Moment Spectrum and First Dirichlet Eigenvalue of Geodesic Balls in Riemannian Manifolds

Autor/a

Sarrión-Pedralva, Erik

Director/a

Gimeno Garcia, Vicent

Palmer Andreu, Vicente José

Tutor/a

Palmer Andreu, Vicente José

Fecha de defensa

2023-02-17

Páginas

196 p.



Departamento/Instituto

Universitat Jaume I. Escola de Doctorat

Programa de doctorado

Programa de Doctorat en Ciències

Resumen

In this work, given a geodesic ball of a Riemannian manifold with radius less than the injectivity radius of its center, we prove our estimates for some geometric invariants defined on the ball. The invariants that we will study are the mean exit time function, the torsional rigidity, the Poisson hierarchy, the moment spectrum and the first eigenvalue of the Laplacian for the Dirichlet problem. To find our estimates we will compare these geometric invariants with those defined in the corresponding geodesic balls of certain rotationally symmetric model spaces. In particular, to make our comparisons, we must either construct the rotationally symmetric model spaces from the area function of the geodesic spheres of the original Riemannian manifold, or we must assume bounds between the mean curvatures of the geodesic spheres of the manifold and their corresponding on the rotationally symmetric model spaces.

Palabras clave

Riemannian Geometry; Moment spectrum; First Dirichlet eigenvalue; Symmetrizations

Materias

51 - Matemáticas

Área de conocimiento

Ciències

Documentos

2023_Tesis_Sarrion Pedralva_Erik.pdf

2.206Mb

 

Derechos

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-sa/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)