.6 Classification Process

Three classification criteria are used to classify every sub-segment skl of an object
region ok as shadow. They exploit local features of the regions. The features used to
perform this local classification are:

{µk
l , |s

k
l |, τ

k
l }, where:

• µk
l : Mean value in the region skl .

µk
l =

∣

∣skl
∣

∣

−1 ∑

x∈sk
l

D (x) .

• |skl |: Number of pixels that belong to a segment skl .

∣

∣skl
∣

∣ =
∑

x∈ok

Mx∈sk
l
(x).

• τkl : Terminal pixel weight, where t̂kl
(

skl
)

is the number of external terminal
pixels of a sub-segment skl . This means, the number of edges of sub-segment
skl that are neighbor to non-object parts of the image. Finally, tkl

(

skl
)

is the
number of all terminal pixels of the sub-segment skl . This includes all internal
and external pixels.

τkl =
t̂kl
(

skl
)

tkl
(

skl
) .

Sub-segments are classified based on the combination of three decision rules:

1. Luminance difference criterion.
The first classification rule is based on the assumption that in shadow regions the
luminance of each RGB pixel component in the background image is greater than
the luminance of each RGB pixel component in the current frame. Following
this concept we introduce the shadow-like indicator function:

Shµ(µ
k
l ) =

∏

c∈{R,G,B}

H(µc(s
k
l )− 1). (4.18)

where Sh(skl ) = 1 when the sub-segment skl can belong to the shadow class.
When Sh(skl ) = 0, the sub-segment skl can be directly classified as foreground.

2. Segment size criterion.
The size classification rule is based on the assumption that for each shadow
region of an object ok, there is just one shadow sub-segment (the ideal case), or
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that there are a few relatively large shadow sub-segments. In contrast, the object
ok is generally formed by many foreground sub-segments, but each of these sub-
segments contains few pixels as a result of superposition of two topological
structures: background and foreground. Thus, the segment size criterion is
represented by the indicator function:

Sh|s|

(∣

∣skl
∣

∣

)

=

{

1, if
(∣

∣skl
∣

∣ > |ok|λ
)

0, otherwise,
(4.19)

where λ is the relative size of the smallest sub-segment in an object ok that can
be shadow.

3. External terminal point weight criterion.
This rule is based on the spatial topology of shadows. Shadow regions are
usually located around foreground regions. Therefore any shadow sub-segment
of an object ok contains a considerable amount of external terminal points of
the region (see Fig. 4.12), relative to the total number of terminal points in
the region. In contrast, foreground sub-segments typically have the weight of
the extrinsic terminal points equal to zero or have less amount of such points.
Therefore, the external terminal point weight criterion is:

Shτ

(

τkl
)

=

{

1, if
(

τkl > τ0
)

0, otherwise,
(4.20)

where τ0 is an experimentally determined threshold.

However, when motion regions ok ∈ {Φ} are detected, they might include out-
liers pixels in the object mask that form a bright narrow fringe between shadow
and background regions in the image plane. This edge effect can result from
JPEG or similar compression techniques and can also be the result of other
signal transmission artifacts. This outlier fringe can completely spoil the re-
sult of classification based on the external terminal point weight criterion. To
overcome the negative consequences of the ’bright edge effect’ we shrink each
individual motion region ok mask by a small morphological erosion. Only then
we start the classification process. When the classification is finished we add
all unclassified pixels that belong to the edge region to the nearest shadow or
foreground sub-region of the motion region ok.

Joint classification rule
The final shadow classification rule is based on the superposition of all previously
described criteria equations: (4.18), (4.19) and (4.20):

skl =

{

Shadow, if
(

Shµ

(

µk
l

)

∩ Sh|s|

(∣

∣skl
∣

∣

)

∩ Shτ

(

τkl
))

Foreground, otherwise
(4.21)

The result of the proposed method applied in three sequences frames is reported in
Fig. 4.13. Rows (a-i) in Fig. 4.13 illustrate all steps:
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Figure 4.12: Point-wise border representation: white borderlines represent end
points of the segment spatially connected with another object’s segments; black bor-
derlines represent external terminal points.

• (a) The image being segmented.

• (b) The motion detection binary mask.

• (c) Object masks.

