"Mesh-free methods and finite elements: friend or foe?"

Author

Fernàndez Méndez, Sònia

Director

Huerta Cerezuela, Antonio

Date of defense

2001-11-16

ISBN

8469999893

Legal Deposit

B.46883-2002



Department/Institute

Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III

Abstract

This thesis is devoted to the numerical analysis of mesh-free methods and, in particular, to the study of the possible advantages of the EFG (Element Free Galerkin) mesh-free method against the well-known FE (Finite Element) method. More precisely, the EFG method and the FE method behavior are compared in two particular interesting problems: (1) analysis of volumetric locking in mechanical problems and (2) accurate resolution of transient convection dominated problems. In both cases the good properties and possibilities of mesh-free methods become apparent. <br/>However, in several situations the FE method is still more competitive: for instance, the computation of the FE shape functions and its integrals are less costly, and essential boundary conditions can be easily imposed. Thus, in order to take advantage of the good properties of both methods, a mixed interpolation combining FE and EFG is proposed. This formulation can be applied in two useful situations: (i) enrichment of finite elements with EFG, and (ii) coupling of FE and EFG. An a priori error estimate for the first one is presented and proved. Several examples show the applicability of the mixed interpolation in adaptive computations.


Aquesta tesi està dedicada a l'anàlisi numèrica dels mètodes sense malla i, en particular, a l'estudi dels possibles avantatges del mètode EFG (Element Free Galerkin) davant del ben conegut MEF (Mètode dels Elements Finits). Concretament, es comparen el mètode EFG i el MEF en dos problemes concrets d'interès: (1) l'anàlisi del bloqueig volumètric en problemes mecànics i (2) la resolució precisa de problemes transitoris amb convecció dominant. Les bones propietats i possibilitats dels mètodes sense malla es fan evidents en tots dos casos.<br/>Tot i així, en varis aspectes el MEF resulta més competitiu: per exemple, el càlcul de les funcions de forma i de les seves integrals es menys costós, i les condicions de contorn essencials es poden imposar fàcilment. Amb l'objectiu d'aprofitar les bones qualitats dels dos mètodes, es proposa una interpolació mixta combinant elements finits y EFG, aplicable en dues situacions: (i) enriquiment d'elements finits amb EFG i (ii) acoblament d'elements finits i EFG. Per al primer cas, es presenta i demostra una cota a priori de l'error. L'aplicabilitat d'aquesta interpolació mixta en processos adaptatius es mostra amb varis exemples.


Esta tesis está dedicada al análisis numérico de los métodos sin malla y, en particular, al estudio de las posibles ventajas del método EFG (Element Free Galerkin) frente al bien conocido MEF (Método de los Elementos Finitos). Concretamente, se comparan el método EFG y el MEF en dos problemas concretos de interés: (1) el análisis del bloqueo volumétrico en problemas mecánicos y (2) la resolución precisa de problemas transitorios con convección dominante. Las buenas propiedades y posibilidades de los métodos sin malla se hacen evidentes en ambos casos.<br/>Sin embargo, en varios aspectos el MEF resulta más competitivo: por ejemplo, el cálculo de las funciones de forma y sus integrales es menos costoso, y las condiciones de contorno esenciales se pueden imponer fácilmente. Con el objetivo de aprovechar las buenas cualidades de ambos métodos, se propone una interpolación mixta combinando elementos finitos y EFG, aplicable en dos situaciones: (i) enriquecimiento de elementos finitos con EFG, y (ii) acoplamiento de elementos finitos y EFG. Para el primer caso, se presenta y demuestra una cota a priori del error. La aplicabilidad de esta interpolación mixta en procesos adaptativos se muestra con varios ejemplos.

Keywords

coupling; adaptivity; locking; convection; finite elements; mesh-free methods

Subjects

519.1 - Teoria general de l'anàlisi combinatòria. Teoria de grafs

Knowledge Area

1206. Análisis numérico - 2205. Mecánica

Documents

TESI.pdf

6.241Mb

 

Rights

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)