Analytical Modeling of Ultrashort-Channel MOS Transistors

Author

Yilmaz, Kerim

Director

Lime, François Gilbert Marie

Klös, Alexander Gunther

Date of defense

2022-02-24

Pages

144 p.



Department/Institute

Universitat Rovira i Virgili. Departament d'Enginyeria Electrònica, Elèctrica i Automàtica

Abstract

Les geometries de transistors d'avui són al rang de nanòmetres d'un sol dígit. En conseqüència, les funcionalitats dels dispositius es veuen afectades negativament pels efectes de canal curt i de mecànica quàntica (SCE i QMEs). Una transició de la geometria del transistor d'efecte de camp de tipus FinFET a Gate-All-Around (GAA) FETs com FETs de nanofils cilíndrics (NW) i de nanoplaques de silici (SiNS) es preveuen en els propers nodes tecnològics per suprimir els SCE i garantir una major miniaturització del MOSFET Aquesta dissertació se centra en el modelat analític de FETs de tipus NW i SiNS de canal ultracurt.S'introdueix un concepte de dimensions de doble porta (DG) equivalent per transferir un model de potencial de DG analític a FET de NW. Un model de corrent de DG compacte es modifica aprofitant la simetria rotacional dels FET de NW. L'efecte del confinament quàntic (QC) és implementat considerant l'eixamplament addicional de la banda prohibida al càlcul d'una concentració de portadors de càrrega intrínseca efectiva i al càlcul del voltatge llindar. L'efecte de corrent túnel directe de font a drenador (DSDT) a SiNS FET ultraescalats es modela amb el nou mètode de wavelets. Aquest model calcula analíticament la probabilitat de tunelització per a cada energia de l'electró, aproximant la forma de la barrera potencial mitjançant una barrera rectangular amb una altura de barrera equivalent. A causa de la fórmula de corrent túnel de Tsu-Esaki no analíticament integrable, es presenta un mètode analític anomenat model quasi-compacte (QCM). Aquest enfocament requereix, entre altres aproximacions, una iteració de Newton i una interpolació lineal de la densitat de corrent amb efecte túnel. A més, es realitza una anàlisi criogènica de temperatura i dopatge. S'investiga la forta influència de la distància del nivell de Fermi a la font des de la vora de la banda de conducció sobre el pendent subumbral, el corrent i la reducció de la barrera induïda per drenador (DIBL). A més, es demostra i explica la fusió de dos efectes relacionats amb el pendent subumbral i el DIBL. La validesa del concepte de dimensions DG equivalents es demostra mitjançant el mesurament i les dades de simulació de TCAD Sentaurus, mentre que el mètode de wavelets es verifica mitjançant simulacions NanoMOS NEGF.


Las geometrías de transistores de hoy están en el rango de nanómetros de un solo dígito. En consecuencia, las funcionalidades de los dispositivos se ven afectadas negativamente por los efectos de canal corto y de mecánica cuántica (SCE y QMEs). Una transición de la geometría del transistor de efecto de campo de tipo FinFET a Gate-All -Around (GAA) FETs tales como FETs de nanohilos cilíndricos (NW) y de nanoplacas de silicio (SiNS) se prevén en los próximos nodos tecnológicos para suprimir los SCE y garantizar una mayor miniaturización del MOSFET. Esta disertación se centra en el modelado analítico de FETs de tipo NW y SiNS de canal ultracorto. Se introduce un concepto de dimensiones de doble puerta (DG) equivalente para transferir un modelo de potencial de DG analítico a FET de NW. Un modelo de corriente de DG compacto se modifica aprovechando la simetría rotacional de los FET de NW. El efecto del confinamiento cuántico (QC) es implementado considerando el ensanchamiento adicional de la banda prohibida en el cálculo de una concentración de portadores de carga intrínseca efectiva y en el cálculo del voltaje de umbral. El efecto de corriente túnel directa de fuente a drenador (DSDT) en SiNS FET ultraescalados se modela con el nuevo método de wavelets. Este modelo calcula analíticamente la probabilidad de tunelización para cada energía del electrón aproximando la forma de la barrera de potencial mediante una barrera rectangular con una altura de barrera equivalente. Usando la fórmula de corriente túnel de Tsu-Esaki no analíticamente integrable, se presenta un método analítico denominado modelo cuasi-compacto (QCM), querequiere una iteración de Newton y una interpolación lineal de la densidad de corriente de efecto túnel. Además, se realiza un análisis criogénico en temperatura y dopaje. Se investiga la fuerte influencia del nivel de Fermi de la fuente la sobre la pendiente subumbral, la corriente y la reducción del efecto DIBL. Además, se demuestra y explica la fusión de dos efectos relacionados con la pendiente subumbral y el DIBL. La validez del concepto de dimensiones DG equivalentes se demuestra mediante datos de mediciones y de simulaciones TCAD Sentaurus, mientras que el método de wavelets se verifica mediante simulaciones NanoMOS NEGF.


Today's transistor geometries are in the single-digit nanometer range. Consequently, device functionalities are negatively affected by short-channel and quantum mechanical effects (SCEs & QMEs). A transition from fin field-effect transistor (FinFET) geometry to gate-all-around (GAA) FETs such as cylindrical nanowire (NW) and silicon nanosheet (SiNS) FETs is envisioned in the upcoming technology nodes to suppress SCEs and ensure further MOSFET miniaturization. This dissertation focuses on the analytical modeling of ultrashort-channel NW and SiNS FETs. An equivalent double-gate (DG) dimensions concept is introduced to transfer an analytical DG potential model to NW FETs. A compact DG current model is modified by exploiting the rotational symmetry of NW FETs. The effect of quantum confinement (QC) is implemented by considering the additional bandgap widening in the calculation of an effective intrinsic charge carrier concentration and in the calculation of the threshold voltage. The effect of direct source-to-drain tunneling (DSDT) current in ultrascaled SiNS FETs is modeled with the new wavelet approach. This model calculates the tunneling probability analytically for each electron energy by approximating the potential barrier shape by a rectangular barrier with an equivalent barrier height. Due to the nonanalytically integrable Tsu-Esaki tunneling formula an analytical approach named quasi-compact model (QCM) is presented. This approach requires, among other approximations, a Newton iteration, and a linear interpolation of the tunneling current density. Furthermore, a cryogenic temperature and doping analysis is performed. The strong influence of the distance of the source related Fermi level from the conduction band edge on the subthreshold swing, current, and drain-induced barrier lowering (DIBL) saturation is investigated. Also, the merging of two subthreshold swing and DIBL effects is demonstrated and explained. The validity of the equivalent DG dimensions concept is proven by measurement and TCAD Sentaurus simulation data, while the wavelet approach is verified by NanoMOS NEGF simulations.

Keywords

model analític; GAA FET; efectes quàntics; modelo analítico; efectos cuánticos; analytical modeling; quantum effects

Subjects

0 - Generalitats; 53 - Física; 62 - Enginyeria. Tecnologia; 621.3 - Enginyeria elèctrica. Electrotècnia. Telecomunicacions

Knowledge Area

Enginyeria i arquitectura

Documents

TESI Kerim Yilmaz.pdf

9.091Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)