Re-thinking large scale hate speech identification: beyond common NLP conventions and supervised machine learning

Autor/a

Teixeira Fortuna, Paula Cristina

Director/a

Wanner, Leo

Soler Company, Juan

Data de defensa

2023-03-06

Pàgines

127 p.



Departament/Institut

Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions

Programa de doctorat

Programa de doctorat en Tecnologies de la Informació i les Comunicacions

Resum

The detection of hate speech in online spaces is traditionally conceptualized as a classification task that uses Machine Learning (ML)-driven Natural Language Processing (NLP) techniques. In accordance with this conceptualization, the hate speech detection task relies upon common conventions and practices in Artificial Intelligence, ML and NLP – among them interpretation of the inter-annotator agreement as a way to measure dataset quality and the use of standard metrics such as precision, recall or accuracy and benchmarks to assess model performance. However, hate speech is a highly subjective and context-dependent notion that eludes such static and disembodied practices. Their application results in definitorial challenges and the failure of the models to generalize across different datasets, two problems that I analyse in empirical studies. Furthermore, I critically reflect on the followed methodologies. I argue that many conventions in NLP are poorly suited for the problem and suggest to develop methods that are more appropriate for fighting online hate speech.


Abordar el discurs de l’odi als espais en línia s’ha conceptualitzat comuna tasca de classificació que utilitza t`ecniques d’intelligència artificial (IA), aprenentatge automàtic (ML) o processament del llenguatge natural (PNL). Mitjançant aquesta conceptualització, la tasca de detecció del discurs d’odi s’ha basat en les convencions i pr`actiques comunes d’aquests camps. Per exemple, l’acord entre anotadors es conceptualitza com una manera de mesurar la qualitat del conjunt de dades i s’utilitzen determinades m`etriques i punts de referència per inferir el rendiment del model. Tanmateix, el discurs de l’odi és un concepte profundament complex i situat que eludeix aquestes pràctiques estàtiques i incorpònies. En aquesta tesi aprofundeixo en els reptes de definici ó i les dificultatKeywordss pel que fa a la generalització de models, dos problemes que analitzo amb estudis empírics. A més, reflexiono críticament sobre les metodologies seguides, argumento que moltes convencions en PNL són poc adequades per al problema i animo els investigadors a desenvolupar mètodes més adequats per combatre el discurs d’odi en línia.

Paraules clau

Hate speech detection; Machine learning conventions; Algorithmic challenges; Deteccio de discurs d’odi; Convencions d’aprenentatge automàtic; Reptes algorítmics

Matèries

62 - Enginyeria. Tecnologia

Documents

tpctf.pdf

903.7Kb

 

Drets

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)