• (d) Ratio luminance space.

• (e) Result of GSCN segmentation.

• (f) Edge noise correction.

• (g) Classification based on the luminance difference and segment size criteria.

• (h) Classification based on the terminal point weight criterion.

• (i) Final segmentation.

The three different columns of Fig. 4.13 represent three different scenes taken from
sequences: (I) - Grass field #184, (II) - Highway II #157 and (III) Highway II #801.
For scene (I) the classification was completely done based on the segment size criterion
(I-g), in spite of that the scene has an irregular background. The classification could
be done directly with segment size criterion because in this case the background is
rich in term of texture and the foreground is darker than the background. In the
scene (II) the luminance difference criterion also plays an important role since the
big part of the foreground is brighter than the background, but the final decision was
done by terminal point weight criterion. The classification of the scene (III) can be
done only with all three proposed criteria.
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a)

b)

c)

d)

e)

f)

Figure 4.13: Results of different steps of the method (red color means foreground,
green color means shadow): (a) image being segmented; (b) motion detection mask;
(c) object masks; (d) image difference plane; (e) result of GSCN segmentation; and
(f) edge noise correction. (figure continue on next page).
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g)

h)

i)
I II III

Figure 4.13: (continued) (g) classification based on the luminance difference and
segment size criteria; (h) classification based on the terminal point weight criterion;
and (i) final segmentation. The used sequences are: (I) Grass field #184; (II) Highway
III #157; and (III) Highway III #801.
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4.7 Experimental Results

This section first discusses the parameters that are involved in the method as well as
their estimation, and next, explores the performance of the proposed approach from
a qualitative and quantitative viewpoint.

Parameter Analysis

The proposed method relies on several parameters that must be set. Each parameter
and how they may each be estimated directly from data, is described next.

1. Minimum gradient threshold ∂.
For every motion object segment ok a specific ∂k must be computed:

∂k = α |ok|
−1

(

∑

x∈ok

∣

∣(σbg(x))2
∣

∣

)

, (4.22)

where (σbg(x))2 is the variance of the background image model described in
Section 4.2 , and |ok| represents the number of pixels in region k. Because this
parameter is a vectors in the RGB color space,

∣

∣(σbg(x))2
∣

∣ is the magnitude or
grayscale value of a color vector. So, the threshold ∂k is proportional to the
mean values of the variance over an entire motion segment ok that must be
sub-segmented into a set ski ∈ {ok}. Although the experimental parameter α of
equation (4.22) could be optimized for each scene, it was robust for all tested
sequences (α = 0.045).

2. Relative size threshold λ.
The value of the relative size threshold λ has been calculated on the basis of the
optimization of two criteria: true positive foreground (TPf) and false positive
foreground (FPf). The value of this threshold could be optimized for each scene.
However, a scene independent value can be used, since the final result does not
show a big variation relative to optimal (less than 0.5%) with λ equal to 0.04.
Note that this parameter can be decreased if image or scene conditions warrant.
The segment size criteria uses λ to quickly discard sub-segments formed by
a small number of pixels. In the case of extreme situations where shadows
are formed by few pixels, the value of λ can be safely decreased at the cost of
increasing the number of sub-segments to be classified by the ’External terminal
point wight criterion”.

3. External terminal point weight threshold τ0.
The value of the threshold τ0 defined in equation (4.20) is calculated using
the same optimization process as in the previous for λ. At least for all tested
sequences the value of τ0 = 0.30 was optimal.

Performance Evaluation

This section presents quantitative and qualitative results in order to demonstrate the
validity of the proposed approach. The method was tested over a wide range of scenes
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Sequences

Hallway HWI HWIII

Number 1800 440 2227

Hand-labeled 13 8 7

F
ra

m
es

Size 320x240 320x240 320x240

Type Indoor Outdoor Outdoor

Background Textured Textured-less Texture-less

S
c
en

e

Noise Medium Medium Medium

Class People Vehicles Vehicles

O
b
je

c
t

Size Variable Large Variable (small)

Size Variable Large Variable

Visibility Low High High

Direction Multiple Single horizontal Single horizontal

Camouflage Low High High

S
h
a
d
o
w

s

Chromatic effect Low Low High

Table 4.1

Description of the sequences Hallway, HW I and HW III.

with variations in the type and size of objects as well as shadows. In turn, this section
also presents comparisons with most classical and sophisticated moving cast shadow
detection methods.

