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ê�i dà fÜlon ân �njr¸poi	 mataiìtaton,
í�is aÊ�Ônwn âpiq¸ria paptaÐnei t� pìr�,
metam¸nia jhreÔwn �kr�ntois âlpÐ	n.

PINDAROS (G' Pujiìnikos, 5 os ai. p.Q.)

Huge hills and mountains of casks on casks
were piled upon her wharves, and side by side
the world –wandering whale – ships lay silent and
safely moored at last; while from others came a
sound of carpenters and coopers, with blended
noises of fires and forges to melt the pitch, all
betokening that new cruises were on the start;
that one most perilous and long voyage ended,
only begins a second; and a second ended, only
begins a third, and so on, for ever and for aye.
Such is the endlessness, yea, the intolerableness
of all earthly effort.

Herman Melville (Moby –Dick, 1851)





Áíôß ðñïëüãïõ

As indicated by the word axioms in the title, the subject matter of the present
dissertation is mathematical logic. In particular, it is a dissertation on the �eld
of set theory, which studies the abstract concept of mathematical in�nity and its
formal properties.
The origins of modern set theory can be traced back to the 1870 's in the work

of the German mathematician Georg Cantor. Cantor's initial breakthrough, and
perhaps his most renowned result, was showing that the cardinality of the natural
numbers is strictly smaller than that of the real numbers. In other words, what
Cantor proved, amazingly and counter { intuitively, was that in�nite collections
can have di�erent sizes. Towards the end of the same decade, in 1878, he also
established an extremely powerful way to compare in�nite cardinalities which,
moreover, led him to the formulation of the outstanding Continuum Hypothesis.
A few years later, in late 1882, Cantor made yet another breakthrough: he

realized that one may orderly count any in�nite collection by means of a simple,
but profound methodological extension of the familiar counting process which had
been used for centuries in the realm of �nite numbers. To that end, he concurrently
introduced the construction of the sequence of trans�nite ordinal numbers in such
a way that, in his own words, one might break through any barrier when forming
new numbers along the sequence. Moreover, he observed that, according to his
method for comparing cardinalities, the absolutely in�nite ordinal sequence gives
rise to an absolutely in�nite hierarchy of strictly increasing sizes of in�nities. All
these unprecedented results of Cantor can be considered as jointly giving birth to
modern set theory.
The mathematical part of the current text is mainly addressed to set { theorists,

although on some days I am {unjusti�ably { optimistic and expect that other
logicians, mathematicians, or people for that matter, will �nd some relevance of
the presented material to their own interests.
Fortunately, and as opposed to general norms regarding journal publications,



there are no serious limitations (so far) on the length of a dissertation, a fact of
which I have certainly taken advantage. Given this luxury, the majority of the
text, including the various arguments in the proofs, was written under the mind-
set that, when explaining mathematical ideas, it is better being slightly pleonastic
than being sketchy. The approach of giving an enhanced picture, one which helps
to elucidate the mathematical intuition underlying the occasional technical for-
malities, is, as I maintain, of vital importance. My hope is that this approach
has been successfully re
ected throughout the text and that the reader values and
relishes this viewpoint as much as I do.
This voyage has come to an end. On the occasion of its conclusion, and in

retrospect, it is amusing to recollect all the coincidences which, as if ironically,
brought about the actual course of events that led to this �nale. There was a
time, not too long ago, when the idea of me writing such a dissertation was, as
they used to say, un château en Espagne. Yet, life is full of surprises. The opening
words of the famous English writer echo: one never knows when the blow may fall .

Barcelona,Catalunya,Spain Konstantinos Tsaprounis
September 2012
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Introduction

Set theory is the particular �eld of mathematics which studies abstract in�nite
collections { called sets { and their properties. In this sense, it is the theory of
mathematical in�nity. It has had a plethora of deep and celebrated results ever
since its birth, in the late 19th century, through the founding and radical work of
Georg Cantor.

The systematic labour of many distinguished mathematicians of the early 20th
century led to the formalization of set theory in the framework of �rst { order
logic, thus equipping it with an axiomatic basis which soon became standard.
This axiomatization is customarily denoted by the acronym ZFC, standing for
Zermelo { Fraenkel set theory with the Axiom of Choice.
ZFC is nowadays widely accepted as the foundation of mathematics; that is to

say, the vast majority of mathematical theories can be interpreted in set theory.
This roughly means that the various mathematical structures from di�erent areas
of mathematics can be viewed as sets and, then, all the mathematical theorems
about them can be proved from the axioms of ZFC via the usual logical rules
of inference. Consequently, set theory, apart from being an ample and rapidly
growing mathematical theory in its own right, it also plays the important rôle
of encompassing the edi�ce of mathematical practice, with all the philosophical
implications which might arise from the latter feature. It is not clear whether
Cantor had such sanguine expectations for the theory which he was just starting to
investigate. What started with him, however, continues until this very day to have
direct reference to his original insights, formal results, and agitating conjectures.

The Continuum Hypothesis (denoted by CH), is the assertion that every in�nite
subset of the real numbers is either countable, that is, equinumerous with the set of
natural numbers, or equinumerous with the whole set of reals. Cantor formulated
this statement in 1878 and conjectured its truth; nonetheless, after many attempts
made by him and other mathematicians during the following years, no proof of it
was found. In fact, the solution of the Continuum Hypothesis was the �rst problem

v



vi Introduction

appearing in David Hilbert's famous list of 23 mathematical problems, presented
in Paris in the year 1900. For almost four decades after the o�cial challenge posed
by Hilbert, no major progress on the matter was made.

In the year 1938 though, sixty years after the original formulation of CH, a
partial answer to the problem was given by Kurt G�odel !. G�odel showed that, given
any model of set theory, one can de�ne a very special substructure of it (called
the constructible universe L) which, along with the ZFC axioms, also satis�es
CH. By that means, he established the relative consistency of CH with ZFC, which
moreover meant that the Continuum Hypothesis cannot be refuted from the axioms
of set theory. Initially, this might have given heuristic evidence and hope that
Cantor's hypothesis is indeed true. Still, after more failed attempts, and in the
light of G�odel's eminent incompleteness theorem(s), people were eventually led to
consider the possibility of the problem being unsolvable in set theory. In order
for this alternative to materialize, one would have to demonstrate the relative
consistency of the negation of CH with ZFC. For quite some time, this seemed like
a daunting task.

Twenty { �ve years after G�odel's work, in 1963, the mathematician Paul Cohen
�nally accomplished to exhibit a relative consistency proof for ¬CH, thus com-
pleting the puzzle: the Continuum Hypothesis was indeed undecidable in ZFC set
theory. Perhaps even more strikingly, it was Cohen's method and not the actual re-
sult which constituted a groundbreaking advancement. The mehod of forcing that
he introduced has become an indispensable tool of modern set theory, producing
an extraordinary amount of proofs regarding undecidable statements.

Gener(ic)ally speaking, forcing is an extremely 
exible and powerful technique
which, given an arbitrary model of ZFC (typically referred to as the ground model),
enables one to construct a strictly larger model of ZFC (usually called a generic
extension) in a way which allows su�cient control on the statements which hold in
the extension. Every forcing construction is guided by a partially ordered set (aka
poset) P of the ground model, so that for any given statement ', its truth or falsity
in the generic extension depends on (' and) the particular internal combinatorial
structure of P. The essential 
exibility of the method lies in the freedom to select
the poset according to our intentions; if this selection is made carefully, we may
ensure that certain statements (e.g., the negation of CH) necessarily hold in the

! This is intended to be a general introduction to the subject of set theory, aiming at attracting
the interest of the non { expert, at refreshing the memory of the expert, as well as at setting out
the underlying plot basis for the mathematical content which is about to follow. Those readers
interested in the explicit de�nitions of the various notions and the exact citations of the results
mentioned will be excellently guided to them by textbook references such as [28], [30] and [33].
Alternatively, and assuming that the reader has su�cient patience, speci�c citations will also be
provided along the formal development of the pertinent mathematical themes.
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extension and, therefore, obtain their relative consistency with the ZFC axioms.
Shortly after its introduction, the forcing machinery attained its full generality

through the work of prominent set theorists, triggering the genesis of an ever {
expanding list of statements from diverse areas of mathematics, which, one after
the other, turned out to be independent from ZFC by forcing arguments. As a
result, people quickly became aware of the fact that the axioms of set theory are
too weak to settle many important mathematical problems. The natural question,
then, was whether there are other axioms that, if added to ZFC, would result in
a (reinforced) theory, which would be able to solve some (if not most) of these
problems, among which the CH was thought of as the paramount paradigm. In
this sense, it can be said that forcing gave rein to thoughts on reinforcing.

The search for new axioms has been a long { standing issue, tantalizing mathe-
maticians and philosophers of set theory for several decades. Two prevailing ideas
along these lines, both tracing back to G�odel and { indeed { Cantor himself, are
re
ection and maximality.

Re
ection is an underlying concept which pervades the body of set theory and is
closely tied to the idea of unknowability of the absolute in�nity of the set { theoretic
universe. Intuitively, re
ection can be described by saying that, if some property
holds in the universe, then it must already hold (that is, \ re
ect") in some initial
segment of it.

In parallel, the concept of maximality refers to the (vague) idea of dispensing
with any unnecessary restrictions on the universe of set theory, consistently em-
bracing as many sets as possible. Alternatively, this can be stated as a principle of
saturation, i.e., a demand that our universe of discourse is closed under a variety
of existential requirements and de�nable operations.

One category of candidates for new axioms consists of the various large cardinal
axioms which assert the existence of certain strong forms of in�nity that are not
deducible from ZFC. Some of the early examples were that of an inaccessible,
that of a Mahlo and that of a measurable cardinal. Inaccessible cardinals were
already considered by Felix Hausdor� in the 1900 's, although their current name
appeared several years later in the work of Wac law Sierpi�nski and Alfred Tarski.
Mahlo cardinals were studied by Paul Mahlo in the 1910 's, whereas measurable
ones by Stanis law Ulam in the 1930 's.

The list of large cardinals has grown considerably over the years, and it has been
enriched with notions coming from a wide spectrum of mathematical interests;
yet, it is an impressive fact that all these postulates are found to be linearly
ordered in consistency strength, forming an increasing hierarchy of stronger and
stronger axioms of in�nity. Among others, notable large cardinal notions are weakly
compact, Ramsey, strong, Woodin, supercompact, extendible and huge cardinals. A
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very important use of this hierarchy of axioms is to \ measure" the consistency
strength of any set { theoretic (and thus, mathematical) statement, hence providing
an exceedingly dense picture of implications between some of the most potent
mathematical assertions.

(Un)fortunately, by the work of Azriel L�evy and Robert Solovay, it was soon
realized that large cardinals are unable to resolve our most illustrious problem:
the Continuum Hypothesis. Despite this de�cit, in 1969, Solovay proved that the
existence of a measurable cardinal implies that all sets of reals of a particular
complexity (called Σ1

2 sets) are Lebesgue measurable. This was a surprising con-
nection. In fact, although the relation between large cardinals and the structure
of the continuum is not yet fully understood, a series of great advances and deep
results { especially in the areas of descriptive set theory, inner model theory and
determinacy during the last decades { has highlighted the momentous in
uence
that the former have on the latter.

One dominant demonstration of the aforementioned e�ect, the climax of the
work done by Donald Martin, John Steel and W. Hugh Woodin in the 1980 's, is
that the axiom of Projective Determinacy (denoted by PD) follows from, and is
{ roughly { equiconsistent with the existence of in�nitely many Woodin cardinals.
The axiom PD has very strong consequences for the structure of the continuum: it
implies, for instance, that every projective set of reals is Lebesgue measurable, it
has the Baire property and the perfect set property ; in particular, under PD there
is no projective counterexample to CH.

In a somewhat di�erent spirit, an important by { product of the development
of forcing, during the 1960 's, was the birth of forcing axioms. This was initiated
by Martin, who isolated a principle that generalizes the Baire category theorem
and is now known as Martin's Axiom (denoted by MA). The original formulation
of MA was given in terms of forcing posets and is the assertion that, for any
cardinal � < 2ℵ0 , any c.c.c. poset P and any family F = {A� : � < �} of
maximal antichains of P, there exists a �lter G ⊆ P which is F - generic, that
is, G ∩ A� 6= ∅, for every � < �. Of particular interest is the special case in
which � = ℵ1, i.e., the assertion that an F - generic �lter may be found for any
such family F of size ℵ1; this instance is denoted by MAℵ1 (and it implies ¬CH).
Martin's Axiom can be seen as a principle of existential closure, asserting, in e�ect,
that the universe is already closed under the existence of such generic �lters for
c.c.c. partial orders.

Subsequently, other forcing axioms were considered, mainly by expanding the
class of posets to which similar closure principles apply, while keeping an attentive
eye on possible inconsistencies which might appear; e.g., one may not generalize
to the class of all posets, since this is easily seen to lead to a contradiction. Two
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famous strengthenings of Martin's Axiom (in fact, of MAℵ1) are the Proper Forcing
Axiom (denoted by PFA) and Martin's Maximum (denoted by MM), both appear-
ing in the 1980 's. The PFA was introduced by James Baumgartner and applies to
proper posets, a notion studied by Saharon Shelah; MM was introduced in a joint
work by Matthew Foreman, Menachem Magidor and Saharon Shelah, and refers
to stationary preserving posets, i.e., posets which preserve the stationary subsets
of !1. Along with their introduction, it was shown that the consistency of both of
these forcing axioms follows from that of the existence of a supercompact cardinal.

Strong forms of forcing axioms have dramatic implications for the set { theoretic
universe and, in particular, for the continuum and its structure; e.g., PFA (and
thus, MM as well) entails PD, the Singular Cardinal Hypothesis and, moreover, it
implies that the cardinality of the continuum is ℵ2 (hence, it refutes CH). Although
it is far from clear whether such assumptions can be considered as natural axioms
for set theory, they do conform with the idea of maximality. This aspect is further
clari�ed when one regards forcing axioms as principles of generic absoluteness.

In the search for new axioms which would decide problems like the Continuum
Hypothesis, one is tempted to think that the e�ect of forcing should somehow be
annihilated. Forcing axioms partly succeed in doing so, as they are intuitively
claiming that, for appropriate classes of posets, \su�cient forcing has already
been done", i.e., generic �lters may already be found in the (current) universe. In
other words, such axioms claim that, if the existence of objects satisfying certain
properties can be forced, then such objects already exist. In model { theoretic
terms, this means that various existential statements are absolute between the
universe and the generic extensions arising from the relevant posets.

Local examples of this phenomenon are provided by bounded forms of forcing ax-
ioms, such as the Bounded Proper Forcing Axiom (denoted by BPFA) and Bounded
Martin's Maximum (denoted by BMM). These are weakenings of PFA and MM re-
spectively, having the extra restriction that each of the maximal antichains for
which a generic �lter may be found should have size at most ℵ1. It then turns
out that these bounded versions are equivalent to generic absoluteness statements
for bounded segments of the universe. More accurately, BPFA is equivalent to
the assertion that, for any proper poset P, the Hℵ2 of the ground model is a Σ1 -
elementary substructure of the Hℵ2 of any generic extension, i.e., Hℵ2 ≺ 1 (Hℵ2)

V P .
A related characterization holds for BMM as well, if one replaces proper posets
by stationary preserving ones in the previous equivalence. It has been shown that
bounded forcing axioms also have strong consequences for the continuum and its
structure; in particular, both BPFA and BMM imply that 2ℵ0 = ℵ2. But even in
this direction, the road is not paved with rose petals.

Such exempli�cations of generic absoluteness, in terms of the H�'s, quickly run
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into inconsistency, if we allow too much liberty on the choice regarding the class
of posets, the cardinal �, and the complexity of the formulas considered, or combi-
nations thereof. Be that as it may, and even at the cost of abandoning the general
setting, one would like to have adequate control over structures which have some
bearing on the continuum, it being one of the central objects of our study.

Focusing then on L(R), the minimal ZF model which contains all the reals,
Woodin has shown that the existence of a proper class of Woodin cardinals implies
that the (�rst { order) theory of L(R), with real parameters, is generically absolute
for all forcing posets of the universe. This kind of absoluteness implies that all sets
of reals in L(R) and, therefore, all projective sets of reals are Lebesgue measurable,
have the Baire property, etc.

Along his investigations regarding set { theoretic statements of analogous com-
plexity to that of CH (recall that this is Σ2), Woodin has come along a truly
remarkable fact, called resurrection. Namely, again in the presence of a proper
class of Woodin cardinals and after introducing a forcing notion called stationary
tower, he showed that if ' is Σ2 and it can be forced true by any poset, then
the fact that it can be forced true is generically absolute. Otherwise stated, we
may always resurrect the truth of Σ2 - statements by further forcing, even if we
happened to falsify them in our current (messy) forcing constructions.

Woodin has also introduced a strong logical system called Ω{Logic, with the fea-
ture that its valid statements are generically absolute. It was intended to provide
with a framework in which, at least for statements of complexity similar to that
of CH over the structure Hℵ2 , the e�ect of forcing is nulli�ed. For this, he also
introduced an axiom called (∗) which is a strong form of BMM and which, together
with ZFC and under suitable assumptions, decides in Ω{Logic the theory of Hℵ2 ;
moreover, Woodin showed f that in such a situation the Continuum Hypothesis
necessarily fails.

The interplay and emerging connections between large cardinals, forcing axioms,
and the structure of the continuum, have indeed gone a long way. Notwithstanding,
there are many obscure territories yet to be explored before we collectively arrive at
a sharper, and intuitively more profound understanding of the subtle complexities
of the \set { theoretic universe".

The search for new axioms continues, along with our curiosity to reach ever {
higher levels of intellectual clarity. As we are ascending, we are indeed going
deeper. Or we should, anyway.

f Granted the assumption of the Ω{Conjecture which is, as its name indicates, still open.
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Annotation of content and overview of results
The current dissertation touches both on large cardinals and on issues related
to forcing axioms and generic absoluteness. On the one hand, we take up the
hierarchies of C(n) - cardinals, which were introduced in [5] and were shown to have
intimate connections with principles of structural re
ection for the set { theoretic
universe.

On the other hand, we also deal with certain classes of resurrection axioms as
they are introduced in [29]. We eventually obtain stronger forms of such principles
from which we are able to deduce known forcing axioms. Let us now give a brief
overview of the particular contents.

The necessary preliminaries may be found, as it should be anticipated, in the
�rst chapter.

In Chapter 2, we study several hierarchies of C(n) - cardinals as they are in-
troduced by J. Bagaria (cf. [5]). In the context of an elementary embedding
j : V −→ M associated with some �xed C(n) - cardinal, and under adequate as-
sumptions, we construct appropriate chains of elementary substructures of the
model M in order to derive consistency (upper) bounds for the large cardinal
notion at hand; in particular, we deal with the C(n) - versions of tallness, super-
strongness, strongness, supercompactness, and extendibility. As far as the two
latter notions are concerned, we further study their connection, giving an equiva-
lent formulation of extendibility as well.

We also consider the cases of C(n) - Woodin and of C(n) - strongly compact car-
dinals which were not studied in [5]. Although these notions do not �t in the
methodological picture described in the previous paragraph, we nevertheless get
characterizations for them in terms of their ordinary counterparts.

In Chapter 3, we brie
y discuss the interaction of C(n) - cardinals with the forc-
ing machinery, presenting some (quite) basic applications of ordinary techniques.

In Chapter 4, we turn our attention to extendible cardinals; by a combination
of methods and results from Chapter 2, we establish the existence of apt Laver
functions for them. Although the latter was already known (cf. [11]), it is proved
from a fresh viewpoint, one which nicely ties with the material of Chapter 5.

On the negative side, we argue that in the case of extendible cardinals one
cannot use such Laver functions in order to attain indestructibility results. Along
the way, we give an additional characterization of extendibility, and we, moreover,
show that the global GCH can be forced while preserving such cardinals.

In Chapter 5, we focus on the resurrection axioms as they are introduced
by J.D. Hamkins and T. Johnstone (cf. [29]). Initially, we consider the class of
stationary preserving posets and, assuming the (consistency of the) existence of
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an extendible cardinal, we obtain a model in which the resurrection axiom for this
class holds.

By analysing the proof of the previous result, we are led to much stronger forms
of resurrection for which we introduce a family of axioms under the general name
\Unbounded Resurrection". We then prove that the consistency of these axioms
follows from that of (the existence of) an extendible cardinal and that, for the
appropriate classes of posets, they are strengthenings of the forcing axioms PFA
and MM.

We furthermore consider several implications of the unbounded resurrection ax-
ioms (e.g., their e�ect on the continuum, for the classes of c.c.c. and of � - closed
posets) together with their connection with the corresponding ones of [29]. Fi-
nally, we also establish some consistency lower bounds for such axioms, mainly by
deriving failures of (weak versions of) squares.

We conclude our current mathematical quest with a few �nal remarks and a
small list of open questions, followed by an Appendix on extenders and (some of)
their applications.



CHAPTER 1

Prelude

We commence by outlining in this chapter several notational conventions, stan-
dard de�nitions, and well { known results, all of which will be assumed, quoted
and { either directly or indirectly { used in the course of the present dissertation.
For more details regarding unde�ned set { theoretic notions and basic background
material, the reader is encouraged to consult various classical text references such
as [28], [30] and [33].

1.1 Fixing the language

ZFC stands for the familiar �rst { order axiomatization of Zermelo { Fraenkel set
theory, together with the Axiom of Choice. In the few cases where particular
fragments of this theory are (locally) relevant, we will use ZF to indicate the
absence of choice and ZFC− to indicate the absence of the Powerset Axiom. The
interested reader is referred to [21] for some nuances related to the latter theory.
Moreover, KP will stand for Kripke { Platek set theory, a fragment of ZFC which
is frequently employed in the development of the forcing apparatus.

For any set X, trcl(X) is its transitive closure, |X| is its cardinality, P(X) is
its powerset and, if � is any cardinal (even �nite), P�X and [X]<� both stand
for the collection of subsets of X which have cardinality less than �; moreover,
[X]� = {y ⊆ X : |y| = �}.

Given any function f , dom(f) is its domain while range(f) is its range, i.e.,
range(f) = {y : ∃x ∈ dom(f) (y = f(x))}; additionally, for any S ⊆ dom(f) we
write f � S for the restriction of the function to S and, also, we write f ′′S for
the corresponding pointwise image, that is, the collection {f(x) : x ∈ S}. We use
the three dots in order to indicate partial functions, i.e., f ... X −→ Y means that
dom(f) ⊆ X, with the inclusion possibly being proper. For any X and Y , XY is

1
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the collection of all functions f with dom(f) = X and range(f) ⊆ Y ; if |X| = �
and |Y | = �, then |XY | = ��. When the domain X is clear from the context, we
write id for the identity function, i.e., id(x) = x, for every x ∈ X.

The class of ordinal numbers will be denoted by ON. We reserve lower case
Greek letters for ordinals, with the letters �, � and � typically used in the case of
in�nite cardinals. Ordinal intervals are readily comprehensible; e.g., given � < �,
(� ; �) is the set of ordinals which lie strictly between � and �. Likewise for half {
open or closed intervals. For any well { ordered set A, ot(A) is its order { type. If
� ∈ ON, the �th aleph number is denoted either by ℵ� or by !�; ! = ℵ0 is (the
cardinality of) the set of natural numbers and c is the cardinality of the set of real
numbers R, i.e., c = |R| = |P(!)| = 2ℵ0 . Furthermore, i� will be the �th beth
number. For any in�nite ordinal �, cf(�) stands for its co�nality.

If A ⊆ ON, supA is the supremum of A (in case A is a set) and Lim(A)

is the collection of its limit points, i.e., {� : sup (A ∩ �) = �}. Given a limit
ordinal � with cf(�) > ! and some C ⊆ �, C is called club in � if supC = �
and � ∩ Lim(C) ⊆ C; C is called � - club in �, for some regular � < cf(�), if
supC = � and {� ∈ � ∩ Lim(C) : cf(�) = �} ⊆ C; a subset S ⊆ � is called
stationary in � if S ∩ C 6= ∅ for every club C ⊆ �.

We write V for the universe of the well { founded sets and L for G�odel's con-
structible universe; both are strati�ed via the usual hierarchy of V� 's (resp. L� 's).
For any x ∈ V , rank(x) is the least ordinal � for which x ∈ V�+1. If � is an in�nite
cardinal, we let H� be the collection of all sets whose transitive closure has size
less than �.

Cantor's Continuum Hypothesis will be denoted by CH and is the assertion that
c = ℵ1; its global version is the Generalized Continuum Hypothesis, denoted by
GCH, which asserts that for every ordinal �, 2ℵ� = ℵ�+1. Finally, SCH will stand
for the Singular Cardinal Hypothesis, i.e., the assertion that for every singular
cardinal �, if 2 cf(�) < � then �cf(�) = �+.

1.2 Large cardinals (you would expect)

We will be mainly interested in large cardinals which appear as the critical point of
some (non { trivial) elementary embedding; the latter will typically be of the sort
j : V −→ M , where M is a transitive class model of ZFC. The critical point in
question will be denoted by cp(j) and is the least ordinal moved by the embedding \.

Occassionally, we shall also look at \smaller" large cardinals. At any rate, most
of the notions which we use in this text are standard; we refer the reader to [28]

\ In this sense, cp(j) is the �rst ordinal to exhibit emotional sensitivity.
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and [30] for the corresponding de�nitions, characterizations and properties of large
cardinals such as: inaccessible, Mahlo, measurable, strong, superstrong, Woodin,
strongly compact, supercompact, extendible and almost huge. We now give two
less popular de�nitions, which are still interesting in their own right.

De�nition 1.1. A cardinal � is called Pn(�) -hyper{measurable , for some
n > 1 , if there exists an elementary embedding j : V −→ M , with M transitive,
cp(j) = � , �M ⊆M and V�+n ⊆M .

Clearly, for n = 1 this is equivalent to measurability. However, for n > 1 this
notion transcends measurability in consistency strength, although it is still weaker
than strongness.

The next notion is a \miniature" supercompactness one, since we only require
closure under � - sequences.

De�nition 1.2 ([26]). A cardinal � is called � - tall , for some � > � , if there
exists an elementary embedding j : V −→ M , with M transitive, cp(j) = � ,
�M ⊆ M and j(�) > � ; moreover, � is called tall if it is � - tall for every
� > � .

Tall cardinals were introduced by J.D. Hamkins. As shown in [26], tallness
embeddings can be described by extenders and, moreover, every strong cardinal
is tall. On the other hand, it is also shown that, although the existence of a
strong cardinal is equiconsistent (modulo ZFC) with the existence of a tall cardinal,
a model may be obtained in which the unique tall cardinal is also the unique
measurable.

Turning momentarily to stronger notions, we also give an important feature of
supercompact cardinals, one which deserves some special attention in light of the
material of Chapters 4 and 5.

Theorem 1.3 (Laver). If � is supercompact then there is ` ...� −→ V� such that,
for any cardinal � > � and any x ∈ H�+ , there is a � - supercompact embedding
j : V −→M for � , with j(`)(�) = x .

Such a (partial) function is called Laver function, in honour of Richard Laver
who introduced the concept and proved the previous theorem (cf. [35]). Without
loss of generality, one may assume that such a function has the following additional
properties: (i) every � ∈ dom(`) is measurable but not supercompact; (ii) for every
� ∈ dom(`), ` ′′� ⊆ V�; and (iii) given � and x as above, the � - supercompactness
embedding can be chosen so that, apart from j(`)(�) = x, it also satis�es the
condition dom(j(`)) ∩ (� ; �] = ∅.
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Finally, diverging from the realm of large cardinals which are incompatible with
V = L, we present the notion of an uplifting cardinal. This, together with its sub-
sequent properties, are all due to J.D. Hamkins and T. Johnstone who introduced
them in unpublished work (cf. [29]); they will be relevant for (some of) the results
obtained in Chapter 5.
De�nition 1.4. A regular cardinal � is called uplifting if it satis�es any of the
following equivalent conditions :

(i) There are arbitrarily large regular cardinals 
 such that H� ≺ H
.
(ii) � is inaccessible and there are arbitrarily large inaccessible cardinals 
 such

that V� ≺ V
.
Notice that if � is uplifting then this is downwards absolute to L; moreover, V�

is a Σ2 - elementary substructure of V , denoted by \V� ≺ 2 V ". In fact, there are
unboundedly many � < � with V� ≺ 2 V . For an upper bound, if � is Mahlo then
the set {� < � : V� |= “� is uplifting”} is stationary in �.
De�nition 1.5. Suppose that � is inaccessible. A function f ... � −→ V� is called
a miniature Laver function for � , if f is a de�nable class in the structure
〈V� ; ∈ 〉 and , for every x ∈ V , there exists an inaccessible cardinal 
 such that
〈V� ; ∈ ; f 〉 ≺ 〈V
 ; ∈ ; f ∗ 〉 and f ∗(�) = x , where f ∗ ... 
 −→ V
 is the corre-
sponding de�nable class of V
 , via the same de�nition.
Theorem 1.6. Assume V = L . Then, every uplifting cardinal � carries a (de-
�nable) miniature Laver function.
Proof. Fix an uplifting cardinal �. Since V = L, we have a canonical, de�nable,
global well { ordering \ C " of the universe. We now de�ne, in V�, the function
f ...� −→ V� as follows: for every � < �, if � is an inaccessible but not an uplifting
cardinal (in V�), we let

� = ot ({� < 
 < � : 
 is inaccessible and V� ≺ V
})
and then, noting that � < �, we de�ne f(�) as the �th element of the universe,
under the well { ordering \ C "; otherwise, we leave f unde�ned. It is clear that
this is a well { de�ned class function over the structure 〈V� ; ∈ 〉. We now check
that it has the desired property.

Fix x ∈ V and let � ∈ ON be such that x is the �th element of the universe,
under the well { ordering \ C ". Let � be the (� + 1)st inaccessible above � with
V� ≺ V� and let f ∗ ... � −→ V� be the corresponding class function over 〈V� ; ∈ 〉,
de�ned as above. By its de�nition and the choice of �, it is clear that f ∗(�) = x.
Note also that, since V� ≺ V�, by the de�nition of the function we have that
f ∗ � � = f and 〈V� ; ∈ ; f 〉 ≺ 〈V� ; ∈ ; f ∗ 〉 as desired. ut
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1.3 C(n) - cardinals

Given a natural number n and an ordinal �, we say that � is Σn - correct in the
universe if V� is a Σn - elementary substructure of V (denoted by \V� ≺n V ");
i.e., for every Σn - formula ' with parameters in V�,

'⇐⇒ V� |= ':

For every n, let C(n) denote the closed and unbounded proper class of ordinals
which are Σn - correct in the universe V , that is,

C(n) = {� ∈ ON : V� ≺n V }:
Obviously, � is Σn - correct if and only if it is Πn - correct. Moreover, the usual
arguments show that if � ∈ C(n), then Σn+1 - formulas (with parameters in V�) are
upwards absolute from V� to V , whereas Πn+1 - formulas (with parameters in V�)
are downwards absolute from V to V�.

In particular, C(0) = ON. On the other hand, if � ∈ C(1), then � is already an
uncountable strong limit cardinal since, for any � < �, the statement

∃ 
 ∃ f (
 ∈ ON ∧ “f : 
 −→ V� is a surjection”)

is Σ1 in the parameter V� and so it must hold in V�. Moreover, if � ∈ C(1),
we similarly have that � = i�, and then H� = V�; hence, C(1) is precisely the
class of uncountable cardinals � for which H� = V�. Unfortunately, such a local
characterization is not available for the classes C(n), when n > 1.

One can easily show that, for every n > 1, membership in C(n) is expressible by
a Πn (but not by any Σn) formula. It follows that, for every n, C(n+1) ⊂ C(n), i.e.,
the inclusion is proper. Further, the classes C(n) form a basis for the Σn - de�nable
club classes of ordinals, in the sense that, for any �xed n > 1, if D ⊆ ON is
Σn - de�nable club class then C(n) ⊆ D.

The notion of a C(n) - (large) cardinal was introduced by J. Bagaria in [5] (where
more details on related material may be found). Unless otherwise stated, the
following de�nitions and results until the end of the current section are all due to
J. Bagaria. Throughout, n stands for any �xed natural number.
De�nition 1.7. We say that a cardinal � is � -C(n) - strong , for some � > � , if
there exists an elementary embedding j : V −→M , with M transitive, cp(j) = � ,
j(�) > � , V� ⊆M and j(�) ∈ C(n) ; moreover, we say that � is C(n) - strong if
it is � -C(n) - strong for every � > � .
Proposition 1.8. Every � - strong cardinal is � -C(n) - strong. Thus, every strong
cardinal is C(n) - strong.
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De�nition 1.9. We say that a cardinal � is C(n) - superstrong if there exists
an elementary embedding j : V −→M , with M transitive, cp(j) = � , Vj(�) ⊆M
and j(�) ∈ C(n).
Proposition 1.10. Suppose that � is superstrong, witnessed by the elementary
embedding j : V −→ M . Then j(�) ∈ C(1), i.e., every superstrong cardinal is
C(1) - superstrong, witnessed by the same embedding.

For n > 1, the statements \� is � -C(n) - strong " and \� is C(n) - superstrong "
are both Σn+1 - expressible. Consequently, the statement \� is C(n) - strong " is
Πn+2 - expressible.
De�nition 1.11. We say that a cardinal � is � -C(n) - supercompact , for some
� > � , if there exists an elementary embedding j : V −→ M , with M transitive,
cp(j) = � , j(�) > � , �M ⊆ M and j(�) ∈ C(n) ; moreover, we say that � is
C(n) - supercompact if it is � -C(n) - supercompact for all � > � .

For every n > 1, the statement \� is � -C(n) - supercompact " can be seen to
be Σn+1 - expressible, e.g., using the machinery of Martin { Steel extenders; see
the Appendix for a more detailed account on such extenders. Therefore, \� is
C(n) - supercompact " is Πn+2 - expressible.
De�nition 1.12. We say that a cardinal � is � -C(n) - extendible , some � > � ,
if there is a � > � and an elementary embedding j : V� −→ V� , with cp(j) = � ,
j(�) > � and j(�) ∈ C(n) ; moreover, we say that � is C(n) - extendible if it is
� -C(n) - extendible for all � > � .
Proposition 1.13. For n > 1 , if � is C(n) - extendible then � ∈ C(n+2).

The previous proposition is of course true for n = 0 as well, in which case it is
known that if � is extendible, then actually � ∈ C(3).

A slight variation of C(n) - extendibility is given in the following.
De�nition 1.14. We say that a cardinal � is � -C(n)+ - extendible , some � > �
with � ∈ C(n), if there exists an ordinal � ∈ C(n) and an elementary embedding
j : V� −→ V� , with cp(j) = � , j(�) > � and j(�) ∈ C(n) ; moreover, we say that
� is C(n)+ - extendible if it is � -C(n)+ - extendible for all � > � with � ∈ C(n).

For every n > 1, the statements \� is � -C(n) - extendible " and \� is � -C(n)+ -
extendible " are both Σn+1 - expressible. Consequently, \� is C(n) - extendible "
and \� is C(n)+ - extendible " are both Πn+2 - expressible.

We now introduce the corresponding C(n) - versions for tall, Woodin and strongly
compact cardinals; these notions were not considered in [5], something which we
will do in Chapter 2. Evidently, the following de�nitions are in accordance with
the general spirit of [5].
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De�nition 1.15. We say that a cardinal � is � -C(n) - tall , for some � > � , if
there exists an elementary embedding j : V −→M , with M transitive, cp(j) = � ,
j(�) > � , �M ⊆M and j(�) ∈ C(n) ; moreover, we say that � is C(n) - tall if it
is � -C(n) - tall for all � > � .

Either by using ordinary extenders or, as in the case of supercompactness, by
Martin { Steel extenders, we have that for every n > 1, the statement \� is � -
C(n) - tall " is Σn+1 - expressible; thus, \� is C(n) - tall " is Πn+2 - expressible.

De�nition 1.16. We say that a cardinal � is C(n) -Woodin if for every f ∈ �� ,
there exists a � < � with f ′′� ⊆ � , and there exists an elementary embedding
j : V −→ M , with M transitive, cp(j) = � , Vj(f)(�) ⊆ M , j(�) = � and
j(�) ∈ C(n).

Observe that the above de�nition is in accordance with the local character of
Woodin cardinals, i.e., we demand that j(�) = � so that the various embeddings
may be witnessed by extenders which belong to V�. Finally, we have the following.

De�nition 1.17. We say that a cardinal � is � -C(n) - compact , some � > � , if
there exists an elementary embedding j : V −→M , with M transitive, cp(j) = � ,
j(�) ∈ C(n) and so that, for every X ⊆M with |X| 6 � , there is a Y ∈M such
that X ⊆ Y and M |= |Y | < j(�) ; moreover, we say that � is C(n) - strongly
compact if it is � -C(n) - compact for all � > � .

1.4 Forcing machinery

1.4.1 Notation and all that

Partial orders (aka posets) which are employed in forcing constructions will be
denoted by blackboard capital letters such as P, Q and R. We write p < q to
mean than p is stronger than q or, equivalently, p properly extends q. We denote
the greatest element of a poset by 1 (in particular, we always assume that a poset is
non { empty). All forcing posets are assumed to be separative; recall that this does
not disturb generality as one may replace any given poset by its (forcing equivalent)
separative quotient. Given a poset P, the P - names are indicated by \ dots" and
\checks" as usual; we sometimes supress these in order to ease readability, with
the intended meaning being clear from the context. The universe of P - names will
be denoted by V P. If ẋ is a P - name and G is a P - generic �lter (over the relevant
model), then ẋG denotes the interpretation of the name by the �lter. Moreover,
for any � ∈ ON, V [G]� = (V�)V [G] while V�[G] = {�G : � ∈ V P ∩ V�}.
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It will sometimes be convenient to work with names which are (recursively)
constructed with the aid of a 
at pairing function. Such a function f plays the rôle
of the Kuratowski pairing, with the extra property that for in�nite �, if x ; y ∈ V�
then the pair computed by f belongs to V�; that is, unlike the Kuratowski pair,
this function does not increase the rank, except for the �nite case. Flat pairing
functions are not di�cult to construct; e.g., [27] gives one such example, which
is apparently due to W.V.O. Quine. We now give a folklore result which will be
relevant in later chapters. The present proof follows [27].

Lemma 1.18. Let P be a poset with rank(P) = 
 , for some in�nite 
 , and
suppose that a 
at pairing function is used in the construction of the P - names.
Then, for any G ⊆ P - generic over V and for any � > 
 · ! , we have that
V [G]� = V�[G].

Proof. Since V�[G] ⊆ V [G]� holds for any �, we only deal with the other inclusion.
Let us �rst explicitly state what we mean by saying that a 
at pairing function
is used in the construction of the P - names. Having �xed such a function f , we
build the universe V P of P - names recursively, as follows.

We initially let V P
0 = ∅. For the successor step, given V P� for some � ∈ ON, we

let
V P�+1 = V P� ∪ P(V P� × P) ;

where we use the 
at pairing function f in order to compute (the pairs in) the
set V P� × P. For limit ordinals �, we let V P� =

⋃
�<�

V P� . Finally, the universe of the
constructed P - names is

V P =
⋃

�∈ON
V P� :

It is clear that the de�ned hierarchy is cumulative and that, for all � ∈ ON, the
set V P� consists of P - names. We now check inductively that, for every ordinal �,
V P� ⊆ V
+�.

The base and limit cases are immediate. For the successor step, suppose that
V P� ⊆ V
+� for some ordinal �. Then, by the recursive construction, for any
X ∈ V P�+1, either X ∈ V P� or X ⊆ V P� × P. In the former case we are done by the
inductive hypothesis. In the latter case, using the fact that P ⊆ V
, the inductive
hypothesis, and that the pairing function does not increase the ranks, we easily
get that X ∈ V
+�+1. This concludes the inductive veri�cation of the inclusion
V P� ⊆ V
+�.

Now �x any G ⊆ P - generic over V . We check, again inductively, that for every
� ∈ ON, V P� [G] = V [G]�.



Prelude 9

The base and limit cases are again immediate. For the successor step, suppose
that V P� [G] = V [G]�, for some ordinal �. By the inductive hypothesis and the
recursive de�nition of the universe V P,

V P�+1[G] = V [G]� ∪ {XG : X ⊆ V P� × P}:

From this and the inductive hypothesis, it follows that V P�+1[G] ⊆ V [G]�+1. For
the converse inclusion, let S ∈ V [G]�+1 \V [G]� be given. We want to �nd a name
X ∈ V P�+1 with XG = S. But since S ⊆ V [G]�, the inductive hypothesis implies
that for every z ∈ S there is a name �z ∈ V P� such that (�z)G = z. Now pick any
maximal antichain A of P and, via the use of the 
at pairing function, de�ne the
following P - name:

X =
⋃
z∈S
{�z} × A;

where notice that X ⊆ V P� ×P and thus, X ∈ V P�+1. It is straightforward to see that
the name X works, i.e., XG = S. Hence, we can conclude that V P� [G] = V [G]�,
for every � ∈ ON.

But then, combining the conclusions from the two inductive arguments which
we performed, we obtain that, for every ordinal �, V [G]� ⊆ V
+�[G]. Therefore,
since 
 + � = � for every � > 
 · !, we have that for ordinals of the latter form,
V [G]� = V�[G] as desired. ut

If P is a partial ordering on sequences indexed by ordinals and s ∈ P, we write
supp(s) for the support of s, that is, the collection {� ∈ dom(s) : s(�) 6= 1};
moreover, in the same context and for any conditions s ; t ∈ P, we say that s
is an initial segment of t, which is denoted by s v t, if t � dom(s) = s and
dom(s) = dom(t) ∩ sup{� + 1 : � ∈ dom(s)}.

For n > 1, given any poset P, any condition p ∈ P and any Σn - formula ', the
statement \ p 
 ' " is Σn - expressible using P as a parameter. This fact requires
that our model satis�es (KP and) Σn - collection along with Σn - separation; we will
remind the reader of this issue in later chapters, wherever it is relevant.

Our terminology on chain conditions and closures of posets is mostly standard.
We are explicit regarding the extent of closure of a given P by writing, for example,
\ 6� - directed closed " in order to mean that we may �nd lower bounds of directed
subsets whose cardinality is at most �. Correspondingly, the \<� " pre�x is self {
explanatory. When � = ℵ1, we follow the common practice of writing \� - closed "
instead of \< ℵ1 - closed ". Putting this terminology into action, we now give
another folklore result, this time regarding preservation of closure under sequences
in forcing extensions (see also Proposition 8.4 in [13]).
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Lemma 1.19. Let M ⊆ V be an inner model of ZFC and suppose that for some
(cardinal) � , V |= �M ⊆M . Let P ∈M be a forcing notion such that, in V , P
is either �+ - c.c. or 6� - distributive. Then, for any �lter G which is P - generic
over V , V [G] |= �M [G] ⊆M [G].

Proof. It is enough to prove the conclusion for � - sequences of ordinals. First
consider the case where the forcing P is �+ - c.c. and let G be a P - generic over V .
Fix some ordinal sequence ~x = 〈 �� : � < � 〉 ∈ �M [G] ∩ V [G] and some P - name
ẋ such that ẋG = ~x. Also, �x some condition p ∈ G which forces that ẋ is a
� - sequence of ordinals.

For each � < �, the set B� = {q 6 p : ∃ 
 (q 
 ẋ(�) = 
̌)}, i.e., the set of condi-
tions below p which decide the � th element of the sequence, is open dense below
p and thus, it contains some maximal antichain A�. By the �+ - c.c. assumption,
|A�| 6 � and so, by the closure of M in V , A� ∈M .

