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Introduction 

Transistor is the fundamental building block of modern electronic devices. It is a 

semiconductor device used to amplify and switch electronic signals and electrical 

power. The transistor is the key active component in practically all modern electronics. 

Many consider it to be one of the greatest inventions of the 20th century [1]. 

The first Silicon transistor was produced by Gordon Teal at Texas Instruments in 

1954 [2, 3]. The first Metal Oxide Semiconductor (MOS) transistor actually built was 

by Kahng and Atalla at Bell Labs in 1960 [4]. Transistors are now part of almost every 

person’s daily life. These devices with a majority of cell phones, laptops, iPods, players 

and desktop computers have become popular. Users are using such devices for a 

variety of functions, including internet, email, music, games and video. 
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1) Transistor Scaling and its Challenges 

One of the main challenges in the MOS transistor is the reduction of device 

dimension. The main concern is to predict the device performance and how the 

transistors work and behave as the size of device shrinks down. 

 “Scaling” refers to reduction of the lateral geometric dimensions of MOSFET 

devices. In 1965, Gordon Moore (later a founder of Intel Corporation) published his 

famous observation regarding to the evolution of the transistor density in Integrated 

Circuits (IC) exponentially over time. “Moore's law” says that the number of 

transistors on a chip wills approximately double every 18 months [5]. This prediction 

has been the case for many years and remarkably followed by the semiconductor 

industry for the last forty years (Figure 1). But even in this early work, there was 

question of how long this scaling trend could continue [6]. 

Only the rate of increase in transistor density has been described by Moore’s Law, 

while the reduction of the physical MOS device dimensions has improved both circuit 

speed and enabled cheaper ICs. In fact, scaling allows for the manufacturing of more 

devices for the same price [7]. 

Since the early 1990's semiconductor companies and academia decided to predict 

the future of semiconductor device industry more precisely. This initiative gave birth to 

the International Technology Roadmap for Semiconductor (ITRS) organization [8]. 

The ITRS issues a report every year that serves as a bench mark for the semiconductor 

industry. The reports represent the best opinion on the directions of research into the 

type of technology, design tools, equipment and metrology tools that have to be 

developed in order to keep pace with the exponential progress of semiconductor 

devices predicted by Moore’s law, including time-lines up to about 15 years into the 

future [6]. Figure 1 shows the evolution of the transistors per chip (Moore’s law) 

predicted by the ITRS 2005 for memory and microprocessor. 
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Figure 1: Evolution of the number of transistors per chip (Moore’s law) predicted by the ITRS 

2005 for memory and microprocessor [Intel Corporation]. 

 

2) Compact Analytical Models 

The compact model is the heart of circuit simulations. Electronic engineers (device 

engineers and circuit designers) need device models for both design and simulation of 

electronic systems. Physically-based compact modeling of electron devices applicable 

to many electron devices is crucial for accurate circuit design and simulation. Actually, 

one of the main limitations to the use of novel device structures in circuit design is the 

lack of appropriate compact models. On the other hand, compact models are also 

useful to easily predict the performance of new device technologies. 

In fact, in the process of development of new semiconductor devices, different 

types of simulations are required. In order to represent the electrical behavior of 

semiconductor devices we need semiconductor device simulation. Circuit simulation is 

essential to understand and predict the behavior of an electrical circuit with different 
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device interconnected. For virtual fabrication of semiconductor devices, 

semiconductor process simulations are required. All of these simulations require 

models which we have developed and studied part of such models in this thesis. 

Modeling of nanoscale multiple-gate MOSFET in particular the gate tunneling current 

have been developed and verified by numerical simulations and experimental 

measurements. All of the considered simulations require models and the models 

require their own parameter values. 

The downscaling of CMOS technologies has led to a reduction in gate length and a 

corresponding reduction in gate oxide thickness. For instance in 1970 the gate length 

was around 10,000 nm and the gate oxide thickness was 100 nm while in 2012 the gate 

length became 20 nm and the oxide thickness became smaller than 1 nm. One of the 

key concerns arising from downscaling the gate oxide thickness (ultra-thin SiO2 gate 

oxide materials) is dramatically increasing the gate leakage current flowing through gate 

oxide materials by a quantum mechanical tunneling mechanism [9, 10]. In order to 

reduce and suppress the gate leakage current, high-k gate dielectrics are expected to 

replace SiO2 in future CMOS generations. Alternative gate oxide materials with high 

dielectric constant candidates for coming CMOS generations are one of the most 

challenging problems in the continuous development of electronics [11]. 

 

3) Parameter Extraction 

The parameter extraction techniques are another important aspect in the process of 

device modeling and circuit simulations. It plays an important role in bridging the 

communities between chip fabrication and integrated circuit (IC) design. In fact for the 

design of systems on a chip, realistic analogue simulation models are necessary. 

Additionally, the accuracy of the circuit simulations not only depends on an accurate 

model (correct mathematical description), but also on a parameter extraction 

techniques in order to determine accurate value of the model parameters [12, 13]. 
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The commercial package (IC-CAP) is used to apply automatic parameter extraction 

techniques and simulating our models which is coded in Verilog-A. The Verilog-A 

language is a source code of the compact model and one of the best tools for compact 

modeling which is actually compatible with IC-CAP (program of Agilent). Automatic 

parameter extraction routines provide an effective way to calculate the model 

parameters to minimize discrepancies between measured and model calculations. 

 

4) Thesis Organization 

This thesis is aimed to present the novel high-k dielectric materials that can work as 

gate oxides in Double Gate (DG) device structures for the 22 nm low standby power 

applications. A guideline for the determination of the suitable high-k candidate is 

reported in the case of ideal interface (one layer gate oxide material) and in the case of 

a SiO2/high-k gate stack in a nanoscale single gate and DG MOSFETs. The effect of 

interfacial layer thickness is studied in order to select the most promising high-k 

candidates for different values of the Equivalent Oxide Thickness (EOT) and SiO2 

interfacial layer thicknesses. 

A compact gate leakage current partitioning model is presented for nanoscale DG 

MOSFETs, using analytical models of the direct tunneling gate leakage current. 

Temperature dependent analytical models of the direct tunneling gate leakage current 

in inversion region and the Trap Assisted Tunneling (TAT) current in subthreshold 

regime have been developed for DG FinFET with a two dielectric layers gate stack 

such as SiON/SiO2. As the last part, we studied the parameter extraction relies on a 

commercial software package (IC-CAP) allowing automatic parameter extraction 

routines and provides an effective way to calculate the model parameters to minimize 

discrepancies between measured and modeled data for reliable circuit simulation. 

Additionally, each chapter of this thesis is subjected to the following objectives: 

Chapter 1: Analytical modeling of the gate tunneling leakage for the determination of 

adequate high-k dielectrics in double-gate SOI MOSFETs at the 22 nm node. A 
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theoretical study to the ideal interface between high-k material and Si substrate without 

any interfacial layer is presented [14]. 

Chapter 2: Analytical modeling of the direct tunneling current through gate stacks for 

the determination of suitable high-k dielectrics for nanoscale double-gate MOSFETs. 

A guideline for the determination of the suitable high-k candidate was reported in the 

case of a SiO2/high-k gate stack in a nanoscale DG MOSFET. The models 

demonstrate that the materials such as La2O3, HfO2, LaAlO3 and Pr2O3 in the 

hexagonal phase would fulfill the considered requirements [15]. 

Chapter 3: Study of potential high-k dielectric for UTB SOI MOSFETs using 

analytical modeling of the gate tunneling leakage. The most important criteria for 

selecting alternative dielectrics (maximum gate leakage current, EOT, electron effective 

mass, dielectric constant k-value, barrier height and SiO2 thickness as an interfacial 

layer) were taken into account to determine the suitability of the gate oxide materials 

[16]. 

Chapter 4: Gate leakage current partitioning in nanoscale DG MOSFETs, using 

compact analytical model. A model of the partitioning of the gate to channel tunneling 

leakage current into the source and drain components is developed. The influence and 

impact of the thickness of the interfacial SiO2 layer on the gate-drain and gate-source 

components has been shown [17]. 

Chapter 5: Temperature dependent compact analytical modeling of gate tunneling 

leakage current in DG MOSFETs is studied. The gate leakage current measurements at 

different temperatures show two different transport mechanisms, DT gate leakage 

current in the strong inversion regime and TAT current in the sub-threshold regime 

[18]. 

Chapter 6: Automatic parameter extraction techniques in IC-CAP for compact DG 

MOSFET model are studied. We have developed automatic parameter extraction 

techniques for our explicit compact model in DG MOSFET suitable for design and 

circuits simulation based on surface potential including short channel effects [19]. 
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Chapter 7: Automatic Direct Tunneling and TAT Gate Leakage Current Parameter 

Extraction Techniques and Parameters Correlations in Double Gate MOSFET. The 

commercial package IC-CAP is used to simulate our leakage current model coded in 

Verilog-A, and comparing with gate leakage measurements in order to obtain 

parameters and study parameters correlations [20]. 
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Chapter 1  

Analytical Modeling of Gate Tunneling Leakage for the 

Determination of Adequate High-k Dielectrics in 

Double-Gate SOI MOSFETs at the 22 nm node 

 

The gate leakage current in metal-oxide-semiconductor (MOS) junctions/devices/or 

transistors is modeled and studied in order to find promising materials for double gate 

(DG) MOSFETs at 22 nm node by considering analytical models of the direct 

tunneling current (based on a proper calculation of the WKB tunneling probability in 

the gate oxide). We present a theoretical study to find the most promising gate oxide 

materials for the 22 nm technological node with the predicted maximum value of 

leakage current (10-2 [A/cm2]) that is tolerable for that node, according to the ITRS 

roadmap. The effects of electron effective mass, dielectric constant k value and barrier 

height on the cE∆ -k permitted values have been studied. 
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1) Introduction 

Aggressive scaling of CMOS technology in recent years has reduced the silicon dioxide 

gate dielectric thickness below 2 nm. Finding an alternative gate material with high 

dielectric constants for coming CMOS generations is one of the most challenging 

problems in the continuous development of microelectronics [1]. In order to reduce 

the gate leakage current, high-k gate dielectrics are expected to replace SiO2 in future 

CMOS generations. Introducing a physically thicker high-k material can reduce the 

leakage current to the acceptable limit. Keeping at the same time a high enough value 

of the drain current in On-state (because of the higher dielectric constant). 

Two of the most elementary quantities that need to be considered are the dielectric 

constant k and the energy band-offset values cE∆  between the conduction band of the 

oxide materials and the silicon substrate [2]. It is not straightforward to replace SiO2 

with an alternative gate dielectric. The required properties of gate dielectrics should be 

systematically considered to provide the key guidelines for selecting an alternative gate 

dielectric. 

The k of candidate oxides tends to vary inversely with the band gap, so we must 

accept a not too high-k value [3]. There are of course oxides with extremely large k 

values, such as ferroelectrics like BaTiO3 but these have too low band gap. In fact, a 

huge k is undesirable in CMOS design because they cause undesirably strong fringing 

fields at source and drain electrodes [4]. Since the key motivation for replacing SiO2 

with high-k materials is leakage reduction, accurate modeling of the leakage current is 

necessary to understand the scaling limits and ensure that the selected materials are 

highly scalable and usable for many future generations of technology. In this work, we 

suppose that direct tunneling is the dominant conduction mechanism. 

Due to the excellent control of short channel effects, Double-Gate (DG) 

MOSFET has emerged as one of the most promising devices for circuit design in sub-

32 nm regime. However as explained before, the gate direct tunneling current is 

becoming a major source of leakage with aggressive scaling of oxide thickness [5, 6]. 

Therefore, it is necessary to analyze the gate leakage in sub-32 nm DG MOS devices. 
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The better gate control reduces the vertical electric field, and as a consequence, the 

gate leakage in a DG MOSFET is lower than in its bulk-CMOS counterpart at the 

same bias conditions [7]. In [8] an expression of the direct-tunneling current density 

for an oxide voltage drop smaller than the barrier height is given. 

The tunneling electron effective mass mox increases while decreasing the oxide 

thickness Tox and mox for Vox >1.5 V is about a factor of 0.8 times smaller than mox for 

Vox<1.5 V. It was reported that the apparent increase of the conduction band effective 

mass in ultra thin SiO2 with decreasing Tox is consistent with a narrowing of the energy 

bands due to the decreased dimensionality [9]. 

Accurate simple and improved models for the direct tunneling current through 

high-k gate dielectrics adapted to DG MOSFETs are presented. We present a 

theoretical study to the ideal interface between high-k material and Si substrate without 

any interfacial layer, using these models, three of the most fundamental quantities that 

are needed: the dielectric constant (k), the energy band-offset values ( cE∆ ) between 

the conduction band of the oxide and the silicon substrate, and electron effective mass 

to determine promising gate oxide materials for further DG MOSFETs technologies 

[10]. Our goal is to make the study of the best possible case (ideal device without 

interfacial layer). 

 

2) Simple Analytical Model 

In the case of the 22 nm node, for low standby power operation, an oxide EOT of 

about 0.5nm is required with a leakage target at 1 V of about 10-2 [A/cm2] [11, 12]. A 

simplified estimate of the corresponding requirements for k and cE∆ can be done by 

assuming that the most severe leakage mechanism for this case is direct tunneling from 

the silicon conduction band to the conduction band of the dielectric. 

Our analysis applies to the ideal case of direct tunneling in high-k dielectric films 

and ideal interface without trap assisted tunneling [13], which may be present at low 

electric fields (low gate voltage) in these dielectrics (especially if the quality of the 
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interface is not very good [14]). Additionally, we have made our analysis at Vg=1V 

which is well above the threshold voltage and therefore Direct Tunneling is clearly 

dominant over TAT [15, 16]. 

We have adapted to the DG MOSFET structure a relatively simple analytical 

model for the gate direct tunneling leakage (assumed to be the main gate leakage 

component) [12, 17], incorporating it to our previous compact model for the potential 

and drain current of a DG MOSFET [18, 19]. The direct-tunneling current density for 

an oxide voltage smaller than the barrier height can be simply expressed as: 

}
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where 
cE∆  is the conduction band offset for a dielectric material, q is the electron 

charge, Tox is the oxide thickness, h is the Planck constant, mox correspond to the 

electron tunneling effective mass in the dielectric layer, and Vox is the voltage across the 

material which for the tunneling it was suggested [8, 20]. 

The voltage across the gate dielectric layer Vox is given by the relation: 

Vox = Vg – VFB – ψs                                (2) 

where Vg is the applied gate voltage, VFB is flat band voltage; ψs is the band bending at 

the interface (surface potential). This surface potential is obtained using our previous 

compact model for the potential of a DG MOSFET [18, 19]. 

The functions cE∆  = f(kh) as given by Eq. (1) are plotted for the different cases 

together with the data points in the figures and considered as borders for estimating 

the relations between band offset values and dielectric constants for the low standby 

power requirements of the 22 nm node. 

Results with our model suggest alternative dielectric materials such as Ce2O3 and 

LaAlO3 in the most aggressive gate dielectric scaling scenario for low standby power 
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Figure 1: Band offset between conduction bands for different oxides and silicon as a function of 

k-value, for an oxide EOT of 0.5nm, m
*
=0.26m0, Vg=1V with a leakage current about 10

-2
 

[A/cm
2
], using the simple analytical model. 

 

technology requirements. It has been demonstrated that, for EOT=0.5nm and 

m*=0.26m0 [10], Ce2O3, and LaAlO3 in Figure1 give a leakage current of about 10
-2 

[A/cm2] at 1 V with a transport mechanism assumed to be direct tunneling as the most 

important component from simple model. Ce2O3 and LaAlO3 have particularly large 

potential barrier offsets which mean that they could be the next generation high-k 

oxides with the required leakage currents. 

Figure 2 shows the results for the minimum (m*=0.20m0) and maximum value 

(m*=0.50m0) of the electron effective mass for various dielectric materials taken from 

the literature [11, 21, 22]. It is remarkable that there is a strong dependence on the 

electron effective mass that is used and that it should be taken into account when 

evaluating new dielectric materials as a gate oxide. Therefore, it is necessary to 

accurately know the value of the electron effective mass in any new gate dielectric. 
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Figure 2: Band offset between conduction bands for different oxides and silicon as a function of 

k-value, for an oxide EOT of 0.5nm, Vg=1V, J=10-2 [A/cm2], with effective mass m*=0.20m0 

and m
*
=0.50m0, using the simple analytical model. 

 

For EOT=0.5nm, Pr2O3 in the hexagonal phase as well as La2O3 and LaAlO3 are 

suitable dielectrics which give the required leakage current with m*=0.20m0. When 

changing the effective mass to m*=0.50m0, the suitable materials then change to CeO2, 

and Pr2O3 in the amorphous phase (see Figure 2). 

Additionally Figure 2 shows the effect of changing the value of the electron 

effective mass in a range from m*=0.20m0 to m
*=0.50m0, because this parameter 

almost changes in wide range [22]. The materials such as Ce2O3, LaScO3, DyScO3, 

GdScO3, ZrO2, and HfO2 could be possible from the point of view of the barrier 

height, dielectric constant-k, and electron effective mass for EOT=0.5nm, Vg=1V, and 

leakage current J=0.01 [A/cm2]. 
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Figure 3: Band offset of the conduction band between different oxides and silicon as a function 

of k-value, for EOT=0.3, 0.5, and 0.8 nm, Vg=1V, J=10-2 [A/cm2], and effective mass 

m
*
=0.26m0, using the simple analytical model. 