Quantitative Results:

The quantitative evaluation is based on two standard metrics for evaluating the per-
formance of cast shadow detection algorithms introduced by Prati et al. [62]. They
are: shadow detection rate (η) and shadow discrimination rate (ξ) (previously defined
in section 3.3.2).

The quantitative comparison was done with six methods ([13, 25, 50, 1, 47, 28]).
The Cucchiara et al. [13], the Horprasert et al. [25] and the McKenna et al. [50]
methods were chosen since they are the most cited works in moving cast shadow
detection area. While the Martel-Brisson et al. method [47] as well as the Jia-Bin
Huang et al. method [28] were selected since these methods perform best among
current state-of-the-art techniques.

Comparative results are shown on the standard benchmark sequences1: Hallway,
Highway I (HW I) and Highway III (HW III).(see Table 4.1)

We have ground-truthed three additional sequences for the purpose of bench-

1Note that the ground-truth used for these sequences was provided by Martel-Brisson et
al. [47] http://vision.gel.ulaval.ca/~CastShadows/. In the work of Jia-Bin Huang et al. [28]
the authors make use of the same sequences as well as the ground truth.

http://vision.gel.ulaval.ca/~CastShadows/
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Sequences

CVC Outdoor Football Match Pets 2009 V7

Number 800 2699 795

Hand-labeled 12 13 16

F
ra

m
es

Size 320x240 320x240 720x576

Type Outdoor Outdoor Outdoor

Background Textured Textured-less Variable

S
c
en

e

Noise Low Medium Low

Class People People People

O
b
je

c
t

Size Large Small Variable

Size Large Small Variable

Visibility High Low Low

Direction Single horizontal Multiple horizontal Single horizontal

Camouflage Low Low LowS
h
a
d
o
w

s

Chromatic effect Medium Low Low

Table 4.2

Description of the sequences CVC Outdoor, Football Match and Pets 2009

V7.

marking shadow suppression algorithms and in order to provide further evidence of
the performance of the proposed approach. These sequences and ground truth are
publicly available and were selected to contain a variety of imaging scenarios and
challenging background conditions2. The new sequences are: CVC-Outdoor, Football
Match and Pets-2009 View 7(see Table 4.2).

The results of methods’ performance are reported in Table 4.3. Best performances
are highlighted using bold text. Note that there is no publicly available source code
or executables for the methods reported in [47, 28], for this reason the performance
evaluation of these methods over CVC Outdoor, Football Match and Pets 2009 V7 se-
quences are missing. Consequently the results reported in Table 4.3 of these methods
over Hallyway, HW I and HW III sequences have been obtained directly from [47, 28].
The rest of the methods ([13, 25, 50, 1]) were faithfully implemented. Furthermore,
the thresholds of these methods were manually selected to achieve the best overall
performance for every video sequence. Note that in the work of Prati et al. [62] differ-
ent results of the methods from [13] (η = 69 and ξ = 76) and [25] (η = 81 and ξ = 63)
over HWI sequence were reported. The difference arises since different test frames
were chosen to perform the comparison. The selected frames used in this thesis for
the quantitative comparison in (Hallway, HW I and HW III) were the same that have
been proposed by Martel-Brisson et al. [47].

2http://www.cvc.uab.es/~aamato/Shadows_Detection/

http://www.cvc.uab.es/~aamato/Shadows_Detection/
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Hallyway HWI HWIII CVC
Outdoor

Football
Match

Pets 2009
V7

Sequences

Methods
η% ξ% η% ξ% η% ξ% η% ξ% η% ξ% η% ξ%

McKenna 67 72 56 49 28 62 80 61 64 94 64 87

Horprasert 71 76 71* 51* 31 60 76 64 69 90 66 88

Cucchiara 74 77 61* 64* 39 55 74 68 67 91 72 87

Amato 81 82 59 51 26 41 79 66 66 94 84 92

Brisson 72 86 70 84 68 71

Huang 82 90 70 82 76 74

Proposed 84 91 81 85 72 75 91 96 80 95 96 95

Table 4.3

Quantitative Results for different sequences.