Moreover, since for every condition q ∈ A� there exists some ordinal 
q with
q 
 ẋ(�) = 
̌q, again by the closure of M , we get that 〈 
q : q ∈ A� 〉 ∈ M . Thus,
in M , we may apply the \ mixing lemma " (cf. Chapter VII, Lemma 8.1 in [33]) in
order to get a single name �� ∈M so that, for every q ∈ A�, q 
 ẋ(�) = ��.

Now, once more by the closure of M , we have that 〈 �� : � < � 〉 ∈M and hence
ẋG = 〈 (��)G : � < � 〉 ∈ M [G], by interpreting pointwise the names �� using the
generic. This concludes the �+ - c.c. case.

Alternatively, suppose that P is 6� - distributive and �x again a �lter G which is
P - generic over V . Then, by the usual de�ning equivalent of 6� - distributivity, no
new � - sequences of ordinals are added by the forcing. Therefore, any � - sequence
of ordinals which belongs to V [G], already belongs to the ground model V . The
conclusion now follows easily, from the assumption V |= �M ⊆ M and the fact
that M ⊆M [G]. ut

The previous lemma is very useful in situations where one starts with a ground
model embedding j : V −→ M , with M enjoying some closure under sequences
in V , and then one \ lifts" the embedding through some forcing P, obtaining a
corresponding embedding in some generic extension V [G].

In order for such a lift to be possible in the �rst place, we have the following
criterion.
Lemma 1.20 (Silver). Suppose that j : V −→ M is an elementary embedding,
with M transitive. Let P ∈ V be a poset, let G be P - generic over V and let H
be j(P) - generic over M . Then, j lifts (uniquely) to j∗ : V [G] −→ M [H] (that
is, j∗ is an elementary embedding with j∗ � V = j and j∗(G) = H) if and only
if j ′′G ⊆ H.
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As it is customary, we always use the same letter j for the lifted version of the
embedding. In practice, we often ensure that the requirement \ j ′′G ⊆ H " is
satis�ed, by exhibiting a particular condition q ∈ H with the property that q is a
lower bound for j ′′G; i.e., such that for every p ∈ G, q 6 j(p). Such a condition q
is called a master condition.

A word of caution should be added. When working in generic extensions, we
will be frequently interested in relativized notions such as, for example, the \Hℵ2 "
of the model V [G], or the \Hc " of V P. These should be written as (Hℵ2)

V [G] and
(Hc)

V P respectively, stressing the fact that the cardinals \ℵ2 " and \ c " are also
computed in the corresponding models. In spite of that, we almost always drop the
parentheses and write things like H V [G]

ℵ2
and H V P

c . Throughout, in order to avoid
ambiguities, we understand such notation by assuming that every de�ned notion is
computed in the sense of the superscript model; if the superscript is missing, then
it is understood that the computations take place in V , the �xed initial (ground)
model of the argument at hand, whatever that is.

Finally, we give a small list of some abbreviations for popular posets among set
theorists. Let � be a regular cardinal and let � be any ordinal; we then have the
following:

• Add(� ; �) is the poset consisting of partial functions p ... � × � −→ 2 where
|p| < �; the ordering is given by reversed inclusion. This poset is < � -
directed closed and (2<�)+ - c.c. Intuitively and as suggested by its name, in
the typical case in which � > � is a cardinal, this poset adds � many new
subsets to �.
One important special case is the poset Add(� ; 1) which adds a Cohen subset
to � by partial functions p ... � −→ 2 of size less than �. If � = �+, then
Add(� ; 1) forces the GCH at �, i.e., 2� = �+ holds in any generic extension.

• Col(� ; �) is the poset consisting of partial functions p...� −→ � where |p| < �;
the ordering is given by reversed inclusion. This poset is <� - directed closed
and (|�|<�)+ - c.c. Intuitively, in the typical case in which � > � is a cardinal,
this poset collapses � to have size �, in any generic extension.

• Col(� ; < �) is called the L�evy collapse and is the poset consisting of partial
functions p ... � × � −→ � where |p| < � and, for every 〈� ; � 〉 ∈ dom(p),
p(� ; �) ∈ �; the ordering is given by reversed inclusion. This poset is <� -
closed and, in the typical case in which � is inaccessible, it is also � - c.c. and
makes � equal to �+, in any generic extension.
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1.4.2 Forcing axioms

Forcing axioms are generalizations of Martin's Axiom for families of ℵ1 - many
maximal antichains (MAℵ1). Although in this section we do not aim at a thorough
treatment or full generality, we do �x a uniform notation for such axioms.
De�nition 1.21. For any (de�nable) class Γ of posets, the Forcing Axiom for
Γ, denoted by FA(Γ), is the assertion that for every Q ∈ Γ and every collection
{A� : � < !1} of maximal antichains of Q , there exists a �lter G ⊆ Q such that
G ∩ A� 6= ∅, for all � < !1.

Consequently, FA(c.c.c.) is just MAℵ1 . Note that the axiom FA(� - closed) is
provable in ZFC; in this sense it is not very interesting (but see the stronger version
below). In the current dissertation and, in particular, in Chapter 5, we will be
mainly interested in the classes of c.c.c., � - closed, proper, and, also, in the class of
stationary preserving posets, that is, posets which preserve the stationary subsets
of !1. In addition, we shall occasionally consider the case of ℵ1 - semi proper posets
as well. For the class of stationary preserving posets, we will frequently use the
abbreviation \ stat. pres.". The reader is referred to [28] for the relevant de�nitions
and the properties of all the aforementioned notions.

According to the standard set { theoretic terminology, FA(proper) is called the
Proper Forcing Axiom and is denoted by PFA; also, FA(stat. pres.) is traditionally
called Martin's Maximum and is denoted by MM. An important consequence of
these axioms is that c = ℵ2 (see Theorem 31.23 in [28]). Hence, since every c.c.c.
poset is also proper (and thus, stationary preserving as well), it follows that

MM =⇒ PFA =⇒ MA:
A natural weakening of a given forcing axiom is its so { called bounded version.
De�nition 1.22. For any (de�nable) class Γ of posets, the Bounded Forcing
Axiom for Γ, denoted by BFA(Γ), is the assertion that for every Q ∈ Γ and every
collection {A� : � < !1} of maximal antichains of the algebra B = r:o:(Q)\{0}
with |A�| 6 ℵ1 for all � < !1 , there exists a �lter G ⊆ B such that G ∩ A� 6= ∅,
for all � < !1.
Note that the requirement that each A� is an antichain of the regular open Boolean
algebra B (instead of the poset Q itself) is included in order to avoid trivialities:
if the poset Q does not have any maximal antichains of size 6 ℵ1, then the ax-
iom becomes (vacuously) true. Clearly, FA(Γ) implies BFA(Γ). Not surprisingly,
BFA(proper) is called the Bounded Proper Forcing Axiom and is denoted by BPFA,
whereas BFA(stat. pres.) is called Bounded Martin's Maximum and is denoted by
BMM. It is known that even BPFA implies c = ℵ2 (cf. [37]).
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In the other direction, two strengthenings of a given forcing axioms are the \ + "
and the \ ++ " versions.
De�nition 1.23. For any (de�nable) class Γ of posets, the Forcing Axiom+ for
Γ, denoted by FA+(Γ), is the assertion that for every Q ∈ Γ, for every collection
{A� : � < !1} of maximal antichains of Q and given any Q - name � for a
stationary subset of !1 (i.e., Q 
 “ � ⊆ !1 is stationary ”), there exists a �lter
G ⊆ Q such that G ∩ A� 6= ∅, for all � < !1 , and, moreover, so that the set
�G = {� < !1 : ∃ p ∈ G (p 
 � ∈ �)} is stationary.

FA++(Γ) is a similar axiom, where instead of a single Q - name we are given !1 -
many names {�� : � < !1} for stationary subsets of !1; we then require that G,
apart from intersecting all the A� 's, is such that �G� is stationary, for all � < !1.

The consistency of PFA++ as well as that of MM++ follows from the consistency
of the existence of a supercompact cardinal. The former was shown by J. Baum-
gartner (see Theorem 31.21 in [28]) while the latter by M. Foreman, M. Magidor
and S. Shelah (cf. [20]). Shelah has also shown that MM implies FA+(� - closed)
(the latter is frequently denoted by MA+(� - closed); see Theorem 37.26 in [28]).

We conclude this section with an important characterization, due to J. Bagaria,
of bounded forcing axioms in terms of generic absoluteness. Let Γ be any (de�n-
able) class of posets; then, we have the following.
Theorem 1.24 ([4]). BFA(Γ) holds if and only if, for every Q ∈ Γ, Hℵ2 ≺ 1 H V Q

ℵ2
.

1.5 Squares and scales

In the �nal section of this prelude, we present the basic de�nitions and properties
of square sequences and scales, which we will use in Chapter 5. Our account here
is far from complete; the interested reader is referred to the excellent exposition
given by J. Cummings, M. Foreman and M. Magidor (cf. [14]) for more details.
De�nition 1.25. Let � be an uncountable cardinal. We say that a sequence of
the form 〈C� : � ∈ Lim(�+) 〉 is a �� - sequence if the following conditions are
satis�ed for all � ∈ Lim(�+) :

(i) C� ⊆ � is a club in � .
(ii) If cf(�) < � then ot(C�) < � .

(iii) For all � ∈ Lim(C�) , C� = C� ∩ � .

For any uncountable � , we say that �� holds if there exists a �� - sequence.
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The square principle was introduced by Ronald Jensen who also showed that,
if V = L, then �� holds at every uncountable cardinal �. We remark that one
may replace condition (ii) by the (weaker) requirement that, for all � ∈ Lim(�+),
ot(C�) 6 �; then, the existence of a sequence with this weaker property implies
the existence of a �� - sequence.

Also, note that �! is not very interesting: any sequence 〈C� : � ∈ Lim(!1) 〉
with the property that, for each � ∈ Lim(!1), C� is unbounded in � and such that
ot(C�) = ! satis�es De�nition 1.25 (such a sequence is called a ladder system).

Square sequences are closely related to the phenomenon of stationary re
ection.
Given a regular uncountable cardinal � and S ⊆ � which is stationary in �, we say
that S re
ects at � < � if cf(�) > ! and S ∩ � is stationary in �. We say that
stationary re
ection holds at � if every stationary S ⊆ � re
ects at some � < �.
Finally, we say that a stationary S ⊆ � is non { re
ecting if it does not re
ect at
any � < �.

One basic application of squares is to show that stationary re
ection fails: if
�� holds and S ⊆ �+ is any given stationary subset of �+, then there exists some
stationary T ⊆ S such that T is non { re
ecting (see Theorem 2.1 in [14]).

Jensen also introduced the following weakening of �, called weak square (and
denoted by \ �∗ ").
De�nition 1.26. Let � be an uncountable cardinal. We say that a sequence of
the form 〈C� : � ∈ Lim(�+) 〉 is a �∗� - sequence if the following conditions are
satis�ed for all � ∈ Lim(�+) :

(i) C� ⊆ P(�) , 1 6 |C�| 6 � and every C ∈ C� is a club in � .
(ii) If cf(�) < � then for all C ∈ C� , ot(C) < � .

(iii) For all C ∈ C� and every � ∈ Lim(C) , C ∩ � ∈ C�.

For any uncountable � , we say that �∗� holds if there exists a �∗� - sequence.

Like for �� - sequences, one may replace condition (ii) in the previous list by
the requirement that, for all � ∈ Lim(�+) and all C ∈ C�, ot(C) 6 �. Moreover,
as explained in § 1 of [19], one may always assume that the �∗� - sequence has the
additional property that, for every � ∈ Lim(�+), there exists a C ∈ C� with
ot(C) = cf(�).

In general, one may construct a �∗� - sequence assuming �<� = �. Hence, weak
squares are more interesting in the case in which � is singular. It is known that
weak squares are not su�cient in order to get failures of stationary re
ection, as
in the case of ��.
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There are lots of other weakenings of the basic � principle; see [14] and [19] for
more information. For our purposes (cf. Chapter 5), it is the failures of these prin-
ciples which are of interest, since they provide us with consistency lower bounds.
Such failures follow either from suitable large cardinal hypotheses or from strong
forcing axioms. As an example of the former case, Solovay showed that if � is su-
percompact, then �� fails for every � > �; as an example of the latter case, Stevo
Todor�cevi�c has shown that under PFA, �� fails for every uncountable cardinal �
(see Exercise 27.3 and Theorem 31.28 in [28], respectively).

One last notion which we will use (actually, we will use the implications from
its non { existence) is that of a good scale for a singular cardinal; this was studied
by Shelah in the context of his celebrated PCF theory.

De�nition 1.27. Let � be a singular cardinal and �x some increasing sequence of
regular cardinals ~� = 〈�i : i < cf(�) 〉 with supi �i = � . We say that a sequence
of functions of the form 〈 f� : � < �+ 〉 is a �+ - scale (with respect to ~� ) if the
following conditions are satis�ed :

(i) For all � < �+, f� ∈
∏

i<cf(�)

�i .

(ii) For all � < � < �+, {i < cf(�) : f�(i) > f�(i)} is bounded in cf(�).

(iii) For every g ∈
∏

i<cf(�)

�i , there exists some � < �+ such that

{i < cf(�) : g(i) > f�(i)}

is bounded in cf(�).

Equivalently, conditions (ii) and (iii) can be stated with reference to the ideal I
of bounded subsets of cf(�). Condition (iii) is sometimes irrelevant to particular
applications and, so, some authors tend to drop it from the de�nition of a scale.
Shelah has shown that for every singular � there exists a �+ - scale (see, e.g.,
Theorem 3.53 in [16]).

De�nition 1.28. Let � be a singular cardinal and �x some increasing sequence
of regular cardinals ~� = 〈�i : i < cf(�) 〉 with supi �i = � . We say that a �+ -
scale 〈 f� : � < �+ 〉 for � is good (with respect to ~� ) if for all � < �+ with
cf(�) > cf(�) , there exists an i < cf(�) and some D ⊆ � which is unbounded
in � such that

∀ � ; 
 ∈ D ∀ j > i (� < 
 =⇒ f�(j) < f
(j)):
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For the proof of the following proposition, the approachability property (which is
denoted by AP and is a weakening of weak square) is employed; see, for example,
[14], [19] and, also, Proposition 4.52 in [16].
Proposition 1.29. For every singular � , if �∗� holds then every �+ - scale is
good.

The following is due to Shelah (see [42], or Section 4.7 in [16] for more details).
Theorem 1.30. For every singular � , if the SCH fails at � then there exists a
good �+ - scale.

Finally, let us brie
y mention that, in general, failures of square principles imply
the existence of inner models with large cardinals. Some early examples of this
situation were, on the one hand, Solovay's proof that if �!1 fails then ℵ2 is Mahlo
in L and, on the other, Jensen's proof that, for singular �, if �� fails then there is
an inner model with a strong cardinal.

As an example of more recent lower bounds, it has been shown (cf. [45]) that if ��
fails for some singular strong limit �, then the Axiom of Determinacy (AD) holds
in L(R); in particular, this implies the existence of an inner model with in�nitely
many Woodin cardinals. The interested reader may consult [38] for more results
and lower bounds in this direction.



CHAPTER 2

Elementary Chains and

C(n) - cardinals

In this chapter we focus on the various C(n) - hierarchies, obtaining several consis-
tency (upper) bounds for the cases of tallness, superstrongness, strongness, super-
compactness, and extendibility. Our general method can be roughly described as
follows.

Suppose that we are given such a C(n) - cardinal � and an elementary embedding
j : V −→ M witnessing this fact appropriately. Under the additional assumption
that the image j(�) is a regular (or even inaccessible) cardinal in V , we shall
construct various elementary chains of substructures of the model M , giving rise
to factor elementary embeddings which have analogous strength to that of the
initial j.

The aim of these constructions is to ensure that the ordinals below j(�) which
arise as images of the large cardinal � under embeddings of the sort in question, is a
su�ciently \rich" subset of j(�); e.g., stationary, � - club for some � < j(�), etc. If
j(�) is indeed an inaccessible cardinal, we then check that all the aforementioned
factor embeddings can be veri�ed inside the model Vj(�) via derived extenders
and we, consequently, obtain corresponding consistency upper bounds for each
individual C(n) - hierarchy.

We also deal with the case of C(n) - Woodin and that of C(n) - strongly compact
cardinals, characterizing each one of them in terms of its ordinary counterpart
(i.e., in terms of the usual Woodin and strongly compact cardinals, respectively).
Finally, we give connections between the notions of C(n) - supercompactness and
of C(n) - extendibility, addressing some issues which were left open in [5].

We begin our study of elementary chains and C(n) - cardinals by �rst considering
the case of tallness, where we shall describe our method in detail.

17
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2.1 Tallness

Suppose that � is � - tall for some � > � , as witnessed by the elementary em-
bedding j : V −→ M , i.e., M transitive, cp(j) = � , j(�) > � and �M ⊆ M .
Suppose that, in addition, j(�) is a regular cardinal.

We pick some limit ordinal � ∈ (� ; j(�)) and consider the following elementary
substructure:

X = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M� } ≺M:

To check that X ≺M , we use the fact that � is a limit ordinal and we verify the
Tarski { Vaught criterion. Let �(y;~v) be a formula and suppose that

M |= ∃ y �(y; j(f1)(x1); : : : ; j(fn)(xn)) ;

for some functions fi : V� −→ V with fi ∈ V and some xi ∈ V M� , for every
1 6 i 6 n . Since � is limit, x = 〈x1; : : : ; xn〉 ∈ V M� . We de�ne, in V , the
(Skolem) function g = g�;f1;:::;fn : V� −→ V in the following manner. For every
w ∈ V�,

g(w) =


\some" z s.t. �(z; f1(w1); : : : ; fn(wn)) ; if w = 〈w1; : : : ; wn〉

and such a z exists
∅ ; otherwise:

We remark that the word \some" in the above de�nition means that we pick
the existential witness in some naturally minimal manner, e.g., having �xed be-
forehand, for every � , a well { ordering C� of V�, we �rst consider the minimal
rank of such a witness z , say 
 , and then we choose the least among the various
witnesses of rank 
 using C
 .

We now apply elementarity and consider the function j(g) : V Mj(�) −→ M
evaluated at x = 〈x1; : : : ; xn〉 ∈ V M� ⊆ V Mj(�). It follows that j(g)(x) ∈ X
and M |= �(j(g)(x); j(f1)(x1); : : : ; j(fn)(xn)), which �nishes the veri�cation of
the Tarski { Vaught criterion. Notice that X is, in fact, the Skolem hull of the
range(j) together with V M� inside M , with respect to the functions of the form
f : V� −→ V .

Starting with X0 = X and �0 = � , we will recursively build, for any � < j(�),
an increasing (under ⊆) sequence of elementary substructures X� ≺ M , together
with a strictly increasing sequence of corresponding limit ordinals �� < j(�), such
that each X� is of the form

X� = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�� }:
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Our aim will be to show that, at appropriate ordinals 
 < j(�), using the \current"
substructure X
 of this chain, we can de�ne an elementary embedding j
 which
can be nicely represented and which, at the same time, witnesses � - tallness for
the cardinal � .

So let �0 = � and X0 as de�ned above. For any � + 1 < j(�), given �� and
X�, we de�ne

��+1 = sup(X� ∩ j(�)) + !
and

X�+1 = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M��+1
}:

If � < j(�) is limit and we have already de�ned �� and X� for every � < � , we
let �� = sup�<� �� and

X� =
⋃
�<�

X� = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�� };

which concludes the recursive de�nition of the elementary chain.
Remark. As it will soon become clear, the particular ordinal �0 serves the mere
purpose of initializing the construction and is not important for our arguments
towards extracting the desired embedding from the elementary chain. In fact, any
other limit ordinal greater than � would also be su�cient. In this sense, although
{ formally { our construction depends on this initial choice, we supress any further
mention to �0 in order to ease readability. In the few cases where it is needed, we
will refer to it as the \initial limit ordinal".

Moreover, for any elementary substructure which is of this particular form, i.e.,
the Skolem hull of the range of the embedding together with some set in M , we
will frequently call the latter set (in our cases, the various V M� 's) as the set of
seeds (see [23] for a general theory of seeds). This remark applies to the subsequent
sections as well. ⊥
It is clear that 〈 �� : � < 
 〉 is a continuous and strictly increasing sequence of
limit ordinals. We check inductively that, in addition, the ordinals �� are bounded
below j(�).

Claim. For every � < j(�) , �� < j(�) .

Proof of claim. The base and limit cases are immediate by choice of � = �0 and
the regularity of j(�). For the successor step, suppose that �� < j(�) for some
� < j(�). It is enough to see that |X� ∩ j(�)| < j(�), since then, as j(�) is
regular, we will have that sup(X� ∩ j(�)) < j(�) and thus, ��+1 < j(�).
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For this, note �rst that for any given ordinal � ∈ X� ∩ j(�) we have � = j(f)(x),
for some seed x ∈ V M�� and some function f ∈ V which can be assumed to be
f : V� −→ � , i.e., taking values in � . There are at most 2� many such functions
and at most |V M�� | many such seeds. But now, since j(�) is inaccessible in M
and �M ⊆ M , we have that 2� 6 (2�)M < j(�) and also |V M�� | 6 |V�� |M < j(�).
Thus, |X� ∩ j(�)| < j(�) as desired. ut

As before, since each �� is limit, X� ≺ M . Evidently, for any � < j(�),
V M�� ⊆ X�. Also, for any � < �′ < j(�), it is clear that X� ⊆ X�′ . Therefore, an
elementary chain of substructures is formed:

X0 ≺ X1 ≺ : : : ≺ X� ≺ : : : ≺M:
For any 
 < j(�) with cf(
) > � , we may consider the current substructure X
,
along with the corresponding ordinal �
, where �
 = sup�<
 �� and

X
 =
⋃
�<


X� = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�
 }:

Clearly, �
 < j(�), cf(�
) = cf(
) > � , V M�
 ⊆ X
 and X
 ≺M .
We then let �
 : X
 ∼= M
 be the Mostowski collapse and de�ne the composed

map j
 = �
 ◦ j : V −→ M
, with cp(j
) = � . This produces the following
commutative diagram of elementary embeddings:

V j
- M

M


j

?

k
 = �−1


-

We will now show that the embedding j
 witnesses the � - tallness of � .
The key observation is that, in this situation, X
 ∩ j(�) is in fact an ordinal.

To check this, let � ∈ X
 ∩ j(�) and let �′ < � . By construction, there is
some � < 
 such that � ∈ X�. Thus, again by construction, � < ��+1 and so,
�′ ∈ V M��+1

⊆ X�+1 ⊆ X
.
The reason for the fact that X
 ∩ j(�) is an ordinal, is essentialy the manner

in which we have \�lled in all the ordinal holes below j(�) " along our recursive
construction of the substructures X�. It then easily follows that

cp(k
) = j
(�) = sup(X
 ∩ j(�)) = �
 :
In fact, in such constructions, X
 ∩ j(�) is an ordinal if and only if cp(k
) = j
(�)
in which case, we call the embedding j
 an initial factor of j . Let us be slightly
more general and consider the following situation.
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Let j : V −→ M be an elementary embedding with cp(j) = � , M transitive
and suppose that X ≺M with range(j) ⊆ X, X ∩ [� ; j(�)) 6= ∅ and X ∩ j(�)
is bounded in j(�). Let � : X ∼= M0 be the Mostowski collapse and consider the
following diagram of commuting elementary embeddings:

V j
- M

M0

j0
?

k = �−1

- j0 = � ◦ j : V −→M0

with cp(j0) = �:

Observe that the imposed requirements on the substructure X ensure that j0
is well { de�ned, M0 6= V (i.e., j0 6= id ), cp(j0) = � and j0(�) < j(�). We then
introduce the following notion.
De�nition 2.1. We say that such a j0 is an initial factor of j if cp(k) = j0(�).
The following two lemmas are easily veri�ed.
Lemma 2.2. In the situation described above, j0 is an initial factor of j if and
only if X ∩ j(�) is an ordinal. In this case, j0(�) = sup(X ∩ j(�)). ut

Lemma 2.3. If j0 is an initial factor of j (via the collapse � : X ∼= M0 with
k = �−1 ), then V M0j0(�) = V Mj0(�) ⊆ range(k) and, therefore,

{j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V Mj0(�)} ⊆ range(k):
ut

Returning to our argument, we have that j
(�) = �
 > � and so, in order to
conclude that this embedding witnesses � -tallness, we only need to check that
�M
 ⊆ M
. This will essentially come from the fact that the set of seeds that
generate M
 is closed under � - sequences, a fact which, in turn, follows from
�M ⊆M and cf(
) > � . Initially, notice that

M
 = �
 ′′X
 = {j
(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�
 }:
Now suppose that {j
(f�)(x�) : � < �} ⊆ M
, where for each � < � , x� ∈ V M�

and f� ∈ V . Let us check that 〈 j
(f�)(x�) : � < � 〉 ∈M
.

For every � < � , there exists some �� < 
 such that x� ∈ V M��� and so, as
cf(
) > � , there is a � < 
 with {x� : � < �} ⊆ V M�� . Therefore, we obtain that
〈x� : � < � 〉 ∈ V M�
 ⊆M
.

It is also clear that 〈 j
(f�) : � < � 〉 = j
 (〈 f� : � < � 〉) � � ∈M
. Hence, in
M
, we can compute 〈 j
(f�)(x�) : � < � 〉 by evaluating pointwise the functions
j
(f�) 's at the corresponding x� 's. We have thus proved the following.
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Proposition 2.4. Suppose that j : V −→ M is a � -tall embedding for � , with
j(�) regular. Then, for any given (initial limit ordinal) �0 ∈ (� ; j(�)) and for
any 
 < j(�) with cf(
) > � , the embedding j
 : V −→ M
 arising from
the elementary chain construction after 
 steps as above, is an initial factor of j
witnessing the � -tallness of � . ut

One easily sees that in order to establish the closure under � - sequences for the
last proposition, the only relevant information was the fact that our initial j was
a tallness embedding (i.e., �M ⊆M) and that for the set of seeds V M�
 generating
the X
, we had that cf(
) = cf(�
) > � . Thus, we may be slightly more general
and state the following.
Corollary 2.5. Suppose that j : V −→ M is a � -tall embedding for � , with
j(�) regular. Suppose that j0 : V −→ M0

∼= X is an initial factor of j via the
Mostowski collapse of

X = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M� } ≺M;

where � ∈ (� ; j(�)) is such that cf(�) > � . Then, j0 is � -tall for � . ut

Our next aim is to consider the class of all the possible images j0(�) below
j(�), where j0 is any initial factor embedding arising from a Mostowski collapse
of some elementary substructure X ≺M of the form

X = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M� };

for some � ∈ (� ; j(�)) with cf(�) > � . We shall now show that this class is in
fact a [�+; j(�)) - club in j(�), i.e., it contains suprema of sequences whose length
is a (regular) � ∈ [�+; j(�)). Clearly, this class already contains all the images
j
(�) arising from initial factor embeddings coming from our elementary chain
construction, for various initial limit ordinals �0 ∈ (� ; j(�)) and various lengths

 < j(�) with cf(
) > � .

So suppose that � ∈ [�+; j(�)) is regular and that we have a strictly increasing
sequence 〈 j i(�) : i < � 〉 of ordinals below j(�) where, for all i < � , there is some
ordinal �i ∈ (� ; j(�)) with cf(�i) > � , so that the embedding j i : V −→ M i is
an initial factor of j arising via the collapse �i of the substructure

X i = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�i } ≺M:

Recall that, in such a case, X i ∩ j(�) is an ordinal and, therefore, we have that
j i(�) = sup(X i ∩ j(�)). It is important to point out that, just from the knowledge
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that j i comes from the collapse of X i, we may only conclude that j i(�) > �i .
On the other hand, it follows from Lemma 2.3 that, in fact,

{j(f)(x) : f ∈ V; x ∈ V Mj i(�)} = {j(f)(x) : f ∈ V; x ∈ V M�i }

and thus, we may as well assume that j i(�) = �i , for every i < � . Hence, for any
i < ` < � , X i ⊆ X` which, in turn, gives that X i ≺ X` and so, an elementary
chain is formed. We may now let �� = supi<� �i and

X� =
⋃
i<�

X i = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M�� } ≺M:

Obviously, �� < j(�) and cf(��) = � > � . Let �� : X� ∼= M� be the Mostowski
collapse and let j� = �� ◦ j : V −→ M� with cp(j�) = � be the composed
embedding, which forms a commutative diagram as usual. We now have that
X� ∩ j(�) is an ordinal and then

j�(�) = sup(X� ∩ j(�)) = supi<� �i = supi<� j i(�) ;

which shows the desired closure. Clearly, j�(�) < j(�) and, consequently, by
Corollary 2.5, j� is � -tall for � .

Finally, it is also obvious from our construction that the various images j0(�) of
initial factor � - tall embeddings are unbounded in j(�) (by choosing a su�ciently
large initial limit ordinal �0).

By our discussion so far and by the trivial fact that any � - tall embedding is
actually < j(�) - tall (i.e., is � -tall for every � < j(�)), we can conclude the
following.
Proposition 2.6. Suppose that j : V −→M witnesses the � -tallness of � , with
j(�) regular. Then, the collection

D = {h(�) < j(�) : h is � - tall for �; for some � < j(�)}

contains a [�+; j(�)) - club. ut

Next, we deal with the de�nability of this collection D of images, inside Vj(�).
Given any � - tall initial factor embedding j0 : V −→M0, where

M0
∼= X = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M� } ≺M;

for some � ∈ (� ; j(�)) and some ordinal � < j(�) with cf(�) > � , as we have
already remarked, we may assume that j0(�) = � . Naturally, we may extract
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from it the (�; j0(�)) - extender E and construct the corresponding embedding
jE : V −→ME with cp(jE) = � and jE(�) = j0(�). We will then have that

ME = {jE(f)(x) : f ∈ V; f : V� −→ V; x ∈ V M0j0(�)}

and, also, V M0j0(�) = V MEjE(�) . Furthermore M0 |= cf(j0(�)) > � , a fact which is
computed correctly since �M0 ⊆ M0. This means that the set of seeds V M0j0(�)

(which generate ME) is closed under � - sequences and so, by arguments which we
have already described, it follows that �ME ⊆ ME, i.e., jE witnesses � - tallness
as well.

Actually more is true as, in such a case, M0 = ME. This follows from the
general fact that, when we construct the model ME from the (�; j(�)) - extender
E which is derived from an ambient embedding j : V −→ M , then, considering
the corresponding commutative diagram of j , jE and kE , we have that

range(kE) = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V Mj(�)}:
Hence, in our case, we get that kE = id and so, it indeed follows that M0 = ME.

The above observations show that any � - tall initial factor embedding j0 can be
taken to be an extender embedding, still witnessing the � - tallness of � . Notice
that all these extenders belong to Vj(�).

Now, if we strengthen the regularity assumption by requiring that j(�) is an
inaccessible, then, in the ZFC model Vj(�), we have that for any such extender
E coming from a j0, Vj(�) |= \ jE is � - tall for � ". This follows from the inac-
cessibility of j(�) and the usual representation of the extender model ME; these
facts enable Vj(�) to compute \enough" of jE and ME in order to verify that
jE(�) = j0(�) and �ME ⊆ME.

We may thus conclude that, apart from the fact that Vj(�) |= \� is tall ", we
also have that the collection
C tall = {hE(�) < j(�) : hE is � - tall extender embedding, for some � < j(�)};

which is a class in j(�), is a subclass of D , is de�nable in Vj(�) and, moreover,
it contains a [�+; j(�)) - club (in particular, C tall is stationary in j(�)). Also,
again by inaccessibility, for each n ∈ ! , we have a club C(n)j(�) ⊆ j(�), consisting
of all ordinals below j(�) which are Σn - correct in the sense of Vj(�). Hence,
C(n)j(�) ∩ C tall 6= ∅, for every n ∈ ! .

Putting everything together, we have shown the following.
Theorem 2.7. Suppose that, for some � > � , the embedding j : V −→ M
witnesses the � -tallness of � , with j(�) inaccessible. Then, for every n ∈ ! ,
Vj(�) |= \� is C(n) - tall " . ut
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Remark. Observe that we could have assumed that j(�) is inaccessible, right at
the beginning of the section, without any change in the construction of the chains.
The reason we chose not to is two { fold; on the one hand, we wanted to present
the construction under the minimal assumptions and this is accomplished by just
requiring the regularity of j(�). On the other hand, the inaccessibility becomes
important when we want to have consistency results as the one in the previous
theorem, since it guarrantees that Vj(�) is a ZFC model (with its own version of
Σn - correct ordinals).

Since the following sections will have a similar structure when dealing with
other C(n) - cardinals, we shall follow the same presentation style and just assume
regularity of j(�) for the construction of the corresponding elementary chains. We
will then employ the inaccessibility assumption, only when we come to conclude
some consistency result, as the one above.

We also address a subtle issue regarding the conclusion of the Theorem 2.7. By
Tarski's result regarding the unde�nability of truth, there is no formula �(n; �)

with \�(n; �) ←→ � ∈ C(n) ". Hence, as far as satisfaction of formulas in class
models is concerned, we are only able to express such a conclusion in terms of
an appropriate schema of countably { many formulas: we augment our (standard
set { theoretic) language by introducing a constant symbol k, i.e., we consider the
language L∗ = {∈ ; k}, and we then let TALL be the countable schema of L∗ -
formulas �n, where for every (meta) n ∈ N, the formula �n asserts that \k is
C(n) - tall ". In such a case, and for any (de�nable) non { empty class X and any
z ∈ X, a satisfaction statement of the sort \ 〈X ; ∈ ; z 〉 |= TALL " just means that
for any particular (meta) n, we have that 〈X ; ∈ ; z 〉 |= �n, where the constant k
is interpreted as z.

On the other hand, in our situation, we are interested in satisfaction for set
models; given the � - tallness embedding j with j(�) inaccessible, we may actually
prove in ZFC that for every n ∈ ! ,

Vj(�) |= \� is C(n) - tall "
(which is essentially what we just showed in Theorem 2.7). Even so, the countable
schema TALL should not be discarded altogether, as it is relevant when one enquires
issues related to consistency strength. This remark also applies to the subsequent
sections of the current chapter, where corresponding countable schemata will also
be considered. ⊥

After these clari�cations, we point out that Theorem 2.7 certainly gives an upper
bound on the consistency strength of the theory ZFC+TALL, as the latter holds
in 〈Vj(�) ; ∈ ; � 〉, with k interpreted as � . In turn, it gives rise to the following
natural question(s).
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Question 2.8. What is the consistency strength of the statement \there is a �
such that, for some � > � , � is � - tall with j(�) regular/inaccessible" ?

An upper bound is the existence of an almost huge cardinal � (since the image
j(�) of such an embedding is inaccessible). Still, one can do better and require that
� is 1 - extendible, which is a strictly weaker notion than that of almost hugeness:
it is well { known that if � is 2� - supercompact, then there exists a normal U on
� so that {� < � : � is 1 - extendible} ∈ U (see, e.g., Exercise 23.5 in [30]).

As we shall see in the sections to follow, 1 - extendibility is an adequate upper
bound for results concerning both the case of superstrongness and that of strong-
ness. On the other hand, for supercompactness (and extendibility), it seems as if
one cannot avoid requiring the existence of an almost huge cardinal, although the
exact bounds are not known.

Having dealt with the case of tallness, all the essential features of our method-
ology have (hopefully) become apparent. We now proceed with the cases of su-
perstrong and of strong cardinals and, also, later on in this chapter, with those
of supercompactness and of extendibility. Since many of the constructions will be
analogous in spirit, we shall skip several details and refer to previously established
facts when needed.

2.2 Superstrongness

Suppose that � is a superstrong cardinal and let j : V −→ M be a witnessing
embedding, i.e., M transitive, cp(j) = � and Vj(�) ⊆ M . In addition, suppose
that j(�) is regular. Bear in mind that, in such a case, this is actually equivalent
to requiring that j(�) is inaccessible, since superstrongness already implies that
j(�) ∈ C(1) (cf. Proposition 1.10). We can thus forget about this distinction in
the current section and assume, throughout, that j(�) is inaccessible.

We �x an initial limit ordinal �0 ∈ (� ; j(�)) and we recursively construct an
elementary chain of substructures of M , starting with seeds in V�0 (note that
since Vj(�) ⊆ M , the superscript \M " may be dropped from the sets of seeds).
Our aim is to extract an appropriate superstrong initial factor embedding j
 from
the constructed chain. One important di�erence is that in this case, as opposed
to the case of tallness, the ordinal length 
 < j(�) at which we take the collapse
of the current substructure can be any limit ordinal below j(�) (i.e., it can even
be !). The reason is that we are not interested in closure under sequences for the
initial factor embedding j
.
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We start with the chosen limit ordinal �0 and we let

X0 = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V�0} ≺M:

For any � + 1 < j(�) , given �� and X�, we let

��+1 = sup(X� ∩ j(�)) + !

and
X�+1 = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V��+1

}:
If � < j(�) is limit and we have already de�ned �� and X� for every � < � , we
let again �� = sup�<� �� and

X� =
⋃
�<�

X� = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V��};

which concludes the recursive de�nition of the elementary chain.
The regularity of j(�) implies that �� < j(�), for all � < j(�). At any limit

ordinal 
 < j(�), we consider the substructure X
 and we let �
 : X
 ∼= M

be the Mostowski collapse. We let j
 = �
 ◦ j : V −→ M
 be the composed
map with cp(j
) = � , producing a commutative diagram of embeddings (where
k
 = �−1
 : M
 −→M).

Once again, one easily checks that X
 ∩ j(�) is an ordinal which implies that
j
 is indeed an initial factor of j and that

cp(k
) = j
(�) = sup(X
 ∩ j(�)) = sup�<
 �� = �
:

Therefore, Vj
(�) ⊆M
 and we have just shown the following.
Proposition 2.9. Suppose that j : V −→ M is superstrong for � , with j(�)
inaccessible. Then, for each (initial limit ordinal) �0 ∈ (� ; j(�)) and any limit

 < j(�) , the embedding j
 : V −→ M
 arising from the elementary chain
construction as above, is an initial factor of j and is superstrong for � . ut

Note again that, for any initial �0, this procedure gives a strictly increasing
and continuous sequence of ordinals 〈 �� : � < j(�) 〉 below j(�), all of which
are images of � under initial factor superstrongness embeddings. As one might
already expect, this collection of images is a (full) club in j(�).
Corollary 2.10. Suppose that j : V −→ M is superstrong for � , with j(�)
inaccessible. Then, the collection D = {h(�) < j(�) : h is superstrong for �}
contains a club.
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Proof. We show that the collection of images j0(�) under initial factor superstrong
embeddings arising as above, is a club contained in D. Unboundedness is immedi-
ate from our construction. To check closure, let � < j(�) be regular and suppose
that we have a sequence 〈 j i(�) : i < � 〉 where, for each i < � , j i : V −→M i is
a superstrong initial factor of j arising via the Mostowski collapse �i of

X i = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V�i} ≺M;

for some �i < j(�) with j i(�) = �i (this can be assumed without loss of generality,
using Lemma 2.3). We then let �� = supi<� �i < j(�) and

X� =
⋃
i<�

X i = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V��} ≺M:

If we now consider the Mostowski collapse �� : X� ∼= M� and de�ne j� = �� ◦ j ,
one easily veri�es that the embedding j� is a superstrong initial factor of j with
j�(�) = �� = supi<� j i(�). ut

Exactly as in the case of tallness, for each superstrong initial factor embedding
j0 : V −→ M0, the derived (�; j0(�)) - extender E belongs to Vj(�) and then,
the corresponding extender embedding jE : V −→ ME is superstrong for � .
Moreover, one can again check that, in fact, M0 = ME. Finally, by inaccessibility,
Vj(�) |= \ jE is superstrong for � " for any such extender and so, in particular,
Vj(�) |= \� is superstrong ". This means that the collection

C superstrong = {hE(�) < j(�) : hE is a superstrong extender embedding for �};

is contained in D, is a de�nable class of Vj(�) and contains a club. Then, by
considering the clubs C(n)j(�) ⊆ j(�) consisting of all ordinals below j(�) which are
Σn - correct in the sense of Vj(�), we get the following theorem.
Theorem 2.11. Suppose that j : V −→ M is superstrong for � , with j(�)
inaccessible. Then, for every n ∈ ! , Vj(�) |= \� is C(n) - superstrong ". ut

This theorem gives an upper bound on the consistency strength of the schema
SUPERSTRONG, which is a schema of countably { many {∈ ; k} - formulas �n,
with each �n asserting that \k is C(n) - superstrong ". On the other hand, for
any �xed n, by Proposition 2.4 in [5], if we assume that there is a � which is
2� - supercompact and with � ∈ C(n), we then get the existence of many C(n) -
superstrong cardinals below � .

Recall that if � is 1 - extendible, then it is superstrong (see, for example, Propo-
sition 26.11 in [30]). In fact, the same proof actually shows that � is superstrong
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with inaccessible target and, moreover, there is a normal ultra�lter U on � so
that

{� < � : � is superstrong with inaccessible target} ∈ U:
Since � being 2� - supercompact implies the existence of many cardinals below �
which are 1 - extendible, the following corollary is an improvement of the aforemen-
tioned consistency bound established in [5] (although it is not a direct implication
as in [5]).
Corollary 2.12. If � is 1 - extendible then there exists a normal ultra�lter U

on � , such that {� < � : ∀n ∈ ! (V� |= \� is C(n) - superstrong ")} ∈ U. In
particular, if the theory ZFC + \∃� (� is 1 - extendible)" is consistent, then so is
the theory ZFC + SUPERSTRONG.

Proof. Suppose that � is 1 - extendible as witnessed by j : V�+1 −→ Vj(�)+1. If we
derive the (�; j(�)) - extender E from j and consider the corresponding extender
embedding jE : V −→ME, then standard arguments show that jE is superstrong
for � with jE(�) = j(�) and, furthermore,

Vj(�)+1 |= \ jE is superstrong for � with inaccessible target jE(�) = j(�) "
(where note that E ∈ Vj(�)+1).

Also, C superstrong, the de�nable stationary subclass of j(�) which was mentioned
above, belongs to Vj(�)+1. Additionally, for every n ∈ ! , we may consider the club
class C(n)j(�) ⊆ j(�) consisting of the ordinals that are Σn - correct in Vj(�); clearly,
C(n)j(�) ∈ Vj(�)+1 as well. Of course, since P(j(�)) ⊆ Vj(�)+1, the latter veri�es the
fact that C superstrong is stationary in j(�). Thus, for every n ∈ ! ,

Vj(�)+1 |= ∃ (�; �) - extender E ∈ Vj(�); for some � < j(�); such that
Vj(�) |= \ jE is superstrong for � and jE(�) ∈ C(n) ":

That is, for every n ∈ ! ,
Vj(�) |= \� is C(n) - superstrong ":

Now, if we de�ne the normal ultra�lter U on � derived from the initial embedding
j , it then follows that, for every n ∈ ! ,

{� < � : V� |= \� is C(n) - superstrong "} ∈ U:
Finally, intersecting all these countably { many sets, by the completeness of U, we
get that

{� < � : ∀n ∈ ! (V� |= \� is C(n) - superstrong ")} ∈ U:
ut
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We observe that in the previous proof, since � is itself inaccessible, we may \cut
o� " the universe at V� to get a model of ZFC+SUPERSTRONG in which there
is actually a proper class of � 's that satisfy the schema SUPERSTRONG.

