Optimal Sobolev Embeddings in Spaces with Mixed Norm

Author

Clavero, Nadia F.

Director

Soria de Diego, F. Javier

Date of defense

2015-03-20

Legal Deposit

B 14975-2015

Pages

139 p.



Department/Institute

Universitat de Barcelona. Departament de Matemàtica Aplicada i Anàlisi

Abstract

Este proyecto hace referencia a estimaciones, en espacios funcionales, que relacionan la norma de una función y la de sus derivadas. Concretamente, nuestro principal objetivo es estudiar las estimaciones clásicas de las inclusiones de Sobolev, probadas por Gagliardo y Nirenberg, para derivadas de orden superior y espacios más generales. En particular, estamos interesados en describir el dominio y el rango óptimos para estas inclusiones entre los espacios invariantes por reordenamiento (r.i.) y espacios de normas mixtas.


This thesis project concerns estimates, in function spaces, that relate the norm of a function and that of its derivatives. Speci.cally, our main purpose is to study the classical Sobolev-type inequalities due to Gagliardo and Nirenberg for higher order derivatives and more general spaces. In particular, we concentrate on seeking the optimal domains and the optimal ranges for these embeddings between rearrangement-invariant spaces (r.i.) and mixed norm spaces.

Keywords

Inclusions de Sobolev; Inclusiones de Sobolev; Sobolev inclusions

Subjects

51 - Matemàtiques

Knowledge Area

Ciències Experimentals i Matemàtiques

Documents

NFC_PhD_THESIS.pdf

1.522Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/3.0/es/

This item appears in the following Collection(s)