The comparison shows that the proposed technique surpasses the overall perfor-
mance of the other methods. The lowest performance was found in the HW III
sequence. In this sequence the size of moving objects (vehicles) are variable due to
the relative position with respect to the camera, when objects are far from the camera
they became very small, thus inducing the misclassification.

Qualitative Results:

Visual results of the proposed method over different sequences are shown in Fig. 4.14
and Fig. 4.15. The selected sequences for Fig. 4.14 were: Hallway (#450, #279 and
#367), HWI (#18, #46 and #147) and HWIII (#152, #205 and #294). For the
Fig. 4.15: CVC Outdoor (#189, #456 and #691), Football Match (#256, #263 and
#1211) and Pets 2009 V7(#52, #99 and #316).

Examples of method’s performance in different challenging scenarios are illustrated
in Fig. 4.16. In the figure five frames taken from five different scenes are included:
(I) - Hallway frame #163; (II) - Auto frame #1143; (III) - Highway III frame #253;
(IV) - Highway I frame #353; and (V) - CVC outdoor #509. The columns in Fig. 9
(a), (b) and (c) represent:

• (a) The image being segmented.

• (b) Motion object mask.

• (c) Final segmentation.

Scene (I) is an indoor scenario where shadows are projected on the floor and on the
wall being a two disconnected shadows patch. Scene (II) is also an indoor scenario,
but the environment contains multiple overlapping light sources and a large penumbra
region. Scene (III) shows an outdoor scene with flat gray background that is affected
by severe shadow camouflage and with chromatic shadow. Scene (IV) is another
outdoor scenario where multiple moving objects are combined in a single object mask.



4.7. Experimental Results 95

Figure 4.14: Results from the proposed method in different sequences: Hallway;
HWI; HWIII.
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Figure 4.15: Results from the proposed method in different sequences: CVC out-
door; Football Match; Pets 2009 V7.
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METHODS Chromatic
Shadows

Shadow
Camouflage

Surface
Topology

Cucchiara et al. [13] High High Low

Horprasert et al. [ 25] High High Low

McKena et al. [50] High High High

Kim et al. [36] High High Low

Siala et al. [71] Low High Low

M.-Brisson et al. [47] High High Medium

Huang et al. [28] High High Medium

Fung et al. [18] High High High

Huerta et al. [29] Low High High

Toth et al. [76] Low Medium High

Nadimi et al. [56] Low High Medium

Amato et al. [1] High Medium High

Yuan et al. [91] Low Medium High

Grest et al. [19] High Medium High

Yao et al. [89] High Medium High

Leone et al. [37] Low High High

Jacques et al. [7] Low High High

Yang et al. [88] Low High Medium

Proposed Low Low Medium

Table 4.4

Qualitative evaluation for different methods. The table valuates the

negative effect degree with: Low, Medium and High.

Finally scene (V) contains a long chromatic shadow cast on an irregular background
surface.

Additionally, Table 4.4 presents a qualitative comparison among several moving
cast shadow detection algorithms. It reports the negative impact that chromatic
shadow and shadow camouflage might cause over the performance of the methods.
The table valuates the negative effect degree with: Low, Medium and High. In turn,
the table also shows the dependency of algorithms’ performance respect to surface
topology (namely texture or texture-less). The degree of this dependency is similarly
classified.

4.8 Discussion

The robustness of the proposed method to perform under chromatic shadow is due to
that in the luminance ratio space a local constant region exists due to the reflectance
suppression. Such a local color constancy region is completely independent of the
chrominance of the light sources involved in the scene. Moreover, the method can
properly classify shadow-foreground pixels even when there is a strong similarity be-
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(I)

(II)

(III)

(IV)

(V)
(a) (b) (c)

Figure 4.16: Results from the proposed method in different challenging scenarios:
(I) Hallway #163; (II) Auto #1143; (III) Highway III #253; (IV) Highway I #353;
and (V) CVC outdoor #509. The meaning of each column here is: (a) current image;
(b) motion object mask; and (c) final classification.
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Figure 4.17: Characteristic of the proposed approach.

tween their information, namely chroma and brightness (shadow camouflage), since
the method performs at the region level, making use of more than the information of
a single pixel.