Let us also make a remark on the connection between the case of superstrongness
and that of tallness. Notice that if j : V −→ M is superstrong for � , we may
as well assume that j = jE, i.e., it is an extender superstrong embedding with
M = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ Vj(�)}. So, if j(�) is also regular (and
thus, inaccessible), then the same embedding witnesses < j(�) - tallness for � .

Thus, everything we did for tallness can be entirely done under the context of a
superstrong embedding with regular (inaccessible) target. We can therefore state
the following, which immediately follows from Theorem 2.7.
Corollary 2.13. Suppose that j : V −→ M is superstrong for � , with j(�)
inaccessible. Then, for every n ∈ ! , Vj(�) |= \� is C(n) - tall " . ut

Consequently, 1 - extendibility is an adequate (consistency) upper bound both
for the schema TALL and for the schema SUPERSTRONG. Finally, let us conclude
this section by stating the following curiosity.
Proposition 2.14. If � is 1 - extendible, then there is a normal measure U on
� so that {� < � : � is superstrong with measurable target} ∈ U.
Proof. Let j : V�+1 −→ Vj(�)+1 witness the 1 - extendibility of � and let U be
the usual normal ultra�lter derived from j . As in the proof of Corollary 2.12,
we may derive the (�; j(�)) - extender E from the extendibility embedding and
then consider the map jE which is superstrong for � , with inaccessible target
jE(�) = j(�).

We now restrict our attention to VjE(�) = Vj(�), inside which we do our construc-
tion in order to produce the club sequence 〈 �� : � < j(�) 〉 of images of initial
factor superstrong embeddings. Recall that all these are witnessed by extenders
in Vj(�). Moreover, recall that {� < � : � is measurable} ∈ U and, therefore,
{� < j(�) : � is measurable} is a subset of j(�) which is stationary in the sense
of Vj(�)+1. But since P(j(�)) ⊆ Vj(�)+1, this is computed correctly and thus there
is some superstrong initial factor embedding j� with j�(�) being measurable.
Then, as witnessed by this particular (extender of) j�,

Vj(�) |= \� is superstrong with measurable target "
and it now follows that

{� < � : � is superstrong with measurable target} ∈ U:
ut
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As a �nal comment, let us point out that in Proposition 2.14 one may replace
measurability by other (local) notions which follow from 1 - extendibility. For ex-
ample, we may require that the image of the superstrong embeddings is Woodin:
if � is 1 - extendible, then we know that it is superstrong and, moreover, the set
{� < � : � is Woodin} belongs to the normal measure U. In fact, we may even
require that such images are measurable Woodin cardinals, measurable Woodins
limits of Woodins, etc.

2.3 Strongness

Suppose that � is � - strong, for some limit � > � , as witnessed by the embedding
j : V −→ M , i.e., M transitive, cp(j) = � , j(�) > � and V� ⊆ M . In addition,
suppose that j(�) is regular.

We shall apply the same ideas in order to build an elementary chain of sub-
structures of M and then produce a � - strong factor embedding from it. Two
remarks are in order here. First, since { as in the case of superstrongness { we are
not interested in closure under sequences for the factor embedding, the length at
which we take collapses can be any limit ordinal 
 < j(�).

Additionally, since the crucial requirement for � - strongness is \V� ⊆ M ", we
will start our chain by just \throwing in" all the seeds from V�, i.e., we let �0 = �
and de�ne our �rst elementary substructure as

X0 = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V�0} ≺M:
From that point on, there two ways to proceed. One can either consider only
ordinal seeds, i.e., for appropriate limit ordinals (see below) �� ∈ (� ; j(�)), we
take substructures of the form

X� = {j(f)(�) : f ∈ V; f : � −→ V; � < ��} ≺M
(note the modi�cation in the domain of the functions).

Alternatively, we might as well proceed with the rest of the chain by just con-
tinuing in the usual manner, using seeds x from V M�� for � > 0 (where the �� 's
are de�ned as in the case of superstrongness). That would do as well, resulting in
the desired � - strong initial factor embedding after 
 steps, for any limit ordinal

 < j(�). In this case, there is really not much more to say, as the construction
and the subsequent results are totally parallel to the case of superstrongness (in
particular, we will get a full club contained in the collection of images h(�) < j(�),
where h is a � - strong embedding for �).

Here, we take the �rst approach and use ordinal seeds; we do this for complete-
ness of all the ideas developed so far. Although, intuitively, the idea of just using
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ordinal seeds once we have thrown in the whole V� seems quite clear, there are
some �ne points related to the fact that the ordinals used have to be closed un-
der G�odel pairing in order for the substructures to be elementary in M . For this
reason, we referred to them earlier as \appropriate limit ordinals".

Recall that the G�odel pairing function � : ON × ON −→ ON is ∆1 and
has, thus, absolute evaluation between transitive models. In particular, transitive
models agree on whether a given ordinal is closed under �. Also, recall that given
any ordinal � , we may �nd an ordinal � > � closed under �, by constructing an
appropriate ! - sequence of ordinals greater than � , the limit of which is going to
be the desired � . Finally, recall that this procedure does not increase the ordinals
\ too much", in the sense that for any � , sup(� ′′(�× �)) 6 !�. This will ensure
that all ordinals closed under G�odel pairing which we will consider, are bounded
below the regular cardinal j(�).

Let us start our elementary chain by the already de�ned X0 ≺ M and with
�0 = � . Although the sequence of the �� 's for � > 1 will be de�ned recursively
in a uniform manner, �1 will be special because it will have to make sure that
X0 �ts well into the rest of the chain, i.e., X0 is included in all the subsequent
substructures, although these will come just from ordinal seeds.

So, let �1 be the least limit ordinal closed under � above |V�|M . Noting that
V� ⊆ M and thus, |V�| 6 |V�|M < j(�), our remarks on � ensure that indeed
�1 < j(�). Then, let

X1 = {j(f)(�) : f ∈ V; f : � −→ V; � < �1} ≺M:
From this point on, we proceed recursively as follows. Given �� < j(�) and X�
for some 1 6 � < j(�), we let ��+1 be the least limit ordinal closed under � above
sup(X� ∩ j(�)) and we then let

X�+1 = {j(f)(�) : f ∈ V; f : � −→ V; � < ��+1} ≺M:
If � < j(�) is limit and we have already de�ned �� and X� for every � < � , we
let again �� = sup�<� �� and

X� =
⋃
�<�

X� = {j(f)(�) : f ∈ V; f : � −→ V; � < ��}:

This concludes the recursive de�nition of the elementary chain. Let us �rst check
that the generated ordinals stay bounded below j(�).
Claim. For every � > 1 , �� < j(�).
Proof of claim. We proceed inductively noting that we have already seen that
�1 < j(�). Also, the limit case follows from regularity of j(�). So suppose that for
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some � > 1 , we have that �� < j(�). Let us �rst check that |X� ∩ j(�)| < j(�).
But this follows, as before, by a counting argument noting that �2 ⊆M and thus,
2� 6 (2�)M < j(�), from which we get |X� ∩ j(�)| < j(�) again by the regularity
of j(�). Hence, sup(X� ∩ j(�)) < j(�) and, then, by our remarks on ordinals
closed under �, we get that ��+1 < j(�). ut

Furthermore, we need to check that the �rst substructure of the chain (gener-
ated by seeds in V�) �ts coherently with the rest of the substructures, which are
generated just from ordinal seeds.

Claim. X0 ⊆ X1.

Proof of claim. Fix a bijection � : � −→ V� with the property that, for every
� < � , � � |V�| : |V�| −→ V� is also a bijection (this can be constructed recursively
using the inaccessibility of �). Now suppose that we are given some element
z = j(f)(x) ∈ X0, where f : V� −→ V is a function in V and x ∈ V�.

De�ne the function g = f ◦ � : � −→ V (g ∈ V ) and let � = (j(�))−1(x). By
elementarity, the bijective function j(�) : j(�) −→ V Mj(�) has the property that
j(�) � |V�|M : |V�|M −→ V� is also a bijection, since � < j(�). Thus, as x ∈ V�,
it follows that (j(�))−1(x) =

(j(�) � |V�|M
)−1

(x) ∈ |V�|M < �1 , i.e., we have just
shown that � < �1 . But then, by elementarity,

j(g)(�) = j(f) (j(�)(�)) = j(f)
(j(�)((j(�))−1(x))) = j(f)(x) = z ;

which means that z ∈ X1, completing the argument. ut

Having established these facts, it follows that the de�ned X� 's indeed form an
increasing (under ⊆) elementary chain in M and so, at any limit 
 < j(�) we
may consider the current substructure X
 of which we take the Mostowski collapse
�
 : X
 ∼= M
. We then de�ne the composed map j
 = �
 ◦ j : V −→ M
 with
cp(j
) = � , producing a commutative diagram of elementary embeddings (with
k
 = �−1
 ), where �
 = sup�<
 �� and

X
 = {j(f)(�) : f ∈ V; f : � −→ V; � < �
} ≺M:

By the regularity of j(�), we get that �
 < j(�); moreover, one again checks that
X
 ∩ j(�) is an ordinal, which in turn implies that j
 is indeed an initial factor
of j and then

cp(k
) = j
(�) = sup(X
 ∩ j(�)) = sup�<
 �� = �
 > � :

Clearly, V� ⊆M
 and we have just shown the following.
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Proposition 2.15. Suppose that j : V −→ M is � - strong for � , for some
limit � > � , with j(�) regular. Then, for any limit 
 < j(�), the embedding
j
 : V −→M
 arising from the chain construction as above, is a � - strong initial
factor of j. ut

As in the superstrongness case, this procedure results in a collection of images
j0(�) of � - strong initial factor embeddings, which contains a club.
Corollary 2.16. Suppose that j : V −→ M is � - strong for � , for some limit
� > � , with j(�) regular. Then, D = {h(�) < j(�) : h is � - strong for �}
contains a club. ut

Moreover, for each � - strong initial factor j0 : V −→M0, the derived (�; j0(�)) -
extender E belongs to Vj(�) and, also, one easily checks that the correspond-
ing extender embedding jE : V −→ ME is � - strong for � . Hence, using
the fact that j(�) is regular and above all the relevant information, we get
that Vj(�) |= \jE is � - strong for �" and so, in particular, we also have that
Vj(�) |= \� is � - strong". This means that

C� - strong = {hE(�) < j(�) : hE is a � - strong extender embedding for �};
is a de�nable class of Vj(�) which contains a club.

If, in addition, we had assumed that j(�) is inaccessible, then we would also get
that, for every n ∈ ! , Vj(�) |= “� is � -C(n) - strong”. Furthermore, as in the cases
of tallness and of superstrongness, 1 - extendibility is an adequate (consistency)
upper bound for the schema STRONG asserting full C(n) - strongness, for every n.

Such a conclusion is hardly surprising in the light of Proposition 1.8, which
asserts that every � - strong cardinal is actually � -C(n) - strong; this was obtained
in [5] by the method of iterated ultrapowers.

Let us now discuss how the latter method makes the notions of Woodin and of
strongly compact cardinals �t into the general context of the C(n) - hierarchies.

2.4 Woodinness and Strong Compactness

This section can be thought of as methodologically parenthetical, in the sense
that no elementary chain constructions are present here. Nevertheless, we treat
the C(n) - versions of Woodin and strongly compact cardinals together, for two
reasons.

Firstly, they were not considered in [5] where the rest of the C(n) - cardinals were
introduced; but most importantly, because they both admit similar constructions
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using the technique of iterated ultrapowers, which completely describe their con-
nection with the notions of Woodin and strongly compact cardinals, respectively.

2.4.1 C(n) -Woodins

We start by recalling our De�nition 1.16 of a C(n) - Woodin cardinal.
A cardinal � is called C(n) -Woodin if for every f ∈ ��, there is a � < � with

f ′′� ⊆ � , and there is an elementary embedding j : V −→M , with M transitive,
cp(j) = � , Vj(f)(�) ⊆M , j(�) = � and j(�) ∈ C(n).

It is not di�cult to check that, given a cardinal � and some n, the statement \ �
is C(n) - Woodin " is absolute for any V� ′ with � ′ > � and � ′ ∈ C(n), i.e., for such
a cardinal � ′, V� ′ |= “ � is C(n) - Woodin ” if and only if � is indeed C(n) - Woodin.
Notice also that if the cardinal � is C(n) - Woodin then (� is of course Woodin
and) � ∈ Lim(C(n)). As we shall soon see, this is no coincidence.

With these comments in mind, we now show that C(n) - Woodins form a large
cardinal hierarchy of increasing strength.
Lemma 2.17. For n > 1 , if � is C(n+1) -Woodin then there are unboundedly
many C(n) -Woodins below �. Hence, if � is the least C(n) -Woodin then it is not
C(n+1) -Woodin.

Proof. Fix some n > 1 and suppose that � is C(n+1) - Woodin. We further �x an
� < � and we want to �nd some C(n) - Woodin cardinal between � and �.

Let f ∈ �� be such that f ′′� ∩ � = ∅ and let � < � and j : V −→M witness
C(n+1) - Woodinness with respect to f , i.e., f ′′� ⊆ � , cp(j) = � , Vj(f)(�) ⊆ M ,
j(�) = � and j(�) ∈ C(n+1). Clearly, � < � < j(�) < � and, moreover, the
following is a true Σn+1 - statement in the parameter � :

∃ � ′ (� ′ ∈ C(n) ∧ V� ′ |= “∃ some C(n) - Woodin above � ”);
since it holds for any � ′ ∈ C(n) above �. Therefore, it must hold in Vj(�), i.e.,
there is some � ′ < j(�) so that

Vj(�) |= (� ′ ∈ C(n) ∧ V� ′ |= “∃ some C(n) - Woodin above � ”):
But now, since j(�) ∈ C(n+1), we indeed have that � ′ ∈ C(n) and then, clearly,
V� ′ |= “∃ some C(n) - Woodin above � ”. If � ∈ V� ′ is a witness to the latter
statement, then by our earlier remarks it follows that � is a C(n) - Woodin cardinal
above � . ut

The reader might have noticed that the case n = 0 is conspicuously missing from
Lemma 2.17. The following proposition explains why.
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Proposition 2.18. If � is Woodin then it is C(1) -Woodin.

Proof. Suppose that � is Woodin and �x some function f ∈ ��. We further �x
� < � with f ′′� ⊆ � and a (�; �) - extender E ∈ V� (for some � < �), such that
j = jE : V −→ME has cp(j) = � , � 6 j(�) < �, j(�) = � and Vj(f)(�) ⊆ME.

We shall �nd an elementary embedding i : V −→ M ′ (some transitive M ′)
so that cp(i) = � , i still witnesses Woodinnes for � with respect to the given
function and, moreover, i(�) < � , i(�) = � and i(�) ∈ C(1). For this, we use
iterated ultrapowers.

We work in ME. Since j(�) is measurable, let U ∈ ME be a normal, j(�) -
complete measure on j(�) and let jU : ME −→M be the ultrapower embedding
with critical point j(�). Then, 2j(�) < jU(j(�)) < (

2j(�)
)+ < �, where the last

inequality comes from j(�) < � = j(�) and the fact that � is inaccessible.
Now let � ∈ (jU(j(�)) ; �) be a true C(1) - cardinal above (

2j(�)
)ME (that is,

� is C(1) in V ). Still working in ME, we now iterate the map jU � - many
times and let j� : ME −→ M� ∼= Ult(ME;U�) be the resulting embedding. By
standard facts regarding such iterations, we get that cp(j�) = j(�), V MEj(�) ⊆ M�,
j�(j(�)) = � , j�(�) = � (see Corollary 19.7 in [30]) and the iterates are well {
founded, so M� is (taken to be) transitive. We then let i = j� ◦ j : V −→M� be
the composed elementary embedding with cp(i) = � , i(�) = j�(j(�)) = � ∈ C(1)

and i(�) = �. It remains to see that i indeed witnesses Woodinness for � with
respect to the given function f .

For this, observe that i(f)(�) = j�(j(f))(�) = j�(j(f))(j�(�)) = j�(j(f)(�)).
But since j(f)(�) < j(�) (which follows from the fact that f ′′� ⊆ �) we get that
i(f)(�) = j(f)(�) and, therefore, Vi(f)(�) ⊆ M�, since V MEj(�) ⊆ M�, for all � 6 �
along the iteration. ut

A straightforward modi�cation of the previous proof gives the following.
Corollary 2.19. If � is Woodin and � ∈ Lim(C(n)), then � is C(n) -Woodin. ut

Let us point out that this last corollary, together with the discussion before
Lemma 2.17, jointly provide us with a characterization of C(n) - Woodin cardinals.
In fact, we shall give several equivalent formulations of C(n) - Woodinness; before
that, though, one more de�nition is in order. As usual, n stands for any natural
number.
De�nition 2.20. Let � be a cardinal, let � > � , and let A be any set. We say
that � is � -C(n) - strong for A if there is an elementary embedding j : V −→M
with M transitive, such that cp(j) = � , � < j(�), V� ⊆M , A ∩ V� = j(A) ∩ V�
and j(�) ∈ C(n).
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We are now ready for the next theorem which is based upon, and analogue to
Woodin's original result (see Theorem 26.14 in [30]).
Theorem 2.21. The following are equivalent :

(i) � is a C(n) -Woodin cardinal.
(ii) � is Woodin and � ∈ Lim(C(n)).

(iii) For every A ⊆ V�, the set
S (n)A = {� < � : � is 
 -C(n) - strong for A, for every 
 < �}

is stationary in �.
(iv) For every f ∈ ��, there is a � < � with f ′′� ⊆ � and an extender E ∈ V�,

so that cp(jE) = � , jE(f)(�) = f(�), Vf(�) ⊆ ME and jE(�) ∈ C(n) (i.e.,
jE witnesses C(n) -Woodinness with respect to f).

Proof. The equivalence of (i) and (ii) is, as already noted, the combination of
earlier remarks with Corollary 2.19. Moreover, it is obvious that (iv) implies (i).
Let us �rst deal with the implication (i) =⇒ (iii).

Suppose that � is a C(n) - Woodin cardinal (for some �xed n) and let A ⊆ V�
be given. By Woodin's theorem, we know that the set

SA = {� < � : � is 
 - strong for A, for every 
 < �}
is stationary in �. We will show that SA ⊆ S (n)A which is su�cient. So �x some
� ∈ SA and some 
 < �. We want to show that � is, in fact, 
 -C(n) - strong for
A, given that � is 
 - strong for A.

Let j : V −→ M witness the latter, i.e., cp(j) = � , 
 < j(�), V
 ⊆ M and
A ∩ V
 = j(A) ∩ V
. We may assume that j(�) < � = j(�) because if not, we
may derive some (�; |V�|+) - extender E (for some su�ciently large � ∈ (
; �))
and work with jE in place of j, noticing that jE still witnesses 
 - strongness for
A and has jE(�) < � = jE(�).

Having �xed such an (extender) embedding as in the last paragraph, we use
again an iterated ultrapower argument. Since � ∈ Lim(C(n)), we may pick some
� > (

2j(�)
)M with � ∈ C(n) and { now working in M { construct the iterated

ultrapower embedding j� : M −→ M� with cp(j�) = j(�), j�(j(�)) = � and
j�(�) = � , and with all the iterates being well - founded (so M� is taken to be
transitive).

We then let i = j� ◦ j : V −→M� be the composed elementary embedding with
cp(i) = � , 
 < i(�) = � ∈ C(n) and i(�) = �. Moreover, we have that V
 ⊆ M�
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because V
 ⊆ V Mj(�) ⊆ M�. In order to check that this embedding witnesses 
 -
C(n) - strongness for A, it remains to see that A ∩ V
 = i(A) ∩ V
. For this, we
have the following string of equalities:

i(A) ∩ V
 = j�(j(A)) ∩ V
 = j�(j(A) ∩ V
) = j�(A ∩ V
) = A ∩ V
 ;

where j�(V
) = V
 because V
 ∈ V Mj(�) and similarly for the last equality. This
concludes the proof of (i) =⇒ (iii).

It is important to note that in the argument described above, given any A ⊆ V�,
any 
 < � and any � ∈ SA, the embedding i which witnesses the 
 -C(n) -
strongness for A of � , can be taken so that i(�) < � = i(�) and, in fact, to be
an extender embedding (simply derive the obvious (�; i(�)) - extender).

With these remarks in mind, the �nal implication (iii) =⇒ (iv) is an immediate
consequence of the corresponding one in Woodin's theorem. ut

Let us now turn to the case of C(n) - strongly compact cardinals.

2.4.2 C(n) - strongly compacts

Recall that a cardinal � is 
 - compact, for some 
 > � , if and only if there is a
�ne measure on P�
. The latter is equivalent to the existence of an elementary
embedding j : V −→ M with M transitive, cp(j) = � and with the property
that, for any X ⊆ M with |X| 6 
 , there is a Y ∈ M such that X ⊆ Y and
M |= |Y | < j(�). We then say that � is strongly compact if it is 
 - compact for
every 
 > � .

We use the method of iterated ultrapowers in order to show that every strongly
compact cardinal is actually C(n) - strongly compact (cf. De�nition 1.17).
Theorem 2.22. Suppose that for some 
 > � , � is 
 - compact. Then, � is

 -C(n) - compact.

Proof. We �x some n and some 
 > � and we let j : V −→M be an elementary
embedding witnessing the 
 - compactness of � . Clearly, j(�) > 
 and j(�) is
measurable in M .

Let U ∈ M be an M - normal measure on j(�) and let us �x some ordinal
� ∈ C(n) such that cf(�) > 
 and � > (

2j(�)
)M . We iterate the ultrapower

construction inside M , starting with U and repeating for � - many steps. Let
j� : M −→ M� be the resulting embedding with cp(j�) = j(�), where M�
is (taken to be) transitive by the well { foundedness of all the structures along
the iteration. Again, by known facts regarding such iterations, we have that
j�(j(�)) = � and we let h : V −→ M� be the composed elementary embedding,
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i.e., h = j� ◦ j, with cp(h) = � and with h(�) = � ∈ C(n). We now check that h
is 
 - compact for � .

Suppose that X ⊆M� and, without loss of generality, suppose |X| = 
 (in par-
ticular, 
 is a cardinal). By the representation of iterated utrapowers (see Lemma
19.6 in [30]) we may assume that each z ∈ X is of the form j�(f)(� �1 ; : : : ; � �m),
where f : [j(�)]m −→M is a function that belongs to M and, for each 1 6 i 6 m ,
� �m is an element along the critical sequence 〈�� : � < � 〉 (where �0 = j(�)).
Thus, we have the representation

X = {j�(fi)(~�i) : i < 
}

where, for each i < 
 , fi ∈ M is a function with domain (included in) [j(�)]<!
and ~�i is some �nite tuple of ordinals along the critical sequence.

Now, since cf(�) > 
 , there exists some ordinal � < � such that, for every
i < 
 , max(~�i) < �� . In other words, since there are, in total, 
 - many �� 's
involved in the representation of the elements of X, there is some stage � of
the iteration so that the current critical point �� is above them all. Evidently,
[��]<! ∈M� and M� |= |[��]<!| < � .

Moreover, since {fi : i < 
} ⊆M and j is 
 - compact, there is some Y0 ∈M
with {fi : i < 
} ⊆ Y0 and M |= |Y0| < j(�). By elementarity, it then follows
that {j�(fi) : i < 
} ⊆ j�(Y0) ∈ M� and M� |= |j�(Y0)| < � . Therefore, in M�,
we may use the set j�(Y0) and the set [��]<! in order to de�ne the desired Y
that covers X. We let

Y = {g(~s) : for some m ∈ ! ; g ∈ j�(Y0) is a function on [�]m and ~s ∈ [��]m}

and we then have that Y ∈ M�, X ⊆ Y and M� |= |Y | < � which concludes the
proof. ut

From the previous theorem, we immediately get the following characterization.
Corollary 2.23. � is strongly compact ⇐⇒ � is C(n) - strongly compact. ut

Summarizing, we have obtained characterizations of C(n) - Woodin and C(n) -
strongly compact cardinals which, in addition, do not seem to leave much space
for investigating further these notions in their own right, as they reduce them to
their ordinary counterparts.

We now move on to the cases of supercompact and of extendible cardinals where
things are much more subtle and interesting. Apropos, this also means that the
methodological parenthesis is, e�ectively, closed and we can now return to our
familiar elementary chain arguments.
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2.5 Supercompactness

Suppose that � is � - supercompact, for some � > � with �<� = �, as witnessed
by the embedding j : V −→ M , i.e., M transitive, cp(j) = � , j(�) > � and
�M ⊆M . In addition, suppose that j(�) is regular.

In this case, as opposed to the cases of tallness and of (super)strongness, we
build our elementary chain using a slightly di�erent collection of seeds. Namely,
we also include j ′′� which (belongs to M and) will serve as the \ prototype "
� - sequence; we shall then use it in order to obtain the closure under sequences
for the �nal (initial factor) embedding that we are aiming for.

Let us start by picking some initial limit ordinal �0 ∈ (� ; j(�)) and by letting
X0 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V M�0

} ≺M;
where note that the domain of the functions has been modi�ed accordingly. For
any � + 1 < j(�), given �� and X�, we let ��+1 = sup(X� ∩ j(�)) + ! and

X�+1 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V M��+1
}:

If � < j(�) is limit and we have already de�ned �� and X� for every � < � , we
let �� = sup�<� �� and

X� =
⋃
�<�

X� = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V M�� };

which concludes the recursive de�nition of the elementary chain.
We observe that M is actually closed under �<� - sequences and thus, any func-

tion of the form f : P��×V� −→ � belongs to M . Therefore, by the inaccessibility
of j(�) in M , |2�<�| < j(�). Now, using the regularity of j(�), a counting argu-
ment shows that for each � < j(�), �� < j(�).

At any limit ordinal 
 < j(�) with cf(
) > � , we consider the current sub-
structure X
 of which we take the Mostowski collapse �
 : X
 ∼= M
. We then
de�ne the composed map j
 = �
 ◦ j : V −→ M
, with cp(j
) = � , produc-
ing a commutative diagram of elementary embeddings (with k
 = �−1
 ), where
�
 = sup�<
 �� and

X
 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V M�
 } ≺M:
One again checks that X
 ∩ j(�) is an ordinal, which implies that j
 is indeed
an initial factor of j and that

cp(k
) = j
(�) = sup(X
 ∩ j(�)) = sup�<
 �� = �
 > � ;
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with cf(�
) = cf(
) > � . Therefore, in order to conclude that the embedding j

is � - supercompact, we only need to check that �M
 ⊆ M
. For this, note �rst
that since j ′′� ∪ {j ′′�} ⊆ X0 ⊆ X
, we obtain that

M
 = {j
(f)(j
 ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V M�
 }:

Clearly, we also have that j
 ′′� ∈ M
 and, therefore, if we consider the map
j
 � � : � −→ j
 ′′� (as an order { type function), we get that j
 � � ∈M
 as well.
We now use this function in order to show that M
 is closed under � - sequences.

Let {j
(fi)(j
 ′′� ; xi) : i < �} ⊆ M
, where for i < � , xi ∈ V M�
 and fi ∈ V .
Since cf(�
) = cf(
) > � and �M ⊆M , we have that 〈xi : i < � 〉 ∈ V M�
 ⊆M
.
It will be enough to show that 〈 j
(fi) : i < � 〉 ∈ M
 as well, since in that case,
we can compute in M
 the sequence 〈 j
(fi)(j
 ′′� ; xi) : i < � 〉 by evaluating
pointwise the functions j
(fi) 's at the corresponding xi 's together with j
 ′′� .

Now, j
(〈 fi : i < � 〉) is a function G : j
(�) −→ M
 that belongs to M
.
Using G and j
 � � , de�ne in M
 the function F : � −→ M
 by letting, for
every � < � , F (�) = G(j
(�)). But then, for every � < � ,

F (�) = j
(〈 fi : i < � 〉)(j
(�)) = j
(〈 fi : i < � 〉(�)) = j
(f�) ;

i.e., F = 〈 j
(fi) : i < � 〉 ∈ M
 and we are done. We have thus shown the
following.
Proposition 2.24. Suppose that j : V −→M is � - supercompact for � , for some
� > � with �<� = � and with j(�) regular. Then, for each (initial limit ordinal)
�0 ∈ (� ; j(�)) and each 
 < j(�) with cf(
) > � , the embedding j
 : V −→M

arising from the elementary chain construction as above, is an initial factor of j
witnessing � - supercompactness of � . ut

By our usual methods, one obtains the following corollary.
Corollary 2.25. Suppose that j : V −→ M witnesses the � - supercompactness
of � , for some � > � with �<� = � and with j(�) regular. Then, the collection

D = {h(�) < j(�) : h is � - supercompact for �}

contains a [|�|+; j(�)) - club. ut

Unlike the cases of tallness and of (super)strongness where the various initial
factor embeddings were witnessed inside Vj(�) by (short) derived extenders, in the
case of supercompactness such extenders are not su�cient for our purposes and,
so, the situation seems, at �rst sight, problematic in this respect.



42 2.5. Supercompactness

Of course, normal measures are also out of the question: recall that for every
ultrapower embedding jU coming from a normal �ne measure U on P��, we
have that 2�<� 6 (2�<�)M < jU(�) < (2�<�)+ (see Proposition 22.11 in [30]);
therefore, for su�ciently large initial limit ordinals �0 with (2�<�)+ < �0 < j(�),
our constructed j
 will be far from represented by such measures.

To overcome these limitations and capture supercompactness embeddings, one
option is to turn to (quite) long extenders; another would be to use an alternative
\ combinatorial " reformulation of � - supercompactness in terms of Martin { Steel
extenders, which are generalizations of the ordinary extender notion having as
their support any prescribed transitive set Y .

For the moment, we choose the second option and develop our ideas according
to the generality of Martin { Steel extenders. Thus, in what follows and unless
otherwise stated, the term \extender" refers to the Martin { Steel form (this will
be consistently indicated by the presence of some \Y " as the support set). To-
wards the end of the current chapter (cf. Corollary 2.37) we shall also comment
on how ordinary (albeit long) extenders may be used in order to describe � -
supercompactness embeddings.

Those readers who are not familiar with the theory of Martin { Steel extenders
are encouraged to consult Section A.3 of the Appendix. There, apart from various
details on such objects and their properties, a proof of the following theorem may
also be found (cf. Theorem A.14).
Theorem 2.26. A cardinal � is � - supercompact if and only if there exists a
(�; Y ) - extender E, with Y transitive, such that {�} ∪ [Y ]<! ∪ �Y ∪ jE ′′Y ⊆ Y
and jE(�) > � , where jE is the extender elementary embedding. ut

In fact, as shown in Section A.3 of the Appendix, given such a (�; Y ) - extender
E, the corresponding embedding jE is � - supercompact. Conversely, given any � -
supercompact embedding, there is way to extract from it an appropriate transitive
set Y so that the derived (�; Y ) - extender meets all the displayed requirements.
Moreover, in this case, jE(�) = j(�).

Note that the above characterization can be formulated as a Σ2 - statement about
� and � , since one can require the existence of some (thought of as su�ciently
large) ordinal � > � , so that E ∈ V� and all the clauses regarding the extender
embedding jE are faithfully veri�ed inside V�.

Returning to our chain construction and as far as the representation of initial
factor embeddings inside Vj(�) is concerned, it would thus be su�cient to require,
in addition, that j(�) is an inaccessible member of C(2) . In such a case, for any
initial factor � - supercompact embedding j� arising from our construction, the
fact that there is some (�; Y ) - extender witnessing its � - supercompactness will
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be re
ected inside Vj(�) and hence we will be able to conclude that, for every
n ∈ ! , � is � -C(n) -supercompact inside Vj(�).

Going one step further, we would like to witness full C(n) - supercompactness,
not just locally for a �xed � . Contemplating momentarily on the way we produce
the elementary chain, it is clear that the essential feature which guarrantees clo-
sure under � - sequences is the fact that j ′′� ∈ M ; this enables us to de�ne the
appropriate substructures in the �rst place. In other words, the fact that we pick
the length of the chain to have co�nality strictly above � is a secondary issue
since, in the absence of j ′′� , we would not even be able to start the appropriate
construction.

Therefore, in order to witness full C(n) - supercompactness below the inaccessi-
ble j(�) by an elementary chain construction, it would be enough if the initial
embedding were such that j ′′� ∈ M for every � < j(�). Hence, it su�ces to
take j an almost huge embedding (in which case, j(�) is inaccessible). As we will
shortly see, this assumption already implies the existence of the relevant extenders
inside Vj(�), i.e., requiring that j(�) ∈ C(2) is unnecessary. Putting all these ideas
together, we now show the following.
Theorem 2.27. Suppose that j : V −→ M witnesses the almost hugeness of � .
Then, for every n ∈ ! , Vj(�) |= \� is C(n) - supercompact ".
Proof. Suppose that � is almost huge, as witnessed by the elementary embedding
j : V −→ M , i.e., M transitive, cp(j) = � and <j(�)M ⊆ M . In particu-
lar, Vj(�) ⊆ M and j(�) is inaccessible. As we are aiming towards full C(n) -
supercompactness below j(�), we may as well consider only regular � < j(�) [.
Then, for any such �xed � , since �M ⊆ M and j ′′� ∈ M , we may pick some
initial limit ordinal �(�)

0 ∈ (� ; j(�)) and perform our construction exactly as in
the � - supercompactness case, i.e., construct, for any � < j(�), the corresponding
limit ordinal �(�)� < j(�) and the substructure

X(�)� = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V�(�)� } ≺M;

producing the elementary chain X(�)
0 ≺ : : : ≺ X(�)� ≺ : : : ≺ M . As before, at any

limit 
 < j(�) with cf(
) > �+, we may pause and take the transitive collapse
of the current substructure, in order to produce a � - supercompact initial factor
embedding j (�)
 with j (�)
 (�) = �(�)
 , where �(�)
 is the current ordinal of the
produced sequence 〈 �(�)� : � < j(�) 〉.

Thus, for any �xed regular � ∈ (� ; j(�)) , we produce a corresponding class
of ordinals in j(�), namely, C� = {�(�)
 : cf(
) = �+} which consists of the

[And since � is certainly supercompact in the model Vj(�), it follows by a result of Solovay
(see, for example, Lemma 20.11 in [28]) that, for any regular � ∈ (�; j(�)), we have �<� = �.
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images of � under the initial factor � - supercompactness embeddings that are
taken exactly at limits of co�nality �+. Of course, each C� is �+ - club and thus
stationary in j(�).

Now, we may let C s.c. =
⋃
{C� : � ∈ (� ; j(�)); � regular} and then C s.c. is a

stationary subset of j(�) which is a disjoint union of stationary subsets. Since
j(�) is inaccessible, we may also consider the clubs C(n)j(�) ⊆ Vj(�) of ordinals that
are Σn - correct in the sense of Vj(�) .

Then, for every n ∈ ! and every regular � ∈ (� ; j(�)), there is an initial factor
� - supercompact embedding j0, with j0(�) ∈ C(n)j(�). We now use the characteriza-
tion of Theorem 2.26 in order to show that all these embeddings are witnessed by
extenders inside Vj(�).

Fix some n ∈ ! and suppose that we have, for some regular � ∈ (� ; j(�)),
an initial factor � -C(n) - supercompact embedding j0 : V −→ M0 coming from
our construction, i.e., once again, the embedding arises via a transitive collapse
of an elementary substructure X ≺ M of the form above, coming together with
a corresponding limit ordinal � = sup(X ∩ j(�)). Before we describe how to
extract the appropriate Y ⊆ M0 which meets the requirements of Theorem 2.26
and which will serve as the support of the relevant extender, let us �rst look at
the behaviour of j0 on ordinals below the inaccessible j(�).
Claim. For any � < j(�), j0(�) < j(�).
Proof of claim. Recall that by construction of j0, j0(�) = ot(X ∩ j(�)). We now
show that this order { type is below j(�) by showing that |X ∩ j(�)| < j(�). The
latter is veri�ed by a counting argument, resembling the ones we have repeatedly
employed; i.e., we argue that any � ∈ X ∩ j(�) is represented as � = j(f)(j ′′� ; x),
for some function f : P�� × V� −→ � and some seed x ∈ V�, where � < j(�).
But then, the inaccessibility of j(�) implies that there are, in total, less than
j(�) - many such functions and seeds and thus, |X ∩ j(�)| < j(�). ut

Given the claim, we now describe how to produce the appropriate transitive
Y ⊆ M0. The idea is simple: we start with j0 ′′� (which belongs to M0) and
we recursively close under all the relevant properties. We repeat �+ - many times
(taking unions at limit stages) and the resulting set is the desired Y . Formally,
we de�ne by trans�nite recursion on �+ :

Y0 = trcl({j0 ′′�})

Y�+1 = trcl(Y� ∪ [Y�]<! ∪ �Y� ∪ j0 ′′ Y�)

Y� =
⋃
�<�

Y� ; if � is limit
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and we then let Y = Y�+ . It is straightforward to check that Y ⊆ M0, Y is
transitive and {�} ∪ [Y ]<! ∪ �Y ∪ j0 ′′Y ⊆ Y . Moreover, by the fact that
j0 ′′j(�) ⊆ j(�) which is what the claim gives, it follows that Y ∈ Vj(�). Now
let E be the (�; Y ) - extender derived from the embedding j0. Recall that any
derived extender of this sort comes with a corresponding ordinal � > � which is
the least one so that Y ⊆ j0(V�) (and then, the various ultra�lters of the extender
are on aV� , for a ∈ [Y ]<!). In our case, � < j(�) again due to j0 ′′j(�) ⊆ j(�).
We may thus conclude that E ∈ Vj(�).

We now consider the extender ultrapower embedding jE : V −→ ME which
forms a commutative diagram with j0 and the third factor kE : ME −→ M0.
Recall that, in general, in such a situation we have that Y ⊆ME and kE � Y = id
(see Section A.3 of the Appendix for more details). Since we are moreover given
that j0 ′′Y ⊆ Y , we thus get that jE � Y = j0 � Y and jE ′′Y = j0 ′′Y ⊆ Y ; in
particular, jE(�) = j0(�) > � .

Therefore, by Theorem 2.26, jE is a � - supercompact embedding such that
jE(�) = j0(�). Moreover, since everything is bounded below the inaccessible j(�)
and E ∈ Vj(�), we can verify inside the latter the � -C(n) - supercompactness of �
using the extender characterization, i.e., we get that

Vj(�) |= “� is � -C(n) - supercompact "

and so, for every n ∈ ! , Vj(�) |= “� is C(n) - supercompact ". ut

The last theorem gives an upper bound on the consistency strength of the cor-
responding schema SC, which is a schema of countably { many {∈ ; k} - formulas
�n, with each �n asserting that \k is C(n) - supercompact ".

Hence, as a corollary, if the theory ZFC+ \∃� (� is almost huge)" is consistent,
then so is the theory ZFC+SC. We moreover show that this bound is sharp in the
following sense.
Corollary 2.28. If the theory ZFC +\∃� (� is almost huge)" is consistent, then
so is the theory ZFC + SC + \∀� (� is not almost huge) ".

Proof. Suppose that there exists an almost huge cardinal and let � be the least
one. By Theorem 2.27, if j : V −→ M witnesses the almost hugeness of � , then
Vj(�) is a model of ZFC+SC (with k interpreted as �). We show that in Vj(�),
there is no almost huge cardinal. Towards a contradiction, suppose otherwise and
let � be the least almost huge cardinal in the sense of Vj(�).

Now recall that, as in the case of hugeness, the least almost huge cardinal is
strictly smaller than the least supercompact, provided that they both exist. Thus,
since � is certainly supercompact in Vj(�), we get that � < � . But this is a
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contradiction since \� is almost huge " is a Σ2 - statement and j(�) is inaccessible,
i.e., � would have to be an almost huge cardinal below � . ut

In particular, as yet another corollary we get that the least almost huge cardinal,
if it exists, is not C(2) - almost huge. This was already shown in [5] by the use of
direct re
ection of the related Σ2 - statement.

Before continuing any further, we make the following remarks which clarify some
details related to our constructions and, in particular, to the ones employed in the
proof of Theorem 2.27.

Remarks.

1. Note that, in the proof of Theorem 2.27, any initial factor � - supercompact
embedding j0 which arises from our chain is, in addition, superstrong. Thus,
when we recursively construct the transitive Y which serves as the support of
the witnessing extender inside Vj(�), we may as well include Vj0(�) at the very
�rst level Y0, together with j0 ′′� . This ensures that the extender embedding
jE will be superstrong as well, since, as we have seen, jE(�) = j0(�).

2. Although it may well be the case that there are no supercompacts below the
almost huge cardinal � (e.g., if the latter is the least one), there are many
supercompacts below � in the sense of the model Vj(�). This comes from
direct re
ection using the normal ultra�lter U on � which is derived from
the initial almost huge embedding j. Here note that for any � < � , � is
supercompact in V� if and only if � is < � - supercompact in Vj(�), which
in turn is equivalent to � being supercompact in Vj(�). Additionally, by a
direct re
ection argument using the normal measure, for every n ∈ ! , we
have that {� < � : V� |= “� is C(n) - supercompact "} ∈ U.

3. In the proof of Theorem 2.27, it is important to keep track of where exactly
the various constructions are made so that any meta { mathematical doubts
are avoided. Our route was the following. We started with an almost huge
embedding j : V −→ M and we then constructed, in V , the various ele-
mentary chains of substructures of M . We showed that for every n ∈ !
and any regular � < j(�), there exists some initial factor � - supercompact
embedding j0 arising from the chain, so that j0(�) ∈ C(n) in the sense of
Vj(�). Finally, again in V , we inductively built the appropriate transitive Y
which was used in order to extract the corresponding extender from j0. We
showed that this extender belongs to Vj(�) and the latter may use it in order
to faithfully verify the fact that � is � -C(n) - supercompact.
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Let us also point out that, regarding the second of the above remarks, we have
used the fact that if � is < � - supercompact and � is supercompact, then � is
fully supercompact. A natural question is whether this generalizes to the case of
C(n) - supercompactness, for n > 0 . We now brie
y address this question and show
that if, as in our �rst remark, the witnessing extenders are in fact superstrong,
then it does.

For this, we use the following lemma. Before that, let us mention that when-
ever we write \ supercompact and superstrong ", we temporarily mean that the
two notions are witnessed simultaneously by the same embedding, i.e., the super-
compactness embedding which we consider at any given argument, happens to be
superstrong as well.

In the next section we shall give a more detailed account of simultaneous su-
percompactness and superstrongness (cf. De�nition 2.34) and, furthermore, we
will show that, in the \C(n) " case, such an assumption already implies C(n) -
extendibility (cf. Proposition 2.35).

Consequently, given an analogous result of J. Bagaria for C(n) - extendibles (cf.
Proposition 1.13), the following lemma is hardly surprising.
Lemma 2.29. If � is C(n) - supercompact and superstrong, then � ∈ C(n+2).
Proof. We argue inductively. For n = 0 , it is well { known that if � is super-
compact then � ∈ C(2). So, assume that the statement holds for some n > 0

and suppose that � is C(n+1) - supercompact and superstrong. By the inductive
hypothesis, we have � ∈ C(n+2).

Let  = ∃x�(x; y) be a Σn+3 - formula, where �(x; y) is Πn+2 and the param-
eter(s) y belongs to V�. If V� |=  then, since � ∈ C(n+2), we get that  holds.
Conversely, suppose that  holds and �x some witness, i.e., �x some x such that
�(x; y) holds.

