Volume resistive switching in metallic perovskite oxides driven by the metal-Insulator transition

Autor/a

Gonzalez Rosillo, Juan Carlos

Director/a

Puig Molina, Teresa

Palau Masoliver, Anna

Tutor/a

Sánchez Moreno, Álvaro

Fecha de defensa

2017-05-19

ISBN

9788449071508

Páginas

186 p.



Departamento/Instituto

Universitat Autònoma de Barcelona. Departament de Física

Resumen

Los óxidos de perovskita fuertemente correlacionados son una clase de materials con fascinantes propiedades físicas intrínsecas debido a la interacción de efectos de carga, spin, órbita y cristalinos. Efectos exóticos, como superconductividad, ferromagnetismo, ferroelectricidad o transiciones metal-aislante se producen gracias a la competición de los diferentes grados de libertad del sistema. El uso de estos efectos en una nueva generación de dispositivos es una fuente de inspiración continua para la comunidad científica. Los dispositivos de Memoria Resistiva de Acceso aleatorio (RRAM) son uno de los candidatos más prometedores para ganar la carrera hacia la memoria universal del futuro, debido a sus excelentes propiedades en términos de escalabilidad, fatiga frente a ciclado, retención y velocidad de operación. Están basadas en el efecto de Conmutación Resistiva (RS), dónde dos (o más) estados de resistencia, reversibles y no volátiles son inducidos mediante la aplicación de un campo eléctrico intenso. Este fenómeno ha sido observado en una gran variedad de óxidos, donde es ampliamente aceptado que el movimiento de oxígeno juega un papel fundamental para explicar su origen. Sin embargo, el mecanismo físico preciso que gobierna el efecto depende del material, y en algunos de ellos, dicho mecanismo aún no es comprendido en su totalidad. Esta falta de compresión es hoy en vía es uno de los cuellos de botella que está retrasando el uso generalizado de esta tecnología. En esta tesis, presentamos un novedoso mecanismo de RS basado en la Transición Metal-Aislante (MIT) perovskitas metálicas con correlación electrónica fuerte. Hemos estudiado el comportamiento RS de tres diferentes familias de perovskitas metálicas: La1-xSrxMnO3, YBa2Cu3O7-d y RENiO3 y demostramos que estos tres sistemas con conducción mixta eletrónica-iónica pueden experimentar una MIT, como consecuencia de la aplicación del campo eléctrico intenso, y que puede transformar su volumen bulk. Esta conmutación resistiva de carácter volúmico tiene una naturaleza diferente the los usuales tipos filamentar e interfacial, y abre nuevas oportunidades para el diseño de nuevos dispositivos robustos. Hemos caracterizado conciencudamente el efecto de RS a la nanoescala mediante Microscopía de Fuerzas Atómicas en modo Conducción (C-AFM). Espectroscopía de Fuerza Túnel (STS) y medidas de transporte dependientes de la temperatura han sido realizadas en los diferentes estados resistivos para obtener detalles de su estructura electrónica. Hemos reproducido con éxito el comportamiento memristivo nanoscópico en una escala micrómetrica mediante el uso de sondas de W-Au en una estación de puntas. Usando esta aproximación, hemos llevado a cabo medidas en diferentes atmósferas, las cuales sugieren el intercambio de oxígeno con la atmósfera. Además, presentamos una prueba de concepto de una configuración de tres terminales, donde la conmutación resistiva es inducida en la puerta del dispositivo. En el caso particular del superconductor YBa2Cu3O7-d, hemos estudiado la influencia en las propiedades superconductoras de zonas de alta resistencia embebidas en la matriz del material. Esta aproximación sienta las bases hacia el diseño de dispositivos con zonas de anclaje de vórtices reconfigurables. La interpretación de los resultados se hará en términos de una transición volúmica de tipo Mott, que estimamos ser de validez general para perovskitas metálicas de óxidos complejos.


Strongly correlated perovskite oxides are a class of materials with fascinating intrinsic physical functionalities due to the interplay of charge, spin, orbital ordering and lattice effects. The exotic phenomena arising from these competing degrees of freedom include superconductivity, ferromagnetism, ferroelectricity and metal-insulator transitions, among others. The use of these exotic phenomena in a new generation of devices with new and enhanced functionalities is continuing inspiring the research community. In this sense, Resistive-Random Access Memories (RRAM) are one of the most promising candidates to win the race towards the universal memory of the future, which could overcome the limitations of actual technologies (Flash and Dynamic-RAM), due to their excellent properties in terms of scalability, endurance, retention and switching speeds. They are based on the Resistive Switching effect (RS), where the application of an electric field produces a reversible, non-volatile change in the resistance between two or more resistive states. This phenomenon has been observed in a large variety of oxide materials, where the motion of oxygen is widely accepted to play a key role in their outstanding properties. However, the exact mechanism governing this effect is material-dependent and for some of them it is still far to be understood. This lack of understanding is actually one of the main bottlenecks preventing the widespread use of this technology. In this thesis, we present a novel Resistive Switching mechanism based on the Metal-Insulator Transition (MIT) in metallic perovskite oxides with strong electron electron interaction. We analyse the RS behaviour of three different families of metallic perovskites: La1-xSrxMnO3, YBa2Cu3O7-δ and RENiO3 and demonstrate that the MIT of these mixed electronic-ionic conductors can be tuned upon the application of an electric field, being able to transform the entire bulk volume. This volume RS is different in nature from interfacial or filamentary type and opens new possibilities of robust device design. Thorough nanoscale electrical characterization of the RS effect in these systems has been performed by means of Conductive-Atomic Force Microscopy (C-AFM). Scanning Tunnelling Spectroscopy (STS) and temperature-dependent transport measurements were performed in the different resistive states to get insight into their electronic features. The nanoscale memristive behaviour of these systems is successfully reproduced at a micrometric scale with W-Au tips in probe station experiments. Using this approach, atmosphere dependent measurements were undertaken, where oxygen exchange with the ambience is strongly evidenced. In addition, we present a proof-of-principle result from a 3-Terminal configuration where the RS effect is applied at the gate of the device. In the particular case of superconducting YBa2Cu3O7-δ films, we have studied the influence of high resistance areas, which are embedded in the material, on the superconducting transport properties enabling vortex pinning modification and paving the way towards novel reconfigurable vortex pinning sites. We interpret the RS results of these strongly correlated systems in terms of a Mott volume transition, that we believe to be of general validity for metallic perovskite complex oxides. We have verified that strongly correlated metallic perovskite oxides are a unique class of materials very promising for RS applications due to its intrinsic MIT properties that boosts a robust volumetric resistive switching effect. This thesis settles down the framework to understand the RS effect in these strongly correlated pervoskites, which could eventually lead to a new generation of devices exploiting the intrinsic MIT of these systems.

Palabras clave

Pervoskites; Perovskitas; Perovskites; Òxids fortament correlacionats; Óxidos fuertemente correlacionados; Otrongy correlated oxides; Commutació resistiva; Conmutación resistiva; Resistive switching

Materias

620 - Ensayo de materiales. Materiales comerciales. Economía de la energía

Área de conocimiento

Ciències Experimentals

Documentos

jcgr1de1.pdf

14.16Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)