Coastal risk forecast system : fostering proactive management at the Catalan coast

Author

García León, Manuel

Director

Gracia García, Vicente

Codirector

Sánchez-Arcilla Conejo, Agustín

Date of defense

2018-07-10

Pages

363 p.



Department/Institute

Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona

Abstract

The action of sea storms is one of the most complex littoral processes with deep management implications. Along the Catalan shoreline which is about 700 km long, 190 km are subject to erosion and/or flooding. Around one million people live in areas potentially affected. Sea Level Rise could exacerbate this problem in the near future. Reactive interventions have been the norm in coastal engineering and management. This dissertation proposes a pre-storm strategy that foster cost-effective eco-compatible measures, termed Quick Defence Measures (QDM). Pre-storm intervention requires to forecast the future post-storm state. Hence, the main objective of this thesis is to assess present coastal risk through a Coastal Early Warning System (CEWS), termed LIM-COPAS, that forecasts the more relevant episodic coastal hazards at the area. LIM-COPAS consists of four modules: (i) meteorological model; (ii) wave generation/propagation code; (iii) coupled morpho-hydrodynamic model and (iv) risk module via non-stationary multivariate probabilistic models. The performance of this suite of models has been tested with (i) a set of hindcast events and (ii) synthetic storm conditions. The hindcasted events have been: December 2008 (D-08); October-2015 (O-15); November 2015 (N-15); January 2016 (J-16); February 2016 (F-16); December 2016 (D-16) and January 2017 (J-17). In D-08, errors in nearshore spectral wave parameters have been about twice than those in the offshore area. The error was around 20% in hydrodynamics and 50% in morphodynamics. The post-storm response has been acceptably reproduced, with a Brier Skill Score near 0.4. LIM-COPAS has shown good accuracy with high return period events (i.e. Tr,waves > 10 yrs, D-16 and J-17), but lower agreement was found for milder storms (i.e. O-15 and F-16). The meteorological module provided wind fields that were systematically overestimated. The integrated Mean Bias (MB) was -1.52 ± 0.78 m/s. Tarragona (Coefficient of Efficiency, COE = 0.27 ± 0.13) and Begur (COE = 0.29 ± 0.17) had metrics above the average value (COE = 0.24 ± 0.14); but lower agreement was found at Mahón (COE = 0.13 ± 0.16) and Dragonera. Wave metrics were more accurate than for the wind fields. The integrated Hs COE was 0.52±0.12 and Tm02 COE was 0.36±0.14. At the central coast, Hs has presented good metrics: low MB (-0.06 ± 0.08 m) and high COE (0.58 ± 0.11). The northern coast metrics were the most stable. The newly developed risk module has been implemented at 79 beaches. Erosion has been estimated as a bounded cost, whereas flooding as a high upside cost. Dissipative beaches tend to exhibit higher costs than reflective beaches under high sea levels. Tr,waves < 10 yrs events joint with storm-surges can lead to significant damage costs. The estimated losses for the N-15 event (2510·10^3 euros) do not differ excessively from J-17 (3200·10^3 euros). Two types of QDM have been numerically tested: (i) sand dunes and (ii) geotextile detached breakwaters. The benefits from maintaining the sand volumes outperform the flooding cost reduction. In general terms, the detached breakwater can be a suitable option for beaches in an intermediate morphodynamic state against low to moderate sea levels and high wave return periods. At dissipative beaches, dunes are the best option, but they require a minimum beach width (around 30 m) that ensures their lifetime. QDM functionality can be enhanced with compatible long-term actions (nourishments, sand bypasses, submerged vegetation, etc.). A healthy beach state is paramount for the QDM effectiveness. A higher sustainable management under present and future climate can be reached with the joint combination of (i) CEWS as a short-term forecasting tool; (ii) QDM that mitigate storm impacts and (iii) long-term interventions that improves the beach health.


