dc.contributor
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.contributor.author
Garcia Gomez, David
dc.date.accessioned
2014-06-06T11:08:35Z
dc.date.available
2014-06-06T11:08:35Z
dc.date.issued
2014-04-10
dc.identifier.uri
http://hdl.handle.net/10803/144660
dc.description.abstract
The ongoing processes of globalization and deregulation are changing the competitive framework in the majority of economic sectors. The appearance of new competitors and technologies entails a sharp increase in competition and a growing preoccupation among service providing companies with creating stronger bonds with customers. Many of these companies are shifting resources away from the goal of capturing new customers and are instead focusing on retaining existing ones. In this context, anticipating the customer¿s intention to abandon, a phenomenon also known as churn, and facilitating the launch of retention-focused actions represent clear elements of competitive advantage.
Data mining, as applied to market surveyed information, can provide assistance to churn management processes. In this thesis, we mine real market data for churn analysis, placing a strong emphasis on the applicability and interpretability of the results. Statistical Machine Learning models for simultaneous data clustering and visualization lay the foundations for the analyses, which yield an interpretable segmentation of the surveyed markets. To achieve interpretability, much attention is paid to the intuitive visualization of the experimental results. Given that the modelling techniques under consideration are nonlinear in nature, this represents a non-trivial challenge. Newly developed techniques for data visualization in nonlinear latent models are presented. They are inspired in geographical representation methods and suited to both static and dynamic data representation.
eng
dc.format.mimetype
application/pdf
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/es/
*
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.title
Exploration of customer churn routes using machine learning probabilistic models
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Gavaldà Mestre, Ricard
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
https://dx.doi.org/10.5821/dissertation-2117-95309
dc.identifier.dl
B 15988-2014
dc.description.degree
DOCTORAT EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 1998)