 

According to different electron effective mass values in the HfO2, in a range from 

m*=0.1m0 to m
*=0.7m0 [22], HfO2 appears to be one of the best candidates for the 22 

nm node DG MOSFET requirements. Anyway, it is evident that the electron effective 

mass plays an important role and affects the overall analysis. 

Figure 3 predicts the alternative gate oxide materials for different EOT values 

using our simple analytical model. It shows that the suitable high-k dielectrics from the 

barrier height point of view strongly depend on the EOT values. For EOT=0.8nm, 

materials with low dielectric constant are acceptable. By changing EOT value to 0.5nm, 

the barrier height versus dielectric constant curve shifts toward high-k materials. For 

EOT=0.3nm there are no suitable dielectrics to be used as gate oxides for identified 

parameters. 
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3) Improved Analytical Model 

The simple model expression includes a number of approximations that can lead to 

inaccuracies. The finite density of electrons or energy states in the semiconductor 

needs to be accounted for. The assumption of a constant effective mass for all energies 

(all locations at any oxide thickness and gate bias) is not accurate either. Furthermore, 

as oxide becomes thinner, the quantization effects in the semiconductor have to be 

considered in order to obtain the oxide potentials as an accurate function of the gate 

voltage [23, 24]. 

Because of these reasons, the simple analytical model falls short of a complete 

description of the tunneling current and is unable to fit the tunneling current for the 

entire range. A correction function is needed in order to cover the second-order effects 

listed above. 

We used for the DG MOSFET structure a more complex and accurate analytical 

model for the direct tunneling gate current [25] that was adapted to the DG MOSFET 

[26] and presented in [18, 19]. The current density due to direct tunneling is expressed 

as follows 
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where iε  is the gate dielectric constant, Vox is the voltage drop across the gate 

dielectric, cE∆  as previously said is the conduction band offset for a dielectric material 

and tph is the physical dielectric thickness as: 
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Figure 4: Band offset of the conduction band between different oxides and silicon as a function 

of k-value, for an oxide EOT of 0.5nm, m
*
=0.26m0, Vg=1V, αECB=0.6 with a leakage current 10

-2
 

[A/cm2], using the improved analytical model. 

 

Factors A and B is expressed as: 
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Expression (3) includes the empirical correction function EC described by 
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Where VG is the applied gate voltage, GV∆  is a fitting parameter to adjust the 

origin of the I-V characteristic to coincide with the modeled and the experimental 

curve. The value 0φ  is only slightly different from cE∆ ; therefore we can assume 

cE∆ = 0φ , ECBα  is fitting parameter depending on the tunneling process and ECBα =0.6 

provides the overall best fit for EC [25]. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

20  GHADER DARBANDY 

 

 

 

 

La2O3
Ce2O3

CeO2

Pr2O3(Amor)

Pr2O3(Hex)Gd2O3

Ho2O3

Er2O3

Yb2O3

Lu2O3

HfO2

Y2O3

ZrO2
LaAlO3

La2CuO4

LiNbO3

LaScO3

ScO3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60

Dielectric Constant K[1]

B
a
n

d
 O

ff
s
e
t 
∆

E
C
 [

e
V

]

m*=0.50m0   m
*=0.20m0

 

Improved model, αECB=0.6

 Selected materials

 

Figure 5: Band offset of the conduction band between different oxides and silicon as a function 

of k-value, for an oxide EOT of 0.5nm, Vg=1V, J=10
-2

 [A/cm
2
], with effective mass m

*
=0.20m0 

and m
*
=0.50m0, using the improved analytical model. 

 

It is not a very sensitive parameter since even for 
ECBα = 0.6 ± 0.3 we obtained very 

small affects on the cE∆ -k plots, which means that with the improved model we can 

select the same materials as a gate oxide dielectric than with the ECBα =0.6 case. NT 

represents the behavior of density of carriers in the MOS structure [18, 19]. 

We have demonstrated that the potential barrier, dielectric constant value and the 

electron effective mass variation are quite important when studying the gate material 

that can be used. Figure 4 and Figure 5 show the guidelines for the selection of 

alternative gate dielectrics by using our improved analytical model for high-

performance and low-operating-power logic technology requirements, assuming direct 

tunneling current as a dominant current at an applied gate voltage of 1V, materials as 

CeO2, LaAlO3, and La2CuO4 will be usable for EOT=0.5nm, leakage current J=0.01 

[A/cm2], and m*=0.26m0. 
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Figure 6: Band offset of the conduction band between different oxides and silicon as a function 

of k-value, for an oxide EOT of 0.5nm, Vg=1V, J=10-2 [A/cm2], with effective mass m*=0.26m0 

and m
*
=0.50m0, using the simple and improved analytical models. 

 

As seen in Figure 6, the comparison  the results between the simplified and the 

improved models show that  both models predict the same materials as suitable gate 

dielectrics in the higher energy offset region. 

Under the same conditions the acceptable dielectric materials in the higher energy 

offset region are Ce2O3 and LaAlO3 from the two models. In the lower energy offset 

region the improved model suggests the La2CuO4 as a possible gate oxide material with 

higher dielectric constant, which give a leakage current of about 10-2 [A/cm2] at 1V 

with m*=0.26m0, although the simple model does not suggest any acceptable materials 

in this region. As shown in Figure 6 for an electron effective mass equal to m*=0.50m0 

the suitable dielectric materials determined by improved model are CeO2, Pr2O3 in the 

amorphous phase, ZrO2, and HfO2. For the same conditions with m*=0.50m0 the 

simple model predicts only CeO2, and Pr2O3 in the amorphous phase as proper 

dielectrics, but according to the improved model ZrO2, and HfO2 with higher dielectric 

constant can also be used. 
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Actually, the improved model compare to the simple model gives additional 

acceptable dielectric materials with higher dielectric constant for same conditions (see 

in Figure 6). 

 

4) Conclusion 

We have developed analytical models for the gate tunneling leakage, adapted to DG 

MOSFETs. Using the new models, we have estimated the novel high-k dielectric 

materials that can work as gate oxides in DG device structures. Finally we have 

presented guidelines for finding an appropriate material for the 22 nm low standby 

power applications. 

The simulations are based on two direct tunneling models of different complexity 

in order to determine suitable new oxide materials for 22 nm with the conditions 

EOT=0.5nm, J=0.01 [A/cm2] for gate leakage current at a gate voltage of 1V. 

However both models give almost identical predictions in the range of k-values of 

interest. 
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Chapter 2  

Analytical Modeling of Direct Tunneling Current 

through Gate Stacks for the Determination of Suitable 

High-k Dielectric for Nanoscale Double-Gate 

MOSFETs 

 

Gate-leakage current reduction is the key motivation for the replacement of SiO2 with 

alternative gate dielectrics. In this chapter, a guideline for the determination of the 

suitable high-k candidate was reported in the case of a SiO2/high-k gate stack in 

Nanoscale Double-Gate (DG) MOSFET. Analytical models of the direct tunneling 

gate leakage current with SiO2 as an interfacial layer have been considered. Using these 

models the most promising high-k materials for different conditions were predicted, 

considering the effects of Equivalent Oxide Thickness (EOT), gate leakage current, 

electron effective mass, dielectric constant-k value, barrier height and interfacial oxide 

thickness. 
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1) Introduction 

Alternative gate oxide materials with high dielectric constant candidates for coming 

CMOS generations are one of the most challenging problems in the continuous 

development of electronics [1]. Accurate characterization and modeling of the 

tunneling current through gate stacks is essential to understand the scaling limitations 

of gate dielectrics. Analytical models of the direct tunneling assumed to be main 

component of the leakage current [2] through a trapezoidal barrier were considered to 

study proper high-k candidates to meet the gate leakage requirements [3, 4]. 

In our previous work [5], the suitability of high-k dielectric for DG MOSFET at 22 

nm technological node requirements was studied, assuming the ideal case without 

interfacial layer between the dielectric and the Si body. However, in order to maintain a 

good interface and to prevent mobility degradation, it is desirable to have a thin layer 

of SiO2 between the bulk and the high-k dielectric [6, 7]. 

In this chapter, accurate simplified and improved models for the direct tunneling 

current through SiO2/high-k gate stacks are presented for the determination of suitable 

high-k dielectrics for Nanoscale DG MOSFETs. The direct tunneling models are 

adapted to our previous DG MOSFET compact model for the potential and drain 

current [8, 9]. Using these models, the most important parameters like: gate leakage 

current, EOT, electron effective mass, dielectric constant-k value, energy band-offset 

values between the conduction band of the oxide and the silicon substrate (barrier 

height) and interfacial oxide thickness are studied. Then, the most promising gate oxide 

materials for further DG MOSFETs technologies are highlighted from considered 

parameters point of view. 
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2) Double Gate MOSFET Structure 

Double Gate MOSFET structure under analysis with the oxides (Figure 1.a) and 

assumed potential profile (Figure 1.b) are shown in Figure 1, where 1Bφ is the barrier 

height to the carrier for SiO2 layer, 2Bφ  is the barrier high to the carrier for high-k 

layer, 1oxV  is the voltage drops across the SiO2 and 2o xV  is the voltage drop across 

the high-k dielectric oxide layer. 

 

Figure 1: Schematic representation of: (a) Double gate MOSFET structure with gate stack; (b) 

Potential profile analyzed. 
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The electric field at the surfaces of the Si-SiO2 and SiO2-high-k materials is needed 

in order to model gate leakage tunneling current for DG MOSFET structure. In our 

previous works an explicit compact model for the surface potential and drain current 

including short channel effects for DG MOSFET transistor was developed [8, 9]. 

Using this potential model in order to model gate leakage current, the electric field at 

the surface of the Si-SiO2 ( S
E ) was calculated using Poisson’s equation. The following 

expression was obtained for SE  as a function of the potential at the surface Sφ  and at 

the center of the Si film oφ [8, 9]: 

2
( ) ( )2

( ) (1 )

S O S F

t t

V

a t S O
S

s t

qN
E e e

φ φ φ φ

φ φφ φ φ

ε φ

− − −
−−

= × + − ×                      (1) 

where ' /t KT qφ =  is the thermal potential, K is the Boltzmann constant, q is the 

electron charge, 'T  is the temperature in Kelvin, Na is the uniform acceptor 

concentration in the silicon layer, 
Fpφ is the quasi Fermi level for holes in the P-type 

silicon layer, and Fnφ is the quasi Fermi level for electrons. The potential along the 

channel is Fn FpV φ φ= − , and Fpφ  is renamed as Fφ  [8, 9]. 

Figure 2 shows surface potential at the Si-SiO2 interface obtained from the model 

of [8, 9] are in a good agreement with those obtained from ATLAS numerical 

simulations for DG MOSFET structure. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 2 29 

 

 

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Vg [V]

S
u

rf
a

c
e

 p
o

te
n

ti
a

l 
[v

]

ATLAS

Model

 

Figure 2: Model and ATLAS simulation of the surface potential at the Si-SiO2 interface as a 

function of gate voltage at 0
d

V V= . 

 

The electric field at the surface of the Si-SiO2 into SiO2 using Eq. (1) and ATLAS 

simulations are displayed in Figure 3. The electric field at the surface of the SiO2-high-

k material into high-k material (assuming HfO2 as an example of high-k dielectrics) are 

shown in Figure 4 obtained from the model and ATLAS simulations. There is a very 

good agreement between the model and numerical simulations in the above threshold 

region, which is the region of interest for this study and where direct tunneling 

dominates. 
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Figure 3: Model and ATLAS simulation of the surface electric field at the Si-SiO2 interface into 

SiO2 as a function of gate voltage at 0
d

V V= . 
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Figure 4: Model and ATLAS simulation of the surface electric field at the SiO2- HfO2 interface into 

HfO2 as a function of gate voltage at 0dV V= . 
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3) Tunneling Probability Approximation (WKB) 

The tunneling current models are based on the use of the well-known Wentzel-

Kramers-Brillouin (WKB) approximation [10]. The WKB approximation is used to 

calculate the tunneling probability of a carrier through an energy band diagram for the 

MOSFET structure with two gate oxide layers as shown in Figure 1. 

The tunneling probability for the two layers gate oxide (T ), assuming direct 

tunneling through gate stack is given [11] by: 

3 3

1 2 2 1 2 2
1 1 1

2

3 3

1 2 2 1 2 2
2 2 2

1

8
e x p 2 [ ( ) ]

3

8
e x p 2 [ ( ) ( ) ]

3

B B o x

o x

B o x B o x

o x

k d k d
T m q f V

h V k

k d k d
m q f V V

h V k

π
φ φ

π
φ φ

 +
= − − 

 

 +
× − − − 

 

         (2) 

where h  is Planck’s constant, 1k  is representing first layer dielectric constant, 2k is 

representing second layer dielectric constant, 
1d  and 

2d  are the physical thickness of 

first and second layers, 1m  is the effective mass of carrier in the first layer, q is the 

electron charge, f  is EOT fraction of the first layer (SiO2 thickness divided by EOT 

value), 
oxV  is the voltage drop across the gate stack and 

2m is the effective mass of 

carrier in the second layer. 

It is clear from the last term of Eq. (2); in order to achieve the real part or non 

imaginary values of the tunneling probability for the carriers through the gate oxide, 

the values of 2Bφ  must be bigger than oxV . In this case (Figure 1), electrons can move 

from Si substrate to the gate or inverse depending on the applied gate voltage only by 

tunneling directly the entire oxide thickness by tunneling the trapezoidal potential 

barrier between gate and Si substrate. 

The WKB approximation is used to model the tunneling probability. The tunneling 

current density through the gate oxide can be calculated in all cases by changing the 

tunneling probability function accordingly. 
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4) Simple Analytical Model 

A simplified analytical model for the gate direct tunneling leakage through a two-layer 

stack [5, 12] based on the WKB approximation is developed for DG MOSFET 

structure (Figure 1). The incorporation of the model to our previous compact model 

for the potential and drain current [8, 9] is discussed in section two. 

In our analysis, only the direct tunneling mechanism is considered as it is the main 

contribution to the tunneling current for a gate voltage equal to 1V in strong inversion 

[4, 10]. We consider the ideal case (best possible scenario) and, therefore, the interface 

trap charge is neglected as well as the gate oxide charges in the gate dielectric [13, 14]. 

A modified direct tunneling model based on the WKB approximation for SiO2 as 

an interfacial layer and different high-k materials for two layer stack can be formulated: 

3

11 1

1 1 1 1

3 3
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1 1 1
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= −

 +
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× − − − 

 

           (3) 

where 1oxV is the voltage across the first layer (SiO2) gate oxide. 

The applied gate voltage will partly drop over the interfacial layer and the high-k, 

whereas the distribution depends on the physical layer thicknesses and the k-values. 

The applied bias (gate voltage) gV  relates to the voltage drop across the stack oxV  

through the potential balance equation [15] by g FB ox SV V V φ= + +  

where 1 2ox ox oxV V V= + , FBV  is flat band voltage and the voltage across the ith dielectric 

is given [15] by the relation: 

1

i

i
oxi oxN

j

j j

d

V V
d

ε

ε=

=

∑
                                     (4) 
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iε  being the permittivity of the ith gate dielectric layer. 

The considered direct tunneling model is used to study the most interesting high-k 

dielectric candidates for gate leakage requirements. 

 

5) Improved Analytical Model 

The simple model expression includes a number of approximations that lead to 

inaccuracies (e.g., the assumption of a constant effective mass for all energies). As the 

oxide becomes thinner, the quantization effects in the semiconductor have to be 

considered in order to obtain the oxide potentials as an accurate function of the gate 

voltage [16, 17]. Therefore, a correction function (C ) is needed in order to cover these 

effects in an analytical model. This leads to an improved analytical model [12, 18]. 

An improved analytical model based on the proper WKB approximation in order 

to accurately model the direct tunneling gate leakage current, by considering semi 

empirical correction function, can be proposed: 

3 33

1 2 2 1 2 2
1 1 1

1 1 2

3 3

1 2 2 1 2 2
2 2 2

1

8
exp 2 [ ( ) ]

8 3

8
exp 2 [( ) ( ) ]

3

B B ox

B ox

B ox B ox

ox

k d k dq C
J m q fV

h h V k

k d k d
m q fV V

h V k

π
φ φ

π φ ε

π
φ φ

 +
= − − 

 

 +
× − − − 

 

                 (5) 

where 1ε  is SiO2 permittivity and C is the semi empirical corrections function: 

1 1 1

1 1 0 1

2 0
. . e x p { ( 1) (1 )}E C B

g g o x B o x

T

B B

V V V V
C N

d

αφ

φ φ φ

± ∆ −
= + × −             (6) 

GV∆ is a fitting parameter to adjust the origin of the I V− characteristic to make the 

modeled curve coincide with the experimental curve [12], its value is the same in all 

calculations. The value 0φ  is only slightly different from 1Bφ ( 0 1Bφ φ≈ ), ECBα is a fitting 
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Figure 5: Analytical model and ATLAS simulations for the gate leakage tunneling current for DG 

MOSFET with EOT=0.5nm, 0dV V= , interfacial layer (SiO2) thickness of 0.2nm and HfO2 as an 

oxide material. 
 

parameter depending on the tunneling process and TN  represents the density of 

carriers for depletion, inversion and accumulation regimes in the injecting electrode 

[12, 18]. 

Figure 5 demonstrates the accuracy of the direct tunneling gate leakage current as 

function of gate voltage at 0dV = obtained by the model and ATLAS simulation. 

There is a very good agreement at high gate voltage (maximum gate leakage current). 