Now let j : V −→ M be any � -C(n+1) - supercompact and superstrong em-
bedding for � , with � > rank(x). Then, x ∈ Vj(�) ⊆ M and j(�) ∈ C(n+1). It
now follows that �(x; y), being a Πn+2 - statement, holds in Vj(�) and so, since
Vj(�) ⊆M , we get that V Mj(�) |= ∃x�(x; y).

By elementarity and the fact that the parameter(s) is �xed by j, we obtain that
V� |= ∃x�(x; y) which concludes the proof. ut

Of course, this lemma combined with the fact that the statement \� is C(n) -
supercompact " is Πn+2 - expressible immediately implies the following.
Corollary 2.30. Suppose that � is C(n) - supercompact, witnessed by superstrong
extenders and suppose that � < � is < � -C(n) -supercompact. Then, � is (fully)
C(n) - supercompact. ut
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We remark that this last corollary is valid even when the witnessing extenders
are ordinary, instead of being of the Martin { Steel form, i.e., when each E is some
(long) (�; �) - extender, which is additionally superstrong.

As we have pointed out, in the particular model Vj(�) obtained in the proof
of Theorem 2.27 in which � is C(n) - supercompact for every n, the conclusion of
Corollary 2.30 for � < � follows trivially from the elementarity and the critical
point of the initial almost huge embedding j. That is, for any � < � , � is
C(n) - supercompact in V� if and only if it is C(n) - supercompact in Vj(�).

Moreover, for any such �xed � < � and for any 
 < � , the very same extenders
belonging to V� witness the \ 
 -C(n) - supercompactness " of � either in V� or
in Vj(�). In particular, Vj(�) thinks that � is a limit of Σn - correct ordinals and
thus, for every n ∈ ! , Vj(�) |= � ∈ Lim(C(n)).

In fact, we now give a small list of the properties that � enjoys inside that
particular model Vj(�). Regarding part (iii) below, recall De�nition 1.14.
Proposition 2.31. Suppose that � is almost huge, as witnessed by the embedding
j : V −→ M . Let U be the usual normal measure on � derived from j. Then,
for any n ∈ ! , the following hold in the (ZFC) model Vj(�) :

(i) � ∈ Lim(C(n)).

(ii) � is C(n) - supercompact and

{� < � : � is C(n) - supercompact} ∈ U:

(iii) � is C(n)+ - extendible and

{� < � : � is C(n)+- extendible} ∈ U:

Proof. Parts (i) and (ii) have already been established by the preceding discussion.
For (iii), �x some n and some � ∈ (� ; j(�)) so that Vj(�) |= � ∈ C(n) (recall

that there are unboundedly many such � below j(�)); now, by the closure of M
and the inaccessibility of j(�), j � V� ∈ M and then, j � V� : V� −→ Vj(�) is
elementary, has critical point � , (j � V�)(�) > � , j(�) < j(j(�)) and, moreover,
j(Vj(�)) |= j(�) ∈ C(n), where all clauses are computed in the model M (that is
why the superscript \M " is missing from the \Vj(�) ").

Let us temporarily �x a formula '(� ; � ; �) asserting that \ there exists a � -
extendibility embedding h for � with � = h(�) ". From the point of view of M , we
have just argued that for every � ∈ (� ; j(�)) with Vj(�) |= � ∈ C(n), there exists
a � < j(j(�)) such that '(� ; � ; �) holds and, moreover, j(Vj(�)) |= � ∈ C(n).
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But now, by the usual re
ection of the normal measure, we get that the set of
ordinals � < � so that

∀� ∈ (� ; �) (V� |= � ∈ C(n) −→ ∃� < j(�) ('(� ; � ; �) ∧ Vj(�) |= � ∈ C(n)));

belongs to U. Let us call this set A. Fix any � ∈ A and �x any � ∈ (� ; �) with
V� |= � ∈ C(n). Furthermore, �x a � < j(�) witnessing that � ∈ A, i.e., such
that '(� ; � ; �) holds and Vj(�) |= � ∈ C(n).

Since � < j(�), by the inaccessibility of the latter we have that the witnessing
� - extendibility embedding for � actually belongs to Vj(�), i.e.,

Vj(�) |= ∃� ('(� ; � ; �) ∧ � ∈ C(n)):

Therefore, by elementarity, for any such � ∈ A and any �xed � ∈ (� ; �) with
V� |= � ∈ C(n), there exists a � < � so that

V� |= '(� ; � ; �) ∧ � ∈ C(n);

i.e., such extendibility embeddings for � may be witnessed inside V�. Note how
we have successively bounded the � 's , �rst below j(�) and now below � , ensuring
that they are also in the relative C(n) of these structures. This discussion shows
that the set

B = {� < � : V� |= ∀� > � (� ∈ C(n) −→ ∃� ('(� ; � ; �) ∧ � ∈ C(n)))}

includes A and hence it also belongs to the normal measure U. Consequently, by
\ reversing " the re
ection argument of the measure, we obtain that

Vj(�) |= ∀� > � (� ∈ C(n) −→ ∃� ('(� ; � ; �) ∧ � ∈ C(n))):

But then, if we pick any � ∈ (� ; j(�)) with Vj(�) |= � ∈ C(n) and consider any
witnessing extendibility embedding h : V� −→ V� for � in Vj(�), we get that,
in the sense of the latter structure, all three: � , � and � are in C(n). Hence,
h(�) ∈ C(n) as well. This shows that � is C(n)+ - extendible in Vj(�). In turn,
once more by a re
ection argument,

{� < � : V� |= “� is C(n)+- extendible ”} ∈ U

and then, using the initial embedding j it immediately follows that, in Vj(�),

{� < � : � is C(n)+- extendible} ∈ U;

which concludes part (iii) and, in e�ect, the proof. ut
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As yet another corollary, we get that the assumption of almost hugeness is
su�cient for the consistency of all the C(n) - cardinals considered so far, in a strong
sense: in the model Vj(�) and for any n ∈ ! , the cardinal � is C(n) - supercompact,
C(n) - superstrong and, clearly, C(n) - tall and C(n) - strong as well. In addition, we
just showed that it is also C(n)+ - extendible. Evidently, if we consider the least
almost huge cardinal of the universe, the corresponding versions of Corollary 2.28
are obtained for all these cases.

Having brought into the discussion the case of extendibility this way, we now
leave behind the particular model Vj(�) and turn to the general setting, looking
more closely at C(n) - extendible cardinals.

2.6 Extendibility

Given the already established consistency results of the previous section, let us
now focus on the further study of the connection between the hierarchies of C(n) -
extendible and C(n) - supercompact cardinals. We begin with the following.

Theorem 2.32. Suppose that � is � + 1 -C(n) - extendible, for some n > 0 and
some � = i� > � with cf(�) > � . Then, � is � -C(n) - supercompact and
superstrong.

Proof. Fix some n > 0 and some � = i� > � with cf(�) > �. Furthermore, let
j : V�+1 −→ Vj(�)+1 be an elementary embedding that witnesses the �+ 1 -C(n) -
extendibility of � , i.e., cp(j) = � , j(�) > �+ 1 and j(�) ∈ C(n).

Now let E be the (�; j(�)) - extender derived from j, that is, E is of the form
〈Ea : a ∈ [j(�)]<! 〉 where, each Ea is a � - complete ultra�lter on [�]|a| de�ned
as usual: for X ⊆ [�]|a|, X ∈ Ea if and only if a ∈ j(X).

Despite the fact that the ambient embedding j is between sets and not inner
models, this de�nition makes sense since, for any m ∈ ! , P([�]m) ⊆ V�+1 and
[j(�)]<! ⊆ Vj(�). Moreover, all the relevant information regarding this extender,
i.e., the ultra�lters, the set [j(�)]<!, the various projection functions witnessing
coherence, etc., are in Vj(�)+1 where we can faithfully verify that E is indeed a
(�; j(�)) - extender. Note that E is just a long version of an ordinary extender
and, in our situation, the rôle of �, which is the least ordinal such that j(�) 6 j(�),
is being played by � .

Let jE : V −→ ME be the associated extender embedding with cp(jE) = � .
Although there is not a \full" third factor embedding kE commuting with j and
jE, we may nonetheless get a restricted version of the usual commutative diagram,
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de�ning k ∗E : V MEjE(�) −→ Vj(�), by letting
k ∗E([ a; [f ] ]) = j(f)(a)

for all [ a; [f ] ] ∈ V MEjE(�), where a ∈ [j(�)]<! and f : [�]|a| −→ V�. We remark
that the de�nition makes sense since any such function, representing an element
in V MEjE(�), actually belongs to V�+1. Moreover, it is easily checked that k ∗E is a
well { de�ned {∈} - embedding and so, in particular, injective. We then get the
commutative diagram

V� j � V� - Vj(�)

V MEjE(�)

jE � V�
?

k ∗E

-

where j � V� = k ∗E ◦ (jE � V�). Next, we show that k ∗E is in fact the identity.
Since � = i� , �x some bijection g : [�]1 −→ V� and observe that g ∈ V�+1.

Then, by elementarity, we have that j(g) : [j(�)]1 −→ Vj(�) is also a bijection
and j(g) ∈ Vj(�)+1. Thus, for every x ∈ Vj(�), there is some � < j(�) with
x = j(g)({�}). But this means that for every x ∈ Vj(�), x = k ∗E([ {�}; [g] ]), where
[ {�}; [g] ] is an element of V MEjE(�), i.e., k ∗E is also surjective. Therefore, it must
be the identity, since its domain and range are transitive sets. It now follows
that V MEjE(�) = Vj(�), i.e., Vj(�) ⊆ ME and so, jE is superstrong and, for every
ordinal � 6 � , jE(�) = j(�). In particular, jE(�) = j(�) and, also, noting that
cf(j(�)) > � (computed in V ), we have jE ′′� = j ′′� ∈ Vj(�) and so jE ′′� ∈ME.

Thus, it will be enough to show that �ME ⊆ ME in order to conclude the
embedding jE witnesses the � -C(n) - supercompactness of � . But this is shown
exactly as in the description of our elementary chain construction in the super-
compactness case: we use the fact that jE ′′� ∈ ME and the nice representation
of the latter, in order to get closure under � - sequences. Let us brie
y repeat the
argument here for completeness.

Recall that ME = {jE(f)(a) : a ∈ [j(�)]<!; f : [�]|a| −→ V; f ∈ V }. Suppose
that {jE(fi)(ai) : i < �} ⊆ME, aiming at showing that the sequence 〈 jE(fi)(ai) :

i < � 〉 belongs to ME. First, recall that cf(j(�)) > � from which we get that
〈 ai : i < � 〉 ∈ Vj(�) ⊆ ME. Thus, it will be enough to show that 〈 jE(fi) : i <
� 〉 ∈ME since in that case, ME can compute the desired sequence 〈 jE(fi)(ai) :

i < � 〉 by evaluating pointwise the functions jE(fi) 's at the corresponding ai 's.
For this, since jE ′′� ∈ ME, we also have that jE � � ∈ ME, where the map

jE � � : � −→ jE ′′� is viewed in ME as an order { type function. Moreover, it is
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clear that G = jE(〈 fi : i < � 〉) belongs to ME , where G : jE(�) −→ ME. Now
de�ne, in ME, the function F = G ◦ jE � � : � −→ ME and let us check that, in
fact, F = 〈 jE(fi) : i < � 〉 which will conclude the proof. But this follows from
elementarity and the de�nition of F since, for every i < � , we have

F (i) = G(jE(i)) = jE(〈 fi : i < � 〉)(jE(i)) = jE(〈 fi : i < � 〉(i)) = jE(fi) :
ut

We immediately get the following corollary. This answers a�rmatively the relevant
question which was posed in [5].
Corollary 2.33. If � is C(n) - extendible then it is also C(n) - supercompact. ut

It is clear that in the statement of Theorem 2.32 we may as well require that the
image j(�) of the produced � - supercompact embedding is inaccessible. Moreover,
this can be also strengthened to Mahlo, weakly compact and even measurable and
Woodin, if one requires su�cient extendibility for � .

To see this, �rst recall that all the aforementioned large cardinal notions are lo-
cal, i.e., they can be faithfully veri�ed in some initial segment of the universe whose
ordinal rank is explicitly related to the large cardinal in question. For instance, the
Mahloness, the weak compactness or the Woodinness of � are properties which
can all be veri�ed inside V�+1. On the other hand, the measurability of � can be
veri�ed inside V�+2.

Thus, by just assuming that � is 1 - extendible, we do have that j(�) is a true
Mahlo, weak compact and even Woodin cardinal. Analogously, the 2 - extendibility
of � gives that j(�) is a true measurable. More generally, for any limit ordinal
� > � , if � is �+ 1 - extendible then the witnessing embedding is such that j(�)
is a Woodin measurable cardinal.

Let us also point out that, in the proof of the Theorem 2.32, we in fact get more
than mere superstrongness for the derived extender embedding jE : V −→ ME.
We actually have that Vj(�) ⊆ ME, which follows from the extendibility of the
initial embedding j. As we are about to characterize (C(n) -) extendibility in terms
of such embeddings, it is appropriate to introduce the following notion.
De�nition 2.34. A cardinal � is � - supercompact and � - superstrong, for
some � ; � > � , if there exists an elementary embedding j : V −→ M with M
transitive, cp(j) = � , j(�) > � , �M ⊆M and Vj(�) ⊆M .

For the global version(s) of this notion, the absence of one of the two parameters
indicates universal quanti�cation on the parameter missing; e.g., � is supercom-
pact and � - superstrong, for some �xed � > � , if and only if it is � - supercompact
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and � - superstrong, for every � > � . On the other hand, the absence of both pa-
rameters is intended to mean that the same � is quanti�ed for both of them,
i.e., � is supercompact and superstrong if and only if it is � - supercompact and
� - superstrong, for every � > � .

We stress the fact that the above notion transcends supercompactness in the
sense that if � is the least supercompact, then it is not � - supercompact and
� - superstrong, for any � . In fact, as we shall soon see, global supercompactness
and � - superstrongness is equivalent to extendibility.

So, in our newly established terminology, Theorem 2.32 actually shows that, for
any n > 0 and any � = i� > � with cf(�) > �, if the cardinal � is �+ 1 -C(n) -
extendible then it is � -C(n) - supercompact and � - superstrong, witnessed by the
derived (ordinary but) long (�; j(�)) - extender E.

Although we do not know the exact relation between C(n) - extendibles and
C(n) - supercompacts, they seem to be di�erent notions, i.e., even some partial
converse of Corollary 2.33 seems unlikely without any extra assumptions. However,
we now show that, under the extra assumption of � - superstrongness, the converse
of Corollary 2.33 does hold. This will be an application of Lemma 2.29.

Proposition 2.35. If � is C(n) - supercompact and � - superstrong, then it is
C(n) - extendible.

Proof. Fix n > 1 and suppose that � is C(n) - supercompact and � - superstrong
(i.e., usual superstrongness). Fix some � > � with � ∈ C(n+2) and recall that
� = |V�|. Now let j : V −→ M be an elementary embedding which witnesses
the fact that � is � -C(n) - supercompact and � - superstrong, i.e., M transitive,
cp(j) = � , j(�) > � , �M ⊆M , j(�) ∈ C(n) and Vj(�) ⊆M .

By Lemma 2.29, � ∈ C(n+2) and then, by elementarity, M |= j(�) ∈ C(n+2)

and M |= j(�) ∈ C(n+2). Now note that, by the closure of the target model, the
restricted embedding j � V� : V� −→ V Mj(�) belongs to M and this witnesses the
fact that

M |= “� is < � -C(n) - extendible ":
Moreover, as j(�) ∈ C(n), we have that Vj(�) |= � ∈ C(n+1) and then, using
that Vj(�) ⊆ M and M |= j(�) ∈ C(n+2), we also get that M |= � ∈ C(n+1).
It now follows that the \< � -C(n) - extendibility " of � in M can be veri�ed
inside V�, that is, M |= V� |= “� is C(n) - extendible ". Therefore, since V� ⊆ M ,
the previous statement is computed correctly, i.e., V� |= “� is C(n) - extendible ".
Hence, recalling that � ∈ C(n+2), we conclude that � is indeed C(n) - extendible.

The case n = 0 , connecting standard extendibility to supercompactness and
� - superstrongness, is similar. The only di�erence is that one needs to start with
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a � ∈ C(3), since the property of being extendible is Π3 - expressible; one again
checks that M |= � ∈ C(2) and then argues as above. ut

As a direct combination of the last proposition and Theorem 2.32, we get the
following characterization.
Corollary 2.36. A cardinal � is C(n) - extendible if and only if it is C(n) -
supercompact and � - superstrong. ut

In particular, for any �xed � > � , we also get the interesting equivalence that
the cardinal � is C(n) - supercompact and � - superstrong if and only if it is C(n) -
supercompact and � - superstrong. In other words, for the global version, usual
superstrongness of the supercompact embeddings is equivalent to the apparently
stronger � - superstrongness, for � > � .

Let us also recall that the above characterization is in accordance with the
results in [5], where it was shown that every C(n) - extendible cardinal belongs to
C(n+2). Also, for n = 1 , it makes the question regarding the relation between
supercompact and C(1) - supercompact cardinals even more intriguing.

Before concluding this chapter, we momentarily return to the supercompactness
case. As the reader should have already noticed, the proof of Theorem 2.32 gives
a way of describing supercompactness embeddings by ordinary extenders (albeit
long ones). Since this was advertised earlier on in the chapter, let us make it clear
and precise in the following corollary.
Corollary 2.37. Suppose that j : V −→ M is � - supercompact for � , for some
� > � . Let � = i� > � with cf(�) > � and let E be the (�; j(�)) - extender
derived from j. Then, the extender embedding jE : V −→ME is � - supercompact
for � with jE(�) = j(�).

Proof. Fix � > � and j : V −→M , a � - supercompact embedding for � . Further,
�x � = i� > � with cf(�) > � and let E be the (�; j(�)) - extender derived from
j. Then, recalling the proof of Theorem 2.32 one easily checks that the same idea
goes through.

Namely, we consider the (in this case, full) third factor embedding kE, arguing
that it is surjective (and thus, the identity) for sets in ME of rank below jE(�),
i.e., kE � V MEjE(�) = id and V MEjE(�) = V Mj(�) . Moreover, for all � 6 � , we have
that jE(�) = j(�) and, also, as cf(j(�)) > � (computed in V ), we get that
jE ′′� = j ′′� ∈ V Mj(�) and jE ′′� ∈ ME as well. To conclude, one shows closure
under � - sequences for ME just as we did in the proof of Theorem 2.32, noting
again that the assumption cf(�) > � ensures that cf(j(�)) > � which is exactly
what is needed for the rest of the argument to work. ut
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Observe once more that if the initial embedding j happens to have some degree
of superstrongness, then this is carried over to the extender embedding; e.g., in
the above proof as it stands, if j was also � - superstrong, then the same would
be true for jE.

Moreover, since the arising extender embedding is such that jE(�) = j(�), the
previous proof works for C(n) - supercompactness as well, i.e., if j : V −→ M
witnesses the � -C(n) - supercompactness of � , � = i� > � with cf(�) > �
and we let E be the (�; j(�)) - extender derived from j, then jE is also � -C(n) -
supercompact for � .

From our discussion so far, and except for the cases of Woodinness and of strong
compactness, the relation between the various large cardinals and their correspond-
ing C(n) - versions has not been fully clari�ed. In this context, it seems that the
notion of supercompactness is of central importance, with that of tallness being
essentially a special case.

The main question would then be, whether one can separate ordinary supercom-
pactness from C(n) - supercompactness, perhaps via some forcing arguments. For
example, when n = 1, one could aim at \killing" the C(1) - supercompactness of a
cardinal, while preserving its supercompactness.

For another example, in the particular model Vj(�) arising from the almost huge
embedding (cf. Proposition 2.31), one could try to make the �rst supercompact
strictly smaller that the �rst C(1) - supercompact. But, even for these cases, it is
still unclear how such a forcing argument might look like. For n > 1 the situation
becomes even more elusive, as we have no good control on the behaviour of the
Σn - correct ordinals with respect to forcing.

Having said all that, we do not bypass the forcing machinery altogether and
we are happy to announce a brief forcing interlude which is about to follow in
the next chapter. There, we shall present some (quite) basic properties arising
from the interaction between forcing and C(n) - cardinals, along with some hints
regarding the obstacles described above. We hope that you follow the relaxed
perspective of this interlude and that you enjoy it, dear reader.





CHAPTER 3

Forcing INTE RL UDE

We softly begin our interlude by recalling that if � ∈ C(n), for some n > 1 , then V�
satis�es Kripke { Platek set theory and Σn - separation along with Σn - collection.
Thus, for any poset P ∈ V�, we may freely do forcing over V� with the extra
knowledge that, for any particular Σn - formula, the forcing relation is going to be
Σn - de�nable over V�, using the poset P as a parameter.

Let us now see how some forcing notions interact with the C(n) - cardinals.
Lemma 3.1. Let P be a forcing notion and � a cardinal.

(i) Suppose that |P| < � and � ∈ C(n), for some n > 1 . Then, we have that
P 
 �̌ ∈ C(n).

(ii) Suppose that P does not change V�. Then, P 
 �̌ ∈ C(1) if and only if
� ∈ C(1).

(iii) Suppose that P does not change V� and � ∈ C(2). Then, for every � < � ,
if P 
 �̌ ∈ C(2) then � ∈ C(2).

Proof. For (i), without loss of generality, we may assume that rank(P) = 
 < �
and that a 
at pairing function has been used in the construction of the P - names.
Now let G be P - generic over V . By Lemma 1.18 and since � is a cardinal, we
get that V�[G] = V [G]�.

Fix some n > 1 , some Πn−1 - formula �(y; v1; : : : ; vk) and some P - names
ẋ1; : : : ; ẋk, such that V [G] |= ∃ y �(y; (ẋ1)G; : : : ; (ẋk)G), where (ẋi)G ∈ V [G]�
for each 1 6 i 6 k. Then, there is some condition p ∈ G which forces this fact
in V , i.e., the Σn - statement “ p 
 ∃ y �(y; ẋ1; : : : ; ẋk)” holds. Now, given that
V�[G] = V [G]�, all the ẋi 's may be assumed to belong to V�. Therefore, since
� ∈ C(n), we get that V� |= “ p 
 ∃ y �(y; ẋ1; : : : ; ẋk)”.

57
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But then, as the poset P belongs to V� and we may use the generic object G
freely in order to force over the latter, we get that

V�[G] |= ∃ y �(y; (ẋ1)G; : : : ; (ẋk)G):

The same argument going backwards, shows that if V�[G] = V [G]� satis�es a
Σn - formula then the same is true for V [G]. This implies that V [G] |= � ∈ C(n)

and we are done.
For (ii), we recall that being a C(1) - cardinal is a Π1 - expressible property and

hence the forward implication is true regardless of any assumption on the poset,
i.e., it follows from the fact that such a property is downwards absolute, from any
generic extension to the ground model.

For the converse, assume that � ∈ C(1) in the ground model, that is, � is an
uncountable (strong limit) cardinal with V� = H�. From this and the assumption
that V� = V [G]�, it easily follows that (V�)V [G] = (H�)V [G]. Moreover, � remains
an uncountable strong limit cardinal in V [G] and thus, V [G] |= � ∈ C(1) which
concludes part (ii).

For (iii), suppose that � ∈ C(2) and that P does not change V�. Fix some G
which is P - generic over V and some � < � so that V [G] |= � ∈ C(2).

By part (ii), � ∈ C(1) and V [G] |= � ∈ C(1). Now let  be a Σ2 - formula, whose
parameter(s), if any, belongs to V�, and suppose that  holds in the ground model.
Then, V [G]� = V� |=  and so, since � is C(1) in the extension, we have that
V [G] |=  . Now, going downwards, we �rst get V [G]� |=  by the correctness of
� in V [G] and �nally, V� |=  by the assumption on P. ut

For n > 1 , the lack of a (local) \ combinatorial " characterization of membership
in the class C(n) is a serious obstacle in showing the converse of (i), or of gener-
alizing (ii) of Lemma 3.1. Note that (iii) is only a partial result in this direction.
In fact, we now argue that the converse of (iii) does not necessarily hold since the
following situation is possible (i.e., consistent).

It is known that, relative to large cardinal assumptions at the level of hyper{
measurability, it is consistent that the GCH holds at successor cardinals but fails
at limits. More precisely, given a P 3(�) - hyper{measurable cardinal � , there is a
model of ZFC in which 2� = �++ for every limit cardinal � , whereas the GCH
holds everywhere else (cf. [12]). Suppose we are in such a model V and consider
any � ∈ C(2). Now force with the canonical poset Add(�+ ; 1) which is 6 � -
closed (hence it does not change V�) and makes the GCH true at � . Then, the
cardinal � and, in fact, all cardinals below it which were Σ2 - correct in V , are no
longer Σ2 - correct in the extension. To see this, notice that the statement \ there
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exists a limit cardinal at which the GCH holds " is Σ2, � ∈ C(1) remains true by
Lemma 3.1 (ii) and the continuum function is not altered at cardinals below � .

This example shows that it is possible to kill the \C(2) - ness" of all cardinals
up to � , while preserving V� (and hence preserving all C(1) 's below it) ]. What
is more, it highlights the (not very surprising) fact that there is no general, local,
combinatorial characterization of C(2) - ness, i.e., a characterization in terms of
the existence of some object A satisfying local properties, veri�able inside any
su�ciently large V� which contains A.

For suppose that such a characterization were available. Work again inside the
model where the GCH fails at limits but holds at successor cardinals. Fix some
� ∈ C(2). Then, the latter fact has to be witnessed by the existence of an object A.
Fix some su�ciently large � with A ∈ V�, so that the purported characterization
is faithfully veri�ed in V�, i.e., V� |= “A witnesses that � ∈ C(2) ”. Pick any
� ∈ C(2) above � and force the GCH at � without changing V�. By the previous
paragraphs, � no longer belongs to C(2) in the generic extension. On the other
hand, since V� is preserved after the forcing, the ∆1 - expressible local fact that
V� |= “A satis�es the characterization " is still true.

Let us now turn to the preservation of (some of) the C(n) - large cardinals con-
sidered so far, under appropriate forcing. We begin by �rst considering small
forcing.

Lemma 3.2. Suppose that � is C(n) - tall (superstrong, supercompact, extendible),
for some n > 1 , and let P be a forcing notion with |P| < � . Then, � remains
C(n) - tall (resp. superstrong, supercompact, extendible) in V P.

Proof. We may assume that P ∈ V�. Let us consider the case of supercompactness.
Fix an n > 1 and a (cardinal) � > � and let j : V −→ M witness the � -C(n) -
supercompactness of � in V . We let G be P - generic over V and we show that
the embedding can be lifted through the forcing.

Since P ∈ V�, we have that j(P) = P and so G is also j(P) - generic over M ,
with j ′′G = G. Thus, the embedding lifts to j : V [G] −→ M [G] in the generic
extension, where cp(j) = � and j(�) > � still hold. Moreover, since |P| < � , P is
certainly �+ - c.c. and thus, by Lemma 1.19, we get that V [G] |= �M [G] ⊆M [G].

Finally, by Lemma 3.1 (i), V [G] |= j(�) ∈ C(n) and this �nishes the veri�cation
that the lifted embedding witnesses the � -C(n) - supercompactness of � in the
generic extension.

] For another such example, but arising from considerations of signi�cantly larger consistency
strength, the reader is referred to Chapter 4 and the concluding remarks after Corollary 4.9.
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The case of tallness is now obvious, as the argument is essentially the same. For
superstrongness, considering again a 
at pairing function as in the proof of Lemma
3.1 (i), we obtain that V [G]j(�) = Vj(�)[G] and hence V [G]j(�) ⊆ M [G] by virtue
of Vj(�) ⊆M ⊆M [G].

To conclude, by Corollary 2.36, the case of extendibility follows from a straight-
forward combination of the cases of supercompactness and of superstrongness. ut
We now state the following, which is a more informative version of Lemma 3.2.
Again, we focus on the case of supercompactness.
Lemma 3.3. Suppose that E is a (�; Y ) - extender with jE : V −→ ME being a
� -C(n) - supercompact embedding for � , for some � > � . Let P be a forcing no-
tion with |P| < � . Then, jE lifts through P to a � -C(n) - supercompact extender
embedding.
Proof. Fix G a P - generic over V . The fact that the given embedding lifts to
jE : V [G] −→ME[G] in order to witness � -C(n) - supercompactness of � in V [G],
follows from Lemma 3.2. We now show that the extender representation is also
preserved along the way.

Recall that any such extender embedding comes with a nice representation of
its ultrapower (see the Appendix) and so, in the ground model,

ME = {jE(f)(j −1E � jE(a)) : a ∈ [Y ]<!; f : a(V�) −→ V; f ∈ V };
where � is the least ordinal such that Y ⊆ jE(V�). We now argue that, for the
lifted embedding, ME[G] has a representation in terms of functions in the generic
extension.
Claim. ME[G] = {jE(f)(j −1E � jE(a)) : a ∈ [Y ]<!; f ∈ V [G]}.
Proof of claim. Of course, by \ f ∈ V [G] " it is meant that the functions are again
of the form f : a(V [G]�) −→ V [G]. The claim is actually an instance of the more
general fact that, if an embedding is generated by a set of seeds and it lifts to some
generic extension, then the same set of seeds generates the lifted version. A proof
of this can be found either in [23] or in [27] and is { essentially { as follows.

Let �G ∈ ME[G] be some arbitrary element, where � ∈ ME is a jE(P) - name.
By the representation of ME, there is some a ∈ [Y ]<! and some ground model
function f : a(V�) −→ V with � = jE(f)(j −1E � jE(a)). We may assume that
for every s ∈ a(V�), f(s) is a P - name. Now de�ne, in V [G] and using f , the
function g : a(V [G]�) −→ V [G] so that, for every s ∈ a(V [G]�), if f(s) is de�ned
(and is thus a P - name), then g(s) = (f(s))G , otherwise g(s) = ∅. An easy
computation shows that jE(g)(j −1E � jE(a)) =

(jE(f)(j −1E � jE(a)))jE(G)
= �G

and the claim follows. ut
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Given the claim, if we now extract, in V [G] , the (�; Y ) - extender E∗ from the
lifted embedding, it is easily seen that, in fact, the lifted embedding is exactly the
extender ultrapower by E∗, in V [G]. ut

Observe that the same argument works even if one has ordinary extenders in-
stead of Martin { Steel ones. Also, as noted in the proof of the claim, the key
point was the fact that the ground model embedding had a nice representation
with regard to some class of functions and some set of seeds. As the argument is
quite general, the same proof works for the cases of tall, of superstrong, and of ex-
tendible cardinals as well, where for extendibility we again appeal to the equivalent
formulation in terms of simultaneous supercompactness and superstrongness.

We now consider preservation of C(n) - tall and of C(n) - supercompact cardinals
under su�ciently distributive forcing notions.
Lemma 3.4. Suppose that � is C(n) - tall and let P be a 6� - distributive forcing.
Then, � remains C(n) - tall in V P.

Proof. We show that, for su�ciently large � > � , every extender embedding which
witnesses the � -C(n) - tallness of � , lifts through the forcing. So, let us �x some n ,
some ordinal � > max {� ; |P|} and some extender embedding j : V −→M which
witnesses the � -C(n) - tallness of � , i.e., M is transitive, cp(j) = � , j(�) > � ,
�M ⊆M and j(�) ∈ C(n). Recall that, in such a case, we may assume that

M = {j(f)(x) : f ∈ V; f : V� −→ V; x ∈ V Mj(�)}:
Let G be P - generic over V . In order to show that j lifts through the forcing, we
check that j ′′G generates a j(P) - generic �lter over M . For this, let D ∈M be
an open dense subset of j(P). By the above representation of M , there is some
function f : V� −→ V in the ground model and some seed x ∈ V Mj(�) such that
D = j(f)(x). Without loss of generality, we may assume that for every w ∈ V�,
f(w) is an open dense subset of the poset P.

Now consider D0 =
⋂
w∈V�

f(w) which, by the distributivity of the forcing, is open
dense in P. Therefore, G ∩ D0 6= ∅ which in turn implies that j ′′G ∩ D 6= ∅,
since j ′′D0 ⊆ D. This shows that j ′′G meets every open dense subset of j(P)

in M and so it generates, on the M - side, a generic �lter H ⊆ j(P); thus, we
may indeed lift the embedding in order to obtain j : V [G] −→M [j(G)], where we
necessarily have that j(G) = H.

In the extension V [G], we still have that cp(j) = � and j(�) > � for the lifted
version. Moreover, since j(�) > |P|, Lemma 3.1 (i) implies that j(�) belongs
to C(n) in V [G]. Finally, the 6 � - distributivity of the forcing ensures that no
new � - sequences of ordinals are introduced. That is, any � - sequence of ordinals
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which belongs to V [G], actually lies in V and therefore in M , by the closure
of the latter. Hence, V [G] |= �M [j(G)] ⊆ M [j(G)] and so the lifted embedding
witnesses the � -C(n) - tallness of � in the generic extension. ut

As we show next, a similar argument works for C(n) - supercompactness. The
di�erence here is that we can no longer expect a uniform distributivity bound on
the forcing; in other words, we only have partial preservation.

Lemma 3.5. Suppose that � is C(n) - supercompact and suppose that, for some
(cardinal) � > � , the poset P is 6�<� - distributive. Then, � remains � -C(n) -
supercompact in V P.

Proof. Fix some n and some � > max {� ; |P|} and let j : V −→M witness the
� -C(n) - supercompactness of � . Now consider the elementary substructure

X0 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V Mj(�)} ≺M;

which gives rise to a (not necessarily initial) factor � - supercompact embedding
j0 : V −→ M0, via the Mostowski collapse �0 : X0

∼= M0 as usual. Since
j0(�) = j(�), j0 is moreover � -C(n) - supercompact for � .

Let G be P - generic over V . Exactly as in Lemma 3.4, we show that j0 lifts
through the forcing, by verifying that j0 ′′G generates a j0(P) - generic �lter over
M0. Note that the 6�<� - distributivity of the forcing is exactly the modi�cation
needed in order for the same argument to work.

Finally, again by the distributivity of the forcing, we obtain the required closure
under � - sequences for the lifted embedding j0 : V [G] −→ M0[j0(G)] and, there-
fore, we conclude that � remains � -C(n) - supercompact in the generic extension,
as desired. ut

Remark. Note that in both Lemmas 3.4 and 3.5, the assumption of full C(n) -
tallness (resp. C(n) - supercompactness) is what enables us to employ Lemma 3.1(i)
in order to conclude that the image j(�) of the ground model embedding which
we choose to lift remains a Σn - correct cardinal in the generic extension. For
n = 0 this is clearly not an issue. Indeed, for the ordinary notions, we have level {
by { level preservations: it is known that � - tallness (resp. � - supercompactness)
embeddings lift through any 6� - distributive (resp. 6�<� - distributive) forcing,
by essentially the same arguments.

Furthermore, again by the relevant result of Solovay, for every regular � above
a supercompact � , we have that �<� = � , which in such cases simpli�es slightly
the assumption of Lemma 3.5. ⊥
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This concludes our interlude. We now move on to the next chapter, where we
discuss how some ideas from Chapter 2 can be applied to the case of extendible
cardinals. In particular, we will combine our characterization of extendibles { in
terms of simultaneous supercompactness and superstrongness { with the method
of elementary chain constructions; we shall then see what happens.





CHAPTER 4

Extendible cardinals, Laver

functions, and the GCH

In 1978, Richard Laver established a landmark result: he showed that the super-
compactness of a cardinal � can be made indestructible under <� - directed closed
forcing (cf. [35]). For this, he introduced a type of partial functions on the cardinal
� which have the property of \anticipating" any arbitrary element of the universe,
via appropriate supercompactness embeddings for �. Such functions, which exist
for any supercompact cardinal, are now called Laver functions.

Following Laver's innovation, a vast area of applications and extensions has
emerged, giving many wonderful results during the years: Baumgartner used
Laver functions in order to obtain the consistency of PFA (see Theorem 31.21
in [28]); Foreman, Magidor, and Shelah used analogous techniques for their proof
of the consistency of MM (cf. [20]). Hamkins has considered several generalized
Laver principles (cf. [25]) and has also introduced the Lottery preparation (cf. [24]);
Corazza has shown the existence of Laver sequences for extendible, super{almost
huge, superhuge cardinals, and more (cf. [11]). At the same time, there have been
various results on indestructibility issues (e.g., by Apter et al. on the indestruc-
tibility of strongly compacts; cf. [2]). And all these are just to mention a few.
Indeed, Laver functions have proven to be an extremely versatile and fruitful tool
in the context of large cardinals.

In the �rst section of this chapter we consider the case of extendible cardi-
nals, showing that such functions can be built recursively, using the framework
introduced by Laver. Although this particular result is not a novelty, our proof
uses a nice combination of the extendibility characterization from Chapter 2 (cf.
Corollary 2.36) and of an elementary chain construction.

After that, and on the negative side, we argue that one cannot use such functions
in order to derive indestructibility results for extendible cardinals, contrary to what

65
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happens in the case of supercompactness. The essential obstacle in the current
setting is apparently the fact that every extendible cardinal is Σ3 - correct in the
universe and thus, is able to re
ect much information regarding the GCH patterns.

Along the way, we obtain one more characterization of extendibility and we also
show that one may force the global GCH in the universe while preserving such
cardinals. Let us begin.

4.1 Extendibility Laver functions

In Section 2.6 we characterized extendibility in terms of supercompactness and
(� -) superstongness (for � > �). We therefore de�ne what it means to be a Laver
function for an extendible cardinal as follows; recall that the three { dot notation
is used to denote partial functions.

De�nition 4.1. Suppose that � is extendible. A function ` ... � −→ V� is an
extendibility Laver function for � if it satis�es the following requirements :

(i) Every � ∈ dom(`) is supercompact but not extendible.

(ii) For every � ∈ dom(`), ` ′′� ⊆ V�.

(iii) For every (cardinal) � > � and any x ∈ H�+ there is an (extender) elemen-
tary embedding j : V −→ M which is � - supercompact and � - superstrong
for � , and such that j(`)(�) = x.

As in the case of ordinary Laver functions, we build an extendibility Laver function
by recursively considering the \points of possible failure" of (iii), which is the
essential requirement. The reader may consult [27] or [28] for a detailed account
on such a proof strategy.

Theorem 4.2. Every extendible cardinal carries an extendibility Laver function.

Proof. We �x an extendible cardinal � and some well { ordering C� of V�. For
any � < � , assuming that ` � � has already been de�ned, we de�ne the function
` at � only if the following conditions are satis�ed:

(1) � is supercompact but not extendible and ` ′′� ⊆ V�.

(2) There exists some (cardinal) � > � and some x ∈ H�+ such that, for every
(extender) elementary embedding j : V −→ M which is � - supercompact
and � - superstrong for � , j(` � �)(�) 6= x.
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In such a case, we �x ��, the least cardinal for which condition (2) holds (for some
x ∈ H�+� ), and we then de�ne `(�) to be the C� - minimal element x ∈ H�+� ,
among all witnesses to condition (2), for this �xed cardinal ��. Otherwise, we
leave ` unde�ned at � . This concludes the recursive de�nition of the function.

Before showing that ` is indeed an extendibility Laver function, let us �rst check
that, if condition (2) is satis�ed for some � < � , then the least such �� must
necessarily be below � . This will justify the use of C� to pick the value `(�) and
will consequently show that the range of ` is included in V�, i.e., the constructed
function is indeed of the form ` ... � −→ V�.

For this, we use the fact that every extendible cardinal is Σ3 - correct in the
universe and show that condition (2) can be expressed as a Σ3 - statement in the
parameters � and ` � � . Let '(� ; � ; E) be a �xed formula asserting that \� is
a cardinal and E is a � - supercompact and � - superstrong extender for � ". We
remark here that the extender E can be either of the Martin { Steel form or an
ordinary one (e.g., as in Corollary 2.37). Then, condition (2) is easily seen to be
equivalent to the Σ3 - statement ∃�∃x (� ; x ; � ; ` � �), where the Π2 - formula
 (� ; x ; � ; ` � �) is as shown below:

∀E; �; Y; Z (“� is strong limit; cf(�) > rank(E) > � ” ∧ “Z = V� ”∧
� ; x ; E ; Y ∈ Z ∧ Z |= “Y = H�+ ” ∧ x ∈ Y ∧
Z |= '(� ; � ; E) −→ Z |= “ jE(` � �)(�) 6= x ”):

Intuitively, � being a strong limit of co�nality above all the relevant information
makes V� capable of verifying faithfully both the fact that E is � - supercompact
and � - superstrong for � , and also that jE(` � �)(�) 6= x.

We now show that the constructed ` ... � −→ V� is indeed an extendibility Laver
function for � . First of all, it is clear by its construction that conditions (i) and
(ii) of De�nition 4.1 are satis�ed. We now check condition (iii).

Towards a contradiction, suppose that there exists a least cardinal � > � and
some x ∈ H�+ such that condition (iii) of De�nition 4.1 fails. Then, using the
formula displayed above and for these �xed � and x, we have that  (� ; x ; � ; `)
is a true Π2 - statement asserting exactly this failure.

Now �x some � ∈ C(2) with � > � and let � > � be inaccessible. We need the
following.
Claim. There exists an elementary embedding j : V −→ M , witnessing the � -
supercompactness and � - superstrongness of � , with j(�) and j(�) inaccessibles
and with M |= “� is not extendible ”.

Proof of claim. We refer to the arguments in the proof of Theorem 2.32. Let
h : V�+1 −→ Vh(�)+1 witness the �+1 - extendibility of � , with image h(�) > �+1
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as small as possible (and with h(�) and h(�) inaccessibles).
It follows that Vh(�) |= “� is not � + 1 - extendible ” since, otherwise, any wit-

nessing embedding i ∈ Vh(�) would indeed be a �+1 - extendibility map for � , as
h(�) ∈ C(1). But such an i would necessarily have i(�) < h(�), contradicting the
minimality of the latter.

Now derive E, the (�; h(�)) - extender from h and consider the extender em-
bedding j = jE : V −→ ME. As in Theorem 2.32, it now follows that j is
� - supercompact and � - superstrong for � , with j(�) = h(�) and j(�) = h(�)
inaccessibles. To conclude the proof of the claim, it follows by the previous para-
graph that Vj(�) |= “� is not extendible ” and then, since ME |= j(�) ∈ C(3) by
elementarity, we also have that ME |= “� is not extendible ” as desired. ut

Having �xed such a j : V −→ M given by the claim, we now show that,
in M , j(`) is de�ned at � . For this, recall that j(`) � � = `, which implies
that j(`) ′′� ⊆ V� in M . Moreover, since Vj(�) ⊆ M , M has all the relevant
normal �ne measures and so M |= “� is < j(�) - supercompact ”. Thus, since
M |= “ j(�) is supercompact ”, � is supercompact in M , whereas, by the above
claim, � is not extendible in M .

In addition, Vj(�) |= � ∈ C(2) since Π2 - statements are downwards absolute to
C(1) - ordinals. Thus, again by Vj(�) ⊆ M and M |= j(�) ∈ C(2), we have that
M |= � ∈ C(2). Moreover, as � ∈ C(2), V� |=  (� ; x ; � ; `) and thus, it follows
that M |=  (� ; x ; � ; `). In fact, it is true in M that � is the least cardinal
for which  (� ; x ; � ; `) holds, for some x ∈ H�+ , i.e., in M , � = �� in our
notation. This is because, for any � < � and any x ∈ H�+ , it is true in V that
there exists some appropriate � - supercompact and � - superstrong extender E
for which jE(`)(�) = x. Since this is re
ected in V� ⊆M , it is also true in M .

