Enhanced magnetoelectric effects in electrolyte-gated nanoporous metallic alloy and dense metal oxide films

Author

Quintana Puebla, Alberto

Director

Menéndez Dalmau, Enric

Pellicer Vilà, Eva M. (Eva Maria)

Sort Viñas, Jordi

Date of defense

2018-06-20

ISBN

9788449081248

Pages

179 p.



Department/Institute

Universitat Autònoma de Barcelona. Departament de Física

Abstract

Esta tesis abarca el estudio de propiedades magnetoeléctricas en aleaciones magnéticas y metálicas nanoporosas, y en capas densas de óxidos de metales de transición. La naturaleza interfacial de los procesos magnetoeléctricos ha hecho que históricamente el estudio de estos fenómenos se abordara en sistemas de elevada relación superficie/volumen, limitándose muchas veces a capas ultradelgadas (1-2 nm). En esta tesis, se postula una nueva forma de afrontar el estudio de estos procesos, basada en el uso de materiales nanoporosos los cuales se caracterizan por tener una relación superficie/volumen muy elevada y una pared de poro o ligamento de pocos nanómetros. De esta forma, se han obtenido efectos magnetoeléctricos en materiales cuyo grosor global supera el centenar de nanometros. La síntesis de los materiales de interés se ha llevado a cabo por métodos de deposición electroquímica. Específicamente, se ha sacado partido de la formación de micelas al disolver copolímeros bloque en soluciones acuosas por encima de la concentración micelar crítica. Estas micelas quedan atrapadas durante el proceso de electrodeposición, actuando como agente moldeador. Usando este enfoque, se han podido sintetizar diferentes muestras de distintas morfologías y composiciones de la aleación cobre-níquel. La aplicación de voltaje se ha realizado haciendo uso de electrolitos, aprovechando la formación de una doble capa eléctrica. Con la intención de obtener efectos magnetoeléctricos puros (acumulación de carga) y evitar procesos oxidativos simultáneos, se ha utilizado un electrolito orgánico aprótico. Con este método, se pueden obtener campos eléctricos del orden de centenares de MV/cm. Gracias a este elevado campo eléctrico, junto con la enrome relación superficie/volumen de los materiales nanoporosos, se ha obtenido una disminución de la coercitividad de una muestra nanoporosa de Cu25Ni75 en un 32 %. Simulaciones ab-initio atribuyen estos cambios a modificaciones en la energía de anisotropía magnética adscritos a la acumulación de cargas electrostáticas en la aleación. En una segunda aproximación, se han realizado estudios de procesos de oxidación-reducción en medios acuosos (1M NaOH) controlados por voltaje, en este tipo de aleaciones. Después de aplicar potenciales positivos, se ha visto una modificación de un 33 % en la magnetización, debido a la oxidación selectiva del cobre en una muestra nanoporosa de Cu20Ni80. La oxidación resulta en una aleación enriquecida en níquel y, por ende, en una aleación con mayor momento magnético. En esta tesis, también se ha demostrado la idoneidad de la técnica de deposición por capas atómicas para producir recubrimientos conformales en materiales nanoporosos. Se ha visto que esta técnica permite preservar la integridad morfológica y estructural de la capa activa, asentando así las bases para aplicaciones en estado sólido. En la última parte de esta tesis, se ha demostrado la posibilidad de inducir ferromagnetismo mediante la aplicación de voltaje eléctrico en capas densas de Co3O4. El campo eléctrico aplicado da lugar a una migración iónica controlada, resultando en regiones ricas en oxígeno y otras en cobalto, estas últimas originando el ferromagnetismo. Este experimento es una de las primeras evidencias de movimiento iónico inducido por voltaje a temperatura ambiente y sin la necesidad de utilizar capas donadoras/aceptores de oxígeno (en otras palabras, sin fuentes o sumideros de oxígeno).


This Thesis covers the study of the magnetoelectric response in nanoporous metallic alloy and transition metal oxide dense films. The interfacial nature of magnetoelectric processes, independently of its origin, has limited its study to ultrathin film configurations (usually 1-2 nm). Here we propose a novel approach to overcome this thickness limitation, thus achieving magnetoelectric response in materials whose overall thickness is larger than 100 nm. To accomplish this, we have employed nanoporous materials, with pore walls and ligands of very few nanometers, which are characterized by a large surface to volume ratio. These materials have been synthesized by micelle assisted electrodeposition. Micelles get trapped during the electrodeposition process thus acting as a soft templating agent, allowing us to synthesize nanoporous copper-nickel alloy films with tunable composition and morphology. Voltage application has been performed through electrolyte-gating, taking advantage of the generation of an electrical double layer in aprotic organic electrolytes which helps to avoid spurious oxidation processes. This method allows for the application of electric fields as high as hundreds of MV/cm. Thanks to the high electric field achieved, together with the ultrahigh surface area of nanoporous materials, a 32 % reduction in the coercivity of a Cu25Ni75 nanoporous film has been achieved. Ab-initio simulations attribute this large effect to changes in the magnetic anisotropy energy due to charge accumulation in the sample|electrolyte interface. In a second approach, the voltage control of redox processes has been studied in aqueous electrolytes (1M NaOH). After positive bias application up to a 33 % reduction in the magnetization has been achieved in a Cu20Ni80 nanoporous sample thanks to the selective Cu oxidation. The controlled oxidation process resulted in an enriched Ni alloy which possesses a larger magnetic moment. Moreover, we have demonstrated the suitability of atomic layer deposition to conformally coat the nanoporous alloys, preserving the morphology and structure, thus setting the basis for future solid state applications. In the last part of this Thesis, it has been demonstrated that, upon electric field application, a ferromagnetic response arises in a paramagnetic single Co3O4 layer, at room temperature. The applied voltage promotes the ionic diffusion, resulting in oxygen rich and cobalt rich regions, being the latter the responsible of the induced magnetic signal. This experiment is one of the first evidences of ionic motion at room temperature without the assistance of oxygen buffer layers such as Gd2O3 or HfO2.

Keywords

Nanoporosos; Nanoporous; Magnetoelèctric; Magnetoeléctrico; Magnetoelectric; Magnetisme; Magnetismo; Magnetism

Subjects

53 - Physics

Knowledge Area

Ciències Experimentals

Documents

aqp1de1.pdf

11.58Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)