 

6) Results and Discussion 

Modified simple and improved direct tunneling models based on the WKB 

approximation are used to study the 2k , 2Bφ , EOT, 1d , and 2m  dependence of the gate 

leakage current in order to study suitability of high-k materials while 1 3.2Bφ =  eV and 

1 00.50m m=  ( 0m is the free electron mass) [7]. To select the alternative materials, it is 
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important to notice that as the dielectric constant of the material increase, the band gap 

decreases and therefore higher k dielectrics tend to have a lower barrier height [19, 20]. 

Using the models, the optimum candidates are shown for each condition in order to 

meet the gate leakage requirements ( 2Bφ is shown as a band offset CE∆ in the figures). 

A) Simple Model 

In order to study the effect of EOT and interfacial oxide thickness on the gate oxide 

materials, we have carried out the calculation by varying the EOT and SiO2 thickness 

while maintaining the same leakage current ( 2

2
10 [ ]

A
J

cm

−= ) and gate voltage 1V for 

the device. Figure 6 and Figure 7 illustrate, with decreasing of EOT and SiO2 

thickness, the gate oxide materials change. 

The proposed model determines the suitable dielectric materials as a gate oxide for 

the two layers case with EOT=0.6nm,
2 00.26m m= , 1gV V= , the gate leakage 

current 2

2
10 [ ]

A
J

cm

−= , two different SiO2 thicknesses as 1 10.2 , 0.3d nm d nm= = for 

the nanoscale DG MOSFETs requirement parameters regarding to the low standby 

power application (Figure 7). The curve is plotted for different SiO2 thickness and it 

shows the trend of the curves with interfacial layer thickness. The comparison can 

theoretically help to select available high-k dielectrics and suitable interfacial layer 

thickness. 

It is found that Ce2O3 and LaAlO3 are suitable gate oxides for EOT = 1 nm with a 

SiO2 thickness equal to 0.5 nm (Figure  6) and that the use of La2O3 and LaLuO3 

dielectric materials leads to good results for EOT = 0.8 nm and 1 0.4d nm= (Figure 6). 

Moreover, LiNbO3 is found to be a suitable gate oxide for EOT=0.6nm with a SiO2 

thickness equal to 0.2 nm (Figure 7). On the other hand, for EOT = 0.6 nm and SiO2 

thickness equal to 0.3 nm (Figure 7), no suitable dielectric materials are found using the 

simplified model. Additionally, it can be noticed (Figs. 6 and 7) that when decreasing 

the EOT and the SiO2 interfacial thickness, the suitable gate oxide materials zone 

changes drastically due to the total physical thickness change. 
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Figure 6: Band offset
C

E∆ as a function of k-value for EOT=1nm with tSiO2=0.5nm, EOT=0.8nm 

with tSiO2=0.4nm,
2 00.26m m= , 1

g
V V= and leakage current 2

2
10 [ ]

A
J

cm

−= using the simplified model. 
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Figure 7: Band offset
CE∆ as a function of k-value for EOT=0.6nm (with tSiO2=0.2nm and 

tSiO2=0.3nm), 
2 00.26m m= , 1gV V= and leakage current 2

2
10 [ ]

A
J

cm

−= using the simplified model. 
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It was reported that the tunneling electron effective mass 
2m increases while the 

oxide thickness decrease [21]. Figure 8 shows the plots of band offset versus k for 

higher electron effective mass which can change in a wide range [22], and for two 

different values of interfacial layer thickness. It is obvious that the electron effective 

mass plays an important role and strongly affects the plots of band offset versus k 

values. 

For the case where EOT=0.6nm with 
1 0.3d nm= as interfacial layer,

2 00.70m m= , 

1gV V= , the gate leakage current 2

2
10 [ ]

A
J

cm

−= , the simple model indicated that 

materials such as Pr2O3 in hexagonal phase, La2O3, LaAlO3 and La2CuO4 could be 

possible candidates as high-k dielectrics. Using the same conditions and 2 00.26m m= , 

no suitable dielectric materials are found (Figure 7). 

 

B) Improved Model 

We considered and studied stacks with different EOT, and interfacial SiO2 layer 

thickness by using the improved analytical model in the two layers case. 

Figure 9 shows the result for a gate stack with EOT =1 nm, and 1 0.5d nm= . The 

suitable materials are LaScO3, ZrO2, and HfO2. Changing the value to EOT = 0.8 nm, 

and
1 0.4d nm= from improved model the promising dielectric materials change to 

Pr2O3 in the hexagonal phase, La2O3, LaAlO3 and La2CuO4 which give a leakage 

current of about 2

2
10 [ ]

A
J

cm

−= at 1gV V=  with
2 00.26m m= . 

Figure 10 shows the results of our model calculations with an EOT of 0.6 nm, a 

thickness of the SiO2 interface of 0.2 nm, and a leakage current density 

of 2

2
10 [ ]

A
J

cm

−= at a gate voltage of 1 V. The promising gate oxide materials for these 

requirements with 2 00.26m m= are La2O3, and LaLuO3. 
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Figure 8: Band offset
CE∆ as a function of k-value for EOT=0.6nm with tSiO2=0.2nm, and 

tSiO2=0.3nm as an interfacial layer,
2 00.70m m= , 1gV V= and leakage current 2

2
10 [ ]

A
J

cm

−= using 

the simplified model. 
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Figure 9: Band offset
C

E∆ as a function of k-value for EOT=1nm with tSiO2=0.5nm, EOT=0.8nm 

with tSiO2=0.4nm, 
2 00.26m m= , 1gV V= and leakage current 2

2
10 [ ]

A
J

cm

−= from improved model. 
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Increasing the thickness of the SiO2 interface from 0.2 nm to 0.3 nm using the same 

parameters, there is no suitable gate dielectric material for the considered conditions. 

As it was found for the simple model, increasing the electron effective mass causes the 

band offset versus k curve to shift toward low k dielectric candidates (Figure 11). 

Figure 10 shows that when increasing the thickness of the SiO2 interface from 0.2 

nm to 0.3 nm for 2 00.26m m= , there is no dielectric material possibility as a gate oxide 

for the considered conditions. But increasing the electron effective mass from 

2 00.26m m= to 2 00.70m m= , while keeping the same values as before for all the other 

parameters, shifts the band offset versus k curve ( cE k∆ − ) toward low dielectric k 

value as it can be seen in Figure 11. For gate stacks with EOT = 0.6 nm and SiO2 

thickness equal to 0.3 nm, the suitable high-k materials are LaAlO3 and Ce2O3 (giving a 

leakage current of about 2

2
10 [ ]

A
J

cm

−= at 1gV V=  with 2 00.70m m= ). 

As we have seen, simple and improved models showed that they are quite sensitive 

to the electron effective mass value. When the effective mass is increased, the band 

offset versus k graphs shift toward the low dielectric k values. In particular, when we 

decrease the EOT value or increase the SiO2 layer thickness as an interfacial layer, the 

models does not give any suitable dielectrics (Figure 7 and Figure 10) but when the 

electron effective mass increases (Figure 8 and Figure 11), the graphs shift and then 

some possible choices appear. Therefore it is obvious that the electron effective mass 

plays an important role in the selection of suitable high-k dielectric as a gate oxide. 

Figure 8 and Figure 11 show that there is a strong dependence on the electron effective 

mass that is used. The results from two models in the figures show that the materials 

like La2O3, HfO2, LaAlO3 and Pr2O3 in the hexagonal phase are the best gate dielectric 

candidates from the considered conditions point of view. 
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Figure 10: Band offset
C

E∆ as a function of k-value for EOT=0.6nm with tSiO2=0.2nm, and 

tSiO2=0.3nm as an interfacial layer,
2 00.26m m= , 1gV V= and leakage current 2

2
10 [ ]

A
J

cm

−= from 

improved model. 
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Figure 11: Band offset
C

E∆ as a function of k-value for EOT=0.6nm with tSiO2=0.2nm, and 

tSiO2=0.3nm as an interfacial layer,
2 00.70m m= , 1gV V= and leakage current 2

2
10 [ ]

A
J

cm

−= using 

the improved model. 
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7) Conclusion 

Analytical models for the direct tunneling current flowing between gate and channel, 

based on the modified WKB tunneling probability approximation through the gate 

stack have been developed. The models have been used to study the impact of 

parameters in the leakage current equations in order to find guidelines for the search of 

an appropriate dielectric in Nanoscale DG MOSFET structure. 

It should be noted that the EOT, barrier height, dielectric constant-k value, 

interfacial layer thickness and electron effective mass strongly affect the direct 

tunneling current and they should be considered together in determining the suitable 

dielectrics. The models show the most promising high-k candidates for different values 

of EOT and SiO2 interfacial layer thickness, satisfying the gate leakage requirements. 

They demonstrate that the materials like La2O3, HfO2, LaAlO3 and Pr2O3 in the 

hexagonal phase would fulfill the considered requirements. 
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Chapter 3  

Study of Potential High-k Dielectric for UTB SOI 

MOSFETs Using Analytical Modeling of the Gate 

Tunneling Leakage 

 

In this chapter, we use analytical models of the direct tunneling gate leakage current to 

determine the high-k dielectric suitable for the nanoscale UTB SOI MOSFETs 

structure with the predicted Equivalent Oxide Thickness (EOT) and the maximum 

value of the gate leakage current according to the requirements of the latest ITRS 

roadmap for three technological nodes. The most important criteria for selecting 

alternative dielectrics (maximum gate leakage current, EOT, electron effective mass, 

dielectric constant-k value, barrier height and SiO2 thickness as an interfacial layer) 

were taken into account to determine the suitability of the gate oxide materials. In the 

ideal case without an interfacial layer, HfO2 and Lu2O3 were found to be the best gate 

oxide materials for the 17nm, 15nm and 14nm technological node requirements. 
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1) Introduction 

The downscaling of CMOS technologies has led to a reduction in gate length and a 

corresponding reduction in gate oxide thickness. One of the problems arises from 

downscaling the thickness of the silicon dioxide layer is that the gate leakage current 

flowing through the gate oxide increases. 

High-k materials are essential to the successful scaling of silicon-based MOSFETs. 

In fact, gate leakage can be suppressed if appropriate high-k dielectric materials are 

used. In ultra thin SiO2 gate layers, charge carriers can flow through the gate dielectric 

by a quantum mechanical tunneling mechanism [1, 2]. In addition, the tunneling 

probability using a simple Wentzel-Kramers-Brillouin (WKB) approximation [3] is 

exponentially dependent on EOT, so it increases as the EOT decreases [1, 4]. 

In our previous papers we studied the suitability of high-k materials in Double-

Gate SOI MOSFETs to meet the 22 nm node requirements in the case of one layer 

gate oxide [5] and SiO2 as an interfacial layer [6]. We ignored trap assisted tunneling 

(TAT) [7, 8] because direct tunneling dominates TAT at Vg = 1V [9, 10] and we 

considered an ideal interface (without interface states) in two cases: first a high-k 

material directly on Si substrate without an interfacial layer, and the case with the SiO2 

as an interfacial layer. Due to the process induced presence of a silicon dioxide 

interfacial layer in the gate stacks, it is desirable to have a thin layer of SiO2 between 

the silicon and the high-k dielectric to maintain a good interface and prevent mobility 

degradation. A high-k dielectric suffers from stronger remote soft optical phonons that 

degrade the mobility [11-13] and, normally, the higher the dielectric constant, the 

stronger the remote phonons. 

In this chapter, we develop analytical models for the direct tunneling current [14, 

15] through gate stacks (considering a proper WKB tunneling probability adapted to 

the UTB SOI MOSFETs structure) and incorporate them into our new compact 

model for the potential and drain current of a UTB SOI MOSFET [16]. 

 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 3 47 

 

 

 

 

Gate oxide candidates must meet a set of criteria if they are to perform well. The 

main parameters to take into account are EOT, gate leakage current, electron effective 

mass, dielectric constant-k value, barrier height and SiO2 thickness as an interfacial 

layer if we are to determine suitable gate oxide candidates [17, 18] for different 

conditions. 

These conditions are drawn from the specifications of the latest International 

Technology Roadmap for Semiconductors (ITRS) [19]. The next generations of Si-

based MOSFETs will require gate dielectrics with an EOT equal to 0.90 nm, 0.85 nm 

or 0.8 nm for low standby power (LSP) logic applications and acceptable gate leakage 

current limits of 0.19 [A/cm2] , 0.21 [A/cm2] and 0.23 [A/cm2], respectively. 

According to the ITRS, low standby power devices technical requirements are 

more strict than the case of high performance (HP) device technical requirements 

(with an EOT equal to 0.88nm or 0.75nm, acceptable gate leakage current limits of 900 

[A/cm2] and 1000 [A/cm2]), and low operating power (LOP) requirements (with an 

EOT equal to 0.8nm or 0.7nm, acceptable gate leakage current limits of 180 [A/cm2] 

and 200 [A/cm2]). Then, the determination of suitable high-k materials for ultra-

nanoscale nodes is more critical in LSP than in HP and LOP´s requirements. 

 

2) UTB SOI MOSFET Structure 

The ultra-thin body SOI transistor structure under analysis is shown in Figure 1. In 

order to determine the high-k materials that are most promising as gate insulators in 

the UTB SOI MOSFETs structure, we have used gate leakage current analytical 

models that have been adapted to an ideal interface between the high-k material and Si 

substrate with no interfacial layer (Figure 1a) and with a thin layer of SiO2 between the 

silicon and high-k dielectric (Figure 1b). As discussed below, using those leakage 

current models adapted to the UTB SOI MOSFET structures shown in Figure 1 and 

bearing in mind the application requirements, we can plot various barrier heights as a 

function of the dielectric constants of specific technological node requirements to 

optimize the choice of the potential candidate materials. 
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Figure 1: Schematic representation of a single gate UTB SOI MOSFET structure: (a) One-layer 

oxide; (b) Two-layer oxides (SiO2 as an interfacial layer). 

 

A new compact charge-based model for the potential, consisting of relatively 

simple equations for fully depleted UTB SOI MOSFETs, was presented in a previous 

study (see [16]). Figure 2 shows calculations of the surface potential using our UTB 

SOI MOSFET model (adapted to our structure and TCAD 2D numerical simulations). 

The results provided by our model are in good agreement with the results of the 

numerical simulation. 

The strength of the electric field in the gate stack needs to be known in order to 

calculate the direct tunneling current through the silicon dioxide and high-k material 

dielectric between the gate and the channel. The electric field in the SiO2 at the surface 

of the Si-SiO2 (Figure 3) and SiO2-high-k dielectric (pointing towards the HfO2 and 

assuming it is a high-k material) are shown using the model and compared with TCAD 

simulations (Figure  3). The agreement between the model calculations and TCAD 

numerical simulation results is good enough. 
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Figure 2: Model calculation and TCAD numerical simulation of the surface potential at the Si-SiO2 

interface as a function of gate voltage at Vd=0V. 
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Figure 3: Model calculation and TCAD simulation of the electric field at the SiO2- HfO2 interface 

into HfO2 and at the Si-SiO2 interface into SiO2 as a function of gate voltage at Vd=0V. 
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3) Tunneling Probability Approximation (WKB) 

We describe a proper Wentzel-Kramers-Brillouin (WKB) approximation for the 

probability of the tunneling through the gate oxide, which is required to model the 

direct tunneling current flowing between gate and channel [3, 4]. 

Using the WKB approach for the one-layer gate oxide for UTB SOI MOSFET, a 

proper tunneling approximation is: 

3

2 3

2
8 2

[1 (1 ) ]
3

e x p { }

H ig h k H ig h k o x

H ig h k

O n e L a ye r

H ig h k

m V

h q
T

E

π φ

φ

− −

−

−

− − −

=                     (1) 

where 
High k

m −  is the electron tunneling effective mass in the high-k layer, 
High k

φ −  is the 

conduction band offset for dielectric material, q is the electron charge, h is Planck’s 

constant and 
High k

E − is the electric field across the high-k material which was suggested 

for the direct tunneling [20, 21]. 

The voltage across the high-k material (
oxV ) is given by 

ox g Fb S
V V V φ= − − where 

g
V  is the applied gate voltage, 

FbV  is the flat band voltage, and the potential at the 

surface ( Sφ ) was obtained using our new compact charge based on the potential of a 

UTB SOI MOSFET [16]. 

The tunneling probability for the two layer case [22] modified to the conditions in 

the UTB SOI MOSFETs structure is given as: 

2 2

2 2 2

2 2

2

3 3

2 2

3 3

2 2

8
exp 2 [ ( ) ]

3

8
exp 2 [( ) ( ) ]

3

SiO High k High k SiO

TwoLayers SiO BSiO BSiO ox

ox High k

SiO High k High k SiO

High k BHigh k ox BHigh k ox

SiO ox

k T k T
T m q fV

h V k

k T k T
m q fV V

h k V

π
φ φ

π
φ φ

− −

−

− −

− − −

 × + × 
= − − × 

×  

 × + × 
− − − 

×  

         (2) 

where 
2BSiO

φ  is the barrier height for the electrons in the SiO2 layer, f is the EOT 

fraction of the SiO2 layer, 
2SiO

m is the effective mass of carrier in the SiO2, 
2SiO

k is the 
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SiO2 dielectric constant, High k
k − is the high-k dielectric constant, and 

2SiO
T and 

High k
T − are the physical thicknesses of SiO2 and high-k materials. 

According to the UTB SOI structure used to model and study the direct tunneling 

through the gate insulator (and to determine the suitability of high-k materials), a 

proper WKB approximation is necessary to capture the correct behavior of the leakage 

current. 