The computational complexity of the method is lineal to the number of pixel in
the frame, thus allowing the detection to be performed in Real-time.

The proposed method has demonstrated high success to distinguish between fore-
ground and moving shadow in different scene conditions. However, the best perfor-
mance was found in those cases where either background or foreground, were rich in
terms of texture. It is because the method can easily discard small segment formed
in the foreground region (as a result of superposition of two different topological
structures: background and foreground). Following the hypothetical assumption that
either background or foreground are always rich in terms of texture the luminance
difference filter and the segment size filter could be enough to efficiently distinguish
shadow from foreground. Nevertheless, to maintain the generality of the method, thus
performing in different scene structures, the terminal point filter was designed. The
external terminal point filter exploits geometrical topology of shadows. Comparing
among geometrical supporters of shadow, terminal points criterion is the most gen-
eral, since this does not need any prior knowledge of scene or objects, furthermore it
does not need any prior knowledge of sources light.

According to the taxonomy proposed in chapter 2 the presented method follows
the configuration illustrated in Fig. 4.17.
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Summary

This chapter presents a novel approach to detect and remove moving cast shadows.
The method exploits local color constancy due to reflectance suppression over shad-
owed regions. Such a color constancy effect, over a shadow region, is achieved through
dividing the values of the background image by the values of the current image to
form a new image in the division space. In this space, segments with low gradients
correspond to all shadow regions, as opposed to foreground regions which, in most
cases, exhibit higher gradients. The segments are formed by using an algorithm specif-
ically designed for grouping shadowed pixels. To classify each segment as shadow or
foreground the method makes use of intrinsic shadows features.

All the parameters in the presented method can be directly estimated from the
data, and it deal efficiently and accurately with the most difficult issues in the field,
including umbra-penumbra detection, chromatic shadows, and shadow camouflage.
The presented method is fast and the computational complexity is linear in the num-
ber of pixels in the frame. Furthermore the effectiveness of the proposed method
was validated by the higher recognition rates achieved over a collection of publicly
available sequences.



Chapter 5

Conclusion

And ne forhtedon na

The final remarks of this dissertation are presented in this chapter. It is organized
as follows. Section 5.1 briefly reviews the topics discussed in the different sections of
this work and summarizes the main contributions made throughout the development
of this thesis. In section 5.2 future lines of research are addressed.

5.1 Summary and Contributions

This thesis has addressed the problem of distinguishing moving cast shadows from the
moving objects. The presented work has been motivated by the goal of developing
a method that can properly detect moving cast shadows for most possible scenarios
occurring in real video sequences.

In chapter 2 the literature has been explored. Different methodologies were found
trying to deal with the problem of detecting moving cast shadows. Despite of the
fact that the area of research is relatively young, it has engaged the interest of many
researchers highlighting the importance in the field.

Moving cast shadow methods mainly identify shadows by using some shadow de-
scriptors. These descriptors basically model shadows by exploiting properties such as:
chromaticity invariant, textural patterns, photometric physical models, or even by an-
alyzing the projected areas in terms of size, shape and direction. Diverse information
that characterizes moving shadows is exploited and in many cases such information
is combined or used in different ways.

With the purpose to better individualize the capability of methods to perform
under different situation we have proposed a new taxonomy to represent moving
cast shadow detection methods. The main layer of the proposed taxonomy describes
whether methods operate with a single pixel or with a group of pixels (within a local
adaptive region or a fixed region) or using the whole frame information. The second
layer taxonomy describes the shadow descriptors used by the methods. The principal
shadow descriptors used in the literature are: chromaticity and intensity models,
texture models, photometric physical models and projection models. Some methods

101
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need to be supported by extra information. Such information can be obtained by a
training phase or using some prior-knowledge of the scene or exploiting geometrical,
temporal, or spatial cues. Finally the last category is based on the classification’s
decision of the methods.

In chapter 3 first, a known reflection model to describe shadows from a photometric
viewpoint has been used. A reflection model basically describes the interaction of light
with a surface in terms of the properties of the surface and the nature of the incident
light. Normally, in such interaction there are too many number of variables and
factors, which make the modeling a non trivial task. In this thesis we have used
the Phong reflection model to derivate the shadow luminance model. The shadow
luminance model was crucial to: (i) describe the effect inside of the shadows (umbra-
penumbra); (ii) describe the phenomenon caused by chromatic shadows; and (iii)
establish the basis of the proposed method.