All this shows that conditions (1) and (2) of our recursive de�nition are satis�ed
in M , for j(`) � � and � . Thus, there is some y ∈ H�+ such that j(`)(�) = y
(where this y is chosen using the well { ordering j(C�) in M). Observe that,
precisely by the de�nition of j(`)(�) = y,

(?) M |=  (� ; y ; � ; j(`) � �)

(where j(`) � � = `) and it is this fact that will give us the desired contradiction.
We now use an elementary chain construction, using the fact that j is � -

supercompact and � - superstrong, with j(�) and j(�) inaccessibles. In the present
construction, we slightly diverge from our treatment of elementary chains in the
case of supercompactness (cf. Section 2.5) since here, we are aiming at a factor
embedding which is, in addition, � - superstrong. In particular, the ordinals ��
which we will consider along the chain will start above j(�) and will be bounded
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in (the inaccessible) j(�). At any rate, the underlying ideas should be familiar.
Let us start by picking some initial limit ordinal �0 ∈ (j(�) ; j(�)) and by letting

X0 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V�0} ≺M:
We also pick some 
 < j(�) with cf(
) > � , which will serve as the length of our
chain. Then, for any �+1 < 
 , given �� and X�, we let ��+1 = sup(X� ∩ j(�))+!
and

X�+1 = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V��+1
}:

If � < 
 is limit and we have already de�ned �� and X� for every � < � , we let
�� = sup�<� �� and

X� =
⋃
�<�

X� :

Finally, we let �
 = sup�<
 �� and

X
 =
⋃
�<


X� = {j(f)(j ′′� ; x) : f ∈ V; f : P��× V� −→ V; x ∈ V�
} ≺M:

Note that in the de�nition of the ��+1 's , j(�) has replaced the j(�) which we
used for our chain constructions in Chapter 2. Recalling then our arguments
from Section 2.5, the inaccessibility of j(�) gives that �
 < j(�), where clearly
cf(�
) = cf(
) > � . As usual, we take the Mostowski collapse �
 : X
 ∼= M

and we then de�ne the composed map j
 = �
 ◦ j : V −→ M
, with cp(j
) = � ,
producing a commutative diagram of elementary embeddings (with k
 = �−1
 ).

Along the lines of Section 2.5, one easily checks that j
 is a � - supercompact
and � - superstrong factor of j, where in fact, cp(j
) = � , j
(�) = j(�) and

cp(k
) = j
(�) = sup(X
 ∩ j(�)) = �
 :
Furthermore, recall that (as in the proof of Theorem 2.27), for every � < j(�), we
have that j
(�) < j(�) and then, the (Martin { Steel) extender E which is derived
from j
 and which witnesses its � - supercompactness and � - superstrongness,
actually belongs to Vj(�) and thus to M . Finally, again by the inaccessibil-
ity of j(�), the model Vj(�) can faithfully verify that E is a � - supercompact
and � - superstrong extender for � . Hence, M certainly thinks that \E is � -
supercompact and � - superstrong for � " and, moreover, it correctly computes the
value jE(`)(�). We are about to contradict (?) by showing that

j
(`)(�) = jE(`)(�) = y:
For this, �rst of all and without loss of generality, the transitive set Y ⊆M
 which
serves as the support of the extender E, may be taken to include j
(`), which is
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an element of V M
j
(�)+1 = Vj(�)+1 (recall again the construction of such a Y in
the proof of Theorem 2.27, and also the remarks following that proof). Then, as
kE : ME −→ M
 is the identity on Y and commutes with j
 : V −→ M
 and
jE : V −→ME, we will have that j
(`) = jE(`).

Consequently, it is enough to show that j
(`)(�) = y. But this follows easily
from the fact that j
 is a factor of j with cp(k
) = j
(�). Just notice that, by
construction of j
, all the four: � , � , H�+ and y belong to V�
 and are, thus,
�xed by the collapse �
. It now follows that

j
(`)(�) = �
(j(`)(�)) = �
(y) = y ;
which gives the desired contradiction and concludes the proof. ut

Remark. Given the fact that extendible cardinals are involved, it is natural
to ask whether we can require that the extendibility Laver function, apart from
anticipating any prescribed set x ∈ H�+ of the universe (meaning that j(`)(�) = x
for some appropriate � - supercompact and � - superstrong embedding j), is such
that j(�) is, in addition, an inaccessible cardinal (or even Mahlo, weakly compact,
measurable, Woodin). Recall here the remark following De�nition 2.34.

Indeed, we can \build { in" any of these extra properties, into the recursive
construction of the Laver function. That is, for the case of, say, Woodin, we
modify condition (2) of the recursion and require the following:
If there exists some (cardinal) � and some x ∈ H�+ so that, for every (extender)

elementary embedding j : V −→M which is � - supercompact and � - superstrong
for � and has j(�) Woodin, we have j(` � �)(�) 6= x, then we �x the least �
for which this property holds (for some x ∈ H�+) and we de�ne `(�) as the
C� - minimal element x ∈ H�+ , among all possible candidates which satisfy this
property, for this �xed �.

It is now straightforward to check that, modulo the obvious changes (e.g., in the
formula  (� ; x ; � ; ` � �), we incorporate the extra clause \ jE(�) is Woodin "),
the rest of the argument goes through smoothly. In particular, for the embedding
j in the claim of the proof, we pick it in such a way that the j(�) is a Woodin
cardinal; this is clear. Then, at the �nal step where we use the elementary chain
argument, as j
(�) = j(�), M indeed veri�es that j
 is, additionally, Woodin,
and we thus arrive again at the desired contradiction.

From now on, if it ever becomes relevant, we will assume any of these extra
properties (or even combinations of them as, e.g., Woodin measurable) as part of
the de�nition of an extendibility Laver function. ⊥

Arguably, the most important feature of the usual Laver function is the fact
that the � - supercompact embedding j may be chosen (with some extra care) so
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that, apart from anticipating the �xed set x ∈ H�+ , is such that the domain of
j(`) includes large empty spaces, in the sense that dom(j(`)) ∩ (� ; �] = ∅.

Recall that it is exactly this property which is exploited in an essential way
in order to lift various embeddings through the Laver preparation, deriving inde-
structibility results for the supercompactness of � .

We now show that, without loss of generality, this extra feature is enjoyed by
extendibility Laver functions as well. For this, let us (very) temporarily denote
by `∗ any extendibility Laver function which is built in the following way: we
recursively construct the function as in the proof of Theorem 4.2 but, in addition
to conditions (1) and (2) appearing there, we also impose the requirement:

(3) � ∈ dom(`∗) =⇒ � > sup{�
 : 
 ∈ � ∩ dom(`∗)};
where, according to our notation, �
 denotes the least (cardinal) for which there
is a set x ∈ H�+
 which is never anticipated by any �
 - supercompact and �
 -
superstrong embedding for 
 .

It is straightforward to check that this extra requirement does not interfere
with the rest of the proof of Theorem 4.2, i.e., any such (modi�ed) `∗ is still an
extendibility Laver function for � . We then have the following.
Lemma 4.3. Suppose that � is extendible and let `∗ ... � −→ V� be a modi�ed
extendibility Laver function as just described. Then, for every (cardinal) � > �
and every x ∈ H�+, there is an (extender) elementary embedding j : V −→ M
which is � - supercompact and � - superstrong for � , with j(`∗)(�) = x and with
dom(j(`∗)) ∩ (� ; �] = ∅.

Proof. Fix a cardinal � > � and some x ∈ H�+ . Furthermore, �x some � ∈ C(2)

with � > � . Clearly, x ∈ H�+ and so, since `∗ is an extendibility Laver function,
let j : V −→M be a � - supercompact and � - superstrong (extender) embedding
for � , with j(`∗)(�) = x. Exactly as in our earlier arguments, M |= � ∈ C(2).

Now, � ∈ dom(j(`∗)) and so let us call � the next ordinal in dom(j(`∗)) above
� ; we will show that � > � which is what we want. For this, we appeal to
the extra requirement (3) which we introduced to the recursive de�nition of the
function `∗.

Since � ∈ C(2), for every � 6 � and any x ∈ H�+ , the fact that x is anticipated
by some � - supercompact and � - superstrong extender embedding for � , is cor-
rectly re
ected inside V�; then, in turn, it also holds in M , since M |= � ∈ C(2).
Hence, as computed in M , the least cardinal � for which there is some z ∈ H�+

which is never anticipated by any � - supercompact and � - superstrong extender
embedding for � has to be greater than � , i.e., �� > � in M . But then, the
extra condition (3) which we imposed automatically implies that � > �� > � . ut
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Once we have extendibility Laver functions with the extra feature guaranteed
by the last lemma, one naturally (or naively) hopes for indestructibility results
using the standard framework of the Laver preparation. Nevertheless, as we have
already advertised, an extendible cardinal � can never be made indestructible
(e.g., under < � - directed closed forcing) by set forcing and we now turn to the
proof of this fact.

Actually, we shall show that this \de�cit" of extendible cardinals applies to any
Σ3 - correct cardinal and to a wide range of forcing notions, although the property
of < � - directed closure serves as our motivational and prototypical example.

The key observation is the fact that Σ3 - correct cardinals re
ect much infor-
mation regarding the GCH patterns of the universe and thus, as one can do all
sorts of modi�cations to the GCH above such a cardinal � using a great variety of
posets, one cannot expect to preserve at the same time the Σ3 - correctness of � .
For instance, we might already observe the following.

Lemma 4.4. Suppose that � ∈ C(3) and the GCH holds everywhere above � .
Then, for any � > � , the poset Add(� ; �++) destroys the Σ2 - correctness of � .

Proof. Note that the sentence \ there exists some � such that, for all � > � ,
2� = �+ " is Σ3 and clearly true in V , by the assumption on the GCH above � .
Hence, as it must hold in V� as well, �x some � < � so that the GCH holds above
� in the structure V�.

But now it is clear that, for any � > � , after forcing with the canonical poset
P = Add(� ; �++), we make the GCH fail at � while preserving all of V� (and
so, in particular, the GCH pattern below � as well). Hence, in V P, � cannot be
Σ2 - correct anymore, since the Σ2 - statement \ there exists some � > � such that
the GCH fails at � " is not re
ected correctly in V�. ut

Our next goal is to show that, in the case of extendibility, the GCH assumption
is harmless as one can always force the global GCH while preserving extendible
cardinals. This sort of preservation is already known for other large cardinal
notions: R.B. Jensen inaugurated the list with the case of measurables; T.K. Menas
then did it for supercompacts, and J.D. Hamkins followed with I1 embeddings (see
[27] for the �rst two, and [22] for the third case). More recently, similar results were
obtained for versions of superstrongs, due to S.D. Friedman, and for 1 - extendibles
and Vop�enka's Principle, due to A. Brooke { Taylor (see [10] and [9] respectively).

Towards this goal, we now turn to a di�erent characterization of extendibility,
one which better suits our current purposes.
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4.2 (yet) Another characterization

Motivated by the analogous result for 1 - extendibility given in [8], we give a
straightforward generalization of the same idea to cover full extendibility.

Proposition 4.5. Let � be a cardinal and �x some � = i� > � . Then, � is
�+ 1 - extendible if and only if there exists some (cardinal) � and an elementary
embedding j : H�+ −→ H�+ with cp(j) = � and j(�) > �+ 1 .

Proof. Suppose that � is � + 1 - extendible, for some �xed � = i� > � , and let
h : V�+1 −→ Vh(�)+1 be a witnessing elementary embedding, with cp(h) = � and
h(�) > �+ 1 . Let us put � = h(�), which is clearly a cardinal. We shall use h in
order to de�ne an elementary embedding j : H�+ −→ H�+ , such that cp(j) = �
and j � (� + 1) = h � (� + 1). For this, we employ ordinary coding techniques in
order to describe any set in H�+ using appropriate codes in V�+1.

Let x ∈ H�+ and �x some (any) bijection fx : |trcl({x})| −→ trcl({x}).
Consider the binary relation Ex on dom(fx) which is de�ned so that, for any
� ; � ∈ dom(fx),

〈� ; � 〉 ∈ Ex ⇐⇒ fx(�) ∈ fx(�) :
Notice that, since dom(fx) is some cardinal 6 � , Ex ∈ V�+1 and, moreover, if
〈Tx ; ∈ 〉 is the Mostowski collapse of 〈 dom(fx) ; Ex 〉, then Tx ∼= trcl({x}) and
thus, as both are transitive sets, Tx = trcl({x}). It is clear that from Tx one may
recover easily the set x, it being the unique maximal element of Tx under \∈ ".

This procedure gives a way of coding sets x ∈ H�+ by corresponding sets
Ex ⊆ � × � , for some cardinal � 6 � , with Ex ∈ V�+1. Then we may de�ne,
inside V�+1, a class C� ⊆ V�+1 consisting exactly of such coding sets; that is,
X ∈ C� if and only if X is a well { founded, extensional, binary relation on some
cardinal � 6 � , (where � is the union of the domain and the range of X) and so
that, if X 6= ∅, then X has a unique maximal element.

Now, for any X ∈ C� , let fld(X) denote the �eld of X , i.e., the cardinal
� which equals the union of the domain and the range of X and, moreover, if
X 6= ∅, let max(X) denote the unique ordinal in fld(X) which is maximal with
respect to the relation X. Next, for any X and Y in C�, de�ne the relation \ =∗ "
by declaring that

X =∗ Y ⇐⇒ ∃ f (f : 〈 fld(X) ; X 〉 iso−→ 〈 fld(Y ) ; Y 〉);

i.e., the two relations are isomorphic. Also, for any X ∈ C� and any a ∈ fld(X),
let Xa =

⋃
n∈!

A(a)n where A(a)
0 = {〈x ; a 〉 ∈ X : x ∈ fld(X)} and, recursively for
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n ∈ ! , A(a)n+1 = {〈x ; z 〉 ∈ X : z ∈ dom(An)}. Now de�ne the relation \∈∗ " by
stipulating that

X ∈∗ Y ⇐⇒ ∃ a ∈ fld(Y ) (〈 a ; max(Y ) 〉 ∈ Y ∧ X =∗ Ya):

Clearly, the relations \ =∗ " and \∈∗ " are de�nable in V�+1. For any X ∈ C�, let
us denote its Mostowski collapse by �(X). Then, one easily checks that, for any
X and Y in C�,

X =∗ Y ⇐⇒ �(X) = �(Y )

and
X ∈∗ Y ⇐⇒ �(max(X)) ∈ �(max(Y )):

By the way, observe that given any x ∈ H�+ and any code Ex ∈ C� arising from
some bijection fx : |trcl({x})| −→ trcl({x}), we have that x = �(max(Ex)).

All the above make us capable of translating any �rst { order formula ' whose
parameters range over H�+ , into an equivalent formula '∗ whose parameters
range over V�+1: we replace any x ∈ H�+ by a corresponding code Ex ∈ C� for
it; we replace the standard set { theoretic relations \ = " and \∈ " by the de�nable
relations \ =∗ " and \∈∗ " respectively; �nally, quanti�cation is taken to range over
C�. That is, for any �rst { order formula '(v1 ; : : : ; vn) and any xi ∈ H�+ , for
1 6 i 6 n ,

H�+ |= '(x1 ; : : : ; xn)⇐⇒ V�+1 |= '∗(Ex1 ; : : : ; Exn);

for some (any) bijections fxi : |trcl({xi})| −→ trcl({xi}), for 1 6 i 6 n . It is
also clear that all the above can be done equally well for � in place of � . In
fact, we have a class C� which is de�nable in V�+1 by the exact same de�nition,
with the only di�erence being that one replaces � by � , i.e., a coding set X is
now an appropriate relation on some cardinal � 6 � . Obviously, C� ⊆ C�. Of
course, the de�nitions of fld(X), max(X), and the relations =∗ and ∈∗ remain
the same. Hence, we similarly have a translation of any �rst { order formula '
whose parameters range over H�+ , into an equivalent formula whose parameters
range over V�+1. Abusing the notation slightly, we again call '∗ this translation,
keeping in mind that the quanti�cation now ranges over the class C� as de�ned
in V�+1.

At this point, by the elementarity of h, for any X and Y in C�,

V�+1 |= X =∗ Y ⇐⇒ V�+1 |= h(X) =∗ h(Y )

and
V�+1 |= X ∈∗ Y ⇐⇒ V�+1 |= h(X) ∈∗ h(Y ):
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Then, inductively, for any formula '(v1 ; : : : ; vn) and Xi ∈ C�, for 1 6 i 6 n ,
V�+1 |= '∗(X1 ; : : : ; Xn) if and only if V�+1 |= '∗(h(X1) ; : : : ; h(Xn)). We now
de�ne the map j : H�+ −→ H�+ by letting, for every x ∈ H�+ ,

j(x) = �(max(h(Ex))) ;
for some (any) bijection fx : |trcl({x})| −→ trcl({x}), giving rise to the code Ex.
We evidently have that j � (�+ 1) = h � (�+ 1). Let us �nally check that j is an
elementary embedding. For this, �x any formula '(v1 ; : : : ; vn) , any xi ∈ H�+

and any corresponding codes Exi ∈ V�+1, for 1 6 i 6 n . We have the following
equivalences:

H�+ |= '(x1 ; : : : ; xn) ⇐⇒ V�+1 |= '∗(Ex1 ; : : : ; Exn)
⇐⇒ V�+1 |= '∗(h(Ex1) ; : : : ; h(Exn))
⇐⇒ H�+ |= '(j(x1) ; : : : ; j(xn)) ;

which conclude the proof of the forward direction of the proposition.
Conversely, suppose that for some � = i� > � and some cardinal � , we have

an elementary embedding j : H�+ −→ H�+ with cp(j) = � and j(�) > � + 1 .
Clearly, j(�) = � . Furthermore, as � is a beth �xed point, V�+1 is a de�nable
class in H�+ , namely,

V�+1 = {x ∈ H�+ : x ⊆ H�}:
This means that we may relativize any �rst { order formula to V�+1, within H�+ .
Of course, the analogous facts are true for V�+1 and H�+ correspondingly. By
these observations, one easily veri�es that j � V�+1 : V�+1 −→ V�+1 is an elemen-
tary embedding witnessing the �+ 1 - extendibility of � . ut

As an immediate corollary, we get the following characterization of extendibility
in terms of the H� 's.
Corollary 4.6. A cardinal � is extendible if and only if for all � = i� > � ,
there is some (cardinal) � and an elementary embedding j : H�+ −→ H�+ with
cp(j) = � and j(�) > �+ 1 . ut

4.3 Forcing the global GCH

We now use the characterization just obtained in order to show that the global
GCH can be forced while preserving extendible cardinals. For this, we shall use a
class length forcing iteration P ; intuitively, this will just be the Easton iteration of
the \obvious" canonical posets Add(�+ ; 1), which will successively force the GCH
at every in�nite cardinal � of the universe.
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It is true that we have not accounted for the nuances related to class forcing
in the prelude. One excuse is that we shall not be needing the full generality of
the theory of class forcing. Another excuse is that this is the only place in the
text where such a forcing is used. In this sense, the current section and especially
Theorem 4.8 can be thought of as another local methodological digression, just
like Section 2.4 was for Chapter 2.

Withal, the reader is reminded that our treatment here follows closely [8], where
a very informative presentation of such class iterations is given; in particular,
one may �nd details regarding the following de�nition of the poset which we will
employ, as well as several of its properties which we will invoke. We hope that this
reference compensates for the lack of an introductory exposition.

De�nition 4.7. The canonical forcing P for the global GCH is the class
length reverse Easton iteration of 〈 Q̇� : � ∈ ON 〉, where P0 = {1} and, for each
� , if � is an in�nite cardinal in V P�, then Q̇� is the canonical P� - name for the
poset Add(�+ ; 1)V P� . At limit stages we take direct limits at inaccessibles, and
inverse limits otherwise. Finally, P is the direct limit of the P� 's, for � ∈ ON.

The iteration P preserves ZFC, preserves inaccessible cardinals and forces the
GCH everywhere. Moreover, at any inaccessible cardinal � , the iteration factors
as P� ∗ Ptail, where |P�| = � and Ptail is (forced to be) 6 � - directed closed. It is
also known (see [15] for details) that the weak homogeneity ‡ of the individual GCH
forcings carries over to the whole, class { length iteration and any initial segment
of it. We are now ready to prove the following.

Theorem 4.8. Every extendible cardinal � is preserved by the canonical forcing
P for the global GCH.

Proof. Fix an extendible cardinal � and further �x some inaccessible � > � .
By the results of the previous section, let j : H�+ −→ Hj(�)+ be an embedding
witnessing the � + 1 - extendibility of � in V ; that is, cp(j) = � , j(�) > � + 1

and j(�) inaccessible.
Let G be P - generic over V ; it is our aim to show that this ground model

embedding j lifts to an embedding of the form j : HV [G]�+ −→ HV [G]j(�)+ , witnessing
the �+ 1 - extendibility of � in V [G], which will be enough in order to conclude
the theorem. For this, we factor the whole forcing iteration as

P� ∗ Ṗ[� ; �) ∗ Ṗ[� ;∞) ;
‡Recall that a poset Q is called weakly homogeneous if for any two p ; q ∈ Q there is an

automorphism � : Q→ Q such that �(p) and q are compatible.



Extendible cardinals, Laver functions, and the GCH 77

where the notation should be self { explanatory; e.g., Ṗ[� ; �) is the (P� - name for
the) partial iteration of forcings which occur at stages between � and � . We
will lift the ground model embedding in two (and a half) steps, according to
the above factorization. Throughout the proof, let us denote by G�, G[� ; �) and,
more generally, G(� ; �), the corresponding projections of the generic �lter G, which
are generics for the corresponding partial iterations of P. With the expectation
that this does not produce any confusion, whenever we drop the \ dot" from any
factor of the iteration, it means that we are considering the corresponding poset in
the current, partial, generic extension of V , arising from the interpetation of the
corresponding name by the current, partial, generic �lter; e.g., P[� ; �) = (Ṗ[� ; �))G� ,
considered in the partial generic extension V [G�].

As our �rst step, we lift through the initial forcing P�, where we observe that
P� ∈ H�+ and thus, G� is certainly P� - generic over H�+ . Accordingly, the partial
�lter Gj(�) is Pj(�) - generic over Hj(�)+ , where Pj(�) = j(P�) ∈ Hj(�)+ . Since the
forcing P� is a direct limit and cp(j) = � , it is easily checked that j ′′G� ⊆ Gj(�)

and hence we may indeed perform the �rst lift of the embedding:
j : H�+ [G�] −→ Hj(�)+ [Gj(�)]:

For the second step, it is our aim to lift further through the forcing P[� ; �), i.e.,
through (Ṗ[� ; �))G� . We remark that this makes sense, since Ṗ[� ; �) has size � and
P[� ; �) ∈ H�+ [G�]. Now, it is clear that G[� ; �) is P[� ; �) - generic over H�+ [G�].
Similarly, G[j(�) ; j(�)) is P[j(�) ; j(�)) - generic over Hj(�)+ [Gj(�)], where, by elemen-
tarity, P[j(�) ; j(�)) = j(P[� ; �)).

Thus, the only problem in performing the second lift, is to ensure that the
lifting criterion j ′′G[� ; �) ⊆ G[j(�) ; j(�)) is satis�ed. For this, although one may
indeed �nd a relevant master condition r as we shall soon see, it is not necessarily
the case that our (�xed beforehand) generic G, is such that its segment G[j(�) ; j(�))

contains this condition. So, our plan will be to �rst �nd a master condition r
and then argue, using the (weak) homogeneity of the GCH forcings, that we may
modify appropriately the part G[j(�) ; j(�)) of our generic �lter in order to produce,
in V [G], a �lter G∗ which will contain the condition r, which will be P[j(�) ; j(�)) -
generic over Hj(�)+ [Gj(�)] and so that V [Gj(�)] = V [Gj(�)][G∗], i.e., it will result
in the same generic extension for the forcing at hand.

In order to �nd the master condition, recall that P[� ; �) has size � in H�+ [G�]
(and so in Hj(�)+ [Gj(�)] as well) an also, we clearly have that j ′′� ∈ Hj(�)+ [Gj(�)].
Therefore, as G[� ; �) appears explicitly in the partial �lter Gj(�), we may combine
j ′′� with some enumeration of P[� ; �) in order to get that j � P[� ; �) ∈ Hj(�)+ [Gj(�)];
thus, j ′′G[� ; �) ∈ Hj(�)+ [Gj(�)] as well (and has size � there). Now, since j ′′G[� ; �)

is a directed subset of P[j(�) ; j(�)) and the latter is 6 j(�) - directed closed in
Hj(�)+ [Gj(�)], there is indeed a lower bound for j ′′G[� ; �), i.e., there exists some
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r ∈ P[j(�) ; j(�)) with r 6 j ′′G[� ; �); this is the desired master condition. As we have
pointed out, there is no reason to expect that r ∈ G[j(�) ; j(�)). We now modify the
�lter G[j(�) ; j(�)) in order to produce the appropriate G∗, with r ∈ G∗.

Working for the moment in the model Hj(�)+ [Gj(�)], since P[j(�) ; j(�)) is weakly
homogeneous, the set of conditions t for which there exists some automorphism
e : P[j(�) ; j(�)) −→ P[j(�) ; j(�)) with e(t) 6 r is dense. Using the fact that G[j(�) ; j(�))

is generic, we may �nd such a condition t ∈ G[j(�) ; j(�)). Note that this t cannot
be found working in Hj(�)+ [Gj(�)], since we are appealing to the further generic
�lter G[j(�) ; j(�)); even so, it indeed exists and it certainly belongs to Hj(�)+ [Gj(�)],
together with the corresponding automorphism e. Then, by standard forcing facts
(cf. Chapter VII, Theorem 7.11 in [33]) it follows that, if we let G∗ be the �lter
generated by the pointwise image e ′′G[j(�) ; j(�)), then G∗ is P[j(�) ; j(�)) - generic
over Hj(�)+ [Gj(�)] with r ∈ G∗ and, moreover,

Hj(�)+ [Gj(�)] = Hj(�)+ [Gj(�)][G∗];
i.e., we have succeeded in �nding the appropriate �lter which contains our �xed
master condition. We may thus conclude the second lift of the embedding, obtain-
ing

j : H�+ [G�][G[� ; �)] −→ Hj(�)+ [Gj(�)][G∗];
or, equivalently,

j : H�+ [G�] −→ Hj(�)+ [Gj(�)]:
As the �nal (half) step of the argument, we show that the currently lifted embed-
ding is su�cient in order to witness the �+ 1 - extendibility of � in the extension
V [G]. For this, we argue that, in fact,

HV [G]�+ = HV [G�]�+ = H�+ [G�]:
First, notice that the rest of the iteration above � , that is, P[� ;∞) is (forced to
be) 6 � - closed and so it does not a�ect H�+ ; i.e., HV [G]�+ = HV [G�]�+ .

Let us now check that HV [G�]�+ = H�+ [G�] as well. We remark that the latter
structure, being a generic extension of the ZFC− model H�+ by the generic �lter
G�, is also a ZFC− model. As the right { to { left inclusion is clear, we �x any
element X ∈ HV [G�]�+ and we want to �nd an appropriate P� - name witnessing
that X ∈ H�+ [G�]. But then, exactly as in the proof of Proposition 4.5, X can
be obtained in V [G�] by the Mostowski collapse of some appropriate coding subset
of �× � (where recall that the whole process did not use the Powerset Axiom).

Since all subsets of �×� in V [G�] have nice names which lie in H�+ (essentially
because, due to the size of P� , all its antichains belong to H�+), we get that all
such coding subsets of �× � belong to H�+ [G�]. Therefore, X ∈ H�+ [G�] since
it can be retrieved there by the Mostowski collapse of its code.
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In a totally analogous manner, we have that HV [G]j(�)+ = Hj(�)+ [Gj(�)] as well;
hence, the lifted embedding is indeed of the form j : HV [G]�+ −→ HV [G]j(�)+ and the
proof is complete. ut

After all the preceding discussion, we can �nally return to the issue of inde-
structibility and show that extendible cardinals do not enjoy such niceties. In this
setting, we temporarily �x a broad ambient family of posets.

Let us arbitrarily declare that a property R of posets is co�nally sympathetic to
non {GCH, if for all � there exists some (cardinal) � > � so that the canonical
poset Add(� ; �++) (which kills the GCH at �) satis�es R .

Typical examples are intended to be the various closure properties, such as being
\� - directed closed ", for some regular cardinal � ; all these are certainly co�nally
sympathetic to non {GCH. On the other hand, chain conditions are not of this sort,
as we cannot expect them to hold co�nally in the ordinals. To take the extreme
example, we may consider the property of being \c.c.c." which, except for the
basic Cohen forcings for adding subsets of ! , it is never satis�ed by the canonical
(killing) GCH posets.

As a direct combination of Theorem 4.8 and of the easy observation stated in
Lemma 4.4, we can now show the following.
Corollary 4.9. If � is extendible, then no (set) forcing which preserves the Σ3 -
correctness of � can make its Σ2 - correctness indestructible under posets satisfying
R , for any property R which is co�nally sympathetic to non {GCH.

Proof. Fix some property R which is co�nally sympathetic to non {GCH and as-
sume, towards a contradiction, that there is a (set) forcing notion P which pre-
serves the Σ3 - correctness of � and which makes its Σ2 - correctness indestructible
under R .

By Theorem 4.8, we may force to get a model in which � is extendible and the
global GCH holds. Then, we perform the purported forcing P and we thus obtain a
model V in which � is Σ3 - correct and { allegedly { an indestructible Σ2 - correct
cardinal. Noticing that P is a set forcing, the GCH pattern for su�ciently large
cardinals of the universe is not altered; that is, for every � > |P|, 2� = �+ holds
in V . Thus, there is some � < � so that, for all � ∈ (� ; �), 2� = �+.

Now let 
 > max{� ; |P|} be such that Q = Add(
 ; 
++) satis�es property R .
But then, forcing with Q preserves the whole of V�, and hence the GCH pattern
below � , while at the same time it kills the GCH at 
 . This means that the Σ2 -
statement \ there exists some � > � so that the GCH fails at � ", is not re
ected
correctly in the V� of V Q. This is a contradiction. ut
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It follows that, not only can we not make an extendible cardinal � indestruc-
tible, but also, forcing the global GCH makes it extremely \destructible": any
poset killing the GCH above � kills many of its large cardinal properties (e.g.,
� can no longer be supercompact or strong, as it is not even Σ2 - correct). In
addition, the same argument shows that any poset killing the GCH above � kills
the Σ2 - correctness of all C(2) - cardinals up to � as well. Note the analogy be-
tween this observation and the example given in Chapter 3, commenting on the
non { existence of a local de�nition for the class C(2).

Recalling Lemma 4.4, similar observations apply to any Σ3 - correct cardinal �
which is compatible with the eventual GCH in the universe; for any such cardinal,
apart from the lack of indestructibility results, we moreover have that under the
assumption of the eventual GCH, say above some cardinal � , any poset killing the
GCH above � kills the Σ2 - correctness of � (and, also, the Σ2 - correctness of many
C(2) - cardinals below � as well).

As a �nal comment, we mention a di�erent way of killing the extendibility of
a cardinal � , while preserving its inaccessibility: we start by forcing the global
GCH in the universe and we then perform an Easton forcing Q to kill the GCH at
every regular cardinal below � ; such a forcing preserves co�nalities and, since � is
Mahlo, it is also � - c.c. (see Chapter VIII, § 4 in [33]). In the resulting model, the
GCH fails at every regular below � while it continues to hold everywhere above it.
Consequently, � cannot remain Σ2 - correct since the statement \ the GCH holds
at some regular � " is not re
ected correctly. In the present setting, this example
hopefully does some (partial) justice to chain conditions, which were neglected by
properties that are co�nally sympathetic to non {GCH.

We now abandon indestructibility matters and turn to some applications of
extendibility Laver functions, in the next (and �nal) chapter of this dissertation.



CHAPTER 5

Resurrection Axioms

The Resurrection Axioms, introduced in unpublished work by J.D. Hamkins and
T. Johnstone (cf. [29]), are motivated by several generic absoluteness results and
their limitations	. For instance, it is well { known (cf. [3] and, independently, [44])
that Martin's Axiom (MA) is equivalent to asserting that, for any c.c.c. poset P,

Hc ≺ 1 H V P

c ;

where recall that, in such a setting and according to our convention, each occurence
of the symbol c stands for the relativized size of the continuum, as it is indepen-
dently computed in the models V and V P, respectively. For another example, the
Bounded Proper Forcing Axiom (BPFA) is equivalent to asserting that, for any
proper poset P,

Hℵ2 ≺ 1 H V P

ℵ2
:

Likewise for Bounded Martin's Maximum (BMM), replacing proper posets by sta-
tionary preserving ones in the above statement. For more details on characteriza-
tions of this sort, see [4]. Using a uniform notation for such absoluteness results,
given any (de�nable) regular � , any �xed n and any (de�nable) class Γ of posets,

A(H� ; Σn ; Γ)

denotes the assertion that, for any poset P ∈ Γ, H� is a Σn - elementary substruc-
ture of H V P� . Hence, e.g., A(Hℵ1 ; Σ1 ; all posets) is true by the L�evy { Shoen�eld
absoluteness theorem, while BPFA is equivalent to A(Hℵ2 ; Σ1 ; proper).

Unfortunately, such absoluteness statements quickly run into inconsistency, al-
ready for � = ℵ2 . For example, if (some) posets in Γ collapse !1, then it is
clear that A(Hℵ2 ; Σ1 ; Γ) is inconsistent. Moreover, considering n > 1 leads to

	 W.H. Woodin's work related to the stationary tower forcing provides further background
and early considerations of the phenomenon of resurrection; see also the Introduction.
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the same problems, with A(Hℵ2 ; Σ2 ; Γ) being false for most classes of forcing
notions; e.g., A(Hℵ2 ; Σ2 ; � - closed) cannot hold if CH fails.

In the particular case of the forcing axiom BPFA, note that we may not replace
Σ1 by Σ2 in the above characterization, since it is known that BPFA implies
c = ℵ2, whereas the canonical forcing Add(!1 ; 1) which forces CH is certainly
proper. In addition, one may not replace ℵ2 by c either, since the use of the
canonical poset Q = Add(!1 ; 1) again leads to a contradiction: just observe that
ℵV1 = ℵV Q

1 = cV Q and hence Hc * H V Q
c .

All these limitations motivate the idea of resurrection from this perspective; that
is, we require the existence of an appropriate (name for a) poset Ṙ such that, by
further forcing by it, we resurrect the full elementarity of the structure Hc into
that of the whole forcing extension, i.e.,

Hc ≺ H V Q∗Ṙ

c :
With these ideas in mind, let us proceed to the formal de�nition, as it is introduced
by Hamkins and Johnstone.
De�nition 5.1 ([29]). For any (de�nable) class Γ of posets, the Resurrection
Axiom for Γ, denoted by RA(Γ), is the assertion that for any Q ∈ Γ, there exists
a Q - name for a poset Ṙ, with Q 
 “ Ṙ ∈ Γ ”, such that

Hc ≺ H V Q∗Ṙ

c :

Several axioms of this sort are studied in [29], by either varying the class Γ or by
considering weak resurrection, where one does not impose any requirement on the
further (name for a) poset Ṙ . Among other results, it is shown, for instance, that
\RA(proper) + ¬CH " has consistency strength below a Mahlo (precisely, that of
an uplifting cardinal; see De�nition 1.4).

On the other hand, the resurrection axiom for the class Γ of posets which preserve
the stationary subsets of !1 is not dealt with in [29]; our �rst goal is to study this
case in the next section.

5.1 The case of stationary preserving posets

In what follows, we consistently denote by RA(stat. pres.) the resurrection axiom
for the class of posets which preserve the stationary subsets of !1. We shall
show that its consistency follows from the consistency of (the existence of) an
extendible cardinal. For this, we use the techniques of Foreman, Magidor and
Shelah (cf. [20]), who obtained the consistency of MM from that of (the existence
of) a supercompact cardinal.
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In our situation, we replace the supercompactness assumption by extendibility
and we then use an extendibility Laver function in order to de�ne the forcing
iteration along the lines of [20]. Let us �rst recall the de�nitions of the relevant
properties of posets which will be involved in the proof.
De�nition 5.2. A poset P is called stationary preserving (for subsets of !1)
if every stationary S ⊆ !1 remains stationary in V P.

In particular, if P is stationary preserving then !V
1 = ! V P

1 . Recall that every
c.c.c., � - closed, or proper poset, is indeed stationary preserving. An important
intermediate notion, lying between proper and stationary preserving, is that of
ℵ1 - semi properness and was introduced by Shelah (cf. Chapter X in [43]).
De�nition 5.3. A poset P is called ℵ1 - semi proper if for all su�ciently large
regular � , there is a club C ⊆ [H�]ℵ0 (consisting of countable elementary sub-
structures of H�) so that, for all X ∈ C with P ∈ X and for all p ∈ X ∩ P,
there is a q 6 p which is (X ; P) - semigeneric, i.e., for every P - name � ∈ X for
a countable ordinal and for every G ⊆ P - generic over V with q ∈ G, �G ∈ X.

It can be shown that we may equivalently require that the de�ning conditions
hold for � = (2 |P|)+ (provided that P ∈ H�). Moreover, notice that the statement
\ P is ℵ1 - semi proper " is Σ2 - expressible, using P as a parameter.

Shelah has shown that under revised countable support (RCS) iterations, the
property of ℵ1 - semi properness is preserved. For more details on such iterations
and further development of the theory of proper and improper forcing, see [43].
Although, in general, the property of being ℵ1 - semi proper is stronger than that
of being stationary preserving, there are cases in which the two notions coincide.
This coincidence is traditionally denoted by:
(†) ∀Q (Q is ℵ1 - semi proper⇐⇒ Q is stationary preserving):
The (†) principle follows from MA+(� - closed) (cf. [20]) and has itself large cardi-
nal strength (see Theorem 26 in [20] and, then, § 17 in [13]). In our setting, the
preservation of semi properness using RCS will be enough, together with the fol-
lowing important result regarding SPFA, i.e., the ℵ1 -Semi Proper Forcing Axiom
(see Theorem 37.10 in [28]).
Theorem 5.4 (Shelah). SPFA=⇒ (†). Therefore, SPFA is equivalent to MM.
With these ingredients, we are now ready for the following.
Theorem 5.5. If there is an extendible cardinal, then there is a poset P such that
P 
 MM++ + RA(stat. pres.). Hence, if the theory ZFC + \∃� (� is extendible)"
is consistent, then so is the theory ZFC+MM++ + RA(stat. pres.).
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Proof. Fix � extendible and let ` ... � −→ V� be an extendibility Laver function.
We shall de�ne the forcing P exactly as in [20], using this �xed function `. In
particular, P will be a � - iteration with RCS, the properties of which are explicitly
stated in [20]. For the sake of completeness, let us repeat the de�nition of the
forcing iteration here.

We initially let P0 = {1}. Given � < � and P�, non { trivial forcing is done at
the next stage only if � ∈ dom(`), and we consider the following alternatives:

1. `(�) is a P� - name for a poset and P� 
 “ `(�) is ℵ1 - semi proper ”, in which
case we let

Q̇� = `(�) ∗ Col P�∗ `(�)(!1 ; 2 |P�∗ `(�)|)

and we then de�ne P�+1 = P� ∗ Q̇�.

2. `(�) is a P� - name for a poset and P� 1 “ `(�) is ℵ1 - semi proper ”, in which
case we let � = supV P�

(22 |`(�)|+ ; 2 |P�|) and
Q̇� = Col P�(!1 ; �) ;

from which we then de�ne P�+1 = P� ∗ Q̇�.
Otherwise, i.e., if � =∈ dom(`) or `(�) is not a P� - name for a poset, trivial forcing
is done at stage � + 1. At limit stages, we use revised countable support. We
�nally let P = P� which, in particular, is the direct limit of the P� 's, for � < � .

By the arguments in [20], P is ℵ1 - semi proper and � - c.c., P 
 “� = ℵ2 ” and,
moreover, P 
 SPFA++. Let us now check that P 
 RA(stat. pres.) as well. As
we shall soon see, it is crucial for our argument that extendibility embeddings are
involved, as opposed to supercompactness ones.

Fix G ⊆ P - generic over V and suppose that Q ∈ V [G] is a stationary pre-
serving poset (equivalently, ℵ1 - semi proper, by Theorem 5.4). Fix some P - name
Q̇ such that Q̇G = Q and P 
 “ Q̇ is ℵ1 - semi proper ”.

Now �x some � > rank(Q̇) with � ∈ C(2) and let j : V −→ M be some
� - supercompact and � - superstrong elementary embedding for � , with j(�) in-
accessible and j(`)(�) = Q̇. Recall that in such a case M |= � ∈ C(2) and,
consequently, M |= P 
 “ Q̇ is ℵ1 - semi proper ” by the Σ2 - expressibility of the
latter statement.

Since P� ∈ V� for any � < � , by elementarity and the de�nition of our iteration,
we get that, in M ,

j(P) = P ∗ Q̇ ∗ Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|) ∗ Ṙ ;
where note that case (1) of the de�nition is employed at stage � + 1, with Ṙ
being the tail forcing for stages in the interval (� ; j(�)). We clarify our intentions
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by mentioning that, it is our aim to show that Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|) ∗ Ṙ is the
desired (name for the) further poset which achieves resurrection in V [G] (i.e.,
Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|) ∗ Ṙ will play the rôle of the \ Ṙ " in the de�nition of the
resurrection axiom).

We now force to add (any) appropriate generics for the factors of j(P) as dis-
played above, in order to lift the ground model embedding through the forcing P.
First, let g ⊆ Q be any Q - generic over V [G]. Then, �x some

h ∗ h ′ ⊆
(
Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|) ∗ Ṙ

)
G ∗ g

which is generic for this poset over V [G][g]. We let G̃ = G∗g∗h∗h ′ be the whole
generic �lter for j(P), over V . It now follows that the lifting criterion j ′′G ⊆ G̃
is satis�ed and thus, the ground model embedding lifts to

j : V [G] −→M [G̃];
a lift which takes place in the enlarged universe V [G̃].

As � and j(�) are inaccessible cardinals in V , we clearly have V� = H� and
Vj(�) = Hj(�) (computed equivalently either in V or in M , since j was super-
strong). It is also evident that, by the elementarity of the ground model embedding
and the fact that cp(j) = � , H� ≺ Hj(�). Similarly, for the lifted version of the
embedding, H V [G]� ≺ HM [G̃]j(�) . Now, towards verifying the resurrection axiom, we
want to show that, in fact, HM [G̃]j(�) = H V [G̃]j(�) . This will immediately imply, in
addition, that j(�) = ℵM [G̃]

2 = cM [G̃] = ℵV [G̃]
2 = cV [G̃].