 

4) Gate Direct Tunneling Model in the UTB SOI 

Structure 

A) Simple Model with no Interfacial Layer and with 

SiO2 as an Interfacial Layer 

We adapted a simple analytical gate leakage current model to a UTB SOI MOSFET 

structure. This model considers electron energy quantization effect approximations for 

the direct tunneling current between the gate and the channel as the main gate leakage 

component [15, 21]. In order to calculate the gate leakage current by the simple model 

across the oxide materials for the assumed structure, we need to use the value of the 

electric field across the gate stack which we have obtained using our new charge-based 

potential compact model [16]. This simple analytical model, which is used to study 

suitable dielectric materials assuming an ideal interface with no interfacial layer, is given 

by: 

3
2

2
( ) ( 1)

8O n eL a ye r

H ig h k H ig h k

S H ig h k O n e L a y e r

H ig h k o x o x

q
J E T

h V V

φ φ

π φ
− −

−

−

= × × − × ×           (3) 

The presence of SiO2 at the interface between the high-k material and the Si 

substrate is important when studying the suitability of high-k candidates. We 

considered an interfacial layer in order to maintain the advantages of SiO2 (large energy 

band offsets with the conduction and valence bands of silicon, good interface and 

weak mobility degradation) and because the process can induce SiO2 as an interfacial 
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layer. We should point out that the use of SiO2 as an interfacial layer will limit the 

lowest obtainable EOT value [8]. 

A simple analytical model for the case of an interfacial layer, based on a proper 

WKB tunneling probability for studying promising gate oxide materials, is given by: 

2 2

2

2

3
2

2
( ) ( 1)

8Tw oLayers

SiO SiO

S SiO Tw oL ayers

SiO ox ox

q
J E T

h V V

φ φ

π φ
= × × − × ×              (4) 

2SiO
E is the electric field across the SiO2. We used this simple analytical model of the 

gate tunneling current for the case with no interfacial layer and the case with SiO2 as an 

interfacial layer, in order to study high-k materials that were suitable oxide dielectrics 

according to the latest ITRS low standby power requirements to the incoming UTB 

SOI MOSFETs. 

B) Improved Model with and without an Interfacial 

Layer 

An improved analytical model can be developed from the simple model by using a 

correction function to include electron energy quantization effects in a more accurate 

way [23]. It cannot be assumed that the effective mass is constant at all oxide 

thicknesses and gate biases [24] and, as the oxide becomes thinner, the quantization 

effects in the semiconductor have to be considered. A correction function is 

incorporated in order to account for these effects. 

The improved analytical model adapted to UTB SOI MOSFET (based on our new 

compact model of potential [16]) and a proper WKB probability is given by: 

3

0

1

8O neL ayerI O neL ayer O neL ayer

H igh k H igh k

q
J C T

h kπ φ ε− −

=                      (5) 

0ε is the permittivity of free space and the correction function for the ideal interface 

without any interfacial layer (
OneLayer

C ) is given by: 

0

20
exp{ ( 1) (1 )}ECBg g ox High k ox

OneLayer T

High k High k High k

V V V V
C N

T

α
φ

φ φ φ

−

− − −

± ∆ −
= × × + × −             (6) 
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the
g

V∆  is a fitting parameter that adjusts the origin of the I-V characteristic to 

coincide with the modeled and the experimental curve [25]. The value 0φ  is only slightly 

different from
High k

φ − so we can assume
0High k

φ φ− = , 
ECBα  is a fitting parameter that 

depends on the tunneling process and 
ECBα =0.6 provides the best overall fit for 

OneLayer
C  [22]. NT represents the behavior of the density of carriers [25] and its 

expression was adapted to the UTB SOI MOSFET structure. Figure 4 shows the direct 

tunneling current as a function of gate voltage with HfO2 and SiO2 as a gate dielectric 

stack at Vd = 0 obtained by our model calculations and TCAD numerical simulations. 

There is a good agreement between model calculations and simulation results especially 

in the interesting range of high gate voltage (1V), where the gate leakage current is 

max. The study to find the proper dielectrics was carried out at Vg = 1V (maximum 

gate leakage current). 
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Figure 4: Analytical model calculation and TCAD simulations for the gate leakage tunneling current 

for UTB SOI MOSFET with HfO2 and SiO2 as an oxide material at 0dV V= . 
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The improved analytical model for two-layer gate oxide materials with SiO2 as an 

interfacial layer, using a proper WKB tunneling probability, is given by: 

2 2

3

0

1

8T w o L a y e r sI T w o L a y e r s T w o L a y e r s

S iO S iO

q
J C T

h kπ φ ε
=                       (7) 

The correction function for the two-layer gate oxide structure (
TwoLayers

C ) is given 

by:  

2

2 2 2

1 1

0

20
exp{ ( 1) (1 )}ECB

ox SiOg g ox

TwoLayers T

SiO SiO SiO

VV V V
C N

T

α
φ

φ φ φ

−± ∆
= × × + × −       (8) 

1oxV is the voltage across the first gate oxide layer (SiO2) [6] and 
2 0SiO

φ φ= . 

 

5) Results and Discussion 

The simple and improved analytical direct tunneling current models are used to study 

the suitability of the gate insulator candidates for one and two layers in the UTB SOI 

MOSFETs structure. According to the latest ITRS specifications, the next generations 

of UTB SOI MOSFETs for the different technological nodes will require EOT = 0.85 

nm and EOT = 0.8 nm for the low standby power logic applications and an acceptable 

gate leakage current will be 0.21 [A/cm2] and 0.23 [A/cm2], respectively. 

The dielectric candidates required to meet low standby power application 

requirements depend on the technological node. In addition, the plot of the band 

offset as a function of dielectric constants, using the gate leakage current calculations 

(mentioned in section 4) for the specific conditions and requirements, is used to 

discuss the suitability of the dielectric materials. The curves in graphs 5 to 12 represent 

a minimum of the band offset required. So, all the materials above the curve could be 

selected materials, and not only the nearest to the curves. Therefore, when two or 

more dielectrics satisfy the conditions about tunneling current, one could choose 

between them according to the technological issues or to the best behavior with 

respect to the mobility. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 3 55 

 

 

 

 

5.1) EOT=0.85nm and J=0.21 [A/cm2] (15 nm 

Technological Node) 

A) One Layer case 

Initially we calculate the gate leakage current for the one-layer case as shown in Figure 

1a with no interfacial layer. Figure 5 shows a plot of the barrier height (
C

E∆  refers to 

the dielectric material barrier height in the figures) as a function of the k-value for 

EOT=0.85 nm, leakage current
2

0.21[ ]
A

J
cm

= , *

00.26m m=  and 1gV V=  using the simple 

(Eq.3) and improved (Eq.5) models for the ideal interface, and with different 
C

E∆  
and k 

values for metal oxides [26]. As can be seen in Fig 5, of the high-k dielectrics, Sm2O3, 

Er2O3, Ho2O3 and Lu2O3 appear to be promising candidates in the conditions tested 

for both the simple and the improved models. However, the improved model 

calculations predict one more appropriate dielectric, HfO2, for the same application 

requirements in the case of the one-layer gate oxide (Figure 5). 

Using the simple model (Eq.3) the figure of merit showing the suitable dielectrics 

(band offset versus dielectric constant k values curve) is shown for different values of 

EOT (EOT=0.85 nm, EOT=0.65 nm and EOT=0.45 nm), *

00.26m m= , 1gV V= and 

leakage current
2

0.21[ ]
A

J
cm

=  (Figure 6). The direct tunneling gate leakage current tends 

to increase as EOT decreases. Figure 6 shows that, depending on the value of EOT, 

the possible candidates for suitable dielectric materials shift toward higher dielectric 

constants because the EOT values decrease. The improved model (Eq. 5) shows the 

same trend in EOT values using the two-layer oxide models (Eq. 4, Eq. 6). In fact the 

EOT value is an important criterion for finding high-k dielectric materials. 
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Figure 5: Band offset
CE∆ as a function of the k-value for EOT=0.85 nm 

with *

00.26m m= , 1gV V= and gate tunneling leakage current
2

0.21[ ]
A

J
cm

= using the simple and 

improved models. 
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Figure 6: Band offset
C

E∆ as a function of the k-value for EOT=0.85 nm, EOT=0.65 nm and 

EOT=0.45 nm, 
*

00.26m m= , 1gV V= and gate tunneling leakage current
2

0.21[ ]
A

J
cm

= using the 

simple model. 
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B) SiO2 as an Interfacial Layer 

Eq.2 shows the exponential dependence of the tunneling probability in the two-layer 

case on the interfacial layer thickness (
2SiOT ); as a result the direct tunneling gate 

leakage current (Eq. 4 and Eq. 7) also exponentially depends on
2SiOT . We study the 

suitability of high-k dielectric materials depending on the interfacial layer thickness. 

Figure 7 shows the band offset as a function of the k-value for EOT=0.85 nm with 

two different interfacial layer thicknesses (
2

0.35SiOT nm= and
2

0.55SiOT nm= ) using the 

simple (Eq. 4) and improved (Eq. 7) analytical gate leakage current models. We see in 

Figure  7 that using the improved model (Eq. 7) with *

00.26m m= , 1gV V= and leakage 

current
2

0.21[ ]
A

J
cm

= , of the high-k gate oxides, the best candidates near the minimum 

of the band offset, are CeO2, ZrO2 and HfO2. By changing only the interfacial layer 

(SiO2) thickness (assuming all other parameters are the same as before) to 

2
0.55SiOT nm= the preferred high-k materials near the minimum of the band offset, are 

Pr2O3 in the hexagonal phase, La2O3 and La2CuO4. In fact, the thickness of SiO2 (as an 

interfacial layer) affects which candidates should be chosen to meet the technological 

node requirements. The same trend is observed when the simple model is used with 

different thicknesses of the interfacial layer (SiO2) to select suitable dielectrics (Figure 

7). 

The tunneling electron effective mass in dielectric materials changes with the oxide 

thickness and voltage across the oxide materials [24] and the values reported in the 

literature vary over a wide range [27, 28]. We have shown the role of electron effective 

mass values and their effect on the determination of suitable dielectrics. 

Figure 8 shows the band offset as a function of the k-value for two different values 

of the tunneling electron effective mass, *

00.20m m=  and *

00.60m m= (EOT=0.85 nm 

with tSiO2=0.55 nm, 1gV V= and leakage current
2

0.21[ ]
A

J
cm

= ) using the simple (Eq.4) 

and improved (Eq.7) gate leakage current models. 
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Figure 7: Band offset
C

E∆ as a function of the k-value for EOT=0.85 nm (with tSiO2=0.35 nm and 

tSiO2=0.55 nm), *

00.26m m= , 1gV V= and gate tunneling leakage current
2

0.21[ ]
A

J
cm

= using the 

simple and improved models. 
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Figure 8: Band offset
CE∆ as a function of the k-value for EOT=0.85 nm with tSiO2=0.55 

nm, *

00.20m m= ,
*

00.60m m= , 1gV V= and gate tunneling leakage current
2

0.21[ ]
A

J
cm

= using the 

simple and improved models. 
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As shown by the models, if the electron effective mass value is increased, the guideline 

(band offset as a function of dielectric constant curves) for finding the suitable high-k 

materials shifts toward a lower dielectric constant region (Figure 8). In fact the models 

considered have the ability to take into account (during the determination of suitable 

high-k materials) the effect of electron effective mass in the calculation of gate leakage 

current. The results indicate that the exact value of electron effective mass plays an 

important role in the accurate determination of the favorable dielectric candidates. 

 

5.2) EOT=0.80nm and J=0.23 [A/cm2] (14 nm 

Technological Node) 

According to the latest ITRS, there are a number of requirements (equivalent oxide 

thickness and gate leakage current density) for the 14 nm technological node of UTB 

SOI MOSFETs. 

A) One Layer Case 

We predicted the suitable alternative high-k gate dielectrics (the optimal k and barrier 

height values) that fulfill the requirements of low standby power operation for UTB 

SOI MOSFETs using the simple (Eq. 3) and improved (Eq. 5) gate leakage current 

models for a one-layer gate oxide (the ideal case with no interfacial layer). 

Figure 9 shows the band offset as a function of the k-value for EOT=0.80 nm 

with *

00.26m m= , 1gV V= and leakage current
2

0.23[ ]
A

J
cm

= when the simple and 

improved models of the gate leakage current are used. According to Figure 9, high-k 

candidates such as Sm2O3 and Er2O3 fulfill the requirements when the improved model 

is used (Eq.5). Ho2O3 and Lu2O3 are the preferred dielectrics, near the minimum of the 

band offset, predicted by the simple model (Eq.3) for the same technological node 

requirements. In this technological node, these candidates produce acceptable gate 

leakage currents (J = 0.23 [A/cm2]) for the EOT = 0.80 nm. HfO2 can also be one of 

the feasible candidates in this case (see Figure 9). 
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Figure 9: Band offset
CE∆ as a function of the k-value for EOT=0.80 nm 

with *

00.26m m= , 1gV V= and gate tunneling leakage current
2

0.23[ ]
A

J
cm

= using the simple and 

improved models. 

 

Interestingly, the simple (Eq. 3) and improved (Eq. 5) models lead to very similar 

results for both technological node requirements (Figure  5 and Figure  9), despite their 

different gate leakage current density and EOT values for UTB SOI MOSFETs with 

no interfacial layer. 

B) SiO2 as an Interfacial Layer 

Using the simple (Eq. 4) and improved (Eq. 7) gate leakage current models, Figure  10 

shows the band offset as a function of the k-value for EOT=0.80 nm, *

00.26m m= , 

1gV V= and leakage current
2

0.23[ ]
A

J
cm

= and two different values of interfacial layer 

(SiO2) thicknesses (
2

0.30SiOT nm= and 
2

0.50SiOT nm= ). 
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Figure 10: Band offset
C

E∆ as a function of the k-value for EOT=0.80 nm (with tSiO2=0.30 nm and 

tSiO2=0.50 nm), *

00.26m m= , 1gV V= and gate tunneling leakage current
2

0.23[ ]
A

J
cm

= using the 

simple and improved models. 

 

For 
2

0.30SiOT nm= the dielectrics, near the minimum of the band offset, predicted 

by the improved model are LaScO2, ZrO2 and HfO2. Pr2O3 gives an acceptable leakage 

current (J = 0.23 [A/cm2]) when the same model and parameters are used 

for
2

0.50SiOT nm= . The simple model predicts LaScO2 for 
2

0.30SiOT nm=  and La2O3 

and LaLuO3 for
2

0.50SiOT nm= . The results of barrier height calculations show that 

different interfacial layer thicknesses can draw the curves for the 15 nm node 

requirements presented in Figure 7 closer to the curves for the 14 nm technological 

node requirements presented in Figure 10. 
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Figure 11: Band offset
C

E∆ as a function of the k-value for EOT=0.80 nm with tSiO2=0.50 nm, 

*

00.23m m= , 
*

00.60m m= , 1gV V= and gate tunneling leakage current
2

0.23[ ]
A

J
cm

= using the 

simple and improved models. 

  

Figure 11 shows the band offset as a function of the k-value for EOT=0.80 nm 

with
2

0.50SiOT nm= , 1gV V= and leakage current
2

0.23[ ]
A

J
cm

= when the simple (Eq. 4) 

and improved (Eq. 7) leakage current models are used for two different electron 

effective mass values ( *

00.23m m= , *

00.60m m= ). 

The results show that appropriate oxide materials depend on the value of electron 

effective mass (all other parameters being the same). Therefore, the electron effective 

mass value (which is almost a fitting parameter) has an important role in determining 

suitable dielectric materials. Finally figure 12 shows the possible candidates for 

EOT=0.90 nm with *

00.26m m= , 1gV V= and leakage current 






=

2
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A
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technological node requirements) using the simple and improved models of the gate 

leakage current. 
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E∆ as a function of the k-value for EOT=0.85 nm 

with *

00.26m m= , 1gV V= and gate tunneling leakage current
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The gate leakage direct tunneling current is a highly sensitive function of the oxide 

thickness, interfacial layer thickness and electron effective mass value. It has been 

observed that the choice of the suitable dielectric materials is affected by variations in 

the oxide thickness, interfacial layer thickness or electron effective mass. It should be 

pointed out that in general the simple and improved model predict similar results and, 

therefore, for the sake of analytical simplicity the simple model can be used because its 

accuracy is similar to that of the improved model. 

 

6) Conclusion 

Analytical models of the gate tunneling leakage current have been developed and used 

to identify the most promising high-k candidates for the UTB SOI MOSFETs 

structure, in cases with no interfacial layer and with SiO2 as an interfacial layer in order 

to satisfy the requirements of low standby power applications according to the latest 
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ITRS roadmap. The suitability of the materials depends on the technology node 

requirements and, particularly, EOT, the electron effective mass and interfacial layer 

thickness can change the choice of the dielectric candidates. It has been found that 

HfO2 and Lu2O3 are the most promising gate oxide materials for the 17nm, 15nm and 

14nm technological node requirements assuming the ideal case with no interfacial 

layer. This study provides additional insight into choosing the favorable dielectric 

candidates for the different technological nodes in the future. 
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Chapter 4  

Gate Leakage Current Partitioning in Nanoscale 

Double-Gate MOSFETs, Using Compact Analytical 

Model 

 

This chapter presents a compact gate leakage current partitioning model for nanoscale 

Double Gate (DG) MOSFETs, using analytical models of the direct tunneling gate 

leakage current. Gate leakage current becomes important and an essential aspect of 

MOSFET modeling as the gate oxide thickness is scaled down to 1nm and below in 

advanced CMOS processes. We considered an ideal interface (ideal case without an 

interfacial layer) and two layers high-k dielectric materials as gate insulators. In the case 

of two layers, a thin layer of SiO2 as an interfacial layer is considered. The results of the 

gate current partitioning components into drain and source show good agreement with 

2D TCAD numerical device simulation (Silvaco ATLAS). 
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1) Introduction 

The continuous reduction of the gate oxide layer thickness in advanced CMOS devices 

to 1nm and below causes an increase of the gate leakage current density, due to the 

increasing carrier direct tunneling and can become an important undesirable effect on 

the device operation [1, 2]; besides, it increases power dissipation and can deteriorate 

the device performance and circuit stability [3] for every process generation. Part of the 

gate leakage current ( gcI ) is collected by the source ( gcsI ) while the rest goes to the 

drain ( gcdI ). For an accurate characterization and modeling of the tunneling current 

through high-k gate stacks and its effect on device and circuit performance, it is 

essential to derive a compact model of the partition of the leakage current flowing 

between gate and channel  into the source (
gcsI ) and drain (

gcdI ) components. Several 

authors have studied and modeled the gate leakage current partition in single gate 

MOSFET structures [4-6]. 

