Crowdsensing-driven route optimisation algorithms for smart urban mobility

dc.contributor
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.author
Mrazovic, Petar
dc.date.accessioned
2018-10-30T13:17:22Z
dc.date.available
2018-10-30T13:17:22Z
dc.date.issued
2018-10-22
dc.identifier.isbn
9789177299479
en_US
dc.identifier.uri
http://hdl.handle.net/10803/663456
dc.description.abstract
Urban rörlighet anses ofta vara en av de främsta möjliggörarna för en hållbar statsutveckling. Idag skulle det dock kräva ett betydande skifte mot renare och effektivare stadstransporter vilket skulle stödja ökad social och ekonomisk koncentration av resurser i städerna. En viktig prioritet för städer runt om i världen är att stödja medborgarnas rörlighet inom stadsmiljöer medan samtidigt minska trafikstockningar, olyckor och föroreningar. Att utveckla en effektivare och grönare (eller med ett ord; smartare) stadsrörlighet är en av de svåraste problemen att bemöta för stora metropoler. I denna avhandling närmar vi oss problemet från det snabba utvecklingsperspektivet av ITlandskapet i städer vilket möjliggör byggandet av rörlighetslösningar utan stora stora investeringar eller sofistikerad sensortenkik. I synnerhet föreslår vi utnyttjandet av den mobila rörlighetsavkännings, eng. Mobile Crowdsensing (MCS), paradigmen i vilken befolkningen exploaterar sin mobilkommunikation och/eller mobilasensorer med syftet att frivilligt samla, distribuera, lokalt processera och analysera geospecifik information. Rörlighetavkänningssdata (t.ex. händelser, trafikintensitet, buller och luftföroreningar etc.) inhämtad från frivilliga i befolkningen kan ge värdefull information om aktuella rörelsesförhållanden i stad vilka, med adekvata databehandlingsalgoriter, kan användas för att planera människors rörelseflöden inom stadsmiljön. Såtillvida kombineras i denna avhandling två mycket lovande smarta rörlighetsmöjliggörare, eng. Smart Mobility Enablers, nämligen MCS och rese/ruttplanering. Vi kan därmed till viss utsträckning sammanföra forskningsutmaningar från dessa två delar. Vi väljer att separera våra forskningsmål i två delar, dvs forskningssteg: (1) arkitektoniska utmaningar vid design av MCS-system och (2) algoritmiska utmaningar för tillämpningar av MCS-driven ruttplanering. Vi ämnar att visa en logisk forskningsprogression över tiden, med avstamp i mänskligt dirigerade rörelseavkänningssystem som MCS och ett avslut i automatiserade ruttoptimeringsalgoritmer skräddarsydda för specifika MCS-applikationer. Även om vi förlitar oss på heuristiska lösningar och algoritmer för NP-svåra ruttproblem förlitar vi oss på äkta applikationer med syftet att visa på fördelarna med algoritm- och infrastrukturförslagen.
en_US
dc.description.abstract
La movilidad urbana es considerada una de las principales desencadenantes de un desarrollo urbano sostenible. Sin embargo, hoy en día se requiere una transición hacia un transporte urbano más limpio y más eficiente que soporte una concentración de recursos sociales y económicos cada vez mayor en las ciudades. Una de las principales prioridades para las ciudades de todo el mundo es facilitar la movilidad de los ciudadanos dentro de los entornos urbanos, al mismo tiempo que se reduce la congestión, los accidentes y la contaminación. Sin embargo, desarrollar una movilidad urbana más eficiente y más verde (o en una palabra, más inteligente) es uno de los temas más difíciles de afrontar para las grandes áreas metropolitanas. En esta tesis, abordamos este problema desde la perspectiva de un panorama TIC en rápida evolución que nos permite construir movilidad sin la necesidad de grandes inversiones ni sofisticadas tecnologías de sensores. En particular, proponemos aprovechar el paradigma Mobile Crowdsensing (MCS) en el que los ciudadanos utilizan sus teléfonos móviles y dispositivos, para nosotros recopilar, procesar y analizar localmente información georreferenciada, distribuida voluntariamente. Los datos de movilidad recopilados de ciudadanos que voluntariamente quieren compartirlos (por ejemplo, eventos, intensidad del tráfico, ruido y contaminación del aire, etc.) pueden proporcionar información valiosa sobre las condiciones de movilidad actuales en la ciudad, que con el algoritmo de procesamiento de datos adecuado, pueden utilizarse para enrutar y gestionar el flujo de gente en entornos urbanos. Por lo tanto, en esta tesis combinamos dos prometedoras fuentes de movilidad inteligente: MCS y la planificación de viajes/rutas, uniendo en cierta medida los distintos desafíos de investigación. Hemos dividido nuestros objetivos de investigación en dos etapas: (1) Desafíos arquitectónicos en el diseño de sistemas MCS y (2) Desafíos algorítmicos en la planificación de rutas aprovechando la información del MCS. Nuestro objetivo es demostrar una progresión lógica de la investigación a lo largo del tiempo, comenzando desde los fundamentos de los sistemas de detección centrados en personas, como el MCS, hasta los algoritmos de optimización de rutas diseñados específicamente para la aplicación de estos. Si bien nos centramos en algoritmos y heurísticas para resolver problemas de enrutamiento de clase NP-hard, utilizamos ejemplos de aplicaciones en el mundo real para mostrar las ventajas de los algoritmos e infraestructuras propuestas.
en_US
dc.format.extent
160 p.
en_US
dc.format.mimetype
application/pdf
dc.language.iso
eng
en_US
dc.publisher
Universitat Politècnica de Catalunya
dc.relation
Nota: Cotutela Universitat Politècnica de Catalunya i KTH Royal Institute of Technology
en_US
dc.rights.license
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Smart cities
en_US
dc.subject
Smart mobility
en_US
dc.subject
Urban mobility
en_US
dc.subject
Mobile crowdsensing
en_US
dc.subject
Route/journey planning
en_US
dc.subject
Route optimisation
en_US
dc.subject
Heuristic algorithms
en_US
dc.subject.other
Àrees temàtiques de la UPC::Informàtica
en_US
dc.title
Crowdsensing-driven route optimisation algorithms for smart urban mobility
en_US
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.subject.udc
004
en_US
dc.contributor.director
Matskin, Mihhail
dc.contributor.codirector
Larriba Pey, Josep Lluís
dc.embargo.terms
cap
en_US
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

TPM1de1.pdf

12.85Mb PDF

This item appears in the following Collection(s)