Advanced adaptive compensation system for free-space optical communications

Author

Carrizo, Carlos E.

Director

Belmonte Molina, Aniceto

Codirector

Mata Calvo, Ramon

Date of defense

2019-09-20

Pages

177 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions

Abstract

Massive amounts of information are created daily in commercial fields like earth observation, that must be downloaded to earth ground stations in the short time of a satellite pass. Today, much of the collected information must be dropped due to lack of bandwidth, and laser downlinks can offer tenths of gigabits throughput solving this bottleneck limitation. In a down-link scenario, the performance of laser satellite communications is limited due to atmospheric turbulence, which causes fluctuations in the intensity and the phase of the received signal leading to an increase in bit error probability. In principle, a single-aperture phase-compensated receiver, based on adaptive optics, can overcome atmospheric limitations by adaptive tracking and correction of atmospherically induced aberrations. However, under strong-turbulence situations, the effectiveness of traditional adaptive optics systems is severely compromised. In such scenarios, sensor-less techniques offer robustness, hardware simplicity, and easiness of implementation and integration at a reduced cost, but the state-of-the-art approaches still require too many iterations to perform the correction, exceeding the temporal coherence of the field and thus falling behind the field evolution. This thesis proposes a new iterative AO technique for strong turbulence compensation that reduces the correction time, bridging the limitation of similar systems in lasercom applications. It is based on the standard sensor-less system design, but it additionally uses a short-exposure focal intensity image to accelerate the correction. The technique combines basic principles of Fourier optics, image processing, and quadratic signal optimization to correct the wave-front. This novel approach directly updates the phases of the most intense focal-plane speckles, maximizing the power coupled into a single-mode fiber convexly. Numerical analyses show that this method has a robust and excellent performance under very strong turbulence. Laboratory results confirm that a focal speckle pattern can be used to accelerate the iterative compensation. This technique delivers nearly twofold bandwidth reduction compared with standard methods, and sufficient signal gain and stability to allow high throughput data transmission with nearly error-free performance in emulated satellite downlink scenarios. A property highlight is the in-advance knowledge of the required number of iterations, allowing on-demand management of the loop bandwidth in different turbulent regimes. Besides remaining conceptually and technically simple, it opens a new insight to iterative solutions that may lead to the development of new methods. With further refinement, this technique can surely contribute to making possible the use of iterative solutions in laser communications


Satélites de observación de la tierra diariamente generan gigantescas cantidades de datos que deben ser enviados a estaciones terrenas. La mayoría de la información recolectada debe desecharse debido al reducido tiempo visible de un satélite en movimiento y el limitado ancho de banda de transmisión. Enlaces ópticos pueden solucionar esta limitación ofreciendo multi-gigabit de ancho de banda. Sin embargo, el desempeño de un downlink laser está limitado por la turbulencia atmosférica, la cual induce variaciones en la intensidad y la fase de la señal recibida incrementando la probabilidad de error en los datos recibidos. En principio, un receptor basado en una apertura simple utilizando óptica adaptativa puede corregir las aberraciones de fase inducidas por la atmósfera, mejorando el canal de transmisión. Sin embargo, la eficiencia de los sistemas de óptica adaptativa tradicionales se ve seriamente reducida en situaciones de turbulencia fuerte. En tales escenarios, técnicas iterativas ofrecen mayor robustez, simplicidad de diseño e implementación, así como también facilidad de integración a un costo reducido. Desafortunadamente, dicha tecnología aún requiere demasiadas iteraciones para corregir la fase distorsionada, excediendo el tiempo de coherencia del frente de onda. Esta tesis propone una nueva técnica iterativa de óptica adaptativa capaz de reducir el tiempo de convergencia en escenarios de turbulencia fuerte. La técnica utiliza el diseño tradicional de los sistemas de corrección iterativos, agregando el uso de una imagen focal de intensidad para acelerar el proceso de corrección del campo distorsionado. En dicha técnica se combinan principios básicos de óptica de Fourier, procesamiento de imagen, y optimización cuadrática de la señal para corregir el frente de onda. De esta forma, la fase de los puntos focales de mayor intensidad (speckles) puede modificarse directamente y con ello maximizar de forma convexa la potencia acoplada en fibra. Los análisis numéricos demuestran robustez y un excelente desempeño en escenarios de turbulencia fuerte. Los resultados de laboratorio confirman que el moteado de intensidad puede utilizarse para acelerar la corrección iterativa. Esta técnica utiliza la mitad del ancho de banda requerido con la técnica tradicional, al mismo tiempo que ofrece suficiente ganancia y estabilidad de la señal para lograr enlaces ópticos con muy baja probabilidad de error. Al mismo tiempo, la técnica propuesta permite conocer con anticipación el número total de iteraciones y posibilita la administración bajo demanda del ancho de banda requerido en diferentes escenarios de turbulencia. Esta tesis ofrece una mirada diferente a los métodos iterativos, posibilitando el desarrollo de nuevos conceptos y contribuyendo al uso de soluciones iterativas en comunicaciones laser por espacio libre.

Subjects

621.3 Electrical engineering

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria de la telecomunicació

Documents

TCEC1de1.pdf

13.11Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)