La acción de los temporales de mar es uno de los procesos litorales más complejos, con profundas implicaciones en la gestión del litoral. A lo largo de la línea de costa catalana, 190 km están sometidos a erosión y/o inundación. Cerca de un millón de personas viven en áreas potencialmente afectadas. La tradición en ingeniería y gestión costera han sido intervenciones reactivas. Esta tesis propone una estrategia pre-tormenta que fomente una serie de medidas eco-compatibles, denominadas Medidas de Acción Rápida (MAR). Las intervenciones pre-tormenta requieren predecir el estado post-temporal de la costa. Por tanto, el principal objetivo de esta tesis es evaluar el riesgo costero episódico mediante un Sistema de Alarma Temprana Costero (CEWS), denominado LIM-COPAS, que predice las peligrosidades costeras más relevantes en dicha área. LIM-COPAS consiste de cuatro módulos: (i) modelo meteorológico; (ii) código de generación/propagación del oleaje; (iii) modelo acoplado morfo-hidrodinámico y (iv) un módulo de riesgo vía modelos probabilísticos multivariantes y no-estacionarios. El comportamiento de estos módulos ha sido analizado mediante (i) una serie de eventos pasados y (ii) temporales sintéticos. Los eventos pasados han sido: Diciembre 2008 (D-08); Octubre 2015 (O-15); Noviembre 2015 (N-15); Enero 2016 (J-16); Febrero 2016 (F-16); Diciembre 2016 (D-16) y Enero 2017 (J-17). En D-08, los errores en los parámetros espectrales de oleaje costero han sido casi el doble que en mar abierto. El error ha sido del 20% en la hidrodinámica y del 50% en la morfodinámica. La respuesta post-temporal ha sido reproducida aceptablemente, con Brier Skill Score cercanos a 0.4. LIM-COPAS ha demostrado buena precisión con tormentas de alto período de retorno (i.e. Tr,waves _ 10 yrs, D-16 y J-17), pero menor concordancia fue encontrada para las tormentas moderadas (i.e. O-15 y F-16). El módulo meteorológico estimó campos de viento que fueron sistemáticamente sobreestimados. El Sesgo Medio (MB) integrado fue de −1,52 ± 0,78 m/s. Tarragona (Coeficiente de Eficiencia, COE = 0,27±0,13) y Begur (COE = 0,29±0,17) tuvieron métricas por encima de la media (COE = 0,24±0,14); no obstante, peor ajuste se encontró en Mahón (COE = 0,13 ± 0,16) y Dragonera. Las métricas de oleaje fueron más precisas que las del viento. Hs COE integrada fue 0,52±0,12 y Tm02 COE fue 0,36±0,14. En la costa central, Hs presentó buenas métricas: bajo MB (−0,06 ± 0,08 m) y alto COE (0,58 ± 0,11). Las métricas en la costa norte fueron las más estables. El módulo de riesgo ha sido implementado en 79 playas. La erosión se ha estimado como un coste acotado, mientras que la inundación como un coste con alta cota superior. Las playas disipativas tienden a exhibir mayores costes que las playas reflejantes bajo altos niveles del mar. Episodios con Tr,waves _ 10yrs, concomitantes a mareas meteorológicas pueden conllevar costes significantes. Las pérdidas estimadas para N-15 (2510 · 103euros) no difieren en exceso de J-17 (3200 · 103 euros). Dos tipos de MAR han sido testeadas numéricamente: (i) dunas y (ii) diques exentos constituídos por geotextiles llenos de arena. Los beneficios de mantener estables los volúmenes de arena superan la reducción de los costes por inundación. En términos generales, los diques exentos pueden ser una opción adecuada para playas de estado morfodinámico intermedio frente a oleaje de alto período de retorno y niveles del mar bajos a moderados. En playas disipativas, las dunas son la mejor opción, pero requieren un ancho mínimo de playa (cerca de 30 m) que garantice su vida útil. La funcionalidad de las MAR puede mejorarse mediante acciones compatibles a largo-plazo (alimentaciones, bypass de arena, vegetación sumergida, etc.). Un estado de playa saludable es esencial para la efectividad de las MAR. Una gestión más sostenible bajo clima presente y futuro puede ser alcanzada mediante (i) CEWS como herramienta de predicción a corto plazo; (ii) MAR que mitiguen los impactos de los temporales y (iii) intervenciones a largo-plazo que mejoren la salud de la costa.

Keywords

Coastal risk; Storm impact; Littoral management; Coastal early warning system; Non-stationary copula; Weather Research and Forecasting (WRF); Simulating Waves Nearshore (SWAN); XBEACH (Numerical model)

Subjects

55 - Earth Sciences. Geological sciences; 627 - Natural waterway, port, harbour and shore engineering. Navigational, dredging, salvage and rescue facilities. Dams and hydraulic power plant

Knowledge Area

Àrees temàtiques de la UPC::Enginyeria civil

Note

Aplicat embargament des de la data de defensa fins Juliol 2020.

Documents

TMGL1de1.pdf

11.46Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)