In order to show that HM [G̃]j(�) = H V [G̃]j(�) , we use that the ground model embedding
was � - superstrong, i.e., that Vj(�) ⊆ M . First, since M and V have the same
(maximal) antichains of the poset j(P) and the latter is j(�) - c.c. in M , it follows
that j(P) is j(�) - c.c. in V as well. In particular, j(�) remains a regular cardinal
in both M [G̃] and V [G̃]. Consequently, for any given X ∈ H V [G̃]j(�) , exactly as
in Proposition 4.5, X can be coded in V [G̃] by a subset of � × � , for some
� < j(�) , so that X can be then retrieved by (the transitive collapse of) its
code. But then, noticing again that any nice name for such a code belongs M ,
we get that X ∈ HM [G̃]j(�) as desired. Moreover, observe that by the same coding
arguments and the fact that the ground model embedding was � - superstrong, we
also obtain that, for every inaccessible � ∈ (j(�) ; j(�)),

HM [G̃]� = H�[G̃] = H V [G̃]� ;
with � remaining inaccessible in both generic extensions. This remark is not
relevant for the current proof but it will be relevant in the following section.
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Hence, we can conclude at this point that H V [G]� ≺ H V [G̃]j(�) or, equivalently, that

H V [G]
c ≺ H V [G][g][h∗h ′]

c :

Therefore, towards verifying resurrection, the only remaining thing which we have
to show is that

V [G] |= Q 
 “Col(!1 ; 2 |P ∗Q|) ∗ Ṙ is stationary preserving ”;

where Col(!1 ; 2 |P ∗Q|) =
(
Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|)

)
G . In fact, we will show that

Col(!1 ; 2 |P ∗Q|) ∗ Ṙ is forced to be ℵ1 - semi proper by the poset Q , in V [G].
By the properties of RCS iterations listed in [20] and by elementarity, we have

that, on the M side,

M |= j(P)�+1 
 “ Ṙ is ℵ1 - semi proper ”;

where j(P)�+1 = P ∗ Q̇ ∗ Col P ∗ Q̇(!1 ; 2 |P ∗ Q̇|). But now, again by the fact that
Vj(�) ⊆ M , where j(�) is C(2) in M , it follows that M faithfully veri�es this
statement, i.e., it is also true in V ; thus,

V [G] |= Q ∗ Col(!1 ; 2 |P ∗Q|) 
 “ Ṙ is ℵ1 - semi proper ”:

Finally, as it is easy to see that, in V [G],

Q 
 “Col(!1 ; 2 |P ∗Q|) is ℵ1 - semi proper ”;

it now follows that, by a two { step combination of ℵ1 - semi proper posets,

V [G] |= Q 
 “Col(!1 ; 2 |P ∗Q|) ∗ Ṙ is ℵ1 - semi proper ”;

as desired. Recalling that the generic �lters g ; h ; h ′ which we chose were arbi-
trary, we �nally get that V [G] |= RA(stat. pres.) which completes the proof. ut

Evidently, the previous proof shows that V [G] |= RA(semi proper), with the
latter being the resurrection axiom for the class of ℵ1 - semi proper posets. In fact,
since (†) holds in V [G], it is easily seen that, in this case, RA(semi proper) implies
RA(stat. pres.). However, there is a substantial di�erence between these axioms
in terms of consistency strength: we shall see in Section 5.4 that RA(stat. pres.)
implies that every set has a sharp, whereas, by results of Hamkins and Johnstone,
RA(semi proper) can be forced from the existence of an uplifting cardinal.

The exact relation between the axioms MM (or MM++) and RA(stat. pres.)
has not been clari�ed yet. In particular, an important question is whether one can
produce a model in which the former holds, while the latter fails. If this is possible



Resurrection Axioms 87

at all, it would be highly desirable to produce such a model from a large cardinal
assumption which is strictly weaker than that of extendibility; e.g., starting from
the least supercompact. This would indeed give more value to Theorem 5.5.

On the other hand, following the suggestions in [29], we now show that the axiom
RA(stat. pres.) is consistent with CH; consequently, RA(stat. pres.) certainly does
not imply MM, since the latter entails c = ℵ2.
Proposition 5.6. RA(stat. pres.) +CH is relatively consistent.

Proof. Suppose that we are given a model V of RA(stat. pres.)+¬CH, a situation
which is consistent relative to (the existence of) an extendible cardinal, as we
just saw in the proof of Theorem 5.5. We now force with the canonical poset
P = Add(!1 ; 1), which forces CH and is clearly stationary preserving. Let us �x
G, a P - generic �lter over V , and we now show that V [G] satis�es RA(stat. pres.).

For this, let Q ∈ V [G] be a stationary preserving poset and �x some P - name Q̇
such that Q̇G = Q and P 
 “ Q̇ is stationary preserving ”. By a two { step com-
bination, P ∗ Q̇ is stationary preserving in V and thus, by the resurrection axiom,
there is a P ∗ Q̇ - name for a poset Ṙ, with P ∗ Q̇ 
 “ Ṙ is stationary preserving ”

and so that, for every g ∗ h ⊆ Q ∗ Ṙ - generic over V [G], we have
Hc ≺ H V [G][g][h]

c :
Notice that ℵ1 is preserved in all the intermediate steps of the forcing constructions
and so, without causing any confusion, we may drop the superscript from this
particular symbol. Since CH fails, cV > ℵ1 and then cV [G][g][h] > ℵ1 as well.
Hence, by relativizing any �rst { order formula to the Hℵ1 (which is a de�nable
subclass of each) of the above structures, we also get

Hℵ1 ≺ H V [G][g][h]
ℵ1

:

Note that, by the closure of the forcing P, Hℵ1 = H V [G]
ℵ1

.
We now further force over V [G][g][h] to make CH true, using the canonical poset

Add(!1 ; 1) of this model. It again follows that, if h ′ is Add(!1 ; 1) - generic
over V [G][g][h], then H V [G][g][h]

ℵ1
= H V [G][g][h][h ′]

ℵ1
. Summarizing, we so far have

established that
H V [G]

ℵ1
≺ H V [G][g][h][h ′]

ℵ1
:

Finally observe that Q 
 “ Ṙ∗Add(!1 ; 1) is stationary preserving ” in V [G] and
thus, we can conclude at this point that

V [G] |= RA(stat. pres.) + CH;
as desired. ut
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It is clear that the same argument can be used in order to obtain the relative
consistency of RA(semi proper) +CH as well.
Remark. David Asper�o has pointed out that, for the consistency of the axiom
RA(stat. pres.), it is su�cient to assume CH and that there is a proper class of
Woodin cardinals; in fact, under such assumptions, if Γ is any (de�nable) class of
posets with the property that, for every P ∈ Γ there is a P - name for a poset Q̇
such that P 
 “ Q̇ ∈ Γ ” and P∗ Q̇ 
 CH, then the axiom RA(Γ) holds. The reason
is that, in the presence of a proper class of Woodin cardinals, a classical result
of Woodin shows that Hℵ1 is an elementary substructure of the Hℵ1 of any (set)
forcing extension (see [6] or [34]).

Hence, if one is satis�ed with the consistency of RA(stat. pres.) +CH, then there
is no need to invoke (the consistency of) extendibility; a proper class of Woodin
cardinals su�ces. ⊥

Returning to the proof of Theorem 5.5, one might wonder how much more
resurrection we can get in the obtained model of MM++ + RA(stat. pres.); let us
now focus our attention on this very fruitful { as it turns out { question�.

5.2 Unbounded Resurrection

Looking closer at the proof of Theorem 5.5, we argued that the ground model
elementarity H� ≺ Hj(�) lifts to the elementarity H V [G]� ≺ H V [G̃]j(�) in the generic
extension, witnessing the resurrection axiom in V [G].

Now, using the extendibility of � , one is tempted to apply similar reasoning for
the corresponding H� and Hj(�), for various � > � . Of course, in such a case, we
do not expect to have a fully elementary substructure, but we now argue that an
elementary embedding between H V [G]� and H V [G̃]j(�) may be found (and it will be,
as it should be anticipated, the restriction of the lifted embedding j to H V [G]� ).

Going into the details, for any inaccessible � > � and any stationary preserv-
ing poset Q ∈ HV [G]� = H�[G], we now start with a (di�erent) ground model
embedding j : V −→ M that anticipates (a P - name for) Q and that is suf-
�ciently extendible, i.e., su�ciently supercompact and superstrong, above � (in
particular, j(�) is inaccessible); we then likewise lift j through the forcing P.
Next, we show that there exists a Q - name for a stationary preserving poset Ṙ
(which is just an appropriate tail forcing of the j(P) - iteration, exactly as in the

� This question was asked by David Asper�o and quickly led to the development of the material
appearing in the three �nal sections of the current chapter. I am truly indebted to David for the
discussion we had during that evening of June.
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proof of Theorem 5.5) and, if V [G̃] again denotes the fully enlarged universe,
we have HM [G̃]j(�) = Hj(�)[G̃] = H V [G̃]j(�) . Consequently, there exists an elementary
embedding h ∈ V [G̃] (namely, h = j � H V [G]� ) with h : H V [G]� −→ H V [G̃]j(�) ,
cp(h) = ! V [G]

2 = ! V [G̃]
2 and h(! V [G]

2 ) > � .
Taking one step further, given the fact that � is extendible, the inaccessibility

assumption on � is not really necessary. Indeed, for any �xed cardinal � > �
and any Q ∈ HV [G]� , we may work with any inaccessible � > � and produce, as in
the previous paragraph, a Q - name for a poset Ṙ and an elementary embedding
h : H V [G]� −→ H V [G̃]j(�) with cp(h) = ! V [G]

2 , h(! V [G]
2 ) > � and j(�) inaccessible

in V [G̃]. Then, by just relativizing any �rst { order formula to H V [G]� (which is
de�nable in the structure H V [G]� ), we get that h � H V [G]� : H V [G]� −→ H V [G̃]j(�) is
of the desired form. These observations seem to suggest the introduction of the
following axiom of unbounded resurrection, for various classes Γ of posets.
De�nition 5.7. For any �xed (de�nable) class Γ of posets, the Unbounded
Resurrection Axiom for Γ, denoted by UR(Γ), is the assertion that for every
cardinal � > max{!2; c} and every poset Q ∈ H� with Q ∈ Γ, there exists a
Q - name for a poset Ṙ such that Q 
 “ Ṙ ∈ Γ ”, and there is an elementary
embedding

j : H� −→ H V Q∗Ṙj(�) ;
with j ∈ V Q∗Ṙ, cp(j) = max{!2; c} and j(cp(j)) > � .

Of course, in the discussion preceding De�nition 5.7, one could have also looked
at embeddings between the V� 's instead of the H� 's . We choose to work with the
latter over the former structures because the H� 's are more tailored for expressing
instances of generic absoluteness, such as the characterizations mentioned at the
beginning of this chapter (also, recall that for regular � , H� is a model of ZFC−
and so it is a more suitable structure in the context of forcing). This way, we adhere
to the motivational background which led to the consideration of the resurrection
axioms.

In what follows, we focus our attention on the classes of c.c.c., � - closed, proper,
and of stationary preserving posets; at the relevant places, we shall also brie
y
comment on the case of ℵ1 - semi properness. The apparent ambiguity regarding
the value of cp(j) in the above de�nition is included in order to account for the
general setting; as we shall see, for the particular class of c.c.c. posets cp(j) = c,
whereas, for the other classes of posets just mentioned, we necessarily have that
cp(j) = !2. We can now state our �rst consistency result for the class of stationary
preserving posets.
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Theorem 5.8. If the theory ZFC + \∃� (� is extendible)" is consistent, then so
is the theory ZFC+MM++ + UR(stat. pres.).

Proof. By the arguments described just before De�nition 5.7, it follows that the
unbounded resurrection axiom UR(stat. pres.) holds in the model of MM++ which
we obtained in the proof of Theorem 5.5. ut

Note that, exactly as for the corresponding RA axioms, the proof of Theorem 5.5
actually shows that, in the resulting model V [G], UR(semi proper) holds.

We now show that the explicit mention of MM++ in the conclusion of the previ-
ous result is redundant, since it is already implied by the unbounded resurrection
axiom for stationary preserving posets. In addition, we argue that, under an as-
sumption strictly weaker than (the consistency of) extendibility, MM++ can be
separated from UR(stat. pres.).

Proposition 5.9. UR(stat. pres.) implies MM++. Moreover, if there is a model
in which there exists a supercompact cardinal with a unique inaccessible above it,
then there is a model of MM++ in which UR(stat. pres.) fails.

Proof. Suppose that UR(stat. pres.) holds in V . We verify that MM follows; we
leave it to the reader to check that a mild modi�cation of the argument produces
MM++ as well. For this, let us �x some stationary preserving poset Q and let
〈D� : � < !1 〉 be a collection of dense subsets of Q .

We now �x a large enough regular � > max{!2; c}, with Q ∈ H�. Clearly,
〈D� : � < !1 〉 ∈ H� as well. Then, by UR(stat. pres.), there exists some Q - name
for a poset Ṙ , such that Q 
 “ Ṙ is stationary preserving ”, and an elementary
embedding j ∈ V Q∗Ṙ of the form

j : H� −→ H V Q∗Ṙj(�) ;

with cp(j) = max{!2; c} and j(cp(j)) > � . Finally, we �x any �lter g ⊆ Q -
generic over V and any �lter H ⊆ Ṙ g - generic over V [g]. Hence, we get that
j : H� −→ H V [g][H]j(�) is elementary with cp(j) = max{!2; c} and j(cp(j)) > � .
Now, since !1 is �xed by the embedding,

j(〈D� : � < !1 〉) = 〈 j(D�) : � < !1 〉 ∈ H V [g][H]j(�)

and, also, the pointwise image j ′′g belongs to H V [g][H]j(�) as well, since it is con-
structible in V [g][H] from j and g, with the latter having size less than � . But
then, as g is Q - generic over V , it follows that, in H V [g][H]j(�) , j ′′g generates a �lter
of j(Q) which intersects every j(D�) , for � < !1. Hence, by elementarity, there
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exists, in H�, a �lter G ⊆ Q such that G ∩ D� 6= ∅, for all � < !1. MM now
follows.

To separate the axioms MM++ and UR(stat. pres.), we �x some model in which
there is a supercompact � and a unique inaccessible � > � , and we let P be
the standard � - iteration which forces MM++, as in [20]. Let us then �x a forcing
extension V in which MM++ holds and � remains inaccessible. We show that,
in the model V , UR(stat. pres.) fails. Towards a contradiction, suppose otherwise
and consider the poset Q = Col(!1 ; �), which is certainly stationary preserving
and it clearly belongs to H�+ .

Then, there must be a Q - name for a poset Ṙ , such that Q forces that Ṙ
is stationary preserving, and an elementary embedding j ∈ V Q∗Ṙ of the form
j : H�+ −→ H V Q∗Ṙ

j(�+) , with cp(j) = � = !2 = c and j(�) > �+. But now, by
elementarity, we must have that j(�) is inaccessible in H V Q∗Ṙ

j(�+) , hence in V Q∗Ṙ as
well, which is impossible since in the latter model there are no inaccessibles at all.
This is the desired contradiction which concludes the proof. ut

Similar reasoning shows that, if UR(stat. pres.) holds and there exists some
inaccessible, then there must exist proper class many inaccessibles. In fact, the
same is true if in place of inaccessibles we consider any object which cannot be
created by stationary preserving forcing.

A moment's inspection shows that we may immediately generalize the proof of
Proposition 5.9 to other classes Γ of posets, obtaining the following.
Corollary 5.10. For any (de�nable) class Γ of posets, UR(Γ) implies the forcing
axiom FA++(Γ). ut

Recalling that SPFA implies (†), we immediately get that UR(semi proper) implies
UR(stat. pres.). The following argument due to Asper�o shows that, if we are
granted enough large cardinals, then the converse holds as well.
Proposition 5.11 (Asper�o). Assume UR(stat. pres.) and suppose that there is
a proper class of supercompact cardinals. Then, UR(semi proper) holds.

Proof. We use the fact that, if � is supercompact and P = Col(!1; < �) is the
L�evy collapse to make � = ℵ2, then MA+(� - closed) holds in V P (this follows,
essentially, from the fact that any � - closed poset of cardinality < � can be com-
pletely embedded in Col(!1; <�); see § 14 in [13]). Thus, by results in [20], the (†)
principle holds in V P as well. Towards verifying UR(semi proper), suppose that
Q is ℵ1 - semi proper and let � > !2 be a given cardinal with Q ∈ H�.

Let � be supercompact with � > � ; clearly, � remains supercompact in V Q.
Consider the (Q - name for the) poset Q̇0 which is the L�evy collapse Col(!1; <�)
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as computed in V Q. Now, Q ∗ Q̇0 is stationary preserving in V and, therefore,
by the axiom UR(stat. pres.), there exists a Q∗ Q̇0 - name for a poset Ṙ such that
Q ∗ Q̇0 
 “ Ṙ is stationary preserving ”, and there is an elementary embedding

j : H� −→ H V (Q∗Q̇0)∗Ṙj(�)

with j ∈ V (Q∗Q̇0)∗Ṙ, cp(j) = !2 and j(!2) > � . Now recall that (†) holds in
V Q∗Q̇0 and so we actually have that Q ∗ Q̇0 
 “ Ṙ is ℵ1 - semi proper ”. Observe
that Q̇0 ∗ Ṙ is of the form \� - closed ∗ℵ1 - semi proper" and thus it is ℵ1 - semi
proper in V Q. Hence, since V (Q∗Q̇0)∗Ṙ = V Q∗(Q̇0∗Ṙ), the conclusion follows. ut

Given this result, the undermentioned question suggests itself.

Question 5.12 (Asper�o). Are the axioms UR(stat. pres.) and UR(semi proper)
equivalent in general ?

Remark. Shortly after the current dissertation was deposited, Asper�o announced
to us that, using techniques related to Woodin's stationary tower forcing, he can
prove that the assumption of MM++ together with a proper class of Woodin cardi-
nals actually implies UR(stat. pres.). If his argument works, then such a result will
constitute a substantial improvement regarding the consistency (upper) bound of
the axiom UR(stat. pres.). ⊥

It should have been clear by now that, for the cases of proper, of ℵ1 - semi proper,
and of stationary preserving posets, the critical point of the generic embeddings
given by the corresponding unbounded resurrection axiom will always be !2, since
both PFA and MM imply that the continuum is equal to ℵ2.

On the other hand, for c.c.c. posets, as MAℵ1 implies ¬CH, the generic embed-
dings given by the axiom UR(c.c.c.) will have, in general, cp(j) = c. As we shall
see in the next section, UR(c.c.c.) actually implies that c is weakly inaccessible; in
the other extreme, we shall also show that UR(� - closed) implies CH.

Yet, before dealing with the various implications of the UR axioms, we focus on
obtaining their relative consistency from that of (the existence of) an extendible
cardinal. As we have already mentioned, we shall consider the classes of c.c.c.,
of � - closed, and of proper posets. Our treatment of the three cases will follow
a uni�ed pattern in the sense that, starting from an extendible cardinal, we will
de�ne a forcing iteration guided by an extendibility Laver function, taking into
account only the posets which are relevant to the axiom at hand. Clearly, di�erent
supports have to be used in order to ensure that the (iterations of the) posets
de�ned, belong to the class in question.
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Modulo these modi�cations, the rest of the proof(s) will be identical in each case,
following the lines of the \ prototype " arguments which we employed in order to
show that UR(stat. pres.) holds in the model produced for Theorem 5.5.

In all three cases we shall state the theorems in terms of the relative consistency
results, although what we really prove is that, given an extendible cardinal, the
corresponding forcing iterations which we de�ne work as intended.

Let us begin by considering the case of proper posets. As countable supports
will be used in this iteration, Baumgartner's proof regarding the consistency of
PFA is relevant.

Theorem 5.13. If the theory ZFC+ \∃� (� is extendible)" is consistent, then so
is the theory ZFC+ UR(proper).

Proof. Fix � extendible and �x ` ... � −→ V� an extendibility Laver function.
Our forcing P will be a � - iteration of proper posets, using countable support.
Formally, we have the following.

Let P0 = {1}. Given � < � and P�, if � ∈ dom(`) and `(�) is a P� - name
for a poset with P� 
 “ `(�) is proper ”, we let Q̇� = `(�) and we then de�ne
P�+1 = P� ∗ Q̇�. Otherwise, trivial forcing is done at stage � + 1 . At every limit
stage � 6 � , we use countable support and we �nally let P = P�.

It is clear that |P| = � , and, for every � < � , P� ∈ V�. By standard facts
(see [1] and [13] for more details), P is proper and it has the � - c.c. Now �x a
G ⊆ P - generic over V . The usual arguments show that PFA++ holds in V [G]

(and, of course, � = c = ℵ2). We now verify that, in V [G], UR(proper) holds as
well (which actually implies PFA++, by Corollary 5.10).

Let Q ∈ V [G] be a proper poset and let � > � be a cardinal with Q ∈ HV [G]� .
Fix some P - name Q̇ such that Q̇G = Q and P 
 “ Q̇ is proper ”. Finally, �x
some su�ciently large inaccessible cardinal � (in V ) with � > � , Q̇ ∈ H� and
H� |= P 
 “ Q̇ is proper ”; now let j : V −→ M be � - supercompact and � -
superstrong for � , with j(`)(�) = Q̇ (and with j(�) and j(�) inaccessibles in
V ). In this situation, it follows that M |= P 
 “ Q̇ is proper ” as well, since the
latter is a Σ2 - statement.

We now have that, on the M side, the image poset j(P) factors as P ∗ Q̇ ∗ Ṙ ,
with Ṙ being the name of the tail forcing of the j(�) - iteration. Let us �x any
�lter g ⊆ Q - generic over V [G] and any H ⊆ Ṙ g - generic over V [G][g]. We then
let G̃ = G ∗ g ∗ H be the whole generic for j(P) over V . Consequently, as the
lifting criterion is satis�ed, the ground model embedding lifts to

j : V [G] −→M [G̃];
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a lift which takes place in the enlarged universe V [G̃]. Now, notice that for the
restricted map h = j � H V [G]� ∈ V [G̃],

h : H V [G]� −→ HM [G̃]j(�)

is an elementary embedding with cp(h) = � = ! V [G]
2 = cV [G] and h(�) > � .

Hence, towards verifying UR(proper) in V [G], it is su�cient to check that
HM [G̃]j(�) = H V [G̃]j(�) and that V [G] |= Q 
 “ Ṙ is proper ”. Given these two facts,
it is then immediate that we may further restrict the embedding h to the H� of
V [G], so that the (newly) restricted embedding together with the (name of the)
poset Ṙ jointly witness the unbounded resurrection axiom for Q and � , in V [G].

For HM [G̃]j(�) = H V [G̃]j(�) , we use the inaccessibility of j(�), the � - superstrongness
of j and the fact that j(P) is j(�) - c.c. (both in V and in M) and we check,
as remarked in the proof of Theorem 5.5, that both these structures are actually
equal to Hj(�)[G̃]. Finally, it is also easy to see that Q 
 “ Ṙ is proper ” holds
in V [G], since this is a Σ2 - statement (in the parameter Q) which is true in
M [G]j(�) = V [G]j(�), and j(�) is inaccessible (and thus, Σ1 - correct) in V [G].
This completes the proof. ut

By arguments analogous to the ones used in the proof of Proposition 5.9, the
(consistency of the) existence of a supercompact with a single (equivalently, with
boundedly many) inaccessible(s) above it, implies that one may separate the axiom
UR(proper) from PFA++, i.e., under such assumption(s), there is a model in which
the latter holds but the former fails.

Let us now consider the consistency of UR(c.c.c.) and that of UR(� - closed).
Rather than repeating the same arguments all over again, we shall restrict ourselves
to just de�ning the appropriate forcing iterations. The reader will then gladly
verify that, along the lines of our earlier proof(s), these unbounded resurrection
axioms hold in the corresponding generic extensions.
Theorem 5.14. If the theory ZFC+ \∃� (� is extendible)" is consistent, then so
is each one of the theories : ZFC+ UR(c.c.c.) and ZFC+ UR(� - closed).

Proof. Fix � extendible and �x ` ... � −→ V� an extendibility Laver function. We
de�ne two forcings P and P ′ which will produce the two models respectively. The
�rst one will be a �nite support � - iteration of c.c.c. posets; the second, a reverse
Easton support � - iteration of � - closed posets. Both these iterations will be
guided by `. Formally, we have the following de�nitions (which we present jointly
due to their similarities, although they should be really thought of as independent).

Let P0 = P ′
0 = {1}. Given � < � and P� (resp. P ′�), if � ∈ dom(`) and `(�)

is a P� - name for a poset with P� 
 “ `(�) is c.c.c.” (resp. `(�) is a P ′� - name
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for a poset with P ′� 
 “ `(�) is � - closed ”), we let Q̇� = `(�) (resp. Q̇ ′� = `(�))
and we then de�ne P�+1 = P� ∗ Q̇� (resp. P ′�+1 = P ′� ∗ Q̇ ′�). Otherwise, trivial
forcing is done at stage �+ 1 .

For P, at every limit stage � 6 � we use �nite support. For P ′, we use
Easton support, i.e., we take direct limits at inaccessibles � 6 � and inverse limits
everywhere else. Finally, we let P = P� and P ′ = P ′�. It is clear |P| = |P ′| = �
and that, for every � < � , P� and P ′� belong to V�. Also, P is c.c.c. while P ′

is � - closed and � - c.c. We �x G ⊆ P and G ′ ⊆ P ′ which are respective generic
�lters over V . Let V1 = V [G] and V2 = V [G ′]. As in our earlier proof(s), one
now checks both that V1 |= UR(c.c.c.), and that V2 |= UR(� - closed). ut

In the last proof, it is easy to see that � = c is a weakly inaccessible cardinal
in the model V1, whereas in V2, CH holds and � = ℵ2. These observations are in
accordance with the already advertized (but not yet proven) e�ects of the axioms
UR(c.c.c.) and UR(� - closed) on the continuum.

We shall shortly see that, as a by { product of such e�ects, it is possible to
separate MA+(� - closed) from UR(� - closed), like in the cases of proper and of
stationary preserving posets. Hence, without further ado, let us proceed to the
next section where, apart from taking up issues of this sort, we also discuss the
connection of the UR axioms with the resurrection axioms RA.

5.3 E�ect on c and relation to RA axioms

As we have already remarked, both UR(stat. pres.) and UR(proper) imply that
c = ℵ2, a direct corollary to their connection with the axioms MM and PFA,
respectively.

On the other hand, let us now see that, in the case of � - closed posets, the
unbounded resurrection axiom has the ultimate bounding e�ect on the size of
the continuum: it implies the Continuum Hypothesis. In particular, the generic
embeddings given by UR(� - closed) will necessarily have critical point !2.

Apropos, this also shows that, in general, the unbounded resurrection axioms,
just like the resurrection axioms, are not monotonous; i.e., if Γ ⊆ Γ ′ are given
classes of posets, then UR(Γ ′) does not necessarily imply UR(Γ).

Lemma 5.15. UR(� - closed) =⇒ 2ℵ0 = ℵ1.

Proof. Assume UR(� - closed) and suppose, towards a contradiction, that c > ℵ2

in V . Let Q = Add(!1 ; 1) be the canonical � - closed poset which forces CH and
�x a regular � > c with Q ∈ H�.
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Then, by the axiom UR(� - closed), there is a Q - name for a poset Ṙ such that
Q 
 “ Ṙ is � - closed ”, and there is an elementary embedding j ∈ V Q∗Ṙ of the
form j : H� −→ H V Q∗Ṙj(�) , with cp(j) = c and j(c) > � . Finally, we �x any �lter
g ⊆ Q - generic over V and any �lter H ⊆ Ṙg - generic over V [g]. Hence, we get
that j : H� −→ H V [g][H]j(�) is elementary with cp(j) = c and j(c) > � . It now
follows that H V [g][H]j(�) |= “ c > � > ℵ1”.

On the other hand, as the poset Ṙ g does not add any new subsets of ! , we
have that P(!)V [g] = P(!)V [g][H] and thus, cV [g][H] 6 cV [g] = ℵV [g]

1 . But since ℵ1

is the same in all three models V , V [g] and V [g][H], we have a contradiction. ut

Observe that the exact same proof shows that UR(Γ) implies CH, for any class
Γ of posets with the property that, CH can be forced by some Q ∈ Γ and the
posets in Γ do not add reals.

An immediate consequence of Lemma 5.15 is that, as mentioned at the end
of the prevous section, we may easily separate the axioms MA+(� - closed) and
UR(� - closed), if we are granted (the consistency of) a supercompact cardinal.
Corollary 5.16. If there is a model in which there exists a supercompact cardinal,
then there is a model satisfying MA+(� - closed) +¬UR(� - closed).

Proof. By a theorem of Shelah, MM implies MA+(� - closed) (see Theorem 37.26 in
[28]). Hence, starting from a supercompact cardinal, if we force MM in the usual
way, then, in the resulting model, the Continuum Hypothesis fails and thus, by
Lemma 5.15, UR(� - closed) cannot possibly hold. ut

As advertized, and unlike the other classes of posets which we have considered,
the e�ect of UR(c.c.c.) on the continuum is more dramatic: it implies that c is
weakly inaccessible.

This will be obtained as a direct corollary to results in [29], once we have said
something regarding the relation between the UR and the RA axioms. The follow-
ing lemma is true for any (de�nable) class Γ of posets, although we again focus
on the classes of c.c.c., � - closed, proper, and of stationary preserving posets.
Lemma 5.17. UR(Γ) =⇒RA(Γ).

Proof. We deal with the class of � - closed posets and leave the general case to
the reader to verify. So assume that UR(� - closed) holds and let Q be any �xed
� - closed poset. Fix some regular � > !2 with Q ∈ H�.

By the unbounded resurrection axiom, we may �nd a Q - name for a poset Ṙ
with Q 
 “ Ṙ is � - closed ”, and an elementary embedding j ∈ V Q∗Ṙ, such that
j : H� −→ H V Q∗Ṙj(�) , cp(j) = !2 and j(!2) > � .
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But now notice that cp(j) = !2 implies that j � Hℵ2 is the identity, i.e., for
every x ∈ Hℵ2 , j(x) = x (however, this does not imply surjectivity). It is now
easily seen that, in the presence of the embedding,

Hℵ2 ≺ H V Q∗Ṙ

ℵ2
:

From the latter, as CH holds by Lemma 5.15, the axiom RA(� - closed) follows
by just relativizing �rst { order formulas to the corresponding (de�nable subclass)
Hℵ1 of each of these two structures. ut

Corollary 5.18. UR(c.c.c.) =⇒MA+ “ c is weakly inaccessible ".

Proof. By Lemma 5.17, we know that UR(c.c.c.) implies the resurrection axiom
RA(c.c.c.). But now, by results in [29], we get both that MA holds and that c is
weakly inaccessible; in fact, c is a limit of weakly inaccessibles, a limit of limits of
weakly inaccessibles, etc. ut

It also follows that, if Γ is the class of proper, of ℵ1 - semi proper, or of stationary
preserving posets, then the unbounded resurrection axioms can be separated from
the corresponding resurrection ones.

Corollary 5.19. For Γ as above, RA(Γ) +¬UR(Γ) is relatively consistent.

Proof. By Proposition 5.6, we may force over any model of RA(Γ) in order to
obtain a model of RA(Γ) +CH. On the other hand, in all three cases of classes of
posets, UR(Γ) implies that the continuum is equal to ℵ2. ut

For � - closed posets, we may not argue likewise, since the axiom UR(� - closed)
actually implies the Continuum Hypothesis. Nevertheless, we now show that
RA(� - closed) can indeed be separated from UR(� - closed), if one grants the mild
assumption of the (consistency of the) existence of an uplifting cardinal with a
Mahlo above it. For the proof, we once again use results obtained in [29].

Lemma 5.20. If there is a model in which there exists an uplifting cardinal with
a Mahlo above it, then there is a model of RA(� - closed) +¬UR(� - closed).

Proof. Given a model in which there exists an uplifting cardinal with a Mahlo
above it, we may pass to an inner model of V = L in which there exists a unique
Mahlo; namely, as Mahloness is downwards absolute to L , we either work with
the whole constructible universe, or with that initial segment of it which is \cut
o� " at exactly the second L - Mahlo cardinal. Let us call this model V ; let � be
the unique Mahlo and let � < � be the least uplifting cardinal.
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By Theorem 1.6, V� has a de�nable class function which is a miniature Laver
function for � , i.e., f ... � −→ V� is such that, for every set x ∈ V , there exists
an inaccessible cardinal 
 with 〈V� ; f 〉 ≺ 〈V
 ; f ∗ 〉 and f ∗(�) = x. Recall that
f ∗ is the corresponding function for 
 , de�ned exactly the same but over the
structure V
.

Now, following [29], we may de�ne an Easton support � - iteration guided by
the function f , taking into account only � - closed posets. This produces a forcing
notion P of size � which forces RA(� - closed) together with CH and � = ℵ2 (see
also the de�nition of the posets in the proof of Theorem 5.14). Let us now see
that, if G is P - generic over V , then UR(� - closed) fails in V [G].

Obviously, � remains Mahlo in V [G]. Towards a contradiction, assume that
unbounded resurrection holds in V [G] and let Q = Coll(!1 ; �) be the � - closed
poset which collapses the Mahlo to !1. Let us �x an appropriate name Ṙ and
a generic elementary embedding of the sort j : H V [G]�+ −→ H V [G]Q∗Ṙ

j(�+) given by the
axiom UR(� - closed). Then, j(�) is Mahlo in H V [G]Q∗Ṙ

j(�+) and hence it is Mahlo in
V [G]Q∗Ṙ as well. But now, just as we did in the proof of Proposition 5.9, we get
a contradiction since there are no Mahlo cardinals in V [G]Q∗Ṙ. ut

Question 5.21. Does the same situation occur in the case of c.c.c. posets ? i.e.,
can we separate RA(c.c.c.) from UR(c.c.c.) ?

We shall see that the answer to this question is indeed \ yes "; this will follow
from considerations regarding consistency lower bounds of the various resurrection
axioms, to which we now turn our attention.

5.4 On consistency lower bounds

By results of Hamkins and Johnstone, the resurrection axioms for the classes of
c.c.c., of � - closed, of proper, and of ℵ1 - semi proper posets, either follow from, or
are actually equiconsistent with the existence of an uplifting cardinal; hence, they
are all strictly weaker than a Mahlo cardinal in consistency strength.

On the other hand, for the consistency of the unbounded versions, the assump-
tion of extendibility which we used is outrageously stronger than that of an uplift-
ing cardinal. For RA(stat. pres.), the gap remains very large even if one assumes a
proper class of Woodin cardinals. Thus, enquiries regarding the exact consistency
strength of these axioms cannot be avoided.

One easy observation which can be made right away is that, since the unbounded
resurrection axioms for proper, for ℵ1 - semi proper and for stationary preserving
posets imply PFA (or evenMM), it follows that they must have consistency strength
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at least at the level of in�nitely many Woodin cardinals: it is known that PFA
implies that the Axiom of Determinacy (AD) holds in L(R) (cf. [45]) and thus,
each one of the axioms: UR(proper), UR(semi proper), and UR(stat. pres.) entails
that there is an inner model with in�nitely many Woodin cardinals.

Of course, the exact consistency strength of the forcing axioms PFA and MM is
an important open problem which we do not intend to tackle here. In contrast, we
again focus on the classes of c.c.c. and of � - closed posets. Even for the latter cases,
we do not give (provably) optimal answers but we instead provide consistency lower
bounds by deriving failures of (weak forms of) square principles. Finally, and via
a di�erent method, we also give a lower bound for the case of RA(stat. pres.),
together with a comment on how one might initially improve it.

To begin with, we may already observe the failure of squares for the class of
� - closed posets. For this, recall that the axiom MA+(� - closed) implies both the
SCH and several re
ection principles (see § 37 in [28]). In particular, it implies
that for every regular � > !2, every stationary S ⊆ � consisting of ordinals of
countable co�nality re
ects below � , i.e., there exists a 
 < � (with cf(
) = !1)
such that S ∩ 
 is stationary in 
 . Thus, by Corollary 5.10 and the remarks
from Section 1.5, we immediately have the following.

Corollary 5.22. UR(� - closed) =⇒ SCH + \ �� fails, for every � > !1". ut

We will return to the case of � - closed posets later on in this section, obtaining
some failures of weak squares as well.

Let us now concentrate on c.c.c. posets, for which we show that UR(c.c.c.) implies
the non { existence of good scales (cf. De�nition 1.28) above the continuum. In
particular, this implies the SCH and that various weak versions of square fail. For
the proof, we use an argument due to Bagaria and Magidor (cf. [7]), which they
apply in the context of !1 - strongly compact cardinals.

Theorem 5.23. Assume UR(c.c.c.). Then, for every cardinal � > c such that
cf(�) = ! , there is no good �+ - scale.

Proof. Fix a cardinal � > c with cf(�) = ! and �x some sequence 〈�n : n ∈ ! 〉
of regular cardinals so that supn �n = � . Towards a contradiction, assume that
〈 f� : � < �+ 〉 is a good �+ - scale with respect to this sequence.

Let us also �x some regular � > �+ with 〈 f� : � < �+ 〉 ∈ H�. If Q = {1}
is the trivial poset then, by unbounded resurrection, there exists a c.c.c. poset R
and an elementary embedding

j : H� −→ H V Rj(�) ;
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such that j ∈ V R, cp(j) = c and j(c) > � . By elementarity, we have that
j(〈 f� : � < �+ 〉) = 〈 f ∗� : � < j(�+) 〉 is a good j(�+) - scale, with respect to the
sequence 〈 j(�n) : n ∈ ! 〉.

Let � = sup(j ′′�+) and note that � < j(�+) and cf(�)V R
= �+, with the latter

being regular in V R. Hence, by de�nition of a good scale, there exists, in H V Rj(�),
some D ⊆ � co�nal in � and some n ∈ ! so that, for every 
 < 
 ′ in D and
every m > n , we have the inequality:

f ∗
 (m) < f ∗
 ′(m):

We now de�ne, recursively for � < �+, an increasing sequence of ordinals of the
form D∗ = {
� : � < �+} ⊆ D, while keeping on the side an auxiliary sequence
{�� : � < �+} ⊆ �+. Initially, we let 
0 = minD. Given 
� for some � < �+, we
let �� < �+ be least such that 
� < j(��) and de�ne 
�+1 as the least ordinal
in the set D with j(��) < 
�+1. At limit stages � < �+, we let 
� be the least
ordinal in D above the supremum of all the 
� 's de�ned so far. It is easy to see
that, for every � < �+, �� < �+.

Furthermore, for each � < �+, there exists an n� ∈ ! so that for all m > n�,
the following inequalities hold:

f ∗
�(m) < f ∗j(��)(m) < f ∗
�+1
(m):

Now let E ⊆ �+ be of cardinality �+ and with the property that, for all � ∈ E,
the corresponding n� is the same; say equal to some �xed k ∈ ! . Then, for every
� < � in E, we have the inequalities which are shown below:

f ∗
�(k) < f ∗j(��)(k) < f ∗
�+1
(k) 6 f ∗
�(k) < f ∗j(��)(k) < f ∗
�+1

(k):

At this point observe that, for any � < �+, f ∗j(��)(k) = j(f��(k)) where, by
de�nition of a scale, j(f��(k)) ∈ j ′′�k.

But this is a contradiction, since the sequence 〈 f ∗j(��)(k) : � ∈ E 〉 has order
type �+, whereas �k is a (regular) cardinal below � . ut

We remark that in the last proof, we made heavy use of the fact that the forcing
R, due to its countable chain condition, preserved co�nalities and cardinals. We
also relied on the fact that the critical point of the generic embeddings given
by UR(c.c.c.) is c. A moment's re
ection shows that we may easily modify the
previous argument in order to account for any co�nality below c.
Corollary 5.24. Assume UR(c.c.c.). Then, for every cardinal � > c such that
cf(�) < c , there is no good �+ - scale. ut
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We now draw more conclusions regarding the e�ect of UR(c.c.c.) on the universe.
Corollary 5.25. UR(c.c.c.) implies the following :

(i) SCH.

(ii) �∗� fails, for every � > c with cf(�) < c.

Proof. For (i), �rst notice that the SCH holds (vacuously) at every singular � < c.
Additionally, it follows from Theorem 5.23 and Theorem 1.30 that, for any singular
� > c with cf(�) = ! , the SCH holds at� . Hence, by a result of Silver (see
Theorem 8.13 in [28]), the SCH holds everywhere.

For (ii), we invoke Proposition 1.29 and combine it with Corollary 5.24; then,
for every � > c with cf(�) < c, we have that �∗� fails. ut

As we have pointed out in the Prelude, failures of (weak) squares imply inner
models with large cardinals. For example, recall that as we mentioned at the
(very) end of Section 1.5, if �� fails at some singular strong limit � , then AD
holds in L(R). Therefore, UR(c.c.c.) implies, consistency { wise, the existence of
inner models with in�nitely many Woodin cardinals.

On the other hand, recalling the results of [29], the axiom RA(c.c.c.) is equicon-
sistent with the existence of an uplifting cardinal and, therefore, we indeed have a
substantial gap in consistency strength between RA(c.c.c.) and UR(c.c.c.). More-
over, and as another consequence of Corollary 5.25, we may actually separate the
two axioms as long as we are granted the (consistency of the) existence of an
uplifting cardinal.

To see this, arguing as in [29], we may force RA(c.c.c.) by a c.c.c. poset starting
from an uplifting cardinal in a model of V = L (where global square holds). This
produces a model of RA(c.c.c.) +¬UR(c.c.c.) and gives an (anticipated) a�rmative
answer to Question 5.21.

We now turn to the case of � - closed posets. To begin with, we introduce the
notion of a generically extendible cardinal; this is in accordance with other notions
of \ generic large cardinals ", such as generically supercompact and generically
huge cardinals (see, for example, [17] or [18]).
De�nition 5.26. Let � = �+, where � is regular, and �x some (de�nable) class
Γ of posets which preserve co�nalities < � . We say that � is generically ex-
tendible by Γ if for every cardinal � > � , there exists a poset P ∈ Γ and there
is an elementary embedding

j : H� −→ H V Pj(�);
with j ∈ V P, cp(j) = � and j(�) > � .



102 5.4. On consistency lower bounds

A direct consequence of the de�nition of the UR axioms is that UR(Γ) implies that
!2 is generically extendible by Γ, for the classes Γ of � - closed and of proper posets.
On the other hand, recall that, in general, forcing with stationary preserving posets
(in fact, ℵ1 - semi properness su�ces) may drop the co�nality of an uncountable
regular cardinal to !.

Furthermore, and again for the classes Γ of � - closed and of proper posets, the
axiom UR(Γ) actually implies that !2 is indestructibly generically extendible, a
notion which is stronger than generic extendibility and parallel to the de�nition
of unbounded resurrection.

De�nition 5.27. Let � = �+, where � is regular, and �x some (de�nable) class
Γ of posets which preserve co�nalities < � . We say that � is indestructibly
generically extendible by Γ if for every cardinal � > � and every Q ∈ Γ with
Q ∈ H� , there exists a (name for a) poset Ṙ such that Q 
 “ Ṙ ∈ Γ ”, and there
is an elementary embedding

j : H� −→ H V Q∗Ṙj(�) ;

with j ∈ V Q∗Ṙ, cp(j) = � and j(�) > � .

We also consider the (known) notion of an indestructibly generically supercom-
pact cardinal (cf. [14] and De�nition 11.4 in [18]). The following is a slight modi�-
cation of the corresponding de�nition in [18], as we are taking into account various
classes of posets.

De�nition 5.28. Let � = �+, where � is regular, and �x some (de�nable) class
Γ of posets which preserve co�nalities < � . We say that � is indestructibly
generically supercompact by Γ if for every regular � > � and every Q ∈ Γ

with Q ∈ H� , there is a (name for a) poset Ṙ such that Q 
 “ Ṙ ∈ Γ ”, and there
is an elementary embedding

j : V −→M ⊆ V Q∗Ṙ;

where M is transitive, j is a de�nable subclass of V Q∗Ṙ, cp(j) = � , j(�) > � ,
j ′′� ∈M , sup(j ′′�) < j(�) and cf(�)M = � .

We now establish a connection which might already be expected.