The main goal of the present chapter is to develop a compact analytical model of 

the partitioning of the direct tunneling gate leakage current (
gcI ) in nanoscale Double-

Gate (DG) MOSFETs. This model consists of analytical equations for the gate-source 

and the gate-drain tunneling components. A gate leakage current model was developed 

and implemented in our previous surface potential based model [7, 8] which includes 

short channel effects related to the DG MOSFET structure. We considered an ideal 

case, with one layer gate insulator, and also the case of a two-layer dielectric stack with 

a thin layer of SiO2 (in order to maintain a good interface with substrate) as an 

interfacial layer with a suitable gate oxide material (HfO2) are being proposed [9, 10]. 

In this chapter, in order to derive the gate-source ( gcsI ) and gate-drain ( gcdI ) 

leakage current components, current continuity equation is considered in the presence 

of gate leakage current as a perturbation for a DG MOSFET at the voltage along the 

channel as a function of x, which is 0 at the source and L (channel length) at the drain. 

In fact the main goal of partition modeling is to solve the current continuity equation 

for the channel current in the presence of the gate leakage. The model is therefore 
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based on the underlying physics of the direct gate tunneling current and its 

components into the source and drain, and has been successfully validated by 

comparison with 2D TCAD numerical device simulation. 

 

2) Double Gate MOSFET Structure 

The double-gate transistor structure under analysis is shown in Figure 1; gcI  is the 

leakage current flowing between gate and channel. gcsI is the part of the gate to channel 

leakage current collected by the source and gcdI  is the rest of the gate to channel 

leakage current and goes to the drain. 

In order to carry out a physical modeling of the gate leakage current flowing 

between gate and channel, the availability of expressions of the surface potential and 

the electric field into the gate oxide materials are essential. In our previous works [7, 8] 

we developed an advanced compact model for the surface potential and drain current 

which considered short channel effects for a DG MOSFET structure. We show the 

calculated surface potential at the Si-SiO2 (or Si-HfO2) interface using our compact 

model in inset of Figure 2 as a function of drain voltage ( dsV ) at gate applied 

voltage 1gV V= for the considered structure and parameters according Figure 1. The 

results from our model for the presented structure are in good agreement with the one 

obtained from 2D TCAD numerical device simulation. 

The surface electric field ( sE ) is obtained by using Poisson’s equation as a 

function of the potential at the surface ( Sφ ) and at the center of the Si layer ( oφ ) [7, 8]: 

2 / 2
( ) ( )2

( ) (1 )

S O S F

t t

V

a t S O

s

s t

q N
E e e

φ φ φ φ

φ φφ φ φ

ε φ

− − −
−−

= × + − ×                 (1) 

where 
/

t

kT

q
φ = is the thermal potential, k is the Boltzmann constant, q  is the electron 

charge and /T is the temperature in K , aN  is the uniform acceptor concentration in- 
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Figure 1: Diagram of a double gate MOSFET structure analyzed. gcI is the gate-to-channel 

tunneling current. It is partitioned into gcsI  and gcdI  , which flow to the source and to the drain 

respectively. 
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Figure 2: Analytical model calculations and 2D TCAD numerical simulations of the surface electric 

field pointing at the interfacial layer (SiO2) at the Si-SiO2 interface, and at the high-k layer (HfO2) at 

the SiO2-HfO2 interface, Inset: the surface potential at the Si-SiO2 (or Si-HfO2) interface as a 

function of drain voltage at 1gV V= . 
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the silicon layer, 
Fpφ is the quasi Fermi level for holes in the P-type silicon layer and 

Fnφ is the quasi Fermi level for electrons. The potential along the channel 

is Fn FpV φ φ= − , and Fpφ  renamed as Fφ . 

Figure 2 shows the comparison between the model calculations (Eq.1) and 2D 

TCAD numerical device simulations of the electric fields considering materials and 

conditions as shown in Figure 1.  Both the surface electric field as a function of drain 

voltage at 1gV V= , pointing at SiO2 at the interface of the Si-SiO2 (Figure 2) and the 

surface electric field (pointing at the HfO2 layer) at the interface of the SiO2-HfO2 

(Figure 2) using Eq.1 show a good agreement with 2D TCAD simulation results. Using 

the considered electric fields, the model will be able to calculate the gate leakage 

current in order to obtain the source and drain components of the gate to channel 

leakage current. 

 

3) Tunneling Probability Approximation 

The tunneling probability depends on the potential barrier shape. Using the Wentzel-

Kramers-Brillouin (WKB) approximation, it can be calculated for given conditions 

(one layer and two layers gate oxide dielectrics) and structures as shown in Figure 1 

[11, 12]. A proper WKB approximation method can be used to calculate the tunneling 

probability of a carrier through the dielectric stack structure. Parameters such as the 

SiO2 and dielectric material thicknesses and barrier heights at the various interfaces, 

dielectric constant and electron effective mass values across the dielectric stacks, have 

been taken into account. 

An approximate expression for the transmission in the case of one layer gate 

oxide is: 

3

2 3

2

1

8 2
[1 (1 ) ]

3
e x p { }

H i g h k H i g h k O x

H ig h k

L a y e r

H i g h k

m V
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−

−
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High km −  is the electron effective mass in the high-k material, 
BHigh kφ −  is the conduction 

band offset for the dielectric material, q  is the electron charge, h  is the Planck’s 

constant. The voltage across the high-k material ( oxV ) is given by 

ox g Fb SV V V φ= − − where gV  is the applied gate voltage, FbV  is flat band voltage; on the 

other hand, using our compact model for the potential of a DG MOSFET, the 

potential at the surface ( Sφ ) was obtained. 

SiO2 has a low dielectric constant, but in all other aspects remains an excellent 

insulator [13]. It would be useful to keep the advantages of SiO2 and at the same time 

to use a suitable new high-k dielectric in a SiO2/high-k gate stack. Using SiO2 as an 

interfacial layer for the two layer case, tunneling probability for direct tunneling is 

given by [14]: 

2 2

2 2 2

2 2

2

3 3

2 2
2

3 3

2 2

8
exp 2 [ ( ) ]

3

8
exp 2 [( ) ( ) ]

3

− −

−

−

− −

− − −

 × + × 
= − − × 
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 × + × 
− − − 
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k T k t
T m q fV

h V k

k T k t
m q fV V

h k V

π
φ φ

π
φ φ

            (3) 

2SiOm (
2 00.50SiOm m= ) is the electron effective mass in the SiO2, 0m is the free electron 

mass, 
2BSiOφ (

2
3.2BSiO eVφ = ) is the conduction band offset for the SiO2, f  is EOT 

fraction of the first layer (SiO2 thickness divided by EOT value), 
2SiOk and High kk −  are 

the SiO2 and high-k dielectric constant,  
2SiOt and High kT − are the physical thicknesses of 

SiO2 and high-k materials and High kE − is the electric field across the high-k material 

which was considered in the second section [15, 16]. 

Once the tunneling probability for the considered conditions and structure was 

established, the tunneling current can be calculated in all cases considering the 

tunneling probability function accordingly. 
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4) Gate Leakage Current Model and Comparison 

Only the direct tunneling mechanism is considered in our analysis, as the main 

contribution to the tunneling current for high gate voltage ( 1gV V= ) [15, 18]. The 

interface trap charge is neglected due to the small interface trap density at the interface 

[19, 20]. 

A) One Layer Gate Insulator 

Our analytical direct tunneling gate leakage current model is based on a proper WKB 

electron tunneling probability for one layer gate oxide becomes: 

1

3

1 1

0

1

8L a y e r L a y e r L a y e r

B H i g h k H i g h k

q
J C T

h kπ φ ε− −

=                  (4) 

where 0ε is permittivity of free space and the correction function ( 1LayerC ) in the case of 

ideal interface without any interfacial layer becomes: 

1

0

20
exp{ ( 1) (1 )}ECB

g g ox BHigh k ox

Layer T

High k BHigh k BHigh k

V V V V
C N

T

α
φ

φ φ φ

−

− − −

± ∆ −
= × × + × −        (5) 

gV∆  is a fitting parameter [21], the value 0φ  is only slightly different 

from BHigh kφ − therefore we can assume 0BHigh kφ φ− ≈ , ECBα  is a fitting parameter 

depending on the tunneling process and 0.6ECBα =  provides the overall best fit for 

1LayerC  [17]. TN represents the behavior of density of carriers [21] and its expression 

was adapted to the DG MOSFET structure in Figure 1. 

The gate to channel leakage current ( gcI ) depends on dsV , which controls the 

position dependence of the Fermi level along the channel, which makes gcI  a 

decreasing function of dsV  (see Figure 3). 
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Figure 3: Analytical model and 2D TCAD numerical simulations of the direct tunneling gate 

leakage current in the case of one layer gate oxide (HfO2), and two layer case with  interfacial layer 

(SiO2) thickness equal to 0.2 nm, 0.4 nm and HfO2 as a high-k material versus drain voltage with 

EOT=0.5 nm, 1gV V= for a DG MOSFET. 

 

First of all, we developed a gate leakage current model without interfacial layer 

(ideal case) based on a compact analytical model for the electric potential. Figure 3 

shows the behavior of the direct tunneling gate to channel leakage current as a 

function of drain voltage at 1gV V= obtained by the analytical model calculations (Eq. 

4) and 2D TCAD numerical device simulations in the case of one layer gate oxide with 

EOT=0.5nm and HfO2 as a high-k material for a DG MOSFET structure. There is a 

very good agreement especially at low drain voltage where there is a maximum gate 

leakage current. 
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B) Two Layer Gate Insulator 

The presence of an interfacial layer (SiO2) increases the EOT of the gate stack, which 

should thus be as thin as possible to achieve the EOT value required by the 

International Technology Roadmap for Semiconductors (ITRS). 

An approximate analytical model with a proper WKB electron tunneling 

probability for two layers gate oxide was proposed in [14, 17]: 

2 2

3

2 2 2

0

1

8L a y e r s L a y e r s L a y e r s

B S iO S iO

q
J C T

h kπ φ ε
=                 (6) 

The correction function ( 2LayersC ) for the two layer gate oxide (SiO2-HfO2) 

material can be expressed as: 

2
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1 1
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= × × + × −ECB

ox BSiOg g ox
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t

α
φ

φ φ φ
          (7) 

An applied gate voltage will partly drop over the interfacial layer and the high-k 

material, whereas the distribution depends on the physical layer thicknesses and the k-

values. The applied bias gV is related to the voltage drop across the stack ( oxV ) through 

the potential balance equation and 1 2ox ox oxV V V= + where the 1oxV , 2oxV are the voltages 

across the first (SiO2) and second gate oxide layers respectively. The voltage across the 

ith dielectric is given by the relation [22]: 

1

i

i
oxi oxN

j

j j

d

V V
d

ε

ε=

=

∑
                                            (8) 

where id  and iε  are the thickness and permittivity of the ith gate dielectric layer. The 

changes in voltage across dielectrics by a change in gate voltage are taken into account. 

This expression has been adapted to the DG MOSFET structure in Figure 1 with 

SiO2 as an interfacial layer and HfO2 as a high-k material (two layers gate stack), and 

incorporated to our advanced surface potential based compact MOSFET model for 

the potential and drain current including short channel effects. 
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Figure 4: Analytical model and 2D TCAD simulations of the direct tunneling gate-drain (Inset: 

gate-source) leakage current component, in the cases of one layer gate oxide (HfO2) and two layer 

gate insulator (HfO2/SiO2) with an interfacial layer (SiO2) thickness equal to 0.2 nm, 0.4 nm and 

HfO2 as an oxide material with EOT=0.5 nm and 1gV V= for a DG MOSFET structure as a 

function of drain voltage. 

 

Figure 3 shows the direct tunneling current as a function of the drain voltage with 

HfO2 and SiO2 as a gate oxide stack at Vg = 1 obtained by our model calculations 

(Eq.6) and TCAD numerical simulations. There is a good agreement between the 

analytical model calculations and 2D TCAD numerical device simulations. It can be 

seen in Figure 3, that by increasing the interfacial layer thickness (tSiO2) for the same 

EOT value (EOT=0.5nm), the gate leakage current and accordingly gate-drain and 

gate-source components of the leakage current will be increased (as shown in Figure 

4). 

 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 4 77 

 

 

 

 

5) Gate Leakage Partition Model and Validation 

In this section, the gate leakage partition model based on the considered analytical gate 

leakage current models for the one and two layer gate insulators is developed and 

analyzed for a DG MOSFET structure. In order to obtain the gate current partition, 

current continuity equation in the presence of the gate leakage current is necessary to 

solve. 

We have adapted to a DG MOSFET structure the gate leakage model with 

source-drain partitioning that was derived for single gate MOSFET [4]. Using the drift 

equation, the drain current for a DG MOSFET structure is given by: 

2 ( )x ox gs th

dV
I C V V V

dx
µ= − −                                       (9) 

The current continuity equation for DG MOSFET structure is introduced: 

( )
( )

2 0
g th

g

ox

dV
d V V V

J xdx

dx Cµ

 
− −  × + =                                 (10) 

thV is the threshold voltage, V is the channel potential reference to the source, µ  is the 

mobility, oxC is the oxide capacitance and ( )gJ x is the gate current density as a 

function of channel location. 

The current continuity equation assumed for DG MOSFET is solved without gate 

leakage current ( ( ) 0gJ x = ). This assumption leads to exactly the same condition and 

results of single gate MOSFET: 

2

0 ( ) ( ) 2( ) ( )
2 2 ( )

ds ds ds
g th g th g th ds g th

g th

V V Vx x
V x V V V V V V V V V

L V V L
= − − − − − − ≈ − −

−
      (11) 

where 
0 ( )V x  is the solution of Eq. (10) without gate leakage current. 

The inclusion of the gate leakage current causes the change of channel potential 

along the channel 0 1( ) ( ) ( )V x V x V x= + , assuming the gate leakage current is much 

smaller than the drain current, the gate leakage current perturbation on ( )V x  is small 
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and 
0 1( ) ( )V x V x�  is the approximation that leads to obtain analytical solution for the 

leakage current perturbation: 

022
01 0 01 1

0 2 2

2
( ) 0

2

V

g

gs

ox

J eV d V dVd V dV
V V

dx dx dx dx C

β

µ

−

− − − + =                     (12) 

0gJ is the gate leakage current density with 0dsV = which can be modeled by equation 

(4) and (6), 
3

2

2
8

3

ox b ox

g

qm T
P

h V

φ
β π= . Note that P is a model parameter added for 

flexibility with a default value of one. 

Based on the boundary condition 1 1(0) ( ) 0V V L= = , assuming that the gate leakage 

current is much smaller than the drain current and 0 1V V� , the analytical solution of 

1V , can be presented by: 

0

1 2 2

( 1) (1 )

2 ( )

Kx KL

g

ox gs

x
J e e

L
V

C K V Kx

β β

µ β

− − 
− + −  = −

−
                                 (13) 

where ( )
2 ( )

ds ds
g th

g th

V V
K V V

V V L
= − −

−
 

The gate to channel tunneling leakage current partition between the channel and 

the source (
gcsI ) becomes: 

01
0 2 2 2

( 1)
2 ( )

2

−

=

+ −
= − =

KL

g

gcs ox gs th x

J WL KL edV
I C V V W

dx K L

ββ
µ

β
            (14) 

Using the gate to channel direct tunneling current density calculations from the 

expressions (4 and 6), the gate-to-source component is determined based on 

expression (14). In the case of one layer gate oxide (HfO2) and two layer gate insulator 

(HfO2/SiO2) with an interfacial layer (SiO2) thickness equal to 0.2 nm, 0.4 nm and 

HfO2 as an oxide material with EOT=0.5nm and 1gV V= for a DG MOSFET 

structure, the source component of gate leakage current as a function of drain voltage 

is shown in the inset of Figure 4. Considering two different thickness of the interfacial 
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layer (tSiO2=0.2nm and tSiO2=0.4nm) we can see in Figure 4 the influence and impact of 

the thickness of the intermediate SiO2 layer. It is shown in the inset of Figure 4, that 

the gate-source component of the leakage current increases with the interfacial layer 

thickness while keeping the same EOT value. The comparison with the 2D TCAD 

numerical device simulations shows a very good agreement with the analytical model as 

shown in Figure 4. 

