Study of graphene hybrid heterostructures for linear and nonlinear optics

Author

Alcaraz Iranzo, David

Director

Koppens, Frank H. L.

Date of defense

2020-06-23

Pages

127 p.



Department/Institute

Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques

Abstract

Graphene is the first of the 2D-material family. It is formed by carbon atoms arranged in a honeycomb lattice, which confers it intriguing physical properties that are still being discovered nowadays. A fundamental advantage found in graphene is the ability to gate tune “in-situ“ its optical response from reflective (metallic) to absorptive (lossy dielectric). It is in the reflective conditions when it becomes more interesting since it supports surface plasmon polaritons in the mid-infrared, similar to metals in the near-infrared and visible spectral regions. Surface plasmons in metals are known to be more confined than free space propagating light. But graphene naturally excels in this aspect by offering a confinement factor around 100, which causes light to couple in inefficiently. Several studies on metal plasmonics have shown the possibilities of confining light into tiny spatial dimensions with applications in molecular sensing as an example. Often, metal plasmons are used in the visible and IR regions with moderate confinement. However, Landau damping limits the optical field confinement due to penetration in the material and the consequent losses. In this thesis, it is shown that graphene-insulator-metal hybrid heterostructures can overcome that limitation by efficiently exciting plasmons in unpatterned graphene with vertical confinement down to the ultimate one-atom insulator thickness. It is accomplished by encapsulating graphene with a single layer of h-BN (or thicker oxide layers for the systematic study) and fabricating metallic nano/micro-ribbons on top. The transmission extinction of the samples was measured and compared with theoretical models accounting for material nonlocal permittivity. The ultimate confinement and the validity of the excitation method are confirmed enabling a path towards ultrastrong light-matter interaction. An example application of the aforementioned method to graphene nonlinear optics is also presented. The large intrinsic graphene third-order nonlinear optical response has been of great interest and it has been studied both theoretically and experimentally. However, there were not experiments covering all the expected features from the theory in the mid-infrared. This thesis expands the measurement range to cover the mentioned gap in planar graphene. Additionally, field enhancement and confinement provided by the hybrid heterostructure was exploited to increase the nonlinear third-harmonic generation signal in more than three orders of magnitude. Intriguingly, it was found that some structures presented further modulation of the nonlinear signal which is attributed to the oscillatory nature of graphene plasmons. This opened an extra channel for extreme nonlinear gate tunability for the optimized parameters. To summarize, this thesis presented means to achieve the regime of ultrastrong light-matter interaction, it fully characterizes it down to the one-atom spacer limit, and provides an example while demonstrating its applicability in graphene nonlinear optics.


El grafeno es el primero de la creciente familia de materiales 2D. Está formado por átomos de carbono dispuestos en una red de panal que le confiere propiedades físicas intrigantes que todavía se están descubriendo hoy en día. Una ventaja fundamental que encontramos en el grafeno es la capacidad de modificar ¿in-situ¿ su respuesta óptica de reflectante (metálico) a absorbente (dieléctrico). Es en el primero cuando el grafeno se muestra más interesante, ya que admite plasmones superficiales en el infrarrojo medio, similarlmente a los metales en las regiones espectrales del infrarrojo cercano y el visible. Se sabe que los plasmones superficiales en metales están más confinados que la luz que se propaga libremente. El grafeno sobresale en este aspecto al ofrecer un factor de confinamiento alrededor de 100 de forma natural, con la contrapartida de que la luz se acople de manera muy ineficiente a los plasmones en grafeno. Varios estudios sobre plasmones metálicos han demostrado que las posibilidades de confinar la luz en pequeñas dimensiones espaciales pueden ser aplicadas, por ejemplo, en la detección de biomoléculas. A menudo, los plasmones metálicos se usan en las regiones visibles e IR con un confinamiento moderado. Sin embargo, el amortiguamiento de Landau limita dicho confinamiento del campo electromagnético debido a la penetración de éste en el material y las consiguientes pérdidas. En esta tesis, se muestra que las heteroestructuras híbridas de grafeno-dieléctrico-metal pueden superar esa limitación excitando eficientemente los plasmones en grafeno extendido con confinamiento vertical máximo, hasta el espesor de un solo átomo de material dieléctrico. Tal efecto se logra encapsulando el grafeno con una sola capa de h-BN y fabricando nano/microtiras metálicas sobre éstos. Otros espesores y materiales también fueron estudiados. La extinción en transmisión de las muestras se midió y comparó con modelos teóricos que incluyen la permitividad no local (dependiente también del momento) de los materiales. El confinamiento final y la validez del método de excitación se confirman, permitiendo así allanar el camino hacia la interacción ultra-fuerte de luz y materia. También se presenta un ejemplo de aplicación de este método al campo de la óptica no lineal con grafeno. La gran respuesta óptica no lineal intrínseca de tercer orden del grafeno ha sido de gran interés y se había estudiado tanto teórica como experimentalmente en la comunidad. A pesar de ello, no hubo experimentos que cubrieran todas las características esperadas de la teoría en el infrarrojo medio por falta de rango en el dopaje del material. Esta tesis amplía dicho rango de medición para cubrir la brecha mencionada en grafeno extendido. Además, la mejora en el confinamiento y el aumento de la densidad de campo electromagnético proporcionados por la heteroestructura híbrida se explotaron para aumentar la generación de señal no lineal del tercer armónico en hasta más de tres órdenes de magnitud. Curiosamente, se encontró que algunas estructuras presentaban una modulación adicional de la señal no lineal que se atribuye a la naturaleza oscilatoria (en el espacio) de los plasmones de grafeno y su resonancia en la estructura. Esto permite la futura exploración de un canal basado en la alta modulación de señal no lineal mediante el voltaje de puerta optimizando los dispositivos para esta finalidad. En resumen, esta tesis presenta un medio para alcanzar el régimen de interacción ultrafuerte entre luz y materia, lo caracteriza completamente hasta el límite inferior de usar un espaciador de un solo átomo de espesor. Asimismo, proporciona un ejemplo mientras demuestra su aplicabilidad en la óptica no lineal con grafeno.

Subjects

535 - Optics

Knowledge Area

Àrees temàtiques de la UPC::Física

Documents

TDAI1de1.pdf

29.47Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)