Subsequently a case analysis of different moving cast shadows algorithms is also
presented. We have analyzed algorithms that perform in different color spaces based
on two kinds of methodologies: (i) pixel-wise; and (ii) fixed region-wise.

We have observed that methods that only exploit chromaticity invariant property
are intrinsically not prepared to cope with ’chromatic shadows’. Methods that perform
at the ’pixel level’ severely decrease their performance in those cases where ’shadow
camouflage’ and ’chromatic shadows’ occur, since the information of a single pixel is
not enough to discriminate between shadow and foreground due to the ambiguity in
their pixels’ values.

On the other hand, the performance of methods that analyze ’fixed regions’ is
strongly dependent to the size of the region. Furthermore the textural composition
of the background as well as of the object is crucial to obtain a good segmentation.

The detector proposed in this thesis is described in chapter 4. First an initial
change detection mask containing moving objects and moving shadows is obtained
using a background subtraction technique. Then, objects’ masks are computed by us-
ing connected component analysis. Based on the shadow luminance model, we state
that in the luminance ratio space, a low gradient constancy exists in all shadowed re-
gions, as opposed to foreground regions which, in most cases, exhibit higher gradients.
To exploit these foreground-shadow characteristics, we designed a gradient-based seg-
mentation algorithm to partition each object area into a set of low gradient segments
(object’s sub-segments). The object’s sub-segments are classified as shadow or fore-
ground, following three criteria: (i) luminance difference criterion; (ii) segment size
criterion; and (iii) extrinsic terminal point weight criterion.

The effectiveness of the proposed method has been validated by the higher recog-
nition rates achieved over a collection of publicly available sequences.

The outcome of this work ends with a new moving cast shadow detector, which is
able to properly performs in most possible scenarios occurring in real video sequences.
Furthermore, the proposed detector outperforms the state-of-art [2].

Table 5.1 summarizes an account of the specific contributions achieved throughout
the development of this thesis and the chapters in which such contributions appear.



5.2. Future Lines of Research 103

LOCATION CONTRIBUTIONS
Chapter 2 A comprehensive review of the literature.

A new taxonomy of moving cast shadow methods.
Chapter 3 A deep analysis of shadow modeling.

An exhaustive examination of relevant methods, which in-
cludes description, comparison and limitations.

Chapter 4 A motion detection algorithm based on angular and eu-
clidean distance similarity measurement.
A shadow feature based on low gradient region in the lumi-
nance ratio space.
A gradient-based segmentation approach.
A geometrical shadow supporter based on external terminal
points.

Table 5.1

Thesis contributions

5.2 Future Lines of Research

Future directions will be split into two paths.

The first one, aims to evaluate the possibility of using temporal information (tem-
poral supporter) in order to improve the general performance of the method. The
purpose behind this idea resides in to cope with wrong sub-segment classifications
that can appear in specific location of the scene by using sub-segment confident de-
tection ranks obtained from previous frames.

The second path opens other line of research, which aims to design a structural-
color based signature of the moving object that can highly benefit tracking algorithms
as well as re-identification algorithms. To this end, a preliminary idea consists first in
performing a color segmentation of the object. Then, the object will be represented in
a graph where each node of the graph is associated with a color segment of the object
and the edges are the spatial connections between the color segments. Consequently
the tracking and/or the re-identification will be performed by the matching between
two graphs (model graph and target graph).
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Publications

Journal Articles:

■ Ivan Huerta, Ariel Amato, F. Xavier Roca, Jordi Gonzàlez, “Multiple Cues Fu-
sion for Robust Motion Segmentation using Background Subtraction”. Neuro-
computing ,(Elsevier). (in press 2011)

■ Ariel Amato, Mikhail G. Mozerov, Andrew D. Bagdanov, Jordi Gonzàlez, “Ac-
curate Moving Cast Shadow Suppression based on Local Color Constancy De-
tection”. IEEE Transactions on Image Processing (TIP) vol.20, no.10, pp.
2954-2966, October 2011.