The drain component of the gate to channel tunneling leakage current ( gcdI ) can 

be obtained as: 

01
gcd 2 2 2

( 1)
2 ( )

2

− −

=

+ −
= − − − = −

KL KL

g

ox gs th x L

J WL KLe edV
I C V V KL W

dx K L

β ββ
µ

β
         (15) 

The direct tunneling gate to drain current described by an analytical model (Eq.15) 

is used to calculate the drain component of the gate leakage current (Figure 4). The 

comparison with 2D TCAD numerical device simulations is shown in the cases of one 

layer gate oxide (HfO2) and two layer gate insulator (HfO2/SiO2) with an interfacial 

layer (SiO2) thickness equal to 0.2 nm, 0.4 nm and HfO2 as an oxide material with 

EOT=0.5nm and 1gV V= for a DG MOSFET structure as a function of drain voltage. 

According to Figure 4 the impact of SiO2 layer as an interfacial layer has been shown 

and as it is expected the gate-drain component of the leakage current increase by 

increasing interfacial layer thickness for the same EOT value. 

Therefore, we have obtained the components of the gate to channel leakage 

current that go to the source and to the drain in terms of the drain voltage. When dsV  

equals zero as it is expected the gate leakage current is equally divided between source 

and drain (50/50 partition). As dsV  increases the ratio of current goes to the source 

increases, accompanied by a decrease the ratio of current goes to the drain. 
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Figure 5: Analytical model and 2D TCAD simulation of the direct tunneling gate leakage current 

partitioning ratios (
gcs

gc

I

I
and

gcd

gc

I

I
) in the cases of one layer gate oxide (HfO2) with EOT=0.5nm and 

1gV V= for a DG MOSFET structure as a function of drain voltage. 

 

To consider the drain bias effect, gcI is split into two components such as gcsI  

and
gcdI  that is

gcdgc gcsI I I= + , then the gate leakage current as a function of drain 

voltage can be easily calculated as: 

0 (1 )

2

−−
=

KL

g

gc

J WL e
I

KL

β

β
                                               (16) 

The analytical model calculations of the direct tunneling gate leakage current 

partition into the source/drain (Eqs. 14 and 15) and the source/drain component ratio 

(
gcs

gc

I

I
/

gcd

gc

I

I
) of the gate to channel leakage current (Eq. 16) are shown in Figure 4 and 

Figure 5. 
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Figure 6: Analytical model and 2D TCAD numerical simulations of the direct tunneling gate 

leakage current partitioning ratios (
gcs

gc

I

I
and

gcd

gc

I

I
) in the case of two layer gate insulator 

(HfO2/SiO2) with an interfacial layer (SiO2) thickness equal to 0.2 nm and HfO2 as an oxide material 

with EOT=0.5 nm and 1gV V= for a DG MOSFET structure as a function of drain voltage. 

 

The comparison of the results obtained from the analytical models and 2D TCAD 

numerical device simulations in the case of one layer gate oxide (HfO2) with 

EOT=0.5nm and 1gV V= for a DG MOSFET structure as a function of drain voltage 

shows that both models are accurate enough. 

Figure 6 shows our analytical model calculations (Eqs.14 and 15) and 2D TCAD 

numerical device simulations of the direct tunneling gate leakage current partitioning 

ratios (
gcs

gc

I

I
and

gcd

gc

I

I
) in the case of two layer gate insulator (HfO2/SiO2) with an 

interfacial layer (SiO2) thickness equal to 0.2nm and HfO2 as an oxide material with 

EOT=0.5nm and 1gV V= for a DG MOSFET structure as a function of drain voltage. 
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There is a good agreement between the results from our analytical model and 2D 

TCAD numerical device simulations. Figure 5 and Figure 6 show the gate leakage 

current split equally between source and drain for drain voltage equal to 0 (Vd=0), 

while the ratio of the leakage current that goes to the source increase by drain voltage, 

and at the same time the ratio of the gate current goes to the drain decrease. In fact 

increasing the ratio of the source component exactly is compensated by decreasing the 

ratio of drain component in terms of drain voltage. 

 

6) Conclusion 

In this study we presented a model of the partitioning of the gate to channel 

tunneling leakage current into the source and drain components based on a recently 

developed, complete, surface potential-based compact MOSFET model and a compact 

analytical gate leakage current model for a nanoscale DG MOSFETs structure. The 

influence and impact of the thickness of the interfacial SiO2 layer on the gate-drain and 

gate-source components has been shown. The model works well from the numerical 

simulation point of view (Silvaco Atlas). The proposed model provides additional 

insight into the gate leakage components and can be very useful to address the impact 

of the gate leakage current on DG MOSFET device and circuit performance. 
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Chapter 5  

Temperature Dependent Compact Modeling of Gate 

Tunneling Leakage Current in Double Gate MOSFETs 

The temperature dependence of the gate leakage current has been developed for 

Double Gate (DG) MOSFETs. This model is compared with experimental data 

measured in Trigate MOSFETs at various temperatures with SiON as a dielectric 

material and SiO2 as an interfacial layer. The gate leakage current measurements at 

different temperatures show two different transport mechanisms, direct tunneling 

(DT) gate leakage and Trap-Assisted-Tunneling (TAT) current. Our analysis based on 

leakage current measurements in the above threshold regime for different temperatures 

shows that the DT current is clearly dominant over the TAT, while the opposite 

happens below threshold. Our model is able to explain the gate tunneling current in 

terms of gate voltage for different temperatures. The results of the DT current in the 

strong inversion regime and TAT in the subthreshold regime show good agreement 

with temperature dependent measurements. 
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1) Introduction 

The scaling down of gate oxide thickness in advanced CMOS technology causes an 

increase of gate leakage current due to the increasing carrier tunneling between gate 

and channel [1, 2]. Understanding the gate current transport mechanisms is important 

in order to develop accurate design-oriented models. 

The temperature dependence of the surface potential induces a decrease of the 

threshold voltage with increasing temperature. As a result, an increase of the carriers in 

the channel takes place with temperature. Besides, the barrier height between gate and 

channel decreases with temperature. Therefore, the gate leakage current increases at 

higher temperatures [3, 4]. It causes undesirable effects on the device performance [5, 

6]; it increases power dissipation and deteriorates the circuit stability [7]. Temperature 

dependent measurements of the gate leakage current have been used to study and 

understanding carrier transport through different gate dielectric materials [8, 9]. 

The high-k dielectric materials are alternative gate oxide materials [10, 11] for the 

coming nanoscale CMOS generations in order to suppress the gate leakage current. 

Analytical expressions are presented to model the gate leakage current as a function of 

applied gate and drain voltages for DG MOSFETs [12]. The presence of electron trap 

levels in SiON can result in a significant leakage current at low electric field 

(subthreshold regime) in which electrons gain sufficient energy to tunnel through the 

oxide material [13]. In this chapter we present the incorporation of the temperature 

dependence for the DT and TAT in FinFETs (modeled as DG MOSFETs) assuming a 

two dielectric layer gate stack (being SiO2 as an interfacial layer). Furthermore, for that 

purpose, we have extended the gate current models to the case of a two dielectric layer 

gate stack. The comparison between our model calculations demonstrates that the 

model can accurately reproduce the gate leakage current behavior through SiON/SiO2 

gate oxide for different temperatures. 
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2) DG FinFET Structure and Temperature Effects 

The DG FinFET structure under analysis and related potential profile showing DT 

and TAT mechanisms through SiON/SiO2 as gate oxide materials are shown in Figure 

1. The effect of temperature has been taken into account by considering its 

dependence on the thermal voltage, flat band voltage, carrier concentration, Fermi 

level and the Si-SiO2 barrier height of the carriers [14, 15]. 

A) Thermal Voltage 

The thermal voltage (
t

KT

q
φ = ) at room temperature is equal to 0.026 (V) where q is 

the electronic charge, T is temperature in Kelvin and K is Boltzmann constant. Higher 

thermal energy gives electrons more energy for jumping from the valence into the 

conduction band. Thus, the number of carriers of an intrinsic semiconductor increases 

with temperature which is taken into account by thermal voltage. 

B) Carrier Concentration and Fermi Level 

The electron concentration and the Fermi potential in the case of an n-type 

semiconductor are calculated: 

e
Fq

KT
i

n n

φ− ×

= ×                        (1) 

The Fermi potential becomes: 

a

F

i i

NK T n K T
L n L n

q n q n
φ

   − −
= × = ×   

   

        (2) 

where ni is the intrinsic carriers (electrons) concentration at T and is a function of 

temperature and Na is the acceptor atoms concentration. Hence the Fermi potential is 

calculated using (2) and will be shifted with the temperature. 
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Figure 1: Schematic representation of the potential profile (showing direct tunneling and TAT 

mechanisms through SiON/SiO2 as gate oxide materials) and a DG FinFET structure under analysis. 
 

C) Flat Band Voltage Calculation 

The flat band voltage (VFB) is determined by the work function difference between 

gate and semiconductor and charge at the oxide-semiconductor interface which is 

represented in the model by an effective charge (
0 ss

Q q N= × ) where Nss is the interface 

states. The dependence of the flat band voltage on the temperature comes mostly from 

the work function difference between gate and semiconductor. 
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The flat band voltage considering the effects of the effective charge and work function 

difference between gate and semiconductor as a function of temperature becomes: 

0( , , ) ( , )
( )

FB a MS a

OX

Q
V N T EOT N T

C EOT
φ= −                     (3) 

where ( , )
MS a

N Tφ  is the work function difference between gate and Si, Equivalent 

Oxide Thickness is EOT and COX is the oxide capacitance. 

D) Dielectric-Semiconductor Barrier Height 

We extracted the Si-SiO2 barrier height to the carrier ( 2BSiO
φ ) at different temperatures. 

We observed that it shows a linear decrease of 
2BSiO

φ with temperature. As a result, an 

expression of the 2BSiO
φ  accounting for the observed linear dependence with 

temperature can be incorporated into our temperature dependent model. 

 

3) Direct Tunneling Gate Leakage Current 

We developed a temperature dependent analytical model of the direct tunneling gate 

leakage current based on a proper WKB approximation for DG MOSFETs, using our 

previous compact model for the potential and drain current [16, 17]. It was 

demonstrated that this model can also be applied to sufficiently narrow FinFETs. We 

derived the following gate tunneling leakage current expression [11, 12] for two 

dielectric layer gate stacks (in our case, SiON/SiO2): 

( )

2 0 2

3 3

2 2
2 2 2 2 2

2
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, ,

2
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exp 10 2

3
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3
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SiON im
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F

J Q
k T

k T k T Fraction q V
m q

h k V q q

h

ε

φ φπ

π

−

 
− − × 

= × × × 
×  

 

  
     × + × − × ×  − × × × × × × − ×       ×         

− ×

3 3

2 2
2 2 2

2

2SiO SiON SiON SiO BSiON im BSiON im

SiON

SiO im

k T k T Fraction q V q V
m q

k V q q

φ φ−

  
     × + × − × × − ×  × × × × × −       ×         

(4)

 

where kSiO2 is SiO2 dielectric constant, the permittivity of vacuum is 0ε , Vg is the 

applied gate voltage, Vfbp is the flat band voltage corresponding to the channel region, 

Vdef is effective drain voltage [16, 17], TSiO2 is the SiO2 thickness, h is the Plank`s 
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constant, TSiON is the SiON thickness, kSiON is SiON dielectric constant, mSiO2 is electron 

effective mass in SiO2, Fraction is equal to 2SiO

SiON

T

T
, mSiON is electron effective mass in 

SiON and the barrier height to the carrier for SiON is BSiON
φ . The Vim is the voltage 

through the oxide materials considered as: 

2 2

s d b
im t

q q q
V φ

+ 
= × + 

 
, 

3

2
8 2

A

BSiO

q
F

hπ φ
=

×
          (5) 

where qs is the normalized charge concentration at the source and qd is the normalized 

charge concentration at the drain and qb is the total normalized depletion charge in the 

Si body film [17]. 

The Qgm is the total charge in the channel [11]: 

( ) ( )

( )

3 3
2 2 2

2 2

3

2
2

d

d

s d s d
s b s d b

d b

gm

s s d
s d b

d b

q q q q
q q q q q q Ln

q q
Q

q q q q
q q q Ln

q q

  − +
+ − − × − + ×  

+  =
 −  +

+ − − ×  
+   

                 (6) 

The developed temperature dependent DT model is used to calculate and evaluate 

the DT gate leakage current at different temperatures when the gate voltage increases, 

and allows a better understanding of the carrier transport mechanism through 

SiON/SiO2 with respect to the temperature. We will show that the DT current is 

dominant above threshold voltage for the considered range of temperatures.  

 

4) Trap Assisted Tunneling Current 

The TAT current through the gate oxide materials is caused by defects and 

disadvantages in the high-k dielectric materials [18, 20]. A temperature dependent 

analytical TAT current model through two layer potential barriers (as shown in Figure 

1) has been modified and developed. 
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We have developed the following expression for the TAT current corresponding to 

the source-channel overlap for a two dielectric layer gate stack. We use a similar 

procedure for the tunneling probability that was applied in [11] for the case of direct 

tunneling current through two oxide layers: 

( )
1

4 2

2

33
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2
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× 

 
 × + ×   

(7) 

where 
Trapφ  is the trap energy, the trap states density is NTrap and 

5
32

0

3

1 6

3

e

T r a p

S iO N T r a p e

m
C

m h

π φ

φ φ

    = × 
 −   

                (8) 

where m0 is the free electron mass and e
φ  is the total energy of electrons considered 

equal to 0.2 (eV). 
IappGS g FBn sV V V V= − − , 8

2
3

B SiONF q m
h

π
= × ×  where VFBn is the flat band 

voltage corresponding to the source and drain regions of overlap. 

Similarly, the TAT current corresponding to the drain-channel overlap becomes: 
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      (9) 

where 
IappGD g FBn D

V V V V= − −  and the total TAT overlap current (
G T A TJ ) is: 

GTAT GTATS GTATD
J J J= +         (10) 
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The tunneling probability of carriers is exponentially dependent on the barrier 

height that they have to cross through the dielectric layers. The presence of the trap 

inside the dielectric materials splits the energy barrier in two parts. An increasing 

temperature will also decrease the barrier height, whereas increasing exponentially the 

probability of the total tunneling current. Once the transition probabilities of the 

carriers are known, the trap-assisted tunneling current can be obtained. The model 

calculations at different temperatures give the precise gate leakage at low electric field. 

 

5) Results and Discussion 

The device structure under analysis and potential profile showing the DT and TAT 

mechanisms through two layer oxide materials (SiON/SiO2) is shown in Figure 1. The 

DT gate leakage current calculations for different temperatures (using our model) in 

strong inversion as well as TAT in the subthreshold regime has been compared with 

experimental measurements. The temperature dependent Si-SiO2 barrier height to the 

carrier (
2BSiO

φ ) was extracted and it resulted a linear decrease of 
2BSiO

φ  with 

temperature. Therefore, an expression of the 2BSiO
φ  giving the observed linear 

dependence with temperature is incorporated into our model. The measurements have 

been performed on FinFET devices with an EOT equal to 1.9nm through SiON/SiO2 

as a gate oxide material for different bias and temperatures. 

A) Direct Tunneling Gate Leakage Current 

The model calculations (4) and experimental measurements of the DT current as a 

function of applied gate voltage for different temperatures are shown in Figure  2 with 

channel length (LG) equal to 10 micrometer (u) at VD=0.05(V) and VD=1(V). As can 

be seen in Figure 2, the gate leakage current will increase with increasing temperature, 

which is attributed to the increase of carriers in the channel and the decrease of the 

barrier height. We have considered a linear decrease of the barrier height for the 

carriers through the gate oxide materials with temperature. 
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Figure 2: Model calculations and experimental measurements of the gate leakage current as a 

function of gate voltage for a DG FinFET with LCh=10u at VD= 0.05 (V) and VD= 1 (V) for different 

temperatures (T= 0, 25, 50, and 100 ºC). 
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Figure 3: Model calculations and experimental measurements of the gate leakage current as a 

function of gate voltage for a DG FinFET with LCh=1u at VD= 0.05 (V) for different temperatures. 
 

In Figure 3 the model calculations and experimental measurements of the DT current 

as a function of the gate voltage with LG=1 (u) are shown at VD=0.05 (V) for different 

temperatures (T=25, 50, and 100 ºC). It is shown that our direct tunneling current 

model (4) with a temperature dependence of the surface potential accurately 

reproduces the experimentally observed temperature sensitivity of the direct tunneling 

current through SiON/SiO2. Figure 4 to Figure 6 show comparisons between model 

calculations and measurements of the DT current in linear and log scales. The results 

indicate that the DT current (4) for different temperatures is dominant in the above 

threshold regime and it is negligible in the subthreshold regime. The temperature 

dependent DT model shows a very good agreement with experimental gate leakage 

current and it works well from the experimental point of view. 

 

B) Trap Assisted Tunneling Current 

The results show that the DT model for different temperatures works well in the 

strong inversion regime. 
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Figure 4: Model calculations and experimental measurements of the gate leakage current as a 

function of gate voltage for a DG FinFET with LCh=1u at VD= 0.05 (V) for different temperatures. 

 

The carriers do not have enough energy in order to tunnel directly from silicon body to the gate 

through oxide materials at below threshold voltage. The TAT calculations of our 

model (10) for different temperatures are compared with experimental measurements 

in the subthreshold regime (see Figure 4 to Figure 6) at low and high drain voltages. 

