Hydrogel co-networks of gelatin methacryloyl and poly(ethylene glycol)diacrylate sustain 3D functional in vitro models of intestinal mucosa

dc.contributor
Universitat de Barcelona. Facultat de Física
dc.contributor.author
Vila Giraut, Anna
dc.date.accessioned
2021-02-25T09:30:23Z
dc.date.available
2021-02-25T09:30:23Z
dc.date.issued
2020-12-10
dc.identifier.uri
http://hdl.handle.net/10803/670921
dc.description
Programa de Doctorat en Nanociències / Tesi realitzada a l’Institut Català de Nanociència i Nanotecnologia
en_US
dc.description.abstract
Conventional in vitro cell culture models do not possess the complexity that the native tissues offer. Because of this, the functional properties of the tissues are not properly mimicked, which causes poorly predictive capabilities. Engineered tissues, which combine biofabrication and tissue engineering techniques, try to overcome this gap by providing the cells with an environment similar to the native tissue, recapitulating (I) the physicochemical and mechanical properties of the cellular matrix, (II) the multicellular complexity of the different tissue compartments, and (III) the 3D structures of the tissues. These new engineered models are key factors to improve the platforms for basic research studies, testing new drugs or modelling diseases. Among all the engineered tissues, the intestinal mucosa is not well represented. The intestinal mucosa is formed by the epithelium, which is a multicellular monolayer laying on top of the lamina propria, a connective tissue containing several cell types (mesenchymal cells, immune cells). The gold standard intestinal models are based on epithelial cell lines derived from colon cancer cells grown on the hard porous membranes of the Transwell® inserts. The lack of the intestinal stromal compartment and the growth on a hard surface give high transepithelial electrical resistance and low apparent permeability. Therefore, the development of better in vitro platforms, which integrates both compartments and provides epithelium-lamina propria cell interactions, is highly desirable. In this work, we describe an easy and cost-effective method to engineer a 3D intestinal mucosa model that combines both the epithelium and the lamina propria compartments. To build the 3D scaffolds we chose hydrogels as materials to mimic the physicochemical and mechanical properties of intestinal tissue. Thus, hydrogel co- networks of gelatin methacryolyl (GelMA), a natural polymer, and poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer, are photopolymerized. On one hand, GelMA provides biodegradation and cell adhesion sequences but it lacks long-term mechanical stability. On the other hand, PEGDA, is non-biodegradable and does not present cell adhesion motifs. Nevertheless, it has good mechanical properties. By this technique, the lamina propria compartment of the intestinal mucosa can be reproduced in vitro. To do that, GelMA and PEGDA polymers are laden with mesenchymal cells (fibroblasts or myofibroblasts) and/or immune cells (macrophages). We demonstrated that GelMA – PEGDA hydrogel co-networks support the growth of these cells and epithelial monolayers on top of the scaffolds. Embedding fibroblasts or myofibroblasts on the hydrogel co-networks enhance the formation and the maturity of the Caco-2 epithelial monolayers, providing barrier properties similar to in vivo. The presence of the stromal cells, also enhances the recovery of the epithelial integrity when the epithelium is temporally damaged. Finally, an immunocompetent model is obtained by the encapsulation of macrophages in the constructs. The presence of macrophages does not influence the formation of the epithelium. However, when the epithelial monolayer is disrupted, the presence of mesenchymal and immune cells in the stromal compartment increases cytokine secretion in a synergistic manner. Our model can successfully mimic the interactions between stromal and epithelial compartments found in vivo intestinal tissue, offering a potential platform to be used to study absorption and toxicity of drugs, as well as cell behaviour under physiological and pathological conditions.
en_US
dc.description.abstract
En l’intestí prim trobem la mucosa, la capa més externa de la paret intestinal, formada per dos compartiments, la lamina propia i l’epiteli, en els quals resideixen diferents tipus cel·lulars. La interacció entre els dos compartiments és essencial pel funcionament correcte del intestí. Actualment, els models intestinals in vitro es basen en el cultiu de línies cel·lulars epitelials sobre membranes dures i de plàstic, els quals no representen correctament ni la complexitat ni la organització cel·lular trobada en el intestí prim, ja que manquen de la lamina propria. Conseqüentment, els resultats obtinguts utilitzant aquests models són significativament poc fisiològics i no comparables amb els trobats en condicions in vivo (alts valors de resistència elèctrica transepitelial, subestimació dels valors d’absorció de molècules a través de la ruta paracel·lular i alteració en la expressió enzims digestius). Per reduir les distàncies entre els models intestinals in vitro i l’intestí, s’han de desenvolupar plataformes que modelitzin: (I) les propietats fisicoquímiques i mecàniques de la matriu extracel·lular, (II) els dos compartiments de la mucosa intestinal, i si pogués ser (III) l’arquitectura tridimensional. Per aconseguir aquests requeriments, en aquesta tesi s’utilitzen hidrogels formats per polímers naturals (gelatina metacrilada (GelMA)) co-polimeritzats amb polímers sintètics (poly(ethylene glycol) diacrylate (PEGDA)) com a substrat per imitar els dos compartiments intestinals. Per reproduir la lamina propria, els polímers de GelMA i PEGDA es dissolen juntament amb el fotoiniciador. Tot seguit, les cèl·lules residents de la lamina propria (fibroblasts, miofibroblasts o macròfags) es barregen amb la solució de pre-polimer, s’aboca a les piscines de PDMS, s’exposa a llum ultraviolada, i s’obté l’hidrogel amb les cèl·lules en el seu interior. Finalment, les cèl·lules epitelials es sembren a la superfície del hidrogel. En aquesta tesi, s’ha obtingut un hidrogel amb propietats fisicoquímiques i mecàniques similars a la matriu extracel·lular del intestí humà, i que permeten el cultiu cel·lular fins a 21 dies, imitant els dos compartiments. A més, la el co-cultiu de cèl·lules residents de la lamina propria juntament amb les cèl·lules epitelials, ens ha permès obtenir un model 3D de la mucosa intestinal in vitro amb propietats fisiològiques més semblants a la del intestí prim.
en_US
dc.format.extent
317 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat de Barcelona
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Mucosa gastrointestinal
en_US
dc.subject
Gastrointestinal mucosa
en_US
dc.subject
Polímers
en_US
dc.subject
Polímeros
en_US
dc.subject
Polymers
en_US
dc.subject
Cultiu de teixits
en_US
dc.subject
Cultivo de tejidos
en_US
dc.subject
Tissue culture
en_US
dc.subject
Enginyeria biomèdica
en_US
dc.subject
Ingeniería biomédica
en_US
dc.subject
Biomedical engineering
en_US
dc.subject.other
Ciències Experimentals i Matemàtiques
en_US
dc.title
Hydrogel co-networks of gelatin methacryloyl and poly(ethylene glycol)diacrylate sustain 3D functional in vitro models of intestinal mucosa
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
62
en_US
dc.contributor.director
Martínez Fraiz, Elena
dc.contributor.tutor
Samitier i Martí, Josep
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

AVG_PhD_THESIS.pdf

18.00Mb PDF

This item appears in the following Collection(s)