On-line coupling of volcanic ash and aerosols transport with global and regional meteorological models

Author

Martí Donati, Alejandro

Director

Folch Duran, Arnau

Date of defense

2017-07-14

Pages

209 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental

Abstract

Explosive volcanic eruptions can eject large quantities of particulate matter that, along with other aerosol droplets and trace gases, are carried upwards into the atmosphere by the buoyant eruption column and then dispersed by winds aloft. The presence in the atmosphere of volcanic ash is a sporadic yet important factor that can threaten human health, affect the urban built environment, disrupt aerial navigation and, for very large eruptions, alter both atmospheric composition and chemistry. Once volcanic ash is injected into the atmosphere, it can be transported over great distances, even circumnavigating the entire planet. Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate operational short-term forecasts to support civil aviation and emergency management. The efficiency of response and mitigation actions is directly associated to the accuracy of the volcanic ash cloud detection. Volcanic ash modeling systems normally require an emission or source term model to characterize the eruption column; a dispersal model to simulate the atmospheric transport, dispersion and ground deposition of ash particles; and a meteorological model for the description of the atmospheric conditions. Traditional forecasts for volcanic ash build on off-line coupled modeling systems, where meteorological variables are only updated at the specified coupling intervals. Although this approach is computationally advantageous is some cases, there is a concern that it can lead to a number of accuracy issues and limitations that can be corrected by on-line modeling strategies. Despite these concerns, to date, no on-line coupled model is available for operational forecast of volcanic ash. In addition, the quantification of the limitations associated to the off-line systems has received no attention. This Ph.D. thesis describes and evaluates NMMB-MONARCH-ASH, a novel fully coupled on-line multiscale meteorological and atmospheric transport model designed to predict ash cloud trajectories, concentration of ash at relevant flight levels, and the expected deposit thickness for both regional and global domains in research and operational set-ups. The first activity targeted a model validation against several well-characterized events including, the Mt. Etna 2001, Eyjafjallajökull 2010, and Cordón Caulle 2011 eruptions. The model has shown to be robust, scalable, and capable to reproduce the spatial and temporal dispersal variability of the ash cloud and tephra deposits, showing promising results and improving the performance from well-known off-line operational models. The second activity quantified the model shortcomings and systematic errors associated to traditional off-line forecasts employed in operational set-ups. NMMB-MONARCH-ASH demonstrated that off-line forecasts could fail to reproduce up to 45-70% of the ash cloud of an on-line forecast, considered to be the best estimate of the true outcome. The uncertainty associated to off-line systems was found to be as relevant (same order of magnitude) as those uncertainties attributed to the source term. The third activity focused on a global application of NMMB-MONARCH-ASH to analyze the potential impacts of ash dispersal from Antarctic volcanoes. Numerical simulations suggested that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. The last activity included a novel computational inversion method to account, for the first time, for the Plinian and co-ignimbrite phases of the 39 ka Campanian Ignimbrite super-eruption. This particular application employed the off-line coupled FALL3D model, found to be more suitable from a computational point of view. The outcome of this Ph.D. thesis encourages operational groups responsible for real-time advisories for aviation to consider using computationally efficient on-line coupled ash dispersal models.


Las erupciones volcánicas explosivas pueden emitir una gran cantidad de material que, junto con otros aerosoles y gases traza, son inyectados en la atmósfera por la columna eruptiva para luego ser dispersados por los vientos en altura. La presencia en la atmósfera de cenizas volcánicas es un factor esporádico aunque importante, que puede llegar a amenazar la salud humana, afectar las infraestructuras urbanas, interrumpir la navegación aérea y, en el caso de grandes erupciones, alterar la composición atmosférica y química. Una vez en la atmósfera, la ceniza puede ser transportada a grandes distancias, llegando incluso a circunnavegar todo el planeta. Los sistemas de modelado de cenizas volcánicas se utilizan para simular la dispersión atmosférica de estas partículas, y para generar pronósticos operacionales a corto plazo empleados para dar soporte a la aviación civil y a la gestión de emergencias. La eficacia para responder a estos eventos está directamente asociada a la precisión de los modelos de transporte de cenizas volcánicas. Los sistemas de modelado de cenizas volcánicas requieren de un modelo de emisión de partículas para la caracterización de la columna eruptiva; un modelo de dispersión para la simulación del transporte atmosférico y la deposición de cenizas; y de un modelo meteorológico para la descripción de las condiciones atmosféricas. Los pronósticos tradicionales se basan en sistemas de modelado desacoplados (off-line), donde las variables meteorológicas sólo se actualizan a intervalos de tiempo especificados. Aunque este enfoque presenta ventajas desde el punto de vista computacional, existe la preocupación de que puede estar asociado a limitaciones y problemas de precisión que, por el contrario, pueden ser corregidos mediante estrategias de modelado acoplado (on-line). A pesar de estas preocupaciones, hasta la fecha no hay un modelo acoplado on-line disponible para el pronóstico operativo de la cenizas volcánicas. Además, tampoco existe una cuantificación de las limitaciones asociadas a los sistemas off-line. Este doctorado describe y evalúa NMMB-MONARCH-ASH, un modelo de transporte meteorológico y atmosférico multiescalar (regional/global) completamente acoplado on-line, para su uso en investigación y predicción operacional. El modelo está diseñado para predecir trayectorias de cenizas volcánicas, concentración de ceniza en niveles de vuelo (flight levels), y el correspondiente espesor de depósito. La primera actividad de esta tesis se centra en la validación de modelo mediante erupciones bien caracterizadas (Mt. Etna 2001, Eyjafjallajökull 2010, y del Cordón Caulle 2011). El modelo ha demostrado ser robusto, escalable y capaz de reproducir la variabilidad de la dispersión espacial y temporal de los depósitos y de las nubes de ceniza, ostrando resultados prometedores y mejorando el rendimiento de modelos operacionales. La segunda actividad cuantifica los errores sistemáticos asociados a los pronósticos off-line. NMMB-MONARCH-ASH demuestra que estps pronósticos podrían no reproducir hasta un 45-70% de la nube de cenizas de un pronóstico on-line, considerado éste último como la mejor estimación de la realidad. Esta actividad concluye que la incertidumbre asociada a los sistemas off-line puede llegar a ser tan relevante como aquellas incertidumbres atribuidas al término fuente. La tercera actividad se centra en una aplicación global de NMMB-MONARCH-ASH para analizar los posibles impactos asociados a la dispersión de ceniza de volcanes antárticos. Los resultados alertan de las posibles consequencias de estas erupciones en la aviación a nivel mundial . La última actividad incluye un nuevo método de inversión computacional para identificar, por primera vez, las fases Pliniana y coignimbrita de la super-erupción de la Ignimbrita Campaniana (39 ka) con FALL3D. Los resultados de este Ph.D. alientan a considerar el uso de modelos acoplados on-line para generar pronósticos operacionales de ceniza volcánica.

Subjects

004 - Computer science and technology. Computing. Data processing; 55 - Earth Sciences. Geological sciences

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria civil

Documents

TAMD1de1.pdf

40.96Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/

This item appears in the following Collection(s)