Comparison between model (10) calculations and experimental measurements at 

different temperatures shows that the TAT currents play major role at below threshold 

voltage and the DT current is negligible (see Figure 4 to Figure 6). Our analysis in the 

subthreshold regime at different temperatures shows that the TAT is dominant over 

the DT current and a good agreement in all cases is observed in the subthreshold 

regime. 
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Figure 5: Gate leakage current including DT and TAT currents as a function of gate voltage for a 

DG FinFET with LG=10u at VD= 1 (V) in linear (Left) and logarithmic (right) scales at T=0, 25, 50, 

and 100 ºC. 
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Figure 6: Gate leakage current including DT and TAT currents for a DG FinFET with LG=1u at VD= 

0.05 (V) as a function of gate voltage in linear (Left) and logarithmic (right) scales at T=0 and 50 ºC. 

 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 5 97 

 

 

 

 

The results show that the temperature dependent of DT and TAT currents (4 and 10) 

have to be taken into account for a precise modeling of the total gate leakage current 

through the gate dielectric materials in both the strong inversion and the subthreshold 

regimes at different temperatures. 

 

6) Conclusion 

Temperature dependent analytical models of the DT current in inversion region 

and the TAT current in subthreshold regime have been developed for DG FinFET 

with a two dielectric layers gate stack such as SiON/SiO2. The comparison between the 

model calculations and experimental measurements for different temperatures shows 

that the DT current is clearly dominant over TAT above threshold voltage, whereas it 

is negligible below threshold voltage and TAT becomes dominant. The temperature 

dependence of the gate current has been accurately modeled in both the strong 

inversion and the subthreshold regimes and shows good agreement with the 

experimental measurements. 
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Chapter 6  

Automatic Parameter Extraction Techniques in IC-CAP 

for Compact Double-Gate MOSFET Model 

The goal of this work is to present development and implementation of automatic 

parameter extraction techniques for an explicit compact model (in Verilog-A code) 

which is developed based on a surface potential model. This explicit model includes 

short channel effects (SCEs), allows accurate simulations of the device characteristics, 

and has been adapted to FinFET and Trigate MOSFETs (modeled as DG MOSFETs). 

The parameter extraction relies on a commercial software package (IC-CAP) allowing 

automatic parameter extraction routines and providing an effective way to calculate the 

model parameters, minimizing discrepancies between measured and modeled data, for 

reliable circuit simulation. The results are compared with measured data for different 

devices and the related extracted parameters show good agreement with measured 

transistor characteristics under different conditions and through all operating regimes. 

The second derivative of the drain current with respect to the source-gate potential is 

also verified and results to be accurate and continuous though the different operating 

regimes. 
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1) Introduction 

The downscaling of CMOS technologies has generated the need for accurate 

MOSFET compact models as well as suitable parameter extraction methods, in order 

to be used by circuit designers. Compact device modeling bridges the communities 

between chip fabrication and integrated circuit (IC) design [1]. In fact, for the design of 

systems on a chip, realistic analog simulation models are necessary to simulate circuit 

performance with a sufficient degree of accuracy. In the process of device compact 

modeling, the strategy for parameter extraction is a necessary task. The accuracy of the 

circuit simulations not only depends on an accurate model (correct mathematical 

description), but also on the used parameter extraction techniques [2, 3]. Parameter 

extraction methods have been studied by several authors in different devices [4-7]. 

The goal of the parameter extraction techniques is to find a set of model 

parameters valid for a given technology. We presented an analytical compact model in 

double gate (DG) MOSFETs including short channel effects (channel length 

modulation, DIBL, carrier velocity saturation, threshold voltage roll-off and series 

resistance), verified by numerical simulations [8]. The main details of this model have 

been described in [9, 10]. The model has been implemented in Verilog-A. The Verilog-

A language provides a source code of the compact model and is one of the best tools 

for compact modeling. It is actually compatible with the IC-CAP software of Agilent (a 

simulator running a Verilog-A). The Verilog-A also supports conservative and signal 

flow descriptions and the solution of analog behavior is obtained by applying 

Kirchhoff’s and potential laws. In addition, some commercial circuit simulation 

programs allow the introduction of models described in this language [11, 12]. 
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In this chapter automatic parameter extraction techniques for our compact 

modeling are presented in order to extract the related model parameters. Our model is 

coded in Verilog-A [13], and could be linked through a Verilog-A capable simulator 

(IC-CAP program of Agilent) to the parameter extraction software in a very early stage 

of the model development. The measurements carried out in Trigate MOSFETs and 

also used in the automatic parameter extraction techniques for verification of simulated 

and measured data. The results of our model implemented in IC-CAP as a commercial 

circuit simulator for circuit design show good agreement with measurements. 

 

2) Model and Structure 

We have adapted our developed compact model for the potential, threshold voltage [9] 

and currents in short channel symmetric DG MOSFETs [10] to a new device (Trigate 

MOSFET) structure as we have shown in Fig. 1. The model core is physics-based 

(including SCEs) in order to accurately simulate the electrical behavior of DG 

MOSFETs. 

A) Structure 

The DG MOSFET structure under analysis and experimental data measured in Trigate 

MOSFETs are shown in Figure 1, where TSi is silicon thickness and SiO2 is an 

interfacial layer with thickness of 1 nm and SiON is a dielectric material with thickness 

equal to 1.4 nm. The measurements were carried out on Trigate MOSFET with an 

Equivalent Oxide Thickness (EOT) equal to 1.9nm and SiON/SiO2 as a gate oxide 

material for different conditions. 
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Figure 1: Schematic representation of (a) the Double Gate MOSFET structure modeled and (b) 

Trigate MOSFET used for the experimental measurements. 

 

B) Electric Field 

The electric field at the surface of the Si-SiO2 ( SE ) was calculated using Poisson’s 

equation. The electric field as a function of the potential at the surface (
S

φ ) and at the 

centre of the Si film (
o

φ ) is obtained as [9, 10]: 

 

2
( ) ( )2

( ) (1 )

S O S F

t t

V

a t S O
S

s t

qN
E e e

φ φ φ φ

φ φφ φ φ

ε φ

− − −
−−

= × + − ×                    (1) 
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where Fn Fp
V φ φ= − is the potential along the channel, Na is the uniform acceptor 

concentration in the silicon layer, ' /
t

KT qφ =  is the thermal potential, K is Boltzmann 

constant, q is the electronic charge, 'T  is temperature in Kelvin, Fp
φ is the quasi Fermi 

level for holes in the P-type silicon layer, and 
Fn

φ is the quasi Fermi level for electrons. 

Fig. 2 shows the verification and validation of the obtained electric field (1) into the 

dielectric materials (SiO2 as an interfacial layer and SiON as a dielectric material). The 

model calculations are in a good agreement with those obtained from ATLAS (Silvaco) 

numerical simulations. 
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Figure 2: Model calculation (lines) and Silvaco Atlas numerical simulation (symbols) of the surface 

potential of the channel (Inset), and the surface electric field into the dielectric materials as a 

function of gate bias at VD=0. 
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C) Surface Potential of the Si Layer 

Using the principal branch of Lambert function, the surface potential of the Si layer 

corresponding to the below threshold condition [9]: 

2
2exp

4

b
G FB F t

b

BT G FB t

t

q
V V

q
s V V LambW

φ φ
φ φ

φ

  
− − − ×  

= − − × ×  
   

  

                (2) 

The surface potential of the Si layer corresponding to the above threshold 

condition [9]: 

( )
21 1

2 1 exp exp
2 2 2

b G FB F
AT G FB t

t

q V V V
s V V LambW

φ
φ φ α

γ φ

  − − −
= − − × × × × − −   

  
      (3) 

Merging the solutions for the surface potential in the below and above threshold 

regimes the surface potential in all regions becomes: 

( ){ } ( ){ }1 1
1 tanh 20 1 tanh 20

2 2
BT G T AT G Ts s V V s V Vφ φ φ= × × − × − + × × + × −      

          (4) 

where VG is applied gate bias, VFB is flat band voltage, qb is normalized total fixed 

charge in the silicon layer and normalized potential difference is α . The surface 

potential at the Si-SiO2 interface calculated using the model (4) are in good agreement 

with that obtained from ATLAS numerical device simulations as we have shown in 

inset of Figure 2. 

D) Current Model 

The total drain current considering both surfaces (gate) is obtained from: 

( )2
D

S

V

DS ox t n

V

W
I C q V dV

L
µ φ= × × × × × ∫                              (5) 

where W is the channel width, L is the channel length,  VS and VD are the channel 

potential at the source and drain respectively, µ is the electron mobility. 
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In the case of long channel device with constant mobility and neglecting SCEs and 

calculation of the integral gives [10]: 

( )
2 2

2

02 2 ln
2

ns nd ns b

DS ox t ns nd b

nd b

q q q qW
I C q q q

L q q
µ φ

  − + 
= × × × × × + × − − ×   

+    

             (6) 

where Cox is the gate capacitance per unit area, 0µ is the maximum constant mobility, 

nsq is the normalized mobile charge at source as function of VG at VD=0V, the 

normalized mobile charge at drain as a function of VG is ndq  and VDeff  is the effective 

voltage [10]. 

In the case of short channel device, SCEs become important and they should be 

considered in order to accurately model the device behavior. In our model the SCEs 

included are velocity saturation, DIBL, VT roll-off, channel length shortening and 

series resistance. The total drain current expression including SCEs in order to 

calculate drain current and extract the model parameters becomes [10]: 

( )

1 2

2 2
2

0

2

0

1 2

2 2 ln
2

1 1 1 2

ns nd ns b
ox t ns nd b

nd b

D
P P

s DefMS MS
ox GT Def

Sat

q q q qW
C q q q

L q q
I

VE EL W
C R V V

L E E V L L

µ φ

µ
µ β

  − + 
× × × × × + × − − ×   

+    =
   ×    ∆   

− × + + × + + × × × × × − ×       
×           

        (7) 

where L∆ is the channel shortening, 
MSE is the average electric field, 

SatV , 
1E , 

2E , 
1P  

and 
2P are adjusting parameters, 

sµ is surface mobility, R is series resistance and 
GTV is 

VG - VT. The description of the drain current expression as well as SCEs in details can 

be found in detail in [10]. 

In order to calculate the drain current using our model (7) there is a need to know 

the model related parameters. The technological parameters of the model are L and W, 

silicon layer thickness (TSi), doping concentration (Na), EOT and metal work function 

which are obtained from the laboratory or factory which produces the transistors. 

Model parameters are extracted from the measured current voltage characteristics: 

transfer characteristic, output characteristic, the first and second order derivatives of 

the drain current with respect to the gate voltage as a function of gate bias. 
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3) Model Implementation and Automatic 

Parameter Extraction Techniques 

Our model is coded in Verilog-A language in order to implement and use automatic 

parameter extraction techniques compatible with IC-CAP. It can be used directly in 

circuit simulators as well as in parameter extraction software, which provides methods 

for handling measured data. The sub-circuit modeling environment, the multiple plot 

function and the piped simulation mode is making the quick setup of tests and 

measurements followed by automatic parameter extraction routines and easy use for 

the new devices when the models have many parameters and parameters have a 

complex dependence on fields and voltages. 

In order to have a best optimization with the highest accuracy, we have prioritized 

the model parameters into the several groups and the extraction procedure begins 

from the most important parameters and continues to fix other parameters (less 

important ones). At the beginning, parameter extraction will use the initial values (best 

guess) as a default value of the parameters, and then the optimization steps will be used 

in order to fit simulation to measurements. The improvement of the fitting quality will 

be achieved using the optimization steps. Parameter extractions are organized in an 

extraction flow and the extraction steps can be selected from available functions in 

order to apply direct extractions, optimizers and manual tuners. 

 

4) Results and Discussion 

The accuracy of the simulations as using our compact model with the extracted 

parameters is verified by comparison with measurements. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

CHAPTER 6 109 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

2.0x10
-6

4.0x10
-6

6.0x10
-6

8.0x10
-6

1.0x10
-5

1.2x10
-5

1.4x10
-5

V
D
 =0.05V, T

Si
=55nm L

Ch
=180nm

L
Ch

=330nm

L
Ch

=1u

 Measurement
I D

 (
A

)

V
G
 (V)

       

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

V
D
=1V, T

Si
=55nm

L
Ch

=180nm

L
Ch

=330nm

L
Ch

=1u

 Measurement

I D
 (

A
)

V
G
 (V)

 

Figure 3: Comparison between simulated drain current as a function of gate bias characteristics after 

optimization (using the values of extracted parameters) and measurements at VD=0.05 and VD=1V. 
 

We use the measured transistor characteristics of the Trigate MOSFETs for three 

different channel lengths (1000nm, 330nm and 180nm) and two different Si 

thicknesses (WFin=55nm and WFin =71nm). 

The transfer characteristics were obtained for gate voltage varying from 0 V to 1.2 

V, while the drain voltage was fixed at 0.05 V and 1 V for the linear and saturation 

regimes respectively. The output characteristics were obtained for different VGS values 

in order to verify the abilities of the model and results of transistor simulation. 

The surface potential of the channel and surface electric field into the dielectric 

materials as a function of gate bias are shown in Figure  2, using our model and 

numerical simulation (Silvaco ATLAS) at VD=0. Comparison between our model (7) 

calculations and measured data of the drain current for different channel lengths 

(Figure  3) and Si thicknesses (Figure  4) are shown at VD=0.05 and VD=1V. 

The transconductance (gm) at a particular bias point is the slope of the tangent of 

the transfer characteristic curve at that point. We plotted the first derivative of the 

drain current with respect to the gate voltage (transconductance) as a function of gate 

bias at VD=0.05 and VD=1V for different channel lengths (Figure 5) and Si thickness 

(Figure 6). 
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Figure 4: Comparison between simulated ID-VG characteristics (symbols) and measurements (lines) 

for our model with extracted parameters at VD=0.05 and VD=1V for different Si thickness. 
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Figure 5: Modeled and experimental first derivative of I/V (transconductance) for different channel 

lengths at VD=0.05 and VD=1 V. 
 

The second order derivatives of the drain current with respect to the gate voltage 

(gm2) are analyzed as a function of gate bias for different channel lengths (Figure  7) 

and Si thicknesses (Figure  8) at VD=0.05 and VD=1V. Continuity of the second 

derivative of the drain current is obtained as shown in Figure 7 and Figure 8. A lack of 

continuity of the second derivative could originate convergence problems of the model 

when used in circuit simulation. 
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Figure 6: A Comparison of modeled and measured of transconductance for two different Si 

thicknesses at VD=0.05 V. 
 

Table I: The model extracted parameters according to the automatic parameter extraction techniques 

LCh 1u 1u 330nm 330nm 180nm 180nm 

TSi= WFin 55nm 71nm 55nm 71nm 55nm 71nm 

MWF 4.715 4.68 4.69 4.69 4.65 4.63 

MM0 2k 2k 2k 2k 2k 2k 

E1 370k 380k 630k 630k 320k 650k 

E2 1.7MEG 730k 1MEG 1.02MEG 970k 1.01MEG 

2E υ  0.001 0.001 0.5 0.5 0.8 0.5 

FDVT0 1 5 0.3 0.3 5 5 

λ  1 1 0.5 0.5 1 1 

δ  1 1 0.2 0.1 1 1 

VSat 2.3MEG 2.08MEG 4.75MEG 4.9MEG 7MEG 7 MEG 

θ  1.5 1.5 1.5 1.5 1.4 1.4 
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Figure 7: Model and experimental second derivative of I/V as a function of gate bias for different 

channel lengths at VD=0.05 and VD=1 V. 
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Figure 8: A comparison of modeled and experimental second derivative of I/V as a function of gate 

bias for two different Si thicknesses at VD=0.05 and VD=1V. 
 

The observed continuity obtained from our model will contribute to avoid 

convergence problems. Table I summarizes the entire number of the model 

corresponding extracted parameters according to the automatic parameter extraction 

techniques. 
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Figure 9: Comparison between simulated drain current as a function of drain bias (using the values 

of extracted parameters) and measurements at (a) different channel lengths and (b) different Si 

thickness. 
 

Figure 9 shows the model fitting to the output characteristics for different channel 

lengths, Si thicknesses and different gate bias. Parameters
1E ,

2E ,
1P  and 

2P  are 

functions of the channel length and VDeff. The P1 and P2 dependencies on channel 

length in Trigate MOSFETs based on the extracted parameters (Table I) and 

experimental data measured in Trigate MOSFETs become: 

1

0.05
0.85

( )
P

L µ
= −  and 2

0.05
1.5 .

( )
DeffP V

L µ
= − .                           (8) 

The extraction program has been tested on several n channel transistors of varying 

geometric dimensions. A good agreement between simulations with the extracted 

model parameters and measurements is achieved. It is evident that high accuracy of the 

extracted parameters is essential in order to describe the Trigate MOSFET device 

performance precisely using our model calculations. The model successfully described 

the measured drain currents, their first and second derivatives for different device 

geometry. 
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5) Conclusion 

We have developed automatic parameter extraction techniques for our explicit 

compact model in DG MOSFET suitable for design and circuits simulation, based on 

a surface potential model including short channel effects (channel length modulation, 

DIBL, carrier velocity saturation, threshold voltage roll-off and series resistance). The 

P1 and P2 parameters dependencies on the channel length are investigated and shown 

for Trigate MOSFETs based on measured data and extracted parameters. The 

continuity of the second derivative of the drain current with respect to the gate bias is 

verified and evaluated by plotting the derivatives at different conditions. The simulated 

I-V characteristics in linear and saturation regions and the first and second derivatives 

of the drain current using the extracted parameters show good agreement in all 

operating regions when compared to available measured data for Trigate MOSFETs 

with different geometry size. 
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Chapter 7  

Automatic Parameter Extraction Techniques and 

Parameters Correlations of Gate Leakage Current Model 

in Double-Gate MOSFETs, with IC-CAP 

Direct Tunneling (DT) and Trap Assisted Tunneling (TAT) gate leakage current 

parameters have been extracted and verified considering automatic parameter 

extraction approaches. The commercial package IC-CAP is used to simulate our 

leakage current model coded in Verilog-A, and comparing with the measurements in 

order to obtain model parameter values and study parameters correlations. The model 

and parameter extraction techniques have been used to study the impact of parameters 

in the gate leakage current based on our developed compact analytical model and 

experimental data. It is shown that the gate leakage current depends on interfacial 

barrier height more strongly than barrier height of the dielectric layer. There is almost 

same scenario with respect to the carrier effective masses into the interfacial layer and 

dielectric layer. The comparison of the simulated results shows good agreement with 

available gate leakage current measured transistor characteristic in Trigate MOSFET. 
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1) Introduction 

With the downscaling of CMOS technologies, many MOSFET models have been 

developed in order to accurately describe gate leakage current and new physical 

phenomena in the device behavior [1-3]. Accurate model expressions are necessary to 

achieve the correct physical and real device/circuit behavior. Additionally, high precise 

parameter extraction is another important aspect of device and circuit simulation to 

ensure that the extracted parameters are an accurate reflection of the effects and 

performances [4-7]. Automatic parameter extraction techniques are an alternative to 

optimize the model parameters for the determination of model parameter values in 

comparison with measured data [8]. 