Proposition 5.29. Let � = �+, where � is regular, and �x a (de�nable) class
Γ of posets which preserve co�nalities < � . If � is indestructibly generically
extendible by Γ, then it is also indestructibly generically supercompact by Γ.
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Proof. Fix a cardinal � = �+, where � is regular, let Γ be a class of posets
which preserve co�nalities < � and suppose that � is indestructibly generically
extendible by Γ. Fix a regular � > � and some Q ∈ H� with Q ∈ Γ. We
shall �nd a (name for a) poset Ṙ and a (class) elementary embedding in V Q∗Ṙ

witnessing the indestructible generic supercompactness of � .
For this, further �x some � = i� > � and let Ṙ and j witness the inde-

structible generic extendibility of � with respect to �+, i.e., Q 
 “ Ṙ ∈ Γ ” and
j ∈ V Q∗Ṙ is an elementary embedding of the form

j : H�+ −→ H V Q∗Ṙ

j(�+) ;

with cp(j) = � and j(�) > �+. We now extract, in V Q∗Ṙ, an appropriate (long)
extender from j, measuring sets in V , and we then argue that the corresponding
extender ultrapower witnesses the indestructible generic supercompactness of � ,
as desired. At this point, the reader might want to recall the proof of Theorem
2.32, where an analogous strategy was followed.

So, let E = 〈Ea : a ∈ [j(�)]<! 〉 where, each Ea is a V - ultra�lter on [�]|a|
de�ned as usual: for X ∈ P([�]|a|) ∩ V ,

X ∈ Ea ⇐⇒ a ∈ j(X):
It is easy to check that each Ea is also su�ciently complete: namely, for every
� < � and every � - sequence 〈X� : � < � 〉, where X� ∈ Ea ∩ V for all � < � ,
we have that

⋂
�<�

X� ∈ Ea.

Note that, in V Q∗Ṙ, � has cardinality � and so it is no longer a cardinal; in
fact, since V Q∗Ṙ |= j(�) = �+, the same is true for every ordinal in the interval
[� ; j(�)). This is the reason for not using the term \� - complete " for the ultra-
�lters Ea or the term \ (�; j(�)) - extender " for E. Still, we argue that E indeed
has extender properties and that a corresponding ultrapower may be formed.

For this, one patiently veri�es that the de�ning clauses of an extender (see
De�nition A.4 in the Appendix) are satis�ed, with respect to the � = �+ of
V . For example, we check that E{�} is not (�+)V - complete: just de�ne, in V
and for each � < � , the set X� = {{�} : � < � < �} and note that X� ∈ E{�}.
Then,

⋂
�<�

X� ∈ V while {�} =∈ j(
⋂
�<�

X�) (the latter is veri�ed, of course, in V Q∗Ṙ).
Similarly, one checks that the rest of the proof of Lemma A.6 in the Appendix
goes through; we only comment on the issue of well { foundedness.

Let us assume, towards a contradiction, that E is not well { founded, i.e., the
well { foundedness condition of De�nition A.4 fails. Then, following the proof
(namely, the \ converse" direction) of Proposition A.5, we obtain a sequence of
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elements [an ; [Fn]] witnessing the ill { foundedness of M̃E. But recall that in
the aforementioned proof, for each n ∈ ! , we have that an ∈ [j(�)]<! and
Fn : [�]|an| −→ �+, where the Fn 's are de�ned in terms of an appropriate rank
function. As all the elements [an ; [Fn]] belong to the HjE(�+) of M̃E, it follows
that a counterexample to its well { foundedness may already be found there. Now
we reach a contradiction, since the HjE(�+) of M̃E is embeddable into the Hj(�+)

of V Q∗Ṙ, via the restrictions of the usual commuting embeddings.
Having established that E is a legitimate extender, we may now let

jE : V −→ME ⊆ V Q∗Ṙ

be the extender embedding, which is of course a de�nable subclass of V Q∗Ṙ and
where ME is transitive. By standard arguments regarding extenders, cp(jE) = � .
We now check the rest of the clauses towards establishing the indestructible generic
supercompactness of � , as witnessed by (Ṙ and) jE; i.e., we check that jE(�) > � ,
jE ′′� ∈ME, sup(jE ′′�) < jE(�) and cf(�)ME = � .

We argue as in the proof of Theorem 2.32 and we get a restricted version of the
usual commutative diagram, de�ning k ∗E : HMEjE(�) −→ H V Q∗Ṙj(�) , by letting

k ∗E([ a; [f ] ]) = j(f)(a);

for all [ a; [f ] ] ∈ HMEjE(�), where a ∈ [j(�)]<! and f : [�]|a| −→ H� with f ∈ V . We
point out that this de�nition makes sense since any such function, representing an
element in HMEjE(�), indeed belongs to H�+ . Moreover, it is easily checked that k ∗E
is a well { de�ned {∈} - embedding and so, in particular, injective. We then get
the commutative diagram

H� j � H� - H V Q∗Ṙj(�)

HMEjE(�)

jE � H�
?

k ∗E

-

where j � H� = k ∗E ◦ (jE � H�). Next, we show that k ∗E is in fact the identity.
Since � = i�, we �x some bijection g : [�]1 −→ H�, where g ∈ H�+ . Then,
by elementarity, we have that j(g) : [j(�)]1 −→ H V Q∗Ṙj(�) is also a bijection and
j(g) ∈ H V Q∗Ṙ

j(�+) . Thus, for every x ∈ H V Q∗Ṙj(�) , there is some � < j(�) such that
x = j(g)({�}). But this means that for every x ∈ H V Q∗Ṙj(�) ,

x = k ∗E([ {�}; [g] ]);
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where [ {�}; [g] ] is an element of HMEjE(�), i.e., k ∗E is also surjective. Therefore, it
must be the identity, since its domain and range are transitive sets. Hence, we
conclude that

HMEjE(�) = H V Q∗Ṙj(�) ;
i.e., H V Q∗Ṙj(�) ⊆ME and, also, for every ordinal � 6 � , jE(�) = j(�). In particular,
jE(�) = j(�) > � , jE(�) = j(�) and jE ′′� = j ′′� ∈ H V Q∗Ṙj(�) ; therefore, we obtain
that jE ′′� ∈ME and sup(jE ′′�) = sup(j ′′�) < j(�) = jE(�) as well.

To �nish the proof, by V Q∗Ṙ |= |�| = � and the fact that H V Q∗Ṙj(�) ⊆ ME, it fol-
lows that cf(�)ME = cf(�)V Q∗Ṙ

6 � . But notice that the latter inequality cannot
be strict, because the posets in the class Γ are supposed to preserve co�nalities
<� . The proof is now complete. ut

As we have already remarked, in the context of the axioms UR(Γ) for the classes
of � - closed or of proper posets, we may regard !2 as being (indestructibly) gener-
ically extendible (resp. supercompact, by the last proposition).

With this picture in mind, let us depart from full generality in order to draw
conclusions related to the speci�c unbounded resurrection axiom UR(� - closed).
Towards this goal, we give the following generalization of an argument due to
Foreman and Magidor (cf. § 5 in [19]). This is a result already quoted in [14], of
which we now provide a proof.
Theorem 5.30. Suppose that !2 is indestructibly generically supercompact by
the class of � - closed posets. Then, for every (uncountable) strong limit � with
cf(�) = ! , �∗� fails.

Proof. Assume that !2 is indestructibly generically supercompact by the class of
� - closed posets. Fix some strong limit � > !2 with cf(�) = ! and suppose,
towards a contradiction, that

C = 〈C� : � ∈ Lim(�+) 〉

is a �∗� - sequence, i.e., C satis�es the following conditions for every � ∈ Lim(�+) :

(i) C� ⊆ P(�) and 1 6 |C�| 6 � .
(ii) Every C ∈ C� is a club in � , with ot(C) < � .

(iii) For every C ∈ C� and every � ∈ Lim(C), C ∩ � ∈ C�.
(iv) There is some C ∈ C� with ot(C) = cf(�).
(v) For every C ∈ C� and every club D ⊆ C, D ∈ C� as well.
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Recall that by De�nition 1.26 and its subsequent remarks, the ordinary de�ning
clauses of a �∗� - sequence are (i) - (iii) (note that in condition (ii) the singularity
of � is used) and, without loss of generality, we may also assume condition (iv).
As for condition (v), it can be assumed in the light of the fact that, in the current
situation, � is a (singular) strong limit cardinal.

Now let Q = {1} be the trivial poset. By indestructible generic supercompact-
ness of !2, there is some � - closed poset R and an elementary embedding

j : V −→M ⊆ V R;
where M is transitive, j is a de�nable subclass of V R, cp(j) = !2, j(!2) > �+,
j ′′�+ ∈ M , sup(j ′′�+) < j(�+) and cf(�+)M = !1. Let 
 = sup(j ′′�+) and let
us denote by

〈C∗� : � ∈ Lim(j(�+)) 〉
the image j(C ) ∈ M of the weak square sequence. Then, working temporarily
in the model M , there is some club D
 ⊆ 
 with D
 ∈ C∗
. Using the fact
that cf(
) = cf(�+) = !1, we may assume by condition (iv) that ot(D
) = !1.
Moreover, since j ′′�+ is an ! - club in 
 , we may further assume (by intersecting
D
 with j ′′�+ and using condition (v) if necessary) that D
 ⊆ j ′′�+.

By condition (iii), for every � ∈ Lim(D
), we have that D� = D
 ∩ � ∈ C∗� . But
then, from the perspective of V R now, D� is a countable set of ordinals, subset of
the range of j. Thus, by the � - closure of R, there exists some (countable) x ∈ V
with j(x) = D�. So, if �� < �+ is chosen so that � = j(��), we moreover get { by
elementarity { that x ∈ C�� .

In other words, the preceding discussion shows that the forcing R has added a
so { called thread of order type !1 and co�nal in �+, through the ground model
weak square sequence; that is, we have added a set E ∈ V R which has order
type !1 and is co�nal in �+ and with the property that, for every � ∈ Lim(E),
E ∩ � ∈ C�. Namely, the thread E is the pre { image of D
 under the embedding
j. Note that, clearly, such a thread cannot exist in V although, by the � - closure
of R, all of its initial segments do.

We now use the closure of R in order to derive a contradiction. By standard
abuse of notation, we dispense with the \ dots" and the \checks" when referring to
elements of V R; in particular, E is really an R - name. Without loss of generality,
E may be chosen so that R forces that E has order { type !1 and is co�nal in
�+. We �rst need the following claim, showing that for any condition p ∈ R, there
exists some � < �+ so that many ground model elements are forced (below p) to
be equal to E ∩ � .
Claim. For every p ∈ R there exists some � < �+ such that

|{z ∈ V ∩ [�+]! : there is r 6 p s.t. r 
 z = E ∩ �}| > �:
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Proof of claim. Towards a contradiction, �x some p ∈ R which is a counterex-
ample to the claim. Moreover, �x 〈�n : n ∈ ! 〉 a sequence of regular cardinals
which is co�nal in � . Now, for every � < �+, consider the (non { empty) ground
model set

T� = {z ∈ V ∩ [�+]! : there is r 6 p s.t. r 
 z = E ∩ �}:

By assumption on p, there is some n� ∈ ! with |T�| < �n� . Moreover, for any
� < � ′ < �+, |T�| 6 |T� ′|. Hence, there exists some �xed n ∈ ! such that, for
every � < �+, |T�| < �n.

From the latter bound and the regularity of �n, we get that for every � < �+

with cf(�) = �n, there is some � < � with the property that, for every pair of
initial segments z ; z ′ ∈ T�, if z 6= z ′ then z ∩ � 6= z ′ ∩ � . But this produces a
regressive function on the stationary set of ordinals below �+ which have co�nality
�n; thus, there is a stationary S ⊆ �+ and there is some �xed � < �+ so that

∀� ∈ S ∀ z ; z ′ ∈ T� (z 6= z ′ −→ z ∩ � 6= z ′ ∩ �):

Now �x some z ∈ T�; that is, z ∈ V ∩ [�+]! and, for some condition r 6 p,
r 
 z = E ∩ � . But then, for every � ∈ S (most interestingly for � > �),
there must be exactly one z� ∈ T� which is \compatible" with z, in the sense
that z = z� ∩ � and r� 
 z� = E ∩ � , for some r� below r. Hence, the whole
thread E can already be decided in the ground model, i.e., E ∈ V . This is a clear
contradiction which proves the claim. ut

Given the claim, we now build a tree of conditions in R , indexed by �nite
sequences s ∈ <!� . We perform the construction recursively based on the length
of s, aiming at producing, for each n ∈ ! , a set of conditions

An = {qs : s ∈ n�} ⊆ R

and an ordinal �n < �+ such that, for every s ∈ n� , qs ∈ An determines the
initial segment E ∩ �n of the thread. We initialize the construction by letting
A0 = {1R} and �0 = ∅.

Now, suppose that An and �n are given, for some n ∈ ! . For any �xed s ∈ n�
and qs ∈ An, we show how to extend qs to qt, for every t ∈ n+1� with s v t. By
the claim, there exists some �s < �+ so that the set

T�s = {z ∈ V ∩ [�+]! : there is r 6 qs s.t. r 
 z = E ∩ �s}

has cardinality at least � . Hence, by choosing for each such z some condition
r 6 qs witnessing the fact that z ∈ T�s , we produce an antichain Ds of size
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� , consisting of conditions below qs which force incompatible information about
E ∩ �s. We index these incompatible conditions using �nite sequences t ∈ n+1�
with s v t, i.e., we write the produced antichain as:

Ds = {rt : t ∈ n+1�; s v t}:

In other words, this procedure gives, for any s ∈ n� and qs ∈ An, some ordinal
�s < �+ and some antichain Ds of size � , consisting of conditions indexed by the
�nite sequences in n+1� which extend s, as above. Recall that each such rt ∈ Ds
corresponds to some z t ∈ V with rt 
 z t = E ∩ �s.

We now let �n+1 = sup{�s : s ∈ n�} (where notice that �n+1 < �+). In order
to de�ne An+1, for every t ∈ n+1� with s v t, we choose some qt which is an
extension of rt ∈ Ds and such that qt decides E ∩ �n+1, i.e., for some z t ∈ V ,
we have qt 
 z t = E ∩ �n+1. Then, we let An+1 be the collection of those chosen
extensions qt 's. It is now immediate that the resulting set An+1 = {qt : t ∈ n+1�}
along with �n+1 satisfy the construction requirement.

Furthermore, by the � - closure of R, we may assume, by enlarging �n+1 and
extending each qt ! - many times if necessary, that every qt forces that its corre-
sponding z t = E ∩ �n+1 is unbounded in �n+1. Finally, let � = supn �n < �+.

For each function f : ! −→ � , let qf ∈ R be a lower bound of the descending
chain {qf�n : n ∈ !}. Observe that for every such function, qf determines E ∩ � ;
namely, if zf =

⋃
n∈!

zf�n, then zf is countable, zf ∈ V and qf 
 z f = E ∩ � .
Moreover, qf forces that zf is unbounded in � . In particular, as E is supposed
to be a thread, we have that zf ∈ C�.

Consequently, if f 6= g are distinct functions from !� , then zf 6= zg and so C�
must have cardinality at least �! > �+. But we have just arrived at a contradiction
since, by condition (i) of the weak square sequence, |C�| 6 � . This completes the
proof. ut

Recalling that UR(� - closed) implies that !2 is indestructibly generically extendible
by the class of � - closed posets, Theorem 5.30 combined with Proposition 5.29 im-
mediately give the following (adding to Corollary 5.22).
Corollary 5.31. UR(� - closed) implies that, for every (uncountable) strong limit
cardinal � with cf(�) = ! , �∗� fails. ut

Let us point out that, regarding Theorem 5.30, the assumption \ cf(�) = ! "
became important at the very �nal step of the proof: we used it to conclude that,
as a consequence of K�onig's Theorem, �! > � . Clearly, this would not have been
granted if we had assumed that cf(�) > ! . At any rate, we may ask:
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Question 5.32. Can we dispense with the \strong limit " assumption in the pre-
vious result(s)? Moreover, does UR(� - closed) imply failure of even weaker prin-
ciples, such as the approachability property ?

As a concluding result of this chapter, let us consider anew the resurrection
axiom for stationary preserving posets. We shall show that, unlike the other
resurrection axioms appearing in [29], RA(stat. pres.) has consistency strength
beyond the realm of large cardinals compatible with V = L ; namely, it already
implies that every set has a sharp. For this, we shall use some of the techniques
developed by R. Schindler in order to get lower bounds for the consistency strength
of BMM (cf. [40] and [41]). Before we proceed to the actual theorem, we need some
background material from [40].

Let r ⊆ ! . We describe a recursive construction (of length at most !1) which
will produce an ordinal �r 6 !1, a function fr : �r −→ !1, a sequence of the form
d(r) = 〈 d(r)i : i < �r 〉 and some Ar ⊆ �r. Intuitively, the ordinal �r will indicate
the length for which the recursive construction can be carried out, for our �xed r.

Suppose that, for some � 6 !1, we have already de�ned fr � �, 〈 d(r)i : i < � 〉,
and Ar ∩ �. If � = !1 or if � < !1 and � is uncountable in L[Ar ∩ �], we then
set �r = � and �nish the construction. Otherwise, we de�ne fr(�) to be the least
ordinal � < !1 such that L�+1[Ar ∩ �] |= “ � is countable ”; moreover, we let d(r)�
be the L[Ar ∩ �] - least d ⊆ ! which is almost { disjoint from all the d(r)i 's, for
i < � . Finally, we put � into Ar if and only if d(r)� ∩ r is �nite. This concludes
the description of the construction. Then, our �nal de�nition is the following.
De�nition 5.33 ([40]). We say that r ⊆ ! codes a reshaped subset of !1 if
the above construction can be carried out for all ordinals up to !1, i.e., if �r = !1.

Obviously, if r ⊆ ! codes a reshaped subset of !1, then !L[r]
1 = !V

1 . Moreover,
if we are given a real r ⊆ ! , then r codes a reshaped subset of !1 if and only
if this is witnessed in the structure Hℵ1 ; that is, Hℵ1 uses r as a parameter and
faithfully veri�es that the aforementioned recursive construction can be carried
out for all ordinals in !1. In addition, by absoluteness of the computations, in
such a case the associated witnessing triple 〈 fr ; d(r) ; Ar 〉 is the same, whether it
is computed in Hℵ1 or in V . We are now ready for the theorem.
Theorem 5.34. RA(stat. pres.) =⇒ For every X ∈ V , X# exists.

Proof. First, note that by Theorem 1.24, RA(stat. pres.) +¬CH entails BMM.
Hence, in this case the conclusion follows from Theorem 1.3 in [40] (in fact, [41]
provides even better bounds for BMM). It is therefore su�cient to consider the
situation in which we have RA(stat. pres.) together with CH.
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Towards a contradiction, assume that for some set X, X# does not exist. Then,
again by results of Schindler (cf. [39]), there is a stationary preserving poset P
which adds a real r ⊆ ! coding a reshaped subset of !1; the latter fact, by our
previous remarks, is actually witnessed in H V P

ℵ1
. But then, if Ṙ is a further (name

for a) stationary preserving poset which achieves resurrection, i.e., such that

Hℵ1 ≺ H V P∗Ṙ

ℵ1
;

and since !1 is preserved, we have that r still codes a reshaped subset of !1 in
V P∗Ṙ and thus, the same is true in the structure H V P∗Ṙ

ℵ1
. Hence, by elementarity,

there must exist reals r ∈ V which code reshaped subsets of !1.
Now, let <∗ be the ordering relation on functions in !1!1 de�ned by:

f <∗ g ⇐⇒ ∃C ⊆ !1 (“C is a club ” ∧ ∀� ∈ C (f(�) < g(�))) :

By the well { foundedness of <∗, let us �x a real r ∈ V , coding a reshaped subset
of !1, with its associated fr being <∗ - minimal among functions fx associated
with reals x ∈ V coding reshaped subsets of !1. Let d(r) = 〈 d(r)� : � < !1 〉 ∈ L[r]
be the sequence of almost { disjoint subsets of ! associated with this r.

Then, by Lemma 3.3 in [40], there is a stationary preserving poset Q 1 forcing
the existence of some real r ′ and of some club C ⊆ !1, so that r ′ codes a reshaped
subset of !1 and the club C witnesses that fr ′ <∗ fr. In V Q 1 , let Q̇ 2 be the (name
for the) c.c.c. poset which codes C by a real z, relative to the sequence d(r). That
is, Q̇ 2 is the standard (Jensen { Solovay) almost { disjoint coding forcing, which
produces a z ⊆ ! with the property that, in V Q 1∗ Q̇ 2 , for every � < !1,

� ∈ C ⇐⇒ |z ∩ d(r)� | < ℵ0:

Let Q = Q 1 ∗ Q̇ 2 and notice that Q is stationary preserving in V . Hence, by
the resurrection axiom RA(stat. pres.), there exists some further (name for a)
stationary preserving poset Ṙ giving that

Hℵ1 ≺ H V Q∗Ṙ

ℵ1
:

Clearly, !1 is preserved throughout these forcing constructions. We now derive a
contradiction by arguing that, in H V Q∗Ṙ

ℵ1
, we may express the statement \ there is a

real r ′ coding a reshaped subset of !1 with fr ′ <∗ fr ". This will be enough since
in this case, by elementarity, such a real must already exist in V , which would
contradict the <∗ - minimality of fr.

For this, �rst note that both the fact that r ′ codes a reshaped subset of !1 and
that C is a club witnessing fr ′ <∗ fr remain true in V Q∗Ṙ. The former fact, as we
have already remarked, can be indeed witnessed in H V Q∗Ṙ

ℵ1
. As for the latter, since
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z ∈ H V Q∗Ṙ
ℵ1

and the computations of fr ′ , fr and of d(r) are absolute once the reals
r ′ and r are given, we may express the statement \ fr ′ <∗ fr " by saying:
\there exists a z ⊆ ! such that, the ordinals � for which |z ∩ d(r)� | < ℵ0, where
d(r)� is the �th element appearing in the recursive construction of d(r) associated
with r, form a closed and unbounded class ; moreover, for every such � , we have
that fr ′(�) < fr(�)". Hence, it now follows that

HV Q∗Ṙ

ℵ1
|= ∃ r ′ ⊆ ! (“ r ′ codes a reshaped subset of !1” ∧ “ fr ′ <∗ fr ”)

and then, by elementarity, we get the desired contradiction in V . ut

The previous result was evidently one �nal digression from the general spirit of
the rest of the dissertation. It should be thought of as an en passant theorem,
rather than an indication of our expertise in all of the techniques involved.

It is worth mentioning that, as pointed out to us by Ralf Schindler himself, the
arguments showing that BMM implies strong cardinals in the core model (cf. [41])
are similarly applicable to the case of RA(stat. pres.). For the time being, we take
his word for it and conveniently avoid delving into the subtleties, and the laborious
details of inner model theory.





Conclusions & Questions

We share with the (remaining) readers some concluding thoughts, together with
a non { exhaustive list of open questions which have arisen along the way. Many
of these questions, rather than precise formal statements, are given in the form of
general enquiries.

Starting with the various C(n) - cardinal hierarchies, we have established consis-
tency upper bounds via constructions of elementary chains. In particular, we have
shown that, consistency { wise, the assumption of almost hugeness is an adequate
upper bound for all the C(n) - cardinals considered in Chapter 2. This bound is an
improvement of the results appearing in [5], where the consistency of the aforemen-
tioned C(n) - cardinals was obtained from that of the existence of rank { into { rank
elementary embeddings. A natural question, then, concerns the optimality of
our results, accompanied with considerations regarding (non { trivial) consistency
lower bounds for such notions.

Related to the latter, and as already discussed at the end of Chapter 2, an
important and apparently delicate open problem is whether one can separate the
various large cardinal notions from their corresponding C(n) - versions, with the
case of supercompactness being of central interest. Hence, as a �rst step, we may
ask the following.
Question 1. Assume that � is C(1) - supercompact. Is there a forcing notion
(even class forcing) which kills the C(1) - supercompactness while preserving the
supercompactness of �?

Additionally, we may also wonder about indestructibility results, while keeping
in mind the limitations observed in Chapter 4.
Question 2. Can the C(n) - supercompactness be made indestructible under vari-
ous classes of forcing notions?

In the same context, we can indeed reconsider some of our de�nitions if it be-
comes necessary; for instance, in the case of C(n) - Woodin cardinals.
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Question 3. What happens if we drop the requirement \ j(�) = � " in the de�nition
of a C(n) -Woodin cardinal?

We have pointed out in Chapter 3 that there are certain obstacles one is facing
when trying to study the behaviour of the Σn - correct ordinals with respect to
forcing. A closely related query has to do with the possibilities left unanswered by
Lemma 3.1.
Question 4. For n > 2 , under which circumstances, if any, can a C(n) - cardinal
be created in some forcing extension?

In the other direction, and concretely for n = 2, we may also ask:
Question 5. Is there a general criterion or, even, a restricted family of forcing
notions which preserve the \C(2) - ness " of any particular ordinal?

In Chapter 3, we also gave some results regarding the preservation of C(n) - tall
and of C(n) - supercompact cardinals by posets which are (su�ciently) distributive;
however, the cases of superstrongness and of extendibility were left untackled.
Question 6. Are C(n) - extendible (resp. C(n) - superstrong) cardinals preserved by
su�ciently distributive forcing?

More speci�cally, and in connection with Theorem 4.8 from Chapter 4:
Question 7. Are C(n) - extendible cardinals preserved by the canonical forcing for
the global GCH?

Lastly, as far as C(n) - cardinals are concerned, one could further investigate even
stronger notions (e.g., hugeness, superhugeness, rank { into { rank embeddings),
building up on the results obtained in [5].

Moving on to the resurrection axioms which we considered in Chapter 5, there
are various issues which have not been confronted yet. Initially, there is a pending
question related to Theorem 5.5.
Question 8. Does MM (or even MM++) imply RA(stat. pres.)? Can we separate
the two axioms from an assumption weaker than extendibility?

Furthermore, for the case of the unbounded resurrection axioms, given that they
constitute a newly introduced category of principles (at least in this form), there
is a wide variety of related open problems. Our treatment of the subject gave a
general picture which is { in our opinion { coherent, but far from complete.

To begin with, one may study the axioms UR(Γ) when Γ ranges over all sorts
of di�erent classes of posets; this would give rise to a large number of relevant
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questions. It should be emphasized that one has to be careful though, since the
UR axiom for some of these classes may already lead to a contradiction. For
example, if Γ is the class of 6 !1 - closed posets, then an easy adaptation of the
argument used in the proof of Lemma 5.15 shows that UR(Γ) is inconsistent.

Still in the general setting, one could also consider ampli�cations of the un-
bounded resurrection axioms in the following sense.
Question 9. What happens if we allow additional predicates in the structures
〈H� ; ∈ ; : : : 〉 and rede�ne the UR axioms appropriately?

Clearly, such a question applies to the case of RA axioms as well.
Regarding indestructibility matters, it is known that forcing axioms like PFA and

MM are (partially or fully) preserved by appropriate forcing notions (see, e.g., [31]
and [32]). An obvious question is whether similar results hold for the resurrection
axioms.

Perhaps of even greater importance are the issues which touch on consistency
lower bounds; this is de�nitely the case for axioms like PFA, whose consistency
strength is conjectured to be exactly that of a supercompact cardinal. Given
the fact that the unbounded resurrection axioms (for the appropriate classes of
posets) are apparently stronger postulates, we may thus ask if UR(stat. pres.), or
even UR(proper), implies (some degree of) supercompactness. Let us also recall
Question 5.12 from Section 5.2 which addresses the relation between the axioms
UR(stat. pres.) and UR(semi proper).

On the other hand, for the classes of c.c.c. and of � - closed posets, our ap-
proach yields questions which are connected with further failures of combinatorial
principles.
Question 10. Does the failure of principles weaker than �∗, such as the approach-
ability property, follow from UR(� - closed) or from UR(c.c.c.)?

As we remarked at the very end of Chapter 5, R. Schindler's techniques appar-
ently give that RA(stat. pres.) implies, consistency { wise, strong cardinals. Can
we (�rst check and then) improve this bound?

Finally, enquiries regarding possible connections between the UR axioms and
W.H. Woodin's (∗) axiom (cf. De�nition 5.1 in [46]) cannot be resisted.
Question 11. What is the relationship between UR(stat. pres.) and the (∗) axiom?
In particular, does the former imply the latter?

Although we do not intend to insinuate any unjusti�ed optimism, a positive answer
to the latter question would indeed be a remarkable result.





APPENDIX A

Notes on Extenders

As a postlude, we give a brief (?) presentation of the basic theory of extenders.
Our exposition is based on acclaimed text references, such as [30] (§ 26) and the
Martin { Steel classic [36], and should be ideally read in parallel with these excellent
sources. Regarding the present treatment, and at least as far as the introductory
material is concerned, we adhere to the standard results with the tendency to �ll in
details wherever we feel that this might help the non { expert reader become more
accustomed to the underlying concepts and techniques. It should be emphasized
that none of these results and techniques are due to the author.

Historically, extenders were introduced by Anthony Dodd and Ronald Jensen,
who built on some earlier work done by William Mitchell. The basic motivation for
considering such objects was the need to \combinatorially approximate" a given
elementary embedding j : V −→ M between inner models, much like the way in
which usual ultrapowers capture measurability embeddings. Indeed, the notion
of an extender { which proved to be rather central in the study of inner model
theory { generalizes that of a normal measure and is devised for embeddings which
have strength (typically) at the level of strong, superstrong and Woodin cardinals.

As it turns out, elementary embeddings for the aforementioned large cardinals
can be approximated via suitable sequences of measures that are extracted from
the given j : V −→ M . Any such sequence, which is called an extender and is
usually denoted by E, enables us to construct a model ME and an elementary
embedding jE : V −→ ME in a way which is nicely de�nable from E ; moreover,
if E is chosen carefully, then jE and ME closely resemble the initial j and M (in
particular, they witness the same large cardinal strength for � = cp(j) = cp(jE)).

The structure of the appendix is as follows. In Section A.1, we begin our study of
extenders by describing in more detail the setting of the previous paragraph; that
is, we look at extenders which are derived from a given elementary embedding.
Subsequently, in Section A.2, we abstract the essential features of the previous
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procedure and we give the general de�nition of an extender along with some of its
properties. Finally, in Section A.3, we conclude with a not { so { typical discussion
of Martin { Steel extenders and their connection with supercompactness.

A.1 Extenders derived from embeddings

Suppose that j : V −→ M is an elementary embedding with cp(j) = � and M
being a transitive class. Let us pick some � > � and let � be the least ordinal for
which � 6 j(�) (where � 6 �). Now, for each a ∈ [�]<!, we de�ne an ultra�lter
Ea on [�]|a| by: X ∈ Ea ⇐⇒ a ∈ j(X).

Observe that if X ⊆ [�]|a| then j(X) ⊆ [j(�)]|a|, so (by choice of �) this de�nition
makes sense. It is easy to check that each Ea is a � - complete ultra�lter and that
Ea is principal when a ∈ [�]<!.
De�nition A.1. In the setting described above, E = 〈Ea : a ∈ [�]<! 〉 is called
the (�; �) - extender derived from j.

Using the extender ultra�lters, we may construct the familiar corresponding
ultrapowers. Note that � - completeness implies that these ultrapowers will be
well { founded and thus, for each a ∈ [�]<!, we let Ma ∼= UltEa(V ) be the tran-
sitive collapse. Each such construction comes along with a pair of elementary
embeddings which make the following diagram to commute:

V j
- M

Ma

ja
?

ka

- ja(x) = [c ax ]Ea ; for each x ∈ V

ka([f ]Ea) = j(f)(a); for each f ∈ V ∩ [�]|a|V

where c ax : [�]|a| −→ {x} is the constant function. The power of the extender
concept comes from the way in which the Ma 's are interrelated and to which we
now turn our attention.

For every a ; b ∈ [�]<! with a ⊆ b, we consider a projection function �ba which
can be described as follows: let b = {�1; : : : ; �n}, where we always assume that
�1 < : : : < �n, and let a = {�i1 ; : : : ; �im}, with 1 6 i1 < : : : < im 6 n. Now de�ne
�ba : [�]|b| −→ [�]|a| by letting, for all {�1; : : : ; �n} ∈ [�]|b|,

�ba({�1; : : : ; �n}) = {�i1 ; : : : ; �im}:
That is, we project down to a subset according to the relation between the �nite
sets a and b.
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Using these projections, we are about to establish the way in which the ultra-
powers interact. Not surprisingly, something about the corresponding ultra�lters
has to be said �rst.

Coherence property
For all a; b ∈ [�]<! with a ⊆ b, X ∈ Ea ⇐⇒ {s ∈ [�]|b| : �ba(s) ∈ X} ∈ Eb.

To see that this holds, it is enough to notice that j(�ba)(b) = a, which follows
from the de�nition of the projection functions. We are now in position to give
the elementary embeddings which relate the Ma 's. So, for every a; b ∈ [�]<! with
a ⊆ b, de�ne iab : Ma −→Mb by letting, for every f : [�]|a| −→ V with f ∈ V ,

iab([f ]Ea) = [f ◦ �ba]Eb :

It is easy to check that the iab 's are well { de�ned, elementary and that make the
following diagram to commute:

V j
- M

Ma

ja
?

ka

-

Mb

kb

-

jb

-

iab
-

ka ◦ ja = kb ◦ jb = j

kb ◦ iab = ka

iab ◦ ja = jb

At this point we form 〈〈Ma : a ∈ [�]<! 〉 ; 〈 iab : a ⊆ b ∈ [�]<! 〉〉, which is easily
seen to be a directed system. Consequently, we can construct the corresponding
direct limit, M̃E = 〈DE ; ∈E 〉. This is a standard procedure and may be described
in the following manner:

• We de�ne the equivalence relation ∼E on
⋃

a∈[�]<!
{a} ×Ma by:

〈 a; [f ]Ea 〉 ∼E 〈 b; [g]Eb 〉 ⇐⇒ ∃ c ⊇ a ∪ b s.t. iac([f ]Ea) = ibc([g]Eb):

The (Scott) equivalence class of 〈 a; [f ]Ea 〉 will be denoted by [〈 a; [f ]Ea 〉]E.
We now consider the quotient of

⋃
a∈[�]<!

{a} ×Ma by ∼E , which we call DE
and is the domain of the constructed direct limit.
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• In a parallel manner, we de�ne membership ∈E in DE by:

[〈 a; [f ]Ea 〉]E ∈E [〈 b; [g]Eb 〉]E ⇐⇒ ∃ c ⊇ a ∪ b s.t. iac([f ]Ea) ∈ ibc([g]Eb):

It is obvious from the construction that every element x ∈ M̃E is of the form
x = [〈 a; [f ]Ea 〉]E, for some a ∈ [�]<! and some [f ]Ea ∈ Ma, where f : [�]|a| −→ V
is a function in V . Let us also remark that, by already established facts, one
obtains the following equivalents for equality and membership in the direct limit
structure. We have that [〈 a; [f ]Ea 〉]E =E [〈 b; [g]Eb 〉]E if and only if there exists
some c ⊇ a ∪ b such that iac([f ]Ea) = ibc([g]Eb) or, equivalently,

[f ◦ �ca]Ec = [g ◦ �cb]Ec ⇐⇒ j(f ◦ �ca)(c) = j(g ◦ �cb)(c)⇐⇒ j(f)(a) = j(g)(b)

and similarly, [〈 a; [f ]Ea 〉]E ∈E [〈 b; [g]Eb 〉]E ⇐⇒ j(f)(a) ∈ j(g)(b).
In what follows, we avoid unnecessary formalistic complication by supressing

continued brackets and subscripts of the form \Ea" and \E ". Thus, when we
write, e.g., [ a; [f ] ] ∈ [ b; [g] ] in M̃E, what we really mean is that [f ] = [f ]Ea ∈Ma,
[g] = [g]Eb ∈ Mb and [〈 a; [f ]Ea 〉]E ∈E [〈 b; [g]Eb 〉]E. Our next goal is to de�ne
elementary embeddings interconnecting all the models we have considered so far
and then, establish some basic properties of the direct limit structure.

Before this, though, we now argue that the constructed direct limit is well {
founded, a fact which enables us to work with its transitive collapse and, at the
same time, justi�es some of the formalistic simpli�cations mentioned above.

For this, suppose that in M̃E there exist elements xn = [ an; [fn] ] which form
an ∈E - descending chain, i.e., xn+1 ∈E xn, for all n ∈ !. By the equivalent of
membership which we just stated, j(fn+1)(an+1) ∈ j(fn)(an) for all n ∈ !, which
contradicts the well { foundedness of the model M . Therefore, we may work with
ME, the transitive collapse of the direct limit structure. We now de�ne the desired
elementary embeddings kaE, jE and kE, as shown in the following commutative
diagrams:

V j
- M

Ma

ja
?

ka

-

ME

kE

-

jE

-

kaE
-

jE(x) = [ a; [c ax ] ]; for some (any) a ∈ [�]<!
and for each x ∈ V

kaE([f ]) = [ a; [f ] ]; for each a ∈ [�]<! and
f ∈ V ∩ [�]|a|V

kE([ a; [f ] ]) = j(f)(a); for each a ∈ [�]<! and
f ∈ V ∩ [�]|a|V
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Ma kaE - ME

Mb

kbE

-

iab

-

kbE ◦ iab = kaE ; for all a ⊆ b ∈ [�]<!

Let us remark that in the de�nition of jE(x) it does not matter which a ∈ [�]<!
we choose, since, if a 6= â and we let b = a∪ â, then [c ax ◦ �ba] = [c âx ◦ �bâ] = [c bx] in
Mb and thus, [ a; [c ax ] ] = [ â; [c âx ] ] (equivalently, the latter equality holds because
j(c ax )(a) = j(c âx )(â) = j(x)).

The previous remarks show, in addition, that the embeddings kE and kaE are
well { de�ned (recall here the de�nition of the ultra�lter Ea). The fact that all the
aforementioned embeddings commute, comes from straightforward computations
which we omit.

Let us now check, inductively, that each kaE is elementary; we leave it to the
reader to verify that from this fact, the elementarity of jE and of kE easily follows.

Lemma A.2. For every a ∈ [�]<! , kaE is an elementary embedding.

Proof. We proceed inductively on the complexity of formulas (dealing with all
a ∈ [�]<! simultaneously). Suppose that [f ] and [g] belong to Ma, for some
a ∈ [�]<!, where both functions f and g are (in V and) on [�]|a|. By the preceding
discussion,

Ma |= [f ] = [g]⇐⇒ j(f)(a) = j(g)(a)⇐⇒ME |= [ a; [f ] ] = [ a; [g] ]

and analogously for membership, i.e., elementarity holds for the atomic formulas.
Moreover, the cases of negation and of conjuction are immediate. So, suppose that
elementarity holds for '(x; y) and let [g] ∈Ma, where a ∈ [�]<! and g ∈ V ∩ [�]|a|V .
On the one hand,

Ma |= ∃x'(x; [g]) =⇒ Ma |= '([f ]; [g]); some [f ] ∈MaI.H.
=⇒ ME |= '(kaE([f ]); kaE([g]))
=⇒ ME |= ∃x'(x; kaE([g])):

Conversely, suppose that ME |= ∃x'(x; kaE([g])), i.e., there exists some element
[ b; [f ] ] ∈ ME such that ME |= '([ b; [f ] ]; kaE([g])). Let c = a ∪ b. Recalling that
kcE ◦ iac = kaE and kcE ◦ ibc = kbE, our inductive hypothesis and the fact that iac
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is elementary give the following:
ME |= '([ b; [f ] ]; kaE([g])) =⇒ ME |= '(kbE([f ]); kaE([g]))

=⇒ ME |= ' (kcE ◦ ibc([f ]); kcE ◦ iac([g]))I.H.
=⇒ Mc |= ' (ibc([f ]); iac([g]))
=⇒ Mc |= ∃x'(x; iac([g]))
=⇒ Ma |= ∃x'(x; [g]):

ut

We are now in position to establish the basic properties of jE and ME, which
will conclude this section.
Proposition A.3. [Properties of jE ; ME ]

(i) cp(kE) > � . Thus, cp(jE) = � and jE(�) > � . Moreover, if � = j(�) then
cp(kE) > � and so jE(�) = � .
(In particular, if � = j(�) then cp(kE) > � and jE(�) = j(�) = �).

(ii) ME = {jE(f)(a) : a ∈ [�]<!; f ∈ V; f : [�]|a| −→ V }.
(iii) If, for any ordinal 
 , (|V
| 6 �)M , then V M
 = V ME
 ⊆ range(kE) and

kE � V ME
 = id .

Proof. As we have already seen, for every x ∈ ME there is some a ∈ [�]<! and
some f : [�]|a| −→ V with x = kaE([f ]). Thus,

kE(x) = kE(kaE([f ])) = ka([f ]) = j(f)(a)
and then,

(÷) range(kE) = {j(f)(a) : a ∈ [�]<!; f ∈ V; f : [�]|a| −→ V }:
(i) Let � < � . Put a = {�} ∈ [�]1 and let us consider the identity function

f = id 1 : [�]1 −→ [�]1. Obviously, a = j(f)(a) and it now follows from (÷)
that a = {�} ∈ range(kE). By similar computations, � ⊆ range(kE) and
[�]<! ⊆ range(kE). Hence, cp(kE) > � .
To see that cp(jE) = � , notice that if cp(jE) = � < � , we would then have
that � < jE(�) 6 kE(jE(�)) = j(�) = � . Furthermore, if cp(jE) > � ,
then, since kE(�) = � , then j(�) = kE(jE(�)) = kE(�) = � , contradicting
cp(j) = � . Hence, we conclude that cp(jE) = � . Finally, from kE � � = id
and j(�) = kE(jE(�)) > � , we get that jE(�) > � .
For the \moreover" part, just observe that if � = j(�) = kE(jE(�)) then
�+ 1 ⊆ range(kE) and so cp(kE) > � and jE(�) = � .
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(ii) As we mentioned above, [�]<! ⊆ range(kE). In fact, kE � � = id implies
that for every a ∈ [�]<!, kE(a) = a.
Using (÷) and these observations, for any x = [ a; [f ] ] ∈ME,

kE(x) = j(f)(a) = kE ◦ jE(f)(a) = kE(jE(f))(kE(a)) = kE(jE(f)(a))

and, consequently, since kE is injective, x = jE(f)(a) from which the desired
representation of the model ME follows.

(iii) Let us �x a function g : [�]1 −→ V with the property that, for any ordinal
� , if |V�| 6 � then g � [ |V�| ]1 : [ |V�| ]1 −→ V� is a bijection.
Now suppose that for some ordinal 
 , (|V
| 6 �)M . Since � 6 j(�), by
choice of g and elementarity, j(g) � [ |V
|M ]1 is a bijection between [ |V
|M ]1

and V M
 . Thus, for every x ∈ V M
 , there is � < � with j(g)({�}) = x.
But then, according to (÷), x ∈ range(kE), i.e., we have just shown that
V M
 ⊆ range(kE).
To conclude the proof, we have that k−1E : range(kE) −→ME is the collaps-
ing isomorphism and hence V M
 = V ME
 and kE � V ME
 = id.

ut

Before turning to the general de�nition of an extender (i.e., regardless of a given
ambient embedding j), let us point out one �nal thing. As we have already seen,
for any a ∈ [�]<!, kE(a) = a. From this, it follows that for any X ⊆ [�]|a|,

a ∈ j(X)⇐⇒ a ∈ kE(jE(X))⇐⇒ kE(a) ∈ kE(jE(X))⇐⇒ a ∈ jE(X);

i.e., if we try to de�ne the new (�; �) - extender E ′ derived from jE, we obtain
that E ′ = E.