■ Ariel Amato, Mikhail G. Mozerov, F. Xavier Roca, Jordi Gonzàlez, “Robust
Real-Time Background Subtraction based on Local Neighborhood Patterns”.
EURASIP Journal on Advances in Signal Processing 2010.

■ Mikhail G. Mozerov, Ariel Amato, F. Xavier Roca, Jordi Gonzàlez, “Solving
the Multi-Object Occlusion Problem in a Multiple Camera Tracking System”.
Pattern Recognition and Image Analysis, volume 19, number 1, pp. 165–171.
March 2009.

■ Mikhail G. Mozerov, Ariel Amato, F.Xavier Roca, Jordi Gonzàlez, “Trajec-
tory Occlusion Handling with Multiple View Distance Minimization Cluster-
ing”. Optical Engineering, vol. 47(4) pp- 047202-1/047202-9. April 2008 SPIE.

Conferences

■ Mikhail Mozerov, Ariel Amato, Xavier Roca, ”Occlusion Handling in Trinocular
Stereo using Composite Disparity Space Image”. In 19th International Confer-
ence on Computer on Graphics and Vision (GraphiCon 2009), Moscow, Russia,
October, 2009.
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■ Ariel Amato, Mikhail Mozerov, Ivan Huerta, Jordi Gonzàlez, Juan J. Vil-
lanueva, ”Background Subtraction Technique Based on Chromaticity and In-
tensity Patterns”, In In 19th International Conference on Pattern Recognition
(ICPR 2008). Tampa (Florida), USA. Pattern Recognition 2008 pp.1-4.

■ Mikhail Mozerov, Ariel Amato, F. Xavier Roca, Jordi Gonzàlez, “Trajectory
Extrapolation for Multiple Views Tracking” In 8th International Conference on
Pattern Recognition and Image Analysis (PRIA 2008), Yoshkar-Ola, Russia,
October, 2007.

■ Ariel Amato, Murad Al Haj, Mikhail Mozerov, Jordi Gonzàlez, “Trajectory Fu-
sion for Multiple Camera Tracking” In 5th International Conference on Com-
puter Recognition Systems (CORES’2007), Wroclaw, Poland, 2007, vol 45, pp
19–26.

■ Mikhail Mozerov, Ariel Amato, Murad Al Haj, Jordi Gonzàlez, “A Simple
Method of Multiple Camera Calibration for the Joint Top View Projection” In
5th International Conference on Computer Recognition Systems (CORES’2007),
Wroclaw, Poland, 2007, vol 45, pp 164–170.

■ Murad Al Haj, Ariel Amato, F. Xavier Roca, Jordi Gonzàlez, “Face Detection in
Color Images using Primitive Shape Features” In 5th International Conference
on Computer Recognition Systems (CORES’2007), Wroclaw, Poland, 2007, vol
45, pp 179–186.

Workshops

■ Ariel Amato, Murad Al Haj, Josep Lládos, Jordi Gonzàlez, “Computationally
Efficient Graph Matching via Energy Vector Extraction” In International Work-
shop on Advances in Pattern Recognition (IWAPR 2007), Plymouth, UK, 2007,
pp 47–53.

■ Murad Al Haj, Ariel Amato, Gemma Sánchez, Jordi Gonzàlez, “On-line One
Stroke Character Recognition Using Directional Features” In International Work-
shop on Advances in Pattern Recognition (IWAPR 2007), Plymouth, UK, 2007,
pp 145–151.

■ Ariel Amato, Murad Al Haj, Mikhail Mozerov, Jordi Gonzàlez, “Trajectory
Reconstructions with Multiple View”. In 2nd CVC Workshop: Progress of
Research and Development (CVCRD’2007). Cerdanyola del Vallès, Barcelona,
Spain, October 2007.

■ Murad Al Haj, Javier Orozco, Ariel Amato, F. Xavier Roca, Jordi Gonzàlez.
“Finding Faces in Colour Images through Primitive Shape Features” In 2nd
CVC Workshop: Progress of Research and Development (CVCRD’2007). Cer-
danyola del Vallès, Barcelona, Spain, October 2007.
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“Constructing a Path Database for Scene Categorization”. In 2nd CVC Work-
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Technical Reports
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