The commercial parameter extraction package (IC-CAP) is used to apply automatic 

parameter extraction techniques and simulating our gate leakage current models which 

is coded in Verilog-A.  IC-CAP provides extraction routines for industry standard and 

supports the use of models in Verilog-A and wide range of customer requirements. IC-

CAP uses different optimization algorithms and combination of those algorithms can 

be a main advantage of parameter extraction [9, 10]. Parameter extractions are 

organized in an extraction flow and extraction steps can be selected from available 

functions in order to apply direct extraction, optimizers and manual tuners. 

In this work we have applied compact analytical gate leakage current models in the 

DT regime and TAT regime for the prediction of gate leakage current. We have 

developed and implemented automatic parameter extraction strategies for DT and 

TAT current models in the available parameter extraction system (IC-CAP). These 

techniques have been applied to the gate leakage current measurements in Trigate 

MOSFET and have given successfully results. We have shown parameters correlations 

based on our developed gate leakage current models, automatic parameter extraction 

techniques and measured gate leakage current data in Trigate MOSFET. 
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The analyzed correlations of parameters provide knowledge of the sensitivity of the 

model parameters and an insight into the gate leakage current model available for 

circuit simulation. Comparison between simulated leakage current (using related 

extracted model parameters) show good agreement with the gate leakage current 

measurements in Trigate MOSFET with different geometries. 

 

2) Device Structure and Gate Leakage Current 

Models 

Figure 1 shows structure of the device under analysis which it is modeled as DG 

MOSFETs, as well as Trigate MOSFET structure which the gate leakage current 

measurements carried out. The DT and TAT current mechanisms have been 

developed and implemented in Verilog-A code for accurate simulation of the gate 

leakage current through two layer gate oxide materials (SiON/SiO2 stack). The gate 

leakage current is calculated based on the proper tunneling probabilities through two 

layers gate oxide material such as SiON/SiO2 with EOT=1.9nm. To achieve good 

performance we need to have accurate models and find techniques to extract model 

parameter values with high accuracy. The extraction techniques are based on the 

measurements and our developed model equations (4, 10) to ensure that a good 

representation of the device characteristics will be achieved. 

A) Structure 

The gate leakage current measurements carried out on Trigate MOSFET (Fig 1b) with 

TSiO2=1nm, TSiON=1.4nm (EOT=1.9nm), channel length equal to 1µm and 10 µm, 

HFin=65nm and WFin=55nm through SiON/SiO2 gate oxide materials in terms of gate 

bias. The TAT current is dominant in subthreshold regime while above threshold 

voltage the DT is dominant and TAT is negligible [11]. 

UNIVERSITAT ROVIRA I VIRGILI 
COMPACT MODELING OF GATE TUNNELING LEAKAGE CURRENT IN ADVANCED NANOSCALE SOI MOSFETS 
Ghader Darbandy 
Dipòsit Legal: T. 59-2013 
 
 



 

 

 

 

120  GHADER DARBANDY 

 

 

 

 

         

 

Gate

y

Dx

Channel Lengh

TSiS

SiON

SiO2

SiO2

SiON

Gate

WFIN = TSi

HFIN = W/2-TSi
Source

Drain
Gate

Lg

a) 

b) 

 

Figure 1: Structure of the device under analysis which it is modeled (a) as DG MOSFETs, (b) 

Trigate MOSFET structure which the gate leakage current measurements carried out. 
 

B) Direct Tunneling Current 

The direct tunneling current through SiON/SiO2 is used to fit the gate leakage current 

measurements above threshold voltage in order to extract model parameters and study 

parameters correlations. The tunneling probability through SiO2 (
2SiOP ) as an interfacial 

layer becomes [11]: 

3

223
2

2
2 2 2

2

2

8
2

3

SiO
BSiO im

SiO SiON SiON SiO BSiO SiON
SiO

SiON im

T
q V

k T k T T
m q

h k V q q

SiOP e

φ
φπ

 
  − × ×   × + ×     − × × × × × −    ×    
  
   =

         (1)
 

where h is the Plank`s constant, kSiO2 is SiO2 dielectric constant, TSiON is the SiON 

thickness, kSiON is SiON dielectric constant, TSiO2 is the SiO2 thickness, mSiO2 is electron 
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effective mass in SiO2, q is the electronic charge and 2BSiO
φ is the barrier height to the 

carrier for SiO2. The Vim is the voltage through the oxide materials considered as: 

2 2

s d b
im t

q q q
V φ

+ 
= × + 

                           
 (2) 

The tunneling probability through SiON ( SiONT ) becomes:  

3

32 2
8 22 2 2
3 2

TSiO q VBSiON im
k T k T T q VSiO SiON SiON SiO SiON BSiON imm qSiON

h k V q qSiO im

SiON
P e

φ
φπ

 
  

− × ×     × + × − ×  − × × × × × −     ×      
  
  

=
     (3) 

where mSiON is electron effective mass in SiON and 
BSiON

φ  is the barrier height to the 

carrier for SiON. Once the tunneling probabilities of the carriers through gate oxide 

materials are known, the DT current become: 

2

3

2 0 22

1
1 2

8 2

g fbp def

GDT gm SiO SiON

SiO SiOBSiO

V V V
q

J Q P P
k Th επ φ

 
− − × 

= × × × × × 
××  

 

        (4) 

where 0ε is the permittivity of vacuum, Vg is the applied gate voltage, Vfbp is the flat 

band voltage corresponding to the channel region, Vdef is effective drain voltage [12, 

13]. The Qgm is the total charge in the channel [14]: 

( ) ( )

( )

3 3
2 2 2

2 2

3

2
2

d

d

s d s d
s b s d b

d b

g m

s s d
s d b

d b

q q q q
q q q q q q L n

q q
Q

q q q q
q q q L n

q q

  − +
+ − − × − + ×  

+  =
 −  +

+ − − ×  
+   

        (5) 

 where qs is the normalized charge concentration at source and qd is the normalized 

charge concentration at drain and qb is the total normalized depletion charge in the Si 

body film. Comparison of the model calculation with experimental measurements 

shows DT is negligible in subthreshold regime. The model links process technology 

and circuit design and maintain balance between accuracy and simplicity. 
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C) Trap Assisted Tunneling Current 

The TAT current is becoming important and dominated in subthreshold regime where 

the DT is negligible. The proper tunneling probabilities through SiO2 corresponding to 

the Source/Drain side`s cannel overlap (
2 /SiO S D

PTAT ) become: 

3

223
2 /

2
2 2 2

2
/

2

8
2

3

/

SiO
BSiO IappGS GD

SiO SiON SiON SiO BSiO SiON
SiO

SiON IappGS GD

T
q V

k T k T T
m q

h k V q q

SiO S D
PTAT e

φ
φπ

 
  − × ×   × + ×     − × × × × × −     ×         
   =

     
(6) 

where 
/ /IappGS GD g FBn S DV V V V= − − . The proper tunneling probabilities through SiON 

corresponding to the Source/Drain side`s cannel overlap ( /SiONS D
PTAT ) become: 

( )

( )

3

2

1

/ 2

8
2

3

/

SiO N Trap

IappG S G D SiO SiO N

q m
h

V T T

SiO N S D
PTAT e

π
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−

 
 × × ×
 
  × +  
 =             (7) 

where 
Trapφ is the trap energy. Using the considered tunneling probabilities through 

SiON/SiO2, the TAT current corresponding to the source/drain side`s cannel overlap 

become: 

( ) 2/ / /14

/ 2

2

3 10

Trap Trap Trap

GTATS D SiO S D SiONS D

IappGS GD SiO SiON

C N q
J PTAT PTAT

V T T
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−

 × × × ×
 = × ×
 × × × + 

        (8) 

where NTrap is the trap states density and 

5
32

0

3

1 6

3

e

T rap

S iO N T rap e

m
C

m h

π φ

φ φ

  
 = × 
 −   

                  (9) 

where e
φ  is the total energy of electrons considered equal to 0.2 (eV). The total TAT 

current ( GTATTOTJ ) corresponding to the both sides of source and drain channel overlap 

become: 

G T A T T O T G T A T S G T A T D
J J J= +

              
(10) 

We have implemented the developed DT and TAT current in automatic parameter 

extraction techniques using Verilog-A language in commercial IC-CAP package. 
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3) Model Implementation in Verilog-A and 

Parameter Extraction inside IC-CAP 

The implementation of the developed DT and TAT compact model is presented in 

Verilog-A code which is simulated in IC-CAP as a commercial package for parameter 

extraction. Verification of the extracted parameters and parameters correlations is 

performed against the gate leakage current measurements in Trigate MOSFET. The 

gate leakage current models are coded in verilog-A which makes it applicable to other 

simulators and industry IC design tools. 

We present experimental study of the gate leakage tunneling current parameters 

correlations in Trigate MOSFET. In order to show the correlation between two 

parameters we have fixed one of the parameters in different values and we have tried 

to extract the other parameter by fitting simulated leakage current with those obtained 

from measurements. 

 

4) Experimental Results and Discussion 

The extraction techniques have been applied on n channel Trigate MOSFET with 

SiON/SiO2 as gate dielectric stacks. Comparison of the simulation calculations to the 

measured data of the gate leakage current on Trigate MOSFETs allows obtaining DT 

and TAT current parameter values. Automatic parameter extraction techniques have 

been used to extract the model parameters and to illustrate parameters correlations for 

two sample device geometries. In the automatic parameter extraction routines a set of 

gate leakage current as a function of gate bias is used for each transistor and then 

optimizations are performed for the parameters in different group based on their 

important and priorities. 

Table I, lists the corresponding parameter values of the TAT current and DT 

current based on experimental measurements. Figure 2 shows a good agreement 

between simulated plots from the application of DT (4) model and TAT (10) model 

using the extracted parameters (Table I) and measured data. 
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Table 1: Extracted gate leakage current parameter values for an N-channel Tri-gate MOSFET for 

two different channel lengths. 

LG 1u 10u 
EOT 1.9nm 1.9nm 
HFin 65nm 65nm 
WFin 71nm 71nm 
VD 0.05V 0.05V 
   

mSiO2 0.4 0.4 
mSiON 0.155 0.155 
ΦSiO2 3eV 3eV 
ΦSiON 2eV 2eV 
ELEC 0.2eV 0.2eV 
BTAT 300 MEG 3.5G 
ATAT 1e15 8.2e20 
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Figure 2: Model calculations and experimental measurements of the direct tunneling and TAT 

current as a function of gate voltage for a DG FinFET with extracted parameters for (a) channel 

length equal to 1µm and (b) channel length equal to 10µm. 
 

The correlation between the gate leakage current and barrier height of the 

interfacial layer and dielectric layer as extracted parameters indicating further analysis 

of those parameters and providing additional insight into the gate leakage current. The 

experimental data for Trigate MOSFET, demonstrate that the gate tunneling leakage 

current is more strongly correlated to the barrier height of interfacial layer than barrier 

height of dielectric layer. Figure 3 shows the extracted correlation between the gate 

leakage current and barrier height of the interfacial layer and dielectric layer in the same 

device and conditions. The change in the leakage current due to the decreasing of 

barrier height in interfacial layer is much higher than the change due to the barrier 

height of dielectric layer. 
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Figure 3: The gate leakage current as a function of barrier height of interfacial layer and dielectric 

material for a DG FinFET with extracted parameters. 
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Figure 4: The gate tunneling leakage current as a function of carrier effective mass of interfacial 

layer and dielectric material for a DG FinFET with extracted parameters. 
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Figure 5: Correlation between barrier heights of interfacial layer as a function of barrier height of 

dielectric layer. 
 

The correlation between the gate leakage current and carrier effective mass of 

interfacial layer and dielectric layer has been shown in Figure 4 in linear and log scale 

(inset figure). It is showing exact dependency of the gate leakage current in terms of 

carrier effective mass of the interfacial layer and dielectric layer. According to the 

Figure 4 the gate leakage current has a high sensitivity to the electron effective mass in 

interfacial layer rather than the electron effective mass in dielectric layer. 

The gate leakage current measurements for the devices with channel length equal 

to 1µm and 10µm is used to verify correlation between barrier heights and carrier 

effective masses in interfacial layer and dielectric layer. Figure 5 shows the correlation 

between barrier heights of interfacial layer as a function of barrier height of the 

dielectric layer. The correlation between carrier effective mass in dielectric layer as a 

function of carrier effective mass in interfacial layer has been shown in Figure 6. The 

correlation between barrier height in interfacial layer and dielectric layer as a function 

of carrier effective mass in interfacial layer are shown in Figure 7. 
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Figure 6: Correlation between carrier effective mass in dielectric layer as a function of carrier 

effective mass in interfacial layer. 
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Figure 7: Correlation between barrier height in interfacial layer and dielectric layer as a function of 

carrier effective mass in interfacial layer. 
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5) Conclusion 

We have developed automatic parameter extraction techniques in the commercial 

package (IC-CAP) to obtain gate leakage current parameter values for Trigate 

MOSFET. The extraction approaches have been applied for various conditions and 

device geometry and have been found suitable techniques for MOSFET parameter 

extraction process. The correlation between gate leakage currents, barrier heights and 

carrier effective messes are analyzed in details based on our DT current and TAT 

current models, automatic parameter extraction techniques and measured gate leakage 

current in Trigate MOSFET. The verification of the extraction techniques and gate 

leakage current parameters correlations are discussed and the results show additional 

insight into the gate leakage current model and good agreement with the measured data 

in Trigate MOSFET. 
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General Conclusion 

1) We have developed simple and improved analytical models for the direct tunneling 

gate leakage current based on a proper WKB tunneling probability approximation. A 

theoretical study with only one layer of gate oxide materials has been considered. We 

have shown guidelines for finding the appropriate high-k dielectric materials for the 22 

nm technological node requirements according to the latest ITRS in DG MOSFETs. 

 

2) We have developed simple and improved gate leakage current models for the two 

layer gate oxide materials in DG MOSFETs. We have shown the most promising high-

k candidates for different values of EOT and SiO2 interfacial layer thickness, satisfying 

the gate leakage requirements according to the ITRS. They demonstrate that the 

materials like HfO2, La2O3, LaAlO3 and Pr2O3 in the hexagonal phase would fulfill the 

considered requirements. 

 

3) Analytical models of the direct tunneling gate leakage current are used to determine 

the high-k dielectric suitable for the nanoscale UTB SOI MOSFETs structure in cases 

with no interfacial layer and with SiO2 as an interfacial layer for the 17nm, 15nm and 

14nm technological node requirements. In the ideal case without an interfacial layer, 

HfO2 and Lu2O3 were found to be the best gate oxide materials for the 17nm, 15nm 

and 14nm technological node requirements. 

 

4) A compact gate leakage current partitioning model has been presented for nanoscale 

Double Gate MOSFETs, using analytical models of the direct tunneling gate leakage 

current. The influence and impact of the thickness of the interfacial SiO2 layer on the 

gate-drain and gate-source components has been shown. The results of the gate 

current partitioning components into the drain and source show good agreement with 

2D TCAD numerical device simulation. 

5) The temperature dependent analytical models of the direct tunneling current in 

inversion region and the trap assisted tunneling current in subthreshold regime have 
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been developed for DG FinFET with a two dielectric layers gate stack such as 

SiON/SiO2. Our analysis based on the gate leakage current measurements in the above 

threshold regime for different temperatures shows that the direct tunneling current is 

clearly dominant over the trap assisted tunneling, while the opposite happens below 

threshold. 

 

6) We have developed automatic parameter extraction techniques for our explicit 

compact model in DG MOSFET based on surface potential including short channel 

effects (channel length modulation, DIBL, carrier velocity saturation, threshold voltage 

roll-off and series resistance). The second derivative of the drain current with respect 

to the source-gate potential is verified which is continuous due to a careful 

mathematical derivation of our model. The P1 and P2 parameters dependency on the 

channel length are investigated and shown for Trigate MOSFETs based on measured 

data and extracted parameters. 

 

7) Direct Tunneling and Trap Assisted Tunneling gate leakage current parameters have 

been extracted and verified considering automatic parameter extraction approaches for 

Trigate MOSFET. The correlation between gate leakage currents, barrier heights and 

carrier effective messes are analyzed in details based on our DT current and TAT 

current models, automatic parameter extraction techniques and measured gate leakage 

current in Trigate MOSFET. 
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