A.2 General theory of extenders

After having discussed extenders derived from a given elementary embedding, we
now move on to the general de�nition of a (�; �) - extender which, as we shall see,
bares the same essential features.

Following the formal de�nition, we will de�ne a direct limit structure ME along
with an elementary embedding jE : V −→ ME, in a spirit resembling the one of
the previous section. Finally, we shall give several properties of jE and ME and,
also, establish the connection between the two kinds of extenders studied so far.

Let us now state the o�cial de�nition.
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De�nition A.4. Let � be a cardinal, � > � and E = 〈Ea : a ∈ [�]<! 〉. We
say that E is a (�; �) - extender if, for some � > � , the following conditions are
satis�ed :

1. (i) For all a ∈ [�]<! , Ea is a � -complete ultra�lter on [�]|a|.
(ii) There is some a ∈ [�]<! such that Ea is not �+-complete.

(iii) For all 
 < � , there is a ∈ [�]<! with {s ∈ [�]|a| : 
 ∈ s} ∈ Ea.
2. (Coherence)

For all a; b ∈ [�]<! with a ⊆ b,

X ∈ Ea ⇐⇒ {s ∈ [�]|b| : �ba(s) ∈ X} ∈ Eb
(where �ba : [�]|b| −→ [�]|a| is the projection function de�ned exactly as in
the previous section).

3. (Normality)
If for some a ∈ [�]<! and some f : [�]|a| −→ V

{s ∈ [�]|a| : f(s) ∈ max(s)} ∈ Ea;

then there is some b ∈ [�]<! so that b ⊇ a and

{s ∈ [�]|b| : f ◦ �ba(s) ∈ s} ∈ Eb:

4. (Well { foundedness)
For any countable families of an ∈ [�]<! and Xn ⊆ [�]|an| respectively,
with Xn ∈ Ean for all n ∈ ! , there exists an order { preserving function
d :

⋃
n∈!

an −→ � such that d ′′an ∈ Xn, for all n ∈ ! .

We remark that � is frequently referred to as the critical point, while � is referred
to as the support of the extender. Given such a (�; �) - extender E, we follow a
similar route to the one we took in Section A.1. We summarize the procedure
below, with appropriate references to our earlier discussion.

• Initially we construct, for all a ∈ [�]<!, the corresponding ultrapowers
UltEa(V ). Note that both condition 1 (i) and condition 4 of De�nition A.4
imply that each Ea is countably complete, i.e., given a collection of the form
{Xn : n ∈ !} consisting of subsets of [�]|a|,
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if, for all n ∈ !, Xn ∈ Ea, then
⋂
n∈!

Xn 6= ∅.

To see that this follows from condition 4, we just let an = a, for all n ∈ !.
Countable completeness is su�cient in order to conclude that all the ultra-
powers are well { founded and so, we can work with the transitive collapses
Ma ∼= UltEa(V ) as usual. Moreover, we have the elementary embeddings
ja : V −→Ma, given by ja(x) = [c ax ]Ea , for all x ∈ V .
• Next, for all a ; b ∈ [�]<! with a ⊆ b, we de�ne { exactly as in Section A.1 {

the embeddings iab : Ma −→Mb by:
iab([f ]Ea) = [f ◦ �ba]Eb ; for all f ∈ V ∩ [�]|a|V:

Using the coherence condition of De�nition A.4, one easily shows that these
are well { de�ned elementary embeddings and that they commute with the
ja 's, i.e., iab ◦ ja = jb.
• Clearly, we can again form the directed system

〈〈Ma : a ∈ [�]<! 〉 ; 〈 iab : a ⊆ b ∈ [�]<! 〉〉
from which we construct the direct limit M̃E = 〈DE ; ∈E 〉. As before,
this construction comes together with the embeddings jE : V −→ M̃E and
kaE : Ma −→ M̃E, de�ned by

jE(x) = [ a; [c ax ] ]; for some (any) a ∈ [�]<! and x ∈ V
and

kaE([f ]) = [ a; [f ] ]; for each f ∈ V ∩ [�]|a|V:
Using inductive arguments as in the previous section, one shows that kaE
is elementary and then, that the same is true for jE. The only di�erence
here is that there is no reference to an ambient elementary embedding j but
despite of that, the remaining part of the arguments works just �ne. This
concludes the description of our construction.

At this point, one should expect that a commutative diagram encapsulating all
the revelant embeddings might be formed. Yet, we refrain ourselves from stating
this explicitly since there is one important thing which needs to be checked.

As the attentive reader might have already noticed, we have not said anything
regarding the well { foundedness of the direct limit M̃E. Recall that, in Section
A.1, the well { foundedness of M̃E was established { essentially { from the elemen-
tarity of the map kE : ME −→ M (and, at any rate, with reference to the given
elementary embedding j). Since this is no longer the case, we have to modify our
arguments. Evidently, condition 4 of De�nition A.4 has to be exploited.
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Proposition A.5. Condition 4 is equivalent to the well { foundedness of M̃E.
Proof. (=⇒) Suppose that M̃E is ill { founded, i.e., there are xn = [ an; [fn] ] ∈ M̃E
so that, for all n ∈ !, xn+1 ∈E xn. First, we claim that the an's can be chosen in
such a way that m 6 n implies am ⊆ an.

To see this, observe that by construction of the direct limit M̃E, for every a ⊆ b
and each f ∈ V ∩ [�]|a|V , we have that [ a; [f ] ] = [ b; [f ◦ �ba] ]. Therefore, given a
descending sequence 〈xn = [ an; [fn] ] : n ∈ !〉, we may de�ne another sequence
〈 yn = [ bn; [gn] ] : n ∈ !〉 where, for each n ∈ !,

bn =
⋃
k6n

ak and gn = fn ◦ �bn an :

It is then easy to check that the yn's form an ∈E - descending chain as well. This
proves our claim and we may thus assume that the sequence of the xn's is as
described above. We now let X0 = [�]|a0| and de�ne recursively, for n ∈ ! :

Xn+1 = {s ∈ [�]|an+1| : fn+1(s) ∈ fn ◦ �an+1 an(s)}:
Since xn+1 ∈E xn for every n ∈ !, it follows that Xn+1 ∈ Ean+1 . Obviously,
X0 ∈ Ea0 and thus, Xn ∈ Ean for all n ∈ !. Having said all that, we are about to
contradict condition 4.

For, suppose that there is an order { preserving function d :
⋃
n∈!

an −→ � such
that d ′′an ∈ Xn, for all n ∈ !. This means that, for all n ∈ !,

fn+1(d ′′an+1) ∈ fn ◦ �an+1 an(d ′′an+1) = fn(d ′′an);
i.e., the sequence 〈 fn(d ′′an) : n ∈ !〉 is an in�nite ∈ - descending chain in V , which
is absurd.
(⇐=) Conversely, suppose that condition 4 fails, i.e., �x some countable families
of an ∈ [�]<! and of Xn ⊆ [�]|an|, so that, for all n ∈ !, Xn ∈ Ean but there
is no order { preserving d :

⋃
n∈!

an −→ � with the property that, for all n ∈ !,

d ′′an ∈ Xn. Our aim of course is to show that M̃E is ill { founded. To begin with,
we claim that the an's and the Xn's can be chosen so that the following hold:

(1) m 6 n =⇒ am ⊆ an
(2) s ∈ Xn ∧ m 6 n =⇒ �an am(s) ∈ Xm.

To show both of them, a similar idea to the one we used in the �rst part of the
proof is employed. For (1), we de�ne, for each n ∈ !,

bn =
⋃
k6n

ak and Yn = {s ∈ [�]|bn| : �bn an(s) ∈ Xn}:



Appendix A. Notes on Extenders 127

By coherence, we clearly have that, for every n ∈ !, Yn ∈ Ebn . Now, if there is an
order { preserving d :

⋃
n∈!

bn −→ � with d ′′bn ∈ Yn, for all n ∈ !, then this means
that �bn an(d ′′bn) ∈ Xn, i.e., d ′′an ∈ Xn, for all n ∈ ! and this contradicts our
assumption.

For (2), since we can assume (1) by now, �x some n ∈ ! and de�ne, for each
m 6 n, the set

Am = {s ∈ [�]|an| : �an am(s) ∈ Xm};
which belongs to Ean by coherence. By the �nite intersection property of the
measures, for each n ∈ !, the set

Zn =
⋂
m6n

Am = {s ∈ [�]|an| : (∀m 6 n)�an am(s) ∈ Xm}

belongs to Ean . Now, it is evident that the Zn's satisfy (2). Moreover, the exact
same computation used for (1) shows that there cannot be an order { preserving
function d :

⋃
n∈!

an −→ � such that d ′′an ∈ Zn, for all n ∈ !. This concludes our
two { part claim and we now proceed with the rest of the proof.

We de�ne the following set:
T = {〈 si : i < n 〉 : n > 0 ∧ (∃ s ∈ Xn−1) (∀ i < n) (�an−1 ai(s) = si)}

where a typical element s∗ ∈ T is a sequence s∗ = 〈 s0; s1; : : : ; sn−2; sn−1 〉 or,
equivalently,

s∗ = 〈�an−1 a0(s); �an−1 a1(s); : : : ; �an−1 an−2(s); s 〉;
where sn−1 = s ∈ Xn−1. Notice that by the second part of our claim, the latter
implies that si = �an−1 ai(s) ∈ Xi, for all i < n. We moreover de�ne an order
relation on T by:

s∗ ≺ t∗ ⇐⇒ s∗ properly extends t∗:
Let us now show that, with respect to this ordering, T is a well { founded poset.
Towards a contradiction, suppose there is an in�nite ≺ - descending chain in T ;
that is, there exists a chain of the form

: : : ≺ 〈 s0; s1; : : : ; sn−1 〉 ≺ : : : ≺ 〈 s0; s1 〉 ≺ 〈 s0 〉;
where we can always assume that the ≺ - largest element of the chain is an one {
element sequence. Then, it is readily seen that one can de�ne appropriately an
order { preserving d :

⋃
n∈!

an −→ � in such a way that d ′′an = sn, for all n ∈ !.
But this contradicts our initial assumption, since it implies that d ′′an ∈ Xn, for
all n ∈ !.



128 A.2. General theory of extenders

The well { foundedness of the poset T allows us to consider a rank function on
its elements, i.e., a function rkT : T −→ ON such that, for every s∗ ∈ T ,

rkT (s∗) = sup {rkT (t∗) + 1 : t∗ ∈ T ∧ t∗ ≺ s∗}:

Using the rank function, we are about to establish the ill { foundedness of M̃E. For
this, de�ne, for each n ∈ !, a function Fn : [�]|an| −→ ON by:

Fn(s) =


rkT ( 〈�an a0(s); �an a1(s); : : : ; �an an−1(s); s 〉︸ ︷︷ ︸s∗

) ; s ∈ Xn

∅ ; otherwise.

We should point out that these functions are well { de�ned: if s ∈ Xn ⊆ [�]|an|, then
s∗ = 〈�an a0(s); �an a1(s); : : : ; �an an−1(s); s 〉 is uniquely determined by projecting
down to all the previous indices and, moreover, s∗ ∈ T by de�nition of the latter.

But now it follows that, for every s ∈ Xn, s∗ ≺ (�an an−1(s)
)∗ and so, by the

order { preserving property of the rank function, we get that, for every n > 1,

Xn ⊆ {s ∈ [�]|an| : Fn(s) ∈ Fn−1(�an an−1(s))}:

Therefore, since Xn ∈ Ean , by de�nition of membership in the direct limit, we
have that [ an; [Fn] ] ∈E [ an−1; [Fn−1] ], for all n > 1, i.e., M̃E is ill { founded. The
proof is complete. ut

Having established the well { foundedness of M̃E, we also remark that the de�-
nition of the membership relation ∈E (recall Scott's trick as well) implies its set {
likeness (cf. Chapter III, De�nition 5.2 in [33]) and hence we can work with the
transitive collapse ME of the direct limit structure. Thus, we get the anticipated
commutative diagram of embeddings, as shown below:

V jE - ME

Ma

ja
?

kaE

-

Mb

kbE

-

jb

-

iab
-

kaE ◦ ja = kbE ◦ jb = jE

kbE ◦ iab = kaE

iab ◦ ja = jb
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Our goal now is to give the connection between the two kinds of extenders
studied so far in this exposition and to present several properties of jE and ME.
As an indication of what to expect, we �rst verify that any extender derived from
an embedding satis�es the general de�nition.

Lemma A.6. Suppose that j : V −→ M is an elementary embedding and that
cp(j) = � . Let � > � and consider E , the (�; �) - extender derived from j. Then,
E is a (�; �) - extender.

Proof. We �x � > � , the least ordinal for which � 6 j(�). Towards verifying
all the clauses of De�nition A.4, let us �rst point out that conditions 1 (i) and
2 have already been checked in Section A.1. Moreover, condition 4 follows from
Proposition A.5 since, as we saw in the previous section, M̃E is well { founded. For
the rest of the argument, we have the following.

1 (ii). We want some a ∈ [�]<! so that Ea is not �+-complete. Let a = {�}, where
� = cp(j). Now, to see that �+-completeness fails for this a, de�ne, for each
� < � , X� = {{�} : � > �} ⊆ [�]1. The fact that j(�) > � immediately
implies that, for all � < � , X� ∈ E{�}. On the other hand, we clearly have
that {�} =∈ j(

⋂
�<�

X�).

1 (iii). Given any 
 < � , j(
) < � by choice of �. Hence, since for any a ∈ [�]<!,
{s ∈ [�]1 : 
 ∈ s} ∈ Ea if and only if j(
) ∈ a, we may pick a = {j(
)},
which is a legitimate element of [�]<! and is readily seen to satisfy the desired
condition.

3. To check normality, suppose that for some a ∈ [�]<! and some f on [�]|a|, we
have that {s ∈ [�]|a| : f(s) ∈ max(s)} ∈ Ea. Equivalently, this means that
j(f)(a) ∈ max(a).
Now, since j(f)(a) ∈ max(a) ∈ � , we also have j(f)(a) ∈ � by transitivity.
Therefore, we may let b = a ∪ {j(f)(a)} and it is then easy to check that
{s ∈ [�]|b| : f ◦ �ba(s) ∈ s} ∈ Eb.

ut

We may now state the basic properties of jE and ME. As a matter of notation,
for n ∈ !, let idn : [�]n −→ [�]n be the identity function. With this conven-
tion in mind, we have the following basic proposition, which should be compared
with Proposition A.3. For the proof, the interested reader may consult [30] (in
particular, Lemma 26.2 and Exercise 26.4).
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Proposition A.7. [Properties of jE ; ME ]
(i) For every a ∈ [�]<!, kaE([id |a|]) = a.

(ii) cp(jE) = � and � is the least ordinal such that � 6 jE(�).
(iii) ME = {jE(f)(a) : a ∈ [�]<!; f : [�]|a| −→ V; f ∈ V }.
(iv) For any � , jE(�) < (|��| · |�|)+.
(v) If � > � is a strong limit cardinal with cf(�) > � , then jE(�) = � .

(vi) For any set X with |X| > � , jE ′′X =∈ME.
(vii) E =∈ME.

We regret omitting this (rather long) proof, since it sheds more light on the
importance and relevance of the various conditions which are included in De�nition
A.4. On the other hand, we do give one corollary to the above proposition which,
together with Lemma A.6, completely describe the connection between the two
kinds of extenders considered so far.
Corollary A.8. Suppose that E = 〈Ea : a ∈ [�]<! 〉 is a (�; �) - extender and let
jE : V −→ME be the associated extender embedding. If E ′ is the (�; �) - extender
derived from jE, then E ′ = E.
Proof. Suppose that E ′ = 〈E ′a : a ∈ [�]<! 〉 is the (�; �) - extender derived from
jE. First, we remark that if each Ea is on [�]|a|, then by Proposition A.7 (ii) the
same is true for each E ′a. Thus, for every a ∈ [�]<! and every X ⊆ [�]|a|,

X ∈ E ′a ⇐⇒ a ∈ jE(X) (de�nition of E ′a)
⇐⇒ kaE([id |a|]) ∈ kaE ◦ ja(X) (Proposition A.7 (i))
⇐⇒ [id |a|] ∈ ja(X) (elementarity)

⇐⇒ X ∈ Ea (de�nition of Ma)
and we therefore conclude that E ′ = E. ut

Consequently, every extender E is derived from an embedding (namely jE) and,
conversely, every embedding gives rise to an extender. This means that the two
kinds of extenders which we have considered are essentially the two opposite sides
of the same coin, i.e., it all reduces to a matter of perspective.

We refrain ourselves from giving the well { known connections of extenders with
several large cardinal notions such as strongs, superstrongs and Woodins; we only
mention that the extender machinery renders these notions formalizable in �rst {
order ZFC (see [30] for more details). Let us now proceed to the �nal section, where
we discuss Martin { Steel extenders and their application to supercompactness.
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A.3 Martin { Steel extenders and supercompactness

In their classic paper [36], D. Martin and J. Steel de�ned a generalized notion of
an extender which served their purposes towards establishing (levels of) Projective
Determinacy (PD) from appropriate large cardinal assumptions. Comparing it
with the usual extender notion, the essential di�erence in their de�nition is the
fact that one is allowed to use any arbitrary transitive set Y as the support of the
extender, instead of using an ordinal � which had been the case so far.

This new feature comes together with various issues which one needs to take
into account when trying to adapt (one's arguments) to the newly de�ned objects;
nevertheless, it will soon become clear that the underlying intuition and the ideas
behind the new de�nition are parallel to those related to ordinary extenders.

As we have (hopefully) gained by now some insight into the extender machinery,
let us take the opposite route to the one we took at the beginning of this exposition;
that is, we shall �rst de�ne the new extender notion by giving its general properties
and, afterwards, we shall consider Martin { Steel extenders derived from elementary
embeddings. Unless otherwise stated, all results in this section come from [36].
We start with the following, which is very much in the spirit of De�nition A.4.
De�nition A.9. (Martin & Steel)
Let � be a cardinal and let Y be some transitive set. We say that the sequence
E = 〈Ea : a ∈ [Y ]<! 〉 is a (�; Y ) - extender if, for some � > � , the following
conditions are satis�ed :

1. Each Ea is a � -complete ultra�lter on a(V�), and at least one Ea is not
�+-complete.

2. For every a ∈ [Y ]<!, {s ∈ a(V�) : 〈a ; ∈〉 s∼= 〈range(s) ; ∈〉} ∈ Ea.
3. (Coherence) For all a; b ∈ [Y ]<! with a ⊆ b ,

X ∈ Ea ⇐⇒ {s ∈ b(V�) : s � a ∈ X} ∈ Eb:

4. (Normality) If for some a ∈ [Y ]<! and some f : a(V�) −→ V�
{s ∈ a(V�) : f(s) ∈

⋃
range(s)} ∈ Ea;

then there is some y ∈ Y such that
{s ∈ a∪{y}(V�) : f(s � a) = s(y)} ∈ Ea∪{y}:

5. The direct limit M̃E constructed from E is well-founded.
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Several remarks are in order, regarding this de�nition. First of all, our new
extender sequences consist of ultra�lters which are on sets of (�nite) functions of
the form s : a −→ V� , instead of just (�nite) subsets of � . This has some nice
advantages as, for example, the fact that we do not have to deal with projection
functions anymore; we just restrict any �nite function on the relevant subset. This
is evident in the coherence property.

On the other hand, the absence of a canonical well { ordering of the support set
Y , dictates several (not only notational) changes in order to express the desired
properties in the de�nition. This is the case in condition 2, which should be
included if we would like to avoid sets of \degenerate" or of non { order { preserving
(�nite) functions.

In addition, let us point out that regarding the well { foundedness condition, we
are referring to a direct limit structure M̃E = 〈DE ; ∈E 〉 constructed in a totally
analogous way to the one in Section A.2. The obvious changes which need to
be made are along the lines of the (notational) modi�cations in the coherence
property. Thus, for instance, after de�ning the (Scott) equivalence classes of the
sort [ a; [f ] ] (where a ∈ [Y ]<! and f : a(V�) −→ V ), we stipulate that

[ a; [f ] ] ∈E [ b; [g] ]⇐⇒ ∃ c ⊇ a ∪ b s.t. {s ∈ c(V�) : f(s � a) ∈ g(s � b)} ∈ Ec:

By condition 5 of De�nition A.9, after constructing M̃E we may immediately
consider its transitive collapse ME and then, as one should expect, we have the
extender elementary embedding jE : V −→ ME where, for every x ∈ V , we let
jE(x) = [ a; [c ax ] ] for some (any) a ∈ [Y ]<!.

Let us also remark that there is an equivalent combinatorial characterization
of the well { foundedness condition, resembling condition 4 in De�nition A.4 (for
details, we refer the interested reader directly to the source, i.e., to [36]).

This �nishes (the sketch of) our description of the new situation, with the hope
that one can easily �ll in the missing details, most of which are straightforward
adaptations of the previously discussed versions. Let us now give one basic lemma
which establishes two important features of our new extender notion.
Lemma A.10. Let E = 〈Ea : a ∈ [Y ]<! 〉 be a (�; Y ) - extender (for some
transitive Y ) and let jE : V −→ME be the extender embedding. Then :

(i) jE � V� = id and cp(jE) = � .
(ii) Y ⊆ME.

Proof. For the �rst part of (i), one employs a standard inductive argument to
show that jE � V� = id, for every � < � . In particular, it follows that cp(jE) > � .
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To see that cp(jE) = � , we �x some a ∈ [Y ]<! so that the ultra�lter Ea fails to be
�+-complete and we let {X� : � < �} be a collection of subsets of a(V�) witnessing
this failure, i.e., X� ∈ Ea for all � < � but, (un)fortunately,

⋂
�<�

X� =∈ Ea. We may

assume, without loss of generality, that
⋂
�<�

X� = ∅. We then de�ne a function

f : a(V�) −→ � by letting, for every s ∈ a(V�), f(s) to be equal to the least ordinal
� < � for which s =∈ X�. It is now easy to check that, for every � < � , � < [ a; [f ] ]

whereas, on the other hand, [ a; [f ] ] < jE(�).
For the proof of the important property stated in (ii), we employ condition 2

and normality of De�nition A.9. Initially, we de�ne for every y ∈ Y and every
a ∈ [Y ]<! with y ∈ a, the function fa; y : a(V�) −→ V� by letting fa; y(s) = s(y), for
every s ∈ a(V�) (these are essentially projection functions). We now show that, in
fact, y = [ a; [fa; y] ] ∈ME from which the conclusion follows.

First of all, observe that if y ∈ a ∩ b for some a; b ∈ [Y ]<!, we clearly have
that [ a; [fa; y] ] = [ b; [fb; y] ] in ME. Now, to show that y = [ a; [fa; y] ], we proceed
inductively on the rank of y (taking care of all a ∈ [Y ]<! with y ∈ a at the same
time).

The base case is y = ∅ (since by condition 1, Y 6= ∅ and so ∅ ∈ Y by transi-
tivity). Consider any a ∈ [Y ]<! with ∅ ∈ a. In order to show that [ a; [fa;∅] ] = ∅
we argue as follows. Suppose, towards a contradiction, that [ a; [g] ] ∈ [ a; [fa;∅] ]

(where, by the above observation we may indeed assume that g is on a(V�)) which
means that

{s ∈ a(V�) : g(s) ∈ s(∅)} ∈ Ea:
In particular, g(s) ∈

⋃
range(s) for Ea - almost all s ∈ a(V�). Now, by applying

normality, we may �nd some z ∈ Y such that

{s ∈ a∪{z}(V�) : g(s � a) = s(z)} ∈ Ea∪{z};

where note that [ a; [g] ] = [ a ∪ {z}; [fa∪{z}; z] ]. Moreover, by applying coherence,
we get

{s ∈ a∪{z}(V�) : g(s � a) ∈ s(∅)} ∈ Ea∪{z}
and thus, {s ∈ a∪{z}(V�) : s(z) ∈ s(∅)} ∈ Ea∪{z}. But, by condition 2, it follows
that

{s ∈ a∪{z}(V�) : z ∈ ∅} ∈ Ea∪{z};
which is a contradiction. This shows the base case.

Next, assume that the desired property holds inductively, for all y′ ∈ Y with
rk(y′) < rk(y) 6= 0. To show that y ⊆ [ a; [fa; y] ], let us �x some z ∈ y and
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some a ∈ [Y ]<! with {z; y} ⊆ a. By condition 2, we consequently obtain that
{s ∈ a(V�) : s(z) ∈ s(y)} ∈ Ea which, by the de�nition of the fa; y 's, gives

{s ∈ a(V�) : fa; z(s) ∈ fa; y(s)} ∈ Ea
and thus, [ a; [fa; z] ] ∈ [ a; [fa; y] ]. But now, the inductive hypothesis implies that
z ∈ [ a; [fa; y] ] which shows the desired inclusion. Moreover, by our observation,
the same holds for any b ∈ [Y ]<! with y ∈ b.

For the converse inclusion, if for some element [ a; [g] ] ∈ ME we have that
[ a; [g] ] ∈ [ a; [fa; y] ] (where y ∈ a), we argue exactly as in the base case to show
that there is some z ∈ Y such that

[ a; [g] ] = [ a ∪ {z}; [fa∪{z}; z] ]
and

{s ∈ a∪{z}(V�) : s(z) ∈ s(y)} ∈ Ea∪{z}:
But now the latter, by condition 2, gives z ∈ y and then, the inductive hypothesis
again implies that z = [ a∪{z}; [fa∪{z}; z] ] (since by our observation, the particular
�nite set is not important as long as it contains the element in question; in this
case z). Therefore, z = [ a; [g] ] ∈ y which means that [ a; [fa; y] ] ⊆ y and the proof
is complete. ut

The importance of the property \Y ⊆ME " should be apparent: we are free to
choose any transitive set as the support of our extender and then, this set will be
included in the ultrapower structure ME. The analogy with [�]<! in the case of
(�; �) - extenders is obvious, just by recalling Proposition A.7 (i). We now turn to a
brief discussion of (�; Y ) - extenders derived from ambient elementary embeddings;
comparisons with Section A.1 are inevitable.

Let j : V −→ M be an elementary embedding into a transitive model M with
cp(j) = � . Let us pick some transitive Y ⊆ M with � ∈ Y and let � > � be
the least ordinal for which Y ⊆ V Mj(�) = j(V�). For each a ∈ [Y ]<!, we de�ne an
ultra�lter Ea on a(V�) by letting:

X ∈ Ea ⇐⇒ j −1 � j(a) ∈ j(X):
Clearly, j −1 � j(a) : j(a) −→ a is an isomorphism (recall that a is �nite) and so, if
X ⊆ a(V�) then j(X) ⊆ j(a)(V Mj(�)) ; in other words, this de�nition not only makes
sense but also, it is arguably the obvious modi�cation of De�nition A.1 which we
have to consider. It is again easy to check that, for every a ∈ [Y ]<!, Ea is in fact
a � - complete ultra�lter and that the coherence property is satis�ed.

As one should expect, E = 〈Ea : a ∈ [Y ]<! 〉 is called the (�; Y ) - extender
derived from j. We now check that extenders of this kind satisfy the general
de�nition.
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Lemma A.11. If E = 〈Ea : a ∈ [Y ]<! 〉 is the (�; Y ) - extender derived from
j : V −→M , then E is a (�; Y ) - extender.
Proof. We argue as in Lemma A.6, taking into account the necessary modi�cations
which need to be made in our new context. First of all, we use the fact that
� = cp(j) in order to show that E{�} is not �+-complete.

For each � < � , we let X� = {s ∈ {�}(V�) : � < s(�) < �} and observe that
X� ∈ E{�} because (j −1 � j({�})) (j(�)) = (j −1 � {j(�)}) (j(�)) = � . On the
other hand though, it is clear that

⋂
�<�

X� = ∅.

Also, j −1 � j(a) being an isomorphism implies that condition 2 of De�nition A.9
holds as well.

For normality now, suppose that for some a ∈ [Y ]<! and for some function
f : a(V�) −→ V� , we have that

{s ∈ a(V�) : f(s) ∈
⋃

range(s)} ∈ Ea:
By de�nition of Ea, this means that j(f)(j −1 � j(a)) ∈ ⋃ a and so, by transitivity
of Y , y = j(f)(j −1 � j(a)) ∈ Y . It is now easy to check that for this particular
y ∈ Y , the desired conclusion follows.

Finally, we let jE : V −→ M̃E and kE : M̃E −→M be the usual embeddings, as
depicted in the following diagram:

V j
- M

M̃E

jE
?

kE

-
jE(x) = [ a; [c ax ] ]; for some (any) a ∈ [Y ]<! and

for each x ∈ V

kE([ a; [f ] ]) = j(f)(j −1 � j(a)); for each a ∈ [Y ]<! and
f ∈ V ∩ a(V�)V

Along the lines of Section A.1, one checks that these are well { de�ned elementary
embeddings commuting with j and so, in particular, M̃E is well { founded. ut

Having checked that such a derived E is a (�; Y ) - extender, we may conveniently
work with the transitive collapse ME of the direct limit structure. Recall that,
by Lemma A.10, we have the inclusion Y ⊆ ME. Knowing this, we may try to
de�ne the new (�; Y ) - extender E ′ derived from jE. As it should be anticipated,
it follows that E ′ = E. This, together with some other related properties, are
summarized (and proved) below.
Proposition A.12. Let E = 〈Ea : a ∈ [Y ]<! 〉 be the (�; Y ) - extender derived
from j : V −→ M and consider jE : V −→ ME and kE : ME −→ M , the
elementary embeddings associated with E. Then :
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(i) kE � Y = id.
(ii) ME = {jE(f)(j −1E � jE(a)) : a ∈ [Y ]<!; f : a(V�) −→ V; f ∈ V }.

(iii) If E ′ is the (�; Y ) - extender derived from jE , then E ′ = E.

Proof. For (i), we just recall that by the proof of Lemma A.10 (ii), for every
element y ∈ Y and for any a ∈ [Y ]<! with y ∈ a,

kE(y) = kE([ a; [fa; y] ]) = j(fa; y)(j −1 � j(a)) = (j −1 � j(a))(j(y)) = y:

For (ii), we initially observe that as a direct corollary to part (i), for every
a ∈ [Y ]<!, kE(a) = a and, also, using the commutativity of the embeddings, it is
readily seen that kE(j −1E � jE(a)) = j −1 � j(a). So, let x = [ a; [f ] ] ∈ ME be any
element. Then,

kE(x) = j(f)(j −1 � j(a)) = kE(jE(f)(j −1E � jE(a)));

and since kE is injective, the conclusion follows.
For (iii), we let E ′ = 〈E ′a : a ∈ [Y ]<! 〉 be the (�; Y ) - extender derived from

the embedding jE where recall that, for every a ∈ [Y ]<! and every X ⊆ a(V�), we
have that X ∈ E ′a ⇐⇒ j −1E � jE(a) ∈ jE(X). If a = ∅, then it is obvious that
E∅ = E ′

∅ = {{∅}}.
If a 6= ∅, then for any y ∈ a, j −1E (jE(y)) = y = [ a; [fa; y] ]. Thus, if we consider

the function Fa on a(V�) such that, for every s, Fa(s) is a function on a with
Fa(s)(y) = s(y) = fa; y(s), for all y ∈ a, after simple computations we obtain

kE(j −1E � jE(a)) = j −1 � j(a) = kE([ a; [Fa] ])

and, therefore, j −1E � jE(a) = [ a; [Fa] ] by the injectivity of kE. But now, by
de�nition of Fa,

[ a; [Fa] ] = [ a; [〈 s : s ∈ a(V�) 〉] ] = [ a; [id a] ]

where id a : a(V�) −→ a(V�) is the identity function. Hence, it follows that

X ∈ E ′a ⇐⇒ j −1E � jE(a) = [ a; [id a] ] ∈ [ a; [c aX ] ] = jE(X)

and so, X ∈ E ′a ⇐⇒ {s ∈ a(V�) : s ∈ X} ∈ Ea ⇐⇒ X ∈ Ea. ut

At this point we are ready for our basic application which will be to encode a
� - supercompact embedding via an appropriately derived Martin { Steel extender.
Having bene�tted from the material of [36], we now diverge from this source; the
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following results may also be found in § 5 of [5]. Let us �rst describe the ideas and
motivation behind the several details with which we shall then proceed.

Given a � - supercompact embedding, say j : V −→ M with cp(j) = � , the
main issue is to pick the right transitive set Y ⊆M as the support of the derived
extender E. Of course, our goal is to pick this set in a way that the extender
embedding jE : V −→ ME is also � - supercompact, i.e., so that �ME ⊆ ME. The
dominant idea for showing the latter is to include j ′′� in Y (and thus in ME), and
use it as a prototype sequence in order to encode every other � - sequence. Recall
here the similar methodology which we used in Section 2.5 of Chapter 2.

Speci�cally, �x some collection {xi : i < �} ⊆ME where, by the representation
of the structure ME given by Proposition A.12, each element xi is of the form
xi = jE(fi)(j −1E � jE(bi)), for some bi ∈ [Y ]<! and some function fi on bi(V�).
Our aim is to �nd an A ∈ [Y ]<! and a function F on A(V�), so that the element
X = jE(F )(j −1E � jE(A)) encodes the � - sequence of xi 's in ME, i.e., for all i < � ,
X(i) = xi.

As we shall show below, if apart from including j ′′� , we also choose the support
set in such a way that it is closed under �nite subsets, closed under � - sequences
and closed under j, then j � Y = jE � Y and we may encode the entire � -
sequence of the j −1E � jE(bi) 's as a single element of Y . In fact, these conditions
on Y , together with the requirement of it being transitive, are su�cient in order
to de�ne the A and the F that work. Let us now see how to do it, provided we are
given such a Y . After that, we shall brie
y comment on how to actually obtain
the suitable Y ⊆M ; this will conclude the construction and accomplish our goal.
Proposition A.13. Suppose that � is � - supercompact, witnessed by the embed-
ding j : V −→ M . Suppose that Y ⊆ M is transitive, [Y ]<! ⊆ Y , �Y ⊆ Y ,
j ′′ Y ⊆ Y and j ′′� ∈ Y . Let E be the (�; Y ) - extender derived from j and let
jE : V −→ME be the extender embedding. Then, jE is � - supercompact for � .

Proof. As we have already seen, Y ⊆ ME and kE � Y = id, where kE is the
embedding commuting with j and jE. We �rst notice that j � Y = jE � Y ; this
follows easily from commutativity, kE � Y = id and j ′′ Y ⊆ Y . Consequently, for
every a ∈ [Y ]<!,

j −1E � jE(a) = j −1 � j(a) ∈ Y
and so, in particular, in the representation of ME given in Proposition A.12 (ii),
we may replace jE by j as shown below:

ME = {jE(f)(j −1 � j(a)) : a ∈ [Y ]<!; f : a(V�) −→ V; f ∈ V }:
Recall here that � is the least ordinal for which Y ⊆ j(V�). Moreover, if we let
� = sup (ON ∩ Y ), then � < � and � ⊆ Y (because � < j(�), j ′′� ∈ Y and Y
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is transitive) and thus, since jE and j agree on Y , jE ′′� = j ′′�. In particular,
� < jE(�) = j(�), where, of course, cp(jE) = � . Hence, in order to establish the
� - supercompactness of the embedding jE, it remains to check that �ME ⊆ ME.
For this, we use the several closure properties of the given Y .

Fix throughout some {xi : i < �} ⊆ ME where, for each i < � , we have that
xi = jE(fi)(j −1 � j(bi)) for some bi ∈ [Y ]<! and some function fi on bi(V�). As we
have remarked, we want to �nd some A ∈ [Y ]<! and some function F on A(V�),
such that the element X = jE(F )(j −1 � j(A)) ∈ ME is the desired � - sequence,
i.e., for all i < � , X(i) = xi.

Let f = 〈 fi : i < � 〉 and b = 〈 j −1 � j(bi) : i < � 〉. Observe that, by the
closure of Y , both b and the function j � � : � −→ j ′′� belong to Y . We now
consider A = {j � � ; b} ∈ [Y ]<!. By some trivial computations, we get that
jE(A) = j(A) = {j(j � �) ; j(b)} and, then,

j −1 � j(A) : {j(j � �) ; j(b)} −→ {j � �; b}
is the function whose values are j(j � �) 7→ j � � and j(b) 7→ b. Also, it is clear
that j −1E � jE(A) = j −1 � j(A) belongs to jE(A)jE(V�)∩ j(A)j(V�) and, furthermore,
any element s ∈ A(V�) is of the form

{〈 j � � ; s(j � �) 〉 ; 〈 b ; s(b) 〉}:
Let us now turn to the de�nition of the desired F on A(V�). Given any s ∈ A(V�),
we �rst de�ne an auxiliary function gs as follows:
• If both s(j � �) and s(b) are functions with domain the same ordinal, say � ,

then gs is a function on � so that, for every i < � ,

gs(i) =


f(s(j � �)(i))(s(b)(i)) ; if s(j � �)(i) ∈ dom(f) and

s(b)(i) ∈ dom(f(s(j � �)(i)))
∅ ; otherwise;

• Otherwise, gs = ∅.
We �nally de�ne F by letting, for every s ∈ A(V�), F (s) = gs. Now, by elementar-
ity, jE(F ) is on jE(A)jE(V�) and so, jE(F )(j −1 � j(A)) makes sense, since for the
particular element s = j −1 � j(A), we have that s ∈ jE(A)jE(V�). In this situation,
it is clear that both s(j(j � �)) = j � � and s(j(b)) = b are functions with domain
the same ordinal, namely, � .

Thus, by the explicit de�nition of F and elementarity, jE(F )(s) is the (non {
empty) auxiliary function gs on � , as described above. In fact, the second alter-
native in the de�nition gs does not occur: for every i < � ,

s(j(j � �))(i) = (j � �)(i) = j(i) = jE(i) ∈ dom(jE(f))



Appendix A. Notes on Extenders 139

and, then, jE(f)(s(j(j � �))(i)) = jE(f)(jE(i)) = jE(f(i)) = jE(fi); hence,

s(j(b))(i) = b(i) = j −1 � j(bi) ∈ dom(jE(fi))

since fi was a function on bi(V�) and j −1 � j(bi) = j −1E � jE(bi). Therefore, we
after all have that, for every i < � ,

X(i) = jE(F )(j −1 � j(A))(i) = jE(fi)(j −1 � j(bi));

i.e., X(i) = xi as desired. This completes the proof. ut

Towards the �nale, let us now brie
y describe a way in which, given any � -
supercompact embedding j : V −→ M , one may construct a Y ⊆ M which
meets all the requirements stated in the previous proposition.

The idea is simple and was actually used in the proof of Theorem 2.27: we start
with j ′′� (which belongs to M) and we then recursively close under all properties
of interest. After �+-many steps (taking unions at limit stages), the resulting
set Y has all the desired features. See the proof of Theorem 2.27 for the formal
recursive de�nition.

This construction together with Proposition A.13 jointly accomplish our goal of
encoding � - supercompact embeddings by Martin { Steel extenders. In fact, they
provide us with the following characterization which has been repeatedly used in
the present dissertation and which concludes its postlude.
Theorem A.14. A cardinal � is � - supercompact if and only if there exists a
(�; Y ) - extender E such that Y is transitive, [Y ]<! ⊆ Y , �Y ⊆ Y , jE ′′ Y ⊆ Y ,
jE ′′� ∈ Y and � < jE(�).

Proof. The forward direction follows immediately from Proposition A.13 and the
construction mentioned above. For the converse, let such an extender be given
and consider jE : V −→ME. In order to see that �ME ⊆ME, repeat the relevant
arguments used in the proof of Proposition A.13, replacing j by jE everywhere. ut

T Ý ë ï ò





Resumen

En la presente tesis doctoral trabajamos en el contexto de la teor��a de conjuntos
ZFC donde estudiamos, por un lado varias jerarqu��as de grandes cardinales y, por
el otro, la categor��a de axiomas llamados Axiomas de Resurrecci�on. La tesis est�a
organizada como sigue.

La base preliminar de los conocimientos necesarios se encuentra en el primer
cap��tulo.

En el Cap��tulo 2, estudiamos las jerarqu��as de los cardinales C(n), tal y como
fueron introducidos por J. Bagaria (cf. [5]). En el contexto de una inmersi�on
elemental de un cardinal C(n) dado que ya hemos �jado, y bajo suposiciones ade-
cuadas, estamos en condiciones de obtener la consistencia para tales nociones, a
trav�es de la construcci�on de cadenas elementales de subestructuras; en particu-
lar, nos ocupamos de los casos de cardinales tall, superstrong, supercompact, y
extendible. Para los dos �ultimos conceptos, estudiamos la conexi�on entre ellos,
obteniendo adem�as una formulaci�on equivalente para los extendible.

Se consideran tambi�en las versiones C(n) de los cardinales Woodin y de los
strongly compact que no fueron estudiados en [5]. A pesar de que estas nociones no
encajan en el marco metodol�ogico descrito en el p�arrafo anterior, obtenemos car-
acterizaciones para ellos en t�erminos de los cardinales correspondientes est�andar.

En el Cap��tulo 3, analizamos brevemente la interacci�on de los cardinales C(n)

con el m�etodo de forcing, dando algunas aplicaciones b�asicas de resultados bien
conocidos.

En el Cap��tulo 4, dirigimos nuestra atenci�on a los cardinales extendible. A
trav�es de una combinaci�on de m�etodos y resultados del Cap��tulo 2, establecemos
la existencia de funciones de Laver adecuadas para ellos. Aunque esto ya era
conocido (cf. [11]), nos sirve de puente entre los resultados anteriores y el material
que sigue en el Cap��tulo 5.

Contrariamente a lo que sucede en el caso de los cardinales supercompact, ar-
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gumentamos que en el caso de los cardinales extendible no se pueden usar las
funciones de Laver con el �n de obtener resultados de indestructibilidad. Durante
el proceso, se obtiene adem�as otra caracterizaci�on de extensibilidad y demostramos
que se puede forzar la Hip�otesis del Continuo Generalizada en el universo, mientras
preservamos tales cardinales.

En el Cap��tulo 5, nos centramos en los axiomas de resurrecci�on, tal y como
fueron introducidos por J.D. Hamkins y T. Johnstone (cf. [29]). Inicialmente, con-
sideramos la clase de ordenes parciales que preservan subconjuntos estacionarios
de !1 y, suponiendo la (consistencia de la) existencia de un cardinal extendible,
obtenemos un modelo en el que se cumple el axioma de resurrecci�on correspondi-
ente para esta clase.

Mediante el an�alisis de la demostraci�on del resultado anterior, llegamos a ver-
siones de resurrecci�on m�as fuertes para las que introducimos axiomas adecuados,
bajo el nombre general Unbounded Resurrection. A continuaci�on, establecemos
que su consistencia sigue la de un cardinal extendible y que, para las clases corre-
spondientes de ordenes parciales, implican los axiomas de forcing PFA y MM bien
conocidos.

Adem�as, consideramos diversas implicaciones de los principios de unbounded
resurrection (por ejemplo, su efecto en el continuo, para las clases de c.c.c. y de
� - closed ordenes parciales) as�� como su conexi�on con los axiomas de resurrecci�on
de [29]. Por �ultimo, tambi�en establecemos l��mites bajos de consistencia para tales
axiomas, principalmente a trav�es de la obtenci�on de fallos (de versiones d�ebiles)
de squares.

Concluimos la parte matem�atica de la tesis actual con una lista de preguntas
abiertas, seguida de un Ap�endice sobre extenders y (algunas de) sus aplicaciones.
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